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Simple Summary: We applied, here, mathematical modeling to the body temperature time series
(sinusoidal regression and cosinor analysis) in a cohort of septic shock to describe an accurate
temperature course and its relation to mortality. Lower mesor (mean temperature) and higher
amplitude were associated with mortality and could be considered an interesting prognostic marker
in septic shock. In the age of artificial intelligence, the incorporation of such data in an automated
scoring alert could compete with physicians to identify high-risk patients during septic shock. Besides,
we demonstrated that many factors, such as specific therapeutic strategies, may influence the normal
body temperature rhythm.

Abstract: Biological rhythms are important regulators of immune functions. In intensive care unit
(ICU), sepsis is known to be associated with rhythm disruption. Our objectives were to determine
factors associated with rhythm disruption of the body temperature and to assess the relationship
between temperature and mortality in septic shock patients; In a cohort of septic shock, we recorded
body temperature over a 24-h period on day 2 after ICU admission. For each patient, the temperature
rhythmicity was assessed by defining period and amplitude, and the adjusted average (mesor)
of the temperature by sinusoidal regression and cosinor analysis. Analyses were performed to
assess factors associated with the three temperature parameters (period, amplitude, and mesor) and
mortality. 162 septic shocks were enrolled. The multivariate analysis demonstrates that the period of
temperature was associated with gender (women, coefficient −2.2 h, p = 0.031) and acetaminophen
use (coefficient −4.3 h, p = 0.002). The mesor was associated with SOFA score (coefficient −0.05 ◦C per
SOFA point, p = 0.046), procalcitonin (coefficient 0.001 ◦C per ng/mL, p = 0.005), and hydrocortisone
use (coefficient −0.5 ◦C, p = 0.002). The amplitude was associated with the dialysis (coefficient
−0.5 ◦C, p = 0.002). Mortality at day 28 was associated with lower mesor (adjusted hazard ratio
0.50, 95% CI 0.28 to 0.90; p = 0.02), and higher amplitude (adjusted hazard ratio 5.48, 95% CI 1.66 to
18.12; p = 0.005) of temperature. Many factors, such as therapeutics, influence the body temperature
during septic shock. Lower mesor and higher amplitude were associated with mortality and could
be considered prognostic markers in ICU. In the age of artificial intelligence, the incorporation of
such data in an automated scoring alert could compete with physicians to identify high-risk patients
during septic shock.

Keywords: circadian rhythm; temperature; septic shock; intensive care units; chronobiology disorders;
mortality
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1. Introduction

The interest in circadian rhythms is growing because of their crucial role in home-
ostasis, as evidenced by the 2017 Nobel Prize, attributed to the discovery of clock genes,
which generate biological rhythms [1–3]. Moreover, circadian rhythms are now recognized
as important regulators of host defense functions, and the relationship between circadian
disruption and immune dysfunction is now recognized [4,5]. In the intensive care unit
(ICU), several factors, such as stress, light/dark disturbance, sedation, and systemic in-
flammation, might be responsible for circadian rhythm alterations [6]. Several studies
have studied core body temperature (CBT) rhythmicity as a marker of the biological clock
during the ICU stay [7,8]. ICU patients are likely to have a disrupted circadian rhythm
of body temperature, thereby maybe compromising biological function efficiency and
recovery [9,10]. The CBT, which varies diurnally by approximately 0.5 ◦C around a mean
of 37.0 ◦C in healthy individuals, is considered a physiological marker of the circadian
clock [3]. CBT measurement is one of the oldest clinical tools available, and fever remains a
common indicator of illness, especially infection [11].

In mammals and humans, circadian rhythms are controlled by a central circadian
pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus [2,3]. The
circadian clock cannot be measured directly in humans, and surrogate markers have been
used to measure its output, such as cortisol and melatonin [12,13]. The circadian component
of CBT is under the control of SCN, which then transmits signals to the thermoregulation
centers. While the thermoregulatory system acts to maintain the temperature at a fixed
target value, this set point fluctuates during the day, resulting in circadian variations [14].
Body temperature cycles have recently been demonstrated to function as systemic cues that
efficiently participate in the synchronization of peripheral clocks in mammals [15,16].

