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Is increased myocardial
triglyceride content associated
with early changes in left
ventricular function? A 1H-MRS
and MRI strain study

Astrid Soghomonian1,2, Anne Dutour1,2, Nadjia Kachenoura3,
Franck Thuny1,4, Adele Lasbleiz1,2, Patricia Ancel1,
Robin Cristofari5, Elisabeth Jouve6, Umberto Simeoni7,
Frank Kober8†, Monique Bernard8† and Bénédicte Gaborit1,2*

1Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France, 2Department of Endocrinology,
Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France, 3Sorbonne Université, INSERM,
CNRS, Laboratoire d’Imagerie Biomédicale, Paris, France, 4Intensive Care Unit, Department of
Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille University,
Marseille, France, 5Department of Biology, University of Turku, Turku, Finland, 6UPCET, Clinical
Pharmacology, Assistance-Publique Hôpitaux de Marseille, Marseille, France, 7Division of Pediatrics &
DOHaD Laboratory, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland, 8Aix-
Marseille Université, CNRS, CRMBM, Marseille, France
Background: Type 2 diabetes (T2D) and obesity induce left ventricular (LV)

dysfunction. The underlying pathophysiological mechanisms remain unclear,

but myocardial triglyceride content (MTGC) could be involved.

Objectives: This study aimed to determine which clinical and biological factors

are associated with increased MTGC and to establish whether MTGC is

associated with early changes in LV function.

Methods: A retrospective study was conducted using five previous prospective

cohorts, leading to 338 subjects studied, including 208 well-phenotyped healthy

volunteers and 130 subjects living with T2D and/or obesity. All the subjects

underwent proton magnetic resonance spectroscopy and feature tracking

cardiac magnetic resonance imaging to measure myocardial strain.

Results: MTGC content increased with age, body mass index (BMI), waist

circumference, T2D, obesity, hypertension, and dyslipidemia, but the only

independent correlate found in multivariate analysis was BMI (p=0.01; R²=0.20).

MTGC was correlated to LV diastolic dysfunction, notably with the global peak early

diastolic circumferential strain rate (r=-0.17, p=0.003), the global peak late diastolic

circumferential strain rate (r=0.40, p<0.0001) and global peak late diastolic

longitudinal strain rate (r=0.24, p<0.0001). MTGC was also correlated to systolic

dysfunction via end-systolic volume index (r=-0.34, p<0.0001) and stroke volume

index (r=-0.31, p<0.0001), but not with longitudinal strain (r=0.009, p=0.88).
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Interestingly, the associations between MTGC and strain measures did not persist in

multivariate analysis. Furthermore, MTGC was independently associated with LV

end-systolic volume index (p=0.01, R²=0.29), LV end-diastolic volume index

(p=0.04, R²=0.46), and LV mass (p=0.002, R²=0.58).

Conclusions: PredictingMTGC remains a challenge in routine clinical practice, as

only BMI independently correlates with increased MTGC. MTGC may play a role

in LV dysfunction but does not appear to be involved in the development of

subclinical strain abnormalities.
KEYWORDS

type 2 diabetes, obesity, myocardial triglyceride content, cardiac magnetic resonance
imaging, left ventricular function, feature-tracking, myocardial strain
Introduction

The dramatic rise in prevalence rates of obesity and type 2

diabetes (T2D) has led to an increasing risk of cardiovascular

disease and death (1, 2). Epidemiological studies have shown that

both obesity and T2D could directly contribute to the onset of heart

failure independently of other cardiovascular risk factors (3–5), but

the underlying mechanisms remain partly unknown. It is

increasingly suggested that excessive deposition of triacylglycerol

in cardiomyocytes may lead to lipotoxic injury due to overload of

lipotoxic intermediates such as ceramides or diacylglycerol,

resulting in endoplasmic reticulum stress, cardiac insulin

resistance, oxidative stress, and mitochondrial dysfunction (6–8).

Studies in diabetic and obese mice have demonstrated that

myocardial steatosis can act locally and induce cell dysfunction

and death through apoptosis, which ultimately leads to impaired left

ventricular (LV) function (9, 10).

Using developments in proton magnetic resonance

spectroscopy (1H-MRS) techniques enabling accurate non-

invasive exploration of myocardial steatosis in humans (11), we

and others have shown that patients with metabolic syndrome,

obesity and T2D have increased myocardial steatosis (12–15).

However, as access to 1H-MRS is limited in routine practice,

studies on MTGC in humans, remain scarce and have only been

carried out on small samples. Some research has found a clear

association between myocardial triglyceride content (MTGC) and

LV diastolic dysfunction in patients with T2D (14, 16), as in

animals, but there are also conflicting results (15), and the impact

of myocardial steatosis on LV function is still under debate. If the

association effectively exists, then it would be relevant to determine

whether MTGC is associated with early changes in LV function in

order to (i) better understand the risk of heart failure in obesity and

T2D and ultimately (ii) be able to identify patients who are at risk

for developing cardiovascular events secondary to extreme

cardiac adiposity.

LV function has long been assessed by measuring volume

changes but is now widely assessed by myocardial strain which
02
gives a more accurate measure of myocardial deformation (17). It is

now recognized that myocardial dysfunction is detected earlier

when using global strain rather than standard myocardial

function parameters such as ventricular ejection fraction (18, 19).

The development of feature tracking (FT) software has made it

possible to measure systolic and diastolic strains and strain rates

based on routinely-acquired cine magnetic resonance imaging

(MRI) sequences (20, 21), and this technique matches well with

tissue tagging, the gold standard for myocardial strain evaluation in

MRI (22).

