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Abstract

Vision-language foundation models have had consider-
able increase in performances in the last few years. How-
ever, there is still a lack of comprehensive evaluation meth-
ods able to clearly explain their performances. We argue
that a more systematic approach to foundation model eval-
uation would be beneficial to their use in real-world appli-
cations. In particular, we think that those models should be
evaluated on a broad range of specific capabilities, in order
to bring awareness to the width of their scope and their po-
tential weaknesses. To that end, we propose a methodology
to build a taxonomy of multimodal capabilities for vision-
language foundation models. The proposed taxonomy is in-
tended as a first step towards an exhaustive evaluation of
vision-language foundation models.

1. Introduction

The development of foundation models in the last few
years has enabled new state-of-the-art performances across
a wide range of in the fields of computer vision and natural
language processing tasks [73, 107]. Yet, monomodal mod-
els have shown to be limited in their ability to perform real-
world tasks [4], as they are not sufficiently grounded in real-
world experiences to be able to grasp multimodal concepts.
Multimodality can be considered as an effective approach to
ground models and reach a better understanding of human
semantics. This has resulted in a growing focus on mul-
timodal foundation models. In this paper, we specifically
consider vision-language foundation models, which are use
visual and textual inputs [92, 17, 49, 39, 97, 2, 53]. These
models have been tested on a wide range of tasks, from
image-to-text generation to cross-modal retrieval or classi-
fication. Yet, recent work has brought to light weaknesses
in their understanding of multimodal concepts, i.e. concepts
that cannot be captured by a single modality. For instance,
vision-language models have a limited multimodal under-
standing of position [79, 80], vision-language composition-
ality [65] and word order [93], even though they are able to

understand the basis of those concepts at a monomodal level
[79, 80]. This has prompted the creation of dedicated eval-
uation tasks to assess those specific capabilities [108, 59].
Although benchmarks have also attempted to consider a
wider spectrum of vision-language capabilities [67, 59], no
attempt has been made to provide an exhaustive evaluation
of those models.

Drawing inspiration from the work that has been accom-
plished in the evaluation of monomodal models, we aim
at starting a discussion on the comprehensive evaluation of
vision-language foundation models. Our goal is to reach a
better explainability of the capabilities of foundation mod-
els. Other important aspects that should be taken into ac-
count when evaluating a foundation model, such as environ-
mental and societal impact, are not the focus of this work.
Foundation models are notoriously more difficult to eval-
uate than task-specific models. Indeed, the latter can be
reliably evaluated on one specific task. Foundation mod-
els, on the other hand, are applicable to a wide range of
tasks and domains. Thus, they must be evaluated on their
whole scope of application. While researchers have de-
veloped benchmarks committed to a comprehensive evalua-
tion of monomodal foundation models [96, 55, ], to our
knowledge, there has been no such proposal in the case of
vision-language models. We argue that it is essential to as-
sess the performance of multimodal vision-language foun-
dation models on a wide range of specific capabilities. This
would be the first step towards an exhaustive evaluation of
such models. In this work, we propose an attempt at a tax-
onomy of vision-language capabilities. Figure 1 shows a
summary of this taxonomy, presented in Section 4.

2. Evaluating Foundation Models

In this work, we consider vision-language foundation
models. In [8], the authors propose a definition of those
models: “A foundation model is any model that is trained
on broad data (generally using self-supervision at scale) that
can be adapted (e.g., fine-tuned) to a wide range of down-
stream tasks” That is to say, the goal of vision-language
foundation models is to serve as the basis of multiple tasks
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Figure 1. Summary of the proposed taxonomy

by learning general representations of texts or images on
a large amount of data. The question of the evaluation of
foundation models has still no answer. In particular, re-
searchers can have different goals when evaluating a foun-
dation model. One of those goals can be the comparison
to human intelligence. In that respect, it is important to
focus on its generalization ability and its capacity to solve
previously unseen tasks [21]. Yet, the evaluation of a foun-
dation model also aims to reach a better understanding of
the precise capabilities of the model and its possible scope
of operation. Indeed, foundation models are being used in
real-world environments, where failures can have consider-
able consequences. Those are more likely to happen if users
are unaware of the potential weaknesses of those models, or
the extent of their reliability.

2.1. Monomodal Foundation Models

There have been standardization efforts in the evaluation
of general-purpose models in Natural Language Processing
and Computer Vision, following the development of multi-
task models. The fast development of language models has
led to benchmarks designed to test the multitask abilities of
those models. For instance, GLUE [96] and SuperGLUE
[95] have gathered complex tasks to compare models to hu-
man performance. Similar benchmarks have been devel-
oped in Computer Vision. For instance, VTAB [110] aims
to evaluate representation learning algorithms on a diverse
range of 19 tasks (e.g. object counting, location recogni-
tion, fine-grained classification, disease classification) in di-
verse domains. However, these benchmarks offer limited
insight on the explanation of a model’s performance. To
reach a better understanding of those black box models, new
methods have been developed [78]. Among those methods,
there has been an emergence of studies evaluating specific
skills of models using probing tasks or evaluation methods
[23, 74]. These have been established as a way to better
understand what information is encoded in learned repre-
sentations. Yet, probing tasks have also shown that they
can lack in robustness, being highly dependent on syntactic

variations [76]. This has led to the development of methods
to stress test NLP models such as Checklist [77] or HELM
[55] with regard to robustness, but also bias and fairness.
Similar studies have also tested the robustness and bias of
models learning visual representations [38, ].

