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Abstract Automated text summarization systems require to
be heedful of the reader and the communication goals since
it may be the determining component of whether the original
textual content is actuallyworth reading in full. The summary
can also assist enhance document indexing for information
retrieval, and it is generally much less biased than a human-
written summary. A crucial part while building intelligent
systems is evaluating them. Consequently, the choice of eval-
uation metric(s) is of utmost importance. Current standard
evaluation metrics like BLEU and ROUGE, although fairly
effective for evaluation of extractive text summarization sys-
tems, become futile when it comes to comparing semantic
information between two texts, i.e in abstractive summariza-
tion. We propose textual entailment as a potential metric to
evaluate abstractive summaries. The results show the contri-
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bution of text entailment as a strong automated evaluation
model for such summaries. The textual entailment scores be-
tween the text and generated summaries, and between the
reference and predicted summaries were calculated, and an
overall summarizer score was generated to give a fair idea of
how efficient the generated summaries are. We put forward
some novel methods that use the entailment scores and the
final summarizer scores for a reasonable evaluation of the
same across various scenarios. A Final Entailment Metric
Score (FEMS) was generated to get an insightful idea in
order to compare both the generated summaries.

Keywords Automatic Evaluation · Abstractive Text
Summarization · Text Entailment · Natural Language
Processing · Deep Learning

1 Introduction

Abstractive text summarization is a keystone Natural Lan-
guage Processing task that is still in its adolescence when it
comes to big data perspectives, keeping grammar and other
such literary rules in mind. At the same time, many such
implementations exist that try to tackle this NLP problem
with the best efficiency possible today. However, a true met-
ric to judge such summaries is still dependent on a thorough
human-dominant review. Many evaluation metrics such as
ROUGE and BLEU give a fair idea of where the predicted
summary stands in contrast to the original document, but,
without human verification, it is hard to avoid exceptions
and incorrect assessments. Automatic evaluation ofmachine-
generated abstractive text summaries is hence still a very in-
teresting problem to address in the field of NLP. The idea
of constructing a neural network just to serve the purpose
of evaluating the summaries generated by another such NLP
model is revolutionary and can be considered as the founda-
tion of a textual entailment-based evaluation metric, thanks
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to many works [4] [21] that have worked on the Recog-
nizing Textual Entailment (RTE) problem in context with
abstractive summarization before. The purpose of this work
is to devise a method that has the potential to reduce the
dependence on manual labour when it comes to evaluating
summaries. This has been carried out using a Textual Entail-
ment neural network to efficiently identify if the generated
summary is an entailment of the original text and/or the ref-
erence summary. We also devised some expressions that use
these entailment scores to provide a fair pretense towards its
evaluation and correctness. For training the base abstractive
summarizer, the InShorts News Corpora has been used and
will be explained in further sections. Many approaches for
the text entailment model have been proposed, but the pa-
per has proceeded with an LSTM based neural network text
entailment approach, where most of the feature extractions
are carried out in the hidden layers itself without explicitly
summoning these paradigms. An appreciable set of evalua-
tion metrics are taken to review the abstractive summaries,
which complement well with the text entailment evaluation
metric to give a more insightful assessment of the final gen-
erated summary. It was found that the transformer model
performed much better than the base seq2seq model in sum-
mary generation. This was tested thoroughly using the set of
evaluation metrics aided with the strong text entailment au-
tomated evaluator, with both its summary-based entailment
scores and mutual entailment scores as well. The mutual
entailment score, although experimental, performed surpris-
ingly well in the seq2seq model generated summaries. Fi-
nally, an accumulated score was calculated to determine the
final efficiency of the test summaries generated which had a
strong emphasis on the entailment decisions.
The organization of the paper is as follows: Section 2.1

consists of the Literature Review and all related works. Sec-
tion 3 gives a brief description of the datasets used. Section
2.2 peruses through the theory of all the related topics and
sub topics that are covered throughout this research paper.
Objectives, some entailment approaches, similarity metrics,
etc. are covered in this section. Section 4 elaborates on the
system description and the experimental setup. The results
are elucidated in Section 5. Finally, Section 6 concludes the
paper with a conclusive review and future scopes.

