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Abstract  51 

Despite increasing metals and metalloids (MM) human-driven soil contamination, how it 52 

simultaneously alters biodiversity and ecosystem functioning remains unknown. We used a 53 

wide gradient of a 170-year-old MM soil multi-contamination in Mediterranean scrublands to 54 

assess the effects of soil multi-contamination on multiple plant biodiversity facets, microbial 55 

communities and ecosystem multifunctionality (EMF). We found an overall positive effect of 56 

plant biodiversity on EMF mediated by microbial communities, and allowing to offset the 57 

negative impacts of MM soil multi-contamination, especially on soil water holding capacity 58 

and nitrogen content. The diversity of distant plant lineages was the key facet promoting EMF 59 

by enhancing microbial communities, whereas the subordinate species richness altered EMF. 60 

By developing a holistic approach of these complex relationships between soil multi-61 

contamination, plant biodiversity, microbial communities and ecosystem functioning, our 62 

results reveal the potential of plant biodiversity, and especially the diversity of evolutionary 63 

distant species, to offset the alteration of ecosystem functioning by MM soil multi-64 

contamination. In this worldwide decade of ecosystems restoration, our study helps to identify 65 

relevant facets of plant biodiversity promoting contaminated ecosystem functioning, which is 66 

crucial to guide and optimize management efforts aiming to restore ecosystems and preserve 67 

human health. 68 

 69 
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1. Introduction 76 

Human-driven metals and metalloids (MM) soil contaminations are a major threat to 77 

soil functioning by representing 34.9% of soils contaminants in the European Union, especially 78 

in the Mediterranean region (Panagos et al., 2013; van Liedekerke et al., 2014; Stolte et al., 79 

2016; Merino et al., 2019). MM soil contamination could alter biodiversity and ecosystem 80 

functioning by impacting all the components of the soil-plant-microorganisms continuum, i.e., 81 

by affecting soil composition and functioning (Greger, 2004; Petruzzelli et al., 2020), microbial 82 

activities (Kızılkaya et al., 2004; Gülser & Erdoğan, 2008) and plant physiological processes 83 

(Cheng, 2003; Yadav, 2010). Since biodiversity and ecosystem functioning are tightly coupled 84 

(e.g., Gamfeldt et al., 2008; Isbell et al., 2011), their relationships may vary along a MM soil 85 

multi-contamination gradient (see Steudel et al., 2012 for biodiversity-ecosystem functioning 86 

relationships along environmental stress gradients). Yet, how MM soil multi-contamination 87 

gradients simultaneously impact on taxonomic (species richness and their abundances within a 88 

community), phylogenetic (the diversity of evolutionary lineages within a community) and 89 

functional (the diversity of forms and functions within a community) facets of plant 90 

biodiversity, and, ultimately, on the capacity of ecosystems to perform multiple functions (i.e., 91 

ecosystem multifunctionality (EMF); Manning et al., 2018) remains unknown (Fig. 1). 92 

Deciphering the relationships between biodiversity and EMF under soil multi-contamination 93 

could not only expand our fundamental understanding of the biodiversity-EMF relationships 94 

but could also help to identify the relevant biodiversity facets to improve management and 95 

restoration of contaminated ecosystems (Balvanera et al., 2014; Brum et al., 2017). 96 

According to the pervasive environmental filtering hypothesis (Keddy, 1992; Weiher et 97 

al., 1998), MM soil multi-contamination can act as a strong environmental filter simultaneously 98 

decreasing phylogenetic, taxonomic, and functional diversity, and ultimately resulting in the 99 

reduction or loss of ecosystem functions (Fig. 1). MM soil multi-contamination can exacerbate 100 
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the effects of water stress in plants (Poschenrieder & Barcelo, 1999; Rucińska-Sobkowiak, 101 

2016). This could result in the selection of few plant evolutionary lineages, forms and functions 102 

tolerant to MM-induced water stress, (e.g., synthesis of osmoprotective compounds (Sharmila 103 

& Pardha Saradhi, 2002), reduction of leaf size, thickness, and stomata density (Rucińska-104 

Sobkowiak, 2016)). However, these predictions contrast with the often-high diversity that can 105 

be observed in stressful and degraded environments, resulting from the co-occurrence of stress-106 

avoidant and stress-tolerant plant species (Poorter et al., 2009; Gross et al., 2013), positive 107 

interactions (e.g., Butterfield & Briggs, 2011; Butterfield & Munson, 2016), or spatial / 108 

temporal storage effects (Chesson, 2000; Chesson et al., 2004). This discrepancy between 109 

patterns and predictions reminds the “functional paradox” of water-limited environments 110 

(Maestre et al., 2021) which could exhibit a low taxonomic, but remarkable plant phenotypic 111 

diversity to cope with the environmental constraints of these areas (Chesson et al., 2004; Gross 112 

et al., 2013; Gross et al., 2017; Le Bagousse‐ Pinguet et al., 2017). Thus, testing the 113 

environmental filtering hypothesis and its discrepancies on the multiple facets of plant 114 

biodiversity in contaminated environments is crucial to extend our understanding of the 115 

relationships between biodiversity and EMF, one of the key challenges for the next generation 116 

of functional ecology research (Steudel et al., 2012). 117 

Different assembly processes (sensu Keddy, 1992) can shape the diversity patterns of 118 

dominant plant species with high abundance within a plant community, and subordinate plant 119 

species with low abundance within a plant community (Arnillas & Cadotte, 2019; Arnillas et 120 

al., 2021). For instance, while environmental filtering can lead to functional similarity (i.e., 121 

reduced range of functional traits values) among dominant species, niche differentiation (i.e., 122 

differentiated use of resources in time and space) can lead to greater divergence (i.e., wide range 123 

of functional traits values) among subordinate species, allowing them to coexist with dominant 124 

ones (Maire et al., 2012). In addition, subordinate species can better tolerate water stress than 125 
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dominant ones (Mariotte et al., 2017) and enhance community resistance against drought 126 

