
HAL Id: hal-04179983
https://amu.hal.science/hal-04179983v1

Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using answer set programming to deal with boolean
networks and attractor computation: application to gene

regulatory networks of cells
Tarek Khaled, Belaid Benhamou, Van-Giang Trinh

To cite this version:
Tarek Khaled, Belaid Benhamou, Van-Giang Trinh. Using answer set programming to deal with
boolean networks and attractor computation: application to gene regulatory networks of cells. Annals
of Mathematics and Artificial Intelligence, 2023, �10.1007/s10472-023-09886-7�. �hal-04179983�

https://amu.hal.science/hal-04179983v1
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with
Boolean Networks and Attractor

Computation: Application to Gene
Regulatory Networks of Cells

Tarek Khaled†, Belaid Benhamou† and Van-Giang Trinh

Aix-Marseille University, University of Toulon, CNRS, LIS,
Marseille, France.

*Corresponding author(s). E-mail(s): tarek.khaled@univ-amu.fr;
Contributing authors: belaid.benhamou@univ-amu.fr;

trinh.van-giang@lis-lab.fr;
†These authors contributed equally to this work.

Abstract
Deciphering gene regulatory networks’ functioning is an essential step for better
understanding of life, as these networks play a fundamental role in the control
of cellular processes. Boolean networks have been widely used to represent gene
regulatory networks. They allow to describe the dynamics of complex gene reg-
ulatory networks straightforwardly and efficiently. The attractors are essential in
the analysis of the dynamics of a Boolean network. They explain that a partic-
ular cell can acquire specific phenotypes that may be transmitted over several
generations. In this work, we consider a new representation of Boolean net-
works’ dynamics based on a new semantics used in Answer Set Programming
(ASP). We use logic programs and ASP to express and deal with gene regula-
tory networks seen as Boolean networks, and develop a method to detect all the
attractors of such networks. We first show how to represent and deal with general
Boolean networks for the synchronous and asynchronous updates modes, where
the computation of attractors requires a simulation of these networks’ dynam-
ics. Then, we propose an approach for the particular case of circular networks
where no simulation is needed. This last specific case plays an essential role in
biological systems. We show several theoretical properties; in particular, sim-
ple attractors of the gene networks are represented by the stable models of the
corresponding logic programs and cyclic attractors by its extra-stable models.

1

Springer Nature 2021 LATEX template

2 Using Answer Set Programming to Deal with Attractor Computation

These extra-stable models correspond to the extra-extensions of the new seman-
tics that are not captured by the semantics of stable models. We then evaluate
the proposed approach for general Boolean networks on real biological networks
and the one dedicated to the case of circular networks on Boolean networks
generated randomly. The obtained results for both approaches are encouraging.

Keywords: Answer set programming, Logic programming, Systems biology, Gene
regulatory network, Boolean network, Attractor, Cellular phenotype.

1 Introduction
Proteins synthesized from an organism’s genes are involved in cellular processes such
as cells’ response to changing environmental conditions, cell differentiation during
an organism’s development, and DNA replication before cell division. Each of these
cellular processes is sensitive to the concentration of a large number of proteins.
Therefore, we understand why gene expression, that is, the set of processes leading to
the synthesis of these proteins, is a highly regulated phenomenon. Many proteins are
involved in these different regulation stages. Gene expression is regulated by proteins
from other genes’ expression. The set of regulatory interactions between genes forms
what is called a gene regulatory network.

A gene regulatory network is a biological system representing genes’ interaction
for the survival, reproduction, or death of a cell. Different approaches have been
used to model and simulate gene regulatory networks [1]. Quantitative modeling is
mostly used, but it needs numerical parameters that are, in most cases, challenging to
obtain. Here, we use a qualitative representation that does not require to know such
parameters [2] and allows to capture the fundamental properties of the dynamics of
gene regulatory networks.

Boolean networks are a simple but powerful framework for modeling gene reg-
ulatory networks [3–5]. They are composed of entities corresponding to genes or
proteins. Each entity takes a value on or off, meaning that the gene/protein is or is
not . Two genes/proteins are connected if the expression of one of them modifies the
expression of the other resulting in an activation or an inhibition. From a logical point
of view, a biological system can be seen as a set of interacting entities changing along
discrete time. An update mode specifies the way that the entities will be updated.
There are two most popular update modes for Boolean networks [6]: synchronous
(i.e., all the entities are simultaneously updated at each step) and asynchronous (i.e.,
). It has been shown that Boolean networks correctly express and capture the dynam-
ics of gene regulatory networks. Particularly, the attractors of Boolean networks
characterize their dynamics.

In gene regulatory networks, an attractor represents the states towards which the
network dynamics converges and generally corresponds to the characteristics/pheno-
types observed in biological systems [4, 7]. A Boolean network will converge to an
attractor, and will then remain in it unless an external force is applied [8, 9]. Thus, it
is essential to identify the attractors when studying the dynamics of a network. With

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 3

this demand, we introduce in this work a new logic approach to express and analyze
the dynamics of Boolean networks that allows to capture all the attractors.

We use logic programming and the ASP framework [10] to represent and deal
with gene regulatory networks. resulting from research on logic programming and
non-monotonic reasoning. Several ASP solvers [11–14] have been developed. They
provide a very natural and powerful way [15] to represent knowledge bases and
allow to solve efficiently various combinatorial problems. The work presented in this
paper is based on the ASP approach introduced in [16, 17] that is itself based on the
semantics introduced in [18]. Unlike other semantics, the used one always ensures
extensions or models for consistent logic programs, which reflect the meaning of
the logic programs. Some of the extensions satisfying what is called a discrimi-
nant condition correspond to the stable models of the logic programs. Other ones
called extra-extensions identify extra-stable models that are not considered by know
classical semantics, such as the one of stable models [19].

First, we propose a method that we use to compute the attractors of general
Boolean networks for both the synchronous and asynchronous update modes. Herein,
the detection of attractors is done by simulating the Boolean networks’ dynamics and
then verifying the attractors’ existence. Second, we focus on particular gene networks
represented by circular graph interactions that play an essential role in biological
systems and consider only the asynchronous update mode. For this case, the detec-
tion of the attractors is done without any Boolean network simulation. We will see
that representing interaction graphs of circular Boolean networks as logic programs
interpreted in the new semantics [18] leads to some theoretical results that we use to
identify the attractors. Especially, these results reveal a similarity between the answer
sets (the stable models) of the logic program representing the interaction graph and
the stable configurations of its corresponding transition graph. On the other hand, we
draw parallels between the extra-stable models of the logic program and the stable
cycles of the transition graph. The extra-stable models of the new semantics [18] are
essential in the detection of the stable cycle attractors.

It is worth noting that the present article is the revised and extended version of our
previous work [20, 21]. On the one hand, we carefully revise the formal definitions
and proofs, the discussions about related work, the experimental design, and all the
other details presented in the preliminary papers. On the other hand, we add more
new results as follows. First, we have improved our ASP encoding to make it totally
declarative but focus only on stable configurations. Second, we showcase that the
efficiency of this improved encoding can benefit to a broader approach [22] (also
developed by our group) for computing all attractors of an asynchronous Boolean
network. Finally, we verify this hypothesis by testing our method on the large real-
world models used in [22].

The paper’s remainder is organized as follows: We start with summarizing the
preliminaries of the used ASP semantics [18] and the Boolean network framework
in Section 2. We show how to represent and deal with general Boolean networks in
Section 3. In Section 4, we propose an approach dedicated to the particular case of cir-
cular Boolean networks. In Section 5, we evaluate the proposed approach for general
Boolean networks on real biological networks and the approach dedicated to circular

Springer Nature 2021 LATEX template

4 Using Answer Set Programming to Deal with Attractor Computation

networks on randomly generated networks. We also discuss several related work in
Section 6. Finally in Section 7, we conclude the work and give some perspectives.

2 Preliminaries

2.1 Boolean networks
Let V = {v1, . . . , vn} be a finite set of Boolean entities vi ∈ {0, 1} representing genes
in a gene regulatory network. A configuration x = (x1, . . . , xn) of the system is the
attribution of a truth value xi ∈ {0, 1} to each element of V . The set of all config-
urations [23], also called the space of configurations, is designated by X = {0, 1}n.
Boolean networks can be seen as abstractions for gene regulatory networks where
each Boolean variable xi represents the state of the gene vi. The true value for xi

(i.e., xi = 1) means that the corresponding gene is active, the false value (i.e., xi = 0)
means that the corresponding gene is inactive.

The dynamics of a Boolean network is expressed by a global transition function
f and an update mode that defines how the elements of this Boolean network are
updated over time.

The global transition function f is defined as f : X 7→ X such that
x = (x1, . . . , xn) 7→ f (x) = (f1(x), . . . , fn(x)), where each function fi 1: X 7→ {0, 1} is
a local transition function that gives the evolution of the state xi of the gene vi over
time.

There are an infinite number of possible update modes, but the most used ones are
the synchronous and asynchronous modes [6]. In the synchronous mode, all the com-
ponents are concurrently updated at each step. Consequently, each state has exactly
one successor. In the asynchronous mode, . Thus, each state can have up to n succes-
sors. In biology, the asynchronous mode fits the actual situation better [6]. Indeed,
state changes occur at variable speeds . However, the question which update mode is
the best one is still open so far. Hence, in this work we study both synchronous and
asynchronous Boolean networks.

2.1.1 Transition graphs

The Boolean network dynamics is expressed by means of a transition graph TG,
defined by a transition function f and an update mode, formally:

Definition 1. Let X = {0, 1}n be the configuration space of a Boolean net-
work, f : X → X be its associated global transition function and fi : X → {0, 1},
i ∈ {1, . . . , n} are the local transition functions forming the function f . The tran-
sition graph representing the dynamic of the network is the oriented graph
TG(f) = (X,T (f)) where the set of vertices is the set of all configurations of X and the
set of arcs is T (f) ⊆ X2. In the synchronous update mode, an arc (x, x′) ∈ T (f) if and
only if x′i = fi(x),∀i ∈ {1, . . . , n}. In the asynchronous update mode, an (x, x′) ∈ T (f)
if and only if ∃i ∈ {1, . . . , n} such that x′i = fi(x) and x′j = x j,∀ j ∈ {1, . . . , n} \ {i}. An
arc (x, x′) is called a self transition if x = x′.

1 fi(x) represents the local change that is made to the state xi of the gene vi.

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 5

An orbit in the transition graph T (f) is a sequence of configurations
(x0, x1, x2, . . .) such that ∀t ≥ 0, (xt, xt+1) ∈ TG(f). A cycle of length r is a sequence
of configurations (x1, . . . , xr, x1) with r ≥ 2 whose configurations x1, . . . , xr are all
different. We can now give the meaning of an attractor in a Boolean network. A
configuration x = (x1, . . . , xn) of the transition graph TG(f) is a stable configura-
tion when ∀xi ∈ V, xi = fi(x), thus x = f (x). A stable configuration x = (x1, . . . , xn)
forms a trivial attractor of TG(f). Note that the sets of stable configurations of the
synchronous and asynchronous transition graphs are the same.

A sequence of configurations (x1, x2, . . . , xr, x1) forms a stable cycle of TG(f)
when ∀t < r, xt+1 is the unique successor of xt and x1 is the unique successor of xr.
A stable cycle in TG(f) forms a cyclic attractor. Note that a synchronous transition
graph can have stable configurations or stable cycles, whereas an asynchronous tran-
sition graph can have in addition unstable cycles (i.e., there is a configuration of a
cycle that has a successor outside the cycle) or loose attractors [24] (i.e., overlapping
of multiple unstable cycles). In this study, we only focus on stable configurations and
stable cycles.

Transition graphs are then relevant to study the dynamics of a Boolean net-
works. Nevertheless, the biological data emanate from observations of experiments
that habitually give only correlations between genes, but nothing on the network
dynamics.

2.1.2 Interaction graphs

The correlations between genes in a gene network are traditionally represented by an
interaction graph that is a directed graph where the signs (+ or −) label the arcs.

Definition 2. Let N = (V, f) be a Boolean network, where and f = { f1, ..., fn}.
The interaction graph of N is the signed-oriented graph IG = (V, I) where
I ⊆ V × {+,−} × V is the set of signed arcs. .

Remark 1. The vertices of the interaction graph depict the genes in the gene regu-
latory network and the arcs express the interactions between them. An arc labeled by
+ is said to be positive and denotes a positive interaction between genes, whereas an
arc labeled by - is said to be negative and indicates a negative interaction between
genes.

An interaction graph of a Boolean network is much smaller than the transition
graph of this network; therefore, is straightforward. However, an interaction graph
only provides the static information of a Boolean network.