With the emergence of foundation models, the question
of evaluation methods shifted from fine-tuning to zero-shot
or few-shot evaluations on a wide range of tasks, which is
less resource consuming. For instance, [99], the authors
develop 1600 few-shot evaluation tasks for generative lan-
guage models. While some studies focus on gathering nu-
merous evaluation tasks [30], others have chosen to evaluate
those models on human examinations rather than machine
learning benchmarks [112]. For the visual modality, Flo-
rence [107] and CLIP [72] authors also use a wide range
of visual and vision-language tasks and datasets to assess
their models. Some methods tackle the evaluation prob-
lem from a capability-centric perspective [89], or attempt
to build a taxonomy for the evaluation of language founda-
tion models[55]. This enables a more precise explanation of
the performances of foundation models. However, building
a comprehensive evaluation benchmark is complicated, due
to the variety of possible applications of foundation mod-
els. As a solution, authors rely on existing work in the field
[55]. Thus, it is not aimed to be frozen but to evolve with
the inclusion of new applications[89].

Other difficulties impact the evaluation of foundation
models. First, the metrics used to evaluate those models
are not always appropriate, especially in the case of genera-
tive models, either for texts [36] or for images [9]. The use
of human evaluation enables researchers to avoid the flaws
of existing metrics, but lack in standardization ability. In
addition, the evaluation of foundation models relies on data
dependent on bias and subjectivity [52]. The use of appro-
priate datasets and metrics to evaluate on a task as well as
the development of exhaustive evaluation methods are both
decisive to better diagnose and analyze foundation models.

2.2. Vision-Language Foundation Models

In the case of multimodal models, it can be difficult to
clearly assess a model’s understanding. Indeed, models rely
on spurious correlations, and may exploit information from
only one modality, without using crucial information from
the other. This has been shown in vision-language models,
where visual information can be ignored in favor of textual
bias [33]. Therefore, to be able to trust a vision-language
model’s performance in a real-world application, it is im-
portant to be aware of what concept this model is able to
understand at a multimodal level.

In recent years, several benchmarks have been devel-
oped [113, 11] to evaluate vision-language models. Some
have also built tasks based on a multimodal phenomenon
they want to assess, such as counting objects [68, ]. On



the contrary, some works focus on the evaluation of mod-
els on tasks requiring complex reasoning abilities, such as
generalization or abstraction [19]. Those methods give us
an overview to compare the capabilities of vision-language
models, and can point out their weaknesses.

However, as the field of vision-language multimodal-
ity is less mature than those of language only or vision-
only machine learning, there is also a lack of hindsight on
what issues vision-language foundation models will be fac-
ing. There are several aspects to consider in order to cre-
ate a thorough overview of such a model: the understand-
ing of each of the modalities, as well as the combination
of monomodal information to understand multimodal con-
cepts. To our knowledge, there has been no attempt at eval-
uating a broad coverage of vision-language capabilities.

3. Methodology

Through this work, we aim to discuss an exhaustive
evaluation of vision-language foundation models, to help
point out precise failures in the multimodal understanding
of foundation models. With access to such information,
users would be able to make an informed decision on the
use of amodel. In order to get a precise overview of the gen-
eral multimodal understanding of a vision-language founda-
tion model, we want to study its performances on a diverse
set of multimodal capabilities. Such methods have indeed
proven beneficial in natural language processing and com-
puter vision to better understand the inner workings of large
black-box models. Indeed, a more granular evaluation will
help to point out limiting factors of vision-language mod-
els. Contrary to current works in the evaluation of founda-
tion models in natural language processing, we do not fo-
cus on specific tasks (e.g. retrieval, inference, generation)
but the capabilities required for multimodal understanding.
To that end, we propose a taxonomy of vision-language ca-
pabilities. The goal of this taxonomy is to cover a broad
range of vision-language capabilities. Indeed, the capabili-
ties used to evaluate foundation models should be as com-
plete as possible to avoid blind spots. In this section, we ex-
plain the categorization of vision-language capabilities into
the taxonomy, as well as how to determine granular vision-
language capabilities relevant in real-world applications.

3.1. Categorization

Indeed, multiple types of broad abilities are required
when a foundation model performs a vision-language task.
The categorization of granular vision-language capabilities
into those broad abilities can help identify potential blind
spots. To organize those abilities, we draw a parallel with
the human understanding. Indeed, we refer to the field of vi-
sual literacy, which studies the human understanding of im-
ages, to help us establish different stages of visual literacy
for machine learning systems. There is no clear definition

of what it means to be visually literate, due to the complex
nature of the concept [48]. Visual literacy is defined by ag-
gregating sets of skills in two main categories: ‘denotation’
and ‘connotation’ [3]. Denotation refers to the perception of
visual elements in an image, while Connotation associates
the image with an ideological or affective meaning. How-
ever, those specific abilities are not sufficient to evaluate the
capabilities of a model, which may fail at skills considered
basic for a human. As a result, we propose four broad cat-
egories of vision-language capabilities, with the following
definitions. The first letters of those categories will be used
to refer to them in the next section.

Definition 1 (Grounding GG). Capabilities requiring the use
of information that is not directly accessible using the given
inputs (2D image and text) or the understanding of concepts
that cannot be described using those modalities (e.g. time,
space, knowledge, sound, mathematical documents).

Definition 2 (Reasoning R). Capabilities requiring the ap-
plication of abstract thinking or logic to the analysis of an
image-text instance.

Definition 3 (Connotation C). Capabilities related to the
subjective analysis of a text-image instance, from symbolic
interpretation to qualitative evaluation.

Definition 4 (Denotation /). Text explicitly depicts or
refers to image elements and does not require grounding,
reasoning or evokes connotation.

3.2. Determining vision-language capabilities

In order to build this taxonomy, we must consider the
context in which it operates, meaning the current state of
the vision-language field. Indeed, the evaluation of vision-
language foundation models should be to be appropriate,
considering the use-cases and challenges of vision-language
models. By precisely analyzing the context, we can identify
relevant vision-language capabilities at a granular level. We
are inspired by HELM [55], which uses conference tracks to
assess the coverage of their evaluation of language models.
However, the field of vision-language machine learning is
less mature than Natural Language Processing, and not all
challenges have been clearly identified.

