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In memory of Academician Vasiliı̌ Sergeevich Vladimirov
on the 100th anniversary of his birthday

Abstract

In the present paper we propose a new characterisation of Gibbs semigroups, which
is extension of a similar characterisation for compact semigroups.

Key words: Semigroup theory, compact semigroups, Gibbs semigroups, trace asymp-
totics

1 Introduction

It is known that to produce a variety of special classes of one-parameter in R+
0

operator-values semigroups on normed (Hilbert or Banach) spaces, one either modi-
fies (relaxes, or reinforces) the condition of continuity at the origin t = 0, or changes
conditions away from the origin in R+ = R+

0 \ {0}. Finally, one can also combine the
both of them.

The right continuity assumption at t = 0 is crucial for a nontrivial semigroup
theory. That is, the strong continuity for t → +0 seems to be, in this respect, the
most appropriate restriction to make this theory so significant, see discussions in
[HiPh57, Chapter X], [Dav07, Section 6.2], and [Zag19, Chapter 1]. The conclu-
sion is that any of the basic variety of semigroups reduces to the class C0 (strongly
continuous at t = +0) semigroup under natural condition of the semigroup operator-
norm boundedness for t in some neighborhood of zero. This property makes the
C0-semigroups, in a certain sense, exceptional and the most important among the
one-parameter operator semigroups.

Alongside the earlier discussion around the continuity at t = +0, yet another
source of variety of semigroups is possible and related to their behaviour away from
t = 0. The simplest example is the self-adjoint C0-semigroups on a Hilbert spaces.

Let A ≥ 0 be a non-negative self-adjoint operator on a separable Hilbert space H.
Then it is the generator of a contraction C0-semigroup {UA(t) = e −t A}t≥0 , which is
in turn a family of bounded self-adjoint operators. Owing to the fact that the spectral
theorem for A provides a canonical functional calculus for (unbounded) self-adjoint
operators, we obtain the representation:

UA(t) =

∫
R+

0

EA(dλ) e −t λ . (1.1)

Here EA(dλ) is the unique spectral measure such that it has the spectral decomposi-
tion: A =

∫
R+

0
EA(dλ) λ. Let t > 0 and σ ≥ 0. Then on account of (1.1)
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‖UA(t + σ) − UA(t)‖ =

∥∥∥∥∥∥
∫
R+

0

EA(dλ) e −t λ(e −σλ − 1)

∥∥∥∥∥∥
≤ sup

λ∈R+
0

| e −t λ(e −σλ − 1) | ≤
σ

t + σ

(
1 +

σ

t

)−t/σ
.

(1.2)

The estimate (1.2) yields that the C0-semigroup {UA(t)}t≥0 with values in the subset
Lsa(H) of bounded self-adjoint operators is (immediately) operator-norm continu-
ous for t > 0.

This example shows that a stronger regularity of the range of the map: t 7→ U(t),
away from zero, may also provide a continuity of the C0-semigroup for a stronger
topology. Besides that, this continuity may to start eventually with delay: t ≥ t0, for
some t0 > 0.

To enhance a topology of the range (i.e., to strengthen regularity) one can sup-
pose, for example, that a C0-semigroup {UA(t)}t≥0 with generator A, is a subset of
compact operators C∞(H) on a Hilbert space H, as long as t > 0. So, {UA(t)}t≥0 is
an immediately compact C0-semigroup. Then similarly to the self-adjoint case the
strong continuity of {UA(t)}t≥0 is uplifted to the operator-norm continuity, although
now it might happen with delay (t ≥ t0) for some t0 > 0.

In this paper, we study the C0-semigroups (called Gibbs semigroups) such that
UA(t) ∈ C1(H) for t0 > 0, and the von Neumann–Schatten class C1(H) ⊂ C∞(H) is
a two-sided ∗-ideal in the algebra of compact operators C∞(H) ⊂ L(H). This ideal
endowed with the trace-norm topology is the Banach space of trace-class operators.

The characterisation of compact semigroups (relation between semigroup and
resolvent of generator, see Proposition 2.2) shows that the topologies used for the
semigroup continuity away from t0 and for the range regularity coincide with the
operator-norm topology. A similar observation is known for the Gibbs semigroups
and even in a more general setting [Zag19, Chapter 4].

The aim of the present paper is to give a characterisation of Gibbs semigroups,
which is analogous to that for compact semigroups. The next Section 2 contains
indispensable preliminaries. The main result, Theorem 3.2, is proven in Section 3.
Section 4 is devoted to concluding remarks and comments.

2 Preliminaries and Gibbs semigroups

First we remind a statement about regularity and continuity of compact semigroups.

Proposition 2.1. Let {UA(t)}t≥0 be a (quasi-bounded) C0-semigroup such that the
operator UA(t0) is compact for some t0 > 0. Then {UA(t)}t≥ t0 ⊂ C∞(H) and the map:
t 7→ UA(t) is operator-norm continuous in (t0,∞), including the operator-norm
right-continuity at t = t0 + 0.