Example 1. Let us consider a Boolean network having a set of vertices V = {v1, v2}

and a transition function f defined as f (x1, x2) = (x2, x1 ∧ ¬x2). The function f
induces the interaction graph shown in Figure 1-a. This interaction graph is asso-
ciated with the global renamed transition function f : {1, 2}2 7→ {1, 2}2 where
f (1, 2) = (2, 1 ∧ ¬2) and where each Boolean variable xi is simply denoted by its
index i. We can see that the configuration space of the network is X = {0, 1}2.

Springer Nature 2021 LATEX template

6 Using Answer Set Programming to Deal with Attractor Computation

v1 v2

+

+

−

(a)

00 01

11 10

(b)

00 01

11 10

(c)

Fig. 1: The synchronous (b) / asynchronous (c) transition graphs of a Boolean net-
work resulting from the interaction graph (a) corresponding to the transition function
f

From f and X, we deduce the two transition graphs shown in Figures 1-b and 1-c
corresponding to the synchronous and asynchronous update modes, respectively.

The synchronous graph has two attractors including the stable configuration 00
and the stable cycle {10, 01}. The asynchronous graph has only one attractor repre-
sented by the stable configuration 00. We can also notice that the asynchronous graph
contains an unstable cycle {10, 11}. It is not stable because 10 has an arc coming out
from this cycle.

2.1.3 Circular Boolean networks

The particularity of circular networks has been underlined in [25]. Thomas con-
sidered asynchronous Boolean networks and assumed that a Boolean network must
contain a positive circuit (resp. a negative one) to admit several stable configurations
(resp. a non-trivial attractor such as a stable cycle).

Definition 3. A circuit of the interaction graph IG = (V, I) of size k is a sequence of
vertices C = (i1, i2, . . . , ik, i1) such that for all j ∈ {1, . . . , k − 1}, (i j, {+,−}, i j+1) and
(ik, {+,−}, i1) are arcs of IG. If all the vertices of C are distinct, then C is said to
be elementary. If the number of arcs labeled by the sign ”-” (negative arcs) of an
elementary circuit is even (resp. odd), then this circuit is said to be positive (resp.
negative).

Example 2. Consider the two Boolean networks having the same set of
nodes V = {1, 2, 3} and two global transition functions f and g defined as
f (x1, x2, x3) = (x3,¬x1, x2) and g(x1, x2, x3) = (¬x3,¬x1, x2). Figure 2 shows the
interaction graphs corresponding to both f and g. We can see that the function f
induces a negative circuit of size 3 (Figure 2 (a)) and g induces a positive circuit of
size 3 (Figure 2 (b)).

The configuration space here is X = {0, 1}3. The two asynchronous transition
graphs corresponding to both f and g are given in Figure 3. We can see that for
each arc (x, y) of both the transition graphs, if x , y then the successor configura-
tion y differs from its predecessor configuration x by a single component element.

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 7

The transition graph TG(g) corresponding to g has two stable configurations 100
and 011 illustrated in bold in Figure 3 (b). Both configurations express two sim-
ple attractors that could be written as (1,¬2,¬3) and (¬1, 2, 3) when considering
the corresponding nodes. The transition graph TG(f) corresponding to f has a
stable cycle attractor {000, 010, 011, 111, 101, 100} formed by the six configura-
tions pictured in bold in Figure 3 (a). This cycle attractor could be denoted as
{(¬1,¬2,¬3), (¬1, 2,¬3), (¬1, 2, 3), (1, 2, 3), (1,¬2, 3), (1,¬2,¬3)} when considering
the associated nodes.

1

2 3

−

+

+

(a) IG(f)

1

2 3

−

+

−

(b) IG(g)

Fig. 2: Interaction graph of circular positive (b) and negative graphs (a) of size 3

000010

011

111

110

100

101001

(a) TG(f)

000

010

011

111

110

100

101

001

(b) TG(g)

Fig. 3: Transition graphs of circular positive (b) and negative graphs (a) of size 3. For
simplification, self transitions are omitted.

An interaction graph of a single node with a positive arc forms a positive circuit
of length 1. If the node is active, then it remains active permanently. If it is inactive,
then it remains permanently inactive. Therefore, its transition graph will contain two
stable configurations, one where the node is active and one where it is inactive. This
property is also valid for interaction graphs forming a positive circuit of any size. In
other words, each node in a positive circuit acts positively on itself through all the
circuit interactions.

The stabilization state of gene i depends on the stabilization state of the node j
preceding i in the circuit. For instance, if the interaction of j on i is positive and j has

Springer Nature 2021 LATEX template

8 Using Answer Set Programming to Deal with Attractor Computation

stabilized in an active state, then i should stabilize in an active state. If j has stabilized
in an inactive state, then i should stabilize in an inactive state. The state of each node
could then stabilize either in an active or an inactive state. Therefore, regardless of
the length of the circuit, there are only two possible stable configurations (two simple
attractors) for such networks.

On the other hand, an interaction graph consisting in a single self-inhibitory node
forms a negative circuit of length 1. If the node is active, then it inhibits itself and it
activates itself otherwise (if it is inactive). The state of the node alternates between
active and inactive. This property is preserved for interaction graphs with negative
circuits of any length. Each node operates on itself through the circuit’s interactions,
and its state oscillates between active and inactive.

In the case of the asynchronous update mode, it has been shown in [26] that a
positive circuit of size n has two attractors, namely two stable configurations x and
¬x of n elements (of size n) in its corresponding transition graph. The configuration
¬x is obtained from x by inverting the truth value of each element of x. It is the com-
plementary configuration of x. On the other hand, a negative circuit of size n admits
only one attractor corresponding to a stable cycle of its transition graph formed by
2n configurations of n elements.

From a biological point of view, the capacity to have multiple stable configura-
tions may explain that some cells could develop specific phenotypes that could be
transmitted over several generations. Stable cycles allow the expression of homeosta-
sis phenomena. This phenomenon’s role is to maintain certain critical factors around
an ideal value (e.g., temperature, blood sugar level).

2.2 Answer set programming
The ASP paradigm [10] is entirely declarative, it has a high level knowledge repre-
sentation capability and very powerful solvers. The basic idea of ASP is to represent
the knowledge base as a set of rules constituting a logical program, then give to this
program a semantics by computing for instance its stable models [19] or its answer
sets [27].

A logic program π is a finite set of rules of the form

r : head(r)← body(r)

In general, the rules are given in First-Order Logic. A grounder is used to trans-
form the initial logic program into a ground (propositional logic) program denoted by
Ground(π) that conserves the initial program’s stable models or answer sets. In the
sequel, we focus on only ground programs. We shall write just π to mean Ground(π).

There are different classes of logic programs. They differ by the presence or the
absence of the classical negation and/or the default negation (or the negation as fail-
ure) in the rules of the considered program. A positive logic program π is a set of
rules of the form

r : A0 ← A1, A2, . . . , Am

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 9

where m ≥ 0 and Ai∈{0,...,m} is an atom. There is no classical/strong negation or default
negation in a positive logic program. A logic program π is a set of rules of the form

r : A0 ← A1, A2, . . . , Am, not Am+1, . . . , not An

where , Ai∈{0,...,n} is an atom and not is the symbol expressing the default nega-
tion. The positive body of r is body+(r) = {A1, A2, . . . , Am} and the negative one is
body−(r) = {Am+1, . . . , An}. The intuitive meaning of the rule r is the following: if we
prove all the atoms of body+(r) and at the same time no atom of body−(r) had been
proven, then we infer the head A0. The positive projection of r is

r+ = A0 ← A1, A2, . . . , Am

An extended logic program is a set of rules of the form

r : L0 ← L1, L2, . . . , Lm, not Lm+1, . . . , not Ln

where and Li∈{0,...,n} is a literal (i.e., an atom Ai or its negation ¬Ai). In addition to the
default negation, an extended program contains the classical negation.

2.2.1 Semantics of normal programs

Various semantics are introduced to ASP to give a meaning to logic programs. The
stable model semantics [19] is .

The reduct of a normal logic program π with respect to a given set of atoms X is
the positive program πX obtained by removing from π each rule containing a literal
not Ai in its negative body such that Ai ∈ X, and all the literals not A j of the other
rules. Formally,

πX :=
{
head(r)← body+(r) | r ∈ π, body−(r) ∩ X = ∅

}
A set X of atoms is a stable model of π if and only if X is identical to the minimal
Herbrand model of the reduct πX obtained from π with respect to X. This model is
also called the canonical model of πX , it is denoted by Cn(πX). Formally, a set X of
atoms is a stable model of π if and only if X = Cn(πX).

A new semantics that captures and extends the semantics of the stable models has
been presented in [18]. This semantics uses a Horn clausal representation to express
the considered logic program. This Horn representation has the same size as the one
of the input logic program, it does not increase its size. This semantics is based on a
classical propositional language L having two subsets of variables. The subset of vari-
ables V := {Ai | Ai ∈ L} and the subset of negated variables nV := {not Ai | Ai ∈ L}.
For each variable Ai ∈ V , there is a corresponding variable not Ai ∈ nV expressing a
sort of weak negation by failure of Ai. A link between the two types of variables is
expressed by adding to L an axiom expressing the mutual exclusion between the two
types of variables. This axiom induces the set of binary clauses

ME := {(¬Ai ∨ ¬ not Ai) | Ai ∈ V} .

Springer Nature 2021 LATEX template

10 Using Answer Set Programming to Deal with Attractor Computation

A normal logic program π = {r : A0 ← A1, A2, . . . , Am, not Am+1, . . . , not An} with
is expressed in the propositional language L by the set of Horn clauses representing
the union of the subset of rule clauses (RC) and the subset of mutual exclusion clauses
(ME). The strong back-door2 (STB) [28] of the logic program π is formed by the
literals of the form not Ai that occur in the negative bodies of its rules. Formally, it is
defined by

Given a logic program π and its STB, an extension of HC(π) with respect to
the STB, or simply an extension of the pair (HC(π), S T B) is the set of all con-
sistent clauses derived from HC(π) when adding a maximal set of negative literals
not Ai ∈ S T B to HC(π). See the formal definition at Definition 4.

Definition 4 (adjusted from [18]). Let HC(π) be the Horn CNF encoding of a logic
program π, S T B be its strong back-door, and S ′ ⊆ S T B. The set E = HC(π) ∪ S ′ of
clauses is then an extension of (HC(π), S T B) if the following conditions hold.

1. E is consistent.
2. ∀ not Ai ∈ S T B \ S ′, E ∪ {not Ai} is inconsistent.

It is shown in [18] that each consistent set of clauses HC(π) representing the logic
program π admits at least an extension with respect to the corresponding S T B. To be
formal, see Proposition 1.

Proposition 1 (adjusted from [18]). Let π be a logic program and S T B be its strong
back-door. If HC(π) is consistent, of the pair (HC(π), S T B).

It is also shown in [18] that the set of stable models of a logic program π is
in bijection with the subset of extensions E of HC(π) that satisfy the discriminant
condition: for each atom Ai ∈ V , if E infers ¬ not Ai, then E must infer Ai. That is,

∀Ai ∈ V, E |= ¬ not Ai ⇒ E |= Ai.

The extensions that do not satisfy the discriminant condition . They will define extra-
stable models that extend the classical semantics of stable models.

Two main theoretical properties are given in the two following theorems.

Theorem 1 ([18]). If X is a stable model of a logic program π, then there exists
an extension E of (HC(π), S T B) satisfying the discriminant condition such that
X = {Ai ∈ V | E |= Ai}.

Theorem 2 ([18]). If E is an extension of (HC(π), S T B) , then X = {Ai | E |= Ai} is
a stable model of π.

2We shall see in the sequel that the variables of the strong back-door form the main variables (the decision nodes) of
the model search tree.

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 11

Example 3. The Horn clausal representation of the logic program π is formed by the
set HC(π) = RC ∪ ME where

RC = {q ∨ ¬ not r , r ∨ ¬ not q , p ∨ ¬ not p , p ∨ ¬ not r}

ME = {¬q ∨ ¬ not q,¬r ∨ ¬ not r,¬p ∨ ¬ not p}

and its strong back-door is S T B = {not r, not q, not p}. We can see that (HC(π), S T B)
admits two extensions E1 = HC(π) ∪ {not r} and E2 = HC(π) ∪ {not q}. Indeed, E1
and E2 are maximally consistent with respect to the set S T B. We can deduce by unit
resolution that

E1 |= {¬r, q, p,¬ not q,¬ not p}

and

E2 |= {¬ not r, r,¬q,¬ not p,¬p}.

