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Abstract: Recent years have been marked by a paradigm shift in the study of the human microbiota,
with a re-emergence of culture-dependent approaches. Numerous studies have been devoted to
the human microbiota, while studies on the oral microbiota still remain limited. Indeed, various
techniques described in the literature may enable an exhaustive study of the microbial composition of
a complex ecosystem. In this article, we report different methodologies and culture media described
in the literature that can be applied to study the oral microbiota by culture. We report on specific
methodologies for targeted culture and specific culture techniques and selection methodologies
for cultivating members of the three kingdoms of life commonly found in the human oral cavity,
namely, eukaryota, bacteria and archaea. This bibliographic review aims to bring together the various
techniques described in the literature, enabling a comprehensive study of the oral microbiota in order
to demonstrate its involvement in oral health and diseases.

Keywords: culture; human oral microbiota; bacteria; archaea; fungi; culturomics

1. Introduction

The human oral cavity is a complex ecosystem favourable to the development and
establishment of numerous bacterial, archaeal, viral, fungal and unicellular eukaryota
species [1]. These different kingdoms of life cohabit and evolve within this complex
ecosystem, composing what is commonly known as “microbiota” [2]. This is represented
by a complex community that persists and develops on the surfaces of the oral cavity,
generally in the form of a multi-species biofilm which transits through the saliva [3]. This
biofilm, when growing on the teeth, is referred to by the generic term “dental plaque” [3].
The unique properties of the oral cavity and its constituent organs make the composition
of the oral microbiota characteristic of the site it colonises and distinguishes it from that
of neighbouring ecosystems, such as the skin, respiratory and digestive tracts [4]. These
properties play a major role in determining the oral microbiota and its composition [4].
Several parameters are involved in determining which species can colonise, grow and
settle to become a major or minor component of the microbiota, including the quality
and quantity of saliva, the biotype and phenotype of the periodontium, the depth of the
periodontal pockets around the teeth and the quality of the dental tissue [5].

The oral microbiota maintains a symbiotic relationship with its host [6]. The resident
microorganisms of the oral cavity help fight pathogens, down-regulate undesirable and
potentially pro-inflammatory responses, and promote oral health [7,8]. However, this
symbiotic relationship remains fragile and susceptible to change depending on social, eco-
nomic, dietary and nutritional factors; sedentary lifestyle, autonomy, hygiene compliance,
smoking and alcohol consumption as well as genetic and physiological factors [5,9–12].
These factors directly influence the composition of the microbiota and also its behaviour
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and its evolution from a commensal microbiota to pathogenicity [13]. Since the notion of in-
fectious disease first appeared, humans have tried to classify microorganisms as pathogens
or commensals as part of the local and resident microbiota, evolving in perfect symbiosis
with their host [14]. It is now known that some bacterial species or even communities
may have properties that escape our classification systems [15]. The distinction between
pathogenic and commensal bacteria is becoming an increasingly complex and ambiguous
task, especially when the microorganisms usually found in healthy states are involved in
complex interactions with their host leading to a state of disease or infection [15]. Recent
years have been marked by a paradigm shift in the study of the human microbiota, with a
re-emergence of culture-dependent approaches [16–21]. Recent studies have been mainly
devoted to cultivating the gut microbiota and studies on the oral microbiota remain very
limited. The oral microbiome is highly diverse. Approximately 774 indigenous species are
present in the oral cavity, including 54% cultivated and named species, 14% cultivated but
not yet named species, and 32% remaining uncultivated phylotypes [6] (the Human Oral
Microbiome Database, https://www.homd.org/; accessed on 23 January 2023). Recently,
molecular-based studies have demonstrated that the oral microbiota is more diverse and
complex and plays a vital role in the pathogenesis and development of many oral and
systemic diseases [22,23].

In this literature review we review new strategies that have been developed to improve
the culture and isolation of microbes from the human microbiota that can be applied to
cultivate the oral microbiota, as well as their field of application.

2. Current Strategies to Study the Human Oral Microbiota
2.1. Next-Generation Sequencing and Metagenomics

Next-generation sequencing (NGS) is a new molecular approach applied to study the
microbial diversity of diverse ecological niches [24,25]. NGS has enabled a more in-depth
and non-specific exploration of the human microbiota by generating a huge amount of data
leading to a better understanding its composition, mainly through amplicon sequencing and
whole-genome metagenomics [26,27]. NGS has enabled a rapid and comprehensive analysis
of microbial diversity in various ecological niches, which has propelled it to the forefront to
gradually replace the tedious and time-consuming standard culture techniques [24,28].

However, the limitations of NGS are quickly identified. Indeed, the absence of a
standardised protocol and the variability of the used DNA extraction techniques, as well
as the variability of the primers used for amplification, create biases that make the results
dependent on the technique used [25]. In addition, the depth bias associated with all molec-
ular methods, due to limited sensitivity, results in the neglect of minority species [29]. One
of the major shortcomings of molecular techniques remains the lack of information related
to the viability, adaptation, and availability of the strains for further in vivo studies [18,21].

