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The southeastern part of New Caledonia main island (Grande Terre) is the

location of a large ophiolitic formation that hosts several hyperalkaline springs

discharging high pH (∼11) and warm (<40◦C) fluids enriched in methane (CH4)

and hydrogen (H2). These waters are produced by the serpentinization of

the ultrabasic rock formations. Molecular surveys had previously revealed the

prokaryotic diversity of some of these New Caledonian springs, especially from

the submarine chimneys of Prony Bay hydrothermal field. Here we investigate

the microbial community of hyperalkaline waters from on-land springs and their

relationships with elevated concentrations of dissolved H2 (21.1–721.3 µmol/L)

and CH4 (153.0–376.6 µmol/L). 16S rRNA gene analyses (metabarcoding and

qPCR) provided evidence of abundant and diverse prokaryotic communities

inhabiting hyperalkaline fluids at all the collected springs. The abundance of

prokaryotes was positively correlated to the H2/CH4 ratio. Prokaryotes consisted

mainly of bacteria that use H2 as an energy source, such as microaerophilic

Hydrogenophaga/Serpentinimonas (detected in all sources on land) or anaerobic

sulfate-reducing Desulfonatronum, which were exclusively found in the most

reducing (Eh ref H2 ∼ -700 mV) and the most H2-enriched waters discharging at

the intertidal spring of the Bain des Japonais. The relative abundance of a specific

group of uncultured Methanosarcinales that thrive in serpentinization-driven

ecosystems emitting H2, considered potential H2-consuming methanogens,

was positively correlated with CH4 concentrations, and negatively correlated

to the relative abundance of methylotrophic Gammaproteobacteria. Firmicutes

were also numerous in hyperalkaline waters, and their relative abundance

(e.g., Gracilibacter or Dethiobacter) was proportional to the dissolved H2

concentrations, but their role in the H2 budget remains to be assessed. The

prokaryotic communities thriving in New Caledonia hyperalkaline waters are

similar to those found in other serpentinite-hosted high-pH waters worldwide,

such as Lost City (North Atlantic) and The Cedars (California).

KEYWORDS
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1. Introduction

Serpentinization is a natural process of mantle rock alteration
that transforms olivine into serpentine, with the parallel formation
of dihydrogen (H2) linked to water reduction and the oxidation
of metals (principally iron) contained in the minerals (mainly
olivine) (Sleep et al., 2004; Klein et al., 2013; Schrenk et al.,
2013; Wang et al., 2014). This H2 can react with carbon-
bearing species such as carbonic acid to form methane (CH4)
as well as low-molecular-weight organic compounds such as
acetate and formate (Schrenk et al., 2013; Wang et al., 2014;
Konn et al., 2015). These organic compounds can be sources
of energy (electron donors) and of carbon for microorganisms
living in deep environments (McCollom and Seewald, 2013;
Ménez, 2020). The environmental characteristics of serpentinizing
environments are considered similar to those that have prevailed
on the early Earth and on other rocky planets like Mars,
thus providing a prebiotic chemistry that may have favored
the emergence of life (Nealson et al., 2005; Russell et al.,
2010). Thus, the study of these ecosystems allows to address
fundamental questions such as the origin and limits of life on
Earth, or more applied investigations such as the search of
extremophiles (i.e., alkaliphiles) for biotechnological applications
or the production of natural H2 (also called native H2) (Gaucher,
2020; Truche et al., 2020).

Several ecosystems found in such serpentinization-driven
environments have been found in various areas around the
world: (i) underwater, such as the shallow submarine Prony Bay
hydrothermal field (PBHF) located at less than 50 meters below
sea level (mbsl) in the southern lagoon of New Caledonia (South
Pacific) (Monnin et al., 2014; Quéméneur et al., 2014; Postec
et al., 2015), the deep submarine Lost City hydrothermal field
(LCHF) near the Mid-Atlantic Ridge at 700–800 mbsl (Kelley et al.,
2005), and the abyssal Old City hydrothermal field at 3,100 mbsl
along the southwest Indian ridge (Lecoeuvre et al., 2021), or (ii)
on-land, such as The Cedars spring system (CA, USA) (Suzuki
et al., 2013), the Coast Range Ophiolite (CA, USA) (Twing et al.,
2017), the Samail ophiolite (Oman) (Rempfert et al., 2017) and
the Voltri ophiolitic springs (Italy) (Quéméneur et al., 2015).
Phylogenetically and metabolically diverse microbial communities
live inside the chimneys and concretions built by the venting of
anoxic, high-pH fluids (Schrenk et al., 2013). Reactions involving
H2, CH4, and sulfur compounds act as the energy source for these
microbial communities, indicating that serpentinization-related
fluids can sustain chemosynthesis rather than photosynthesis
(McCollom and Seewald, 2013).