Sepsis is a common problem in critically ill patients and immunosuppression caused
by physiologic stress such as circadian rhythm disruption might play a negative role
in the host’s response. In sepsis, fever generation occurs through several mechanisms,
including cytokine production, and it may be associated with mortality [17]. To date, most
physicians focus on the presence or absence of fever, rather than following temperature
trends. However, increasing evidence suggests that variability in the patterns of physiologic
measurements, such as heart rate or body temperature, may be more specific to infection
and might be an earlier indicator of sepsis than standard diagnostic criteria [18,19].

The objectives of this observational study were to determine factors associated with
rhythm disruption of the CBT and to assess the relationship between temperature and
mortality in septic shock patients.

2. Materials and Methods
2.1. Study Design, Patient Selection

All consecutive adult patients (18–85 years old) admitted to our medical intensive
care unit (Strasbourg University Hospital) between July 2013 and February 2016 for septic
shock [20] and treated with norepinephrine and/or epinephrine after fluid challenge were
enrolled. Patients with end-stage chronic diseases or DNR (do not resuscitate) options
were excluded. The visitation policy of our facility is an open policy that always allows
family access (24 h), with a restriction on the number of family members. Our ICU’s
policy requires nurses to turn off the light after dark, except when emergency procedures
are required. As suggested by the World Health Organization, our ICU’s policy strongly
suggests to the medical and paramedical team, but also to visitors, to limit noise levels
below 35 dB–40 dB [21]. The ambient ICU temperature is automatically set between 20 ◦C
and 22 ◦C through a thermostat. In accordance with the guidelines, enteral nutrition was
initiated at a low dose within 12–24 h of admission to the ICU for most patients [22]. In the
initial 24-h period, a caloric target of 700 kcal per day was pursued, which equates to an
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enteral feeding solution infusion rate of 21 milliliters per hour of a 1.4 kcal per milliliter
solution.

2.2. Temperature Measurement

The temperature was measured 24 h on day 2 after admission, according to local
practices whether with central devices in the bladder, esophagus, or intravascular probes
(Mon-a-Therm Foley Catheter with Temperature Sensor 400TM, Covidien, Dublin, Ireland)
every 2 h or by tympanic measurement (Genius 3 Tympanic Thermometer, Covidien,
Dublin, Ireland) every 4 h when no central monitoring was available. These devices are
compliant with standards ISO and IEC and have already been validated in numerous
studies assessing their accuracy [23,24].

2.3. Body Temperature Rhythm Analysis

The first part of the analysis consisted of assessing the individual time-period of the
temperature (the “period” is the time needed for one complete cycle of temperature). This
analysis was performed with the PAST3 software (URL https://palaeo-electronica.org/
2001_1/past/issue1_01.htm accessed on 21 June 2001) [25]. According to the author’s
description, the “fitted periods” were obtained by the matching pursuit algorithm by
sequentially optimizing the period of each sinusoid (over the full meaningful range from
one period to the Nyquist frequency), after subtracting all previously fitted sinusoids.

In the second part, a single cosinor analysis with R software (package cosinor) was
performed for each patient to obtain the other rhythm parameters (i.e., mesor and ampli-
tude) [26]. This analysis uses the least-squares method to fit a sine wave to a time series
with the model specified as:

y = mes + amp × cos(2π(t − φ)/period)

where y was the marker value (temperature), t represented time-of-day in decimal hours,
mes represented the mesor, amp the amplitude, φ the acrophase of the rhythm, and period
the fit period obtained in the first part. The MESOR (Midline Estimating Statistic Of
Rhythm) represents the mean of the modeled rhythm over the time studied. The amplitude
is the difference between mesor and the peak value.