The limitations and lack of information generated by molecular techniques encourage
us to return to the sources of the fundamental research in microbiology, namely microbial
culture [18]. Indeed, microbial culture represents the basic component of microbiology,
and has long been side-lined at the expense of molecular methods [18,24]. Much recent
work underlines the need to combine molecular techniques such as NGS with recent and
innovative approaches such as culturomics in order to overcome the lack of these techniques
and to gain a global and exhaustive view of the composition of the microbiota of a given
ecological niche [21].

2.2. Culturomics: A New Concept Applicable to Oral Microbiota

Culturomics is a high-throughput culture-based concept created in 2012 with the
goal of isolating all species that make up the human digestive microbiota [30]. Since then,
many studies have combined high-throughput culture and metagenomics with the goal
of reducing the dark matter of the microbiota, consisting of unassigned and unmatched
sequences, through the isolation and sequencing of previously uncultured species [20].

https://www.homd.org/
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Culturomics has proven itself over the last ten years, and its application has been
made possible by rapid colony identification using Matrix Assisted Laser Desorption
Ionization/Time Of Flight Mass Spectrometry (MALDI-TOF MS) [30]. Culturomics has
demonstrated its effectiveness and contribution to the exploration of the gut microbiota over
the last decade by significantly expanding the field of knowledge regarding the repertoire
of the human microbiota by isolating new or previously uncultured species [18–21,30].
Indeed, to date, more than 2770 different species, including 800 new species, have been
isolated by culturomics from human specimens from different sites including: human gut,
skin, urinary tract, vaginal and respiratory microbiota [31].

Various studies throughout the world have shown the interest of diversifying culture
media and conditions to broaden the scope of culture, in addition to the use of specific
media and targeted approaches (Table 1). Indeed, the use of selective and non-selective
media has allowed a continuous progression of knowledge concerning the diversity of
the human microbiota [32]. The oral microbiota is undoubtedly very diverse, as shown
by the Human Oral Microbiome Data Base (https://www.homd.org/; accessed on 23
January 2023), which currently contains more than 774 different species (https://www.
homd.org/; accessed on 23 January 2023) (Figure 1) [33,34]. Currently, metagenomics-
based estimates suggest a global number of around 1200 species grouped into 19 different
phyla, namely Absconditabacteria (SR1), Actinobacteria, Bacteroidetes, Chlamydiae, Chlorobi,
Chloroflexi, Cyanobacteria, Firmicutes, Fusobacteria, Gracillibacteria _(NG02), Ignavibacteriae,
Lentisphaerae, Proteobacteria, Saccharibacteria, Spirochaetes, Synergistetes, Tenericutes WPS-2,
and Euryarchaeota (https://www.homd.org/taxa/tax_hierarchy; accessed on 23 January
2023) [22]. The majority of cultured species are grouped in only six phyla, Actinobacteria,
Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, and Spirochaetes (Figure 2) [22].
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cavity. The number of species per phylum is presented between parents in the phylogenetic tree. 
Figure 1. Phylogenetic diversity of the 19 phyla isolated or detected at least once in the human oral
cavity. The number of species per phylum is presented between parents in the phylogenetic tree.
The illustration on the left of the figure was made using the online tool wordle (www.wordle.net;
accessed on 23 January 2023); the size of the name of each phylum is proportional to the number
of species it contains. The phylogenetic tree was created using MEGA software. Figure 1 was built
according to data collected from the Human Oral Microbiome Database; https://www.homd.org/;
accessed on 23 January 2023.
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Figure 2. Quantitative distribution of cultured and uncultured bacterial diversity composing the oral
microbiota represented by number of species composing each phylum. Each phylum is represented
by a different colour, as shown on the right. (Figure 2 was built according to data collected from the
Human Oral Microbiome Database; https://www.homd.org/; accessed on 23 January 2023).

The oral cavity is the main entrance and an obligatory passage for colonising microbes
ending their journey in the digestive tract. The colonisation of these microbes to the oral
ecosystem is also possible thanks to the favourable living conditions for the development
and establishment of various microorganisms including bacteria, archaea, fungi, viruses,
giant viruses, Candidate Phyla radiation group (CPR) and unicellular eukaryotes. Microbial
culturomics may be a helpful tool for studying the oral microbiota by culture in order to
broaden the spectrum of cultivated species of this ecosystem.

2.3. Rapid Culture of Anaerobic Bacteria Using YCFA Medium

Yeast extract-casein hydrolysate fatty acids (YCFA) culture medium is a rich medium
widely used in the literature to culture strict anaerobes [35,36]. It is composed of growth
factors, antioxidants, volatile fatty acids and vitamins essential for their growth (https:
//www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1611.pdf; accessed on
23 January 2023).