The southern part of the New Caledonia main island (Grande
Terre) is covered by a large allochthonous sheet of oceanic
lithosphere (ophiolite) thrusted over continental basement at
the late Eocene (Avias, 1967; Cluzel et al., 2001; Pirard et al.,
2013). There, a number of high-pH springs are located either
on land, in the intertidal zone of the Prony Bay or at shallow
depths in this bay (Cox et al., 1982; Monnin et al., 2014,
2021; Deville and Prinzhofer, 2016; Maurizot et al., 2020). In
the Prony Bay, high-pH (up to 11.2) and warm (up to 42◦C)
fluids enriched in H2 (12–30% vol of dry gas) and CH4 (6–
14% vol of dry gas) are currently venting into the lagoon
(Monnin et al., 2014; Vacquand et al., 2018). Their mixing with

seawater leads to the formation of brucite-carbonate chimneys and
pinnacles, reaching heights up to tens of meters, as the 38-m high
Aiguille de Prony (Launay and Fontes, 1985; Quéméneur et al.,
2014). Previous molecular surveys have revealed the prokaryotic
diversity of the coastal submarine PBHF, with diverse aerobic
and anaerobic bacteria potentially involved in H2 consumption
(e.g., Hydrogenophaga and Serpentinimonas) or H2 production
(e.g., Clostridiales) (Quéméneur et al., 2014; Mei et al., 2016b).
In addition, a low diversity of uncultured Methanosarcinales,
potentially linked to CH4 production or oxidation, was observed
in PBHF chimneys (Quéméneur et al., 2014; Postec et al., 2015;
Frouin et al., 2018), and was also found in other serpentinization-
associated submarine and terrestrial sites such as The Cedars or
Lost City (Kelley et al., 2005; Suzuki et al., 2013; Quéméneur
et al., 2015). However, the microbial communities from on-land
springs of the New Caledonia ophiolite have been only studied
from the geothermal spring of La Crouen (Quéméneur et al.,
2021), where bacteria potentially involved in sulfur cycle (e.g.,
Candidatus Desulfobacillus, Thiofaba, Thiovirga) and H2 oxidation
(e.g., Hydrogenophaga) dominated with Ca. Gracilibacteria in the
waters depleted in H2. The concentrations of H2 and CH4 in gases
and waters emitted at the high-pH springs of New Caledonia are
quite variable (Monnin et al., 2014, 2021; Deville and Prinzhofer,
2016) and likely to play a major role on the abundance and diversity
of microorganisms.

This study used 16S rRNA gene analyses (metabarcoding
and qPCR) to investigate the abundance and composition of
prokaryotic communities inhabiting the high-pH fluids discharging
at several on-land and intertidal springs of New Caledonia.
We evaluated the relationship between the main taxa and the
physicochemical characteristics of the high-pH fluids, including
their contents in H2 and CH4. We also compared the dominant
microbial members with those of other serpentinite-hosted
hyperalkaline springs worldwide to uncover specific taxonomic
bioindicators of this type of ecosystem and proxies of natural H2
and CH4 emissions.

2. Materials and methods

2.1. Study site

The studied high-pH thermal springs are all located in the
southeastern part of the main island (Figure 1). The water samples
were collected in November–December 2014 at five different sites
: (i) a shallow (10-cm deep) pool of “La Coulée” (CL) spring, close
to the town of Nouméa, (ii) the source of “Rivière des Pirogues”
(PG), located halfway between the cities of Nouméa and Yaté, (iii)
a natural 1-m deep pool of “Montagne des Sources” (MDS), located
in a natural reserve close to the city of Nouméa, (iv) a shallow (10-
cm) natural pool (RKB) and the spring captured in a cemented
pool 1-m deep (RKH) of “Rivière des Kaoris,” located in the Prony
Bay, (v) the water venting at the “Bain des Japonais” (BJ), located
in the intertidal zone of the Prony Bay (Figure 1). The spring
locations have been previously described by Maurizot et al. (2020)
and Monnin et al. (2021). All on-land springs are associated with
carbonate deposits.
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FIGURE 1

Location and photos of the high-pH springs of New Caledonia. CL corresponds to the highest pool of “La Coulée,” MDS is a pool of the site
“Montagne des Sources,” PG indicates the source of the site “Rivière des Pirogues,” RKB and RKH correspond to a natural and an artificial pool of the
area “Rivière des Kaoris,” respectively, and, BJ is a small intertidal vent of the site “Bain des Japonais” in the Prony Bay. The map is adapted from
Maurizot et al. (2020). The H2:CH4 ratio is expressed in concentrations mol/mol.

2.2. Sample collection

Water samples were collected in cleaned 4-L plastic bottles
using sterile and pre-rinsed syringes and stored in a portable
icebox until arrival at the laboratory (about 2–3 h after sampling).
Duplicate samples of two liters of water were filtered through
0.2 µm pore-size Isopore polycarbonate membrane filters 47-mm
(Millipore). The filters were kept at -80◦C before DNA extraction.
Water samples dedicated to the chemical analyses were collected in
duplicate in 120-ml glass bottles sealed with butyl-rubber stoppers.
At springs where gas bubbles form, free gas samples were collected
in 10-ml glass vials using the water displacement technique and
sealed with butyl-rubber stoppers and aluminum caps in 10-ml
glass vials these samples were kept at 4◦C in the Nouméa (IRD) and
Marseille (MIO) laboratories. The oxidation-reduction potential
(Eh), dissolved oxygen (O2), pH, temperature, and conductivity
were measured in situ using a WTW Multi 3420

R©

Multimeter with
adequate probes (Monnin et al., 2021).

2.3. Dissolved gas analysis

Dissolved gas analysis was performed using a headspace
equilibration method adapted from Magen et al. (2014). Briefly,
a headspace representing 10% of the vial volume was created in
the collection bottle by water displacement with argon, then the
bottle was manually shaken for 1 min and placed on a shaker
for 1 h. The composition of the headspace gas was determined
using a Shimadzu GC 8A gas chromatograph equipped with a
thermal conductivity detector (GC/TCD) and a concentric column
CTR1 (Alltech, USA), as described previously (Mei et al., 2014).
Argon was used as carrier gas at a flow rate of 60 mL/min;
the injector and detector temperatures were fixed at 150◦C. The

concentrations of the dissolved gases were calculated using Henry’s
law (Sander, 2015).

