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Abstract

Boolean network modeling of gene regulation but also of post-trans-
criptomic systems has proven over the years that it can bring powerful analy-
ses and corresponding insight to the many cases where precise biological data
is not sufficiently available to build a detailed quantitative model. Besides
simulation, the analysis of such models is mostly based on attractor compu-
tation, since those correspond roughly to observable biological phenotypes.
The recent use of trap spaces made a real breakthrough in that field allowing
to consider medium-sized models that used to be out of reach. However,
with the continuing increase in model size and complexity of Boolean update
functions, the state-of-the-art computation of minimal trap spaces based on
prime implicants shows its limits due to the difficulty of the prime-implicant
computation.

In this article we explore and prove for the first time a connection be-
tween trap spaces of a general Boolean network and siphons of its Petri net
encoding. Besides important theoretical applications in studying properties
of trap spaces, the connection enables us to propose an alternative approach
to compute minimal trap spaces, and hence complex attractors, of a general
Boolean network. It replaces the need for prime implicants by a completely
different technique, namely the enumeration of maximal siphons in the Petri
net encoding of the original model. We then demonstrate its efficiency and
compare it to the state-of-the-art methods on a large collection of real-world
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and randomly generated models.

Keywords: Logical model, Boolean network, Trap space, Attractor
computation, Petri net, Siphon, Systems biology

1. Introduction1

From the observation that the transcriptional regulation behaved in a2

sigmoid step-like way, came the original idea to represent models of gene3

regulation as discrete event systems. Those gene regulation networks use4

thresholds or equivalently logical functions to represent the different regula-5

tions [1, 2, 3, 4].6

Boolean modeling made available some powerful analyses and correspond-7

ing insight for gene regulation models. Then, over the years, its use increased8

even for modelling post-transcriptional mechanisms, supported by the many9

cases where precise biological data was not sufficiently available to build a10

detailed quantitative model [5]. This lack of data is more frequent for large11

and very large models, which led to a steady increase in the size of logical12

models à la Thomas [6]. The main analysis tool for such models is the com-13

putation of its fixed and periodic attractors, since those correspond roughly14

to observable biological phenotypes. The recent use of trap spaces [7] made a15

real breakthrough in that field allowing to consider medium-sized models that16

used to be out of reach and for which only simulation was available. How-17

ever, with the most recent models both being quite large and using rather18

complex update functions, the state-of-the-art computation of minimal trap19

spaces based on prime implicants shows its limits. More specifically, the20

number of prime implicants of a Boolean function is in general exponential21

in the number of input nodes of this function [7]. Moreover, the computa-22

tion of prime implicants is a demanding task, especially for complex Boolean23

functions.24

It is worth noting that the recent method presented in [8] for comput-25

ing minimal trap spaces avoids the prime-implicant computation by rely-26

ing on the most-permissive semantics of Boolean networks. This method27

has been implemented in the tool mpbn1 demonstrated in [9] for handling28

medium-sized models from the literature and very large synthetic models29

1https://github.com/bnediction/mpbn
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(up to 100,000 nodes). However, this method is only applicable for locally-30

monotonic Boolean networks, whereas the prime implicants based method [7]31

is applicable for general Boolean networks (i.e., including both locally-mono-32

tonic and non-locally-monotonic ones). In addition, the bioLQM platform33

also provides another method using Binary Decision Diagrams (BDDs) in34

http://colomoto.org/biolqm/doc/tools-trapspace.html. This method35

avoids the prime-implicant computation as it characterizes the set of generic36

trap spaces of a Boolean network by a BDD, then filters this set to get the37

set of all minimal trap spaces. By this approach, it requires the computation38

of all solutions, whereas the methods [7, 9] based on Answer Set Program-39

ming (ASP) can start enumerating them as they are found. Moreover, the40

main issue with this BDD-based method is that the number of generic trap41

spaces of a Boolean network may be extremely larger than its number of42

minimal trap spaces. This issue limits the efficiency of the current BDD-43

based method. The study [10] highlights the need for non-locally-monotonic44

Boolean networks in both biological and theoretical aspects. Hence, it is still45

necessary to develop efficient methods for computing minimal trap spaces of46

large-scale general Boolean networks.47

Petri nets were introduced in the 60s as simple formalism for describing48

and analyzing information-processing systems that are characterized as be-49

ing concurrent, asynchronous, non-deterministic and possibly distributed [11,50

12]. The use of Petri nets for representing biochemical reaction systems, by51

mapping molecular species to places and reactions to transitions, hinted at52

already in [11, 12] was used more thoroughly quite late in [13], together with53

some Petri net concepts and tools for the analysis of metabolic networks.54

Siphons are such a concept, but they have not been used a lot for the study55

of biochemical systems [14, 15] even if the practical cost of computing their56

minimal/maximal elements appear much more manageable than the theoret-57

ical complexity would indicate [16, 17].58

In this article we explore and prove for the first time a connection be-59

tween trap spaces of a general Boolean network and siphons of its Petri net60

encoding. Not only having important theoretical applications in studying61

properties of trap spaces in Boolean networks, the connection has impor-62

tant practical applications in the trap space computation. Specifically, based63

on the connection, we propose an alternative approach to compute minimal64

trap spaces, and hence complex attractors, of a general Boolean network. It65

replaces the need for prime implicants by a completely different technique,66

namely the enumeration of maximal siphons in the Petri net encoding of the67
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original model. We then demonstrate its efficiency and compare it to the68

state-of-the-art methods for computing minimal trap spaces of Boolean net-69

works on many real-world models from various sources in the literature and70

on randomly generated models.71

Herein we revise and extend our previous work in [18] as follows. First,72

more formal definitions are given and the existing proofs are made more73

detailed. In particular, an updated proof provides another way to prove the74

independence of trap spaces of a Boolean network with respect to its update75

scheme, which was originally proved in [7]. Second, we showcase a theoretical76

application of the connection between trap spaces in Boolean networks and77

conflict-free siphons in Petri nets. Third, beyond the proposed ASP method78

implementing the alternative approach [18], we propose several other possible79

methods for computing minimal trap spaces using Maximum Satisfiability80

(MaxSAT), Constraint Programming (CP), and Integer Linear Programming81

(ILP). Fourth, we discuss in detail how to compute several special types82

of trap spaces in a Boolean network. Besides minimal trap spaces, these83

special types also play crucial roles in analyzing and controlling Boolean84

networks [19]. Fifth, regarding the implementation, we have developed a new85

converter that directly reads a .bnet file and builds the Petri net encoding,86

instead of using the PNML conversion of bioLQM [18]. Finally, we conduct a87

more extensive benchmark on more real-world models from various sources88

and randomly generated models to evaluate all the proposed methods (the89

benchmark conducted in [18] considers only a few dozens of representative90

real-world models), therefore obtaining more comprehensive insights.91

The rest of this paper is organized as follows: Section 2 recalls the basic92

concepts including Boolean networks, attractors, trap spaces, Petri nets, and93

siphons. Section 3 presents the main finding, the connection between trap94

spaces in Boolean networks and siphons in Petri nets. Section 4 presents the95

alternative approach for computing minimal trap spaces and the four possi-96

ble methods implementing it. Section 5 shows an important biological case97

study showing the applicability of the new approach. Section 6 reports the98

experimental results for evaluating the efficiency of the proposed methods.99

Finally, Section 7 concludes the paper and draws future work.100

2. Preliminaries101

We shall briefly recall here some preliminaries on Boolean networks re-102

lated to trap spaces and Petri nets.103
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2.1. Boolean networks104

Definition 2.1. A Boolean Network (BN) is a pair N = (V, F ) where:105

• V = {v1, . . . , vn} is the set of nodes. We use vi to denote both the node106

vi and its associated Boolean variable.107

• F = {f1, . . . , fn} is the set of update functions. Each function fi is108

associated with node vi and satisfies fi : B|IN (vi)| 7→ B where B = {0, 1}109

and IN (vi) denotes the set of input nodes of vi. Note that a node vi ∈ V110

is called a source node if and only if fi = vi.111

A Boolean function is locally-monotonic if it can be represented by a112

formula in disjunctive normal form in which all occurrences of any given113

literal are either negated or non-negated [9]. A Boolean network is said114

to be locally-monotonic if all its Boolean functions are locally-monotonic.115

Otherwise, this model is said to be non-locally-monotonic.116

A state s ∈ Bn is as a mapping s : V 7→ B that assigns either 0 (inactive)117

or 1 (active) to each node. We denote the set of all possible states of a118

Boolean network N by SN = Bn. At each time step t, node vi can update119

its state by120

s′(vi) = fi(s)

where s (resp. s′) is the state of N at time t (resp. t+1). Note that for sim-121

plicity, we write fi(s) even if IN (vi) ⊊ V (i.e., IN (vi) does not contain some122

nodes of V ). An update scheme of a Boolean network specifies the way that123

the nodes update their states through time evolution [20]. There are many124

different update schemes, but the two main types [20] are: synchronous,125

where all the nodes are updated simultaneously, and fully asynchronous,126

where only one node is selected non-deterministically to be updated. Follow-127

ing the update scheme, the Boolean network transits from a state to another128

state (possibly identical). This transition is called the state transition and129

denoted by →⊆ SN × SN . For example, under the synchronous update130

scheme, we have x → y if and only if y(vi) = fi(x),∀vi ∈ V , whereas under131

the fully asynchronous update scheme, we have x → y if and only if there132

is a node vi ∈ V such that y(vi) = fi(x) and y(vj) = x(vj),∀vj ∈ V, j ̸= i.133

Then the dynamics of N is captured by the directed graph (SN ,→) called134

the State Transition Graph (STG).135
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2.2. Traps spaces136

We recall here some definitions from [7] for the introduction of trap spaces.137

Minimal trap spaces prove to be a very good approximation of the attractors138

of a Boolean network under asynchronous update schemes and have become139

the de facto standard way to analyze models of a few tens of genes [21, 22].140

A non-empty set T ⊆ SN is a trap set with respect to → if for every141

x ∈ T and y ∈ SN with x → y it holds that y ∈ T [7]. An attractor of142

N with respect to → can be defined as an inclusion-wise minimal trap set143

of (SN ,→). An attractor can be also seen as a terminal strongly connected144

component of (SN ,→) [23]. An attractor of size 1 is called a fixed point,145

otherwise it is called a cyclic or complex attractor [7].146

A subspace m of a Boolean network N = (V, F ) is a mapping m : V 7→147

B ∪ {⋆}. m(vi) ∈ B means that the value of vi is fixed in m and vi is called148

a fixed variable. m(vi) ∈ ⋆ means that the value of vi is free in m and vi is149

called a free variable. We denote Dm the set of all fixed variables of m. A150

subspace m is equivalent to a set of states:151

SN [m] := {s ∈ SN | ∀v ∈ Dm : s(v) = m(v)}.