One very interesting approach to cultivating anaerobic bacteria in record time was
proposed by Naud et al., in 2020, using YCFA medium as well as the medium of blood
culture bottles (BioMérieux, Marcy l’Etoile, France) supplemented with rumen [36]. The
culture investigations, which were performed on only two stool samples, resulted in
the isolation of 121 different bacterial species in only three weeks, of which 104 species
were cultured within 24 h of incubation (Table 1). This is an unprecedented technical
achievement, making it possible to use bacterial culture as a rapid and accurate diagnostic
tool [36].

According to another study conducted by Browne et al., the YCFA culture medium
allowed the cultivation of 137 species, 68 of which were completely new species, and 63 of
which belonged to the phylum Firmicutes, four to Bacteroidetes and one to Actinobacteria [35].
This medium also gave exceptional results during a study by Forster et al. in 2019 on the
diversity of the human digestive macrobiota, by succeeding in cultivating 273 different

https://www.homd.org/
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bacterial species, of which 105 were new bacterial species distributed over three phyla: 91
species belonged to the phylum Firmicutes, 13 to the phylum Bacteroidetes, and one to the
phylum Proteobacteria [37].

The oral microbiota consists of a large majority of anaerobic microorganisms [38,39].
YCFA medium is suitable for the culture of these oxygen-intolerant microorganisms and
the studies described above demonstrate the high yield of culture using this medium to
cultivate anaerobes [35,36]. Moreover, this medium is able to cultivate the most repre-
sented phyla in the human oral cavity, namely Firmicutes, Bacteroidetes, Actinobacteria and
Proteobacteria [35,36]. The YCFA medium may constitute a good culture base for future
investigations to explore the diversity of the oral microbiota. So far, and according to the
sources we have consulted, no study exploiting the potential of the YCFA medium to study
the diversity of the oral microbiota has been conducted.

2.4. Specific Conditions and Media for a Targeted Culture
2.4.1. Spore-Forming Bacteria in the Oral Cavity

Recent studies have described the isolation and characterisation of spore-forming
bacteria from the oral cavity in the context of pathogenicity [40] or as an integral part of the
oral microbiota [41]. Despite these limited studies, the number of spore-forming bacteria
colonising the oral cavity is limited to a few cultivated species, mainly from the genera
Bacillus or Peanibacillus [41]. Numerous techniques have been optimised for the specific
culture of spore-forming bacteria in various domains, including the intestinal microbiota
(Table 1).

2.4.2. Alcohol Decontamination

In 2016, Browne et al. described the use of improved pre-culture conditions that
allowed for the targeted isolation of spore-forming bacteria [35]. This technique consisted
of pre-incubating the sample in an equal volume of 70% alcohol for four hours at room
temperature under aerobic conditions (Table 1). A wash was then performed prior to
plating on a rich culture medium under anaerobic conditions [35].

The alcohol selection or disinfection technique was then adapted and modified by the
culturomics team in 2020 to specifically isolate spore-forming bacteria that could be used in
bacteriotherapy trials for the treatment of Clostridium difficile infections from human stool
samples [42]. A total of 254 bacterial species were identified, of which nine represented
new species. Of the species isolated in this study, 242 have never been included in clinical
trials and represent potentially interesting new candidates for bacterial therapy trials [42].

2.4.3. Thermal Shock

Thermal shock is a selective technique based on the use of high temperature for
the isolation of spore-forming bacteria. One of the culture protocols validated by the
culturomics approach is to expose the sample to a constant temperature of 80 ◦C in a dry
bath for 20 min to select spore-forming or spore-producing bacteria. The exposed sample is
then subcultured on Columbia agar plates in anaerobic conditions [18].

2.4.4. The Use of Antioxidants to Improve Anaerobic Conditions

Antioxidants have long been used to establish an anaerobic atmosphere or to contribute
to its improvement [43,44]. Indeed, antioxidants such as sodium sulphide (Na2S), or amino
acids such as cysteine, are found in old culture media optimised for the culture of anaerobic
bacteria but also for the culture of methanogenic archaea for which sensitivity to oxygen is
widely demonstrated [17,43,44]. Since then, many studies have focused on the beneficial
effect of antioxidants for the culture of fastidious anaerobes. A more recent study conducted
by La Scola et al., in 2014, succeeded in cultivating six strictly anaerobic bacteria and seven
aerobic bacteria aerobically on Schaedler agar culture medium supplemented with 0.1 g
glutathione and 0.5 g ascorbic acid. Among the species cultivated during this study, the
authors mention the Fusobacterium necrophorum and Ruminococcus gravus species, known
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for their extreme sensitivity to oxygen [45]. Their results suggest that using this unique
medium it would be possible to cultivate anaerobic and aerobic bacteria aerobically in a
standard incubator, enabling the renewal of the anaerobic culture [45].