The aim of the present study was to determine the clinical and

biological factors associated with increased MTGC and to establish

whether there were associations between MTGC and early changes

in LV function assessed by myocardial strain in a population of

healthy subjects and in patients with T2D and obesity without

heart failure.
Material and methods

Study design and participants

Data for this retrospective, cross-sectional study was collected

from five prospective cohorts managed by Assistance Publique-

Hôpitaux de Marseille, the university hospital trust serving

Marseille, France (12, 23–26). These cohorts included healthy

lean subjects, patients with T2D, and patients with severe obesity

(defined as BMI ≥35 kg/m²) (Figure 1). All included subjects were

free of heart failure based on the European Society of Cardiology

guidelines (27), including absence of symptoms and/or signs of

heart failure or New York Heart Association (NYHA) class II-IV,

LV ejection fraction (LVEF) ≥50%, and absence of any relevant

structural heart disease and LV diastolic dysfunction. Exclusion

criteria included: cardiomyopathy except coronary artery disease

(CAD); primary valvular heart disease; idiopathic pulmonary artery

hypertension; restrictive pericarditis; atrial fibrillation; poor image

quality. Our analysis only included subjects that had a MTGC
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measurement performed using the same technique with proton

magnetic resonance spectroscopy (1H-MRS), and only used data

collected before the intervention (bariatric surgery or antidiabetic

medication) from patients enrolled in interventional studies

(NCT01284816, NCT02042664 and NCT03118336) (23–25). All

protocols were approved by the institutional review board, and all

subjects gave written informed consent prior to participation.

The subjects were categorized into two groups based on clinical

status: a healthy group, or a non-healthy (i.e. living with T2D and/or

obesity) group. They were also categorized based onMTGCquartiles in

order to compare subjects with low MTGC (MTGC ≤25th percentile)

against subjects with high MTGC (MTGC >75th percentile).
Anthropometric and biological
characterization

For all subjects, the following clinical data were collected: age,

gender, history of diabetes, hypertension, smoking status, personal

or familial history of coronary artery disease, dyslipidemia, and

anthropometric measures, i.e. BMI, waist circumference, and hip

circumference. Data from fasting blood samplings was also

collected, including lipid profile (total cholesterol, triglycerides,

HDL and LDL) and glucose profile (fasting plasma glucose

(FPG), fasting plasma insulin (FPI) and HbA1c). Insulin

resistance was assessed based on the Homeostatic Model

Assessment for Insulin Resistance (HOMA-IR) calculated as

follows: fasting plasma glucose (mmol/L) × fasting plasma insulin

(mUi/mL)/22.5 (28).
Cardiovascular MRI

All subjects underwent cardiovascular MRI and 1H-MRS to

assess left ventricular structure and function and MTGC. MRI

exams were performed using a 3T scanner (Siemens Verio
Frontiers in Endocrinology 03
system, Siemens Healthineers, Erlangen, Germany) using a 32-

element phased array coil.
Assessment of left ventricular morphology
and function

Data on cardiac structure and function was obtained using a

steady-state free precession (SSFP) cine sequence in short-axis view

covering the left ventricle from base to apex. End-systolic volume

(ESV), end-diastolic volume (EDV), and LV mass were measured

using dedicated vendor-supplied post-processing software (Argus,

Siemens Healthineers; 12,23–25). Left ventricular stroke volume

(SV), cardiac output and ejection fraction (LVEF) were then

calculated. SV, ESV, EDV, LV mass and cardiac output were

indexed to body surface area. To determine LV diastolic function,

velocity-encoded mitral valve inflow images were used to derive

early (E) and late (A) peak diastolic transmitral flow velocities using

an Argus workstation for quantitative flow analysis, as previously

described (23).
Proton magnetic resonance spectroscopy
for MTGC quantification

To determine the molecular content of triglycerides and water

in the myocardium, an ECG-gated, single-voxel, point-resolved

spectroscopy sequence (PRESS) was used, as previously described

(12, 23–25). The voxel was placed in the interventricular septum on

cine images. Myocardial 1H-MRS spectra were processed offline

using in-house custom software running on an IDL environment

(Interactive Data Language; ITT Visual Solutions, Boulder, CO).

MTGC was determined and expressed as a percentage of tissue

water content (%TG = TG/water × 100) with the resonances of

triglycerides and water integrated in the frequency domain and

taking into account the saturation due to incomplete relaxation.
FIGURE 1

Flow chart of the cardiac resonance imaging measurements in the study population. MTGC, myocardial triglyceride content; MRI, cardiac magnetic
resonance imaging; 1H-MRS, proton magnetic resonance spectroscopy.
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Feature tracking for myocardial
strain evaluation

LV myocardial strain was quantified on cine SSFP images using

a feature tracking (FT) software developed in Matlab (MathWorks,

Natick, MA) and previously employed in several studies (29–31).

To initialize the FT algorithm, LV endocardial and epicardial

contours were manually traced on a single time-phase of three

short-axis cine slices (a basal slice immediately under the outflow

tract, a mid-LV slice, and an apical slice on which the LV cavity

featured throughout the cardiac cycle) and on a four-chamber cine

slice. Papillary muscles were excluded from the endocardial

contour. These initial contours were then automatically tracked

through the cardiac cycle to enable the estimation of global systolic

peaks of circumferential (GCS) and longitudinal (GLS) strains.

Global systolic peak of circumferential (SRc) and longitudinal

(SRl) strain rates; global early diastolic peak of circumferential

(EDSRc) and longitudinal (EDSRl) strain rates; as well as global

late diastolic peak of circumferential (LDSRc) and longitudinal

(LDSRl) strain rates were also derived. Circumferential strains

and strain rates were calculated as the average of global

strains and strain rates over the three short-axis slices analyzed.