Since foundation models are aimed at real-world appli-
cations, we select some that could be a use-case for vision-
language models from current research. There is a growing
number of complex applications, with common challenges
that have not yet been resolved, as detailed in in Appendix
A. A foundation model would have to be evaluated on chal-
lenges linked to those various applications. We argue that
those challenges should be tackled as a common goal, and
that it should reflect in the evaluation of those models. How-
ever, the complex nature of those applications may make it
difficult to interpret the performance of a model. To that



end, we encourage the evaluation of foundation models to
go from a task-centric perspective to a capability-centric
perspective, by creating a list of vision-language capabili-
ties needed for real-world applications.

In this section, we study more precisely several of the
identified real-world applications to get as complete a pic-
ture as possible of the capabilities involved in those tasks:
news captioning, medical visual question answering (VQA)
[1] and vision-language navigation [85] to determine as-
sociated vision-language capabilities. As observed previ-
ously, those applications do not cover the whole range of
vision-language multimodality, but they offer insight into
different capabilities relevant to multimodality. For each of
those applications, we proceed with a specific method to
identify related vision-language capabilities. These meth-
ods could then be applied to other vision-language applica-
tions to identify capabilities.

Manually studying relevant data Vision-language foun-
dation models can be used with news-related data for fake-
news detection algorithms. We study the capabilities nec-
essary for such applications from a data-centric perspec-
tive: we collect examples and manually identify relevant
capabilities. News-related data varies across cultures, pe-
riods, as well as topic of interest. We choose to study ex-
amples from selected newspapers to extract different types
of multimodal interaction, as well as capabilities needed for
a vision-language system to correctly understand those ex-
amples. More details are available in the Appendix B. We
notice that news images and their captions follow two main
different types: either the image is described by the caption,
with possibly a bit of context added by the text, or the im-
age is used as an illustration of the text, and the link between
text and image is less direct. Following the vocabulary in-
troduced by [66], we call the first text-image relationship
anchorage and the second situation illustration. The stud-
ied examples are evenly split along those two categories.
From the studied examples, we extract several capabilities
necessary for a good understanding of the instances:

* Object Recognition //: Understand the content of an
instance. For instance, in the case of war reporting, it is
important to differentiate between systems belonging
to two different armies.

* Text Understanding G-R: Understand written text in
an image, and its role with respect to the object it is
written on. For instance, text written on a protest board
or a shop window have widely different intents.

* Named Entity Recognition GG: Link famous people or
monuments in an image to the corresponding entity.

¢ Semantic Role Understanding GG: Understand the role

of both objects and people. For instance, understand-
ing the job of someone with respect to the context.

e Sentiment Understanding /’-G:  Understand the
stance, gaze, expressions and interaction of a person
(or animal) with their environment.

* Structural Understanding /’: This can relate to the un-
derstanding of the structure of an image (e.g. counting,
understanding position). For instance, it can help un-
derstand how each part of the instance relates to each
other (e.g. interaction between people).

* Context Grounding G': Identify when the picture was
taken, where it was taken, or the event it depicts.

e Image Interpretation C: Some instances show a dis-
crepancy between text and image, which can help un-
derstand the intent of the journalists. For instance, the
use of the words ‘is investigated’ in a caption gives a
new meaning to a picture.

 Style understanding C: This can relate to the un-
derstanding of art or style, and the understanding of
iconography.

Relying on existing datasets Vision-language foundation
models can be used as part of multiple real-world applica-
tions, as detailed in Appendix A. Those applications often
require specific technical knowledge to understand the un-
derlying challenges. To compensate for our lack of tech-
nical knowledge, we can rely on already existing tasks and
datasets to identify relevant capabilities. In this section, we
specifically study Computer-Aided Diagnosis systems as an
example. These systems can provide doctors with another
tool to reach a medical diagnosis or help communication.
Some datasets have already identified relevant problems of
vision-language multimodality applied to medical data. To
that end, we refer to the question types identified in medical
VQA tasks [1].

» Data Collection Context /: In medical imaging, data
can vary following what is being observed, with what
machine, options, at what angle.

* Object Recognition //: Recognize different organs or
body parts, as well as to be able to segment them.

* Semantic Object Understanding G-R: Differentiate
between ‘normal’ or ‘abnormal’ organs.

* Focus Understanding /’: Understand the main ‘abnor-
mality’ in an image, which requires the system to un-
derstand the focus of a medical instance.

* Knowledge Grounding G: Medical technical knowl-
edge is necessary to correctly describe and differenti-
ate technical terms.



* Logical Reasoning R: The system may need to per-
form logical reasoning to aggregate multiple factors.

e Multi-source understanding //-R: Summarize and
compare several sources of data.

Relying on extensive researchin a field Vision-language
foundation models can be used to build agents that can in-
teract with their environment using human language and vi-
sual information. This field is referred to as vision-language
navigation (VLN). To identify relevant vision-language ca-
pabilities, we rely on extensive research consisting of var-
ious datasets and models [35] that have studied the chal-
lenges and problems related to this field. To be able to per-
form VLN, a system must have a good understanding of:

 Spatial Understanding //-G: Understand the position
of an agent relative to other objects in the scene, as
well as the depth and size of other objects. This skill
depends on the point of view of the system.

* Space-based Reasoning R: The ability to design a path
based on available information.

* Object Recognition /': Recognize objects in the scene.

¢ Object Role Understanding GG: A model should be able
to recognize the role objects, as well as their associated
physics. In particular, some objects can be obstacles,
and others can be interacted with.

¢ Object State Understanding (G: Recognize the state ob-
jects, and the semantic change in those states. For in-
stance, a cup can be empty or full and will not have the
same role depending on its state.

 Action Understanding G-R: Understand the sequence
of actions necessary for a task, and their effect on the
environment. For instance, washing something implies
changing the state of an object from ‘dirty’ to ‘clean’.