For example, m = ⋆⋆1 (for simplicity, we shall write subspaces likes states as152

a sequence of values) means that Dm = {v3},m(v3) = 1, and it is equivalent153

to the set of states {001, 011, 101, 111}. We denote S⋆
N = (B ∪ {⋆})n the set154

of all possible subspaces of N . Note that |S⋆
N | = 3n and SN ∈ S⋆

N [7].155

A trap space is defined as a subspace that is also a trap set. It is noted156

that trap spaces of a Boolean network are independent of the update scheme157

of this model [7], we provide in Corollary 3.1 another proof of this. Then, we158

define a partial order < on S⋆
N as: m < m′ if and only if SN [m] ⊆ SN [m′]159

and SN [m] ̸= SN [m′]. Consequently, a trap space m is minimal if and only160

if there is no trap space m′ ∈ S⋆
N such that m′ < m.161

For example, let us consider the Boolean network shown in Example 2.1.162

Figure 1(b) shows the dynamics of this model under the fully asynchronous163

update scheme (i.e., only one node is updated at each time step). The model164

has all two trap spaces, m1 = 11 and m2 = ⋆⋆. Since m1 < m2, m1 is the165

only minimal trap space of the Boolean network.166

Example 2.1. We give a Boolean network N = (V, F ), where V = (x1, x2)167

and F = (f1, f2) with f1 = (x1∧x2)∨(¬x1∧¬x2), f2 = (x1∧x2)∨(¬x1∧¬x2).168

Herein, ∧, ∨, and ¬ denote the logical conjunction, disjunction, and negation169

operators, respectively.170
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(a) Influence graph of the
model. Each arc is actu-
ally both positive and neg-
ative.

00
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(b) State transition
graph, under the fully
asynchronous update
scheme.

px1

px1

px2
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t1x1

t2x1

t1x2

t2x2

(c) Petri net encoding of the model. Cir-
cles denote places, whereas rectangles de-
note transitions.

Figure 1: Influence graph, dynamics, and Petri net encoding of the Boolean network of
Example 2.1.

2.3. Petri net encoding of Boolean networks171

Definition 2.2. A Petri net is a weighted bipartite directed graph (P, T,W ),172

where P is a non-empty finite set of vertices called places, T is a non-empty173

finite set of vertices called transitions, P∩T = ∅, and W : (P×T )∪(T×P ) 7→174

N is a weight function attached to the arcs.175

A marking for a Petri net is a mapping M : P 7→ N that assigns a number176

of tokens to each place. A place p is marked by a marking M if and only177

if M(p) > 0. We shall write pred(x) (resp. succ(x)) to represent the set of178

vertices that have a (non-zero weighted) arc leading to (resp. coming from)179

x. In this work, we consider a class of Petri nets called 1-safe Petri nets180

where every place has at most 1 token and all arcs are of weight 1. Note181

that in such nets we have M : P 7→ {0, 1}, we might therefore represent a182

marking by the equivalent set of places containing a token and will use this183

notation for simplicity. In this case, weights are implicitly omitted in the184

arcs of a Petri net. Then, a transition t ∈ T is enabled at a marking M if185

and only if pred(t) ⊆ M . A marking M is called a deadlock if there are no186

enabled transitions at M . The firing of t leads to a new marking M ′ specified187

by M ′ = (M\ pred(t)) ∪ succ(t). Note that when multiple transitions are188

enabled, we need to embed one firing scheme (similar to the update scheme189

of a Boolean network) to the Petri net. The classical firing scheme is that190

only one of the enabled transition is non-deterministically chosen to fire [12].191

The link between Boolean networks à la Thomas and Petri nets was192

originally established in [24] in order to make available formal methods like193

model-checking for the analysis of such systems. The basic encoding into 1-194

safe (i.e., never more than one token in each place) nets only holds for purely195
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Boolean networks but was later extended to multivalued logical models in196

two ways, either in [25] with non 1-safe Petri nets or more recently in [23]197

with 1-safe nets but many more places.198

Since our study is focused on Boolean networks, we briefly recall the orig-199

inal encoding here. Its basis is that every node (gene) v of the original model200

N = (V, F ) is represented by two separate places (pv and pv), corresponding201

to its two states, active, and inactive, respectively. Each conjunct of the202

logical function that activates the gene will lead to a transition t, consuming203

the inactive place (i.e., a directional arc from pv to t), producing the active204

place (i.e., a directional arc from t to pv), and with all other literals both205

consumed and produced (i.e., a bidirectional arc). Conversely a transition206

is added from the active place to the inactive place for each conjunct of the207

negation of that function. Let s be a state of the Boolean network and Ms208

be its corresponding marking in the encoded Petri net. It holds that ∀v ∈ V ,209

s(v) = 0 if and only if Ms(pv) = 1 and Ms(pv) = 0 and s(v) = 1 if and only210

if Ms(pv) = 1 and Ms(pv) = 0. Note also that at any marking M of the Petri211

net encoding a Boolean network, it always holds that M(pv) +M(pv) = 1.212

The main property of this encoding is that it is completely faithful with213

respect to the update scheme of the original Boolean network. For each node214

v of N , only transitions corresponding to v can change the current marking215

of pv or pv. In addition, at any marking at most one of such transitions is en-216

abled because M(pv)+M(pv) = 1 holds. Hence, for any update scheme in N ,217

we have a corresponding firing scheme in P , which preserves the equivalence218

between the dynamics of N and P [26].219

For illustration, let us reconsider the Boolean network shown in Exam-220

ple 2.1. Figure 1(c) shows the Petri net encoding of this Boolean network.221

Place px1 (resp. px1
) in P represents the activation (resp. the inactivation) of222

node x1 in N . Marking {px1 , px2
} in P represents state 10 in N . Transitions223

t1x1
and t2x1

represent the update of node x1. Of course, in any marking t1x1
224

and t2x1
cannot be both enabled. Then, the fully asynchronous update scheme225

in N corresponds to the classical firing scheme in P where only one of the226

enabled transitions for a given marking will be fired [12].227

Note that given a Boolean network in the standard SBML-Qual format [27],228

i.e., the package of SBML v3 [28] for such models, one can easily obtain its229

Petri net encoding in the Petri Net Markup Language (PNML)2 standard230

2https://www.pnml.org/
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using the bioLQM3 library. This piece of software extracted from GINsim [29]231

and part of the CoLoMoTo4 [30] software suite allows for easy conversion232

between standard formats. It also accepts many other common formats for233

Boolean networks, notably the .bnet files of the BoolNet [31, 21] tools. The234

conversion is executed as follows:235

java -jar GINsim.jar -lqm <input.{sbml,bnet,...}> <output.pnml>236

Note that transforming a Boolean network defined by its functions into its237

Petri net encoding roughly relies on obtaining conditions for the activation238

and inactivation of the states. In [24] this took the form of the whole truth239

table of the Boolean functions, but as shown in Appendix 1 of [23] comput-240

ing Disjunctive Normal Forms (DNF) of each Boolean function is enough.241

Though this might appear quite computationally intensive it is important to242

remark first that contrary to the prime implicants case, there is no need to243

find minimal DNFs. One way to look at this is to consider that this amounts244

to a similar approach as that used in [8] but with the encoding of both activa-245

tion and inhibition functions as DNFs in order to take into account possible246

non-local-monotonicity. This does not change the worst-case-complexity (ob-247

taining a single DNF being exponential) but might matter a lot in practice.248

As such, we will explore how this transformation, here using BDDs in bioLQM249

or directly in our tool using the pyeda5 library, and the one based on the250

most-permissive semantics compare with each other in Section 6.251

2.4. Siphons252

Siphons are a static and classical property of Petri nets [11]. Note how-253

ever that the use of siphons for the analysis of biological models, though it is254

not new, has been mostly relevant to the ODE-based continuous semantics255

of chemical reaction networks [32, 33, 34]. We recall here the basic definition256

establishing that to produce something in a siphon you must consume some-257

thing from the siphon. This corresponds to the idea that a siphon is a set of258

places that once unmarked remains unmarked.259

Definition 2.3. A siphon of a Petri net (P, T,W ) is a set of places S such260

that:261

∀t ∈ T, S ∩ succ(t) ̸= ∅ ⇒ S ∩ pred(t) ̸= ∅.

3http://www.colomoto.org/biolqm/
4http://colomoto.org/
5https://pyeda.readthedocs.io/en/latest/
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Note that ∅ is trivially a siphon.262

Let pred(S) :=
⋃

s∈S pred(s) and succ(S) :=
⋃

s∈S succ(s). If S = ∅, then263

conventionally pred(S) = succ(S) = ∅. We have an important property on264

siphons [35] as follows.265

Proposition 2.1. A set S of places is a siphon of a Petri net (P, T,W ) if266

and only if pred(S) ⊆ succ(S).267

3. Trap spaces as conflict-free siphons268

First let us associate subspaces and sets of places in the Petri net encod-269

ing.270

Definition 3.1. Let m be a subspace of Boolean network N = (V, F ). A271

mirror of m is a set of places S in the Petri net encoding P of N such that:272

∀v ∈ Dm [m(v) = 0 ⇔ pv ∈ S ∧m(v) = 1 ⇔ pv ∈ S]

and273

∀v ∈ V \Dm [pv ̸∈ S ∧ pv ̸∈ S] .