Correspondingly, any immediately compact C0-semigroup {UA(t)}t≥0 is operator-
norm continuous in R+.
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We note that (although it is plausible) the relationship between compactness of
a C0-semigroup with generator A and compactness of resolvents {RA(z)}z ∈ ρ(A) is not
straightforward. For example, a resolvent corresponding to a (eventually) compact
C0-semigroup is not necessarily compact, see Example 4.3 (f).

The following statement, which is a characterisation of compact semigroups,
elucidates this relationship, see for example, [Zag19, Proposition 4.17].

Proposition 2.2. A C0-semigroup {UA(t)}t≥0 on H with generator A is immediately
compact if and only if :
(i) the mapping: t 7→ UA(t) ∈ L(H), is operator-norm continuous in R+

and
(ii) the resolvent RA(z) = (A−z1)−1 is compact for some (and thus for any) z ∈ ρ(A) .

Next we introduce the Gibbs semigroups and recall some principal assertions,
which are indispensable for the rest.

Definition 2.3. A strongly continuous semigroup {G(t)}t≥0 on a Hilbert space H is
called an immediately Gibbs semigroup if R+ 3 t 7→ G(t) ∈ C1(H). We call a
strongly continuous semigroup {G(t)}t≥0 an eventually Gibbs semigroup when there
exists a threshold t0 > 0 such that t 7→ G(t) ∈ C1(H) for t ≥ t0.

A semigroup {G(t)}t≥0 is called a self-adjoint Gibbs semigroup if G∗(t) = G(t)
for t ∈ R+

0 .

Example 2.4. Let {en}n≥1 be an orthonormal basis in the Hilbert space H. Then the
one-parameter family of operators {G(t)}t≥0 defined for u ∈ H by

u 7→ G(t)u :=
∞∑

n=1

e −t ln (n+1) (u, en) en , t ≥ 0 , (2.1)

is a self-adjoint strongly continuous contraction semigroup with the unbounded self-
adjoint generator defined by Au :=

∑∞
n=1 ln(n + 1) (u, en) en .

By definition (2.1) the eigenvalues are {λn(G(t)) = 1/(n + 1) t}n≥1 and, conse-
quently, the C0-semigroup (2.1) is immediately compact: {G(t)}t>0 ⊂ C∞(H). In ad-
dition, we infer by (2.1) that

‖G(t)‖1 =

∞∑
n=1

1
(n + 1) t < ∞ , for t > 1 . (2.2)

Therefore, by Definition 2.3 and by (2.1), (2.2), the immediately compact C0-semi-
group (2.1) is an eventually Gibbs semigroup because {G(t)}t>0 ⊂ C1(H) only for
t > t0 = 1.

The analysis of continuity of C0-semigroups with values in C1 or C∞, is simpli-
fied by the following statement about continuity of multiplication on these ideals.

Proposition 2.5. Let {Bk}k, {Ck}k be two families of bounded operators such that
s-limk→∞ Bk = B ∈ L(H) and ‖ · ‖p-limk→∞Ck = C ∈ Cp(H) for p ∈ {1,∞}. Then
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‖ · ‖p- lim
k→∞

BkCk = B C . (2.3)

If, in addition, s-limk→∞ B∗k = B∗, then also

‖ · ‖p- lim
k→∞

CkBk = C B . (2.4)

Note that ‖ · ‖p=∞ coincides with the operator norm ‖ · ‖ on L(H).

Proof. Writing

‖BkCk − B C‖p ≤ ‖Bk‖ ‖Ck −C‖p + ‖(Bk − B) C‖p , (2.5)

and using the uniform boundedness principle for a strongly convergent sequence
{Bk}k≥1,

sup
k≥1
‖Bk‖ ≤ L < ∞ ,

it is sufficient to check that in (2.5), limk→∞ ‖(Bk − B) C‖p = 0.
Since C ∈ Cp(H), where p = {1,∞}, we can find for C and any ε > 0 a finite-rank

orthogonal projection P such that ‖(1 − P) C‖p < ε. Then the last term in (2.5) can
be estimated as

‖(Bk − B) C‖p ≤ ‖(Bk − B) P‖ ‖C‖p + (‖Bk‖ + ‖B‖) ‖(1 − P) C‖p . (2.6)

The strong convergence of {Bk}k≥1 implies limk→∞ ‖(Bk − B) P‖ = 0, and (2.6) gives

lim sup
k→∞

‖(Bk − B) C‖p ≤ (L + ‖B‖) ε .