2.4. DNA extraction

The filters were transferred to a sterile 2 mL tube containing
a glass bead mixture (lysing matrix E from MP Biomedicals).
The bacterial and archaeal cells of the filters were disrupted
by a combination of mechanical (bead beating, according MP
Biomedical recommendations) and chemical lyses by addition of
1 mL of sterile bacterial lysis buffer [100 mM NaCl, 100 mM Tris
pH 8.0, 50 mM EDTA, 100 µL of 10 mg/mL lysozyme (Sigma-
Aldrich, St. Louis, MO, USA), 20 µL of 10 µg/mL DNase-free
RNase solutions] and incubation at 37◦C for 15 min. Then, 100 µL
of 10% SDS, 100 µL of 10% lauryl-sarkosyl and 50 µL of proteinase
K (20 mg/mL were added to the mixture and incubated at 55◦C
for 1 h). DNA was extracted from the lysate with 1 volume
of phenol:chloroform (1:1) mixture and then with 1 volume of
chloroform. Total DNA was precipitated from the aqueous phase
by adding 0.7 volume of isopropanol followed by centrifugation.
The DNA pellet was washed in 75% ethanol and was again collected
by centrifugation. The air-dried pellet was dissolved in 30 µL of
TE buffer. The DNA concentrations were measured using a Qubit R©

fluorometer (Invitrogen).

2.5. Quantitative real-time PCR (qPCR)

The abundances of bacteria and archaea were determined by
qPCR using, respectively, the primers set 341F/518R (Muyzer
et al., 1993) and 344F/519R (Ovreås et al., 1997; Casamayor
et al., 2002). The primer set used to quantify methanogens was
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ME3MF/ME2r’ targeting mcrA genes (Hales et al., 1996; Nunoura
et al., 2008). The primer set used to quantify sulfate-reducers
was DSRp2060f/DSR4R targeting dsrB genes (Wagner et al.,
1998; Geets et al., 2006). The sequences of primers are given in
Supplementary Table 1.

Each qPCR mixture (20 µL) contained 1X SsoAdvanced SYBR
Green Supermix (Bio-Rad), 250 nM of each primer, 1 µl of DNA
template (10-fold dilution series of standard PCR product or
environmental DNA sample) or distilled water (negative control).
All qPCR assays were performed in triplicate on a Bio-Rad CFX-
96 real-time system (Bio-Rad). The qPCR cycling conditions
were: 95◦C for 2 min, followed by 40 cycles of a 2-step PCR
protocol with a 15 sec denaturation phase at 95◦C and a 15 sec
annealing/elongation phase at 55◦C. Fluorescence was measured at
the end of each cycle. Following PCR, melt curves were generated
between 65 and 95◦C in 0.5◦C increments, to verify PCR specificity.

qPCR standard curves were created from serial dilution of
DNA standards of known concentration. For bacterial 16S rRNA
and dsrB gene qPCR, standard DNA fragments were amplified
from Desulfovibrio vulgarisT DSM 644 using the primer sets
27F/907R (Lane, 1991) and DSR1F/DSR4R (Wagner et al., 1998),
respectively. For archaeal 16S rRNA and mcrA gene qPCR, standard
DNA fragments were amplified from Methanosarcina barkeriT

DSM 800 using the primer sets 109F/958R (Webster et al., 2006)
and MLF/MLR (Luton et al., 2002), respectively. Triplicate PCR
products were pooled and purified with the Nucleospin and PCR
Clean-up kit (Macherey-Nagel), according to the manufacturer
instructions. Purified PCR products were quantified using the
BioSpec-nano Spectrophotometer (Shimadzu) and used as DNA
standards. Copy number of DNA standards was calculated as
described by Oldham and Duncan (2012). For each gene, the
standard curve of CT (threshold cycle) versus the gene copy
numbers was generated by using a 10-fold dilution series from 108

to 101 copies per ng of DNA. For all standard curves, the coefficients
of determination (R2) were higher than 99.0%. The precision of the
assay was measured by calculating the variation in Ct values across
the three replicates. The abundance of targeted genes was reported
as copy numbers per L of water.

2.6. 16S rDNA metabarcoding analyses of
microbial communities

Bacterial and archaeal 16S rRNA gene V4 hypervariable regions
were amplified by PCR using the 515F/806R universal primer
set (Caporaso et al., 2011), with a barcode on the forward
primer, as previously described by Dowd et al. (2008), and were
sequenced by the MiSeq Illumina platform of the Molecular
Research Laboratory (TX, USA). Sequence data were processed
using the MR DNA analysis pipeline (MR DNA, Shallowater,
TX, USA). In summary, sequences were joined (overlapping
pairs) and grouped by samples following the barcodes before
removing them. Short sequences (<150 bp) and sequences with
ambiguous base calls were removed. Remaining sequences were
denoised, operational taxonomic units (OTUs) were generated, and
chimeras were checked using UCHIME and removed (Edgar et al.,
2011). OTUs were clustered at 97% of similarity with USEARCH
(Edgar, 2010) followed by removal of singleton sequences. Finally,

OTUs were taxonomically classified using BLASTn against NCBI
non-redundant (NR) reference database, and the top hit was
taken as a taxonomic classification. The 16S rRNA gene sequences
of the dominant OTUs have been deposited in the Genbank
database under the accession numbers OQ551354-OQ551410. Raw
sequence data were submitted to the NCBI SRA under BioProject
PRJNA974011, BioSamples SAMN35158175–SAMN35158185.