Now, we add a definition related to any set of places of a Petri net en-274

coding a Boolean network, and notably a siphon of such a net.275

Definition 3.2. A set of places of Petri net P encoding Boolean network276

N is conflict-free if it does not contain any two places corresponding to the277

active and inactive states of the same node of N . Then, a conflict-free siphon278

S is said to be maximal if and only if there is no other conflict-free siphon279

S ′ such that S ⊂ S ′.280

Intuitively, a siphon is a set of places that once unmarked remains so. If281

it is conflict-free it is possible to associate a subspace to it, more precisely it282

is the mirror of a subspace. Since it is a siphon, the fixed values will remain283

so whatever update happens, as the unmarked places remain unmarked. The284

subspace corresponding to that conflict-free siphon is therefore a trap space,285

and the maximality of the siphon is equivalent to the minimality of the trap286

space (as many fixed values as possible). For example, the Boolean network287

given in Example 2.1 has two trap spaces, m1 = 11 and m2 = ⋆⋆. The288

Petri net encoding of this Boolean network has five generic siphons, S1 = ∅,289

S2 = {px1 , px1
}, S3 = {px2 , px2

}, S4 = {px1
, px2

}, and S5 = {px1 , px1
, px2 , px2

}.290
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However, only S1 and S4 are conflict-free siphons and correspond to m2 and291

m1, respectively. Since S1 ⊂ S4, S4 is a maximal siphon corresponding to292

the minimal trap space m1. Hereafter, we formally prove that a (maximal)293

conflict-free siphon is equivalent to a (minimal) trap space.294

Theorem 3.1. Let N = (V, F ) be a Boolean network and P be its Petri net295

encoding. A subspace m is a trap space of N if and only if its mirror S is a296

conflict-free siphon of P.297

Proof. First, we show that if m is a trap space of N , then S is a conflict-free298

siphon of P (*).299

If Dm = ∅, then S = ∅ is trivially a conflict-free siphon of P . Thus,300

we consider the case that Dm ̸= ∅ (resp. S ̸= ∅). Assume that S is not a301

siphon of P . Then, there is a transition t ∈ T such that S ∩ succ(t) ̸= ∅302

but S ∩ pred(t) = ∅. This implies that there is a place p ∈ S such that303

p ∈ succ(t) but p ̸∈ pred(t). Let v be the node in N corresponding to p. By304

the characteristics of the encoding [24], there is a directional arc from t to p305

and a directional arc from the complementary place of p to t. Without loss306

of generality, we assume that p = pv, then there is a directional arc from t307

to pv and a directional arc from pv to t.308

We follow the following procedure to find a state s ∈ SN [m] such that309

Ms(p
′) = 1,∀p′ ∈ pred(t) where Ms is the corresponding marking in P of s.310

For every place p′ ∈ pred(t), let p′′ be the complementary place of p′ and v′311

be the corresponding node in N of p′ and p′′.312

If p′′ ̸∈ S, then v′ ̸∈ Dm and we can always set the Boolean value to s(v′)313

such that s ∈ SN [m] and Ms(p
′) = 1.314

If p′′ ∈ S, then v′ ∈ Dm and we set s(v′) = m(v′). In this case, if315

p′ = pv′ then s(v′) = m(v′) = 1 leading to Ms(p
′) = 1, if p′ = pv′ then316

s(v′) = m(v′) = 0 leading to Ms(p
′) = 0.317

For the remaining nodes of N , we can always set Boolean values to these318

nodes to preserve that s ∈ SN [m] by applying the same procedure. We also319

have Ms(pv) = 0 by the characteristics of the encoding [24] (and Definition320

3.1). Now, t is enabled at marking Ms. Its firing leads to a new marking321

M ′
s such that M ′

s(pv) = 1 and M ′
s(pv) = 0. Let s′ be the corresponding state322

in N of M ′
s. We have s′(v) = 1 because M ′

s(pv) = 1 and m(v) = 0 because323

pv ∈ S. This implies that s′ ̸∈ SN [m].324

For any firing scheme of P , the firing of t always happens. Since a firing325

scheme of P is equivalent to an update scheme of N , s can escape from the326

trap space m for any update scheme of N , which contradicts to the property327
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of a trap space. Hence, S is a siphon of P . By the definition of a mirror, S328

is also a conflict-free one.329

Second, we show that if S is a conflict-free siphon of P, then m is a trap330

space of N (**).331

By the definition of a mirror, m is a subspace of N . Let s be an arbitrary332

state in SN [m] and Ms be its corresponding marking in P . Assume that333

there is a place p ∈ S such that Ms(p) = 1. Let v be the corresponding node334

in N of p. Since p ∈ S, v ∈ Dm and m(v) = s(v). If p = pv, then Ms(pv) = 1335

leading tom(v) = s(v) = 1 by the characteristics of the encoding [24]. By the336

definition of a mirror, m(v) = 0 because pv ∈ S, meaning that Ms(pv) = 0,337

which is a contradiction.338

It is symmetric for the case that p = pv. Hence,Ms(p) = 0,∀p ∈ S. In any339

marking M ′
s reachable from Ms regardless of the firing scheme of P , we have340

M ′
s(p) = 0,∀p ∈ S by the dynamical property on markings of a siphon [35].341

Let s′ be the corresponding state in N of M ′
s. For every node v ∈ Dm,342

we have all two cases as follows. Case 1: pv ∈ S, then M ′
s(pv) = 0, thus343

s′(v) = 0 = m(v). Case 2: pv ∈ S, then M ′
s(pv) = 0, thus s′(v) = 1 = m(v).344

Hence, s′(v) = m(v) for every v ∈ Dm. Then, s
′ ∈ SN [m]. By the definition345

of a trap space and the arbitrariness of s, m is a trap space of N .346

From (*) and (**), we can conclude the proof.347

Note that this proof gives us as corollary a well-known result on trap348

spaces.349

Corollary 3.1. Trap spaces of a Boolean network are independent of the350

update scheme.351

Proof. From the proof of Theorem 3.1, we can see that the theorem holds352

for any update scheme associated to the Boolean network. Since the Petri353

net encoding of a Boolean network is independent of its update scheme and354

siphons are a static property of a Petri net, we get that trap spaces of a355

Boolean network are independent of its update scheme.356

Note that the original proof for this property of trap spaces (see Theorem357

1 of [7]) only considers the two popular update schemes (i.e., synchronous358

and fully asynchronous). Theorem 3.1 exhibits the very first theoretical359

application of the connection between trap spaces of Boolean networks and360

siphons of Petri nets.361
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Theorem 3.2. Let N be a Boolean network and P be its Petri net encoding.362

A subspace m is a minimal trap space of N if and only if its mirror S is a363

maximal conflict-free siphon of P.364

Proof. First, we show that if m is a minimal trap space of N , then S is365

a maximal conflict-free siphon of P (*). Since m is a trap space of N ,366

S is a conflict-free siphon of P by Theorem 3.1. Assume that S is not367

maximal. Then, there is another conflict-free siphon S ′ such that S ⊂ S ′.368

By Theorem 3.1, there is a trap space m′ corresponding to S ′. Following the369

definition of a mirror, Dm ⊂ Dm′ and m(v) = m′(v),∀v ∈ Dm. It follows370

that SN [m′] ⊂ SN [m], thus m′ < m. This contradicts to the minimality of371

m. Hence, S is a maximal conflict-free siphon of P .372

Second, we show that if S is a maximal conflict-free siphon of P , then373

m is a minimal trap space of N (**). Since S is a conflict-free siphon of P ,374

m is a trap space of N by Theorem 3.1. Assume that m is not minimal.375

Then, there is another trap space m′ such that m′ < m. By the definition of376

the partial order < on subspaces, SN [m′] ⊂ SN [m]. Let S ′ be the mirror of377

m′. S ′ is a conflict-free siphon by Theorem 3.1. Following the definition of378

a mirror, S ⊂ S ′, which contradicts to the maximality of S. Hence, m is a379

minimal trap space of N .380

From (*) and (**), we can conclude the proof.381

We here showcase a theoretical application of the connection between382

trap spaces in Boolean networks and conflict-free siphons in Petri nets. We383

use it to prove a property of minimal trap spaces, which has surprisingly384

not been formally proved. Specifically, all minimal trap spaces of a Boolean385

network are mutually disjoint. This property is important because it can386

benefit attractor identification of Boolean networks. Specifically, in [36], the387

authors use random walks inside each minimal trap space to obtain approx-388

imations for attractors of a Boolean network under the fully asynchronous389

update scheme, then they use CTL model checking to verify the quality of390

the approximations. In [37], the authors use the set of minimal trap spaces391

as a seed to speedup their previous attractor identification method that re-392

lies on feedback vertex sets and reachablity analysis. The soundness of the393

two above approaches comes from the separation of minimal trap spaces.394

Note that it would be not difficult to obtain a direct proof on trap spaces395

for this property, which follows the same structure as the proof on siphons.396

However, we emphasize here the potential of using the connection between397
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Boolean networks and Petri nets to explore and prove properties of trap398

spaces in Boolean networks.399

Theorem 3.3. Let N = (V, F ) be a Boolean network. For any two distinct400

minimal trap spaces m1 and m2 of N , we have that SN [m1] ∩ SN [m2] = ∅.401

Proof. Let P be the Petri net encoding of N . If N has only one minimal402

trap space, then the theorem trivially holds. Note that by Theorem 3.2,403

N always has at least one minimal trap space because P has at least one404

maximal conflict-free siphon. Hence, we consider the case that N has at least405

two minimal trap spaces.406

Consider two any distinct minimal trap spaces m1 and m2. Assume that407

SN [m1] ∩ SN [m2] ̸= ∅. Let S1 and S2 be the mirrors of m1 and m2, re-408

spectively. By Theorem 3.2, S1 and S2 are maximal conflict-free siphons409

of P . We have that S = S1 ∪ S2 is also a siphon because of Proposi-410

tion 2.1. For every node v ∈ V , assume that pv ∈ S and pv ∈ S hold.411

Since S1 and S2 are conflict-free, there are all two cases. Case 1: pv ∈ S1412

and pv ∈ S2. Case 2: pv ∈ S2 and pv ∈ S1. These two cases lead to413

m1(v) ̸= m2(v),m1(v) ̸= ⋆,m2(v) ̸= ⋆, then SN [m1] ∩ SN [m2] = ∅. This is a414

contradiction. Hence, for every node v ∈ V , pv ∈ S and pv ∈ S cannot hold415

together. Therefore, S is conflict-free. Now, we have that S is a conflict-free416

siphon but S1 ⊂ S or S2 ⊂ S holds because S1 ̸= S2. This contradicts to the417

maximality of S1 and S2. Hence, SN [m1] ∩ SN [m2] = ∅ holds.418

419

A natural computational application of Theorem 3.1 is that we can effi-420

ciently decide whether a subspace m is a trap space. In PyBoolNet [21], this421

is checked by using the percolation on the prime implicants of the Boolean422

functions. As we have mentioned at the beginning of this article, the compu-423

tation of prime implicants is a demanding task for complex Boolean networks,424

even is sometimes intractable. Hence, the checking method in [21] shows its425

limitations. Instead, we can first compute the mirror Sm of m in the Petri426

net encoding. Then, by Proposition 2.1 and Theorem 3.1, we can check if427

pred(Sm) ⊆ succ(Sm). Note that the Petri net construction is less com-428

putationally demanding than the prime-implicant computation because it429

only requires computing generic (not prime) implicants of the Boolean func-430

tions [23]. In addition, the worst case time complexity of the above checking431

method is quadratic in the number of transitions of the Petri net.432

14



Furthermore, by Theorem 3.2, we can reduce the problem of computing433

all minimal trap spaces of a Boolean network to the problem of computing434

all maximal conflict-free siphons of its Petri net encoding. Note that in435

the case of special types of trap spaces (e.g., fixed points), this can be put436

in regard to special types of siphons in Petri nets. See Subsection 4.5 for437

more discussions about many special types of trap spaces. It might actually438

be possible to generalize our result to any 1-safe place-complementary (i.e.,439

places are defined by pairs such that the markings are complementary) Petri440

net to define a notion of trap spaces that might be useful for the analysis of441