(Mariotte et al., 2013a). Finally, dominant and subordinate species can differently influence 127 

ecosystem functioning (Gross et al., 2017; Le Bagousse-Pinguet et al., 2019; Le Bagousse-128 

Pinguet et al., 2021; Lyons et al., 2005). Even if dominant species highly influence individual 129 

functions related to biomass production, carbon, and nutrient cycling (mass ratio hypothesis; 130 

Grime, 1998), subordinate species can have significant effects on EMF (richness effect; Gross 131 

et al., 2017; Le Bagousse-Pinguet et al., 2019; Le Bagousse-Pinguet et al., 2021). Thereby, 132 

deciphering the diversity patterns of dominant versus subordinate species is critical to our 133 

understanding of their respective implications on ecosystem functioning (Seabloom et al., 134 

2013).  135 

Here we evaluated whether and how the relationships between biodiversity and EMF 136 

change along a wide gradient of a 170-year-old MM soil multi-contamination in Mediterranean 137 

scrubland communities. We investigated (i) how MM soil multi-contamination impacts 138 

taxonomic, phylogenetic and functional facets of plant biodiversity and EMF, (ii) how these 139 

three plant biodiversity facets affect EMF, either directly or mediated by soil microbial 140 

communities and (iii) whether dominant (mass-ratio effect) versus subordinate (richness effect) 141 

plant species reveal different patterns of biodiversity-EMF relationships. We assessed these 142 

relationships using structural equation modeling approaches based on an index of MM soil 143 

multi-contamination combining five different MM, seven complementary indices reflecting 144 

taxonomic, phylogenetic and functional biodiversity facets, an index of microbial activities and 145 

biomass based on four microbial functions, and an index of EMF based on five soil functions. 146 

We tested the core hypothesis that the environmental filtering exerted by MM soil multi-147 

contamination selects for tolerant lineages and species with similar trait values within 148 

communities (i.e., reducing plant biodiversity), resulting in decreased microbial activities and 149 

biomass, and organic matter, nutrients, and water contents (i.e., reducing EMF, Fig. 1). 150 
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 151 

2. Material and methods 152 

2.1. Study area and sites 153 

We studied 30 scrubland communities located in the protected area of the Marseilleveyre 154 

massif (Calanques national park, Marseille, SE France), characterized by a semi-arid 155 

Mediterranean climate, calcareous, skeletal and oligotrophic soils.  The studied communities 156 

correspond to young rosemary scrublands with at least one occurrence of Rosmarinus officinalis 157 

L., and one occurrence among four other characteristic species, i.e., Cistus albidus L., Coronilla 158 

juncea L., Erica multiflora L., and Globularia alypum L. (Pavon et al., 2018).  159 

From the middle of the 19th century to the beginning of the 20th century, metallurgical 160 

and chemical industries generated massive amounts of MM-contaminated ashes in the 161 

Marseilleveyre massif (Daumalin & Raveux, 2016). MM dispersal by eolian and hydric erosion, 162 

influenced by topography, resulted in a diffuse, heterogenous and persistent MM soil multi-163 

contamination (Laffont-Schwob et al., 2016). Soils are mainly contaminated by toxic elements 164 

as lead (Pb, from 110 to 29,412 mg.kg-1), arsenic (As, from 16 to 3,926 mg.kg-1), antimony (Sb, 165 

from 4 to 1,230 mg.kg-1), and essential elements for plant development as zinc (Zn, from 77 to 166 

6,420 mg.kg-1) and copper (Cu, from 15 to 52 mg.kg-1). 167 

We chose to study scrubland communities, widely represented in the study area and 168 

more broadly in Mediterranean areas, and especially woody species because of their perennial 169 

and well-developed root systems subjected to MM soil multi-contamination. Thus, we first 170 

restricted the study area to areas potentially occupied by scrubland by selecting “323 171 

Sclerophyllous vegetation”, “333 Sparsely vegetated areas” and “332 Bare rock” land cover 172 

types from CORINE Land Cover 2012 database (available at: 173 

https://www.data.gouv.fr/fr/datasets/corine-land-cover-occupation-des-sols-en-france/). 174 

Second, using a custom GIS procedure along with spatial databases, we selected areas with 175 
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scrubland vegetation characterized by homogeneous abiotic conditions influencing plant and 176 

microbial communities structure and functioning: distance to the sea, elevation, aspect, and 177 

slope (Heckenroth et al., 2016). The first step was to remove areas inferior to 250m to the sea 178 

to avoid the influence of sea dispersal spray on plant and microbial communities, using a 250m 179 

radius buffer area around the coastline provided by the Histolitt® database (available at: 180 

https://www.data.gouv.fr/fr/datasets/trait-de-cote-histolitt-1/). The second step was to calculate 181 

aspect and slope raster layers using a 5m resolution elevation raster layer provided by the 182 

RGEalti® database (available at: https://geoservices.ign.fr/rgealti#telechargement5m). Then, 183 

we checked for statistical associations between elevation, aspect and slope using principal 184 

components analysis and a correlation matrix. Since there was no relationship among these 185 

variables (Appendix A), we reduced our selection to the range between the 25th and 75th 186 

percentiles for each variable separately. As a result, our site selection encompasses sites from 187 

123 m to 283 m of elevation, from 23 % to 38 % of slope and south aspect. Then, we based our 188 

study sites selection on MM soil multi-contamination, using Marséco project gridded spatial 189 

data at a 250 m resolution (Laffont-Schwob et al., 2016). For each grid cell, corresponding to a 190 

measurement of Pb, As, Sb, Zn and Cu soil concentrations, a pollution load index (PLI) was 191 

calculated (Rashed, 2010; see below for calculation details) to evaluate the level of MM multi-192 

contamination. Mapped MM contamination data relieved a spatially structured contamination 193 

gradient from West to East. These data are not used as value for the MM multi-contamination 194 

explanatory variable but only to support the choice of study sites localization by ensuring a 195 

representative sampling of the whole multi-contamination range. Then, we distinguished 4 196 

multi-contamination levels: very high (40<PLI<216), high (10<PLI<30), intermediate 197 