Since ε is arbitrary, the result (2.3) is proven owing to (2.5).
The proof of (2.4) follows along the same reasoning, with the property of the

norm ‖ · ‖p, p ∈ {1,∞}, taken into account. �

Corollary 2.6. (a) By Definition 2.3 and Proposition 2.5 we conclude that an imme-
diately Gibbs semigroup {G(t)}t≥0 is immediately trace-norm continuous for t > 0,
whereas an eventually Gibbs semigroup (with threshold t0 > 0) is trace-norm con-
tinuous only for t > t0 (or t ≥ t0).
(b) Similarly, an immediately compact C0-semigroup {U(t)}t≥0 is immediately ope-
rator-norm continuous for t > 0 , whereas an eventually compact C0-semigroup
(with a threshold t0 > 0) is ‖ · ‖-continuous only for t > t0 (or t ≥ t0).

Proof. (a) Assume a threshold t0 > 0. Then for any t ≥ t0 there is δ ∈ R such that
(t− t0)/2 + δ > 0. The semigroup law gives G(t + δ) = G((t− t0)/2 + δ) G((t + t0)/2),
where G((t − t0)/2 + δ) ∈ L(H) and G((t + t0)/2) ∈ C1(H). Since the semigroup
{G(t)}t≥0 is strongly continuous, s-limδ→0 G((t − t0)/2 + δ) = G((t − t0)/2). Hence,
for t ≥ t0 one infers the trace-norm limit:

‖ · ‖1 − lim
δ→0

G(t + δ) = ‖ · ‖1 − lim
δ→0

G((t − t0)/2 + δ) G((t + t0)/2)

=

(
s-lim
δ→0

G((t − t0)/2 + δ)
)

G((t + t0)/2) = G(t) ,
(2.7)
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by virtue of the ‖ · ‖1-continuity of multiplication in C1(H) obtained in Proposi-
tion 2.5.

If t0 = 0, then proof of the immediate trace-norm continuity of the Gibbs semi-
group {G(t)}t≥0 for t > 0 is verbatim the above arguments and (2.7).
(b) The proof follows mutatis mutandis the line of reasoning in (a) for the C0-
semigroup {U(t)}t≥0 and for the operator norm ‖ · ‖ in (2.7). �

On account of Example 2.4 (or in general by Corollary 2.6) we infer that a C0-
semigroup {U(t)}t≥0 may be continuous in different topologies because of rather
different properties of regularity of the range of the map: t 7→ U(t), away from zero.
For example the semigroup (2.1) is strongly continuous at t = 0, then operator-norm
continuous for t ∈ (0, 1] and trace-norm continuous for t > 1. This corresponds to
the three different types of the semigroup range regularity (the bound, compact and
trace-norm class of operators) in three subsets of R+

0 .

3 Main result

Now we are in position to prove an extension of Proposition 2.2 for compact semi-
groups to the case of the trace-class ideal C1(H), that is, for the Gibbs semigroups. To
this aim we first remind a fundamental statement, which characterises the Bochner
integrable functions. Let I ⊂ R be an interval (bounded or unbounded) in R and X
be a Banach space. Recall that a vector-valued function f : I → X is called Bochner
integrable if it is strongly measurable and the function: t 7→ ‖ f (t)‖X is Lebesgue
integrable.

Proposition 3.1. (Bochner) If the function f is ‖·‖X-Bochner integrable in the normed
space X, then one has the estimate∥∥∥∥ ∫

I
dt f (t)

∥∥∥∥
X
≤

∫
I
dt ‖ f (t)‖X . (3.1)

In particular, this is the case if the function f is continuous in the topology of X.

The following statement is a characterisation of Gibbs semigroups, which is the
analog to Proposition 2.2 as characterisation of compact semigroups.

Theorem 3.2. Let {e −t A}t≥0 be a C0-semigroup on Hilbert space H with invertible
generator A, that is, ker (A) = {0}. If p ≥ 1, then the following assertions are
equivalent :

(a) The C0-semigroup {e −t A}t≥0 is an immediately Gibbs semigroup {GA(t)}t≥0,
with asymptotics : ‖GA(t)‖1 = O(t−p) for t ↓ 0 .

(b) For any q ∈ N , such that q > p :
(i) The map : R+ 3 t 7→ e −tA is ‖ · ‖q-continuous.
(ii) The resolvent family {RA(z) }z∈ρ(A) is defined using the Laplace trans-

form of {e −tA}t≥0 by means of the ‖ · ‖q-Bochner integral and (RA(z)) q ∈ C1(H) .
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Remark 3.3. It is worth to warn that the condition ker (A) = {0} (or equivalently,
0 < σ(A) = {λn(A)}n∈N , eigenvalues of A) does not imply that the trace-norm of
semigroup {e−t A}t≥0 is bounded, as well as, that assumption (i) in (b) does not yield
UA(t) ∈ Cq(H), neither that this semigroup is holomorphic. Note that on account of
(3.7), (3.9) we cannot relax in our proof the condition ker (A) = {0}.

Proof. (a) =⇒ (b) : Suppose that the C0-semigroup {e−tA}t≥0 is a Gibbs semigroup.
Then it is trace-norm continuous for t ∈ R+ and thus immediately continuous in the
topology of ideal Cq(H) ⊃ C1(H) for q > p ≥ 1. This proves (i).