Petri nets, but this is out of the scope of the present article. Note also that442

conversely, investigating static analyses on such 1-safe place-complementary443

nets might allow for a more efficient computation of their siphons and hence444

of trap spaces.445

Note that there are no existing methods specifically designed for comput-446

ing maximal conflict-free siphons (even maximal generic siphons) of a Petri447

net. The reason might be that researchers mainly focus on minimal generic448

siphons [35] in the field of Petri nets. While adapting those methods to ob-449

tain minimal conflict-free siphons would sometimes be possible, the switch450

from minimality to maximality is quite a leap. Hence, we here propose sev-451

eral methods for computing maximal conflict-free siphons of a Petri net. The452

details of the proposed methods shall be given in the next section.453

4. Computation methods454

First, we discuss the complexity of siphon computation in Petri nets.455

Siphons are a prominent concept in the field of Petri nets, but unfortunately456

there are very few studies focusing on the complexity aspect. In this field,457

researchers mainly focus on practical methods for computing minimal generic458

siphons (also many related types) in general or special Petri nets and the459

applications of such types to the control of real-world systems modeled by460

Petri nets [35]. The problem of finding a minimal siphon of a 1-safe Petri461

net is solvable in polynomial time [38]. Clearly, the problem of finding a462

siphon of a 1-safe Petri net is also solvable in polynomial time. However, the463

problem of computing all (minimal) siphons is not easier than the problem464

of computing a (minimal) siphon but its complexity still not clear. Note465

that the number of siphons (even minimal siphons) can be exponential in466

the number of places of the Petri net [35]. Moreover, there is no complexity467

result for the case of maximal siphons. Regarding the conflict-free siphons,468
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we believe that the polynomial algorithm for computing a minimal generic469

siphon presented in [38] can be adapted to find a (minimal) conflict-free470

siphon. This is not in contrast to the NP-hardness of some problems on trap471

spaces in Boolean networks [39] because in general the number of transitions472

of the Petri net encoding of a Boolean network can be exponential in the473

number of nodes of this Boolean network. However, again the complexity of474

the problem of computing all (minimal/maximal) conflict-free siphons is still475

open.476

4.1. Characterization477

We here show the characterization of all conflict-free siphons of the en-478

coded Petri net P = (P, T,W ). Suppose that S is a generic siphon of P .479

If a place p should belong to S, then by Proposition 2.1 all the transitions480

in pred(p) must belong to succ(S). A transition t belongs to succ(S) if and481

only if there is at least one place p′ in S such that p′ ∈ pred(t). Hence, for482

each transition t ∈ pred(p), we can state that483

p ∈ S ⇒
∨

p′∈pred(t)

p′ ∈ S. (1)

The system of all the rules of the above form with respect to all pairs (p, t)484

where p ∈ P, t ∈ T, t ∈ pred(p) fully characterizes all generic siphons of a485

Petri net and has been used with SAT solvers in [16, 17]. To make S to be486

a conflict-free siphon, we need to add to the system the rule487

pv ∈ S ⇒ pv ̸∈ S ∧ pv ∈ S ⇒ pv ̸∈ S (2)

for each node v ∈ V . By definition, the final system fully characterizes all488

conflict-free siphons of the encoded Petri net.489

4.2. Constraint satisfaction problem490

A Constraint Satisfaction Problem (CSP) is defined by a triple giving491

its variables, their domains, and the constraints on those variables. The492

following Boolean CSP directly derives from the above characterization:493

Definition 4.1. Given a Petri net P = (P, T,W ) encoding a Boolean net-494

work N = (V, F ). The CSP C(P) is the triple (R,D,C) where495

• R = P , i.e., a variable is introduced for each place of P,496
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• D(p) = B for all p ∈ R, i.e., the variables are Boolean,497

• C = {¬pv ∨ ¬pv = 1 | ∀v ∈ V }
∧
{(p = 1 →

∨
p′∈pred(t) p

′ = 1) | p ∈498

P, t ∈ pred(p)}.499

Proposition 4.1. C(P) is satisfied by a valuation r if and only if500

{p ∈ P | r(p) = 1}

is a conflict-free siphon of P.501

Proof. By the former part ¬pv∨¬pv = 1 of C, the conflict-freeness is imposed502

because for any satisfable valuation r, r(pv) = r(pv) = 1 is impossible for all503

v ∈ V . As shown in [17], the latter part of C can characterize the set of all504

generic siphons of P . Hence, we can conclude the proof.505

506

In [17], the set of all siphons of a given Petri net is characterized by a sim-507

ilar Boolean CSP except the conflict-freeness constraint. From the encoded508

CSP, the set of all minimal siphons of the Petri net can be enumerated in the509

set inclusion order. For enumerating siphons in the set inclusion order, the510

method proposed in [17] uses the technique that labels directly the Boolean511

variables with increasing value selection (i.e., to test first the absence, then512

the presence of a place in the candidate solution). The method has two513

implementations, one uses an iterated SAT procedure and the other uses514

Constraint Programming (CP) with backtracking.515

One natural question is that how to use the CSP-based method for enu-516

merating all the maximal conflict-free siphons of a Petri net encoding a517

Boolean network? Of course, the set of all conflict-free siphons of the Petri518

net can easily characterized by the CSP model presented in [17] along with519

the additional constraint ¬pv ∨ ¬pv = 1, for each v ∈ V , which represents520

the conflict-freeness. However, the main concern is to enumerate all the521

maximal ones, which is not trivial to adapt from the CSP-based method.522

By Proposition 4.1, the set of all maximal conflict-free siphons of P can be523

enumerated in the (maximality) set inclusion order, by restarting the search524

each time a conflict-free siphon S is found, with the following additional con-525

straint for disallowing any subset of that conflict-free siphon:
∨

p̸∈S p = 1.526

For enumerating conflict-free siphons in the set inclusion order, we can use527

the same technique as used in [17] but with the opposite setting, i.e., labeling528
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directly the Boolean variables with decreasing value selection. The correct-529

ness of this technique comes from the fact that once S is found, it is the530

conflict-free siphon of maximum cardinality among all the remaining feasible531

conflict-free siphons. Similar to [17], the newly CSP-based method can also532

be implemented with SAT and CP solvers.533

This method was implemented using the state-of-the-art CP solver Chuffed6
534

[40] via its MiniZinc [41] interface. Because it is a high-level interface, the535

backtrack-and-replay method of [17] was not used but rather the alterna-536

tive implementation with two global constraints for lexicographic ordering537

(ensuring enumeration of solutions) and iterated non-subset of each already538

found solution (for maximality).539

For the SAT-based method, however a more direct method is to use a540

MaxSAT solver. We construct a MaxSAT problem with the following hard541

clauses:542

(¬pv ∨ ¬pv),∀v ∈ V

and543

(¬p ∨
∨

p′∈pred(t)

p′), ∀p ∈ P, ∀t ∈ pred(p).

We set a soft clause for each variable of the CSP and then use a “minimal cor-544

rection subset” blocking strategy, which will ensure set-inclusion maximality545

of the solutions. We implement this approach by using the RC2 MaxSAT546

solver [42] available through the python-sat package7.547

4.3. Answer set programming-based method548

Another possible method is to translate the characterization shown in549

Subsection 4.1 into the ASP L as follows. We introduce atom p-v (resp.550

n-v) to denote place pv (resp. pv), ∀v ∈ V . The set of all atoms in L is given551

as A =
⋃

v∈V {p-v, n-v}. For each pair (p, t) where p ∈ P, t ∈ T, t ∈ pred(p),552

we translate the rule (1) into the ASP rule553

a_1; ... ; a_k :- a.

where a ∈ A is the atom representing place p and {a_1, . . . , a_k} ⊆ A is the554

set of atoms representing places in pred(t). The rule (2) is translated into555

6https://github.com/chuffed/chuffed
7https://pysathq.github.io/docs/html/api/examples/rc2.html
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the ASP rule556

:- p-v, n-v.

for each v ∈ V . This ASP rule guarantees that two places representing557

the same node in N never belong to the same siphon of P , representing558

the conflict-freeness. Naturally, a Herbrand model (see, e.g., [43]) of L is559

equivalent to a conflict-free siphon of P . To guarantee that a Herbrand560

model is also a stable model (an answer set), we need to add to L the two561

choice rules562

{p-v}. {n-v}.