In 37 subjects, automatic tracking was not accurate enough (i.e.

contours failed to match to endocardial or epicardial borders

throughout the cardiac cycle), so the initialization of the

algorithm was repeated along with strain calculation. Even after

repeating the initialization, tracking was still inaccurate in 8

subjects, who were consequently excluded.
Statistical analysis

Statistical analysis was performed using GraphPad Prism

(version 8.0.1, GraphPad Software, San Diego, CA) and R

statistical software (version 4.1.3). Data were expressed as mean ±

standard deviation (SD) when normally distributed, and as median

(interquartile range) when non-normally distributed. A Fisher test

was performed to compare qualitative variables between the two

groups. Quantitative variables were compared using an unpaired t-

test when the data was normally distributed, or a Mann-Whitney U

test otherwise. Bivariate correlations were performed using Pearson

or Spearman coefficients, as appropriate. We also performed

multivariate analysis using generalized linear models to assess the

effect of MTGC independently of other variables. MTGC was

modeled using a beta distribution (the betareg package in R (32)).

To take into account the multicollinearity between independent

variables, we calculated the variance inflation factors (VIF) and

removed the variables with the highest VIF (i.e. redundant

variables) from the analysis. To study inter-operator and intra-

operator reproducibility, we performed a Bland-Altman analysis

and reported the mean bias and limits of agreement (mean ±

1.96·standard deviations of the differences), and computed the

coefficient of variation (CV) as the standard deviation of the

differences between two measures divided by their mean.

Statistical significance was set at p ≤0.05.
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Reproducibility analysis

Inter-rater reproducibility was evaluated for peak strain

measurements by two independent readers on four subjects.

Intra-rater reproducibility was evaluated by repeating strain

measurements four times in four different subjects by the same

observer at intervals of a few days between each measurement.

Intra-observer reproducibility was excellent, with a coefficient of

variation of 2.1% for GCS and 5.5% for GLS. Inter-observer

reproducibility was satisfactory, with a coefficient of variation of

1.7% for GCS and 2.3% for GLS.
Results

Clinical characteristics of the
study population

The baseline characteristics of subjects included in this study are

reported in Table 1. Our analysis included a total of 338 subjects, of

which 29.1% had T2D, 31.9% were obese (BMI ≥30 kg/m²), 24.3%

had both T2D and obesity, 20.5% had dyslipidemia, and 20% had

arterial hypertension. Note that seven subjects living with T2D had

coronary artery disease.

Subjects living with T2D or obesity were significantly older and

had a higher BMI and higher waist circumference than healthy

subjects. Among the 101 subjects living with T2D, median duration

since onset of disease was 8 years [4;13] and median HbA1c was

7.38% [6.4;8.4]. In total, 91 subjects were taking biguanides, 52 were

taking sulfonylureas and glinides, and 21 were taking DPP-IV

inhibitors. No subjects were taking iSGLT2.

As expected, insulin resistance assessed by HOMA-IR was

significantly higher in subjects living with T2D and/or obesity

than in healthy volunteers (4.8 [2.9;8.1] vs 1.5 [1;1.9], p<0.0001).

Analysis of biochemical parameters showed that even when

subjects living with T2D or obesity were treated by lipid-lowering

drugs, they nevertheless had significantly higher plasma

triglycerides (1.4 [1.0;2.1] mmol/l vs 0.8 [0.6;1.1] mmol/l,

p<0.0001) and significantly lower plasma high-density lipoprotein

(HDL) cholesterol (1.1 [0.9;1.3] mmol/l vs 1.4 [1.2;1.7] mmol/l,

p<0.0001) than healthy subjects.
Clinical and biological factors found to be
associated with increased MTGC

Participants were categorized based on MTGC quartiles

(Figure 2), and we compared patients with low MTGC quartiles

(n=84) versus patients with high MTGC quartiles (n=84) (Table 2).

There were significantly more subjects living with T2D, obesity,

hypertension and dyslipidemia (p<0.0001) in the high MTGC

subgroup than in the low MTGC subgroup. Remarkably, 14

healthy subjects were in the high MTGC quartile subgroup

(shown in blue on Figure 2) and 12 subjects living with T2D or

obesity were in the low MTGC quartile subgroup (shown in red on
frontiersin.org

https://doi.org/10.3389/fendo.2023.1181452
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Soghomonian et al. 10.3389/fendo.2023.1181452
Figure 2). Age, BMI and waist circumference were significantly

higher in the high MTGC subgroup than in the low MTGC

subgroup. Plasma triglyceride level was significantly higher and

plasma HDL cholesterol was significantly lower in the high MTGC

subgroup than in the low MTGC subgroup (p<0.0001).

As expected, subjects living with T2D had higher MTGC (1.2%

[0.6;1.9]) than subjects with no T2D (0.4% [0.2;0.7]). Likewise,

subjects with obesity, hypertension or dyslipidemia had higher

MTGC than healthy subjects. In a subgroup analysis, comparing

patients with low MTGC quartiles versus patients with high MTGC

quartiles in the healthy subjects subgroup and the T2D and/or

obesity patients subgroup, a higher proportion of T2D patients was

found in the high MTGC quartile as expected (Supplementary

Table 4). In univariate analysis (correlations summarized in

Table 3A), MTGC was strongly correlated to age, BMI and waist

circumference (r=0.43, p<0.0001; r=0.46, p<0.0001; r=0.45,

p<0.0001, respectively) and significantly correlated to plasma

triglycerides (r=0.39, p<0.0001) and plasma HDL cholesterol (r=-

0.27, p<0.0001), but not with plasma low-density lipoprotein, total

cholesterol, fasting plasma glucose or HOMA-IR score (Table 3A).