(5<PLI<10) and low (1<PLI<5) multi-contamination. We positioned 7 or 8 plots of 32 m² each 198 

within each multi-contamination level, in different patches of scrubland vegetation with a 199 

minimum distance of 70m between two plots to avoid pseudo replication (Fig. 2). The 32 m² 200 
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plot surface was estimated as the optimal surface to detect all woody species within a 201 

community, using the nested plot method. 202 

 203 

2.2. Soil analysis  204 

For each plot 5 soil subsamples of 200mL each, collected in the top 20cm-layer after litter 205 

removal and sieved at 2 mm, were pooled in a composite soil sample.  206 

 207 

2.2.1. MM soil multi-contamination 208 

Soils samples were dried at 40 °C, grounded less than 0.2 mm (RETSCH 200, agate mortar), 209 

digested in a microwave mineralizer (Milestone Start D) using aqua regia (1/3 HNO3 + 2/3 HCl) 210 

and filtered through a 0.45 μm cellulose ester membrane filter (ISO 11466, 1995). Then, MM 211 

pseudo-total concentrations were determined by ICP-OES (Jobin Yvon Horiba, Spectra 2000). 212 

Quality controls and accuracy were checked using standard soil reference materials (CRM 049-213 

050, from RTC-USA), with accuracies within 100 ± 10 %.  214 

By using Pb, As, Sb, Zn and Cu pseudo-total concentrations, we calculated an index of MM 215 

soil multi-contamination, the PLI (Rashed, 2010; Table 1) for each plot: 216 

PLI=√CFPb x CFAs x CFSb x CFZn x CFCu
5         Eq. (1)         217 

where CFMM=[MM]pseudo-total / [MM]local background value and [MM]local background value are 42.9, 4.9, 218 

3.1, 66 and 7.5 mg.kg-1 for Pb, As, Sb, Zn and Cu, respectively (Affholder et al., 2014). 219 

Since calcareous Mediterranean soils are characterized by relatively high pH which can 220 

reduce MM bioavailability (Petruzelli et al., 2020; Fig. 1, H1), we measured soil pH 221 

(soil/osmosed water, 1/5, V/V; ISO 10390, 2005; Orion 2 Star Thermo Scientific SM30B), and 222 

the concentrations of potentially bioavailable MM using 0.05 M EDTA solution (pH = 7.0 ± 223 

0.1) as extractant with a 1/10 w/V ratio of soil/EDTA solution (Quevauviller, 1998; Appendix 224 

B). Concentrations of potentially bioavailable MM were strongly correlated with MM pseudo-225 
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total concentrations and PLI (Appendix B). Therefore, we chose to keep MM pseudo-total 226 

concentrations because they allow us to calculate the index of MM soil multi-contamination 227 

(i.e., PLI) based on MM local background pseudo-total concentrations defined by Affholder et 228 

al. (2014). Because of their skewed distribution, PLI values used in analysis were log-229 

transformed. 230 

 231 

2.2.2. Ecosystem multifunctionality 232 

We quantified EMF for each plot using five soil functions (Table 1): (i) total organic carbon 233 

(TOC), (ii) total Kjeldahl nitrogen (TKN), (iii) available phosphorus (P) contents, (iv) cation 234 

exchange capacity (CEC) and (v) water holding capacity (WHC).  235 

Soil physicochemical analyses were carried out on 40 °C dried soils, excepted for the water 236 

holding capacity (WHC). Total organic carbon (TOC) content was determined by the difference 237 

between (i) the total carbon content, measured by non-dispersive infrared (NDIR) spectroscopy 238 

after soil combustion at 900 °C in a furnace under oxygen flow, and (ii) the inorganic carbon 239 

content, measured by NDIR spectroscopy after soil acidification with phosphoric acid (40 % 240 

H3PO4) at 80 °C under oxygen flow (AnalytiK Jena N/C 2100 S, ISO 10694, 1995). Total 241 

Kjeldahl nitrogen (TKN) content was determined by Kjeldahl method (ISO 11261, 1995): (i) 242 

mineralization of the soil sample by concentrated sulfuric acid (H2SO4) during 4h at 300°C 243 

(Büchi Speed Digester K-436), (ii) distillation of the obtained ammonium sulfate with a 244 

concentrated soda solution during 7min and neutralization with an excess of sulfuric acid 245 

solution (Büchi Distillation Unit 323), (iii) dosage of the excess of sulfuric acid by indirect 246 

titration with soda solution (Titroline Easy, Schott Instruments). Available phosphorus (P, 247 

Olsen method, ISO 11263, 1995) and cation exchange capacity (CEC, Metson method, NF X 248 

31-130, 1999) measurements were performed by the Laboratoire Développement Méditerranée 249 

(COFRAC accreditation n°1-5865, Alès, France). WHC was measured by soil immersion in 250 
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water during 48h, followed by soil re-wiping and drying during 48 h at 90 °C. Soils were 251 

weighed after soil re-wiping and after drying. WHC correspond to the difference between soil 252 

mass after re-wiping and dry soil mass, divided by the dry soil mass. WHC represents the 253 

maximum mass of water absorbed per 100 g of dry soil. 254 

Then, we Z-scored each individual function (i.e, TOC, NTK, P, CEC and WHC): 255 

𝑍 score = Fij−Mean Fi
SD Fi

                    Eq. (2) 256 

where Fij is the value of the function i in the community j, and Mean Fi and SD Fi are 257 

respectively the mean and the standard deviation of the function Fi, calculated for the 30 258 

scrubland plots. Finally, we calculated an index of EMF by averaging the Z-score of individual 259 

functions for each plot. 260 

 261 

2.2.3. Microbial biomass and activities 262 

We quantified microbial biomass and activities for each plot using four microbial functions 263 