In 2015, Dione et al. were able to expand the spectrum of bacterial species grown
with antioxidants by culturing aerobic, microaerophilic, and anaerobic bacteria on a single
medium by a simple addition of antioxidant consisting of 0.1 g glutathione +1 g uric acid
+1 g ascorbic acid to Shedler agar medium [46]. This technical feat enabled the culture of
251 different bacterial species and showed that it was possible to perform antibiograms of
anaerobic bacteria in aerobic conditions without affecting the sensitivity of the results [46].
This technique was then applied to methanogenic archaea culture to successfully isolate 13
strains of Methanobrevibacter smithii and nine strains of Methanobrevibacter oralis from 100
stools and 45 oral samples [16].

The work of Million et al., in 2020 confirmed the beneficial effect of antioxidants on
the culture of anaerobes [47]. In this case, antioxidants were able to decrease the oxidative
stress experienced by anaerobic bacteria of the genus Clostridium and maintain an increased
production of volatile fatty acids such as butyrate, isobutyrate and isovalerate when grown
in the presence of three antioxidant molecules: glutathione, ascorbic acid and uric acid.
Volatile fatty acids are known to contribute to the maintenance and active resilience of host–
bacterial mutualism against mucosal oxygen and uncontrolled oxidative stress in vivo [47].

Recently, new molecules with antioxidant activities have been described in the litera-
ture, such as phenolics, flavonoids and carotenoids [48]. These molecules with antioxidant
potential should be tested for their antioxidant effect in order to improve or even establish
the anaerobic atmosphere necessary for the culture of anaerobic bacteria in the oral cavity.

2.4.5. Bacterial Co-Culture

Co-culture has been widely used in recent years to make possible the culture of certain
microorganisms that so far had remained uncultured. Co-culture is based on the capacity
of some bacteria to produce or secrete active substances, cofactors or growth factors of
interest to other species lacking them [16]. Numerous approaches have been used either
to accelerate the bacterial growth, by the addition of missing unknown nutrients in the
culture medium, or of known nutrients not commercially available [16,49–51]. To illustrate
the contribution of co-culture to the field of microbial culture, and in particular oral cavity
microbes, we took the example of methanogenic archaea.

The culture of methanogenic archaea is fastidious and requires an external supply of
H2 and CO2 required for their growth [17]. In 2016, Khelaifia et al. succeeded in substi-
tuting the gaseous supply of H2 and CO2 by a co-culture with Bacteroides thetaiotaomicron
used as the sole source of hydrogen and CO2 in a dual chamber culture device. In this
device, B. thetaiotaomicron were grown in the bottom chamber in Schaedler liquid medium
supplemented by antioxidants producing enough hydrogen and CO2 to allow growth of
the methanogenic archaea Mathanobrevibacter smithii on solid medium and isolate viable
colonies [16]. Previous studies have used cultured species to boost the growth of other
fastidious bacteria using diffusion chambers or a double layer of agar separated by porous
membranes [49,50]. Co-culture is therefore becoming a good alternative for laboratories
lacking the technical means to culture fastidious bacteria and methanogenic archaea from
all sources, whether biological or environmental [16].

2.4.6. Selective Media Based on Antimicrobial Agents, Antibiotics and Phages

The ability of some microorganisms, including bacteria and archaea, to resist antimi-
crobial agents is one of the most important public health problems of recent years, but
also poses an interesting possibility for microbiologists to decontaminate samples for the
purpose of the specific isolation of these resistant microorganisms [52,53]. Methanogenic
archaea are known to be resistant to the majority of antibiotics used in antimicrobial ther-
apeutics and the treatment of infectious diseases, except for metronidazole derivatives,
chloramphenicol and fusidic acid [54,55]. Many studies have focused on this ability found
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in some microorganisms to facilitate their isolation from a complex environment. The
culture medium optimised by Khelaifia et al., in 2013, is now one of the most widely used
media for the selective culture of methanogenic archaea [16] (Table 1). One of the peculiari-
ties of this medium, in addition to its complex nutrient composition (thus considered a rich
medium), is the addition of a cocktail of antibiotics aimed at eliminating Gram-positive
and Gram-negative bacteria, fungi and yeasts [16,54].

The disadvantage of the use of antibiotics is the obligatory selection of resistant
strains [52,53]. Bacterial growth can also be inhibited by the use of phages, which reduces
the potential development of resistance associated with the use of antibiotics [56]. Indeed,
bacteriophages are viruses that specifically infect certain bacteria. In the case of lytic
phages, host bacteria are destroyed by their phage through a process of cell lysis [18]. This
specific lysis capacity can therefore be used to specifically eliminate majority bacteria in a
polymicrobial culture of any origin, including the human oral cavity, in order to cultivate
minority and slow growing bacteria.

2.4.7. The Genomic-Reverse Culture Technique

Reverse genomics is one of the most promising new perspectives in the cultivation
of uncultured microorganisms in all areas of life [57]. This technique exploits the ability
of antibodies to bind specifically to a given organism, to isolate it by culture, and then
sequence its genome from a simple culture or complex ecosystem [57]. Using this method,
Cross et al. successfully isolated and cultured three species of Saccharibacteria, including
the TM7 strain known to be an integral part of the human oral macrobiota [57]. They also
isolated and cultured species from the human oral SR1 bacteria group, which are members
of a previously uncultured bacterial lineage [57].