2 Background

2.1 Literature Review

Earlier works mostly used rule-based approaches. Luhn used
word frequencies to find the most indicative sentences for
summarization [20]. Words that appeared frequently and in
close proximity to one another suggested significant sen-
tences. Thresholdswere established so that themost common
and least frequent terms were disregarded. [7] also employed

cue words, title and header words, and structural indications
such as sentence position in addition to word frequencies.
Significant sentences or paragraphs appear extremely early
and very late in the section or document, according to this re-
search. Eventually, Machine learning algorithms came into
play. On chosen extracts, Kupiec et al. [15] used a Naive-
Bayes classifier-based supervised technique. Sentence length
cut-off, fixed-length, paragraph, thematic word, and upper-
case words were among the parameters used to train the
classifier. In [29], a centroid-based summarising technique
for multi-document summarization was presented. Clusters
were formed by grouping together similar texts and sentences
where each cluster could be a different sub-topic. The cluster
centroid was a pseudo document that represented the clus-
ter. Sentences similar to the centroids would be included
in the summary. [3] suggested a domain-sensitive content
model that used a Hidden Markov Model with domain top-
ics as states and generated sentences that were relevant to that
topic. The sentenceswere created using an n-grammodel that
learned both content selection and information order. Tex-
tRank was proposed in [22], a graph-based system in which
each sentence was regarded as a node in the graph, based
on Google’s PageRank algorithm. The edges of the graph
were matched to the similarity of sentences. The text was
converted into a weighted graph, which was then subjected
to a ranking system (such as HITS, POS, or PageRank). For
the summary, the graph nodes with the highest scores were
chosen.

Neural networks were applied for abstractive summa-
rization in [30]. This method combined a neural language
model with an attention-based input encoder. Three differ-
ent encoders were used in the experiments: bag-of-words,
convolutional (TDNN), and attention-based; the latest, be-
ing the most successful. Only the first sentence was used
in the studies, therefore the process was limited to head-
line generation from the first sentence only. An attentional
encoder-decoder RNN model was used by Nallapati et al.
for achieving an abstractive summarization [23]. Uncom-
mon or OOV (Out Of Vocabulary) words were addressed
with a pointer-generator model. At the word and sentence
levels, the attention mechanism was hierarchical. Since prior
datasets were confined to single-sentence summaries, a new
dataset based on CNN/DailyMail [11] news articles was in-
troduced, with summaries averaging 53 words and 3.72 sen-
tences. This study became the foundation for the base model
for abstractive summaries of large corpora in the field. Liu
et al. attempted to generate Wikipedia articles in [18]. They
chose the most significant content tokens in the extractive
step, and for the abstractive phase, they developed a scal-
able decoder-only transformer architecture that integrated
input and output sequences into a consistent singular se-
quence. The final model was comprised of five layers, with
memory-compressed and local attention both present and
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the network altering between these two mechanisms. Fan
et al. improved performance by feeding knowledge graph
representations of the text to a seq2seq model [9]. In [9],
BERTSUM, aBERTmodification for summarising, was pro-
posed. Multiple sentences were encoded as a unified input
sequence by the mentionedmodel. To separate the sentences,
interval segment embeddings were implemented. Different
summarization layers such as basic classifier, RNN, and inter-
sentence transformer were tested for fine-tuning and extract-
ing document-level features.
Plenty of studies have used textual entailment while gen-

erating text summaries to primarily boost the performance
of the systems. Lloret et al. used textual entailment recog-
nition along with text summarization and achieved a per-
formance improvement of 6.78% [19]. The work compared
the performance of the combined approach with the DUC
2002 baseline model and their own word-frequency-based
model. Gupta et al. [10] proposed a method that considered
text summarization as an optimization problem and used a
graph-based algorithm, Weighted Minimum Vertex Cover
(WMVC) to solve it. They also used textual entailment to
measure sentence connectivity and construct the graph on
which WMVC operated. In [35] text entailment was used
for text segmentation and summarization. Saini et al. used
the textual entailment score between sentences in a summary
and a figure’s caption as one of the sentence scoring features
for automatic figure summarization in biomedical scientific
articles [31]. Textual entailment was used to propose a ro-
bust evaluation method for Machine Translation outputs in
[25] and [24]. Pasunuru et al. used a reinforcement learning
approach for abstractive summarization[27]. They exploited
entailment as one of the two of their reward functions.
Falke et al. [8] evaluated summaries generated by abstrac-