(Table 1): (i) soil basal respiration (SBR), (ii) microbial biomass (MB), (iii) average well color 264 

development (AWCD) and (iv) catabolic diversity (Hcat).  265 

SBR and substrate-induced respiration (SIR) were measured to assess global microbial 266 

activity and biomass (Anderson, 2003; Anderson & Domsch, 1978). 10 g dry weight equivalent 267 

of fresh soil at 30 % of the WHC were placed in 117 mL slightly open ajar glass jars and 268 

incubated for 48 h at 23 °C. For SBR measurement, each sample was oxygenated for 4 min and 269 

incubated for 4 h at 23 °C in tightly closed glass jars. Then, 1 mL of their atmosphere was 270 

sampled in the headspace with a syringe and injected into a gas chromatograph (Chrompack 271 

CHROM 3 – CP 9001) to analyse CO2 production by microbial oxidation of the soil organic 272 

matter. SIR was estimated using a procedure from Anderson (2003). Soil samples were 273 

amended with 450 mg of talc and 50 mg of powdered anhydrous glucose to maximize the 274 

respiration rate and incubated for 2 h at 23 °C in slightly open ajar glass jars. Then, each sample 275 
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was oxygenated for 4 min and then incubated for 2 h at 23 °C in tightly closed glass jars. 1 mL 276 

of their atmosphere was sampled in the head space with a syringe and injected into a gas 277 

chromatograph to analyse CO2 production by microbial oxidation of glucose. The gas 278 

chromatograph was equipped with a thermal conductivity detector and a packed column 279 

(Porapack). The carrier gas helium flow was regulated at 60 mL.h-1. Ambient CO2 280 

concentrations were subtracted from sampled CO2 concentrations and resulting values were 281 

adjusted at 22 °C according to Ideal Gas Laws using a Q10 = 2. SIR was converted into 282 

microbial biomass (MB) using the relation established by Beare et al. (1990). 283 

Community level physiological profiling (CLPP) of cultivable bacterial communities, i.e., 284 

their potential to oxidize different C-substrates (Appendix C), was carried out using the 285 

Ecoplate microplates (Biolog, Hayward, CA, USA) according to a procedure adapted from 286 

Garland & Mills (1991). For each soil sample, 100 mL of 0.1 % sodium pyrophosphate sterile 287 

solution was added to 5 g dry weight equivalent of fresh soil in a 250 mL flask and the whole 288 

was shaken for 2 h at 80 rpm. The obtained soil solution was diluted and standardized at optical 289 

density (OD) 595 nm=0.03 with a sterile physiological solution (NaCl 0.85 %) and 125 μL were 290 

used to inoculate each well of the plates. After an incubation period of 5 days at 25 °C, microbial 291 

response was assessed by reading the absorbance at 590 nm using a TECAN® 292 

spectrophotometer (Tecan Trading AG, Switzerland). For each well, the absorbance value was 293 

blanked against the control well and negative absorbance values were set to zero. The minimum 294 

OD for a positive well was fixed at 0.1. The intensity of microbial C-use was assessed using 295 

the AWCD index: 296 

AWCD =  ∑ ODi
N

                   Eq. (3) 297 

where ODi is the OD of the ith well and N the number of wells in the plate.  298 

Hcat was assessed using Shannon’s index: 299 

Hcat = ∑ (pi x ln (pi)N
i=1 )                  Eq. (4) 300 
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where pi is the ratio between the absorbance of the ith well and the sum of the absorbances of 301 

all the wells of the plate. 302 

Then, we Z-scored each individual function. Finally, we calculated an index of microbial 303 

biomass and activities by averaging the Z-score of individual functions for each plot. 304 

 305 

 306 

2.3.  Plant biodiversity facets 307 

2.3.1. Phylogenetic and taxonomic diversity 308 

In each plot, the presence of each species was recorded using a 2m² quadrat which was 309 

moved 16 times over the whole 32m² plot surface. 32 woody species, all native to the study 310 

area, have been recorded in total (Appendix D). According to the PNCal’s regulations, two 311 

species were not included in our study because of their conservation status which prevent 312 

sampling: Teucrium polium L. and Helianthemum syriacum (Jacq.) Dum.Cours. The relative 313 

abundance of each species in each plot was calculated by dividing the number of quadrats in 314 

which it occurs by the sum of all species occurrences by quadrat.  315 

We computed four phylogenetic diversity indices (picante R package, mpd and mntd 316 

functions; Kembel et al., 2010) for each plot using a phylogenetic tree (V.Phylomaker R 317 

package, phylo.maker function, “S3” method; Jin & Qian, 2019) based on woody species 318 

occurrences: (i) weighted and (ii) non-weighted mean phylogenetic distance (respectively 319 

wMPD and MPD), which account for both closely related and distant evolutionary lineages, 320 

(iii) weighted and (iv) non-weighted mean nearest taxon distance (respectively wMNTD and 321 

MNTD), which represent the diversity of evolutionary lineages at the tips, i.e., focusing on 322 

closely related lineages. We calculated two taxonomic diversity indices (vegan R package; 323 

Oksanen et al., 2019) for each plot: (i) species richness and (ii) Pielou’s evenness.  324 

 325 
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2.3.2. Functional diversity 326 

We focused on three plant functional traits describing one of the major axes of plant form 327 

and function globally (Díaz et al., 2016), and that are key determinants of functional diversity 328 

and ecosystem functioning in Mediterranean scrublands (Gross et al., 2013; Valencia et al., 329 

2015; Le Bagousse-Pinguet et al., 2015): Leaf Area (LA), Specific Leaf Area (SLA) and Leaf 330 

Dry Matter Content (LDMC). Traits such as LA are related to light interception and water stress 331 

tolerance (Westoby et al., 2002). SLA and LDMC are related to the leaf economic spectrum, 332 

reflects the relative growth rate of plants, and are associated with plant strategies to acquire, 333 

use and/or conserve resources such as light, nutrients and water (Wright et al., 2004).  334 

In each plot, we sampled three mature individuals of each species at most to account for 335 

intraspecific functional trait variability (Albert et al., 2011), a key biotic component involved 336 

in species interactions (Kraft et al., 2014), community assembly and dynamics (Jung et al., 337 

2010; Bolnick et al., 2011; Le Bagousse-Pinguet et al., 2014, 2015), and ecosystem processes 338 