In multivariate analysis, the only independent correlate of MTGC

was BMI (p=0.01; R² = 0.20). Importantly, the full set of clinical and

biological parameters included in the analysis only explained 20% of

the MTGC variance (Table 3B).
Frontiers in Endocrinology 05
Cardiac magnetic resonance imaging

As shown in the flowchart (Figure 1), we only had cardiac

function data available for 336 subjects, due to technical issue such

as poor quality of MRI data. Velocity-encoded transmitral inflow

images were readable and analyzable in 290 subjects. Of the

remaining 336 subjects for which we had MRI images, we were

only able to perform strainmeasurements on 323 subjects, as theMRI

data was not interpretable in 5 subjects and the FT algorithm was

unable to accurately execute the tracking in 8 subjects (Figure 1).
Cardiac characteristics

As patients living with T2D or obesity were significantly older and

had a higher BMI than the healthy subjects, all subsequent analyses

were adjusted for age, gender, and BMI. Subjects living with T2D or

obesity had a significantly higher concentricity index and higher LV

mass (p<0.0001) and significantly lower cardiac index, ventricular

volumes (ESV, SV, EDV), mitral peak E-wave velocity and E/A ratio

(p<0.0001) than healthy subjects (Supplementary Table 1). Systolic and

diastolic strains were also significantly different between healthy and

non-healthy subjects (Supplementary Table 2). Global peak systolic

longitudinal strain (GLS) tended to be lower in T2D/obese subjects
TABLE 1 Clinical and biological characteristics of the study population.

All subjects
(n=338)

Healthy subjects
(n=208)

Patients living with T2D and/or obesity
(n=130)

p value

Sex ratio: women: (n, %) 200 (56.9) 112 (50.9) 88 (67.2) 0.003

Age (years) 24 [21;49] 21 [20;24] 52 [42;60] <0.0001

BMI (kg/m²) 23.9 [21;33.2] 21.6 [19.7;23.5] 37.1 [32.4;43.3] <0.0001

WC (cm):
- women
- men

78.8 [68.5;114]
83.5 [76;103]

69 [64.6;73.9]
79 [75;85.5]

115.5 [105.3;127]
115 [107;131]

<0.0001
<0.0001

Type 2 diabetes (n, %) 102 (29.1) 0 102 (77.9) <0.0001

Obesity (n, %) 112 (31.9) 0 72 (54.9) <0.0001

Dyslipidemia (n, %) 72 (20) 0 72 (54.9) <0.0001

Arterial hypertension (n, %) 70 (20) 0 70 (53.3) <0.0001

Lipid profile

Total cholesterol (mmol/L) 4.4 ( ± 0.9) 4.4 ( ± 0.8) 4.3 ( ± 0.3) 0.07

Triglycerides (mmol/L) 0.9 [0.4;1.3] 0.8 [0.6;1.1] 1.4 [1.0;2.1] <0.0001

HDL (mmol/L) 1.3 [1;1.5] 1.4 [1.2;1.7] 1.1 [0.9;1.3] <0.0001

LDL (mmol/L) 2.5 ( ± 0.8) 2.5 [2.0;1.7] 2.6 [1.8;3.1] 0.16

Glucose profile

Fasting plasma glucose (mmol/L) 4.9 [4.6;6.3] 4.7 [4.4;4.9] 7.3 [5.5;9.4] <0.0001

Fasting plasma insulinemia (mUI/L) 8.2 [5.9;12.9] 7.1 [5.2;9.2] 17.3 [12.4;24.9] <0.0001

HOMA-IR 1.7 [1.2;2.9] 1.5 [1.0;1.9] 4.8 [2.9;8.1] <0.0001
fron
Data expressed as mean ± standard deviation (SD) or as median [25th percentile;75th percentile].
BMI, body mass index; HOMA-IR, homeostatic model assessment of insulin resistance; HDL, high-density lipoprotein; LDL, low-density lipoprotein; T2D, type 2 diabetes; WC, waist
circumference.
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than in healthy subjects (-16.8% [-19.7;-14.8] vs -17.8% [-19.8;-15.9], p

=0.07). Global peak late diastolic circumferential strain rate (LDSRc)

and global peak late diastolic longitudinal strain rate (LDSRl) were

significantly higher in T2D and/or obese subjects and global peak early

diastolic circumferential strain rate (EDSRc) was significantly lower

(p<0.0001) compared to healthy subjects (Supplementary Table 2).
Impact of MTGC on cardiac characteristics

Systolic and diastolic LV volumes (ESV, SV, EDV), peak E-wave

velocity and mitral E/A ratio were significantly lower in the high

MTGC subgroup than in the low MTGC subgroup (p<0.0001)

(Table 4). For systolic strain parameters, no difference was found

between the two subgroups (Figure 3, Supplementary Table 3). For

diastolic strain rate parameters, EDSRc was significantly lower in

the high MTGC subgroup than in the low MTGC subgroup

(Figure 4), and LDSRc and LDSRl were significantly higher in the

high MTGC subgroup than in the low MTGC subgroup (Figure 5).

In a subgroup analysis, comparing patients with low MTGC

quartiles versus patients with high MTGC quartiles in the healthy

subjects subgroup and the T2D and/or obesity patients subgroup,

only ESV and EDV were still significantly lower in high MTGC

subjects in the T2D and/or obesity patients subgroup

(Supplementary Table 5).
Is MTGC associated with functional and
structural LV parameters?

MTGC was significantly correlated with conventional LV

diastolic function parameters, i.e. EDV, EDV index, peak E-wave
FIGURE 2

Classification of the population based on myocardial triglyceride
content quartile. Q1 (n=84):0.001% to 0.314%; Q2 (n=86): 0.314% to
0.543%; Q3 (n=84): 0.543% to 1.090%; Q4(n=84): 1.090% to 3.955%;
X-axis represented the median of myocardial triglyceride content
divided into quartiles; Healthy subjects are represented in blue and
subjects living with T2D and/or obesity are represented in red.
TABLE 2 Comparison of bioclinical characteristics in subjects with low versus high myocardial triglyceride content.