2.4. Statistical Analysis

Data were analyzed using the public software R version 4.2.1; R Development Core
Team (2005) (R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.
org, accessed on 20 June 2022). Figures were performed using the R package ggplot2. For
all tests, the statistical significance was defined as a p-value < 0.05. Continuous variables
were expressed as mean values (±standard deviation) or median values [interquartile],
and comparisons between two groups were performed using Student’s t-test or the Mann-
Whitney test, according to the distribution (Shapiro-Wilk test). Discrete variables are
expressed as percentage values, and comparisons between groups were performed using a
chi-squared test. The relations between the temperature parameters (i.e., period, mesor, and
amplitude) and ICU variables were analyzed by the general linear model, and the regression
coefficients ß ± standard error (SE) were reported to compare the relative predictive effects
of the independent variables. Survival analysis was performed using Cox proportional risk
model to determine the factors associated with 28-day mortality. Relative risks, the hazard
ratio (HR), and their 95% confidence intervals (95% CI) were calculated. All variables with
p < 0.05 values in univariate models were included in the final multivariate models. The
28-day survival between groups was calculated by the log-rank test, and survival curves
were obtained by the Kaplan-Meier method. To form groups with the highest survival
difference, the best significant threshold of the temperature parameter for predicting 28-day
mortality was calculated with the cutp function in R to determine the optimal cut point for
a continuous variable in the Cox model.

https://palaeo-electronica.org/2001_1/past/issue1_01.htm
https://palaeo-electronica.org/2001_1/past/issue1_01.htm
http://www.R-project.org
http://www.R-project.org
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3. Results
3.1. Population Characteristics

During the study period, 162 septic shock patients were included with a median age
of 65 years, interquartile range 56–74 years, and a mortality rate of 23% in the ICU (Table 1).
The lung (46%) was the most frequent site of infection. Infection was microbiologically
documented in 128 (79%) patients, and the percentage of bacteremia was 44%. Enter-
obacteria, Streptococcus, and Staphylococcus were the most frequent agents (Table S1).
The most common comorbidity was diabetes in 51 of the cases (31%). An amount of 141
(87%) patients were mechanically ventilated for a median duration of six days [3–13]. On
day 2, a majority received sedation (68%), vasopressor support (77%), and substitution
with hydrocortisone (57%).

Table 1. Patient characteristics of the cohort. Qualitative data are expressed as number and percentage,
n (%). Quantitative data are expressed in median and interquartile, median [IQR]. BMI: body mass
index; ICU: intensive care unit.

Characteristics Cohort (n = 162)

Age (years) 65 [56–74]
Gender (Women) 93 (57.4)
Weight (kg) 75 [66–86]
BMI (kg/m2) 27 [23–30]
Smoke history, n(%) 65 (40.1)
Betablocker use, n(%) 56 (35.4)
Comorbidities, n (%)

Diabetes 51 (31.5)
Chronic pulmonary disease 36 (22.2)

Addiction 24 (14.8)
Renal failure 23 (14.2)

Non-resolutive cancer 23 (14.2)
Ischemic heart disease 17 (10.5)
Immunosuppressed 17 (10.5)

Severe neurological disorder 5 (3.1)
Cirrhosis 4 (2.5)

Congestive heart failure 2 (1.2)
SOFA at 24 h (score) 11 [9–13]
IGS II at admission (score) 67 [48–83]
Procalcitonine at admission (ng/mL) 19 [3–45]
Tympanic measure, n (%) 69 (42.6)
Fever at day 2, n (%) 56 (34.6)
Therapeutics at day 2, n (%)

Extra-renal remplacement 37 (22.8)
Sedation 110 (67.9)

Vasopressor support 125 (77.2)
Curare 17 (10.5)
HSHC 92 (56.8)
Steroide 12 (7.4)

Acetaminophen 27 (16.7)
Mechanical ventilation, n (%) 141 (87.0)
Duration of mechanical ventilation (days) 6 [3–13]
ICU stay length (days) 9 [5–18]
ICU death, n (%) 38 (23.5)
Hospital death, n (%) 49 (30.2)
Site of infection, n (%)
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Table 1. Cont.