(Fridley & Grime 2010). A total of 25089 leaves were sampled from 983 individuals. On each 339 

individual, a branch section with mature leaves was collected. We avoided sampling of leaves 340 

with herbivory or pathogen attack symptoms. Then, the samples were wrap in moist paper, put 341 

in closed plastic bags and stored at 4 °C before processing in the next 24 h (Pérez-Harguindeguy 342 

et al., 2016). The number of analyzed leaves per individual depended on the species considered. 343 

Preliminary tests allowed us to determine the minimum number of leaves to be analyzed so that 344 

the minimum LA per individual is 1 cm² (Appendix D). First, leaves were cut from the branch. 345 

We included or excluded the petiole depending on the species considered, based on the 346 

functional definition of a leaf, i.e., all leaf parts which are photosynthetic and then pigmented 347 

(Appendix D). Then, all the fresh leaves from a same individual were pooled, scanned, weighted 348 

(fresh mass), dried at 40°C until constant mass and reweighted (dry mass). The LA of each leaf 349 

was measured with Fiji (Schindelin et al., 2012). SLA was calculated per individual as the ratio 350 
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between the LA and the dry mass of all the leaves from a same individual. LDMC was 351 

calculated as the ratio between the fresh mass and the dry mass of all the leaves from a same 352 

individual.   353 

We computed six functional indices (FD R package; Laliberté et al., 2014): the community-354 

weighted mean of (i) LA (CWM LA), (ii) SLA (CWM SLA) and (iii) LDMC (CWM LDMC), 355 

and three multi-trait indices, i.e., (iv) functional richness (FRic), and (v) weighted and (iv) non-356 

weighted functional dispersion (respectively wFDis and FDis). Because of their skewed 357 

distributions, functional trait values used in indices calculation were log-transformed. 358 

 359 

2.4. Data analyses 360 

2.4.1. Conceptual model  361 

We developed an a priori conceptual model of the relationships among MM soil multi-362 

contamination, biodiversity facets (phylogenetic, taxonomic, and functional diversity), 363 

microbial biomass and activities and EMF ecologically meaningful and framed from current 364 

knowledge (Fig. 1).  365 

 366 

2.4.2. Plant explanatory variables selection 367 

From this conceptual model, we avoided redundancy between plant explanatory variables 368 

by performing Pearson’s correlation. If two variables were strongly correlated (Pearson 369 

coefficient > 0.70 or < -0.70), then only one of the 2 variables was retained (Appendix E). Based 370 

on this selection criterion, several associations of plant explanatory variables could have been 371 

retained for each biodiversity facet: (i) wMNTD and MPD or MNTD and wMPD for 372 

phylogenetic diversity, (ii) richness and evenness for taxonomic diversity, (iii) CWM LA, 373 

CWM SLA and FDis (including LA and SLA) or CWM LA, CWM SLA and FRic (including 374 



16 
 

LA and SLA), or CWM LA, CWM SLA, CWM LDMC, FRic and FDis (including LA, SLA 375 

and LDMC) for functional diversity.  376 

 377 

2.4.3. Best adequate initial model  378 

We tested all possible combinations of plant explanatory variables in 6 path analysis (2 379 

combinations for phylogenetic diversity x 1 combination for taxonomic diversity x 3 380 

combinations for functional diversity; lavaan R package; Rosseel, 2012), and kept the 381 

combination of variables that provided the best adequate initial model according to Grace 382 

(2006) and Rosseel (2012) criteria: Chi-squared test > 0.05, Comparative Fit Index (CFI) > 383 

0.90, Root Mean Squared Error (RMSEA) < 0.10 and Standardized Root Mean Square Residual 384 

(SRMR) < 0.08. Our best adequate initial model retained included the following plant 385 

explanatory variables: (i) MNTD and wMPD for phylogenetic diversity, (ii) richness and 386 

evenness for taxonomic diversity, and (iii) CWM LA, CWM SLA and FDis for functional 387 

diversity (Fig. 3 and Table 1). 388 

 389 

2.4.4. Minimal parsimonious model 390 

From the best adequate initial model, we performed path analyses to assess: (i) the direct 391 

and indirect effects of MM soil multi-contamination on the plant biodiversity facets, on 392 

microbial biomass and activities and on EMF, (ii) the relationships between biodiversity facets, 393 

each of the soil individual functions (i.e., TOC, TKN, P, CEC, WHC), and ultimately EMF,  394 

and (iii) whether and how the relationships between plant biodiversity and EMF differ once 395 

considering either dominant or subordinate species within each community. We defined 396 

dominant and subordinate species within each plant community using a relative abundance 397 

threshold of 0.06, based on the median of species relative abundances in all the 30 communities 398 

(0.06306) and the median of median species abundances among the 30 plant communities 399 
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(0.06660). As a result, dominant species have a relative abundance between or equal to 0.06 400 

and 0.28 and subordinate species have a relative abundance between 0.007 and 0.06. The initial 401 

model was simplified by stepwise exclusion of non-significant variables, as estimated by AIC 402 

(Akaike Information Criterion), until that a minimal parsimonious model was reached. Finally, 403 

the adequacy of the minimal parsimonious model was evaluated by non-significant differences 404 

between predicted and observed covariance matrices (p of Chi-squared test > 0.05), a high CFI 405 

(> 0.90), a low RMSEA (< 0.10) and a low SRMSR (< 0.08) (Grace, 2006; Rosseel, 2012; 406 

Appendix F). 407 

 408 

3. Results 409 

3.1. Effects of MM soil multi-contamination on plant biodiversity facets and EMF 410 

The effects of MM soil multi-contamination on plant biodiversity facets and EMF were not 411 

influenced by the reduced range of soil pH values (7.88-8.38). MM soil multi-contamination 412 

did not affect TOC (Fig. 5a), P (Fig. 5b) and CEC (Fig. 5c), but it decreased WHC (r = -0.383, 413 

Fig. 5d) and TKN (r = -0.319, Fig. 5e), resulting in a direct negative effect on EMF (r = -0.301, 414 