Structure Understanding /’: Recognize the structure
of a scene, as well as the dependency between objects.

¢ Intent Understanding C: Understand the intent, even
in the case of a misalignment between modalities. The
model must be able to correctly understand the intent
despite this discrepancy.

Discussion In this section, we study a few diverse appli-
cations of vision language systems to determine a set of
skills necessary for vision-language systems. In addition
to downstream applications, we also rely on previous works
in the fields of computer vision and natural language pro-
cessing [060, 56, 10, , 13] to identify relevant capabili-
ties to complete the taxonomy. Due to the breadth of the

vision-language field, it is difficult to enumerate all possi-
ble vision-language capabilities. To further this study, sev-
eral other applications (Appendix A) could help provide a
more complete understanding of vision-language skills. Be-
fore using a vision-language foundation model on a specific
application, we encourage studying the task to uncover rel-
evant vision-language capabilities.

4. Taxonomy

In this section, we propose a preliminary attempt at a
taxonomy of vision-language capabilities. We supplement
the previously determined capabilities (Section 3.2) using
previous work in natural language processing, computer vi-
sion and cognitive sciences to build a taxonomy of vision-
language capabilities. The taxonomy is presented in more
details in Appendix C.

Denotation The capabilities of a vision-language model
to explicitly associate a text and an image are conditioned
on its ability to take into account information at different
levels. At a local level, denotation capabilities evaluate
the understanding of a single element of a text-image in-
stance, independently of the rest of the instance. Among
the previously determined capabilities, the ability to rec-
ognize objects is such an ability. A parallel can be made
with the Communicative Development Inventories (CDIs)
[28], where recognizing objects such as animals or vehi-
cles is among the first skills evaluated for children. Several
datasets have focused on the evaluation of the presence of
objects [82, 67]. A related category that appears in CDIs but
not in previously determined capabilities is the understand-
ing of descriptive words (e.g. ‘dark’, ‘blue’). We infer from
it the capability to detect basic descriptive attributes, which
is often included as part of more complex tasks [43, 44].
At a structural level, denotation capabilities evaluate
the understanding of the dependency between an element
and the rest of the instance, or between several elements of
an instance, i.e. the compositionality of an instance. As
a whole, those skills also require local understanding, be-
cause the model needs to also understand each element in-
dividually. Although we have identified in the previous sec-
tion the need for structural understanding of an instance, we
specify here more granular capabilities using as basis previ-
ous work in the field of vision-language multimodality. As
the structure of text and that of an image are radically dif-
ferent, we first consider the understanding of the two struc-
tures individually: scene understanding and syntactic un-
derstanding. Scene understanding, which also groups posi-
tional understanding and counting, is an active field of re-
search in vision-language multimodality [43, 67, 80]. Sim-
ilarly, the multimodal understanding of syntax remains part
of ongoing research, as works have shown the difficulty of



vision-language models to understand word order at a mul-
timodal level [94]. In addition, understanding the multi-
modal alignment between elements of the instance is also
important, through the understanding of multimodal depen-
dencies [65] and coreferences [18].

At a global level, denotation capabilities evaluate the un-
derstanding of the whole instance. Two main capabilities
determined in the previous section correspond to this cat-
egory: the ability to understand document type (e.g. the
context behind the data collection) or the focus. However,
to our knowledge, beside domain-specific datasets, no mul-
timodal dataset evaluates these precise capabilities. Deno-
tation skills characterize factual understanding of a vision-
language instance and its components. We listed in this sec-
tion several skills that, to our knowledge, are necessary to
establish this understanding of a vision-language instance.
This list does not include the ability to ground the instance
in the world or use knowledge specific to a domain.

Grounding First, temporal grounding capabilities eval-
uate a model’s ability to understand the situation of an in-
stance in time. The ability of action understanding, con-
text understanding and object state understanding described
in the previous section are related capabilities. Several
datasets already evaluate the grounding in time of a model,
through tasks such as event captioning or procedural under-
standing [51, ], but not all capabilities are covered.

Then, spatial grounding capabilities evaluate a model’s
ability to understand a scene as part of a wider spatial con-
text. Among the applications studied in the previous sec-
tion, it is especially useful in Vision-Language Navigation,
but also in context understanding. Several datasets and tasks
focus on spatial grounding capabilities, mainly relating to
3D understanding [32, 22, 15, 50].

In addition, technical or cultural knowledge can be nec-
essary to understand a vision-language instance. This can
be relevant to context understanding in news data or to the
understanding of specific knowledge in medical data. In the
case of technical grounding, evaluations specific to the do-
main are necessary [37, 98, 5, 75].

Finally, vision-language models can also be evaluated on
their understanding of other foreign modalities not present
in the instance. For instance, they can be used in applica-
tions which refer to time series, such as financial data under-
standing. In this case, evaluation tasks for those capabilities
are very specific and depend on the domain. The under-
standing of temporality, as well as other forms of grounding,
is complex, and requires precise data to be appropriately
evaluated. If a vision-language model is destined at being
used in this context, evaluating it on more granular skills
(described in C.2) can be necessary to understand weak-
nesses.

Reasoning We identify a few reasoning tasks necessary
for vision-language models, using as inspiration existing
monomodal tasks [60, 56, 10, , 13]. First, some rea-
soning capabilities can require a good understanding of se-
mantic knowledge, which can be useful in applications re-
quiring some kind of technical knowledge such as medical
assisted diagnosis. We can for instance list the detection of
abnormality. However, there is to our knowledge no specific
dataset evaluating multimodal knowledge-based reasoning.

Then, reasoning skills can be based on logic, or the un-
derstanding of mathematical concepts. Several evaluation
tasks have focused on logical and mathematical reasoning
[19], as such tests are generally used as a metric to mea-
sure human intelligence. Another kind of skills linked to
logical reasoning are those based on comparison between
instances. Those are well known in the field of natural
language processing, being evaluated through tasks such as
natural language inference[27].