tive SOTAmodels by crowd-sourcing. They showedwhether
textual entailment predictions could be used to detect er-
rors and reduce them by re-ranking alternative generated
summaries. A weakly-supervised model based on observa-
tions from the errors made by SOTA summarization models
was proposed in [14] for evaluating factual consistency be-
tween the source documents and corresponding predicted
summaries. Zhang et al. [37] proposed BERTSCORE, an
efficient metric for text generation evaluation that computes
token similarity using contextual embeddings. It was claimed
to correlate better with human judgements. Another learned
evaluation metric based on BERT, BLEURT was proposed
in [33].

2.2 Related Theory

2.2.1 Standard Evaluation Metrics

Standard evaluation metrics like ROUGE and BLEU despite
being excellent evaluation metrics for many NLP tasks in-

cluding extractive summarization have their limitationswhen
it comes to evaluating semantic meaning or similarities be-
tween sentences.

1. BLEU : The Bilingual Evaluation Understudy (BLEU)
score [26], originally introduced to evaluate machine
translation systems is one of the most conventional met-
rics used for abstractive text summarization evaluation as
well. It is a language-independent method that correlates
highly with human evaluation. The requirement to per-
form a reasonable evaluation, however, is a number of
reference sentences with which the machine-generated
output can be compared. BLEU compares the n-gram
of the machine-generated output to the n-grams of the
reference outputs to count the number of matches. A
modified precision formula is used to get a fair estimate
of the matches. The final BLEU score of a generated out-
put sentence is basically a weighted combination of the
modified precision formula scores on different n-grams,
as shown in Equation 1.

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · 𝑒𝑥𝑝(
𝑁∑︁
𝑛=1

𝑤𝑛 log 𝑝𝑛) (1)

where, 𝑁 is the number of grams (usually the unigram,
bigram, trigram and 4-gram are used),𝑤𝑛 is the weight of
the 𝑛𝑡ℎ modified precision score 𝑝𝑛. 𝐵𝑃 denotes Brevity
Penalty which is an adjustment factor that penalizes out-
put sentences by using exponential decay on generated
sentences that are shorter than the provided reference
sentences.
The major limitation of BLEU lies in the fact that it
cannot estimate the semantic relevance of a sentence.
Differentwords in different orders of their placementmay
reflect the same expected meaning and to capture that,
various reference sentences containing different words in
different orders that express the same meaning need to
be provided.

2. ROUGE Recall-Oriented Understudy for Gisting Eval-
uation [17] is a set of metrics consisting of ROUGE-N,
ROUGE-L, ROUGE-S, etc. In ROUGE-N the n-grams
of sentences are used. It measures the number of match-
ing n-grams between the model-generated summary and
a reference summary. The ROUGE recall is the count
of the number of matching n-grams found in both the
reference summary and model generated summary di-
vided by the total number of n-grams in the reference
summary. The ROUGE precision is the same but it is
divided by the total number of n-grams in the model gen-
erated summary. The ROUGE F-score is simply the har-
monicmean of theROUGEprecision andROUGE recall.
Thus, it relies on the model capturing as many matching
words as possible (recall) without generating a lot of ir-
relevant words (precision). The ROUGE-L measures the
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longest common subsequence (LCS) between the model-
generated output summary and the reference summary.
The longest sequence of tokens that is shared between
both is counted. Like BLEU, however, even ROUGE has
no scope of evaluating any kind of semantic meaning.

2.2.2 Standard Text Entailment approaches

In the most basic sense, a premise P is said to entail a hy-
pothesis H if H is true in every circumstance of possible
world in which P is true. In the complexity chart of NLP,
textual entailment can be considered in the highest layer of
discourse and coreference. The most crucial objective of text
entailment can basically be considered to be text similarity,
but a more refined version of the same. This means that on
entailment detection, the pair of corpus is not only similar to
each other, but also, the hypothesis is a valid representation
of the premise, meaning abstraction is achieved in summary
generation.

1. Bag of Words based approach A very simplistic ap-
proach to see the common words between premise and
hypothesis. This approach falls short due to lack of com-
plexity. It lacks detection of negation and sentiment, as a
negating word is simply an added word, hence, the bag
of words score will remain high even if the hypothesis is
a contradiction of the premise in many cases. This is why
a more refined text entailment approach was sought after
very popularly by the NLP community to tackle these
hurdles.