for each v ∈ V . Note that the number of atoms of L is only 2n, whereas563

the ASP encoding shown in [7] has as many atoms as the number of prime564

implicants of the Boolean network and that number might be exponential in565

n. In [8], there is an ASP characterization of trap spaces that does not rely566

on minimal DNFs either and thus seems very similar to our ASP encoding.567

Remarkably it only requires the DNF for the activation part, using the in-568

formation that it will only be used for locally-monotonic Boolean networks.569

We would therefore expect that, when available, it will have comparable per-570

formance on the ASP part (the ASP program would be approximately twice571

smaller, though redundancy is not always bad in that field), but can also572

avoid combinatorial explosion of the Petri net encoding for some formula573

where the activation DNF is simple but the inhibition is not. Since mpbn is574

included in our benchmark this will be evaluated in our experiments.575

Now, a solution (simply an answer set) A ⊆ A of L is equivalent to a576

conflict-free siphon S of P , thus a trap space m of N . The conversion from A577

to m is straightforward. If p-v ∈ A then v ∈ Dm and m(v) = 0. Conversely,578

if n-v ∈ A then v ∈ Dm and m(v) = 1. Otherwise, v ̸∈ Dm. Comput-579

ing multiple answer sets is built into ASP solvers and the solving collection580

POTASSCO [43] also features the option to find set-inclusion maximal answer581

sets with respect to the set of atoms. Naturally, a set-inclusion maximal582

answer set of L is equivalent to a maximal conflict-free siphon of P , thus a583

minimal trap space of N . By using this built-in option, we can compute all584

the set-inclusion maximal answer sets of L (resp. all the minimal trap spaces585

of N ) in one execution.586

4.4. Integer linear programming-based method587

We first show how an Integer Linear Programming (ILP) I can define588

a set of all conflict-free siphons of the encoded Petri net P . We introduce589
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binary variable p-v (resp. n-v) to denote place pv (resp. pv), ∀v ∈ V . The590

set of all binary variables in I is
⋃

v∈V {p-v, n-v}. For each pair (p, t) where591

p ∈ P, t ∈ T, t ∈ pred(p), we translate the rule (1) into the ILP inequality592

a <= a_1 + ... + a_k

where a is the binary variable representing place p and {a_1, . . . ,a_k} is593

the set of binary variables representing places in pred(t). The rule (2) is594

translated into the ILP inequality595

p-v + n-v <= 1

for each v ∈ V . This inequality forbids both p-v and n-p receive the value596

1, thus representing the conflict-freeness. Since we only consider feasible597

solutions, the objective function is set to max p-v for some v ∈ V . Naturally,598

a solution I of I is equivalent to a conflict-free siphon S of P . The conversion599

is that600

S = {p ∈ P | I(a-p) = 1}

where a-p is the binary variable presenting place p.601

We can see the similarity between I and the encoded ASP shown in the602

previous subsection. However, due to the nature of solutions of an ILP, it is603

hard to compute all the set-inclusion maximal solutions of I in one execution604

of an ILP solver. Hence, we propose an iterative approach as follows.605

The conflict-free siphon of maximum cardinality is of course maximal.606

Therefore, we impose the following objective function:607

max
∑
v∈V

(p-v+ n-v).

Now, I can be solved using a general purpose ILP solver. If it admits any so-608

lution I∗, the corresponding conflict-free siphon (say S∗) is maximal. Hence,609

it makes sense that it does not need to find any other conflict-free siphon610

of the net that is strictly contained in S∗. To do this, we add to I a new611

inequality612

1 <=
∑

p∈P\S∗

a-p

where a-p is the binary variable presenting place p. Now, we solve I again to613

find a new solution. If a new solution I ′ exists, then let S ′ be its corresponding614
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conflict-free siphon. Indeed, abide by the newly added inequality, we have615

S ′ ∩ (P \ S∗) ̸= ∅ because there is some a-p with p ∈ P \ S∗ such that616

I ′(a-p) = 1. This implies that it is impossible that S ′ = S∗ or S ′ ⊂ S∗.617

By the objective function, it means that S ′ is the conflict-free siphon of618

maximum cardinality among the conflict-free siphons that are not contained619

in S∗. Hence, S ′ is also a maximal conflict-free siphon. Again, we add to I620

a new inequality with respect to the newly found siphon. The above process621

is iterated until I becomes unfeasible, this means that there is no further622

maximal conflict-free siphon. Thus, all the maximal conflict-free siphons of623

the Petri net have been found.624

Since we used the MiniZinc framework to interface with the CP solver, it625

was simple to make the slight modifications described above and to use that626

same interface to call the Coin-OR CBC solver8 [44].627

4.5. Computation of special types of trap spaces628

In the field of systems biology, biologists may want to compute more629

special types of trap spaces beyond minimal trap spaces [21], which also play630

crucial roles in analysis and control of Boolean networks [22, 19]. We shall631

show that our proposed methods can be easily adjusted to compute such632

popular types of trap spaces. We illustrate the adjustments via the ASP-633

based method (see Subsection 4.3) because ASP is declarative by nature,634

but these adjustments are completely applicable for other approaches such635

as MaxSAT, CP, and ILP.636

First, the work presented in [19] uses the concept of stable motifs to build637

the succession diagram of a Boolean network, a summary of the decisions in638

the network dynamics that lead to successively more restrictive nested stable639

motifs. The succession diagram is useful for control and decision making640

on this Boolean network. In particular, the proposed control methods are641

independent to the update scheme. Note that, in [19], the succession dia-642

gram is also used to identify all attractors of a Boolean network under the643

fully asynchronous update scheme. It has been shown that a stable motif644

of a Boolean network is equivalent to a maximal trap space of this Boolean645

network [19]. Indeed, the computation of stable motifs is a bottleneck of646

the methods proposed in [19]. Hence, it is necessary to develop an efficient647

method for computing maximal trap spaces of a Boolean network. We shall648

8https://github.com/coin-or/Cbc
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show how to adjust the ASP-method presented in Subsection 4.3 to compute649

maximal trap spaces.650

We first provide the definition of maximal trap spaces. Let ε be the special651

trap space of N where all the nodes are free. Of course, ε corresponds to the652

special conflict-free siphon ∅. A trap space m is called maximal if m ̸= ε and653

there is no other trap space m′ such that m′ ̸= ε and m < m′. Analogously,654

a conflict-free siphon S is called minimal if S ̸= ∅ and there is no other655

trap space S ′ such that S ′ ̸= ∅ and S ′ ⊂ S. By using the reasoning similar656

to the proof of Theorem 3.2, we can easily conclude that a maximal trap657

space of N is equivalent to a minimal conflict-free siphon of its encoded658

Petri net P . Let L be the ASP characterizing all conflict-free siphons of P659

(see Subsection 4.3). Naturally, we need to exclude ∅ from the solution space660

of L (equivalently exclude ε from the set of trap spaces). To do this, we add661

to L the ASP rule662

p-v_1; n-v_1; . . . ; p-v_n; n-v_n.

that ensures that every answer set of L cannot be empty. Then a set-inclusion663

minimal answer set of L is equivalent to a minimal conflict-free siphon of P ,664

thus a maximal trap space of N .665

Second, we consider fixed points in Boolean networks. To date, the anal-666

ysis of the fixed points of a Boolean network remains a very useful tool in667

understanding the behavior of complex biological models not only due to the668

fact that in some cases the full computation of complex attractors remains669

intractable, but also because for many biological systems, the expected long-670

term behavior is not cyclic [45]. Furthermore, the fixed point computation is671

also the crucial starting point for several state-of-the-art methods for com-672

puting complex attractors of Boolean networks [37]. Let s be a fixed point of673

a Boolean network N . We have a subspace m corresponding to s as follows:674

∀v ∈ V,m(v) = s(v), i.e., all nodes are fixed in m. Clearly, s is a trap set675

of N regardless of the update scheme. Hence, m is a trap space of N . In676

addition, since |SN [m]| = 1, m is also a minimal trap space. To compute all677

fixed points of N , we can add more constraints to the encoded ASP charac-678

terizing all conflict-free siphons (equivalently trap spaces). For every v ∈ V ,679

we add to the encoded ASP the rule680

p-v; n-v.

that ensures that for every conflict-free siphon S, it contains either p-v or n-v681

for every v ∈ V . Equivalently, the trap space corresponding to S is always682
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a fixed point. Now, the set of answer sets of the encoded ASP is equivalent683

to the set of fixed points of N . In particular, when solving the encoded ASP684

using an ASP solver, we do not need to use the built-in option for computing685

set-inclusion maximal answer sets. Note that we can also build another ASP686

characterizing all fixed points of N based on the equivalence between a fixed687

point of N and a deadlock of its Petri net encoding [23]. This approach may688

give a more compact ASP.689

Third, we consider the trap spaces intersecting a given subspace m∗ of690

a Boolean network. Such trap spaces (along with minimal trap spaces) are691

used in the phenotype control method [22]. This method uses the prime692

implicant-based method [7, 21] to compute trap spaces, which has been shown693

inefficient. Hence, having a more efficient method for computing such trap694

spaces can push the barrier previously existing in this control method. A695

trap space m intersects m∗ if and only if SN [m] ∩ SN [m∗] ̸= ∅. It follows696

that for every v, if m∗(v) = 0 then m(v) = 0 or m(v) = ⋆, if m∗(v) = 1 then697

m(v) = 1 or m(v) = ⋆. For the former case, we add to L the ASP rule698

:- n-v.

that ensures that m(v) cannot be 1. For the latter case, we add to L the699

ASP rule700

:- p-v.

that ensures that m(v) cannot be 0. Now L characterizes all trap spaces that701

intersect m∗.702

Finally, we consider the trap spaces that are inside a given subspace m∗
703

of a Boolean network. Such trap spaces are used in the iterative procedure704

of building the succession diagram of a Boolean network [19], which is hier-705

archical. We first adjust L to characterize all such trap spaces. A trap space706

m is inside m∗ if and only if m(v) = m∗(v) for every v ∈ Dm∗ . If m∗(v) = 0,707

we add to L the ASP rule708

p-v.

that ensures that m(v) = 0. If m∗(v) = 1, we add to L the ASP rule709

n-v.

that ensures that m(v) = 1. It is noted that if we want to compute maximal710

trap spaces inside m∗, we need to exclude the conflict-free siphon correspond-711

ing m∗ from the solution space. Specifically, we need to add to L the ASP712
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rule713

p-v_i1; n-v_i1; . . . ; p-v_ik; n-v_ik.