Fig. 4a). In contrast, we did not observe any effect of MM soil multi-contamination on plant 415 

biodiversity (neither at the whole community level, nor when segregating between dominant 416 

and subordinate species) and on microbial biomass and activities.  417 

 418 

3.2. Effects of plant biodiversity facets on EMF 419 

Plant biodiversity had an overall indirect positive effect on EMF (r = 0.253, Fig. 4a), TOC 420 

(r = 0.242, Fig. 5a), P (r = 0.278, Fig. 5b), CEC (r = 0.231, Fig. 5c) and WHC (r = 0.238, Fig. 421 

5d). Of the seven plant biodiversity indices considered in the initial model (Fig. 3), three 422 

significantly influenced EMF and soil individual functions, i.e., wMPD, CWM LA and species 423 

richness. Except for TKN, the significant effects of biodiversity facets on EMF and soil 424 
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individual functions were always mediated through the positive effect of microbial biomass and 425 

activities on EMF (r = 0.462, Fig. 4a), TOC (r = 0.443, Fig. 5a), P (r = 0.508, Fig. 5b), CEC (r 426 

= 0.423, Fig. 5c) and WHC (r = 0.435, Fig. 5d). wMPD and CWM LA had indirect positive 427 

effects on EMF (r = 0.291 and r = 0.165 respectively; Fig. 4a), TOC (r = 0.280 and r = 0.159 428 

respectively; Fig. 5a), P (r = 0.321 and r = 0.182 respectively; Fig. 5b), CEC (r = 0.267 and r = 429 

0.151 respectively; Fig. 5c) and WHC (r = 0.275 and r = 0.156 respectively; Fig. 5d), and 430 

wMPD always showed the strongest effect. In contrast, species richness had an indirect negative 431 

effect on EMF (r = -0.204, Fig. 4a), TOC (r = -0.196, Fig. 5a), P (r = -0.224, Fig. 5b), CEC (r 432 

= -0.187, Fig. 5c) and WHC (r = -0.192, Fig. 5d). The negative effects of species richness on 433 

EMF, TOC, P, CEC and WHC were compensated by the positive effects of wMPD and CWM 434 

LA. The overall indirect positive effect of plant biodiversity on EMF and WHC and the direct 435 

positive effect of CWM LA on TKN (r = 0.337, Fig. 5e) partially and fully offset the direct 436 

negative effects of MM soil multi-contamination, respectively.   437 

 438 

3.3. Effect of plant species relative abundance on biodiversity-EMF relationships 439 

Considering dominant and subordinate species separately highlighted different patterns of 440 

biodiversity-EMF relationships.  MM soil multi-contamination had a direct and negative effect 441 

on EMF when focusing on dominant species (r = -0.303, Fig. 4b), while no effect occurred 442 

when considering subordinate species. wMPD is the only biodiversity index which had a 443 

significant positive effect on EMF mediated through microbial biomass and activities in both 444 

dominant (r = 0.261, Fig. 4b) and subordinate (r = 0.346, Fig. 4c) species. In dominant species, 445 

the positive effect of wMPD on EMF partially offset the negative effect of MM soil multi-446 

contamination on EMF (r = -0.303, Fig. 4b). In addition, species richness had a significant 447 

negative effect on EMF mediated through microbial biomass and activities in subordinate 448 

species (r = -0.188, Fig. 4c), but no significant effect in dominant species. In subordinate 449 
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species, the indirect negative effect of species richness on EMF was compensated by the 450 

indirect positive effect of wMPD on EMF. Thus, plant biodiversity had an overall indirect 451 

positive effect on EMF in subordinate species (r = 0.158, Fig. 4c).  452 

 453 

4. Discussion 454 

We investigated how MM soil multi-contamination influences the relationships between 455 

multiple plant biodiversity facets and EMF in Mediterranean scrublands. Our results highlight 456 

that plant biodiversity offset the negative impacts of MM soil multi-contamination on EMF 457 

(Fig. 4a), underlining its potential for ecological restoration of contaminated ecosystems. We 458 

also found antagonism between the positive effects of phylogenetic and functional facets and 459 

the negative effects of taxonomic facet on ecosystem functioning, warning for the need to 460 

consider multiple biodiversity facets for the restoration of contaminated ecosystems.  461 

MM soil multi-contamination impacted differently the components of the soil-plant-462 

microorganisms continuum. On the one hand, MM soil multi-contamination altered EMF (Fig. 463 

4a), and mostly soil water holding capacity (Fig. 5c) and total nitrogen content (Fig. 5d). The 464 

observed soil alteration likely results from competition for adsorption onto soil particles 465 

between toxic MM (e.g., lead and arsenic) and nutrients, resulting in changes in soil 466 

composition and functioning (Greger, 2004; Petruzzelli et al., 2020). On the other hand, MM 467 

soil multi-contamination did not impact plant biodiversity and microbial biomass and activities. 468 

Since MM and water stresses lead to similar physiological responses of plants (e.g., synthesis 469 

of osmoprotective compounds (Sharmila & Pardha Saradhi, 2002), reduction of leaves sizes, 470 

thickness, and stomata density (Rucińska-Sobkowiak, 2016)), our results support the 471 

environmental filtering hypothesis (Keddy, 1992; Weiher et al., 1998), i.e., the presence of 472 

tolerant species to water stress preadapted to MM contaminated soils (Affholder et al., 2014; 473 

Heckenroth et al., 2022; Salducci et al., 2019). Altogether our study highlights the complex 474 
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responses of degraded ecosystems to soil contaminations, and thus calls for the need of holistic 475 

approaches simultaneously considering the effects of contamination on above- and 476 

belowground biodiversity and soil functions to target the relevant components of the soil-plant-477 

microorganisms continuum that restoration and management efforts should focus on. 478 