Characteristics Cohort (n = 162)

Lung 75 (46.3)
Urinary tract 29 (17.9)

Intra-abdominal 24 (14.8)
Skin 14 (8.6)

Bone/Joint 4 (2.5)
Blood 3 (1.9)
Teeth 2 (1.2)

Systemic infection (malaria) 1 (0.6)
Meningitidis 1 (0.6)

Unknown 9 (5.6)
Bacteremia, n (%) 72 (44.4)

3.2. Heterogeneity of the Temperature Rhythm

The rhythm of CBT in the whole cohort was close to the physiological circadian rhythm
of the temperature of 37 degrees with an amplitude of 0.5 degrees Celsius. However, the
large distribution of these parameters revealed a huge heterogeneity between patients
(Figure 1).
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Figure 1. Distribution of the three parameters of the temperature (Period, Mesor, and Amplitude).
(A) Histogram representing the distribution of the period (decimal hour). (B) Histogram representing
the distribution of the mesor (degree Celsius). (C) Histogram representing the distribution of the
amplitude (in degree Celsius).

The median “period” (i.e., the time needed for one complete cycle of temperature) was
20.8 h, interquartile range 13.7–24.1 h. Half of the patients showed a “period” close to 24 h,
but the other half exhibited a faster rhythm with a “period”, which could go down to 4 h to
a complete cycle of temperature, as attested by the three examples in Figure 2.
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Figure 2. Three examples of temperature rhythm. Red dots represent the raw values of temperature
from one individual. Black curves represent the cosinor curves fitted to the data of the individ-
ual. Grey lines represent the mesors. (A) period = 23.8 h, amplitude = 0.57 ◦C, mesor = 36.7 ◦C.
(B) period = 15.6 h, amplitude = 0.46 ◦C, mesor = 37.9 ◦C. (C) period = 10.35 h, amplitude = 0.48 ◦C,
mesor = 37.5 ◦C.

The “mesor”, which represents an estimation of the average temperature by the
mathematical analysis, was, at mean, 36.99 degrees +/−0.75. The “amplitude”, which is
the difference between the peak value of the temperature and the “mesor”, had a median
of 0.46 degrees [0.28–0.67] in the whole cohort.
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3.3. Factors Associated with the Body Temperature Parameters

As the profiles of temperature rhythm were extremely different between patients, we
assessed factors influencing the three parameters (i.e., period, mesor, and amplitude) of
the temperature: the patient’s characteristics, infections, and therapies used at the time of
temperature measurement (day 2) to identify factors associated with circadian disruption
(Table S2).

Multivariate regression analysis revealed significant associations: a lower period in
women (coefficient at −2.2 h, SE 0.99), as well as in patients treated with acetaminophen (co-
efficient at −4.3 h, SE 1.4). Analysis of mesor demonstrated a negative correlation between
SOFA score and the temperature (coefficient at −0.05 degree per SOFA point, SE 0.02), as
well as between hydrocortisone and temperature (coefficient at −0.5 degree, SE 0.16). A
positive correlation between procalcitonin and temperature mesor was found (coefficient at
0.004 degrees per ng/mL, SE 0.001). Analysis of amplitude demonstrated lower amplitude
in patients treated with renal replacement therapy, coefficient at −0.49 degree, SE 0.16
(Table 2).

Table 2. Multivariate analysis assessing the associations between patient characteristics and the three
parameters of the temperature (Period, Mesor, and Amplitude). The analyses were performed using
the general linear model. Results expressed the beta estimates (Coefficient) with their standard errors
(SE) and the odds ratios (OR) with their 95% confidence intervals (95% CIs).