To prove (ii) we note that the Gibbs semigroup {e −tA}t≥0 is strongly continuous,
quasi-bounded and compact (for t > 0) since C1(H) ⊂ C∞(H) . Consequently, there
exists ω0 such that (−∞,−ω0) ⊂ ρ(A) and choosing λ > ω0 (that is, −λ ∈ ρ(A))
we obtain ‖ e −λt e −t A‖ ≤ M e (ω0−λ) t. Then by virtue of Proposition 3.1 the resolvent
of generator A at z = −λ has the operator-norm Bochner integral representation
(Laplace transform):

RA(−λ) =

∫ ∞

0
dt e −λ t e −t A , ω0 < λ . (3.2)

Hence, by compactness of the family {e −tA}t>0 and by construction of the operator-
norm convergent integral equation (3.2) yields in the left-hand side a compact op-
erator. On account of the resolvent identity, the fact: RA(−λ) ∈ C∞(H) for some
−λ ∈ ρ(A), implies that RA(z) is compact for any z ∈ ρ(A).

Due to the representation (3.2) and to Fubini’s theorem we infer that powers
q ∈ N of the resolvent have the representation:

(RA(z)) q = Γ(q)−1
∫ ∞

0
dt tq−1 e −t (A−z1l) , ω0 < Re (−z) , (3.3)

which similarly to (3.2) is the operator-norm convergent Bochner integral. Note that
the Gibbs semigroup is ‖ · ‖1-continuous (so ‖ · ‖1-measurable) on a closed I ⊂ R+,
cf. Proposition 3.1. Next, by conditions: q > p and ‖ e −t A‖1 = O(t−p) for t ↓ 0, the
function ‖ tq−1 e −t (A−z1)‖1 is integrable in a (positive) vicinity of zero. Moreover, for
t > T > 0, by estimate:

‖ e −t (A−z1)‖1 ≤ ‖ e −T (A−z1)‖1 M e (t−T ) (ω0+Re z) ≤ Mz,T e −t |ω0+Re z | , Re z < −ω0 ,

this function is also integrable at infinity. Hence, the right-hand side of (3.3) is the
‖ · ‖1-Bochner integral and by Proposition 3.1 for X = C1(H), together with (3.1),
one obtains estimate

‖ (RA(z)) q‖1 ≤ Γ(q)−1
∫ ∞

0
dt t q−1 ‖ e −t A‖1 e t Re (z) < ∞ , ω0 < Re (−z) . (3.4)

This proves that (RA(z)) q ∈ C1(H), for z ∈ ρ(A), and hence the assertion (ii).
(b) =⇒ (a) : The converse is much harder since we have to construct a Gibbs

semigroup {GA(t)}t≥0 staring essentially from condition (ii) for resolvent, cf. (3.3).
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By hypothesis, the set {UA(t) := e −tA}t≥0 is a (quasi-bounded) C0-semigroup,
which by virtue of (i) is also Cq(H)-continuous in R+. Hence, there exists ω0 such
that (−∞,−ω0) ⊂ ρ(A) and {e −tA}t∈R+ is by Cq(H) ⊂ L(H) an operator-norm contin-
uous family of operators. To proceed we fix λ > ω0 and define by the operator-norm
Bochner integral (Proposition 3.1 for X = L(H)) a family {F(t)}t≥0 of bounded op-
erators:

F(t) :=
∫ t

0
dτ e −λτ UA(τ) , t ≥ 0 . (3.5)

Now after integrating the equation

∂t(e −λtUA(t) u) = − e −λt UA(t) (λ1 + A) u , u ∈ dom (A) ,

we obtain

(1 − e −λtUA(t)) u =

∫ t

0
dτ e −λτUA(τ) (λ1 + A) u ,

or for w := (λ1l + A) u, the equation

(1l − e−λtUA(t)) (A + λ1l)−1 w =

∫ t

0
dτ e−λτUA(τ) w . (3.6)

Since −λ ∈ ρ(A), the range ran (λ1 + A) = H. Therefore, equation (3.6) yields that
the family of operators (3.5) belongs to the ideal Cq(H) :

F(t) = (1 − e −λtUA(t)) (A + λ1)−1 ∈ Cq(H) , t ≥ 0 , (3.7)

because by condition (ii), the resolvent R−λ(A) ∈ Cq(H) and F(0) = 0 · 1. As a
consequence

F(t + δ) − F(t) =

∫ t+δ

t
dτ e−λτUA(τ) ∈ Cq(H) , t > 0 , δ > 0 . (3.8)

In condition (i), the ‖ · ‖q-continuity of the family {UA(τ)}τ>0 yields, for t > 0 and
δ > 0, the estimate

∥∥∥1
δ

∫ t+δ

t
dτ UA(τ) − UA(t)