Finally, some reasoning capabilities are more complex,
due to the use of abstraction or several steps of reasoning.
For instance, this is the case of multi-hop reasoning that
can be encountered in vision-language navigation. As such
tasks are complex and specific, they are mostly evaluated
with respect to the relevant application domain. We also
group in this subcategory the ability to perform introspec-
tion, i.e. to explain the reasoning of a prediction, which is
an active field of research [45, , 24]. These reasoning
capabilities can be complemented by other monomodal ca-
pabilities transferred to multimodality.

Connotation The skills listed in this section may not be
useful to all applications of vision-language models, as they
rely on individual interpretation of multimodal instances. In
addition, their evaluation is subjective and can widely vary
depending on the annotations. The connotation capabilities
can evaluate a model’s ability to interpret the meaning or
intent of an instance. In particular, this relates to the previ-
ously identified capability of intent understanding. Some
related evaluation tasks interpret the emotion [64] or the
style techniques [69].

In addition to interpretation, connotation capabilities can
also relate to the evaluation of the quality of an instance.
These are mostly evaluated using user judgment, and eval-
uate stylistic appreciation [71, 91]. In the connotation cat-
egory, we also list several capabilities for which we have
found no related evaluation tasks in Appendix C.4. Those
are inspired from human evaluation methods of visual lit-
eracy, which often rely on interpretation and assessment of
instances. These skills can be used in real-world applica-
tions where the interpretation of an instance is important,
such as applications related to art.



Local GQA[40], Foil it![32], TDIUC[44], VQA[34], VALSE[67], Toolbox[111]
GQA[40], Daquar[61], CLEVR[43], TDIUC[44], Probing[81], VALSE[67],
Toolbox[111]
Denotation )
Structural Winoground [94]
Noun-Predicate Dep [65], Abstract Semantics [114], CREPE [59], ARO [108]
Cops-ref [18], RefCOCO [46], CLEVRRef [57], VALSE [67]
Temporal Dense Event Captioning[51], RecipeQA [104]
Spatial IQUAD [32], VQAS60 [22], Matterport3D [15], Al2-THOR [50], RemoteSensing
[58]
OK-VQA [63], TDIUC
oLl & TextVQA [32], SceneText VQA [6], TextCaps [27]
Knowledge OK-VQA [63]
GoodNews [5], BreakingNews [75]
PathVQA [37], Chest Xrays [98]
E-SNLI-VE [27], NLVR2 [90]
Logical
SMART [19]
Reasoning R
E-vil [45], VCR [109], VQA-HAT [24]
Complex
Visual Dialog [25], FashionlQ [103], GuessWhat?! [26]
AVA [69]
Interpretation
SentiCaps [64]
Connotation C
New Yorker Caption Contest [/1], ICQD [91]
Quality

DPC [41], VizWizQuality [20], AVA [69], Aesthetic Cap[31], VILA [47]

Object and attribute recognition

Position understanding and counting

Understanding word order
Understanding compositionality
Multimodal referring expressions
Event and procedure understanding

Spatial understanding (3D & aerial)

Object role understanding
Optical character recognition
VQA with cultural knowledge
News-related tasks with NER

Medical tasks

Multimodal inference and comparison

Logical and mathematical reasoning
Explanations for VQA

Dialog with multimodal context
Image style understanding

Caption generation with sentiments

Rating Caption quality

Image Quality Evaluation

Table 1. Projection of a range of existing vision-language evaluation tasks in the proposed taxonomy

5. Evaluating Foundation Models

The taxonomy presented in the previous section aims at
providing a guideline for an extensive evaluation of vision-
language foundation models, taking into account their real-
world applications. To that end, we argue that foundation
models should be evaluated on granular capabilities, more
easily interpretable than complex tasks. These capabilities
should have the broadest possible coverage, and be useful in
real-world applications. Indeed, it is important to be aware
of the main weaknesses of a foundation model, as well as
the scope of tasks and datasets it can be applied to. In Ta-
ble 1, we give a projection of vision-language evaluation
tasks in our proposed taxonomy. Depending on the appli-
cation and domain of a vision-language foundation model,
it can be unnecessary to evaluate it on every possible ca-
pability, and all capabilities may not have the same use-
fulness. For instance, a foundation model geared towards

medical assisted diagnosis would have no use for connota-
tion capabilities. Moreover, the goal of this taxonomy is
not to help compute a ranking score from an aggregation
of tasks, but to bring back the focus on multimodal under-
standing capabilities relevant to real-world vision-language
applications. The use of several pre-defined tasks for the
evaluation of vision-language foundation models may en-
courage a specific focus on raising the performance on those
tasks, but they should be used as an introspective evaluation
to establish a diagnosis of the performance of a foundation
model. In addition, the datasets presented in Table | may al-
ways be appropriate for the multimodal evaluation of mod-
els. Indeed, among the existing evaluation tasks for vision-
language models, some of them evaluate an aggregate of
complex skills more or less directly linked to a specific ca-
pability. They may not be granular enough to identify po-
tential blind spots. Another aspect is that they may not truly



evaluate multimodal understanding. Indeed, some of those
tasks present considerable textual bias, which hampers the
multimodal evaluation of those models. For instance, a lan-
guage model can reach good performances on ‘Foil it!” [83]
[67]. In other cases, the task itself may not be built with
multimodality in mind. This is the case for datasets of the
connotation category, where the evaluation of instance qual-
ity can often be associated to a vision-only task. The differ-
ence between monomodal and multimodal capabilities can
be blurry, as shown by the use of vision-language models
to perform vision-only tasks [72]. This is why some of the
capabilities we present in this taxonomy may belong to both
multimodal and monomodal understanding.