Multivariate Coefficient SE OR [95% CI] p-Value

Period
Gender (Women) −2.164 0.995 0.11 [0.02–0.81] 0.03
Acetaminophen −4.334 1.354 0.013 [0.001–0.19] 0.002

Mesor
Smoke history −0.194 0.143 0.82 [0.62–1.09] 0.18
SOFA at 24 h −0.051 0.025 0.95 [0.91–0.99] 0.046

Procalcitonin (ng/mL) 0.004 0.001 1.004 [1.001–1.006] 0.005
Intra-abdominal −0.345 0.229 0.71 [0.45–1.11] 0.13

Dialysis 0.010 0.186 1.01 [0.70–1.45] 0.96
Hydrocortisone −0.500 0.160 0.61 [0.44–0.83] 0.002

Amplitude
Dialysis −0.495 0.156 0.61 [0.45–0.83] 0.002

3.4. Low Mesor and High Amplitude Were Associated with 28-Day Mortality

In this part, we performed a survival analysis to assess if the rhythm of the temperature
was associated with sepsis mortality on day 28. A univariate Cox regression analysis was
performed to assess factors associated with 28-day mortality (Table S3). We then assessed
temperature rhythm parameters and 28-day mortality (Table 3).

Due to strong collinearities between the sepsis severity (SOFA score) and therapeutics
(dialysis, sedation, vasopressors, and hydrocortisone), we built different models of mul-
tivariate analysis. Moreover, dialysis (which uses an extracorporeal circuit) was strongly
associated with a low amplitude of temperature (Table 2), but it was also associated with
mortality, and it mitigated the association between amplitude and mortality. Our final
model (model 4) thus excluded dialysis in the adjusted analysis. Multivariate Cox regres-
sion analysis showed that lower mesor (adjusted hazard ratio 0.50, 95% CI 0.28 to 0.90;
p = 0.02) and higher amplitude (adjusted hazard ratio 5.48, 95% CI 1.66 to 18.12; p = 0.005)
of temperature were associated with 28-day mortality (Table 3).

Figure 3 shows the Cox regression model, fitting the continuous association between
mesor or amplitude and the log relative hazard of 28-day mortality. The best significant
thresholds of the circadian parameters for predicting 28-day mortality were 36.3 ◦C for the
mesor (p < 0.001) and 0.36 ◦C for the amplitude (p < 0.001).
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Table 3. Survival analysis assessing mortality on day 28 and circadian rhythm parameters of the
temperature (Period, Mesor, and Amplitude). The analyses were performed using the Cox regression
model to estimate hazard ratios (HR) and their 95% confidence intervals (95%CIs). Analysis was
performed with the period as a categorial variable (based on two groups divided on the median
of 20.8 h, which corresponds to a standard circadian rhythm for patients with period above the
median) or as a continuous variable. Model 1 is an adjusted analysis on the SOFA score. Model 2:
Model 1 + dialysis, sedation, vaso-active drugs use, and hydrocortisone use. Model 3: Model 2 + the
three circadian rhythm parameters together (period, mesor, and amplitude). Model 4: Model 3
without dialysis.

Low Period (Categorial) Period (Continuous) Mesor (Continuous) Amplitude (Continuous)
HR [95% CI] p HR [95% CI] p HR [95% CI] p HR [95% CI] p

Univariate 1.04
[0.52–2.08] 0.91 1.00

[0.94–1.06] 0.99 0.49
[0.29–0.80] 0.004 4.00

[1.43–11.18] 0.008

Model 1 1.16
[0.58–2.34] 0.67 0.99

[0.93–1.05] 0.64 0.54
[0.32–0.92] 0.02 4.83

[1.66–14.01] 0.004

Model 2 0.95
[0.47–1.92] 0.91 0.98

[0.92–1.05] 0.58 0.55
[0.30–1.00] 0.05 2.51

[0.84–7.53] 0.10

Model 3 0.30
[0.06–1.51] 0.14 0.95

[0.89–1.02] 0.17 0.51
[0.28–0.93] 0.03 4.03

[1.17–13.93] 0.03

Model 4 0.34
[0.07–1.65] 0.18 0.95

[0.88–1.02] 0.13 0.50
[0.28–0.90] 0.02 5.48

[1.66–18.12] 0.005
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confidence intervals. The graphs below represent the Kaplan-Meier curves of the 28-day mortality
according to the most significant threshold of mesor (C) and amplitude (D). p-values result from
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threshold and the blue curves below the most significant threshold.
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4. Discussion

In this description of the rhythm of the body temperature in septic shock patients,
we found that lower level of temperature and higher amplitude of variation appear to be
associated with 28-day mortality.