A more recent study has also demonstrated the potential of reverse genomics by identi-
fying a common system capable of culturing all members of the Saccharibacteria group from
any human sample [58]. This method is also applicable to any other sample or specimen of
diverse origin [58]. In this study, the authors describe their success in obtaining in-silico spe-
cific epitopes for Saccharibacteria spp., distributed in four different transmembrane proteins.
Subsequently, they suggest the use of all these epitopes to synthesise antibodies targeting
the Saccharibacteria species in order to cultivate them. According to the authors, this
strategy can also be applied to archaea, or to other phyla/taxa, such as the Parcubacteria
phylum and the DPANN group (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoar-
chaeota, and Nanohaloarchaeota) [58]. Thus, the use of this methodology can help cultivate
new microbes and enrich our knowledge of the composition of the human microbiota in
general and the oral microbiota in particular. Most microorganisms in the human oral
cavity from all taxonomic levels remain uncultured to date [59]. Reverse genomics can be
a significant asset for the cultivation of uncultured microorganisms and can be applied
to all species from all known ecosystems [57]. These species, once isolated and cultured,
can be characterised and studied to better understand both the role they play in the oral
microbiota but also their actual involvement in oral disease and health [60].

2.5. Treponemes of the Oral Cavity

Treponemes are spiral-shaped motile prokaryotes belonging to the genus Treponema
and the order Spirochaetales, in the family Spirochaetaceae [61,62]. These microorganisms
colonise the human intestinal [63], oral [64] and genital [65] microbiota, as well as those of
animals. Most of these microorganisms are part of the commensal microbiota, but some
species are opportunistic pathogens, such as Treponema pallidum, the causative agent of
syphilis in humans [66]. Other species have been directly associated with a high prevalence
in patients with periodontitis and gingivitis, such as Treponema denticola. Indeed, numerous
studies have revealed the direct involvement of certain Treponema species in the severity
and extent of periodontal lesions [67,68]. T. denticola is the most widely studied of these,
and its virulence factors have been identified. This bacterium is a member of the Sokransky
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red complex [69] and has the ability to bind to fibroblasts and epithelial cells via dentilisin
protease, thus becoming cytotoxic and causing cell death [70].

Treponemes are a typical example of fastidious microorganisms with complex nu-
tritional requirements. They cannot grow on minimal media, and their culture requires
special and complex nutrients. Most Treponema species grow at temperatures ranging from
37 ◦C to 40 ◦C, anaerobically and/or micro-aerobically [71]. Several culture media have
been reported in the literature, specifically designed to support the growth of these bacteria,
and several modifications have been made to one or more of these media, including the
addition of vitamins, carbohydrates, volatile fatty acids and serum of animal or human
origin (Table 1) [71]. Initially, media and techniques previously designed for the culture of
T. pallidum led to the isolation of the first treponemes associated with the human genital
mucosa (Treponema calligyrum, Treponema refringens) [72] and the oral cavity (T. denticola) [73].
Thus, the nutritional requirements deduced from attempts to grow T. pallidum led to the
formulation of specific culture media, adapted to the culture of Treponema spp., such as
Growth Medium (GM-1) [74], Enriched Medium 10 (M10) [75], Oral Treponemes Isolation
medium (OTI) [76], New oral spirochete medium (NOS) [77], Oral Treponemes Enrichment
Broth (OTEB) [78], Oral Microbiology and Immunology, Zürich medium (OMIZ) [79], and
more recently T-Raoult [71]. Teponemes culture media are summarized in Table 1.

The genus Treponema is the predominant genus of Spirochaetaceae colonising the oral
cavity. Although these organisms are part of the normal microbiota, they have, to date,
been neglected by microbiologists, and the number of cultured species is thus far limited to
only ten species [71]. However, studies based on molecular methods by direct amplification
of 16S DNA from oral cavity samples have revealed the existence of more than 80 different
phylotypes belonging to the genus Treponema that remain uncultured so far [80]. Hence,
there is a pressing need to develop new identification and culture methods specifically
targeting Treponema from clinical samples, to allow the extension of the Treponema repertoire
associated with human microbiota and, more particularly, the oral microbiota. This can be
achieved by isolating new species to phenotypically characterise them and sequence their
genomes in order to study their roles in human oral health and pathology to determine
their role within this complex microbiota.

2.6. Archaea of the Oral Cavity

Archaea are unicellular prokaryotes forming a separate domain of life from bacteria,
eukaryotes and giant viruses [81]. They were first isolated from extreme environments,
such as hot springs [82] and salty lakes, but it is now known that they are ubiquitous and
can be found in all known ecosystems, including living organisms [83,84]. In humans,
methanogenic and some halophilic archaea species are principally found [85,86]. Archaea
have colonised all human mucosa, particularly intestinal [87] and oral mucosa [88], and
have been associated with dysbiosis [89] as well as abscessed pathologies [90].