2.7. Statistical analyses

All statistical analyses were performed using XLSTAT 2020.5.1
(Microsoft Excel add-in program; Addinsoft, Paris, France). The
alpha diversity was calculated using the Shannon (1948) and
Simpson (1949) indices from OTU abundance matrix. The beta
diversity was based on Bray–Curtis’s dissimilarities and a principal
coordinate analysis (PCoA) (from phyla/classes) or a dendrogram
(from dominant OTUs) was generated to group samples into
clusters. Spearman correlations and principal component analyses
(PCA) were used to evaluate the relationship between the relative
abundance of microbial taxa (classes/phyla and dominant OTUs)
and the physico-chemical parameters of water. P-values < 0.05 are
statistically significant. The abundance of the dominant OTUs in
the water samples was also visualized by heatmap.

3. Results

3.1. Physico-chemical parameters and
dissolved gases of water samples

The water samples collected from the six spring sites had
high pH values ranging from 10.8 (CLW) to 11.1 (MDSW), and
their temperatures varied from 26.0◦C (MDSW) to 38.5 ◦C (BJW)
(Table 1), as previously reported (Monnin et al., 2021). The lowest
Eh value (-697 mV, ref. H2) was measured at the intertidal site
of the “Bain des Japonais” (BJW). At this spring, very active gas
bubbling is observed. The highest concentration of dissolved H2
(721.3 µmol/L) is also measured from the BJ waters (Table 1). The
lowest dissolved O2 level (0.1 mg/L) was measured at the site of
“Rivière des Kaoris” (RKB), also a site with intense gas bubbling
(Monnin et al., 2014, 2021). There the concentration of dissolved
CH4 (376.6 µmol/L) is the highest of all the studied springs, while
the highest ratio of H2:CH4 was observed at the site RKH (Figure 2
and Table 1).

3.2. Abundance and diversity indices of
prokaryotic communities

Real-time qPCR assays and 16S rDNA metabarcoding analyses
were performed on the water samples collected from the six
high-pH springs. The qPCR experiments revealed that the
bacterial 16S rRNA gene abundances ranged between 3.1 × 107

(MDSW) and 3.3 × 108 (RKHW) copies/L. The archaeal 16S
rRNA gene abundances varied from 4.6 × 106 (MDSW) to
5.1 × 107 (RKHW) copies/L (Table 1). The abundance of
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TABLE 1 In situ physicochemical parameters, diversity indices and gene abundances in water samples collected in the high-pH geothermal springs
of New Caledonia.

Variables/samples CLW MDSW PGW RKHW RKBW BJW

pH* 10.8 11.1 10.9 10.9 10.9 10.9

Temperature (◦C)* 31.8 26.0 27.8 31.1 30.7 38.5

O2 (mg/L)* 0.4 3.0 0.3 2.2 0.1 0.2

Eh (mV; ref. H2)* 324 42.0 −606.0 −176.0 −500.0 −697.0

H2 (µmol/L) 21.1 68.4 247.4 342.2 510.7 721.3

CH4 (µmol/L) 182.4 335.4 317.8 153.0 376.6 347.2

Bacterial 16S rDNA (copies/L) 3.7 × 107 3.1 × 107 6.3 × 107 3.3 × 108 1.1 × 108 2.2 × 108

Archaea 16S rDNA (copies/L) 8.2 × 106 4.6 × 106 5.1 × 106 5.1 × 107 2.5 × 107 1.4 × 107

dsrB (copies/L) 7.2 × 104 3.0 × 104 7.8 × 104 5.5 × 104 1.9 × 105 3.5 × 106

mcrA (copies/L) 3.9 × 105 2.4 × 106 3.1 × 106 1.0 × 107 1.7 × 107 1.8 × 106

Shannon index 5.29 4.84 5.25 4.58 5.23 4.10

Simpson index 0.98 0.97 0.97 0.93 0.97 0.92

*Data obtained from Monnin et al. (2021). CLW corresponds to the water collected from the highest pool of “La Coulée,” MDSW is the water collected from a pool of the site “Montagne des
Sources,” PGW indicates the water of the source of the site “Rivière des Pirogues,” RKBW and RKHW correspond to a natural and an artificial pool of the area “Rivière des Kaoris,” respectively,
and, BJW is the water collected from a small intertidal vent of the site “Bain des Japonais” in the Prony Bay.

FIGURE 2

Dissolved gas (hydrogen and methane) and abundance of prokaryotes in water samples collected from the high-pH springs of New Caledonia. CL
corresponds to the highest pool of “La Coulée,” MDS is a pool of the “Montagne des Sources,” PG indicates the source of the “Rivière des Pirogues,”
RKB and RKH correspond to a natural and an artificial pool of the “Rivière des Kaoris,” respectively, and, BJ is a small intertidal vent of the “Bain des
Japonais.” Sum and ratio of hydrogen and methane concentrations (H2:CH4 ratio) and sum of the abundance of archaea and Bacteria (total quantity
of prokaryotes obtained by real-time PCR) were indicated.

bacterial 16S rRNA genes was more than one order of magnitude
higher than archaeal 16S rRNA genes, as previously observed
in PBHF chimneys (Quéméneur et al., 2014; Postec et al., 2015).

The highest abundances of prokaryotes were measured in the
waters of the PBHF sites, with maximum values in the RKH pool
(displaying the highest H2 concentrations) (Figure 2). Prokaryotic
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abundances increased with increasing H2:CH4 ratio (Figure 2
and Supplementary Figure 1). The mcrA genes (markers of
methanoarchaea) were detected in all samples but were more
abundant in the waters of the Rivière des Kaoris (> 107 copies/L of
RKHW and RKBW). The dsrB genes (markers of sulfate reducers)
were also detected in all samples. They were more abundant in the
BJ waters (BJW), where sulfate concentrations range between 10
and 100 µM/L (Monnin et al., 2014).