Low MTGC ≤ 0.31%
(n=84)

High MTGC >1.09%
(n=84)

p value

Clinical data

Sex ratio: women (n, %) 46 (54.8%) 58 (69.1%) 0.08

Age (years) 22 [21;29.8] 51 [34;58.8] <0.0001

BMI (kg/m²) 21.8 [19.7;24.7] 35.3 [28.9;41.5] <0.0001

WC (cm):
-women
-men

70.5 [64.5;81.5]
78.3 [74.8;85.6]

111 [99.5;125]
110 [91.3;119.8]

<0.0001
<0.0001

T2D (n, %) 8 (9.5%) 52 (61.9%) <0.0001

Obesity (n, %) 11 (13.1%) 62 (73.8%) <0.0001

Dyslipidemia (n, %) 5 (5.9%) 39 (46.4%) <0.0001

Arterial hypertension (n, %) 5 (5.9%) 37 (44.1%) <0.0001

Biological data

Total cholesterol (mmol/L) 4.3 [3.8;4.7] 4.4 [3.5;5.1] 0.79

Triglycerides (mmol/L) 0.8 [0.6;1.2] 1.4 [1.0;2.1] <0.0001

(Continued)
fron
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velocity, peak A-wave velocity, and mitral E/A ratio, and with

conventional LV systolic function parameters, i.e. LVEF, ESV, ESV

index, SV and SV index. MTGC was also correlated with LV mass

but not with LV mass index (Table 5A). MTGC was also positively
T
c

M
m
li

T
c

B
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correlated with the LV concentric remodeling index (LV mass/EDV

ratio) (r=0.32, p<0.00001). To study the association between LV

function and MTGC, we performed multivariate analysis with each

of the cardiac parameters correlated to MTGC in univariate analysis

entered as a dependent variable, and then with MTGC, gender, age,

BMI, hypertension and T2D entered into the model as

independent variables.

MTGC remained independently associated to LV volumes

(EDV, EDVi, ESV and ESVi) and to LV mass (Table 5B). Peak E-

wave velocity also remained significantly associated with MTGC in

this model, but with a positive coefficient (b=2.94, p=0.015,

R²=0.44). Furthermore, the LV concentric remodeling index (LV

mass/EDV) was no longer significantly associated with

MTGC (Table 5C).
Is MTGC associated with early changes in
LV function?

Regarding systolic strain parameters, MTGC was not correlated

with GLS (r=0.009, p=0.88). Regarding diastolic strain parameters,

MTGC was negatively correlated with EDSRc (r=-0.17, p=0.003)

and positively correlated with LDSRc and LDSRl (r=0.40, p<0.0001;

r=0.24, p<0.0001, respectively) (Table 5A).

Multivariate analysis showed that the diastolic strain

parameters, both EDSRc and LDSRl remained independently

associated with MTGC (b=0.04, p=0.015, R²=0.37; b=0.03,
p=0.041, R²=0.16, respectively) even after adjusting for age,

gender, BMI, hypertension, and T2D (Table 5C).
Discussion

To the best of our knowledge, this is the first study using MRI to

assess the effect of MTGC on early LV function changes in such a

large cohort of very well-phenotyped healthy volunteers and non-

healthy subjects without heart failure.

The main findings of this study were: 1) among the many

clinical and biological parameters studied, BMI was the only

independent correlate of MTGC; 2) MTGC was independently

associated with LV volumes and LV mass; 3) MTGC was not

independent ly associated with systol ic and diastol ic

strain measures.
TABLE 2 Continued

Low MTGC ≤ 0.31%
(n=84)

High MTGC >1.09%
(n=84)

p value

HDL (mmol/L) 1.4 [1.1;1.6] 1.1 [1.0;1.4] <0.0001

LDL (mmol/L) 2.4 ( ± 0.7) 2.5 ( ± 0.8) 0.909

Fasting plasma glucose (mmol/L) 4.7 [4.7;5.1] 6.7 [5.0;8.9] <0.0001

Fasting plasma insulinemia (mUI/L) 6.9 [5.0;9.9] 14.1 [8.7;21.7] <0.0001

HOMA-IR 1.4 [1.0;8.6] 3.7 [1.7;6.6] <0.0001
fron
Data expressed as mean ± standard deviation (SD) or as median [25th percentile;75th percentile].
BMI, body mass index; HOMA-IR, homeostatic model assessment of insulin resistance; MTGC, myocardial triglyceride content; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
T2D, type 2 diabetes; WC, waist circumference.
ABLE 3A Association between myocardial triglyceride content and
linical or biological parameters (univariate analysis) (n = 338).

MTGC

r p value

Age (years) 0.43 <0.0001

BMI (kg/m²) 0.46 <0.0001

Waist circumference (cm) 0.45 <0.0001

Total cholesterol (mmol/L) 0.07 0.19

Triglycerides (mmol/L) 0.39 <0.0001

HDL cholesterol (mmol/L) -0.27 <0.0001

LDL cholesterol (mmol/L) 0.08 0.17

Fasting plasma glycemia (mmol/L) 0.07 0.3

HOMA-IR 0.08 0.26

TGC, myocardial triglyceride content; BMI, body mass index; HOMA-IR, homeostatic
odel assessment of insulin resistance; HDL, high-density lipoprotein; LDL, low-density
poprotein.
ABLE 3B Association between myocardial triglyceride content and
linical or biological parameters (multivariate analysis) (n=338).

MTGC dependent variable b p value R²

Independent variables

Sex (female) 0.12 0.18 0.20

Age 0.01 0.07

BMI 0.01 0.01

Waist-to-hip ratio 0.34 0.49

T2D 0.14 0.30

Arterial hypertension -0.09 0.53

HDL cholesterol -0.48 0.10

Triglycerides -0.03 0.61

MI, body mass index; MTGC, myocardial triglyceride content; T2D, type 2 diabetes.
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As previously reported (12, 33), MTGC was positively associated

with age, BMI, and waist circumference. As expected, subjects in the

highest MTGC quartile were more likely to be living with T2D than

subjects in the lowest MTGC quartile, which confirms previous data
Frontiers in Endocrinology 08
showing that cardiac ectopic fat and in particular myocardial fat

increases with diabetes. This is in line with previous studies

demonstrating that T2D patients have significantly higher MTGC

than healthy individuals, independent of age or BMI (14, 34, 35).
TABLE 4 Comparison of conventional left ventricular parameters between subjects with low versus high myocardial triglyceride content.