The extension E1 satisfies the discriminant condition, whereas E2 does not. Thus,
the logic program has one stable model M1 = {p, q} whose atoms are deduced from
E1 by unit resolution. On the other hand, M2 = {r} represents an extra-stable model
deduced from the extra-extension E2. Then, we have two models for this program,
among one of them is a stable model.

Remark 2. One can remark that in the models M1 = {p, q} and M2 = {r}, we just
reported the positive atoms that are true in the models. The other atoms are all
assumed to be false by the closed-world assumption.

2.2.2 Search method for stable models and extra-stable models

The method [16] used in this article to compute stable models and extra-stable models
is based on the semantics [18] discussed in the previous section. For a given logic
program π, this method computes all the extensions of (HC(π), S T B) from which the
stable models and extra-stable models are deduced. The computation of extensions
of the pair (HC(π), S T B) is done by progressively adding the literals not Ai of S T B
to HC(π) and by checking the consistency of the set obtained at each node of the
search tree.

The enumeration process of this method explores a Boolean tree search. It looks
like the one of a DPLL [29] procedure that is adapted to ASP and to the used
semantics [18]. If the computed extension satisfies the discriminant condition, then it
induces a stable model. Otherwise, if the discriminant condition is not satisfied, then
it corresponds to an extra-stable model. The enumeration process incrementally con-
structs an extension by alternating in the search tree between deterministic nodes that
correspond to unit propagation and non-deterministic nodes corresponding to choice
points. The choice points are defined by the assignment of truth values (true or false)
to literals not Ai within the set S T B. One of the advantages of this method is that its
enumeration process is carried out only on the subset of the literals belonging to the
set S T B. This advantage makes it possible to reduce the complexity in computational
time in practice.

Springer Nature 2021 LATEX template

12 Using Answer Set Programming to Deal with Attractor Computation

2.2.3 Semantics of extended programs

Normal logic programs are used to model various problems. However, it turns out
that many situations require strong negation. Strong negation is essential when real
problems have to be modeled declaratively. The semantics of an extended logic pro-
gram is defined by a reduction to a normal program [27]. This reduction removes
the strong negation. Then, we could use the semantics summarized above for normal
programs [18] to deduce the answer sets of the extended logic program.

To reduce an extended logic program into an equivalent normal logic program,
we replace any negative literals ¬L appearing in the extended logic program by a
new literal L′, then add the integrity constraint rule← L, L′. This rule prohibits that L
and ¬L to be true in the same model. We compute the stable models of the resulting
normal program from which we can obtain the original extended program’s answer
sets.

Example 4. The Horn clausal representation of the logic program π′ is
HC(π′) = CR(π′) ∪ ME(π′) where

CR(π′) = {b ∨ ¬ not b′ ∨ ¬a, b′ ∨ ¬ not b, a ∨ ¬ not a′,¬a ∨ ¬a′,¬b ∨ ¬b′}

and

ME(π′) = {¬a ∨ ¬ not a,¬b ∨ ¬ not b,¬a′ ∨ ¬ not a′,¬b′ ∨ ¬ not b′}.

Its strong back-door is S T B = {not a′, not b, not b′}.
We can see that (HC(π′), S T B) admits two extensions

E′1 = HC(π′) ∪ {not b, not a′} and E′2 = HC(π′) ∪ {not a′, not b′}. The two exten-
sions E′1 and E′2 verify the discriminant condition. Thus, the logic program π′ has
two stable models M′1 = {a, b

′} and M′2 = {a, b} that are deduced from E1 and E2,
respectively. It results that the extended logic program π admits the two answer sets
M1 = {a,¬b} and M2 = {a, b}.

3 Detection of attractors in general Boolean networks
We are interested here in general Boolean networks, i.e., there are no restrictions on
their Boolean functions. We shall show how we detect attractors in both the syn-
chronous and asynchronous update modes. A first and short version of this work has
been presented in [20].

3.1 General approach
3.1.1 Representation of interaction graphs

First, we show how to represent an interaction graph IG associated with a Boolean
network as an extended logic program denoted by PIG. In other words, we are
representing the global transition function associated with IG.

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 13

We first start with the rule (r1) that encodes discrete time:

r1 : time(0..t)

to compute the different configuration sequences of a transition graph TG associated
with a given Boolean network. We need to study its behavior under a certain initial
state condition. The possible number of combinations for the initial state could be
significant, making the task very difficult for a manual user. This is the reason behind
our decision to automate the process.

Next, we introduce the two rules r2 and r3 to generate all possible combinations
of the initial state automatically:

r2 : vi(0)← not¬vi(0)

and
r3 : ¬vi(0)← not vi(0)

These two rules express the fact that in the absence of ¬vi(0), we deduce vi(0) and in
the absence of vi(0), we deduce ¬vi(0). These rules guarantee the choice of the active
or inactive state for each gene. Consequently, all the answer sets are automatically
generated for each possible initial state.

The four next rules r4, r5, r6, r7 encode the effects of one gene on another, i.e.,
the activation or inhibition of one gene by another. The rules r4 and r5 state that if
the gene vi is active (resp. inactive) at time step t, then it will activate (resp. inhibit)
the gene v j at time step t + 1. These two rules represent the positively oriented arc
(vi,+, v j) of the interaction graph. The rules r6 and r7 encode the negative oriented
arc (vi,−, v j) of the interaction graph. In this case both rules express the fact that
activating (resp. inhibiting) the gene vi at time step t the gene v j at time step t + 1.

r4 : v j(t + 1)← vi(t)
r5 : ¬v j(t + 1)← ¬vi(t)
r6 : v j(t + 1)← ¬vi(t)
r7 : ¬v j(t + 1)← vi(t)

The following rules r8 and r9 express inertia, i.e., what happens if there is no
change in gene state between the steps t and t + 1. A gene maintains its state at step
t + 1 unless it has been changed at step t.

r8 : vi(t + 1)← vi(t), not¬vi(t + 1)
r9 : ¬vi(t + 1)← ¬vi(t), not vi(t + 1)

Now, we present the rules for dealing with general Boolean networks where a
given gene has several interactions. We express each local transition function fi as a
set of rules. We assume that each local function fi is given in the disjunctive normal
form (DNF). Given the gene vector v(t) = (v1, v2, . . . , vn) at time step t, we express

Springer Nature 2021 LATEX template

14 Using Answer Set Programming to Deal with Attractor Computation

for each node vi ∈ V of the interaction graph, its corresponding function fi by the
following DNF formula:

vi(t + 1) = fi(v(t)) =
l∨

j=1

m j
i

where m j
i is a conjunction of literals.

Let DNF (¬ fi(v(t)) =
e∨

j=1
m′ ji be the DNF of ¬ fi(v(t)). The formula m′ j

i is a con-

junction of literals. The set of rules that encodes each function fi is defined as
follows:

r10 : {vi(t + 1)← m j
i (t) | 1 ≤ j ≤ l}, i ∈ {1, . . . , n}

r11 : {¬vi(t + 1)← m′ j
i (t) | 1 ≤ j ≤ e}, i ∈ {1, . . . , n}

Note that the rules r10 and r11 apply only when considering the synchronous update
mode, where all the local transition function fi are simultaneously applied at each
time step.

Example 5. Consider the interaction graph given in Example 1. The set of rules
generated by the generic rules r10 and r11 for this interaction graph are

1(t + 1)← 2(t)
2(t + 1)← 1(t),¬2(t)

and

¬1(t + 1)← ¬2(t)
¬2(t + 1)← ¬1(t)
¬2(t + 1)← 2(t)

respectively.

Now, we show how to encode the asynchronous update mode. The rules r12 and
r13 express the existence of a state change for the gene vi, when its state in step t + 1
is different from its state in t.

r12 : Change(vi, t)← vi(t + 1),¬vi(t)
r13 : Change(vi, t)← ¬vi(t + 1), vi(t)

The fact that the predicate Change(vi, t) is true indicates that a gene vi has been
updated.

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 15

Next, we introduce a new predicate Block(vi, t) that indicates the fact that a gene
vi is blocked for updating at time step t, i.e., only the unblocked genes could be
updated.

For the asynchronous update mode, we set the rule r14 to allow only one gene to
be updated and block all the others. This rule says that if a gene vi is not blocked,
then all the other genes v j will be blocked.

For the asynchronous update mode, we adapt both rules r10 and r11 by involv-
ing the new predicate Block(vi, t) and obtain the two new generic rules r15 and r16,
respectively.

r15 : {vi(t + 1)← m j
i (t), not Block(vi, t) | 1 ≤ j ≤ l}, i ∈ {1, . . . , n}

r16 : {¬vi(t + 1)← m′ j
i (t), not Block(vi, t) | 1 ≤ j ≤ e}, i ∈ {1, . . . , n}

These rules state that a gene could be updated unless it is blocked.

Example 6. The set of rules generated by the generic rules r14, r15, and r16 when
applied to the interaction graph of Example 1 are as follows:

Block(1, t)← Change(2, t), not Block(2, t)
Block(2, t)← Change(1, t), not Block(1, t)

and

1(t + 1)← 2(t), not Block(1, t)
2(t + 1)← 1(t),¬2(t), not Block(2, t)

and

¬1(t + 1)← ¬2(t), not Block(1, t)
¬2(t + 1)← ¬1(t), not Block(2, t)
¬2(t + 1)← 2(t), not Block(2, t)

respectively.

The rules described previously, constitute the logic program PIG representing the
interaction graph of a general Boolean network. We now establish the relationship
between the answer sets of PIG and the corresponding transition graph’s configuration
sequences.

Proposition 2. Let PIG be the logic program representing the interaction graph IG of
a gene network having a global transition function f and TG(f) be its corresponding
transition graph. A tuple x = (x0, . . . , xt) is a sequence of configurations of TG(f), if
and only if I = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t))} is an answer set of PIG such
that the set (v1(i), . . . , vn(i)) of literals fixed at time step i ∈ {0, . . . , t} corresponds to

Springer Nature 2021 LATEX template

16 Using Answer Set Programming to Deal with Attractor Computation

the state of the genes of the configuration xi ⊆ x defined at time step i in the transition
graph TG(f).

Proof We prove the property by induction on the step t. First, we have to verify
the property for the initial step t = 0. That is, we prove that I0 = {v1(0), . . . , vn(0)}
is an answer set of the logic program P0

IG defined at t = 0, if and only if
x0 = (x0) = (v1(0), . . . , vn(0)) forms the initial configuration of TG(f). At the initial step t = 0,
we have P0

IG = {r2, r3} = {vi(0)← not¬vi(0),¬vi(0)← not vi(0)}.
Given the initial configuration x0 = (v1(0), . . . , vn(0)), we show that the subset of literals

I0 = {v1(0), . . . , vn(0)} is an answer set of P0
IG. For each vi(0), we have two possibilities:

1. if vi(0) ∈ I0, then the rule vi(0)← belongs to the reduct (PIG)I0 ,

2. otherwise ¬vi(0) ∈ I0, and ¬vi(0)← belongs to the reduct (PIG)I0 .

We can see that the reduct program (PIG)I0 , admits I0 as a single complete minimal Herbrand
model, where each variable is either proven to be true or false. That is, for each variable vi(0), I0
contains either the positive literal vi(0) or the negative literal ¬vi(0). Thus, I0 is an answer set of
PIG. For the converse, let I0 = {v1(0), . . . , vn(0)} be an answer set of P0

IG. Then I0 is complete in
the sense that for each variable vi(0) either the positive literal vi(0) or the negative one ¬vi(0) is
present in I0. Otherwise, if a variable vi(0) is missing in I0, then the reduct (PIG)I0 , will contain
both rules v j(0)← and ¬v j(0)←, which lead to an inconsistency. Since for all i ∈ {1, . . . , n},
we have either vi(0) or ¬vi(0) or inactive at t = 0, we conclude that x0 = (v1(0), . . . , vn(0)) is
the initial state of TG(f).

Now, suppose that the property holds until a time step t. That is, A tuple xt = (x0, . . . , xt)
is a sequence of configurations of TG(f), if and only if

It = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t))}

is an answer set of Pt
IG such that the set of all the literals (v1(i), . . . , vn(i)) fixed at time step

i ∈ {0, . . . , t} corresponds to the state of the genes of the configuration xi ⊆ x defined at time
step i ∈ {0, . . . , t} in the transition graph TG(f).

We prove that the property holds at time step t + 1. That is, a tuple xt+1 = (x0, . . . , xt, xt+1)
is a sequence of configurations of TG(f), if and only if

It+1 = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t)), (v1(t + 1), . . . , vn(t + 1))}

is an answer set of Pt+1
IG such that the set of all the literals (v1(i), . . . , vn(i)) fixed at time step

i ∈ {0, . . . , t, t + 1} corresponds to the state of the genes of the configuration xi ⊆ x defined at
the step i ∈ {0, . . . , t, t + 1} in the transition graph TG(f).