The Simpson diversity indices (1-D) ranged between 0.92 and
0.98, while Shannon indices (H) varied from 4.1 to 5.2 (Table 1).
Based on both indices, the lowest microbial diversity was observed
in the most reducing water sample BJW (displaying the highest
H2 concentrations), while the highest diversity was found in CLW
(displaying the highest Eh value and the lowest H2 concentrations).

3.3. Global prokaryotic community
composition

Variation in microbial community composition was observed
in the spring waters with high-pH, which were different from each
other (Figure 3). This was also observed in a principal coordinates
analysis (PCoA), where the replicated samples from the same
spring were closely grouped (with the exception of MDS water
samples), but were situated far from each other on the PCoA plot
(Supplementary Figure 1).

Twenty-six different phyla were identified by 16S rRNA
metabarcoding analyses of the water samples collected from
the six high-pH springs (Figure 3). However, only half of
these phyla (n = 12) were considered dominant (representing
each more than 1% of prokaryotic sequences and together
more than 97% of prokaryotic sequences). Proteobacteria
was predominant in all samples (37.5 ± 10.0%), followed
by Bacteroidetes (11.0 ± 6.9%), Firmicutes (7.9 ± 5.1%),
Cyanobacteria (7.8 ± 6.1%) and Euryarchaeota (6.5 ± 5.9%;
Figure 3). These five major phyla (each > 5% on average)
accounted for 85% of all prokaryotic sequences. The other
dominant phyla ranged between 1 and 5% of prokaryotic phyla (in
average) and included Actinobacteria (3.1 ± 1.8%), Deinococcus-
Thermus (2.2 ± 1.7%), Nitrospirae (2.0 ± 1.3%), Chloroflexi
(1.3 ± 0.9%), Planctomycetes (1.1 ± 0.9%), Spirochaetes
(1.3 ± 1.2%), Verrucomicrobia (1.1 ± 1.1%), followed by
minor phyla (0.1-1%): Acidobacteria, Bipolaricaulota (formerly
known as Acetothermia or OP1), Thermotogae and Gracilibacteria
(formerly designated GN02/BD1-5).

The highest content of Euryarchaeota (mainly represented
by Methanosarcinales) was observed in Bain des Japonais (BJ)
waters (19.1%), which also displayed the highest content of
Deltaproteobacteria (mainly represented by Desulfonatronum
species). Both Deinococcus-Thermus (Meiothermus) and
Firmicutes (Gracilibacter) were also detected in significant
amounts in BJ waters (> 10% of prokaryotes) and in Montagne
des Sources (MDS) waters (> 10%). Firmicutes were ubiquitous
and abundant in all waters (> 1%) and reached a maximum
in CL waters (16.7 ± 1.0%), where Dethiobacter species mainly
represented them. The PG waters were primarily dominated by
Bacteroidetes (24%) and Cyanobacteria (16%). The MDS waters
displayed the highest occurrences of Bipolaricaulota.

3.4. Distribution and diversity of
abundant prokaryotic OTUs

Marked variations in the prokaryotic community of high-pH
waters are also illustrated on a heatmap showing the most abundant
OTUs (each > 1% on average) (Figure 4). Altogether, these 57
dominant OTUs represented almost 2/3 of the total prokaryotic
sequences (60% in average).

In BJ waters (displaying the lowest Eh value and the
highest H2 content), the prokaryotes were dominated by: (i)
potential H2-oxidizing, sulfate-reducing Desulfonatronum OTUs
(#21 and #7274, 19.5 and 1% of prokaryotes, respectively),
closely related to Desulfonatronum cooperativum (96.7% identity;
NR_043143), serpentinite-hosted PBHF clones (> 99% identity,
KF886171; KT344938), and an uncultured deltaproteobacterium
of deep groundwater (97.8%, LC055934), (ii) Methanosarcinales
(OTU #12, 17.2% of prokaryotes) related to uncultured archaea
from PBHF (KF886034 and KF886029; > 99.3% identity) and
LCHF (SGYG644, SGYU755; 95.6% identity) classified as Lost
City Methanosarcinales (LCMS); (iii) Meiothermus (OTU #37,
9.5%) closely related to Meiothermus hypogaeus (97.1% identity;
NR_113226) and a PBHF clone (99.3% identity, KF886174),
(iv) Bacteroidetes (OTU #65; 8.9%) related to uncultured
bacteria from a deep subsurface gas storage aquifer (FJ168485,
90.2% identity) and deep groundwater from the Mizunami
underground research laboratory (MIU) (LC055944, > 99%
identity), (v) Firmicutes (OTUs #19 and #24203, 7.3 and 1.2%,
respectively) affiliated with Gracilibacter thermotolerans (92–93%;
NR_115692) and Firmicutes strains CE17 and CE8 (KX156793
and KX156784; > 95% identity) enriched from an in situ
electrochemical experiment in a high-pH serpentinizing spring of
The Cedars.

