Structural characterisation and inhibition of Arenavirus replication complex elements: assembly, function and inhibition of embedded nucleases

Sergio Hernández, Nicolas Papageorgiou, Maria Spiliopoulou, Mikael Feracci, Laura Garlatti, Barbara Selisko, Afroditi Vaitisopoulou, Thi-Hong van Nguyen, Clemence Mondielli, Magali Saez-Ayala, et al.

To cite this version:
Sergio Hernández, Nicolas Papageorgiou, Maria Spiliopoulou, Mikael Feracci, Laura Garlatti, et al.. Structural characterisation and inhibition of Arenavirus replication complex elements: assembly, function and inhibition of embedded nucleases. 26TH CONGRESS AND GENERAL ASSEMBLY OF THE INTERNATIONAL UNION OF CRYSTALLOGRAPHY, Aug 2023, Melbourne (AUS), Australia. hal-04180334

HAL Id: hal-04180334
https://amu.hal.science/hal-04180334
Submitted on 11 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Structural characterisation and inhibition of Arenavirus replication complex elements: assembly, function and inhibition of embedded nucleases.

1 Architecture et Fonction des Macromolécules Biologiques - CNRS - Aix-Marseille Université - UMR7257 - Viral Replicases: Structure, Mechanism, and Drug-Design, 13009, Marseille, France.

European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany.

1 Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR- 26500 Patras, Greece.

*Correspondence to: francois.ferron@univ-amu.fr

INTRODUCTION

Arenaviruses, belonging to a family of emerging enveloped segmented and ambisense RNA viruses associated with neurological and hemorrhagic diseases in humans. Arenavirus transcription and genome replication are catalyzed by a ribonucleoprotein replicase complex NP-L. After penetration, L protein initiates transcription to produce NP and L mRNAs[1]. The primary transcription is the result of a cap-snatching mechanism ensured by an endonuclease domain associated to the L polypeptide. As the concentration of NP in the cell increases, genome segments are replicated, to produce full-length copies (cRNA).

RESULTS

ARENAVIRUSES

Arenaviruses pipe-line

[Diagram of Arenavirus pipe-line]

- Digestion products analyzed in urea PAGE
- FP signal recorded during 30 min, every 30s. RNA substrate concentration (100 nM). ExoN concentration (0.1 μM to 1.6 μM). Average ± SEM of three independent experiments.

VIRON STRUCTURE

Assessment of inhibition and cell viability

Scatter plot showing the % of inhibition in the presence of the inhibitor

NP characterization

Arenavirus Nucleoprotein Architecture

Structural model fitting structural data

Structural similarities with Narvirus In ExoN MOA & Inhibition by ion chelation

C-terminal ExoN multimerisation tail

Arepavirus exoN

Screening Methodology

1. Activity measured by FP for LCMV ExoN
2. Screening of 113 compounds (20 μM) against LCMV ExoN by FP.
3. Assessing IC₅₀, of compound ID by FP

FP data validated by RNA visualization in gel

- In vitro
- In cellulo
- Assessing inhibition and cell viability

ARENAVIRUSES

- **VIRION STRUCTURE**
 - **GENOME ORGANIZATION**
 - **ENDONUCLEASE INVOLVEMENT IN viral LIFE CYCLE**

CRITICAL COMPARISONS

Global comprehension of biological system is critical to achieve proper understanding of the MOA of an enzyme and to develop inhibition strategy. Over the last decade we have characterized several structural and activities of the key proteins of Arenaviral replication complex, both apo and in complex with inhibitors targeting the two nucleases. Compounds targeting both viral transcription and viral impairment of innate immunity present lesser the chances of cell resistant mutations.

We proved the transversal approach studies that fluorescence polarization (FP) method is reliable, sensitive to monitor nuclease activity and feasible in 384-well plates. The method is robust, rapid and non-destructive allowing the visualization of the RNA substrate degradation using gels as orthogonal method of confirmation. We identified several hit inhibitors of vir alarenavirus ExoN activity and determined by fluorescence polarization their IC₅₀ at a micromolar level. Then we validated their activities in cell culture assays and we found compounds displaying efficiency at micromolar level against Junin virus a new world Arenavirus. These results highlight the effectiveness of translational approach in the screening of compounds libraries for the discovery of antivirals.

REFERENCES

ACKNOWLEDGMENTS

Funding from the CIRM-ATM0216 program, the French Ministry of Health, the European Union’s Horizon 2020 Research and Innovation Framework Programme under Grant Agreement 752544, the French National Research Agency (ANR) 11-LABX-0101, the ANR-11-IDEX-0003-02, the ANR-14-CORD-0006, the EU project VA-MACV (H2020/633785) and the EU H2020 MAC砟 (H2020/633789).