∥∥∥
q ≤

1
δ

∫ t+δ

t
dτ ‖UA(τ) − UA(t) ‖q ≤ εt(δ) , (3.9)

where εt(δ) := supτ∈[t,t+δ] ‖UA(τ) − UA(t)‖q and limδ↓0 εt(δ) = 0. Therefore, (3.9)
implies that

UA(t) = ‖ · ‖q − lim
δ↓0

1
δ

∫ t+δ

t
dτ UA(τ) , t > 0 . (3.10)

Note that by invertibility of generator A (ker (A) = {0}) and by virtue of (3.7), (3.8)
for λ = 0 the integral in (3.10) coincides with the operator F(t + δ) − F(t), which
belongs to Cq(H). Because the limit (3.10) exists and also holds in ‖ · ‖q-norm for the
‖ · ‖q-valued integrals, in the left-hand side of (3.10) the operator UA(t) ∈ Cq(H) for
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any t > 0. By the reason of the semigroup law: UA(t) = (UA(t/q))q and properties
of ideals {Cq(H)}1≤q<∞ , this implies that UA(t) ∈ C1(H) for t > 0 and consequently
the C0-semigroup {UA(t) =: GA(t)}t≥0 is a Gibbs semigroup.

Seeing that by (3.10) the family {UA(t)}t>0 belongs to Cq(H) and that it is Cq(H)-
continuous function by condition (i), the integrand in (3.5) is Cq(H)-continuous.
Then for ω0 < λ, we can construct the representation of resolvent RA(z = −λ) as
the Cq(H)-Bochner integral (Laplace transform). To this end it is sufficient to take
in (3.5) and (3.7) the ‖ · ‖q-limt→∞ F(t) , which then can be extended to z ∈ ρ(A). As
a result we obtain that

‖RA(z)‖q =
∥∥∥ ∫ ∞

0
dt e t Re z e −t A

∥∥∥
q , Re z < −ω0 , (3.11)

where the left-hand side of (3.11) is finite by condition (ii). By the same condition,
similarly to (3.3) and (3.4), we also obtain the C1(H)-Bochner integral for the power
q of Laplace transform, which by Fubini’s theorem gives

‖(RA(z)) q‖1 =
∥∥∥Γ(q)−1

∫ ∞

0
dt t q−1 e −t A et Re z

∥∥∥
1 < ∞ , when Re z < −ω0 . (3.12)

Since by Proposition 3.1 the integrand in (3.12) is ‖ · ‖1-integrable, one gets

Γ(q)−1
∫ ∞

0
dt t q−1 ‖ e −t A‖1 e t Re z < ∞ , when Re z < −ω0 , (3.13)

and hence, the asymptotics: ‖ e −t A = GA(t) ‖1 = O(t−p), for t ↓ 0 where p < q. �

Corollary 3.4. The assertion of Theorem 3.2 holds for any real q > p, where p ≥ 1.

Proof. The key point is to show that fractional power of a resolvent can be defined
by the right-hand side of representation (3.3) for any real q > p. First we introduce
the function

Fz : (p,∞) 3 q 7→ Γ(q)−1
∫ ∞

0
dt tq−1 e−t (A−z1l) , Re z < −ω0 , (3.14)

where t 7→ tq−1 := e(q−1) ln (t) is the first branch of the fractional power function
corresponding to the branch t 7→ ln (t) of logarithm on R+. On account of (3.12) and
(3.13) the function (3.14) is well-defined and ‖·‖1-continuous on (p,+∞).

For an integer q > p, definitions (3.3) and (3.14) yield RA(z) q = Fz(q) with
composition law for integers q1, q2 : RA(z) q1 RA(z) q2 = RA(z) q1+q2 . To ensure that
the representation (3.14) defines the fractional powers of the resolvent, one has to
show that Fz satisfies the composition law:

Fz(q1) Fz(q2) = Fz(q1 + q2) , Re z < −ω0 , for any real qi > p. (3.15)

After a change of variables: t1 = x2, t2 = y2 and then x = r cos θ, y = r sin θ, we
obtain:
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Fz(q1) Fz(q2) = Γ(q1)−1Γ(q2)−1
∫ ∞

0
dt1

∫ ∞

0
dt2 tq1−1

1 tq2−1
2 e−(t1+t2) (A−z1l) (3.16)

=
2

Γ(q1)Γ(q2)

∫ ∞

0
dr2 r2 (q1+q2)−2 e− r2 (A−z1l)

∫ π/2

0
dθ (cos θ)2 q1−1 (sin θ)2 q2−1 .