The RKH waters were dominated by: (i) H2-oxidizing
Hydrogenophaga OTUs (#6 and #23019; 24.6 and 3.3% of
prokaryotes) closely related to Hydrogenophaga aquatica (97.5%
identity) and Serpentinimonas barnesii (NR_181590; 99.3 and
97.1% identity), (ii) Alteromonas OTUs (#71 and #7774; 4.8
and 1.2%), (iii) Bacteroidetes OTUs (#87 and #65, 4.6 and
2.6%) closely related to those of carbonate precipitates from the
Voltri serpentinite-hosted hyperalkaline springs (99% identity;
KP097469). The RKB waters, similarly to the RKH ones, were
also dominated by the Hydrogenophaga OTUs #6 and #23019,
but in smaller quantities (about half as much, 13.3 and 1.7% of
prokaryotes). Both Alteromonas and Bacteroidetes OTUs were also
less represented (∼2%), but Methanosarcinales OTUs #12 and #103
were more abundant in RKBW (6 and 0.5%), displaying higher CH4
content than in RKHW (∼0.5%). Bipolaricaulota OTU #3 related to
Acetothermus autotrophicum (AP011801, 97% identity) accounted
for 2.5% of RKBW prokaryotes. Cyanobacterial OTUs related to
Synechococcus (#28, #365, and #2548) represented more than 5%
of the prokaryotes.

In PG waters, the dominant OTUs were: (i) cyanobacterial
Leptolyngbya (#4 and #13, 6.6 and 4.4% of prokaryotes) closely
related to that of the mildly alkaline (pH 8.3–8.8) low-sulfur, low-
carbonate Octopus hot spring (Yellowstone National Park, USA)
(99% identity; KC236907, AY862014), (ii) Methanosarcinales (#12
and #103; 4.2 and 1.8%), (iii) Hydrogenophaga (#6; 2.7%), (iv)
Methylobacter (#84; 1.3%).
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FIGURE 3

Prokaryotic phyla and proteobacterial classes (> 1% on average) in water samples collected from the high-pH springs of New Caledonia. CLW
corresponds to the water of “La Coulée,” MDSW is the water of “Montagne des Sources,” PGW indicates the water of “Rivière des Pirogues,” RKBW
and RKHW correspond to the waters of “Rivière des Kaoris” and BJW is the water of “Bain des Japonais.” Duplicated samples were indicated by
numbers 1 or 2 (except for sample BJW).

In CL waters, the five dominant OTUs were affiliated with:
(i) potential methylotrophic Methyloglobus (#17; 90% identity)
and Methylomonas (#54), (ii) potential hydrocarbon-degrading
Syntrophus gentianae (JQ346737; OTU #9; 95% identity), similar to
uncultured deltaproteobacterium detected from deep groundwater
(LC055948, > 98% identity), (iii) uncultured Firmicutes related
to Dethiobacter alkaliphilus (OTUs #5, #18, #63; 94–96% identity),
also detected from deep groundwater (LC055956) and from several
serpentinite-hosted ecosystems (> 97% identity): PBHF (KJ149239,
KF886127), Cabeço de Vide Aquifer (CVA) (AM777965), the
hyperalkaline Allas Springs (Cyprus, 97.4% identity, JQ766804),
the hyperalkaline spring GPS1 fed with deep groundwater at The
Cedars (KC57503216S).

The MDS waters were dominated by six OTUs (representing
more than 1/3 of the community) affiliated with (i)
Hydrogenophaga/Serpentinimonas (#6 and #23019; 10.0 and
1.4% of prokaryotes), (ii) Methanosarcinales (#12 and #103;
10.0 and 1.1%), and (iii) sulfur-oxidizing Thiofaba (#10 and
#23277, 8.2 and 2.4%).

3.5. Relationships between abundant
taxa and environmental variables

Principal component analyses (PCA) was performed to identify
the factors that affect the microbial community of New Caledonia
high-pH spring waters (Figure 5). The first two principal
components explained 63.6 and 76.1% of the data variability, for
the phyla (Figure 5A) and major prokaryotic functional groups
(Figure 5B), respectively. The first axis mostly separated the waters
with the highest H2 contents (BJW, RKBW, and RKHW) from
the others. The second axis separated the more oxygenated waters
RKHW and MDSW from the others. Spearman’s rank correlation
analyses examined the relationships between the microbial taxa,
diversity indices and the environmental variables (Supplementary
Tables 2–4).

At the phylum/class level, Gammaproteobacteria was
positively correlated to Eh (rS = 0.94, p < 0.05), and
Deltaproteobacteria was positively correlated to temperature
(rS = 0.83, p < 0.05). Firmicutes were positively correlated to
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FIGURE 4

Heat map visualizing the Z-score distribution of the relative abundance of the dominant OTUs (> 1% on average) and their respective taxonomic
affiliations in all water samples of the high-pH springs of New Caledonia. CLW corresponds to the water of “La Coulée,” MDSW is the water of
“Montagne des Sources,” PGW indicates the water of “Rivière des Pirogues,” RKBW and RKHW correspond to the waters of “Rivière des Kaoris” and
BJW is the water of “Bain des Japonais.” The average of replicates was calculated for each sampling site. The scale bar of the dendrogram represents
the dissimilarity level (%) between microbial communities. The abbreviations of taxonomic ranks are p_ for phylum, o_ for order and g_ for genus.

H2 (rS = 0.96, p = 0.003), while the four phyla Elusimicrobia,
Thermotogae, Ignavibacteria, and Thermodesulfovibrio were
negatively correlated to H2 (rs = −0.89 to 0.99). Euryarchaeota

(including methanogens) and Bipolaricaulota (Acetothermia) were
positively correlated to CH4 (rs = 0.83 and 0.94, respectively;
Supplementary Table 2).
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FIGURE 5

Principal component analysis (PCA) biplots show the variation among the high-pH water samples based on the physicochemical variables and the
relative abundances of phyla (and proteobacterial classes) (A) and dominant prokaryotic functional groups (B). Black squares represent water
samples of high-pH springs of New Caledonia. Arrows indicate the direction of each variable’s maximum increase and strength (through the length)
to the overall distribution. CLW corresponds to the water of “La Coulée,” MDSW is the water of “Montagne des Sources,” PGW indicates the water of
“Rivière des Pirogues,” RKBW and RKHW correspond to the waters of “Rivière des Kaoris” and BJW is the water of “Bain des Japonais.”