These results confirm previous studies, which show that, between 10% and 20% of
patients with sepsis present, a “hypothermia” (variably defined as ≤35.5–36.5 ◦C) leads
to a mortality rate almost twice that of pyretic patients [27]. Another observational study
by Drewry et al. described an independent association between early hypothermia and
persistent lymphopenia in patients with sepsis. In this retrospective study, the hypothermic
cohort was characterized by significant excess mortality compared with non-hypothermic
controls (50% vs. 25% at day 28) [19]. In mammals, elevated body temperatures generally
promote the activation, function, and delivery of immune cells. Conversely, hypothermia
reduces these processes and thus participates in immuno-paralysis of the host response [28].

We demonstrated an association between high amplitude and mortality. One of the
first ICU studies to focus on circadian rhythm, via the evaluation of the CBT, reported that
80% of the patients had significant circadian rhythms with erratic acrophases (peak time),
but they had normal amplitudes; nevertheless, there was a tendency for the amplitude of
the temperature rhythm to be greater in non-survivors than in survivors [9]. Amplitude
changes might result from a clock activation in this specific context of infection, which may
involve host response and circadian clocks. Thus, high amplitudes might be the marker
of initial sepsis severity and are associated with a profound initial hyper-inflammatory
response and a disruption of the immunity homeostasis, as described in sepsis [29].

Besides, many factors, such as gender or therapeutics, were, in our study, associated
with rhythm patterns of CBT. As expected, acetaminophen and dialysis were associated
with different temperature changes. Acetaminophen is a well-known central antipyretic, but
its mechanisms remain incompletely understood, and many other effects were described,
including hemodynamic changes in ICU septic patients [30]. In our study, acetaminophen
was associated with a lower period that may be explained by a discontinuous adminis-
tration (every 6 h in our protocol). However, effects may be bidirectional, and the direct
central effect of acetaminophen on the temperature may not be excluded. Dialysis (which
uses an extracorporeal system) may cool the blood and favors hypothermia. However, we
demonstrated an association with lower amplitude. The external heaters of the dialysis
circuit target a constant temperature and thus may explain these results. Moreover, dialysis
was, in our study, logically associated with 28-day mortality, but it also had strong collinear-
ity with sepsis severity (including SOFA or sedation, as well as vasoactive drugs). Dialysis
tends to lower the effect of temperature (especially the amplitude) on 28-day mortality,
which is why we built a model (model 4) without this variable in our adjusted analysis.
The association of the amplitude and 28-day mortality may not be related to the dialysis
because they had inverse effects (high amplitude was associated with mortality; dialysis
was associated with mortality and lower amplitude).

Interestingly, we found an association between gender and the period of temperature.
The influence of gender on immunity and response to infection is now well described [31],
and we have also previously shown the correlation between gender, infection, and circadian
rhythm in a murine model of bacterial infection [32].

We performed mathematical modeling (Fourier transform) to approach the most
precise actual period of each patient. Interestingly, we found that, whereas some patients
had a period around 24 h, more than half exhibited a faster rhythm with a period that could
drop down to 4 h to a complete cycle of temperature. However, we did not demonstrate
any association between period and mortality. This might suggest that rhythm acceleration
in the case of sepsis could be a marker of good rhythmic adaptation when necessary.
Indeed, a different rhythm from 24 h, usually interpreted as abnormal, could result from
a physiological adaptation during the ICU stay. It may be interesting to assess, in future
prospective studies, the evolution of the period as a prognostic tool in sepsis. In most of the
studies on CBT, the authors were interested mainly in the presence or absence of a circadian
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rhythm (i.e., a rhythm with a period of 24 h) and used methods much more basic, relying
for example on the hour of the maximum peak of CBT by comparing it to the reference
values. The low point of CBT can be used to identify the end of the circadian night, and,
in ICU patients, the degree of CBT displacement from its customary early morning locus
correlates with illness severity [9,10,33].