The last θ-integral is equal to B(q1, q2)/2, where B(q1, q2) = Γ(q1)Γ(q2)/Γ(q1 + q2)
is the beta function. Thus, (3.16) and representation (3.14) prove (3.15). �

Remark 3.5. See [Eck18, Example 2.11]. In Theorem 3.2, we assumed that the gen-
erator A is invertible, that is, ker (A) = {0}. Note that if it is not the case, the Mellin
transformM of f (t) = Tr e−tA that we used previously, cf. (3.13), namely:

M[ f ](s) = Γ(s)−1
∫ ∞

0
dt ts−1 f (t) ,

does not exist even for a positive generator A. Indeed, seeing that for finite dimen-
sional ker (A), we have limt→∞ Tr e−tA = dim ker (A) , the integrand ofM[ f ] with
f (t) = Tr e−tA converges at infinity only for Re s < 0, whereas if Tr e−tA = O0(t−p),
then the convergence at zero requires that Re s > p.
Another way to see this is the following: Let A′ := A + P where P is the projector
on the (finite dimensional) kernel of A. Then operator A′ is invertible and we obtain

Tr e−tA = Tr e−tA′ − (e−t − 1) dim ker (A) . (3.17)

Consequently, Tr e−tA = O0(t−p) if and only if Tr e−tA′ = O0(t−p) for p ≥ 0. Owing
to the right-hand side by of representation (3.17), we infer that Tr e−tA′ has a Mellin
transform for Re s > p, whileM[t → e−t − 1](s) exists only for Re s ∈ (−1, 0) (and
in this case it is equal to Γ(s)). This also shows that M [t > 0 → Tr e−tA] exists
nowhere in C.

Remark 3.6. To illustrate Theorem 3.2 (and also Proposition 2.2) we return to Ex-
ample 2.4 of the eventually Gibbs (for t > 1) C0-semigroup.
Note that by construction (2.1) the C0-semigroup {G(t)}t≥0 is an eventually Cp-
semigroup for t > tp := 1/p, where p ∈ N, that is,

{G(t)}t>0 ⊂

∞⋃
p≥1

Cp(H) . (3.18)

Therefore, {G(t)}t≥0 is a self-adjoint immediately compact semigroup, which does
not satisfy condition (b) (i) of Theorem 3.2.
As a consequence, the Bochner integral in the Laplace transform (3.2) converges
only in the operator-norm topology and defines in the left-hand side a compact op-
erator with spectrum: σ(RA(−λ)) = {(λ + ln(n + 1))−1}n≥1, here λ ≥ 0. So, condition
(b) (ii) of Theorem 3.2 does not hold either.
All together, this bolsters by assertion (a) of Theorem 3.2 that the self-adjoint C0-
semigroup {G(t)}t≥0 defined by (2.1) can not be an immediately Gibbs semigroup.
On the other hand, as a strongly continuous compact semigroup, {G(t)}t≥0 satisfies
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conditions (i) and (ii) of Proposition 2.2, which confirms that it is immediately com-
pact.

For more details about different aspects of the trace asymptotics for Gibbs semi-
groups we refer to our paper [IocZag23]. We conclude by some additional comments
concerning Gibbs semigroup construction and Theorem 3.2 together with illustrat-
ing examples/contrexamples, which are collected in Section 4.

4 Concluding remarks and comments

We note that a warning similar to that before Proposition 2.2 is also relevant to Theo-
rem 3.2. Indeed, a C0-semigroup with generator A, which has a trace-class resolvent
{RA(z)}z ∈ ρ(A) on the resolvent set ρ(A), cf. Theorem 3.2 (b) (ii), is not necessarily a
Gibbs semigroup. On the other hand, a resolvent of a (eventually) Gibbs semigroup
is not necessarily even compact. In fact, to avoid these discrepancies, or triviality,
one needs certain supplementary conditions. In our Theorem 3.2 they are expressed,
e.g., by condition in (a) for the Gibbs semigroups, or in (b) (i) for the C0-semigroup.
For illustration see Example 4.3 (e) and (f).

(I) A well-known way for construction of the Gibbs semigroups is based on the
notion of p-generators [Zag19, Definition 4.26].

Definition 4.1. An m-sectorial operator A with vertex γ = 0 and with semi-angle α
is called a p-generator if for some ζ0 ∈ ρ(A), the resolvent RA(ζ0) is an element of
the von Neumann–Schatten class Cp(H) for any finite p ≥ 1.

A choice of the vertex γ = 0 is irrelevant because of a possible shift: A + β1 for
β ∈ R.

A positive self-adjoint operator A with RA(ζ0) ∈ Cp≥1(H) for Im ζ0 , 0 is a p-
generator for semi-angle α = 0.

Proposition 4.2. Any p-generator A is the generator of a ‖ · ‖1-holomorphic Gibbs
semigroup.