Among the dominant OTUs, four OTUs (Gracilibacter #19,
Meiothermus #37, Bacteroidetes #65, Roseinatronobacter #104)
were positively correlated with H2. In comparison, five OTUs
(Cyanobacteria #4, Synthrophus #9, Dethiobacter #63, Nitrospirae
#74, Leptolyngbya #155) were negatively correlated with H2, and
only one OTU (Methanosarcinales #12) was positively correlated
with CH4 (Supplementary Table 3). Methanosarcinales (OTUs
#12 and #103) were negatively correlated with methylotrophic
gammaproteobacterial group (rS = −0.93, p < 0.02). The sulfur-
oxidizing gammaproteobacterial group was negatively correlated
with H2 (rS = −0.89, p < 0.05) (Supplementary Table 4 and
Supplementary Figure 2). Prokaryotic abundances were positively
correlated with H2:CH4 ratio (rS = 0.94, p < 0.02). No significant
correlation was observed between diversity indices and the
environmental variables measured (Supplementary Table 2).

4. Discussion

The prokaryotic communities of the New Caledonian high-pH
waters show several taxa previously detected in other ecosystems
sustained by serpentinization, such as The Cedars and Lost City
(Schrenk et al., 2013; Suzuki et al., 2013). These microbial taxa are
represented by H2-, CH4-, and S-cycling prokaryotes (Figure 6),
supporting the importance of oxidation or reduction of these
compounds for the growth of microbial communities in New
Caledonian springs.

Uncultured Methanosarcinales (OTUs #12 and #103)
previously found in the submarine serpentinizing systems of PBHF
(> 99% identity) (Quéméneur et al., 2014) and LCHF (> 95%)
(Brazelton et al., 2010), could potentially anaerobically oxidize

CH4 or produce it using H2 in an O2-deprived environment.
Methanosarcinales phylotypes are also detected in on-land
high-pH (∼11.5), H2- and CH4-rich springs of The Cedars
(CA, USA) (Suzuki et al., 2013) and in the H2-depleted Voltri
springs (Italy) (Quéméneur et al., 2015). Our study shows that
the uncultured Methanosarcinales (related to LCMS phylotypes)
are abundant in most New Caledonian springs but are found in
small quantities (∼0.02% of the prokaryotes) in the CL waters,
which have low CH4 and H2 contents. This was previously
observed in the mildly alkaline (pH 9.3), CH4 and H2-poor waters
of the La Crouen geothermal spring (Quéméneur et al., 2021).
Moreover, the Methanobacterium phylotype was not detected in
the hyperalkaline fluids of the studied on-land springs of New
Caledonia. In contrast, this genus has been found in the alkaline
geothermal spring of La Crouen (Quéméneur et al., 2021), where
the novel species Methanobacterium alkalithermotolerans has been
isolated (Mei et al., 2022), or in other on-land ecosystems sustained
by serpentinization, such as the ophiolites of Samail (Oman)
(Rempfert et al., 2017), Voltri (Northern Italy) (Quéméneur
et al., 2015) and Zambales (Philippines) (Woycheese et al., 2015).
On the other hand, in waters free from CH4 (e.g., La Crouen
or CL), the concentrations of potential aerobic methanotrophic
Gammaproteobacteria (e.g., Methylomonas, Methylobacter,
Methylophaga) were higher (> 5%) than in the CH4-rich springs
(<1%). These trends emphasize the importance of these potential
methanogens and methanotrophs in the CH4 budget.

Bacterial members of the aerobic H2-oxidizing genera
Hydrogenophaga (Lin et al., 2017) and Serpentinimonas
(Bird et al., 2021) are also abundant in New Caledonian
hyperalkaline springs, except in the BJ and CL waters (in
which the H2 concentrations are contrasted, high and low,
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FIGURE 6

Schematic hydrothermal system diagram in southeastern New Caledonia’s high-pH springs (not to scale). The meteoric water moves underground
into the subsurface, where the process of serpentinization produces hyperalkaline H2-rich fluids, before discharging at the geothermal springs of
New Caledonia. Different microbial groups are observed depending on high-pH waters and their primary sources (shallow or deep).

respectively). Both genera were frequently detected in waters and
sediments/concretions of on-land serpentinite-hosted springs,
where anoxic H2-rich subsurface fluids mix with oxygenated
surface water (Suzuki et al., 2013; Quéméneur et al., 2015).
They are present in the H2-rich hyperalkaline waters of The
Cedars springs (Suzuki et al., 2013), as well as in the H2-
depleted hyperalkaline waters of Voltri springs (Quéméneur et al.,
2015), in the Cabeço de Vide Aquifer (Tiago and Veríssimo,
2013) and the H2-depleted alkaline waters of La Crouen
(Quéméneur et al., 2021). The low level of dissolved H2 in
these later spring waters could most likely be due to the high
rate of H2 consumption by the hyperalkaliphilic H2-oxidizing
Serpentinimonas (Marques et al., 2018).