Given the configuration sequence xt+1 = (x0, . . . , xt, xt+1) of TG(f), we have to prove that
the set of literals It+1 = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t)), (v1(t + 1), . . . , vn(t + 1))} is an
answer set of Pt+1

IG such that the set of all the literals (v1(t + 1), . . . , vn(t + 1)) fixed at time step
t + 1 corresponds to the state of the genes of the configuration xt+1 ⊆ x defined at time step
t + 1 in the transition graph TG(f).

To do this, we need to demonstrate that It+1 = It ∪ {v1(t + 1), . . . , vn(t + 1)} is an answer
set of Pt+1

IG which is an extension of It produced by the application of the rules r10

and r11. From these rules encoding the transition function, we have fi(v(t)) =
l∨

j=1
m j

i and

¬ fi(v(t)) = ¬(
l∨

j=1
m j

i) =
e∨

i=1
m′ ji . If

l∨
j=1

m j
i is true at time step t (resp.

e∨
j=1

m′ ji is true at timestep t),

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 17

then
e∨

j=1
m′ ji is false at time step t (resp.

l∨
j=1

m j
i is false at time step t. By application of the rules

r10 and r11, we will have either vi(t + 1) or ¬vi(t + 1)) assigned to the value true at time step
t + 1 expressing the fact that the corresponding gene i is active or inactive at time step t + 1.
This means that both general rules r10 and r11 are satisfied and the literals fixed at time step
t + 1 corresponds to the state of the genes of the configuration xt+1 ⊆ x. By using the induction
hypothesis, we can conclude that It+1 is an answer set of Pt+1

IG such that the set of all the literals
(v1(i), . . . , vn(i)) fixed at time step i ∈ {0, . . . , t, t + 1} correspond to the state of the genes of the
configuration xi ⊆ x defined at time step i ∈ {0, . . . , t, t + 1} in the transition graph TG(f).

For the converse, let
It+1 = It ∪ {v1(t + 1), . . . , vn(t + 1)}

= {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t)), (v1(t + 1), . . . , vn(t + 1))}
be an answer set of Pt+1

IG . We know by the induction hypothesis that a tuple
xt = (x0, . . . , xt) is a sequence of configurations of TG(f) if and only if
It = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t))} is an answer set of Pt

IG such that the set of all the
literals (v1(i), . . . , vn(i)) fixed at the step i ∈ {0, . . . , t} corresponds to the state of the genes of
the configuration xi ⊆ x defined at the step i ∈ {0, . . . , t} in the transition graph TG(f).

Now, we will prove that xt+1 = (x0, . . . , xt, xt+1) is a configurations sequence of TG(f).
To do this, we need to demonstrate that for each variable vi(t + 1) at time step t + 1 either
the positive literal vi(t + 1) or the negative one ¬vi(t + 1) is present. This is true, because the
application of the rules r10 and r11, ensure to have either vi(t + 1) or ¬vi(t + 1)) at time step
t + 1. Thus, It+1 is complete in the sense that for each variable vi(t + 1) at step t + 1 either the
positive literal vi(t + 1) or the negative one ¬vi(t + 1) is present in It+1.

By the induction hypothesis, we have xt = (x0, . . . , xt) is a sequence of configuration. We
can conclude that xt+1 = (x0, . . . , xt, xt+1) is a configurations sequence of TG(f).

□

3.1.2 Detection of attractors

The method we use to study the dynamics of a Boolean network consists of enumer-
ating all the possible initial configurations and then carrying out a simulation based
on each of them. The method lists all possible configuration sequences of the transi-
tion graph, ensuring that all attractors will be detected. We look for all configuration
sequences of a given length n in the transition graph. As we can have an exponential
number of configurations, the enumeration could be memory demanding for wide
networks. We want to avoid the enumeration done by a naive simulation of the net-
work dynamics. Thus, we keep a trace of the cycles already found to eliminate them
during the next iterations.

The main idea of the attractor detection algorithm is the following: once a
sequence of configurations is found, we verify if it includes a cycle. A cycle in a
sequence of configurations is identified by looking if the last configuration occurs
twice in the sequence. In the affirmative case, all the configurations between both
occurrences of this configuration belong to the cycle. For the synchronous update
mode, each configuration in the synchronous transition graph has a unique successor.
Thus, when a sequence of configurations enters a cycle, it never leaves it. This means
that each cycle in the synchronous transition graph is stable. However, in the asyn-
chronous update mode, a configuration of the asynchronous transition graph can have

Springer Nature 2021 LATEX template

18 Using Answer Set Programming to Deal with Attractor Computation

several successors. Therefore, cycles of the transition graph are not necessarily sta-
ble. There could be stable cycles and unstable cycles. If no cycle for a given sequence
of length n is detected, then the algorithm doubles the length to 2n and looks for
other configurations. The algorithm will stop when no new configuration sequence is
found. This means that all the cycles have already been computed. Once all the cycles
have been discovered, only configuration sequences having shorter lengths than the
fixed current length can be found.

The general schema of the proposed method is presented in Algorithm 1. Note
that it is applicable for both the synchronous and asynchronous update modes.

Algorithm 1 The general schema of the cycle search algorithm

Require: PIG: the logic program representing the interaction graph
1: I = ASP-Solver(PIG)
2: while I is a new answer set of PIG do
3: attractor is found =
4: xI = (x0, x1, . . . , xt) is the sequence of configurations corresponding to I
5: i = t − 1
6: while ((i ≥ 0 and not (attractor is found)) do
7: if xt = xi then
8: attractor is found =
9:

10: PIG = PIG ∪ j∈{i+1,t} {← v1(j), v2(j), . . . , vn(j)}.
11: end if
12: i = i − 1
13: end while
14: if not(attractor is found) then
15:

16: end if
17: I = ASP-Solver(PIG)
18: end while

The method starts by generating an extended logic program PIG representing the
interaction graph according to the rules described in the previous subsection. We
use the ASP system presented in [16] to compute the answer sets representing the
sequences of configurations having a fixed length n in the transition graph. When
an answer set is found, the algorithm checks if there is a stable cycle or a stable
configuration in the the corresponding sequence of configurations. For each detected
attractor (stable cycle or stable configuration), the method adds constraint rules to
the logic program PIG to avoid this attractor in the remaining search. By adding
these rules, it eliminates all the answer sets that could contain an attractor already
found. All attractors are identified when no new answer set is generated (i.e., no new
configuration sequence is generated).

In the case of the synchronous update mode, all the cycles of the transition
graph are stable, which means that each cycle represents a potential attractor of the

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 19

considered network. However, for the asynchronous update mode, the cycles in the
transition graph are not necessarily stable. To detect the instability of a cycle, one
can check at each configuration of the cycle, whether the current configuration could
evolve to a new configuration that is not part of the cycle. If so, then the cycle is
unstable; otherwise it is stable.

Next, we show how to test the stability/instability of a cycle of the transition graph
using the answer sets of PIG that we compute.

Proposition 3. Let PIG be the logic program representing the interaction graph
IG having a global transition function f , TG(f) be the corresponding transi-
tion graph and I = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t))} be an answer set of PIG

corresponding to the sequence of configuration xI in TG(f). If a subset of liter-
als Is = {(v1(1), . . . , vn(1)), . . . , (v1(r), . . . , vn(r)), (v1(r + 1), . . . , vn(r + 1))} ⊆ I cor-
responding to a sequence of configurations (x1, . . . , xr, x1) ⊆ xI forms a stable cycle
in TG(f), then every answer set J of PIG different from I (J , I), is such that
∀i ∈ {1, . . . , r}, (v1(i), . . . , vn(i)) < J ∩ Is.

Proof Assume that I is answer set of PIG corresponding to the configuration sequence xI
in TG(f), and Is = {(v1(1), . . . , vn(1)), . . . , (v1(r), . . . , vn(r)), (v1(r + 1), . . . , vn(r + 1))} ⊆ I is a
subset of literals of I, corresponding to a sequence of configurations xIs = (x1, . . . , xr, x1) ⊆ xI
forming a stable cycle in TG(f). Suppose that PIG has an answer set J , I corresponding
to a sequence of configurations xJ , such that ∃k ∈ {1, . . . , r}, (v1(k), . . . , vn(k)) ∈ J ∩ Is. Thus,
it results that xIs and xJ share the configuration xk corresponding to (v1(k), . . . , vn(k)). This
means that the configuration xk ∈ Is has more than one successor, and this contradicts the fact
that Is forms a stable cycle. □

We perform the stability verification by a small modification of the ASP
solver [16] that we used to compute the answer sets. Indeed, for each answer set
of the program PIG containing a cycle, we check for each of its subsets of literals
{(v1(i), . . . , vn(i))} corresponding to a configuration xi of the cycle, if a new subset of
literals {(v1(i + 1), . . . , vn(i + 1))} corresponding to a configuration xi+1 different from
the successor of xi in the cycle could be deduced. In the affirmative case we conclude
that the cycle is not stable, otherwise the stability of the cycle is proven.

In practice, we do this by attempting to produce a different configuration at each
choice point of the branch of the search tree corresponding to the cycle included
in the stable model. This is done by setting a new literal not Block(v j, t) different
from the one representing this choice point. We have integrated this operation in the
resolution process of the method [16] that we used to compute the answer sets of the
logic program PIG expressing the interaction graph of the considered network.

Note that our incremental approach does not require to know the maximum path
size in advance, which is hard to determine because it is related to the diameter of
the state transition graph, which is very hard to compute [31]. However, it might be
possible to implement this approach by using the incremental ASP control loops and
multi-shot solving [30]. In particular, we might not need to determine the maximum

Springer Nature 2021 LATEX template

20 Using Answer Set Programming to Deal with Attractor Computation

path size in advance thanks to Clingo’s APIs. We leave the implementation using
Clingo as one of our future work

3.2 Detection of stable configurations
In the previous subsection, we have proposed a generic and natural ASP encoding
for general Boolean networks under both the synchronous and asynchronous update
scheme. From the generic encoding, we have proposed an iterative method for com-
puting all stable configurations and stable cycles of a Boolean network under both
the synchronous and asynchronous update scheme. In a sense of ASP, this approach
is non-totally declarative. It is inevitable because in general a Boolean network may
have stable cycles of size up to 2n and it is hard to know in advance the maximum
length that is related to the diameter of the state transition graph [31].

We have now improved our approach with the focus on only stable configurations,
it has become totally declarative. It is worth noting that stable configurations of a
Boolean network are the same for both the synchronous and asynchronous update
modes [32]. In the improved approach, we simplified the encoding introduced in
the previous subsection by just keeping the two constraints r10 and r11 that remain
necessary in the new approach. With this new approach, the calculation of stable
configurations is completely declarative and we obtained much better results (see
Subsection 5.2). The details are as follows.

First, we remove the time t from the ASP encoding. Now, each node vi is
represented by two atoms (not predicates) vi and ¬vi. Second, since in a stable con-
figuration, vi(t + 1) is always equal to vi(t) for every node vi, we replace vi(t + 1) and
vi(t) by vi. Formally, the two constraints r10 and r11 become

r′10 : {vi ← m j
i | 1 ≤ j ≤ l}, i ∈ {1, . . . , n},

r′11 : {¬vi ← m′ j
i | 1 ≤ j ≤ e}, i ∈ {1, . . . , n},

respectively. Third, we add the two set of ASP rules to ensure that an answer set
corresponds to a configuration: We show an illustration and the correctness of the
above encoding in Example 7 and Proposition 4, respectively.

Example 7.

Proposition 4. Let π be the logic program of a Boolean network following the above
encoding. Then an answer set of π is equivalent to a stable configuration of the
Boolean network.

Proof Let I be a set of atoms of π. Let x be a state of the Boolean network such that xi = 1
if and only if vi ∈ I and xi = 0 if and only if ¬vi ∈ I for every node vi. Based on the proof of
Proposition 2, we can imply that I is an answer set of π if and only if (x, x) is a transition of the
transition graph of the Boolean network. Herein, xi plays the roles of both vi(t + 1) and vi(t).
(x, x) is a transition of the transition graph of the Boolean network is equivalent to that x is a
stable configuration of the Boolean network. We can conclude the proof.