Low MTGC ≤ 0.31%
n=84

High MTGC >1.09%
n=84

p value

Cardiac geometry

LV mass (g) 96.1 [73.5;123.3] 106.4 [86.7;127.9] 0.05

LV mass index (g/cm²) 53.9 ( ± 11.5) 54.5 ( ± 13.1) 0.78

Conventional LV function parameters

LV Mass/EDV (g/mL) 0.69 [0.60;0.76] 0.89 [0.75;1.04] <0.0001

Cardiac output (L/min) 6.2 ( ± 1.4) 6.1 ( ± 1.5) 0.76

Cardiac index (L/min/m²) 3.4 ( ± 0.6) 3.1 ( ± 0.7) 0.002

Conventional LV systolic function parameters

LVEF (%) 65.1 ( ± 6.7) 67.6 ( ± 8.3) 0.04

ESV (mL) 46.6 [35.6;61.3] 37.1 [30.2;50.2] 0.0006

ESV index (mL/m²) 26.4 [21.8;32.3] 18.7 [15.6;25.1] <0.0001

SV (mL) 92 ( ± 23) 81.8 ( ± 19.8) 0.003

SV index (mL/m²) 50.7 ( ± 9.4) 41.3 ( ± 9.3) <0.0001

Conventional LV diastolic function parameters

EDV (mL) 136.8 [115.3;171.2] 118.2 [106.5;144.7] 0.0008

EDV index (mL/m²) 77.9 ( ± 14.4) 62 ( ± 14.6) <0.0001

Peak E velocity (cm/s) 71 ( ± 13.5) 59 ( ± 15.4) <0.0001

Peak A velocity (cm/s) 32.7 ( ± 9.3) 42.4 ( ± 14.4) <0.0001

Mitral E/A ratio 2.2 [1.7;2.8] 1.3 [1.1;1.9] <0.0001
fron
Data expressed as mean ± standard deviation (SD) or as median [25th percentile;75th percentile].
MTGC, myocardial triglyceride content; LV, left ventricular; LVEF, left ventricular ejection fraction; SV, stroke volume; ESV, end-systolic volume; EDV, end-diastolic volume.
A B

FIGURE 3

Comparison of circumferential (A) and longitudinal (B) strain between high and low MTGC subgroups. GCS, global peak systolic circumferential
strain; GLS, global peak systolic longitudinal strain; ns, non significant.
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In multivariate regression analyses, only BMI was found to be

an independent determinant of MTGC, but all the parameters

included in the analysis together explained only 20% of the

MTGC variance, suggesting that obesity per se is not sufficient to

cause myocardial steatosis. In addition, 14 healthy volunteers were

found to belong to the high MTGC quartile subgroup (MTGC >

75th percentile), which highlights the hypothesis that BMI alone

cannot predict MTGC and that it is therefore important to look

further than BMI alone to phenotype ectopic fat depots in patients

living with metabolic disease and unhealthy obesity.

Studies conducted in healthy volunteers have shown that a

short-term very-low-calorie diet leads to an accumulation of

myocardial triglyceride (36, 37) and that progressive caloric

restriction induces a dose-dependent increase in MTGC (38).

Conversely, in patients living with T2D and obesity, prolonged
Frontiers in Endocrinology 09
caloric restriction may be associated with a reduction of MTGC

(39). These observations are consistent with the hypothesis that

MTGC could act as the fuel of myocardium in healthy subjects

under stress conditions, in particular in young athletes, and could

be modulated by lifestyle changes and be more lipotoxic in

metabolic disease subjects. MTGC could thus be considered as a

highly flexible source of free fatty acids via lipolysis to the

myocardium, but chronic accumulation of triglycerides in the

myocardium could drive an overload of toxic lipid intermediates

that could, along with other processes such as inflammation or

fibrosis, contribute to LV dysfunction (40, 41). We and others have

already shown that like myocardial steatosis, this flexibility i.e.

ability to mobilize ectopic fat depots are less manifest in patients

with severe obesity who lose weight following bariatric surgery (23,

42). On the other hand, the risk of MTGC accumulation should also
A B

FIGURE 4

Comparison of early diastolic circumferential (A) and longitudinal (B) strain rate between high and low MTGC subgroups. EDSRc, global peak early
diastolic circumferential strain rate; EDSRl, global peak early diastolic longitudinal strain rate; ns, non significant; **p<0.001.
A B

FIGURE 5

Comparison of late diastolic circumferential (A) and longitudinal (B) strain rate between high and low MTGC subgroups. LDSRc, global peak late
diastolic circumferential strain rate; LDSRl, global peak late diastolic longitudinal strain rate; ***p<0.0001.
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be explained by other factors, and notably a genetic component.

Genetic polymorphisms may influence susceptibility to develop a

chronic imbalance of lipid storage versus lipid oxidation. Therefore,

genetic studies are necessary to gain deeper insight into the

pathogenesis of this myocardial steatosis, as had already been

done for other diseases involving ectopic fat deposition, such as

metabolic-associated fatty liver disease (43–45).

Multiple animal studies (9, 10) support the concept that

myocardial steatosis can lead to LV dysfunction. They posit that

myocardial accumulation of toxic fatty acid intermediates entails

cellular damage, apoptosis and replacement fibrosis, leading to

contractile LV dysfunction (9, 46, 47). Some 1H-MRS human

studies report similar associations (48–51), but our results give a
Frontiers in Endocrinology 10
more nuanced picture. We found that LV volumes were negatively

associated with MTGC. This is in agreement with data that we and

others had previously published (12, 15). Furthermore, we found

that higher LV mass was correlated with higher MTGC.
TABLE 5A Association between myocardial triglyceride content and
structural and functional LV parameters (univariate analysis).