BJ and CL waters displayed the lowest contents of
Hydrogenophaga/Serpentinimonas, and the highest proportions
of uncultured Firmicutes populations, previously identified from
several serpentinizing systems. The dominant Firmicutes OTUs (#5
and #18) in CL waters were affiliated with Dethiobacter alkaliphilus
(Sorokin et al., 2008), an anaerobic thiosulfate/polysulfide (not
sulfate) reducer, polyextremophile, able to fix inorganic carbon
through the Wood–Ljungdahl pathway using H2 as an electron
donor (Melton et al., 2017). Dethiobacter phylotypes were
abundant at Cabeço de Vide (Tiago and Veríssimo, 2013), The
Cedars (Suzuki et al., 2013), the Coast Range Ophiolite (Twing
et al., 2017), and the PBHF sites (Mei et al., 2016b). The dominant
Firmicutes OTUs (#19 and #24203) in BJ waters are affiliated with
Gracilibacter thermotolerans (Lee et al., 2006), a strict anaerobe

able to produce H2 and acetate as a by-product of fermentation.
Gracilibacter phylotypes were previously observed in the natural
subsurface waters of the Coast Range Ophiolite (Twing et al., 2017)
and the artificially enriched spring waters of The Cedars during
an in situ electrochemical experiment (Rowe et al., 2017). Other
potential acetogens and H2-producers, positively correlated with
H2 and abundantly detected in MDS and RK waters, were affiliated
with Bipolaricaulota (formerly known as Acetothermia and OP1).
These microorganisms can transform low-molecular-weight
organic compounds into H2 and acetate in the subsurface aquifer
(Kadnikov et al., 2019).

The hydrogenotrophic, alkaliphilic, sulfate-reducing
bacterium, D. cooperativum, has been isolated from a syntrophic
culture growing on acetate and enriched from soda lake samples
(Zhilina et al., 2005). It dominated the highly reduced waters
discharged by the intertidal BJ spring (OTUs #21 and #7274), as
found in a previous study (Mei et al., 2016b). These anaerobic
bacteria can use sulfate, thiosulfate, elemental sulfur, or polysulfide
as terminal electron acceptors. They were detected in low
abundance in other on-land high-pH springs of New Caledonia
(this work) and previously found in subsurface fluids of the Samail
Ophiolite (Oman) (Rempfert et al., 2017). In New Caledonian high-
pH waters, Desulfonatronum bacteria were inversely correlated
with sulfur-oxidizing Gammaproteobacteria (e.g., Thiofaba). This
points to a link between microbial activity and the sulfur chemistry,
constrained by the redox conditions of the local environment.
This was previously observed in borehole fluids of the Samail

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1196516
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1196516 July 1, 2023 Time: 14:43 # 11

Quéméneur et al. 10.3389/fmicb.2023.1196516

Ophiolite (Oman) (USA) and the California Coast Range Ophiolite
(Glombitza et al., 2021).

5. Conclusion

The prokaryotic communities thriving in the hyperalkaline
waters of several New Caledonia springs are mainly composed
of microorganisms that use H2 as an energy source. They
consist mainly of microaerophilic bacteria belonging to
Hydrogenophaga/Serpentinimonas (in on-land spring waters)
or anaerobic archaea belonging to a specific phylotype (designated
LCMS) of uncultured Methanosarcinales (potentially able to
produce CH4 using H2), which are previously detected in
both submarine (i.e., Lost City, Prony Bay) (Schrenk et al.,
2013; Quéméneur et al., 2014; Postec et al., 2015) and on-
land serpentinizing systems (e.g., The Cedars, Voltri ophiolite)
(Schrenk et al., 2013; Suzuki et al., 2013; Quéméneur et al.,
2015). Thus, the relative abundance of these H2-consuming
microorganisms could be used as signature-taxa (or taxonomic
bioindicators) of serpentinite-hosted environments emitting
natural H2.

The low abundance of Hydrogenophaga/Serpentinimonas
in the water of the intertidal site BJ of the Prony Bay, where
anaerobic sulfate-reducing Desulfonatronum proliferate together
with other abundant anaerobic and thermophilic bacterial taxa
(e.g., Bacteroidetes, Meiothermus, or Gracilibacter), suggests
different water origins between terrestrial and marine springs,
or subsurface seawater infiltrations through rock fractures
(Monnin et al., 2014). Moreover, the co-existence of aerobic
and anaerobic microorganisms in the hyperalkaline waters of
other terrestrial hyperalkaline springs of the New Caledonia
ophiolite could result in a mixing of deep (anoxic and warm)
and surface (oxygenated and cold) waters before surface
discharge at the various springs (Figure 6). This would
corroborate a circulation pattern of the hydrothermal systems
in ophiolites where waters flow through oxic and anoxic zones
(Leong and Shock, 2020).

The relative abundance of uncultured Methanosarcinales-like
sequences (designated LCMS), exclusively detected in serpentinite-
hosted ecosystems (Frouin et al., 2018), was negatively correlated
with aerobic methylobacteria, able to use CH4 as the sole source of
carbon and energy in the waters of the hyperalkaline springs. This
result suggests their implication in the consumption of CH4, also
measured in the anoxic water generated by the serpentinization of
the New Caledonia ophiolite.

Other anaerobic microbial taxa previously found in
serpentinite-hosted environments were detected in New Caledonia
hyperalkaline waters. It is the case of two anaerobic Firmicutes
phylotypes affiliated with Dethiobacter and Gracilibacter genera
and correlated with H2, which could also be considered as specific
taxonomic bioindicators of H2 emissions in serpentinite-hosted
environments. Although some Firmicutes bacteria have been
isolated from the hyperalkaline concretions of the New Caledonian
sites of the PBHF (including H2-producing bacteria) (Mei et al.,
2014, 2016a,b; Postec et al., 2021), most remain uncultivated and
their metabolisms unknown. Their role in the natural H2 budget
remains to be assessed.
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