Despite having both additive and antagonistic effects, depending on the facet 479 

considered, the overall effect of plant biodiversity on ecosystem functioning mediated through 480 

microbial communities was positive, allowing to partially offset the negative impacts of MM 481 

soil multi-contamination. Of the seven plant biodiversity indices under consideration (Fig. 3), 482 

three indices from phylogenetic, taxonomic and functional diversity influenced EMF (Fig. 4a) 483 

and soil individual functions (Fig. 5). wMPD and CWM LA had additive positive effects on 484 

ecosystem functioning whereas plant richness altered it. Increasing CWM LA enhance litter 485 

inputs, i.e., substrates supporting microbial activities (Lange et al., 2015; Chen et al., 2019), 486 

which can improve soil functioning (Le Bagousse-Pinguet et al., 2021). Numerous studies have 487 

reported that the coexistence of many species within plant communities (i.e., high plant 488 

richness) allows to support several functions simultaneously (e.g., Gamfeldt et al., 2008; Isbell 489 

et al., 2011; Maestre et al., 2012). However, our results, as other studies (e.g., Creed et al., 490 

2009), reconsider this prevailing assumption of a positive relationship between plant richness 491 

and EMF because increasing number of plant species can also increase the probability of 492 

recruiting species which have negative effects on ecosystem functioning (selection effect; 493 

Tilman et al., 1997). Our results show that considering several facets of plant biodiversity is 494 

crucial to understand the complex overall effect of biodiversity on ecosystem functioning, and 495 

ultimately guide restoration efforts toward the relevant plant biodiversity facets to enhance 496 

ecosystem functioning. 497 

Phylogenetic diversity was the key facet promoting EMF at all biological levels (i.e., 498 

whole community, dominant and subordinate species; Fig. 4) and individual functions (i.e., 499 
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total organic carbon, available phosphorus, cation exchange capacity, and water holding 500 

capacity; respectively Fig. 5a, b, c and d) through microbial communities. Phylogenetic 501 

diversity can effectively encompass hidden biological traits (Flynn et al., 2011), such as those 502 

involved in root associations with rhizobia (Werner et al., 2015) and mycorrhizal fungi 503 

(Brundrett, 2002; Brundrett & Tedersoo, 2017) which highly influence soil functioning 504 

(Bardgett et al., 2014) and enhance MM plant tolerance (Gamalero et al., 2009) For example, 505 

C. juncea is a leguminous species (Fabaceae) in association with nitrogen-fixing bacteria 506 

(Robles et al., 2002; Heckenroth et al., 2022), and mycorrhizal fungi (Carrasco et al., 2011). 507 

These root associations can improve soil total nitrogen and bioavailable phosphorus contents, 508 

enhancing plants mineral nutrition and growth on MM contaminated soils. Since wMPD 509 

(accounting for both closely related and distant lineages) had a strong effect on ecosystem 510 

functioning, contrary to MNTD (biased towards closely related lineages), our result indicates 511 

that the effect of very distinct plant lineages diversity was particularly important, as reported 512 

for EMF in global drylands (Le Bagousse-Pinguet et al., 2019). This could be explained by the 513 

very ancient evolutionary history of plant-microorganisms associations (Brundrett, 2002; 514 

Brundrett & Tedersoo, 2017; Sprent, 2007). Thus, the coexistence of evolutionary distinct 515 

lineages within plant communities could ensure a high functional diversity, allowing for 516 

differentiated resources use in time and space (i.e., niche differentiation), and thus the 517 

maintenance of several ecosystem functions simultaneously (Gamfeldt et al., 2008; Isbell et al., 518 

2011). Our results highlight the importance of considering plant phylogenetic diversity, in 519 

particular distant lineages, in restoration of contaminated ecosystems, not only to better 520 

understand MM tolerance mechanisms but also because the co-occurrence of distant lineages 521 

provides an important source of biodiversity to offset the negative effects of contamination on 522 

ecosystem functioning.  523 
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The relationships between MM soil multi-contamination, biodiversity and EMF 524 

strongly differed between dominant and subordinate species within a given community. We 525 

found that EMF was impacted by MM soil multi-contamination but not by plant richness in 526 

dominant species (Fig. 4b) and vice versa in subordinate species (Fig. 4c). Several studies have 527 

reported that subordinate species can enhance microbial communities and soil functions 528 

(Mariotte et al., 2013b; Peltzer et al., 2009). However, we found that subordinate species 529 

richness altered EMF, potentially due to allelopathic effects (i.e., plant-plant or plant-530 

microorganisms biochemical interactions) of a pool of subordinate species: Ruta angustifolia 531 

Pers., Helichrysum stoechas (L.) Moench, Lavandula latifolia Medik. and Cephalaria 532 

leucantha (L.) Schrad. Ex Roem. & Schult. (known allelopathic effects of closely related 533 

species, respectively: R. graveolens (Hale et al., 2004), H. italicum (Mastelic et al., 2005), L. 534 

officinalis (Akbarzadeh et al., 2013) and C. syriaca (Ali et al., 2012)). In addition, comparison 535 

of plant diversity between communities in dominant versus subordinate species (i.e., beta 536 

diversity; Appendix G) indicate that (i) communities shared a common dominant species pool 537 

and (ii) differences in species composition among communities was mainly driven by 538 

subordinate species. As a result, the effect of plant biodiversity on EMF was mainly driven by 539 

the diversity of subordinate species. Our results highlight the importance of considering 540 

subordinate species in restoration programs because they can strongly influence EMF (richness 541 

effect; Gross et al., 2017; Le Bagousse-Pinguet et al., 2019; Le Bagousse-Pinguet et al., 2021), 542 

including by enhancing community resistance to drought (Mariotte et al., 2013a). This is 543 

particularly important in Mediterranean ecosystems where water stress is accentuated by MM 544 

(Poschenrieder & Barcelo, 1999; Rucińska-Sobkowiak, 2016) and droughts will become more 545 

and more intense and frequent in the context of global warming (Cramer et al., 2018).  546 

 547 

 548 
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5. Conclusion 549 

Our results reveal the potential of plant biodiversity, and especially the diversity of 550 

evolutionary distant species, to offset the alteration of ecosystem functioning by MM soil multi-551 

contamination. These findings require the use of holistic approaches considering soil-plant-552 

microorganisms continuum, multiple plant biodiversity facets, and plant species relative 553 

abundance. In this worldwide decade of ecosystems restoration (FAO, IUCN CEM, SER, 554 