MTGC

r p value

LV mass (g) 0.12 0.03

LV mass index (g/cm²) -0.01 0.83

LV mass/EDV (g/mL) 0.32 <0.0001

Cardiac output (L/min) 0.02 0.75

Cardiac index (L/min/m²) -0.15 0.006

LVEF (%) 0.15 0.005

ESV (mL) -0.20 0.0003

ESV index (mL/cm²) -0.34 <0.0001

SV (mL) -0.13 0.02

SV index (mL/cm²) -0.31 <0.0001

EDV (mL) -0.17 0.002

EDV index (mL/cm²) -0.36 <0.0001

Peak E velocity (cm/s) -0.25 <0.0001

Peak A velocity (cm/s) 0.26 <0.0001

Mitral E/A ratio -0.35 <0.0001

GCS (%) -0.10 0.07

GLS (%) 0.009 0.88

SRc (s-1) -0.13 0.02

SRl (s-1) -0.12 0.04

EDSRc (s-1) -0.17 0.003

LDSRc (s-1) 0.40 <0.0001

EDSRl (s-1) -0.08 0.15

LDSRl (s-1) 0.24 <0.0001

MTGC, myocardial triglyceride content; LV, left ventricular; LVEF, left ventricular ejection
fraction; SV, stroke volume; ESV, end-systolic volume; EDV, end-diastolic volume; GCS,
global peak systolic circumferential strain; GLS, global peak systolic longitudinal strain; SRc,
global peak systolic circumferential strain rate; SRl, global peak systolic longitudinal strain
rate; EDSRc, global peak early-diastolic circumferential strain rate; EDSRl, global peak early-
diastolic longitudinal strain rate; LDSRc, global peak late-diastolic circumferential strain rate;
LDSRl, global peak late-diastolic longitudinal strain rate.
TABLE 5B Association between LV mass and clinical parameters
(multivariate analysis) (n=338).

LV mass dependent variable b p value R²

Independent variables

Sex (Male) 40.0 <0.0001 0.58

Age -0.5 0.0001

BMI 2.0 <0.0001

MTGC -6.1 0.002

T2D 17.7 0.0003

Arterial hypertension 9.4 0.03

BMI, body mass index; MTGC, myocardial triglyceride content; T2D, type 2 diabetes.
frontiers
TABLE 5C Association between myocardial triglyceride content and
structural and functional LV parameters (multivariate analysis).

MTGC

b p value R²

LV mass (g) -6.05 0.002 0.58

LV mass/EDV (g/mL) 0.003 0.98 0.44

Cardiac index (L/min/m²) -0.01 0.80 0.20

LVEF (%) 1.33 0.03 0.07

ESV (mL) -3.94 0.002 0.31

ESV index (mL/cm²) -1.63 0.01 0.29

SV (mL) -2.85 0.07 0.37

SV index (mL/cm²) -0.78 0.30 0.37

EDV (mL) -6.40 0.005 0.45

EDV index (mL/cm²) -2.19 0.04 0.46

Peak E velocity (cm/s) 2.94 0.02 0.44

Peak A velocity (cm/s) 0.92 0.34 0.23

Mitral E/A ratio 0.09 0.11 0.44

SRc (s-1) -0.04 0.02 0.09

SRl (s-1) -0.05 0.0003 0.13

EDSRc (s-1) 0.04 0.02 0.37

LDSRc (s-1) 0.02 0.17 0.55

LDSRl (s-1) 0.03 0.04 0.18

MTGC, myocardial triglyceride content; LV, left ventricular; LVEF, left ventricular ejection
fraction; SV, stroke volume; ESV, end-systolic volume; EDV, end-diastolic volume; SRc, global
peak systolic circumferential strain rate; SRl, global peak systolic longitudinal strain rate;
EDSRc, global peak early-diastolic circumferential strain rate; LDSRc, global peak late-
diastolic circumferential strain rate; LDSRl, global peak late-diastolic longitudinal strain rate.
Each structural and functional LV parameter was analyzed as a dependent variable with the
same model as shown in Table 5B.
For each analysis, only the standardized regression coefficient of the independent variable
MTGC is presented.
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Szczepaniak et al. (52) found a similar association in 15 healthy lean

subjects, which is in line with animal studies that suggest ceramide

accumulation in nonadipocyte cells could promote hypertrophic

signaling (9). However, the association between LV mass and

MTGC was less strong in obesity. Indeed, in multivariate analysis,

we found that LV mass was independently associated with MTGC,

but in obese subjects, if there was high MTGC, then LV mass was

not as high as in lean subjects.

For several years now, myocardial strain and strain rates

have emerged as key parameters for detecting subclinical

alteration in LV function, and are now displacing conventional

cardiac function parameters for LV function analysis (53–55).

Myocardial strain assesses myocardial deformation and can easily

be measured by routine echocardiography and more recently by

MRI. Studies show that it is more sensitive than traditional

imaging markers for detecting early myocardial injury and

predicting major cardiac events (56–58). After acute myocardial

infarction, it also has better prognostic value than conventional

LV function parameters (59). Strain imaging is now widely used in

clinical practice and in clinical research, and is beginning to find

use in MTGC studies.

Regarding systolic strain, very few studies have found an

association between MTGC and LV systolic dysfunction, and only

a handful of them performed a strain measurement (50, 51, 60).

Mahmod et al. found that MTGC was an independent determinant

of impaired circumferential and longitudinal systolic LV strain

assessed by cardiac MRI tagging (60). In a more recent cardiac

MRI study on 53 patients living with T2D and 20 healthy subjects,

Gao et al. (51) showed that increased MTGC was independently

associated with impaired longitudinal systolic strain. Contrary to

these studies, we did not find an association between increased

MTGC and impaired systolic strain. It is possible that because we

included only patients without overt criteria of heart failure, we

could not observe an association between MTGC and early LV

systolic dysfunction. Longitudinal studies including different stages

of heart failure (preserved or reduced) and different time intervals

for assessment of LV function parameters would help to detect

changes in LV function and establish whether and how these

changes are related to MTGC.