6. Limits of the current taxonomy

This taxonomy is aimed at guiding the evaluation of
foundation models for real-world applications. However,
the use of such a taxonomy also presents its own limitations.
First, it may not reflect the possible applications of vision-
language foundation models, and may be more specifically
biased towards already existing tasks. Indeed, capabili-
ties were selected from a range of English language vision-
language applications, which may hide challenges or needs
more present in other languages or cultures. In Table 1,
we give an overview of vision-language evaluation tasks re-
lated to the categories listed in the taxonomy. These evalua-
tion tasks are not evenly distributed through the categories,
and this taxonomy can help us identify potential gaps in the
evaluation of vision-language models. These gaps can be
due to the lack of interest, available data or known research
challenges, but still hide potential blind spots of those mod-
els. This taxonomy is not final, but the gaps can also be used
to guide the way towards other evaluation tasks relevant for
vision-language applications. The taxonomy we presented
in this section establishes a set of skills relating to vision-
language multimodal understanding. However, evaluation
tasks for foundation models may not necessarily clearly fit
into this taxonomy. Indeed, there can be overlap in the skills
that different tasks evaluated. In addition, more complex
skills are built on simpler skills. For instance, most reason-
ing skills require first an understanding of denotation skills.
As a result, this taxonomy is not intended to be complete,
but a first step towards building a more comprehensive eval-
uation of multimodal foundation models.

Although we focus in this paper on capabilities of
vision-language models, other factors are to take into ac-
count to provide a comprehensive evaluation of a founda-
tion model. In particular, a foundation model should have a
good ability to generalize to unseen examples from differ-
ent domains. This diversity could be ensured by selecting
instances from a broad range of semantic categories. For
instance, vocabulary from Communicative Development In-
ventories for various cultures [29] can be used to ensure di-

versity, as well as images from diversified sources. In addi-
tion, we do not mention limiting bias and ensuring fairness
and robustness, which are major aspects of foundation mod-
els evaluation, and should be taken into account when build-
ing evaluation tasks and datasets. In this taxonomy, we also
do not take into account the type of task (e.g. generation,
classification), but the evaluation of a multimodal capability
can vary depending on the type of task used. As this taxon-
omy is based on a sample of tasks that is not necessarily rep-
resentative of the whole range of possible vision-language
applications, it is also not yet complete. It is intended to
evolve, and in particular to be more specified, for instance
regarding the various uses of a foundation model.

Evaluating the taxonomy An important question is how
to evaluate such a taxonomy, in particular in terms of the
coverage of all capabilities. Indeed, it is difficult to be both
granular and exhaustive. One way could be to study a range
of tasks from Appendix A in the same way as Section 3.2
to ensure a coverage of necessary capabilities. This is par-
ticularly difficult to assess, as it depends on how models
are used in downstream applications. This taxonomy is in-
complete, and is aimed at evolving with the improvement of
vision-language foundation models and the creation of new
applications, which would lead to new challenges. In ad-
dition, evaluating a model on the whole taxonomy is time-
and resource-consuming, this is why our goal in presenting
this taxonomy is above all to serve as a guideline.

7. Conclusion

Foundation models are notoriously difficult to evalu-
ate. To our knowledge, no exhaustive evaluation method
of vision-language foundation models has been developed
yet. In this work, we argue that such a method should
aim at evaluating a wide range of precise multimodal ca-
pabilities, in order to better apprehend the possible weak-
nesses of such models, rather than evaluating a few complex
tasks that may be more difficult to analyze and diagnose.
To that end, we propose a methodology to build a taxon-
omy of vision-language capabilities. We rely on existing
vision-language tasks to establish vision-language capabil-
ities useful for vision-language applications. We also re-
late this taxonomy to existing evaluation tasks. The goal
of such a taxonomy is to establish a comprehensive evalua-
tion method of vision-language foundation models. Thus, it
would help highlight potential weaknesses of those models
that may impact their performances in real-world applica-
tions. However, the use of such a taxonomy also presents
its own limitations, in particular due to potential bias in de-
termining useful capabilities. In the future, it would be in-
teresting to further strengthen this taxonomy with additional
perspectives, as well as to further complete its coverage of
vision-language real-world applications.
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A. Vision-Language Applications

In this section, we list several real-world applications
based on vision-language data, that are or could be a use-
case for vision-language foundation models. For each ap-
plication, we identify one capability necessary for this ap-
plication that could pose a challenge for vision-language
models.

* Multimodal Dialog [25]: Use textual and visual con-
text for dialog with a user.
Example capability: Understand the subjective mean-
ing of some instances, such as jokes, memes (C).

* Fake News Detection [42]: Identify fake news in so-
cial media.
Example capability: Understand the intent behind a
specific text-image combination (C).

* Vision-Language Navigation [12]: Understand natu-
ral language instructions in a visual environment.
Example capability: Understand if there is a mismatch
between a text command and the available visual in-
formation (R).

* Tools for Visually Impaired People [106]: Help a vi-
sually impaired person navigate or answer questions
on an image.

Example capability: Precisely describe the structure of
ascene (/).

* Crisis/Event Analysis [54]: Understand a crisis, the
relevant actors and its context based on text-image
data.

Example capability: Understand spatial and temporal
context of a text-image instance (G).

¢ Video Summarization [70]:
Vision-language models can be used in some cases

¢ Computer-assisted Food Analysis [86]: For instance,

it can consist in image-text retrieval applied to food,
and can have applications in health and nutrition.
Example capability: Understand the temporal and spa-
tial structure of text-image food or recipe data (7).

* Biomedical Vision-Language Processing [7]: Inter-

preting visual and textual biomedical data for clinical
care.

Example capability: Understand and reason on com-
plex biomedical semantics (G& R).

e Agriculture [14]: Identify plant disease for agricul-

tural purposes and differentiating between healthy and
diseased plants.

Example capability: fine-grained classification from
limited examples (/).

¢ Autonomous Driving [62]: For instance, vision-

language models can help design datasets geared to-
wards autonomous driving that are not present in suf-
ficient quantity in real datasets.