where {vi1 , . . . , vik} is the set of free nodes of m∗. This rule ensures that714

m ̸= m∗. In the case that m∗ = ε, we have all maximal trap spaces of the715

original Boolean network.716

5. Motivating example717

For a few years now we have been collaborating with biologists who build718

very large detailed and annotated maps and now wish to analyze the dy-719

namics of the corresponding models. One of the main maps studied this way720

represents knowledge about the Rheumatöıd Arthritis [46], and was the main721

motivation for the development of a tool to automatically transform it into722

an executable Boolean network [6]. In the supplementary material of the pa-723

per, an excerpt of the map, focused around the apoptosis (cell death) module724

is transformed into a model of reasonable size, namely 180 Boolean variables725

(model F5_RA_apoptosis_executable_module.sbml of supplementary ma-726

terial S3, and model “RA apoptosis” of Subsection 6.3). The study of such727

model, though, is a big hurdle. Indeed, as stated in the article about another728

model of the same size: “The size of the CaSQ-inferred MAPK model (181729

nodes) made the calculation of stable states a non-realistic endeavour.”730

In practice, even if there is a huge number of attractors in such a model,731

obtaining a sample of those can reveal very useful to invalidate the model and732

lead to further refinement. In particular, it provides a feature-rich alternative733

to random simulations for this type of very non-deterministic model. Being734

able to detect that there are inconsistencies with published experimental data735

in some of the first 1000 attractors, for instance, can lead to a much quicker736

Systems Biology loop: model, invalidate, refine.737

However, using a state-of-the-art tool like PyBoolNet [7] on that model738

unfortunately fails at the phase of prime-implicant generation. mpbn [9] can739

return the first 1000 solutions within 1.43s, but indeed, it limits the model-740

ing range of the modelers as it does not permit using non-locally-monotonic741

Boolean functions. This is also true for the Alzheimer model also mentioned742

in that same article and originally from [47] (F4 file in the original supple-743

mentary material, and “Alzheimer” in Table 2), where PyBoolNet also fails744

at the prime-implicant computation and mpbn does not give any answer be-745

cause this model is actually non-locally-monotonic. The current practice746
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usually revolves then around fixing some source nodes to plausible values747

and reducing the model accordingly. While this approach makes sense, it748

relies on potentially arbitrary decisions, and hides away critical modelling749

choices that were clearly not part of the original Boolean network or even of750

the starting map.751

For the “RA apoptosis” model, using the ASP-based method presented752

in Subsection 4.3, it is now possible to obtain the first 1000 minimal trap753

spaces (including ones that contain more than one state) within 0.19s, which754

is much quicker than mpbn. The needed time for the “Alzheimer” model is755

0.79s.756

6. Evaluation757

To evaluate the performance of the newly proposed methods (imple-758

mented as a Python package named Trappist and available on the Python759

package index9) and the state-of-the-art methods (bioLQM10, PyBoolNet [7,760

21], and mpbn [9]), we compared them on both PyBoolNet’s own model repos-761

itory and many real-world models from various sources in the literature. To762

our knowledge, these models are a highly representative sample of Boolean763

models currently available. It is worth noting that mpbn [9] only handles764

locally-monotonic models, whereas the other methods can handle general765

models. To obtain a more comprehensive comparison, we also used random766

models generated by a third-party software BoolNet R package [31]. As ex-767

plained in Section 5, in our benchmarks, we only searched for the first 1000768

minimal trap spaces for each model. It is worth noting that unlike existing769

analysis shown in the literature, we did not fix specific values for source nodes770

in all the considered models.771

To solve the ASP problems, we used the same ASP solver Clingo [43] and772

the same configuration as that used in PyBoolNet [7, 21] and mpbn [9]. Specif-773

ically, we used the configuration -heuristic=Domain -enum-mod=domRec774

-dom-mod=3 (subset maximality, equivalent to the deprecated --dom-pref=32775

--heuristic=domain --dom-mod=7 used by PyBoolNet). We ran all the776

benchmarks on a machine whose environment is CPU: Intel® Core™ i9-777

11950H 2.60GHz × 16, 16 GB DDR4 RAM, Ubuntu 20.04.5 LTS. Finally,778

we set a time limit of three minutes for each model.779

9https://pypi.org/project/trappist/
10http://colomoto.org/biolqm/doc/tools-trapspace.html
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All the models and some Jupyter notebooks realizing the benchmarks780

(and named TCS-Benchmark-<...>.ipynb) can be found at https://github.781

com/soli/trap-spaces-as-siphons/. These can be run on a Docker image782

in the cloud by clicking the “Binder” button.783

6.1. PyBoolNet repository784

Table 1: Timing comparisons (in seconds) between bioLQM (LQM), PyBoolNet (PBN), mpbn
and the four variants of Trappist on the PyBoolNet repository.

Trappist

model n |M | LQM PBN mpbn SAT CP ILP ASP

1 arellano rootstem 9 4 0.13 0.01 0.00 0.00 0.97 0.96 0.01
2 calzone cellfate 28 27 0.12 0.02 0.01 0.01 5.59 6.03 0.01
3 dahlhaus neuroplastoma 23 32 0.11 0.03 0.01 0.01 6.56 6.99 0.01
4 davidich yeast 10 12 0.11 0.02 0.01 0.01 2.56 2.21 0.01
5 dinwoodie life 15 7 0.11 0.01 0.00 0.01 1.68 1.39 0.01
6 dinwoodie stomatal 13 1 0.10 0.01 0.00 0.00 0.39 0.29 0.01
7 faure cellcycle 10 2 0.11 0.02 0.01 0.01 0.58 0.46 0.01
8 grieco mapk 53 18 0.19 0.03 0.02 0.03 3.93 10.46 0.02
9 irons yeast 18 1 0.12 0.03 0.01 0.01 0.37 0.39 0.02
10 jaoude thdiff 103 1000+ N/A 0.85 0.45 0.56 NF NF 0.09
11 klamt tcr 40 8 0.11 0.01 0.01 0.01 1.98 1.22 0.02
12 krumsiek myeloid 11 6 0.10 0.01 0.00 0.00 1.48 1.26 0.01
13 multivalued 13 4 0.10 0.01 0.00 0.00 0.93 0.86 0.01
14 n12c5 11 5 0.11 17.83 0.01 0.01 1.21 1.10 0.01
15 n3s1c1a 2 2 0.10 0.01 0.00 0.00 0.63 0.49 0.01
16 n3s1c1b 2 2 0.09 0.02 0.00 0.00 0.56 0.49 0.01
17 n5s3 4 3 0.10 0.02 NM 0.00 0.74 0.69 0.01
18 n6s1c2 5 3 0.10 0.02 0.00 0.00 0.91 0.59 0.01
19 n7s3 6 3 0.11 0.02 0.00 0.00 0.79 0.68 0.01
20 raf 3 2 0.10 0.01 0.00 0.00 0.55 0.39 0.01
21 randomnet n15k3 15 3 0.10 0.02 NM 0.01 0.77 0.67 0.01
22 randomnet n7k3 7 10 0.10 0.01 NM 0.00 2.07 1.46 0.01
23 remy tumorigenesis 34 25 0.15 0.94 0.02 0.02 5.98 7.98 0.02
24 saadatpour guardcell 13 1 0.10 0.06 0.00 0.00 0.53 0.45 0.02
25 selvaggio emt 56 1000+ N/A 0.48 0.28 0.28 NF NF 0.09
26 tournier apoptosis 12 3 0.10 0.01 0.00 0.00 0.74 0.75 0.01
27 xiao wnt5a 7 4 0.10 0.01 0.00 0.00 1.00 0.89 0.01
28 zhang tlgl 60 156 0.60 0.09 0.09 0.07 37.26 NF 0.04
29 zhang tlgl v2 60 258 0.64 0.04 0.08 0.11 69.95 NF 0.04
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Table 1 shows the experimental results on the models from the official785

PyBoolNet repository11. Column n denotes the number of nodes of each786

model. Column |M | denotes the number of minimal trap spaces and for787

each method is given the computation time in seconds, asking only for the788

first 1000 minimal trap spaces. “NF” means that the method did not fin-789

ish the computation within the time limit of three minutes. In the case of790

bioLQM, “N/A” means that the number of all minimal trap spaces of the791

model is larger than 1000 and we did not record the running time of bioLQM792

because it always requires to compute all minimal trap spaces. A number793

in bold indicates a ratio greater than three compared to the best result.794

“NM” indicates a non-locally-monotonic model. There are four variants of795

Trappist: SAT (i.e., Trappist-MaxSAT, the MaxSAT-based method shown796

in Subsection 4.2), CP (i.e., Trappist-CP, the CP-based method shown in797

Subsection 4.2), ILP (i.e., Trappist-ILP, the ILP-based method shown in798

Subsection 4.4), and ASP (i.e., Trappist-ASP, the ASP-based method shown799

in Subsection 4.3).800

We first analyze the results of the four variants of Trappist. We can801

see that Trappist-MaxSAT and Trappist-ASP are comparable in most mod-802

els, but Trappist-ASP is much faster for the jaoude thdiff and selvaggio emt803

models where the number of minimal trap spaces is greater than 1000. The804

latter can be explained by the fact that Trappist-MaxSAT follows an iter-805

ative approach, i.e., it restarts the search with a new constraint each time806

a solution is found (see Subsection 4.2). This iterative approach may be807

less efficient than the way ASP solvers use to enumerate multiple solutions808

(answer sets), which is an advantage of ASP solvers [43]. Hence, when809

the number of solutions increases, the inferiority of Trappist-MaxSAT com-810

pared to Trappist-ASP will be exhibited more clearly. The two remain-811

ing variants, Trappist-CP and Trappist-ILP, are much less efficient than812

Trappist-MaxSAT and Trappist-ASP in every model, even are more than813

three orders of magnitude slower in some models. The first reason for their814

bad performance is that they are also iterative methods like Trappist-MaxSAT,815

thus they are not efficient for ”enumeration” problems. Upon closer inspec-816

tion, for the Boolean CSP characterizing conflict-free siphons, CP seems to be817

something that is a ”less-efficient-SAT”, handling mostly Boolean constraints818

and making little use of the global constraints only added for the iterative819

11https://github.com/hklarner/pyboolnet/tree/master/pyboolnet/repository
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part. For ILP, it may be even worse, since the problem is purely Boolean820