□

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 21

Finally, we showcase a crucial application of our new approach. Recently, we
have developed a new method called mtsNFVS [22] for computing all attractors of an
asynchronous Boolean network (i.e., stable configurations, stable cycles, and loose
attractors). mtsNFVS first computes a Negative Feedback Vertex Set (NFVS) of the
interaction graph of the asynchronous Boolean network. Based on the chosen NFVS
U−, mtsNFVS randomly chooses a set B− of Boolean values corresponding to the
nodes in U−. From U− and B−, mtsNFVS builds a new Boolean network called the
reduced-dynamics Boolean network whose set of stable configurations exactly cov-
ers all attractors of the asynchronous Boolean network (see Theorem 3). The word
“cover” means that for every attractor at least one of its configurations belongs to
the set of stable configurations of the reduced-dynamics Boolean network. Then
mtsNFVS uses the reachability analysis on the asynchronous Boolean network to fil-
ter out this set. Finally, mtsNFVS returns the set A of configurations (not attractors)
that one-to-one covers the set of attractors of the asynchronous Boolean network.

Theorem 3 ([22]). LetA be an asynchronous Boolean network and U− be an NFVS
of it. Let B− be a set of Boolean values corresponding to the nodes in U−. We first
construct the reduced-dynamics Boolean network denoted by Ared as follows. Ared

includes the set of nodes ofA and its set of Boolean functions is given by:

 f red
i = fi if xi < U−,

f red
i = [(xi ↔ bi) ∧ bi] ∨

[
¬(xi ↔ bi) ∧ fi

]
if xi ∈ U−,

where↔ denotes the bi-implication logical operator. Then for any NFVS U− and any
set of Boolean values B−, the set of fixed points of the reduced-dynamics Boolean
network covers exactly all attractors ofA.

Crucially, the number of stable configurations of the reduced-dynamics Boolean
network depends on and may be exponential in the size of U− [22]. In several
real-world models, U− is usually large (e.g., > 25), leading to too many stable
configurations. Hence, in mtsNFVS, computing stable configurations of the reduced-
dynamics Boolean network is a demanding task. Indeed, we observed in [22] that the
most of the running time was spent for computing stable configurations. Our above
ASP encoding can benefit to this task of mtsNFVS, thus it can speedup the whole
process of mtsNFVS. Furthermore, the computation of stable configurations is also
the bottleneck in many analysis and control methods for Boolean networks, which
again can be overcome by applying our proposed method.

Note that it is difficult to compare the whole method mtsNFVS with our approach
in the present article. The reasons include (1) our approach returns the set of stable
configurations and cycles of a Boolean network whereas mtsNFVS returns a set of
configurations, (2) our approach deals with both the synchronous and asynchronous
update modes whereas mtsNFVS is specifically designed for the asynchronous
update mode.

Springer Nature 2021 LATEX template

22 Using Answer Set Programming to Deal with Attractor Computation

4 Detection of attractors in circular Boolean networks
In this section, we deal with the specific case of Boolean networks called circu-
lar Boolean networks. We shall focus on the computation of the attractors for the
asynchronous update mode. A first release of this work has been presented in [21].

4.1 Representation of interaction graphs
The dynamic of a Boolean network is represented by its transition graph TG, and the
interaction graph IG expresses interactions between genes. An important subject of
study is to make formal links between these two representations [25]. In the follow-
ing, we show how an interaction graph IG is expressed as an extended logic program
PIG given in its Horn clausal form HC(PIG). We shall prove some important theoret-
ical properties on the representation HC(PIG) and its extensions that we will use to
establish the relation between HC(PIG) representing IG and TG.

Our approach is to calculate the stable configurations and the stable cycles of the
transition graph TG by calculating the stable and extra-stable models of the logic
program PIG. The formalism of Boolean networks associates an entity i ∈ {1, . . . , n}
to a Boolean variable vi. To lighten the notation, we will use in the sequel i instead of
vi when possible.

To address this situation, we opted for the answer set programming (ASP)
framework where we use the semantics introduced in [18]. ASP gives a good com-
promise between the expressiveness of the knowledge representation language and
the efficiency of the associated resolution tools.

Definition 5. Given the interaction graph IG of a Boolean network representing a
gene regulatory network, the logic program PIG expressing IG and a gene i, we define
the following.
• i means that the gene i is active in the cell.
• ¬i means that the gene i is not active in the cell.
• not¬i (resp. ¬ not¬i) means that the cell gives (resp. does not give) the per-

mission to activate i. In other words, the cell has (resp. has not) the ability to
activate i.
• not i (resp. ¬ not i) means that the cell gives (resp. does not give) the permission

to disable i. In other words, the cell has (resp. has not) the ability to inhibit i.

Definition 6. The translation of IG into a logic program PIG is done by transcribing
every arc in IG into the following pair of rules.
• A positive arc (i,+, j) between the two genes i and j is expressed by the two

rules j← not¬i. and ¬ j← not i.
• A negative arc (i,−, j) between the two genes i and j is expressed by the two

rules j← not i. and ¬ j← not¬i.

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 23

Example 8. The negative circuit of Figure 2 (a) is translated into the extended logic
program PIG(f) with the following rules

2← not 1
¬2← not¬1

3← not¬2
¬3← not 2

1← not¬3
¬1← not 3

The interaction graph of Figure 2 (b) representing the positive circuit is expressed by
the extended logic program PIG(g) with the following rules

2← not 1
¬2← not¬1

3← not¬2
¬3← not 2

1← not 3
¬1← not¬3

In our approach, each extended logic program PIG is transformed to an equiva-
lent normal logic program P′IG that is expressed in the end by a set of Horn clauses
HC(P′IG) in the used semantics [18]. An extension of the pair (HC(P′IG), S T B) is the
consistent set formed by all the clauses derived from HC(P′IG) when assigning a max-
imal set of positive literals not Ai ∈ S T B to HC(P′IG) . In this context, the S T B set
acts as a set of permissions to activate genes (resp. to inhibit a gene). In the sequel,
we will consider the HC(P′IG) instead of the logic program P′IG that we denote by
HC(PIG) when there is no confusion. We will also simply say extensions of HC(PIG)
to mean extensions of (HC(P′IG), S T B).

Remark 3. In this context, the role of an extension appears to gather a maximum
of consistent permissions. Note that even if not¬i stands for the cell permitting to
attempt the production of j, this production is not mandatory. It can be produced
or not, according to the context (i.e., the set of all interactions in the cell). We
could establish a similar reasoning for the case of the literal not i that gives the
authorization to disable j.

In general, it is permitted to have both not¬i and not i in the used semantics. But
from a biological perspective, we cannot give permission to both activate a gene j and
inhibit it at the same moment. Proposition 5 below expresses this biological aspect.

Proposition 5. If HC(PIG) is a logic program representing the interaction graph IG,
then for every i ∈ V = {1, . . . , n}, the condition ¬(not¬i ∧ not i) holds in HC(PIG).

Springer Nature 2021 LATEX template

24 Using Answer Set Programming to Deal with Attractor Computation

Proof By definition, if IG contains a signed arc (i, {+,−}, j), then the translation of this arc
induces two sets of clauses { j ∨ ¬ not¬i,¬ j ∨ ¬ not i} or { j ∨ ¬ not i,¬ j ∨ ¬ not¬i}. In both
cases, if not¬i ∧ not i holds, then, we infer j ∧ ¬ j that expresses an inconsistency. Thus,
¬(not¬i ∧ not i) holds in HC(PIG).

□

Proposition 6. Let IG be an interaction graph whose logic encoding is HC(PIG), we
have the following.

1. HC(PIG) is consistent.
2. HC(PIG) has at least one extension.

Proof 1. The encoding HC(PIG) is formed by a set of binary Horn clauses. That is, each
clause contains at least one negative literal. The assignment of all literals to false is then
a model of HC(PIG). Thus, HC(PIG) is consistent.

2. Since HC(PIG) is consistent, it results from Proposition 1 that HC(PIG) has at least one
extension.

□

The following definitions and propositions are important to understand the
intuition behind the representation described in this section.

Definition 7. Let IG be an interaction graph whose set of vertices is V = {1, . . . , n},
HC(PIG) its logic encoding and E an extension of HC(PIG) obtained by adding to
HC(PIG) a maximal consistent set of literals {not k}, with k ∈ {1, . . . , n,¬1, . . . ,¬n}.
Then we have the following.

1. E is complete if for all i ∈ V, not¬i ∈ E or not i ∈ E.
2. i is free in E if i < E and ¬i < E. Otherwise, it is fixed.
3. The degree of freedom of E (denoted by deg(E)) is the number of its free

elements i ∈ V.
4. The mirror of E = HC(PIG) ∪ {not k} (denoted by mir(E)) is defined as

mir(E) = HC(PIG) ∪ {not¬k}.

Proposition 7. If HC(PIG) is the logic encoding of the program PIG representing the
interaction graph IG and E is an extension of HC(PIG), then the mirror of E is also
an extension of HC(PIG).

Proof By definition, if IG contains a signed arc (i, {+,−}, j), then its encoding in HC(PIG)
includes both sets of clauses { j ∨ ¬ not¬i,¬ j ∨ ¬ not i} or { j ∨ ¬ not i, neg j ∨ ¬ not¬i}. An
extension is the set of all consistent clauses derived from HC(PIG) when adding a maximal
set of positive literals not i to HC(PIG). If we inverse each literal not i in the extension, i.e.,
we replace not i (resp. not¬i) by not¬i (resp. not i), then we get two cases. The first case cor-
responds to the presence of a positive arc in the interaction graph IG. In this case, we infer j
when not¬i holds, or ¬ j if not i holds. The second case corresponds to the presence of a nega-
tive arc in the interaction graph IG. In this case, we infer ¬ j when not¬i holds and infer j when

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 25

not i holds. Thus, it is trivial to see that the extension E and its mirror mir(E) are symmetrical.
It results that mir(E) is an extension too.

□

In the following, we prove that in some particular interaction graphs IG including
circuits, complete extensions of HC(PIG) are of and induce answer sets of HC(PIG).

Proposition 8. Let IG be an interaction graph, HC(PIG) be the logic encoding of the
program PIG representing IG and E be an extension of HC(PIG). If every node of IG
has at least one incoming arc, then any complete extension of HC(PIG) is of degree 0.

Proof Let E be a complete extension of HC(PIG). To prove that E is of degree 0, we have
to prove that each variable j of HC(PIG) is not free in E. In other words, for each node
j in the interaction graph IG, we have either ¬ j ∈ E or j ∈ E. By the hypothesis, j has a
positive/negative incoming arc (j,+/−, i) in IG.

If the arc is positive, then it is expressed by the pair of clauses { j ∨ ¬ not¬i,¬ j ∨ ¬ not i}.
Since E is complete, we have either not i ∈ E or not¬i ∈ E. If not¬i ∈ E, then j is inferred
(j ∈ E). If not i ∈ E, then ¬ j is inferred (¬ j ∈ E). Then in both cases j is not free in E.

The case of a negative arc is treated in the same way. We will have the rules
{ j ∨ ¬ not i,¬ j ∨ ¬ not¬i}. If not¬i ∈ E, then we infer ¬ j and if not i ∈ E, then we derive j.
Therefore, for all the assumptions we infer either j or ¬ j. Thus, there is no free element j in E
and deg(E) = 0.

□

Proposition 9. Let IG be an interaction graph and HC(PIG) be the logic encoding
of the program PIG representing IG. If any node of IG has at least one incoming arc,
then any complete extension of HC(PIG) corresponds to an answer set of HC(PIG).

Proof Let E be a complete extension of HC(PIG). E corresponds to an answer set if for
any node i, the discriminant condition holds for both i and ¬i. That is both conditions (1)
¬ not i ∈ E ⇒ i ∈ E and (2) ¬ not¬i ∈ E ⇒ ¬i ∈ E hold. Since E is complete, then it is of
degree 0 (Proposition 8). It results that either i or ¬i is in E. We have two cases as follows.

If i ∈ E, then (1) is trivially verified. According to the mutual exclusion
ME = {(¬i ∨ ¬ not i)}, we obtain ¬ not i ∈ E. In this case, we have ¬i < E. Suppose now
that ¬ not¬i ∈ E, this means that not¬i < E. As E is complete, we have not i ∈ E, and this
contradicts the fact that ¬ not i ∈ E. Thus, the condition (2) is verified.

If we have ¬i ∈ E, then the condition (2) is trivially verified. According to the mutual
exclusion ME, we obtain ¬ not¬i ∈ E. In this case, we have i < E and if we suppose that
¬ not i ∈ E, then not i < E. As E is complete, then not¬i ∈ E, and this contradicts the fact that
¬ not¬i ∈ E. Therefore the condition (1) is verified.

Since E verifies the discriminant condition in both cases, then E induces an answer set of
HC(PIG) (Theorem 2).

□

We now show that any answer set of HC(PIG) corresponds to an extension of
degree 0.

Springer Nature 2021 LATEX template

26 Using Answer Set Programming to Deal with Attractor Computation

Proposition 10. Let IG be an interaction graph. If any node of IG has at least one
incoming arc, then any answer set of HC(PIG) corresponds to an extension E of
degree 0.