Example capability: Semantic understanding of events
such as weather, accidents or other incidents (/' & ().

¢ E-commerce Recommendation [84]: Product recom-

mendation based on textual and visual information.
There are several possible subtasks such as product
matching, classification, clustering.

Example capability: Associate text to the correspond-
ing semantic information using visual data despite lim-
ited grammatical structure (/).

* Multimodal Hate Speech Detection [10]: Detecting

hate speech that is present in multimodal data.
Example capability: Understanding subjective and
ambiguous meaning of text-image data (C').

* Remote Sensing Understanding [101]: Study of

satellite mages in correlation with text data.

Example capability: Differentiate semantically be-
tween atmospheric visual data and relevant ground vi-
sual data (G).

e Market Prediction [102]:

Predict the evolution of the stock market using text and
image data. Example capability: Identify patterns in
time series data represented using text or images (&).

B. Details on Methodology for News-related

data

In order to get a comprehensive perspective of news data,

with to complement applications based on video. Ex-
ample capability: Describe visual elements relevant to
temporal data in still images (G).

we select 5 online news sources from several countries and
varying demographics. We restrict ourselves to English lan-
guage newspapers.



* The New York Times, a daily American newspaper 1
¢ Daily Mail, a daily British tabloid :

e Wall Street Journal, a daily American business news-
paper 3

. . 4

¢ France 24, a French international news network
.. . 5

¢ Al Jazeera, a Qatari international news network

* Global Times, a daily Chinese English-language news-
paper. °

We select three dates and study a captioned image from
those newspapers for each of those dates, selecting a topic
at random for each example. These examples vary across
topics: ranging from business to culture.

C. Detailed Taxonomy

The taxonomy presented in this section is a preliminary
attempt at classifying vision-language capabilities. It is not
exhaustive. In this section, an instance is composed of at
least a text and an image.

C.1. Denotation

The capabilities of a vision-language model to associate
a text and an image are conditioned on its ability to take into
account information at different structural levels, from local
information to information relating to the whole instance.

Denotation skills, local: These capabilities evaluate the
understanding of a single element of a text-image instance,
independently of the rest of the instance.

* Basic Property Detection: Def. The ability to detect
the presence of a basic property (e.g. color, texture)
and associate it to a corresponding word.

Ex. Associate the color red with the word ‘red’.

* Object Perception: Def. The ability to differentiate be-
tween objects, both at coarse and fine-grained level.
Includes the understanding of the continuity of an ob-
ject (e.g. segmentation).

Ex. Identify a flower from its picture.

! https://www.nytimes.com/
2https://www.dailymail.co.uk/
3https://www.ws j.com/
4https://www.france24‘com/en/
5https://www.aljazeera.com/en
6https://www.globaltimc:s.cn

Denotation skills, structural: These capabilities evalu-
ate the understanding of the dependency between an ele-
ment and the rest of the instance, or between several ele-
ments of an instance, i.e. the compositionality of an in-
stance. As a whole, those skills also require local under-
standing, because the model needs to also understand each
element individually. A compositional instance depends, in
addition to the individual elements, on the structure of those
elements.

» Syntactic Understanding: Def. The ability to grasp the
syntactic structure of a sentence and deduce the rela-
tion between different words using visual information.
Includes the resolution of polysemy.

Ex. Differentiate ‘bear’ as a verb or a noun.

* Scene Understanding: Def. The ability to grasp the
structure of an image using textual information. In-
cludes counting and positional understanding (i.e. the
ability to understand depth, distance and position be-
tween objects in the referential of the image).

Ex. Count people in a crowd.

* Multimodal Alignment Understanding: Def. The abil-
ity to correctly associate textual elements using visual
information. The textual elements can be non-explicit
(i.e. co-reference resolution). Includes understanding
the static interaction between people and objects in an
instance.

Ex. Associate a predicate to the correct noun.

Denotation skills, global: These capabilities evaluate the
understanding of the whole instance.

e Document Type Understanding: Def. The ability to
detect the topic of an instance, its source (e.g. author,
machine used to capture it), its date or its style.

Ex. Specify how a medical image was captured.

* Focus Identification: Understanding what elements are
or are not the focus of an instance using its textual and
visual information.

Ex: Identify which person is the focus of a newspaper
image/caption pair.

Denotation skills characterize factual understanding of a
vision-language instance and its components. We listed in
this section several skills that, to our knowledge, are nec-
essary to establish this understanding of a vision-language
instance. This list does not include the ability to ground the
instance in the world or use knowledge specific to a domain.

C.2. Grounding

In this section, we identify several types of grounding.



Grounding skills, temporal: These capabilities evaluate
a model’s ability to understand the situation of an instance
in time.

» Temporality Perception: Def. The ability to detect if
time affects the instance. For the image modality, it
includes whether an object/structure changes state and
position in the immediate past or future. For the textual
modality, it means using text information (e.g. verb
tense) to detect temporality.

Ex. Detect which element of an instance are moving.

* Object State Understanding: Def. The ability to asso-
ciate the state of an object with corresponding words
and differentiate the role of an object depending on its
state.

Ex. Differentiate between an empty or full glass.

» Temporal Extrapolation: Def. The ability to extrapo-
late the past or future structure of a scene using multi-
modal information.

Ex. Understand that a glass will break if pushed.

* Time Period Identification: Def. The ability to identify
a specific period in a multimodal instance.
Ex. Recognize that an instance depicts medieval times.

Grounding skills, spatial: These capabilities evaluate a
model’s ability to understand a scene as part of a wider spa-
tial context.

¢ Spatial Understanding: Def. The ability to ground an
instance in the world using textual and visual informa-
tion. Includes the understanding of perspective, depth,
size and spatial referential.
Ex. Recognize that a plane in the sky is the same size
as at the airport.