For the proof we refer to [Zag19, Proposition 4.27].
Here we indicate only that an m-sectorial operator A generates a holomorphic

semigroup {UA(z)}z∈S π/2−α in the open sector S π/2−α = {z ∈ C : | arg z| < π/2 − α}.
Indeed, thanks to the Riesz–Dunford formula, this semigroup has representation

UA(z) =
1

2πi

∫
Γ

dζ e −z ζ (ζ 1 − A)−1 . (4.1)

Here Γ is a positively oriented contour enclosing the sector S α ⊃ W(A), which
contains the numerical range W(A) of A, that is, Γ ⊂ ρ(A) ⊂ C \ S α and ensures the
convergence of integral. Then strong analyticity of (4.1) and Proposition 2.5 imply
the ‖·‖p- and thus the ‖·‖1-analyticity of the Gibbs semigroup {UA(z)}z∈S π/2−α ⊂ C1(H)
constructed by (4.1).
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The representation (4.1) also allows to establish a semigroup analyticity criterion
for an m-sectorial generator A with semi-angle α < π/2: There exists M(α) > 0 such
that

‖A UA(t)‖ ≤ M(α) t−1 , t > 0 . (4.2)

(II) We note that the p-generator condition (4.1) is in many cases too restrictive
since it is based on analyticity. To bolster characterisation (criterion) of Gibbs semi-
groups by Theorem 3.2, we give below an example of a infinitely ‖ · ‖1-differentiable
non-holomorphic Gibbs semigroup.

Example 4.3. We consider here a list of examples/counterexamples to ilustrate cer-
tain assertions of this paper that we started in Remark 3.6.

(a) Consider the Hilbert space H = l2(C). We define in l2(C) a linear densely
defined multiplication operator

Mq : u 7→ q · u = {qk uk}k≥1 , qk ∈ C , (4.3)

with domain dom (Mq) = {u ∈ l2(C) : Mqu ∈ l2(C)} for a given vector q = {qk}k≥1.
(b) By definition (4.3) the spectrum σ(Mq) of Mq coincides with the set {qk}k≥1. If

σ(Mq) ⊂ C+, the closed operator Mq generates the C0-semigroup {Uq(t) = e−tMq }t≥0
on the Hilbert space l2(C):

e−tMq u := e −t q · u , t ≥ 0 , u ∈ l2(C) . (4.4)

(c) Let the C0-semigroup generated on l2(C) by the multiplication operator (4.3)
defined by

qα := {qk(α) = e iα k }k≥1 , |α| < π/2 . (4.5)

Then the unbounded operator Mqα generates the C0-semigroup {Uqα (t) = e −t Mqα }t≥0
such that for ‖u‖ = 1 and t > 0 one gets

‖MqαUqα (t) u‖2 =
∑
k≥1

e − 2 kt cosα k2 |uk |
2 ≤ M(α)2 t−2 , M(α) := (e cosα)−1 .

As a consequence, ‖MqαUqα (t)‖ ≤ M(α) t−1. Then by (4.2) the semigroup {Uqα (t)}t≥0
may be analytically continued to a bounded ‖·‖-holomorphic semigroup {Uqα (z)}z∈S θ

in the open sector S θ, where θ = arcsin (e M(α))−1 with θ = π/2 − α.
Moreover, for t > 0 and |α| < π/2 the trace-norm

‖Uqα (t)‖1 = Tr (U∗qα (t) Uqα (t))1/2 =
∑
k≥1

e − k cosα < ∞ , (4.6)

is finite, that is Uqα (t) ∈ C1(l2(C)). Then {Uqα (z)}z∈S θ
is a ‖ · ‖1-holomorphic Gibbs

semigroup by virtue of Proposition 2.5.
Another way around, we note that by the definition (4.3) and (4.5), the spectrum

σ(Mqα ) = {e iα k }k≥1 for |α| < π/2 , belongs to the closed sector S α ⊂ C+. Therefore,
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the resolvent RMqα
(z) ∈ Cp(l2(C)) for any p > 1, z ∈ ρ(Mqα ) and Mqα is an m-

sectorial operator. As a consequence, the Riesz–Dunford representation (4.1) holds
for the ‖ · ‖1-holomorphic Gibbs semigroup {Uqα (z)}z∈S θ

.
(d) Now let

qβ := {qk(β) = k + i kβ }k≥1 , β ≥ 0 , (4.7)

that is, the spectrum σ(Mqβ ) = {k + i kβ }k≥1, cf. (b). Then the unbounded operator
Mqβ generating the C0-semigroup {Uqβ (t) = e −t Mqβ }t≥0 is such that for u ∈ l2(C)

‖MqβUqβ (t) u‖2 =
∑
k≥1

e − 2 k t (k2 + k2β) |uk |
2 . (4.8)

(i) If β ≤ 1, then σ(Mqβ ) ⊂ S α=π/4 and (4.8) yields for some M > 0 that

‖MqβUqβ (t)‖ ≤ M t−1 , t > 0 .

Consequently, by (4.2) the semigroup {Uqβ (t)}t≥0 allows an analytic continuation
to a bounded ‖ · ‖-holomorphic semigroup {Uqα (z)}z∈S θ

in the open sector S θ=π/2−α,
where α = π/4. Since Uqα (t) ∈ C1(l2(C)), this semigroup is a ‖ · ‖1-holomorphic
Gibbs semigroup on account of Proposition 2.5.