Proof Let E be an extension inducing an answer set of HC(PIG). By definition, E is maxi-
mally consistent with respect to the literals of the form not i ∈ E or not¬i ∈ E and verifies the
discriminant conditions (a) ¬ not i ∈ E ⇒ i ∈ E and (b) ¬ not¬i ∈ E ⇒ ¬i ∈ E corresponding
to both i and ¬i. The extension E induces then an answer set of HC(PIG). We have to prove
that for all i ∈ HC(PIG), we have either i ∈ E or ¬i ∈ E. There are three study cases:

1. The case where not i ∈ E and not¬i < E. It results from Proposition 5 that ¬ not¬i ∈ E.
Then, from the discriminant condition (b), we get ¬i ∈ E.

2. The case where not¬i ∈ E and not i < E. From Proposition 5, we get ¬ not i ∈ E. Thus,
i ∈ E because the condition (a) holds.

3. The case where not i < E and not¬i < E. In this case, we have not i ∧ E |= □ and
not¬i ∧ E |= □. Thus, E |= ¬ not i and E |= ¬ not¬i. From (a) and (b), we have E |= i and
E |= ¬i. Thus, we get an inconsistency that contradicts the fact that E is an extension.

It results that only the first and the second case could be possible. Thus, we have either
i ∈ E or ¬i ∈ E, and deg(E) = 0.

□

In what follows, we shall show that for an interaction graph IG representing a
positive circuit of nodes, the corresponding logic encoding HC(PIG) has two answer
sets of n elements.

Proposition 11. If the interaction graph IG is a positive circuit of n entities, then its
logical form HC(PIG) has two extensions that induce two answer sets of size n.

Proof The proof is based on the results of Proposition 9 and the fact that in a positive circuit
each gene acts positively on itself through the circuit. Indeed, if we give at the beginning the
authorization to activate the gene i (by supposing not¬i), then we will end up deducing that i is
active. Conversely, if we initially give the authorization to deactivate i (by supposing not i) then
we will deduce that i is inactive (we get ¬i). We can then construct two complete extensions of
degree 0. The first one is made by supposing at the beginning the literal not¬i and the second
one is its mirror extension that is obtained by supposing at the beginning the literal not i. Both
extensions are complete and are of degree 0. As the two extensions are complete and of , we
deduce from Proposition 9 that each of them induces a stable model of HC(PIG) of size n.

□

Example 9. Consider the extended logic program of Example 8 expressing the inter-
action graph of Example 2 representing the positive circuit of size 3 (Figure 2 (b)),
we have PIG(g) as follows.

2← not 1
¬2← not¬1

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 27

3← not¬2
¬3← not 2

1← not 3
¬1← not¬3

PIG(g) is translated to the equivalent normal program P′IG(g):

2← not 1
2′ ← not 1′

3← not 2′

3′ ← not 2
1← not 3

1′ ← not 3′

⊥ ← 1, 1′

⊥ ← 2, 2′

⊥ ← 3, 3′

HC(P′IG(g)) has two extensions E1 = HC(P′IG(g)) ∪ {not 1, not 2′, not 3′} and
E2 = HC(P′IG(g)) ∪ {not 1′, not 2, not 3} that correspond to two stable models. E1 and
E2 are two extensions that verify both discriminant conditions: E |= ¬ not i⇒ E |= i
and E |= ¬ not i′ ⇒ E |= i′ for all i and i′.

We notice that E1 is complete because for every i ∈ HC(P′IG(g)), either not i′

(not¬i) belongs to E1 or not i belongs to E1. In addition, we have either i ∈ E1 or
i′ = ¬i ∈ E1 for every i ∈ HC(P′IG(g)), which means that the degree of freedom of E1
is 0.

The extension E2 is the mirror of E1. The same reasoning could be applied to
show that E2 is complete and of . The stable models induced by E1 and E2 are
M′1 = {1

′, 2, 3} and M′2 = {1, 2
′, 3′}, respectively. The corresponding answers sets of

the extended program PIG(g) are M1 = {¬1, 2, 3} and M2 = {1,¬2,¬3}, respectively.
We can see that the two precedent answers sets correspond to the two stable con-
figurations of the transition graph (Figure 3(b)) of the positive circuit presented in
Example 2.

1

2 3

−

+

−

(a)

not 1

−1

2 not -2

3not -3

(b)

2

−1 3

(c)

Fig. 4: (a) IG(f), (b) Construction of E1, (c) The graph of M1

Springer Nature 2021 LATEX template

28 Using Answer Set Programming to Deal with Attractor Computation

The intuition behind the computation of E1 is given by the construction scheme
described in Figure 4(b). The interaction graph is represented in Figure 4(a), whereas
Figure 4(b) gives the different construction steps of E1. Initially, E1 is empty. We begin
the process by assuming that not 1 is in E1. Thus, by applying the rule 2← not 1, we
deduce 2 and then ¬ not 2 is deduced from the mutual exclusion clause (¬2 ∨ ¬ not 2).
The construction of E1 continues by adding not¬2 to E1, and then we deduce 3.
The mutual exclusion (¬3 ∨ ¬ not 3) prohibits the application of not 3. Then, we add
not¬3 to E1 from which we infer ¬1. If we are only interested in the gene literals i,
then we obtain the restricted graph of E1 shown in Figure 4(c) that represents the
corresponding stable model M1. This model corresponds to one of the two stable
configurations of the transition graph of Figure 3(b) of Example 2. The extension E2
is built in the same way as E1. To get E2, we must start the process by assuming that
not 1′ = not¬1 is true in E2.

From the biological point of view, the answer sets’ variables represent the state
of each gene of the regulatory network. For example, M1 = {¬1, 2, 3} says that 2 and
3 are active and 1 is inactive. Similarly, M2 = {1,¬2,¬3} means that both 2 and 3
are inactive and 1 is active.

In the following, we show that each interaction graph IG representing a negative
circuit of n nodes has 2n extra-extensions of degree 1 inducing 2n extra-stable models
that encode a stable cycle of size 2n in the transition graph.

Proposition 12. If the interaction graph IG is a negative circuit of size n then
HC(PIG) has 2n extra-extensions of degree 1 inducing 2n extra-stable models of size
n − 1.

Proof The proof is based on the fact that in a negative circuit, a gene acts negatively on itself
through the circuit. Indeed, if we give at the beginning the authorization to activate the gene
i by supposing not¬i, then when we close the cycle we deduce that i is inactive (¬i is true).
Conversely, if initially we authorize to inhibit i by supposing not i, then we deduce that i is
active (i is true) when we close the cycle. We then obtain an inconsistency in both cases because
we have both i and ¬i simultaneously. This deduction means that we cannot have a complete
extension in both cases.

Then, we obtain an incomplete extension E and its mirror extension mir(E) which is also
incomplete. In both them, there is neither the literal not j nor the literal not¬ j with j being
the predecessor of i. Thus, neither i nor ¬i is true in both extensions. On the other hand, all
the other elements different from i are linked in these two extensions. It follows that the two
extensions are therefore of degree 1. It is also trivial to see that both extensions do not satisfy
the discriminating condition. Indeed, we have ¬ not i in E without having i in E, and we have
¬ not¬i in mir(E) without having ¬i in mir(E).

Therefore, we have two mirror extra-extensions of degree 1 inducing two extra-stable
models of size n − 1. Each time we change the starting element i, we get two other mirror extra-
extensions of degrees 1, which induce two other extra-stable models of sizes n − 1. In total,
there will be be 2n extra-extensions of degree 1 inducing 2n extra-stable models of sizes n − 1.

□

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 29

Example 10. Consider the extended logic program of Example 8 expressing the
interaction graph of Example 2 corresponding to a negative circuit of size 3 (Figure 2
(a)). We obtain PIG(f) as follows.

2← not 1
¬2← not¬1

3← not¬2
¬3← not 2

1← not¬3
¬1← not 3

After translation, we get the normal logic program P′IG(f) as follows.

2← not 1
2′ ← not 1′

3← not 2′

3′ ← not 2
1← not 3′

1′ ← not 3
⊥ ← 1, 1′

⊥ ← 2, 2′

⊥ ← 3, 3′

The logic encoding HC(P′IG(f)) has six extra-extensions (E′i) that induce six
extra-stable models (M′i) as follows.

1. E′1 = HC(P′IG(f)) ∪ {not 1, not 2′} and E′1 |= {not 1, 2, not 2′, 3}, it induces
M′1 = {2, 3}.

2. E′2 = HC(P′IG(f)) ∪ {not 1, not 3} and E′2 |= {not 1, 2, not 3, 1′}, it induces
M′2 = {2, 1

′}.
3. E′3 = HC(P′IG(f)) ∪ {not 1′, not 3′} and E′3 |= {not 1′, 2′, not 3′, 1}, it induces

M′3 = {2
′, 1}.

4. E′4 = HC(P′IG(f)) ∪ {not 1′, not 2} and E′4 |= {not 1′, 3′, not 2, 3′}, it induces
M′4 = {2

′, 3′}.
5. E′5 = HC(P′IG(f)) ∪ {not 2′, not 3′} and E′5 |= {not 2′, 3, not 3′, 1}, it induces

M′5 = {3, 1}.
6. E′6 = HC(P′IG(f)) ∪ {not 2, not 3} and E′6 |= {not 2, 3′, not 3, 1′}, it induces

M′6 = {3
′, 1′}.

Figure 5(a) shows the considered negative circuit expressed as a logic program.
Figure 5(b) illustrates the construction of the extension E′1. It is built by adding
to HC(P′IG(f)) both literals not 1 and not 2′. We can see in Figure 5(b) that it is

Springer Nature 2021 LATEX template

30 Using Answer Set Programming to Deal with Attractor Computation

impossible to deduce 1′. Indeed, to get 1′, we must use the rule (1′ ← not 3). But
this is impossible because ¬ not 3 results from the mutual exclusion (¬3 ∨ ¬ not 3).
On the other hand, we cannot get 1. As not 1 holds, then from the mutual exclusion
(¬1 ∨ ¬ not 1), we get ¬1. Thus, we cannot have 1. We can notice that the exten-
sion E′1 is not complete because it contains neither not 3 nor not 3′. The element 1 is
free in E′1 because 1 < E′1 and ¬1 < E′1. As a result, E′1 is an extension of degree 1.
Figure 5(c) gives the restriction of E′1 to the corresponding extra-stable model M′1.

1

2 3

−

+

+

(a)

not 1 2 not -2

3

(b)

2

−1 3

(c)

Fig. 5: (a) IG(g) the negative circuit, (b) Construction of E′1, (c) Construction of M′1

4.2 The relation between the transition graph and the logical
representation of its interaction graph

Hereafter, we shall explore the relationship between the logical representation
HC(PIG) of the interaction graph IG and the corresponding transition graph TG.
In order to do this, we see that the vertices of the transition graph TG corre-
sponding to stable configurations or stable cycles could be expressed, in fact, by
the extensions/extra-extensions (stable models or extra-stable models) of the logical
encoding HC(PIG).

Given a Boolean network, having an interaction graph IG, a transition graph TG,
and HC(PIG) is the clausal horn representation of the associated logic program PIG,
we shall show for positive circuits (Theorem 4) that there is an isomorphism between
the stable configurations of TG and the answer sets of HC(PIG). Furthermore, we
shall also prove (Theorem 5) that any stable cycle of the transition graph of a negative
circuit interaction graph of size n is encoded as a set of 2n extra-stable models of
degree 1 of HC(PIG).

Proposition 13. Given a Boolean network represented by the interaction graph IG
where TG is its associated transition graph and HC(PIG) is the of the logic pro-
gram PIG expressing IG. If s is a vertex (a configuration) of TG representing an
extension/extra-extension E of HC(PIG) of degree k, then s has exactly k successors.

Proof If i is free in the extension/extra-extension E representing the configuration s, then either
¬i or i is true in an extension/extra-extension corresponding to a state s′ accessible from s. By

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 31

construction of TG, s′ is the single successor of s that verifies this statement. This property is
verified for each free element i in E. Thus, if the degree of freedom of E is k, then there is k
accessible vertices from s.

□

Theorem 4. Given a Boolean network where IG is the interaction graph and
HC(PIG) is the of the logic program PIG associated with IG. Then the following
assumptions hold:

1. If X = (x1, x2, . . . , xn) is an answer set of PIG induced by an extension of
HC(PIG), then X = (x1, x2, . . . , xn) is a stable configuration of the transition
graph TG.

2. If X = (x1, x2, . . . , xn) is a stable configuration of the transition graph TG, then
X = (x1, x2, . . . , xn) corresponds to an answer set of PIG induced by an extension
of HC(PIG).