(no real or integer numbers whatsoever). This is confirmed by the obser-821

vation that for some quite large models (e.g., the grieco mapk, zhang tlgl,822

and zhang tlgl v2 models), Trappist-ILP is much slower than Trappist-CP.823

Note that the inferiority of ILP compared to ASP with respect to the trap824

space enumeration has been reported in [7]. Hereafter, we shall compare the825

best variant of Trappist (i.e., Trappist-ASP) with other methods.826

As shown in Table 1, for most of the models of the PyBoolNet repos-827

itory, the results are comparable with all minimal trap spaces found very828

fast. However upon closer inspection, we can see some notable differences.829

First, Trappist-ASP is far more efficient than bioLQM in every model with830

speedups between 5× and 16×. Second, for small models, PyBoolNet and831

mpbn are comparable to Trappist-ASP. However, on every model that was832

a bit challenging for PyBoolNet or mpbn, Trappist-ASP is far more efficient833

with speedups between 3× and 5× for the case of mpbn, and between 5× and834

1783× for the case of PyBoolNet. In particular, the second best variant of835

Trappist (i.e., Trappist-MaxSAT) is even far more efficient than bioLQM and836

PyBoolNet, and is comparable to mpbn on every model. It is worth noting837

that for 3 of the 29 models, mpbn did not give any answer because these mod-838

els are non-locally-monotonic but all the other methods did, which confirms839

the limit of mpbn on the applicable class of models.840

6.2. BBM repository841

The research group behind the BBM repository [48] has recently undertaken842

considerable effort for building a collection of real-world Boolean models from843

various sources used in systems biology. It aims to be a comprehensive col-844

lection suitable for benchmarking and testing new tools and methods. BBM845

consists of 211 models (24 out of them are non-locally-monotonic), peaking846

at 321 nodes, 1100 regulations among the nodes, and 133 source nodes, re-847

spectively. It is released and maintained at https://github.com/sybila/848

biodivine-boolean-models. We here tested all the compared methods on849

this model repository.850

Figure 2 (upper panel) shows cumulative numbers of the BBM models that851

have less than 1000 minimal trap spaces solved by the compared methods852

with respect to enumerating the first 1000 minimal trap spaces. The number853

of such models is 134 (per all 211 models), and 15 of them are non-locally-854

monotonic. This model set allows us to fairly consider bioLQM for comparison,855

since bioLQM always requires to compute all minimal trap spaces. We can856
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Figure 2: Cumulative numbers of the BBM models that have less than 1000 minimal trap
spaces (upper panel) and BBM models solved by the compared methods with respect to
enumerating the first 1000 minimal trap spaces (lower panel).

first see that Trappist-ASP and Trappist-MaxSAT are still the two best857

methods as they can handle every model within 1s and always can handle858

more models than all the remaining methods on every time limit. Second,859

Trappist-CP is better than Trappist-ILP, which is consistent with their860

comparison shown in the previous subsection. Third, one notable remark is861

that for the time limit of 100s or 180s, Trappist-CP can handle more models862
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than all bioLQM, PyBoolNet, and mpbn. This remark shows that even without863

focusing on the optimization of our implementation, our alternative approach864

is still better than the state-of-the-art methods on a certain set of real-world865

models. This is supported by the fact that our alternative approach avoids866

the need for computing prime implicants (as opposed to PyBoolNet) and can867

handle non-locally-monotonic Boolean networks (as opposed to mpbn).868

Figure 2 (lower panel) shows cumulative numbers of the BBMmodels solved869

by the compared methods (except bioLQM, Trappist-CP, and Trappist-ILP)870

with respect to enumerating the first 1000 minimal trap spaces. We omit871

the results of Trappist-CP and Trappist-ILP because they can handle872

no model with more than 1000 minimal trap spaces. Again, we can see873

that Trappist-ASP and Trappist-MaxSAT are the two best methods as they874

can handle every but one model within 5s. They also always handle many875

more models than both PyBoolNet and mpbn on every time limit. Note that876

with the time limit of 0.5s, Trappist-ASP can handle 14 more models than877

Trappist-MaxSAT, which is opposed to the case of models with less than878

1000 minimal trap spaces (see Figure 2 (upper panel)). This observation879

confirms the disadvantage of Trappist-MaxSAT compared to Trappist-ASP880

for the case of many minimal trap spaces.881

6.3. Selected models882

We used a set of real-world Boolean networks lying in various scales col-883

lected from numerous bibliographic sources in the literature. Most of these884

models are quite big (in size), complex (i.e., having high average in-degree,885

which is related to the number of prime implicants), and have never been886

fully analyzed. Note that these models are not included in the PyBoolNet887

and BBM repositories. We then applied bioLQM, PyBoolNet, mpbn, and the888

four variants of Trappist to computing minimal trap spaces of these real-889

world models. Table 2 shows the obtained experimental results. A number890

in bold indicates a ratio greater than or equal to 10 compared to the best891

result. The remaining notations are similar to those in Table 1. Hereafter, we892

analyze in detail the results with respect to minimal trap space computation.893

First, we obtained some observations on the four variants of Trappist894

consistent with the observations obtained in the previous subsections. More895

specifically, Trappist-ASP is still the best variant with a running time below896

one second for every model, and followed by Trappist-MaxSAT. In particular,897

the difference in running time between Trappist-ASP and Trappist-MaxSAT898

is bigger for larger models or models with more than 1000 minimal trap899
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Table 2: Timing comparisons (in seconds) between bioLQM (LQM), PyBoolNet (PBN), mpbn
and the four variants of Trappist on selected models from the literature. The models are
sorted by size with a horizontal rule inserted to split at 100 and 200 nodes, as in [18]

Trappist

model n |M | LQM PBN mpbn SAT CP ILP ASP

1 metastatic [49] 10 4 0.10 0.04 NM 0.01 1.15 0.89 0.02
2 Arabidopsis thaliana [49] 15 8 0.10 0.06 NM 0.01 2.06 1.83 0.02
3 p53 high dna [49] 16 1 0.38 1.76 NM 0.08 0.53 0.43 0.14
4 p53 low dna [49] 16 1 0.41 1.76 NM 0.07 0.58 0.48 0.14
5 FT-GRN [50] 23 32 NF NF NM 0.03 8.41 12.38 0.19
6 DNA damage [49] 26 16 0.24 0.33 NM 0.02 3.91 5.33 0.05
7 Rho-GTPases [49] 33 2 0.17 0.57 40.39 0.07 0.74 0.56 0.11
8 Pluripotency [51] 36 440 NF NF NM 0.16 138.92 NF 0.28
9 Pluripotent [49] 36 276 0.37 0.43 NM 0.07 72.40 NF 0.06
10 Pancreatic Cancer [49] 43 1000+ N/A 0.11 0.36 0.17 NF NF 0.06
11 Drosophila [52] 52 128 0.33 0.05 0.07 0.06 32.66 126.22 0.05
12 Cacace TdevModel [53] 61 28 1.29 5.67 NM 0.06 7.51 23.15 0.08
13 hedgehog [49] 65 1000+ N/A NF 0.50 0.34 NF NF 0.33
14 EMT [19] 69 268 39.22 1.01 0.20 0.12 75.81 NF 0.05
15 Bcell [54] 73 72 0.23 0.04 0.08 0.06 18.95 81.85 0.05
16 mast cell [6] 73 1000+ N/A 0.09 0.55 0.37 NF NF 0.15
17 Corral ThIL17diff [45] 92 1000+ N/A 107.57 0.76 0.56 NF NF 0.16

18 Adhesion CIP [55] 121 78 56.81 4.25 0.23 0.17 25.20 NF 0.19
19 EMT Mech [56] 136 82 NF 14.01 0.27 0.20 27.55 NF 0.25
20 macrophage [49] 136 1000+ N/A 0.54 1.09 0.84 NF NF 0.27
21 angiogenesis [49] 141 1000+ N/A 0.16 1.07 1.06 NF NF 0.16
22 angiofull [57] 142 1000+ N/A 0.17 1.06 0.88 NF NF 0.23
23 EMT Mech TGFbeta [56] 150 492 NF 11.28 0.78 0.69 NF NF 0.35
24 RA apoptosis [6] 180 1000+ N/A NF 1.43 1.55 NF NF 0.19
25 MAPK [6] 181 1000+ N/A 13.58 1.76 1.51 NF NF 0.27

26 Snf1-pathway [58] 202 1000+ N/A 1.13 1.47 1.43 NF NF 0.31
27 T-cell-co-receptor [49] 206 1000+ N/A NF 1.52 2.26 NF NF 0.35
28 TcellCheckPoint [59] 218 1000+ N/A 4.99 NM 1.96 NF NF 0.28
29 Mycobacterium [49] 317 1000+ N/A 0.42 2.36 4.91 NF NF 0.44
30 Leishmania [49] 342 1000+ N/A NF 2.56 5.62 NF NF 0.46
31 Cholocystokinin [6] 383 1000+ N/A 0.36 2.99 4.81 NF NF 0.37
32 Alzheimer [6] 762 1000+ N/A NF NM 18.21 NF NF 0.79

spaces. Trappist-CP and Trappist-ILP still have a much worse perfor-900

mance, with Trappist-CP better than Trappist-ILP. They still can handle901

no model with more than 1000 minimal trap spaces. However, Trappist-CP902

or Trappist-ILP can handle the FT-GRN and Pluripotency models, whereas903

all bioLQM, PyBoolNet, and mpbn cannot.904
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Second, Trappist-ASP (even Trappist-MaxSAT) is far more efficient than905

both bioLQM and PyBoolNet on every model where the comparison is possi-906

ble. For most models, the speedups of Trappist-ASP compared to bioLQM907

and PyBoolNet are between one and three orders of magnitude. This again908

confirms the superiority of Trappist-ASP compared to the other methods909

that can handle general Boolean networks.910

Third, for 11 of the 32 models (more than 34%), mpbn did not give any an-911

swer because these models are non-locally-monotonic. For 21 of the 32 mod-912

els where mpbn returned the answers, mpbn and Trappist-ASP are roughly913

comparable in computation time, but mpbn appears quite slower on aver-914

age. In particular, for the Rho-GTPases model, mpbn is 577× slower than915

Trappist-ASP. This observation along with the comparisons between mpbn916

and Trappist-ASP in the previous subsections are quite surprising because917

the ASP encoding of mpbn only requires the DNF for the activation part of a918

Boolean function, whereas that of Trappist-ASP requires both the activation919

and inhibition parts (see Subsection 4.3). However, the reason may lie on the920

differences in the ASP encoding characteristics of the two methods and the921

fact that mpbn needs to spend time checking the local-monotonicity of each922

Boolean function in a Boolean network. We expect that mpbn may outper-923

form Trappist for a certain set of models, but not for the set of real-world924

models considered in this article.925

Fourth, regarding the comparison of the ASP-based methods (i.e.,926

PyBoolNet, mpbn, and Trappist-ASP), we note that for all the models where927

PyBoolNet did not finish before the time limit, the timeout occurred during928

the computation of the prime implicants. Hence, not even a single minimal929

trap space was output by that method. For all the remaining models, once930

PyBoolNet went through the prime-implicant phase, its ASP solving phase931

quickly returned the first 1000 minimal trap spaces, all under one second.932

Hence, with the experimental results shown in this subsection as well as the933

two previous subsections, the practical differences between the ASP encod-934

ing of Trappist-ASP and that of PyBoolNet are not distinctly exposed. The935

fact that our new ASP encoding is guaranteed to be linear in the number of936

nodes of the original model (see Subsection 4.3) does not seem to be crucial937

here, however a much deeper analysis of those cases shall be shown in the938

next subsection.939
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6.4. Randomly generated models940