Evidence suggests that body temperature pattern analysis might lead to meaningful
clinical information, which is also described in terms of the diagnosis of sepsis. Papaioan-
nou et al. studied the temperature patterns using linear discriminant analysis and cluster
analysis by extracting wavelet features in critically ill patients with suspected ICU-acquired
infections [34]. They extracted different wavelet features from the temperature pattern
among the three groups (systemic inflammatory response syndrome (SIRS), sepsis, and
septic shock) and found statistically significant outcomes, with decreased variability in
the more severe groups. Even if the temperature pattern seems to be more useful than a
single value at admission, these variables are more complex to compute than the period,
amplitude, and mesor of the temperature signal that we used in the present study.

The causality between circadian disruption and the immune response is unclear. In
ICU, sepsis and its severity are both associated with circadian disruption [6]. We also
demonstrated an association between circadian disruption and ICU-acquired infection in
trauma patients [35]. However, in vitro and animal data evidenced the negative effect of
inflammation on the molecular clock [5,36]. Conversely, circadian disruption and clock
gene inhibition dramatically affect immune functions and response to infection [5,37].
The molecular clock contributes to immune homeostasis; the deregulation of this clock
could thus break this homeostasis and participate in an unadapted inflammatory balance,
affecting immune functions. Indeed, many animals’ experimental studies have found that
the lethality induced by lipopolysaccharide (LPS), or recombinant human tumor necrosis
factor (TNF-alpha), varied significantly throughout the day, depending on the time of
administration, emphasizing an important link with the circadian rhythm [38].

It is importance to note that altered phase positions in ICU may result from abnormal
temporal cues in its environment, which can cause the desynchronization of the circadian
pacemaker. Indeed, studies have suggested that a lot of zeitgebers (external or environ-
mental cues that entrain the clock) are abnormal in the ICU [8,39]. Light patterns appear to
be different for patients in the ICU compared with normal control subjects [40]. Besides,
sleep and wakefulness are highly fragmented and generally evenly distributed over the
24 h of the day [41]. Sleep deprivation has been demonstrated to be associated with lower
temperature levels and may be involved in the circadian disruption of CBT [42]. Food
intake was also found to affect CBT [43]. Our patients were fed continuously by enteral
tube, 24 h a day, which is not physiological and may participate in circadian disruption.
Lastly, ICUs represent a noisy environment and could be involved in the disruption of the
circadian rhythm via sleep abnormalities [21].

This study has several limitations. This is a monocenter study, and patients may have
been exposed to standardized protocols specific to our center that affect temperature rhythm
and that have not been identified by the study. The measurement of the temperature was
either central or by tympanic devices, which may lead to differences in temperature reading.
However, the circadian parameters (Table S2) were not associated with the technique of
measurement. The measurements were taken every 2 or 4 h, not allowing a very fine fitting
of the period, as recordings could accomplish every minute. The mathematical model tries
to fit the best period using sinusoid laws. It is, thus, difficult to know if the CBT follows
a rhythmic pattern or if it is random variations. Any interventions that may affect CBT
similar to a single shot of acetaminophen may simulate a rhythm not generated by the
internal clock. Besides, not all factors that may influence CBT have been considered, such
as blankets, clothes, or muscular activity. Additionally, it would be interesting to compare
CBT with non-septic ICU patients.



Biology 2023, 12, 638 11 of 13

5. Conclusions

Our study showed that early temperature pattern disruptions, lower mesor, and
higher amplitude were associated with mortality in this cohort of septic shock. In the age
of artificial intelligence, integrating such data in an automated scoring alert could help to
identify high-risk patients during septic shock. These results need to be confirmed, and
it would be interesting to assess by which mechanism this adaptation occurs—genomic,
transcriptomic, or metabolic adaptation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12050638/s1, Table S1: Description of the causal infec-
tious agents documented during the ICU stay; Table S2: Univariate analysis assessing the associations
between patient characteristics and the three parameters of the temperature (Period, Mesor, and Am-
plitude); Table S3: Univariate survival analysis assessing mortality at day 28, patient characteristics,
infection characteristics, and therapeutics.
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