Culturing methanogenic archaea is a long and fastidious process, due to their oxygen
intolerance and specific nutritional needs [17]. Most methanogenic archaea require an
external source of hydrogen and carbon dioxide for their growth [17]. In 1969, Hungate
pioneered methanogenic archaea culture. He first did so in a strict anaerobic liquid medium,
and then in a solid medium in roll tubes, which allowed a control of the culture atmosphere
in general, as well as the addition of hydrogen and carbon dioxide at various concentrations
in particular [44]. Since then, different media appropriate to the requirements of each
known species have been optimised (Table 1) [17]. Recently, the SAB® medium has been
developed and optimised in order to be versatile and enable the culture and isolation
of most methanogenic archaea species [17]. The addition of antioxidants to agar SAB®

medium also enabled the aerobic culture of methanogenic archaea, by placing the agar
plates in the upper part of a double chamber, with a lower part containing liquid culture
medium inoculated with B. thetaiotaomicron as the sole continuous source of hydrogen and
carbon dioxide [16]. Subsequently, Guindo et al. improved the double chamber culture
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technique by proposing a new concept, based on the production of hydrogen through a
chemical reaction between acetic acid and iron filings [91].

In the oral cavity, methanogenic archaea are part of the commensal microbiota, espe-
cially in individuals who smoke [92]. They are also associated with periodontal pathologies
and especially with periodontitis [93] and peri-implantitis [94]. However, they have also
been detected in inflammatory and infected dental pulp [95]. Methanobrevibacter oralis,
M. smithii and Methanobrevibacter massiliense are the sole methanogenic archaea cultured
from oral cavity specimens, mainly saliva and dental plaque (Figure 1) [93]. Furthermore,
the discovery of Nanopusillus massiliensis in dental plaque samples and its co-culture with
M. oralis revealed the Nanoarchaeota phylum in the human oral cavity [96]. Finally, other
archaea species have only been detected by molecular tools, including Methanobacterium
congolense, Methanocellus bourgensis, Candidatus Nitrosphaera everglandensis, Methanosarcinia
mazei [88,97] as well as non-methanogenic species belonging to the phylum Thermoplas-
mata [98,99].

Despite recent investigations regarding the culture of archaea, as well as technological
advances and new culture methods, there remains a significant discord between the diver-
sity of archaea in the gut microbiota and that of the oral cavity. To date, only three archaea
species have been isolated from the oral cavity compared to seven from the digestive tract.
This difference may be explained by the interest accorded to the gut microbiota recent
years, particularly in the context of the Human Microbiome Project, which has focused
on characterisation of the human gut microbiota [100]. In contrast, the oral microbiota
remains neglected by microbiologists, and a lack of investigation and research work is
notable, especially in the field of the culture of methanogenic archaea [83,88]. Additional
efforts are needed to extend the repertoire of these microorganisms by first using molecular
detection and diagnostic tools and then culture-based methods available in the literature
to isolate them in order to better understand their metabolism and their involvement in
human health and pathologies.

2.7. Fungi and Yeasts of the Oral Cavity through the Example of Candida

Fungi are a minor component of the oral microbiota. The diversity of this compo-
nent is mainly represented by three genera, namely Candida, Aspergillus, and Cryptococcus
(Figure 1) [101]. These commensal microorganisms are regularly present in low concen-
trations without causing infection, but they can become opportunistic pathogens when
their host is immunodeficient [102]. The majority of oral fungal infections are forms of
candidiasis [103]. These infections may be superficial and affect the mucosa, or they may
penetrate the epithelium and be disseminated through the haematogenous pathway with
serious consequences. Mucosal infections are seen in neonates and the elderly, two groups
with suboptimal immune function [101]. They also affect people with suppressed immune
systems [103].

Since the discovery of the first microbes [104], many techniques have been developed
to study and cultivate fungi and yeasts from the oral cavity. Indeed, multiple references are
proposed by manufacturers to enable an easy and selective culture of these microorganisms,
including Sabouraud dextrose agar, malt agar, potato dextrose agar, CZAPEK, Colombia
agar, Dixon agar, modified Leeming Notman agar, YPD medium and glycine-vancomycin-
polymyxin B agar [32].

Recently, a new culture medium called FastFung® was developed by the Culturomics,
Fungi and Yeasts Team at the IHU Méditerranée Infection, Marseille, with the objective of
cultivating fastidious fungi [105]. The FastFung® medium was compared to the standard
Sabouraud agar medium for the culture of 98 fungal and 20 bacterial strains. The positive
culture rate of fungal strains was 100% compared to 95% for Sabouraud, and the inhibition
of bacterial strains was 100% compared to 20% for Sabouraud medium [105].