2021), our study helps to identify relevant facets of plant biodiversity promoting contaminated 555 

ecosystem functioning, which is crucial to guide and optimize management efforts aiming to 556 

restore ecosystems without removing MM contaminated soils and preserve living soils and 557 

human health. 558 
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Figure legend 921 

 922 

Figure 1. Conceptual model and associated hypotheses based on scientific literature and 923 

assessing the relationships between metals and metalloids soil multi-contamination, 924 

biodiversity facets (phylogenetic, taxonomic, and functional diversity), microbial biomass and 925 

activities and ecosystem multifunctionality in the 30 Mediterranean scrubland communities. 926 

The dashed arrows represent the theorical relationships. 927 

 928 

Figure 2. Location of the 30 scrubland plots (represented by circles) along a wide gradient of 929 

a 170-year-old MM soil multi-contamination (evaluated by the pollution load index including 930 

lead, arsenic, antimony, zinc and copper) due to former industrial activities (represented by 931 

triangles) in the currently protected area of the Marseilleveyre massif (Calanques national park, 932 

Marseille, SE, France).   933 

 934 

Figure 3. The best adequate initial model resulting from variables selection and assessing the 935 

relationships between metals and metalloids soil multi-contamination, biodiversity facets 936 

(phylogenetic, taxonomic, and functional diversity), microbial biomass and activities and 937 

ecosystem multifunctionality in the 30 Mediterranean scrubland communities. The dashed 938 

arrows represent the potential relationships. 939 

 940 

Figure 4. Path analysis of the relationships between metals and metalloids soil multi-941 

contamination, biodiversity facets (phylogenetic, taxonomic, and functional diversity), 942 

microbial biomass and activities and soil multifunctionality in (a) scrubland whole 943 

communities, (b) dominant species and (c) subordinate species. Effect sizes and correlation 944 

significance levels (*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001) are indicated on each arrow. Bar 945 
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charts show the effect sizes of the direct impact of metals and metalloids soil multi-946 

contamination and of the indirect effects of biodiversity facets on ecosystem multifunctionality 947 

mediated through microbial biomass and activities. Indirect effects were calculated by 948 

multiplying the direct effect of biodiversity facets on biomass and microbial activities, and the 949 

direct effect of biomass and microbial activities on ecosystem multifunctionality.  950 

 951 

Figure 5. Path analysis of the relationships between metals and metalloids soil multi-952 

contamination, biodiversity facets (phylogenetic, taxonomic, and functional diversity), 953 

microbial biomass and activities and individual soil functions ((a) total organic carbon, (b) 954 

available phosphorus, (c) cation exchange capacity, (d) water holding capacity and (e) total 955 

Kjeldahl nitrogen) in the 30 Mediterranean scrubland communities. Effect sizes and correlation 956 

significance levels (*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001) are indicated on each arrow. Bar 957 

charts show the effect sizes of the direct impact of metals and metalloids soil multi-958 

contamination and of the indirect effects of biodiversity facets on individual soil functions 959 

mediated through microbial biomass and activities. Indirect effects were calculated by 960 

multiplying the direct effect of biodiversity facets on biomass and microbial activities, and the 961 

direct effect of biomass and microbial activities on individual soil functions. 962 
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Table legend 971 

 972 

Table 1. Minimum, first quartile, median, third quartile and maximum of soil (pH, TOC: Total 973 

Organic Carbon, TKN: Total Kjeldahl Nitrogen, WHC: Water Holding Capacity, P: available 974 

phosphorus, CEC: Cation Exchange Capacity, PLI: Pollution Load Index), microbial 975 

community (SBR: Soil Basal Respiration, MB: Microbial Biomass, AWCD: Average Well 976 

Color Development, Hcat: catabolic diversity) and plant community (species richness, 977 

evenness, CWM LA: Community Weighted Mean of Leaf Area, CWM SLA: Community 978 

Weighted Mean of Specific  Leaf Area, FDis: Functional Dispersion; wMPD: weighted Mean 979 

Phylogenetic Distance) variables  used in the path analysis. 980 



 
  

Variables  
M

inim
um

 
First quartile 

M
edian 

Third 
quartile 

M
axim

um
 

Soil  

pH 
7.88 

8.08 
8.19 

8.28 
8.38 

TO
C (g.kg

-1  of dry soil) 
35.98 

51.96 
67.61 

88.40 
198.31 

TKN
 (g.kg-1 of dry soil) 

1.89 
4.13 

4.80 
6.03 

11.58 

W
HC (g.100 g

-1 of dry soil) 
59.00 

78.75 
91.50 

105.75 
152.00 

P (g.kg-1 of dry soil) 
13.00 

20.50 
29.00 

35.00 
68.00 

CEC (m
éeq.100 g

−1 of dry soil) 
15.40 

24.43 
31.05 

35.93 
64.60 

PLI 
1.91 

4.85 
7.81 

13.58 
171.41 

M
icrobial  

com
m

unity 

SBR (μg CO
2 -C.g

−1.h
−1) 

0.02 
0.02 

0.03 
0.04 

0.08 

M
B (μg C

m
ic .g

−1) 
0.01 

0.02 
0.02 

0.03 
0.06 

AW
CD 

0.35 
0.72 

0.89 
0.97 

1.44 

H
cat  

2.72 
2.95 

3.07 
3.14 

3.24 

Plant  
com

m
unity 

Species richness 
6.00 

11.00 
13.00 

15.00 
19.00 

Evenness 
0.80 

0.87 
0.88 

0.91 
0.97 

CW
M

 LA (m
m

²) 
22.77 

47.64 
60.78 

94.52 
142.46 

CW
M

  SLA (m
m

².m
g

-1) 
15.50 

42.51 
49.05 

57.59 
90.83 

FDis 
0.17 

0.58 
0.70 

0.99 
2.04 

  
w

M
PD 

166.80 
185.11 

200.19 
228.08 

254.64 
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