Proof 1. Let E be the extension inducing the answer set X = (x1, x2, . . . , xn) and
s = (x1, x2, . . . , xn) be the vertex representing E in TG. As E is an extension, then its
degree of freedom is 0. According to Proposition 13, it follows that the only accessible
node from s is itself. Thus, s is a stable configuration of TG.

2. If s = (x1, x2, . . . , xn) is a stable configuration of the associated transition graph TG, then
no arcs come out of s. The only vertex accessible from s is itself. It follows that for each
element xi (resp. ¬xi) of s, either xi is true or ¬xi is true. Then, all the xi are linked in the
extension E corresponding to the configuration s. That is, the freedom degree of E is 0.
It results from Proposition 10 that s = (x1, x2, . . . , xn) forms an answer set of PIG.

□

Example 11. Figure 6(b) shows the two extensions obtained for the logic program of
the positive circuit of Example 8. Both extensions induce two answer sets that encode
the two stable configurations of the transition graph (Figure 6(a)) that are drawn in
bold font.

Theorem 5. Given a Boolean network where the interaction graph IG is a negative
circuit of size n and PIG the logic program expressing IG. Then, the set of 2n extra-
extensions of HC(PIG) correspond to a stable cycle in the associated transition graph
TG of size 2n.

Proof Proposition 12 guarantees the existence of 2n extra-extension (extra-stable models) of
degree 1. We have to consider here the fact that all the 2n extra-extensions are of degree 1.
This implies that there is a single transition from each extra-extension of degree 1 to another
extra-extension of degree 1, producing a stable cycle of 2n extra-extensions. This corresponds
to a stable cycle of size 2n in TG, where each extra-extension identifies a configuration in the
cycle of TG.

□

Springer Nature 2021 LATEX template

32 Using Answer Set Programming to Deal with Attractor Computation

000

010

011

111

110

100

101

001

(a)

100 011

not 1’
not 2
not 3

1
2’
3”

not 1
not 2’
not 3’

1’
2
3

(b)

Fig. 6: The stable configurations of TG expressed as stable models of HC(PIG). For
simplification, self transitions are omitted.

Example 12. Figure 7(c) shows the extra-extensions obtained for the logic program
corresponding to the negative circuit of Example 8. We can see that six extra-
extensions of degree 1 inducing six extra-stable models are found and each of them
identifies a configuration of the stable cycle of the corresponding transition graph
given in bold font (Figure 7(a)). Figure 7(b) shows the stable cycle separately from
the rest of the transition graph.

000010

011

111

110

100

101001

(a)

000 010 011

111101100

(b)

not 2
not 3

1’
3’

not 1’
not 2

2’
3’

not 1
not 3

1’
2

not 1
not 2

2
3

not 2’
not 3’

1
3

not 1’
not 3’

1
2’

(c)

Fig. 7: A stable cycle of TG seen as a set of 2n extra-extensions of HC(PIG). For
simplification, self transitions are omitted.

5 Empirical validation
In this section, we evaluate our proposed methods for general Boolean networks (see
Section 3) and circular Boolean networks (see Section 4). In Subsection 5.1, we test
our method (presented in Subsection 3.1 for computing all stable configurations and

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 33

cycles of a general Boolean network) on several popular networks in the literature. In
Subsection 5.2, we test our method (presented in Subsection 3.1 for computing only
stable configurations of a general Boolean network) on the seven reduced-dynamics
networks of the seven real-world models used in [22]. In Subsection 5.3, we test our
method (presented in Section 4 for computing only stable configurations and cycles
of a circular Boolean network) on many randomly generated networks. Our code and
also our benchmark problems into a public GitHub repository 3.

5.1 Stable configurations and cycles of general networks
To illustrate the soundness of our approach introduced in Section 3 for the simulation
of Boolean networks and the detection of attractors, we applied it to real biological
networks. We evaluated the method for the synchronous and asynchronous update
modes on real genetic networks found in the literature. We experimented the method
on networks corresponding to yeast cell cycle [33] and fission yeast cell cycle studied
in [34]. We also applied the method to T-helper cell differentiation and its Boolean
network described in [6].

We are interested here in the computation time and the number of attractors
found. Table 1 shows the obtained results. We can see that the method is efficient on
all the networks. We also note that the attractors in the synchronous case often coin-
cide with those in the asynchronous case. The similarity is due to a large number
of stable configurations compared to the number of stable cycles in these networks.
It is well known that the stable configurations are generally the same in both the
synchronous and asynchronous updating modes [6].

Table 1: The results obtained on common graph regulatory networks found in the
literature

Network Genes Attractors Update mode Time (sec)

Yeast cell cycle 11 6 Synchronous 2.21
11 6 Asynchronous 0.56

Fission Yeast 10 11 Synchronous 1.82
10 12 Asynchronous

T-helper cell differentiation 23 2 Synchronous 0.37
23 2 Asynchronous 0.43

5.2 Stable configurations of reduced-dynamics networks
To evaluate our new approach for computing only stable configurations of a Boolean
network (see Subsection 3.2), we applied it to the reduced-dynamics networks of the
seven selected real-world networks used in [22]. The number of stable configurations
of a reduced-dynamics Boolean network depends on the size of the minimum neg-
ative feedback vertex set of the original network and this number is large in most

3https://github.com/tarekhaledasp/ASP-BN.git

https://github.com/tarekhaledasp/ASP-BN.git

Springer Nature 2021 LATEX template

34 Using Answer Set Programming to Deal with Attractor Computation

cases [22]. Hence, computing stable configurations of reduced-dynamics networks is
computationally demanding task.

In [22], we used the state-of-the-art method PyBoolNet [35] for computing stable
configurations of reduced-dynamics networks. This method also relies on ASP but
it uses another encoding based on prime-implicants of Boolean functions. It uses
Clingo [36] as the underlying ASP solver. In contrast, our ASP encoding uses the
disjunctive normal forms of Boolean functions only. We used both Clingo and our
own solver system (i.e., HC-asp [16]) as the underlying ASP solvers.

Table 2 shows the running time comparison between PyBoolNet and our new
approach on the reduced-dynamics networks. Columns n and e denote the number
of nodes and the number of interactions of the reduced-dynamics Boolean network,
respectively. Column |F| denotes the number of stable configurations. Columns 6-
7 denote the running time (in seconds) of our approach using the Clingo solver
and the HC-asp solver, respectively. Columns 8-9 denote the speedups compared
to PyBoolNet of our approach using the Clingo solver and the HC-asp solver,
respectively.

From the results shown in Table 2, we can first see that the HC-asp solver is quite
faster than the Clingo solver in most networks (except the Colon-Cancer network
with very small running time). This is consistent to the conclusion shown in [16]
that HC-asp (even with its initial prototype) is better than Clingo. In addition, when
the number of solutions (i.e., stable configurations) increases, the difference between
HC-asp and Clingo also increases. This trend is also reported in [16]. Hereafter, we
shall only compare PyBoolNet with our approach using Clingo.

First, our approach is much more efficient than PyBoolNet. The speedup is sig-
nificant even between one and two orders of magnitude. Second, our approach seems
to scale much better than PyBoolNet with respect to the problem complexity (i.e.,
the number of nodes n and the number of solutions F). Finally, our method depends
on not only n and F but also the Boolean functions that can be partially exhibited by
the average number of interactions (i.e., e/n) [22]. For example, the number of stable
configurations of the PROSTATE-CANCER network is smaller than that of the IL6-
Signalling network (24800 and 32768, respectively). However, the running time of
our approach for the PROSTATE-CANCER network is much slower than that for the
IL6-Signalling network (5.27s and 2.16s, respectively). The reason may be that e/n
of the PROSTATE-CANCER network is much larger than that of the IL6-Signalling
network (3.36 and , respectively).

5.3 Stable configurations and cycles of circular networks
To illustrate the validity of our approach on the discovery of circular Boolean network
attractors, we experimented the proposed approach on a large number of randomly
generated networks. The networks are generated by choosing for each node, indepen-
dently and uniformly, exactly one predecessor and one successor from the set of n
nodes. The transition functions were also generated randomly by choosing each time
a sign between positive and negative arcs. We then applied the presented approach to
these randomly generated Boolean networks where the size is up to 7,000 nodes for

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 35

Table 2: Running time in seconds of PyBoolNet (PBN) and our new approach on the
reduced-dynamics networks used in [22].

New approach (sec) Speedup

Network n e |F| PBN Clingo HC-asp Clingo HC-asp

IL6-Signalling 55 99 32768 4.86 2.16 1.20 2.25 4.05
TLGL-Survival 58 195 3236 0.55 0.22 0.13 4.23
Colon-Cancer 66 154 52 0.12 0.02 0.04
A-Model 74 209 14 0.17 0.02 0.01
Cell-Cycle-2019 87 370 4176 0.56 0.32 18.75 32.81
PROSTATE-CANCER 116 390 24800 274.36 5.27 3.10 52.06 88.50
CASCADE3 176 468 58 0.06 0.05

positive circular networks and up to 40 nodes for negative circular networks. Figure 8
shows the running time of our approach.

We can notice that the method is very efficient as it computed the two attractors
of each positive circuit very quickly. In particular, the running time is less than 60
seconds for the networks with 7,000 nodes. For the negative circuits, it computed
the stable cycles for networks very quickly, in particular in less than 60 seconds for
networks of 40 nodes.

The number of simple attractors (stable configurations) in the case of positive
circuit graphs is always 2 whereas the size of the cyclic attractors (stable cycles) of
the negative circuit graphs having n nodes is 2n. This confirms the results that are
known on attractors in Bioinformatics for the case of circular networks in [26].

6 Related work
Boolean networks were first introduced in [3]. This modeling formalism is sim-
ple yet powerful in systems biology. Boolean networks have been used to describe
gene regulatory network dynamics in cases where we have good knowledge about
the interactions between genes but have no good kinetic information. The dynamics
of Boolean networks, particularly the attractors, generally correspond to biologi-
cally relevant phenotypes such as cell types. For example, in [9, 37], the evolution
of Arabidopsis thaliana was modeled using Boolean networks. The attractors were
shown to correspond to levels of gene expression during the stages of the develop-
ment of Arabidopsis thaliana. In [38], the authors used a Boolean network to model
the different stages of the yeast cell cycle, where the attractors were shown to cor-
respond to phases of the process. The authors of [39] described the different states
of the immune system, using a Boolean network. Boolean networks were also used
in [40–42] to study the gene regulatory networks of the development of Drosophila
melanogaster.

Several methods and tools have been developed to detect attractors in Boolean
networks. In [32], the authors used Binary Decision Diagrams (BDDs) to compute
the attractors of both synchronous and asynchronous Boolean networks. The imple-
mented tool called genYsis has been widely used in the systems biology community.

Springer Nature 2021 LATEX template

36 Using Answer Set Programming to Deal with Attractor Computation

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

20

40

60

Number of nodes

R
un

tim
e

(s
ec

)

The runtime obtained on positive circular graphs

0 10 20 30 40
0

20

40

60

Number of nodes

R
un

tim
e

(s
ec

)

The runtime obtained on negative circular graphs

Fig. 8: The runtime obtained on the randomly generated circular graphs

The tool geneFatt [24] was developed with slight improvements to genYsis. gene-
FAtt was reported a little more efficient for attractor detection than genYsis. Although
genYsis and geneFatt use BDDs to symbolically represent the transition graph of the
Boolean network, they still rely on the traversal of the whole state space. Hence, their
efficiency is limited to small to medium networks. In [33], the authors developed a
mathematical approach that also uses BDDs. By using state-space pruning and ran-
dom state space traversal methods, they have improved the scalability of attractor
detection compared to the BDD method [32]. However, the method of [33] only com-
putes stable configurations, whereas the BDD-based methods [24, 32] compute all
attractors of a Boolean network. Berntenis et al. [43] studied the detection of attrac-
tors in large networks by limiting the detection to only relevant sub-spaces of the
transition graph of an asynchronous Boolean network. Specifically, their proposed
method detects the stable configurations and stable cycles with up to a given size of
the asynchronous Boolean network.