The FastFung® culture medium was subsequently tested for the specific culture of
Malassezia yeasts [106]. The aim of this study was to compare the performance of three
skin sampling methods and two culture media for the detection of Malassezia yeasts by
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culture from human skin samples. The FastFung® medium showed promising results for
the specific culture of Malassezia yeast and was proposed for direct application in routine
laboratory clinical diagnosis [106].

The FastFung® medium is a promising culture medium due to the results provided
for the culture of fungi and yeasts from clinical samples. Therefore, this medium can be
adapted for future studies for the cultivation of fungi and yeasts from the oral microbiota.

2.8. Protozoa of the Oral Cavity: Through Amoebae and Trichomonas

Protozoa are microscopic, unicellular eukaryotes. Each protozoan typically exists as
an independent cell, living freely as a phagotrophic microorganism [107]. In some species,
the cells join together to form colonies. Many protozoa are pathogenic and can cause
diseases such as malaria, while others are commensals in the digestive tract of ruminants
and wood-eating insects [107].

Protozoa are also part of the oral microbiota, of which Entamoeba gingivalis is the most
frequent representative, followed by Trichomonas tenax (Figure 1) [108]. Oral protozoan
infections have been shown to be mainly associated with periodontal disease [8]. Indeed,
their prevalence is much higher in patients with periodontal disease than in those with
healthy periodontium [108]. Currently, the detection of oral cavity protozoa is mainly
performed by direct microscopy or by PCR targeting the 18S gene [8,109]. Culture-based
approaches applied to these organisms are very rare in the recent literature. The few
studies which have been published use a minimal culture medium with an agar base
comprised between 1.5% and 2% [110]. The ATCC 1171 TYGM-9 culture medium (https:
//www.atcc.org/products/30956; accessed on 23 January 2023) adopted from the work of
Clark et al. in 1992 and 1997, remains the reference medium for the culture of protozoa from
the human oral cavity [111–113]. New investigations are, therefore, necessary to improve
the culture of these fastidious organisms and new culture media must be optimised to
broaden the research spectrum and isolate new species that have remained uncultured.

Table 1. Update and description of culture techniques and their research perspectives.

Techniques Usual Denomination Applications and Perspectives References

Next-generation sequencing NGS
Molecular-based study of the
microbial diversity of diverse

ecological niches.
[24–27]

Culturomics Culturomics Culture-based study of the microbial
diversity of the human microbiota. [18–20,30]

Rapid culture of anaerobic
bacteria using YCFA medium Rapid culture Culture-based study of stool samples. [36]

Blood culture bottles
supplemented with Rhumen Rapid culture Culture-based study of stool samples. [36]

Alcohol decontamination NO Spore-forming bacteria. [35,42]
Thermal shock NO Spore-forming bacteria. [18]

Antioxidants NO Improvement of anaerobic conditions
for aero-intolerant bacteria culture. [16,45,46]

Co-culture NO Improvement of fastidious bacteria
culture. [16,49–51]

Selective media Antibiotics and phages Selective culture of antibiotics and
phase-resistant organisms. [20,54,56]

The genomic-reverse culture
technique The genomic-reverse Saccharibacteria TM7 group. [57,58]

Oral Treponema enrichment T-Raoult medium Treponema spp. [71]
Specific media for Treponema

culture OMIZ-WP = OMIZ-Pat Treponema spp. [79]

OTEB Treponema spp. [78]

https://www.atcc.org/products/30956
https://www.atcc.org/products/30956
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Table 1. Cont.

Techniques Usual Denomination Applications and Perspectives References

NOS

T. pectinovorum
T. denticola

T. socranskii subsp. Socranskii
T. vincentii

[77]

OTI T. pectinovorum [76]
Oral spirochete medium T. denticola [114]

PDDTp T. phagedenis
T. denticola [115]

Spirolate Medium T. vincentii [116]

Thioglycolate medium

Treponema reiter
T. phagedenis
T. refringens
T. vincentii

[117]

Pre-reduced T. denticola broth T. denticola [118]
Growth Medium (GM-1) T. denticola [74]

Medium 10 (M10) T. socranskii [75]

Human oral medium (HO)

T. phagedenis
T. refringens
T. denticola
T. vincentii

[119]

Hungate roll tubes Roll tubes Methanogenic archaea culture. and
strictly anaerobic bacteria. [44]

Double chamber technique SAB-medium Methanogenic archaea culture. [16]
Modified double chamber

technique Methanogenic archaea culture. [97]

FastFung® FastFung® Fungi and yeasts. [105]
The ATCC 1171 TYGM-9 culture

medium ATCC 1171 Protozoa of the oral cavity. [110]

NO: unspecified.