Again, similarly to (c) the Riesz–Dunford representation (4.1) also holds for the
‖ · ‖1-holomorphic Gibbs semigroup {Uqα (z)}z∈S θ

for β ≤ 1.
(ii) If β > 1, then the spectrum σ(Mqβ ) does not belong to any sector S α<π/2 and

(4.8) yields that operator norm

‖MqβUqβ (t)‖ ≤ M(β) t−β , t > 0 . (4.9)

for M(β) > 0. Hence, although for any n ∈ N and t > 0 owing to (4.8) one has
‖Mn

qβUqβ (t)‖ < ∞ (the semigroup {Uqβ (t)}t≥0 is infinitely operator-norm differen-
tiable for t > 0), the inequality (4.9) does not allow any operator-norm analytic
continuation of this semigroup to C+ for the case β > 1, cf. (4.2) and the case β ≤ 1.

Also, by virtue of Proposition 2.5 the Gibbs semigroup {Uqβ (t)}t≥0 can not be
extended to a holomorphic one in a subset of C+.

(iii) Note that although for p > 1, z ∈ ρ(Mqβ ) and β > 1 the resolvent RMqβ
(z) ∈

Cp(l2(C)) , the spectrum σ(Mqβ ) does not belong to any sector S α<π/2. In particular,
the Riesz–Dunford representation (4.1) does not hold either, which bolsters that
Gibbs semigroup {Uqβ (t)}t≥0 has no analytic extension [Zag19, Proposition 4.27].

As a consequence, to construct a holomorphic Gibbs semigroup, one has to en-
sure, besides the trace-norm differentiability for t > 0, the inequality (4.2). Whereas
to set up a generic Gibbs semigroup one needs Proposition 2.5 and Theorem 3.2.

(e) For the next example inH = l2(C) , we suppose that the closed densely defined
multiplication operator Mq2 corresponds to

q2 = {qk = i k2 }k≥1 , k ∈ N , (4.10)

with spectrum σ(Mq2 ) = {i k2 }k≥1, see (b),
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(i) Since ‖(µ1 + Mq2 )−1‖ ≤ |Re µ|−1 for µ ∈ C, the operator Mq2 satisfies
the hypotheses of the Hille–Yosida theorem [HiPh57, Section 12.3]. Therefore,
{Uq2 (t) := e −t Mqβ }t≥0 is a strongly continuous contraction semigroup. Note that
for t ≷ 0 it gives two branches of a unitary group, which is nowhere continuous in
operator-norm topology for t ∈ R.

(ii) The resolvent RMq2
(−µ), for −µ ∈ ρ(Mq2 ), is a bounded operator with discrete

spectrum σ(RMq2
(−µ)) = {(µ + i k2)−1}k≥1. For µ0 ∈ C with Im µ0 = 0 , the singular

values are
sk(RMq2

(µ0)) = (µ2
0 + k4)−1/2 , k ∈ N , (4.11)

and consequently RMq2
(µ0) ∈ C1(H), which by the first resolvent equation yields

RMq2
(µ) ∈ C1(H) for any µ ∈ ρ(Mq2 ).

(iii) As a result, although the resolvent of generator Mq2 consists of trace-norm
operators, the semigroup {Uq2 (t)}t≥0 is not a Gibbs semigroup since it is only
strongly continuous. We note that for this semigroup the Bochner integral repre-
sentation (Laplace transform, cf. (3.2)):

RA(−λ) =

∫ ∞

0
dt e −λ t e −t A , Re λ > 0 , (4.12)

is defined only in the strong operator topology, which implies that the left-hand side
of (4.12) is simply a bounded operator.

On that account, the condition (b) (i) in Theorem 3.2 serves for improving topol-
ogy in definition (4.12) of Bochner integral with the aim to exclude this kind of
insufficiency.

(f) Now let Hilbert space H = L2(0, 1). For t ≥ 0 and f ∈ H, define U(t) ∈ L(H)
by

(U(t) f )(s) =

{
f (s + t) if 0 ≤ s + t ≤ 1,
0 if t > 1 .

Then {U(t)}t≥0 is a C0-semigroup, which is nilpotent, hence an eventually (compact)
Gibbs semigroup with Tr U(t > 1) = 0. Since the Laplace transform (4.12) defines
a resolvent of generator of semigroup by the strongly convergent Bochner integral,
we obtain

R(−z) =

∫ 1

0
dt e −z t e −t A , z ∈ C . (4.13)

As a consequence, the resolvent (4.13) of operator A is entire function of z ∈ C, that
is, the spectrum of generator is empty. So, for any z ∈ C the operator R(−z) is not in
the von Neumann–Schatten ideals.

It is instructive to compare this illustration with Example 2.4 of eventually Gibbs
semigroup on a Hilbert space and with discussion in Remark 3.6.
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