 Physical Spatial Understanding: Def. The ability to
understand how physics affect the position of objects
in an image. Includes occlusion, obstacles, contact.
Ex. A partially hidden object is still the same.

 Spatial Extrapolation: Def. The ability to extrapolate
the spatial context not seen in the instance using mul-
timodal information.
Ex. Extrapolate what is behind the photograph taking
a picture.

* Location Identification: Def. The ability to recognize
known places using multimodal information.
Ex. Recognize a specific country using street furniture.

Grounding skills, knowledge: These capabilities evalu-
ate a model’s ability to use specific technical or cultural
knowledge.

» Semantic Grounding: Def. The ability to exploit
knowledge from semantic relations (e.g. roles, syn-
onyms, antonyms and hypernyms).

Ex. Understand that ‘robin’ and ‘bird’ can refer to the
same element.

e Technical Grounding: Def. The ability to exploit
knowledge from a specific domain (e.g. medical). In-
cludes the understanding of specialized objects, tech-
nical terms, events, or specific named entities. Ex. As-
sociate visual information to the term ‘pneumothorax’.

e Cultural Grounding: Def. The ability of a model to

understand the cultural context of an instance, with re-
spect to textual or visual elements, and differentiate
across cultures.
Ex. A mask can mean a medical mask or a mold that
represents someone else. The latter, following cul-
tures, can be traditional, religious, used for theater or
for carnivals.

* Symbolic System Grounding: Def. The ability to rec-
ognize symbols and characters in an image. Ranges
from Optical Character Recognition to the ability to
recognize the meaning of a symbol.

Ex. Describe signs held at a demonstration.

Grounding skills, multimodal: These capabilities eval-
uate the understanding of concepts related to a foreign
modality not present in the instance.

* Human Senses Grounding: Def. Detecting and associ-
ating words or objects that can refer to human senses
not linked to vision, such as hearing, touch or taste.
Ex. Associate a waterfall with the word ‘loud’.

The use of grounding can be necessary for specific ap-
plications. For instance, the spatial and temporal grounding
skills can be used for vision-language navigation. However,
those applications can also require other types of skills, such
as reasoning.

C.3. Reasoning

We identify a few reasoning tasks necessary for vision-
language models, using as inspiration existing tasks such as
NLP tasks [60, 56, 10, , 13]. As a whole, monomodal
reasoning tasks can be adapted to multimodality. Reasoning
skills can require prior understanding of several other skills,
for instance related denotation or grounding.



Reasoning skills, semantic: These capabilities evaluate a
model’s ability to reason semantic knowledge.

e Abnormality Detection: Def. The ability to detect an
abnormal instance. Includes making the distinction be-
tween something rare and something unrealistic. Can
be local, structural or global.

Ex. Detect that an object is at an unrealistic position.

* Mismatch Detection: Def. The ability to spot if infor-
mation is missing from one of the two modalities.
Ex. Detect that a sentence asks a question about an
object which isn’t present in the image.

Reasoning skills, logic: These capabilities evaluate a
model’s ability to reason using logic or mathematical con-
cepts.

* Logical Operations: Def. The ability to understand
logic operations (e.g. negation, or, and).
Ex. Understand ‘no’ in ‘There is no cat’.

* Comparison: Def. The ability to compare two parts
of an instance. Can also be applied between multiple
instances.

Ex. Compare the size of two objects in an image.

e Multimodal Inference: Def. The ability to detect
whether one instance can be entailed from another.
Ex. Use context and a medical image to assist in a di-
agnosis.

* Mathematical Reasoning: Def. The ability to use topo-
logical, geometrical, arithmetical or algebraic skills.
Ex. Answer a math-related IQ question.

Reasoning skills, complex: These capabilities evaluate a
model’s ability to reason using abstract reasoning or in mul-
tiple stages.

e Extrapolation: Def. The ability to complete an in-
stance from incomplete visual or textual information.
Includes the ability to distinguish between extrapola-
tion and hallucinations.

Ex. Deduce part of an obstructed text in an image with-
out hallucinating.

* Multi-hop Reasoning: Def. The ability to perform rea-
soning using multiple steps.
Ex. Path computing in vision-language navigation.

* Introspection: Def. The ability to explain the predic-
tion of a task.
Ex. Explain the reasoning when answering a question.

These can be complemented by other monomodal rea-
soning tasks transferred to the multimodal domain. Some
of those tasks can require task-specific data or fine-tuning,
and be difficult to achieve using only a foundation model.

C.4. Connotation

The skills listed in this section may not be useful to all
applications of vision-language models, as they rely on in-
dividual interpretation of multimodal instances. In addition,
their evaluation is subjective and can widely vary depending
on the annotations.

Connotation skills, interpretation: These capabilities
evaluate a model’s ability to interpret the meaning or intent
of an instance:

* Symbolism Understanding: Def. The ability to under-
stand the intent behind the symbolism in multimodal
elements (e.g. metaphors).

Ex. Associate a person holding a scale with ‘justice’.

* Ambiguity Understanding: Def. The ability to under-
stand voluntary ambiguity (e.g. optical illusions, word
plays).

Ex. Understand that an image shows a duck or a rabbit.

» Sentiment Understanding: Def. The ability to under-
stand the emotions evoked by an instance. Includes
the detection of humor and irony.

Ex. Understand that the gap between an image and its
associated text conveys humor.

Connotation skills, criticism: These capabilities evalu-
ate the understanding of the quality of an instance.

 Stylistic Appreciation: Def. The ability to evaluate
whether stylistic elements are appropriately and con-
sistently used.
Ex. Criticize the symmetry in an image.

» Effectiveness Evaluation: Def. The ability to evaluate
whether an instance is effective at expressing its in-
tended meaning.

Ex. Evaluate whether a cartoon transmits the intended
message.

These skills can be used in real-world applications where
the interpretation of an instance is important, such as appli-
cations related to art.