3. Discussion

Since the discovery of the first microbes by Anthonie van Leeuwenhoek in the 17th
century (1683) [104], microbial culture was one of the first methods used to study the
human microbiota [18]. Since then, microbial culture has greatly contributed to improving
the scientific and medical knowledge of the microbes studied as well as of the diseases
they provoke [19]. Microbial culture has long been considered tedious, costly and time
consuming [20,21]. As a result, microbiologists have gradually abandoned it in favour of
new molecular approaches such as PCR techniques and metagenomics [20,21]. Indeed,
metagenomics has been considered as one of the most promising techniques for studying
microorganisms without culturing them. It was first applied in 2005 to study the human
intestinal microbiota with the prospect of revealing all remaining uncultured microbes [18].
Subsequently, culture-based studies were gradually abandoned and metagenomics became
the reference method used by microbiologists to study complex ecosystems [24]. However,
this technique presented many biases related to the extraction methods and the type of
primers used for the amplification of genomic DNA, which made the results obtained
non-reproducible [120]. In addition, a depth bias makes all species with a population below
1 × 105 or even 1 × 106 per gram of sample undetectable by this technique [19,24,120].
Nevertheless, metagenomics has contributed to the expansion of knowledge about the
uncultured part of the human microbiota, which does not correspond to any known
microbe, commonly referred to as “dark matter” [19,20]. It is a question of an uncountable
number of sequences not assigned to any known microorganism, which metagenomics is
unable to identify [19,20].

In recent years, microbial culture has experienced a re-emergence thanks to envi-
ronmental microbiologists who have developed culture conditions close to the original
environment of bacteria in order to facilitate their cultivation [18]. Numerous approaches



Microorganisms 2023, 11, 836 12 of 17

have subsequently proven their value in microbial culture, such as microbial culturomics,
which has made considerable progress in the field of culture and especially in the repertoire
of human microbiota, enabling the culture of more than 2770 spaces of bacteria, archaea,
fungi and yeasts, as well as unicellular eukaryotes [31]. In contrast, few studies have fo-
cused on the oral microbiota by culture, and studies performed in this field remain limited.
Indeed, the oral cavity hosts a complex microbiota composed of more than 700 different
bacterial species colonising the surface of the teeth and the oral mucosa [22]. After the gut
microbiota, it is the second microbiota in humans in terms of number and diversity [22].

The study of the human microbiota has become a major public health issue given
its involvement in human health and disease, which goes beyond our understanding.
Several studies in the literature have clearly demonstrated its involvement not only in
disease but also in human health. Its involvement in the regulation of the response to
anti-cancer treatments has been demonstrated [121–123]; as well as the participation in
the metabolic homeostasis of certain species like Akkermansia muciniphila, which could
have a protective effect against metabolic disorders [124]. Indeed, the involvement of
Faecalibacterium prausnitzii and A. muciniphila, two of the most abundant bacteria in the
human gastrointestinal tract, in the marked attenuation of colitis, weight loss, and decrease
of pro-inflammatory cytokines and increase of anti-inflammatory cytokines in patients
with chronic inflammatory bowel disease has been demonstrated [125,126]. In the oral
cavity, numerous studies have described a protective role attributed to the oral microbiota.
According to Sekirov et al., 2010, the microbiota may provide its host with a physical
protective barrier against incoming pathogens by competitive exclusion [7]. Indeed, many
actions of the microbiota can have a beneficial effect on its host, such as the occupation of
attachment sites, the consumption of nutrient sources and the production of antimicrobial
substances [7]. The microbiota also acts on the immune system of its host by stimulating
the production of various antimicrobial compounds such as defensins, cathelicidins and
C-type lectins, known to be produced generally in the digestive tract of mammals [7,127].

The oral microbiota has also been incriminated in certain infectious and tumoral
pathologies of the oral cavity as well as in numerous systemic pathologies such as diabetes,
cardiovascular diseases and certain distant tumour illnesses [23].

It now seems clear that the oral microbiota plays an essential role in the maintenance
of oral health in particular and of human health in general. The alteration of this microbiota
has often been associated with oral and systemic pathologies. However, the role of the oral
microbiota in the onset and development of these diseases remains unresolved, and further
investigations are needed to characterise the oral microbiota and elucidate its involvement
in human and oral pathologies. Culture-based studies offer good potential in this regard,
and microbial culture still has much to contribute to the study of microbiota in order to
obtain clinical isolates, to study their metabolism and their behaviour towards antimicrobial
agents used in clinical practice, as well as to sequence their genome to better understand
their implication in the process of oral infectious diseases.

4. Patents

S.K. is co-inventor of a patent on the culture of anaerobic bacteria (CAS 28-FR1757574);
S.K. is co-inventor of a patent for the preservation of bacteria (1H53 316 CAS 25). S.K. is co-
inventor of patent: “Milieu et procede de culture et extraction des archaea methanogenes”
(FR1254779A). S.K. is co-inventor of a patent on the use of antioxidants to aerobically
cultivate anaerobic bacteria and methanogenic archaea (1H52437 cas 32FR). S.K. and S.B.
are co-inventors of a patent on the use of vinblastine or vincristine to improve the culture
of treponemes (FR 19 13945).
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