We randomly generated a set of N-K models [1] with network size n in the941

set {100, 150, 200, 250, 300, 350, 400} and in-degree K = 3 (i.e., each node942

has exactly three input nodes). We chose N-K models because they are a943

useful tool for studying the dynamics of Boolean networks [1, 7, 19]. For each944

network size, 50 instances were generated using the generateRandomNKNetwork945

function. In total, we have 350 random models. We then applied the com-946

pared methods to these models and recorded the running time of each method947

for each model. It is worth noting that N-K models usually have small num-948

bers of minimal trap spaces [7]. Hence, we searched for all solutions in each949

model, which makes the comparison to bioLQM more comprehensive. In addi-950

tion, each node has only three input nodes, leading to a small number of prime951

implicants of the associated Boolean function. Hence, PyBoolNet always952

passed the phase of computing prime implicants in every model even within953

one second, which enables us to compare the ASP encoding of PyBoolNet954

and that of Trappist-ASP.955
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Figure 3: Cumulative numbers of random models solved by the compared methods with
respect to enumerating all the minimal trap spaces.

Figure 3 shows cumulative numbers of random models solved by the com-956

pared methods with respect to enumerating all the minimal trap spaces. The957

number of succeeded models within three minutes for each method is: bioLQM958
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(0), PyBoolNet (320), mpbn (0), Trappist-maxSAT (338), Trappist-CP (226),959

Trappist-ILP (39), Trappist-ASP (349). We can see that Trappist-ASP is960

the only method that can handle every model, but one. Note that none of961

the other methods can handle that only model failed by Trappist-ASP. We962

also obtained some observations consistent with those obtained for real-world963

models. More specifically, Trappist-MaxSAT is still the second best method964

and Trappist-CP is better than Trappist-ILP. Upon closer inspection, we965

obtained several notable observations as follows.966

First, mpbn was not able to handle any model because all the models967

are non-locally-monotonic. Recall that a Boolean network is non-locally-968

monotonic if only one of its Boolean functions is non-locally-monotonic.969

Hence, it is apparent that all these types of randomly generated models are970

non-locally-monotonic because of the number of nodes is large (n ≥ 100).971

This observation confirms a limit on the applicable model class of mpbn.972

Second, surprisingly bioLQM cannot handle any model. One of the reason973

may be that the BDD characterizing all generic trap spaces is too large, and974

its computation is slow. In addition, having too many generic trap spaces975

before the filtering process may be also a reason. It is apparent because the976

network size is large (n ≥ 100) and the Boolean functions are not simple.977

Third, for every time limit, Trappist-ASP can always handle many more978

models than PyBoolNet, ranging from 29 to 65 more models. Since the979

time for the phase of computing prime implicants of PyBoolNet is negligible980

in every model, most of the running time of PyBoolNet was spent for its981

ASP solving phase. Hence, we can easily see that the ASP encoding of982

Trappist-ASP is much better than that of PyBoolNet. This observation983

is consistent with the theoretical comparison in the ASP encoding between984

Trappist-ASP and PyBoolNet mentioned in Subsection 4.3.985

6.5. Experimental summary986

We have tested our alternative approach on many Boolean network mod-987

els of various sizes and types (e.g., real-world models, randomly generated988

models) on existing and newly created benchmarks. This indicates the high989

coverage and comprehensiveness of the experiments.990

Among the four variants of the alternative approach, Trappist-ASP is the991

best method as it vastly outperforms all the other variants. The second best992

one is Trappist-MaxSAT. The two remaining variants (i.e., Trappist-CP and993

Trappist-ILP) give bad performance for most models. However, for certain994

cases, they are still better than all state-of-the-art methods (i.e., bioLQM,995
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PyBoolNet, and mpbn). This is evidence for the advantages of an alternative996

approach compared to what preexisted.997

Regarding general Boolean networks, Trappist-ASP (even Trappist-998

MaxSAT) is far more efficient than both bioLQM and PyBoolNet. The speedups999

of Trappist-ASP or Trappist-MaxSAT are large, even between one and three1000

orders of magnitude for most models. In addition, the experimental results1001

also confirm that the ASP encoding of Trappist-ASP is much more efficient1002

than that of PyBoolNet.1003

Regarding locally-monotonic Boolean networks, the performance of mpbn1004

is roughly comparable to that of Trappist-ASP or Trappist-MaxSAT. How-1005

ever, mpbn is quite slower than Trappist-ASP on average. This shows the1006

practical advantage of Trappist-ASP compared to mpbn, though its ASP1007

encoding may be more complex than that of mpbn in theory.1008

7. Conclusion1009

In this article we have explored and proved for the first time the equiva-1010

lence between (minimal) trap spaces of a general Boolean network and (max-1011

imal) conflict-free siphons of its Petri net encoding. We have shown sev-1012

eral useful applications of this finding to studying properties of trap spaces1013

in Boolean networks. As an important practical application of the equiva-1014

lence, we have proposed a new approach for the computation of minimal trap1015

spaces in Boolean networks, based on the enumeration of maximal conflict-1016

free siphons of Petri nets. We have also proposed four possible methods1017

using MaxSAT, CP, ILP, and ASP for implementing the new approach. In1018

particular, we have shown how to adjust our approach to compute several1019

specific types of trap spaces (e.g., maximal trap spaces, fixed points), which1020

besides minimal trap spaces also play crucial roles in the analysis and con-1021

trol of Boolean networks. The proposed methods for the minimal trap space1022

computation have been evaluated on many real-world models from the liter-1023

ature as well as randomly generated models. The experimental results show1024

that the new approach vastly outperforms all the state-of-the-art methods1025

in terms of general Boolean networks and is comparable to the mpbn method1026

even much better on average in terms of locally-monotonic Boolean net-1027

works. We believe that this opens up the way to a much better analysis1028

of large Boolean networks, which is needed with the advent of automatic1029

model-generation pipelines [60].1030
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Although the experimental results show the superiority of our approach1031

to mpbn in general, we however note that there is a model in the BBM repos-1032

itory (with identifier 122) where all the four proposed methods for the new1033

approach did not manage to finish the Petri net conversion before the time-1034

out, whereas mpbn can still handle this model. The model is not very large1035

but its Boolean functions are rather complicated. This points to the fact that1036

our current choice of using a BDD-based translation to obtain that Petri net1037

encoding, though it provides a small/efficient ASP might be too costly to1038

handle the complex models. In such a case, a more naive encoding might1039

provide a much larger ASP program, with many redundant rules, but eas-1040

ier/faster to obtain. The evaluation of the feasibility of such strategy, and1041

of its impact on smaller instances, remains to be done. Recognizing that1042

a model is locally-monotonic and applying in that specific case dedicated1043

strategies as those of mpbn might also be a partial solution.1044

Another direction to speed up our approach in the side of Boolean net-1045

works is to apply reduction techniques to the original Boolean network. Many1046

reduction techniques on Boolean networks [61, 62] have been proposed and1047

some of them fully preserve attractors of a Boolean network under the fully1048

asynchronous update scheme. In particular, a reduction technique on elim-1049

ination of negatively auto-regulated nodes with respect to asynchronous at-1050

tractors has recently been proposed [62]. However, there are two major issues1051

needed to be considered. First, the question of whether these reduction tech-1052

niques fully preserve minimal trap spaces of a Boolean network is still open.1053

Second, although these reduction techniques can reduce the number of nodes,1054

they can also increase the complexity of Boolean update functions [61], which1055

is also an important factor for the performance of computation methods. It1056

raises the question of whether they really simplify the computational burden1057

of trap space computation. We will deeply investigate the two issues. Fur-1058

thermore, we believe that the connection between trap spaces and siphons1059

can be a very useful tool for addressing the first issue.1060

It is worth noting that there may be possibly other methods for comput-1061

ing minimal/maximal conflict-free siphons in Petri nets, like the methods for1062

generic siphon computation in the field of Petri nets (see [35] for a survey1063

about these methods). Although these approaches do not directly support1064

the minimal/maximal conflict-free siphon computation now, we plan to in-1065

vestigate them in the future. In particular, several approaches based on1066

the network structure at the Petri net level (e.g., the decomposition ap-1067

proaches [63, 64] for identifying minimal generic siphons) can be adapted1068
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to help the identification of minimal conflict-free siphons. Making use of1069

the specific structure (1-safe, place-complementary) might also reveal new1070

techniques to be considered. It is potentially possible because in the field of1071

Petri nets, most of the methods for identifying minimal generic siphons focus1072

on various net classes with special structures [35]. The above potential ap-1073

proaches could replace our proposed methods if they give significantly better1074

performance. However, the current methods appear to already perform very1075

well even on the biggest models we have considered.1076

Finally, we think that the links between Petri nets and Boolean networks1077

that we stumbled upon in this article might have deeper roots. Exploring1078

those connections might lead both to interesting topics of research for Petri1079

nets, like a notion of trap-spaces, and for Boolean networks. We also believe1080

that the connection between trap spaces of Boolean networks and siphons1081

of Petri nets can be a very useful tool for exploring and proving more new1082

properties of trap spaces in Boolean networks, as we have used it to success-1083

fully prove the independence of trap spaces to the update scheme and the1084

separation of minimal trap spaces. Diving into this direction is promising1085

and one of our future work.1086
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