MTGC was correlated to diastolic function abnormalities, and

notably with the global peak early diastolic circumferential strain

rate, which is one of the main parameters currently used to study

diastolic function in MTGC studies (49, 61). In multivariate

analysis, MTGC remained independently associated with end-

diastolic volume but not with other parameters of diastolic

dysfunction, except for global peak late diastolic longitudinal

strain rate (LDSRl) that remained positively associated to MTGC.

However, MTGC explained only 18% of the LDSRl variance, and we

cannot reach firm conclusions based solely on this one parameter

because it probably reflects a compensatory mechanism that can be

related to the late atrial ventricular filling velocity (peak A-wave

velocity). Our results contrast with previous studies that have

shown a linear association between MTGC and impaired LV

diastolic function (14, 16, 62, 63). Rijzewijk et al. (14)

demonstrated that increased MTGC was associated with impaired

mitral E/A ratio and impaired peak E-wave velocity. However, the
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sensitivity of this technique for detecting diastolic dysfunction is not

perfect, notably because there is evidence of a pseudonormal E/A

pattern related to diastolic dysfunction (64, 65).

Regarding early diastolic dysfunction, myocardial steatosis was

also found to be independently associated with impaired diastolic

strain rate. Ng et al. (62) studied 42 men living with T2D and found

an independent association between MTGC and early diastolic

strain rate measured by echocardiography. Similarly, Korosoglou

et al. (16) found an independent association between MTGC and

early diastolic strain rate measured by MRI.

Nyman et al. found that MTGC was not a determinant of

diastolic function, whereas it was correlated with early LV diastolic

dysfunction in univariate analysis (15). Likewise, in a cohort of 75

nondiabetic men, Graner et al. failed to find any association

between MTGC and diastolic function, but note that they did not

use strain to assess LV function (66).

Patients living with T2D or obesity have traditionally been

characterized as having diastolic dysfunction with normal systolic

function (35, 67). While some authors have suggested that MTGC

is involved in this pathological process (14, 16, 33), our results and

others offer a more nuanced picture. In a MRI myocardial tagging

study, MTGC was independently associated to global peak systolic

longitudinal strain but was not correlated at all to diastolic strain

rate (50), which illustrates, once again, that the association

between MTGC and diastolic dysfunction is not unequivocal. As

we demonstrated earlier, data on the effect of MTGC on LV

function remains inconsistent. We can speculate that associations

between MTGC and impaired LV function are likely to be indirect,

and that other unmeasured pathologic processes may be more

directly responsible for LV dysfunction in patients living with

T2D or obesity. Furthermore, only LV volumes (EDV and

ESV) remained independently associated with MTGC in our

multivariate analysis. We can hypothesize that, contrary to

previous work, MTGC does not affect the fitting of early LV

function abnormalities, but might worsen a pre-existing

phenomenon. Indeed, there are other mechanisms that appear

to be intricately linked with cardiac lipotoxicity and that may also

promote cardiac cellular damage, such as glucotoxicity which is

also described as being associated with myocardial dysfunction

(68–70). Thus, although metabolic channeling of excess fatty acids

to intracellular triacylglycerol stores may serve an initial

cytoprotective role by sequestering excess fatty acids away from

mitochondria, endoplasmic reticulum and other organelles, the

capacity for physiological storage of lipids in the heart is limited

(71). The endogenous mechanisms that determine the transition

between adaptive lipid storage and lipotoxicity are still not

well understood.

This work has some strengths. It was performed in a large

cohort of subjects, whereas to our knowledge, most previous MTGC

studies were performed on small cohorts with less than a hundred

subjects. Moreover, we only included subjects who were free of

heart failure, in order to analyze the early abnormalities of LV

function. Regarding strain measurement, we used MRI-FT, which is

a promising tool with good feasibility and reproducibility for global

strain measurement (72). In addition, the strain values found here

were in line with values reported in some prior MRI-FT studies (29,
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73–75). Finally, healthy subjects were rigorously phenotyped,

including for any cardiovascular disease or comorbidities that

could impact LV function (notably diabetes, obesity, dyslipidemia,

or hypertension).

However, this study has also some limitations. First, other

biomarkers could have been considered to predict MTGC, such as

b-hydroxybutyrate, a ketone body that may be inversely associated

with increased MTGC (76). Unfortunately, the retrospective design

of our study made it impossible to include additional biological

parameters that had not been measured in each cohort’s original

study design. Second, we used non-invasive MRS to quantify the

intramyocardial triglyceride content without performing

confirmatory histological examination. Nevertheless, 1H-MRS is

an established non-invasive method that has demonstrated high

diagnostic accuracy for the assessment of myocardial steatosis (77).

Third, as we conducted an observational cross-sectional study, we

were unable to observe a deterioration in LV function, which may

have limited our capacity to observe a potential relationship

between MTGC and LV function. Fourth, among the subjects

with high MTGC (MTGC >75th percentile), 61.9% had T2D,

suggesting that this population had both glucotoxicity

and lipotoxicity.
Conclusion

In conclusion, in a large cohort of healthy and non-healthy

subjects, only BMI remained independently associated with

increased MTGC in multivariate analysis, which suggests the

existence of unknown factors to predict the rise of MTGC.

Further prospective studies are required in order to identify

these factors.

Using MRI to study myocardial triglyceride content and

systolic and diastolic LV function simultaneously with MRI-FT

tracking for strain measurement, we found that MTGC is

associated with LV dysfunction. However, this relationship is

non-linear, and MTGC does not appear to be involved in early

changes in LV function. The impact of myocardial steatosis on LV

function therefore remains a matter of ongoing debate, and future

longitudinal studies are needed in a large cohort of healthy and

non-healthy age-matched subjects in order to conclusively

determine whether increased MTGC is associated with

LV dysfunction.
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