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 37

Dubrova et al. [31] developed a method based on the SAT formalism to compute
all attractors (i.e., stable configurations and cycles, unstable cycles) of a Boolean
network under the synchronous update mode. In this approach, the attractors are
searched on the transition graph of Boolean networks with SAT-Based Model Check-
ing, in which the length of trajectories is incrementally varied. It has been shown
more efficient in running time and space required than the BDD-based approach.
[44, 45] in the line of using SAT have been done, but they are all inefficient with
Boolean networks where Boolean functions are complex and it is difficult to extend
them to deal with the asynchronous update scheme.

to model Boolean networks [46–48] and thus benefited to the computation of
attractors in Boolean networks [47, 48]. The work [46] concerned a use of ASP to
detect and characterize inconsistency in large biological networks. It is not intended
to deal with attractors at least with its current form.

simulates the dynamics of gene regulatory networks expressed in the framework
of Boolean networks [48, 49]. It is difficult to compare our approach with the method
presented in [48]. With this method, the user must select a particular activation
semantics on which the dynamic trend will be established. There are two activation
semantics. The first one consists of activating a gene if at least one of its activators is
active and no inhibitor is active. , a gene is activated if it has more expressed activators
than inhibitors. The chosen activation semantics are applied to all genes, whereas our
method’s activation rules are specific to each gene and based on transition functions.

In [47], the authors use a fix-point semantics [50] for logic programming to char-
acterize Boolean networks’ trajectories and stable configurations. This is done by
translating the Boolean networks to a logic program. At the theoretical level, there
are therefore two fundamental differences with our work: on the one hand they use
the semantics of the fixed point (captured by that of the stable models) and we use the
semantics of the stable models and an extension of this semantics to the extra-stable
models. The second difference lies in the fact that they only deal with simple attrac-
tors reduced to a stable configuration because of the semantics used, whereas in our
case the extension of the semantics of stable models to extra-stable models allowed
us to treat the attractors corresponding to the stable cycles. In practice, Inoue et al.
only proposed a method for computing stable configurations of a Boolean network.
This method has not been implemented yet. Moreover, since it requires to compute
supported models (not stable models) of , it is hard to implement this method directly
using a more standard ASP solver.

7 Conclusion
Boolean networks are a well-established modeling technique for analyzing the
dynamics of gene regulatory networks. By using Boolean networks, we can detect
the attractors, which are pertinent to study cell’s biological functions. We have devel-
oped an ASP based method to identify the attractors of general Boolean networks
where we can detect both the stable configurations and the stable cycles for both the
chosen update modes: synchronous and asynchronous.

Springer Nature 2021 LATEX template

38 Using Answer Set Programming to Deal with Attractor Computation

We have also addressed the particular case of circuits that play an essential role
in biological systems. Thanks to the use of the semantics introduced in [18], we were
able to demonstrate several theoretical proprieties that express the characteristics and
the dynamics of cyclic Boolean networks. In particular, the stable cycles of such
networks have been represented in the form of linked sets of extra-stable models. The
extension of stable models to extra-stable models introduced in [18] is very important
for the characterization of cyclic attractors.

Using the proven theoretical results, we have designed a reliable method for
the computation of attractors of Boolean networks for a chosen update mode. It is
a declarative method based on the ASP paradigm that has the advantage of guar-
anteeing an exhaustive enumeration of all the attractors of the Boolean network
considered. We have succeeded in designing a system that allows to compute all the
stable models and the extra-stable models representing the stable configurations and
the stable cycles of the associated transition graph, respectively. The approach for
general Boolean networks have been applied to real-life gene regulatory networks,
. The approach dedicated to circular Boolean networks enumerates all the attractors
without going through any simulation. The logical representation of a positive circuit
has two stable mirror extensions (two stable models) corresponding to the two sta-
ble configurations of the transition graph. In addition, the logical representation of a
negative circuit has a set of 2n extra-extensions inducing 2n extra-stable models that
express the single stable cycle of the transition graph. Both the theoretical and prac-
tical results confirm the validity of our approach, since they are consistent with the
results obtained in [26] but using other proof techniques.

As a perspective work, we are first interested in improving the method that
deals with general Boolean network by considering some necessary optimizations in
order to handle larger Boolean networks. The technique we currently use could be
memory intensive when processing large networks. Second, we want to perform the
stable configurations and cycle detection in a fully declarative way by adding some
specific rules. Finally, for the approach dedicated to circular networks, we seek to
consider other updating modes than the asynchronous mode, and the generalization
to sequential blocks, which are periodic deterministic updates.

Declarations
Conflict of Interests: The authors declare that they have no conflict of interest.

References
[1] De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature

review. Journal of Computational Biology 9(1), 67–103 (2002)

[2] Tran, N., Baral, C.: Hypothesizing about signaling networks. Journal of Applied
Logic 7, 253–274 (2009)

[3] Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969)

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 39

[4] Kauffman, S.A., et al.: The Origins of Order: Self-organization and Selection
in Evolution. Oxford University Press, USA (1993)

[5] Shmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic
Boolean networks as models of genetic regulatory networks. Proceedings of the
IEEE 90(11), 1778–1792 (2002)

[6] Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G.: An efficient method for
dynamic analysis of gene regulatory networks and in silico gene perturbation
experiments, 62–76 (2007). Springer

[7] De Jong, H., Page, M.: Search for steady states of piecewise-linear differential
equation models of genetic regulatory networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 5(2), 208–222 (2008)

[8] Mendoza, L.: A network model for the control of the differentiation process in
Th cells. BioSystems 84(2), 101–114 (2006)

[9] Espinosa-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regu-
latory network model for cell-fate determination during Arabidopsis thaliana
flower development that is robust and recovers experimental gene expression
profiles. The Plant Cell 16(11), 2923–2939 (2004)

[10] Marek, V.W., Truszczynski, M.L.: Stable models and an alternative logic
programming paradigm. The Logic Programming Paradigm, 375–398 (1999)

[11] Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 115–137 (2004)

[12] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer
set solving. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, p. 386 (2007)

[13] Simons, P., Nimelä, I., Soininen, T.: Extending and implementing the stable
model semantic. Artificial Intelligence 138, 181–234 (2002)

[14] Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: Wasp: A native
ASP solver based on constraint learning. In: International Conference on Logic
Programming and Nonmonotonic Reasoning, pp. 54–66 (2013). Springer

[15] Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming.
AI Magazine 37, 53–68 (2016)

[16] Khaled, T., Benhamou, B., Siegel, P.: A new method for computing stable mod-
els in logic programming. Tools with Artificial Intelligence (ICTAI), 800–807
(2018)

Springer Nature 2021 LATEX template

40 Using Answer Set Programming to Deal with Attractor Computation

[17] Khaled, T., Benhamou, B.: Symmetry breaking in a new stable model search
method. 22nd International Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR-22), Kalpa Publications in Computing 9,
58–74 (2018)

[18] Benhamou, B., Siegel, P.: A new semantics for logic programs capturing
and extending the stable model semantics. Tools with Artificial Intelligence
(ICTAI), 25–32 (2012)

[19] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
ICLP/SLP 50, 1070–1080 (1988)

[20] Khaled, T., Benhamou, B.: An ASP-based approach for attractor enumeration
in synchronous and asynchronous Boolean networks. Proceedings 35th Interna-
tional Conference on Logic Programming, ICLP 2019, Las Cruces, NM, USA,
295–301 (2019)

[21] Khaled, T., Benhamou, B.: An ASP-based approach for boolean networks
representation and attractor detection. In: LPAR, pp. 317–333 (2020)

[22] Trinh, V.-G., Hiraishi, K., Benhamou, B.: Computing attractors of large-scale
asynchronous Boolean networks using minimal trap spaces. In: Proceedings
of the 13th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics, pp. 1–10 (2022)

[23] Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of
proteins. Journal of Molecular Biology 3(3), 318–356 (1961)

[24] Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F., He, L.: An efficient algorithm
for computing attractors of synchronous and asynchronous Boolean networks.
PloS One 8(4), 60593 (2013)

[25] Thomas, R.: On the relation between the logical structure of systems and their
ability to generate multiple steady states or sustained oscillations. In: Numerical
Methods in the Study of Critical Phenomena, pp. 180–193 (1981)

[26] Remy, E., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical
graphs associated to elementary regulatory circuits. Bioinformatics 19(suppl 2),
172–178 (2003)

[27] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

[28] Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity.
International Joint Conference on Artificial Intelligence 18, 1173–1178 (2003)

[29] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem

Springer Nature 2021 LATEX template

Using Answer Set Programming to Deal with Attractor Computation 41

proving. Communications of the ACM 5, 394–397 (1962)

[30] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving
with clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

[31] Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in
synchronous Boolean networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 8(5), 1393–1399 (2011)

[32] Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G.: An efficient method
for dynamic analysis of gene regulatory networks and in silico gene per-
turbation experiments. In: Annual International Conference on Research in
Computational Molecular Biology, pp. 62–76 (2007). Springer

[33] Ay, F., Xu, F., Kahveci, T.: Scalable steady state analysis of Boolean biological
regulatory networks. PloS One 4(12), 7992 (2009)

[34] Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle
sequence of fission yeast. PloS One 3(2), 1672 (2008)

[35] Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the
generation, analysis and visualization of Boolean networks. Bioinform. 33(5),
770–772 (2017). https://doi.org/10.1093/bioinformatics/btw682

[36] Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011). https://doi.org/10.3233/AIC-2011-0491

[37] Sanchez-Corrales, Y.-E., Alvarez-Buylla, E.R., Mendoza, L.: The Arabidopsis
thaliana flower organ specification gene regulatory network determines a robust
differentiation process. Journal of Theoretical Biology 264(3), 971–983 (2010)

[38] Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is
robustly designed. Proceedings of the National Academy of Sciences 101(14),
4781–4786 (2004)

[39] Kaufman, M., Urbain, J., Thomas, R.: Towards a logical analysis of the immune
response. Journal of Theoretical Biology 114(4), 527–561 (1985)

[40] Sánchez, L., Thieffry, D.: A logical analysis of the Drosophila gap-gene system.
Journal of Theoretical Biology 211(2), 115–141 (2001)

[41] Albert, R., Othmer, H.G.: The topology of the regulatory interactions pre-
dicts the expression pattern of the segment polarity genes in Drosophila
melanogaster. Journal of Theoretical Biology 223(1), 1–18 (2003)

[42] González, A., Chaouiya, C., Thieffry, D.: Logical modelling of the role of
the Hh pathway in the patterning of the Drosophila wing disc. Bioinformatics

https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.3233/AIC-2011-0491

Springer Nature 2021 LATEX template

42 Using Answer Set Programming to Deal with Attractor Computation

24(16), 234–240 (2008)

[43] Berntenis, N., Ebeling, M.: Detection of attractors of large Boolean networks
via exhaustive enumeration of appropriate subspaces of the state space. BMC
Bioinformatics 14(1), 1–10 (2013)

[44] He, Q., Xia, Z., Lin, B.: An efficient approach of attractor calculation for large-
scale Boolean gene regulatory networks. Journal of Theoretical Biology 408,
137–144 (2016). https://doi.org/10.1016/j.jtbi.2016.08.006

[45] He, Q., Xia, Z., Lin, B.: P UNSAT approach of attractor calculation for Boolean
gene regulatory networks. Journal of Theoretical Biology 447, 171–177 (2018).
https://doi.org/10.1016/j.jtbi.2018.03.037

[46] GEBSER, M., SCHAUB, T., THIELE, S., VEBER, P.: Detecting inconsisten-
cies in large biological networks with answer set programming. Theory and
Practice of Logic Programming 11(2-3), 323–360 (2011). https://doi.org/10.
1017/s1471068410000554

[47] Inoue, K.: Logic programming for Boolean networks. In: Twenty-Second
International Joint Conference on Artificial Intelligence (2011)

[48] Mushthofa, M., Torres, G., Van de Peer, Y., Marchal, K., De Cock, M.: Asp-
g: an ASP-based method for finding attractors in genetic regulatory networks.
Bioinformatics 30(21), 3086–3092 (2014)

[49] Fayruzov, T., De Cock, M., Cornelis, C., Vermeir, D.: Modeling protein inter-
action networks with answer set programming. In: 2009 IEEE International
Conference on Bioinformatics and Biomedicine, pp. 99–104 (2009). IEEE

[50] Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
In: Foundations of Deductive Databases and Logic Programming, pp. 89–148
(1988)

https://doi.org/10.1016/j.jtbi.2016.08.006
https://doi.org/10.1016/j.jtbi.2018.03.037
https://doi.org/10.1017/s1471068410000554
https://doi.org/10.1017/s1471068410000554

	Introduction
	Preliminaries
	Boolean networks
	Transition graphs
	Interaction graphs
	Circular Boolean networks

	Answer set programming
	Semantics of normal programs
	Search method for stable models and extra-stable models
	Semantics of extended programs

	Detection of attractors in general Boolean networks
	General approach
	Representation of interaction graphs
	Detection of attractors

	Detection of stable configurations

	Detection of attractors in circular Boolean networks
	Representation of interaction graphs
	The relation between the transition graph and the logical representation of its interaction graph

	Empirical validation
	Stable configurations and cycles of general networks
	Stable configurations of reduced-dynamics networks
	Stable configurations and cycles of circular networks

	Related work
	Conclusion