2. Dependency tree based approach In a dependency tree
based approach, the corpus is tagged into syntactic ele-
ments using a dependency parser. It passes the various
tags for each word and puts them in a tree format for
analysis.

3. Predicate based approach The premise and hypothesis
pair is transformed into a predicate-argument tuple. This
makes it easier for analysis based on predicate solution
which is a very popular logic problem solving field, and
hence, text entailment detection will be made easier in
this form. Theory proving algorithms are then used on
the predicate-argument pair and hence, text entailment is
checked.

4. Probabilistic approach According to this approach, a
premise 𝑝 is said to entail a hypothesis ℎ (denoted as
p → h) if 𝑝 escalates the likelihood of ℎ being true,
according to Equation 2.

𝑃(𝑇𝑟ℎ = 1|𝑝) > 𝑃(𝑇𝑟ℎ = 1) (2)

This means that the conditional probability of the hy-
pothesis given the premise should be more than the un-
conditional probability of the hypothesis.

There exists a paradox in this approach on application
of Bayes’ Theorem and further resolution, it shows that
premise entails hypothesis only if the hypothesis entails
premise. This is clearly false, as the entailment should
not depend on the converse. A concept of mutual en-
tailment is introduced later in this paper, which dabbles
around this idea, but that is different as it only ensures
the strength of the entailment rather than implying cases
other than p→ h && h→ p are not entailments.

5. Deep Semantic based approach This approach is based
on the workings of UNL (Universal Networking Lan-
guage) tool. UNL is a tool for representing text in terms
of semantic relations between entities. It consists of:
– Universal Words: Unambiguous concepts in the sen-
tence.

– Attributes: How a concept is used in a sentence.
– Relations:Denote semantic dependency between con-
stituents

6. Machine Learning approach This is perhaps the most
sought after approach when tackling the RTE problem.
Many researchers in the field of NLP apply deep learning
methodologies to detect entailments, hence marking the
foundation of various text entailment applications such as
Question Answering Systems, Machine Translation, and
as in the case of this paper, Abstractive Summarizing
and Automatic Evaluation. Many deep learning concepts
such as word embeddings, recurrent neural networks,
LSTMs, etc. will be discussed briefly in the following
sections.

3 Datasets

For the base abstractive summarizationmodel, InshortsNews
Data (obtained fromKaggle) was used for training themodel.
It consisted of 55,014 rows of Text-Headline pairs. TheHead-
lines were considered as summaries of the corresponding
text. The text body consisted of around 60 words while the
headlines were of around 15-20 words. This dataset is rela-
tively very small in terms of language tasks. However, it was
chosen due to our limitations in resources, and because the
base model was created from scratch and the training had
to take place without freezing any weights. Furthermore, the
attention layer [2] runs with quadratic time complexity, thus
increasing the training time greatly.
The StanfordNatural Language Inference (SNLI) [5] cor-

pus is a collection of 570,000 human-written English sen-
tence pairs manually labeled as entailment, contradiction, or
neutral. It was used to train our Textual Entailment model
since this dataset is balanced and most conveniently contains
the desired annotations. On preprocessing, the gold labels
were examined carefully, and cleaned for further usage by
the text entailment model, which will be discussed in further
sections. The SNLI corpus comprises of 3 arranged datasets:
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train, validation and test. The training dataset comprises of
549,361 training pairs with gold labels. The validation set has
9842 sets of pairs and gold labels and the test set contains
9824 records.
Generated Abstractive Summaries is a collection of 100

test data generated from the base summarizer model and the
BART model are passed through the text entailment model
and a score is generated depicting how good the summary
generated is.

4 System Description

The entire methodology along with more relevant theoretical
concepts have been elucidated in the following sections.

4.1 Abstractive Summarization base model

4.1.1 Pre-processing

Neural networks can be fed only numerical data. The text-
headline pairs, both being text data had to pass through var-
ious pre-processing stages before being fed into the model
for training.
Currency symbols and word contractions were replaced

by the text abbreviations and expansions respectively. For
instance, "$" to "USD", didn’t" to "did not", "you’ll" to "you
will", and so on. All the characters were converted to lower-
case and stopwords were removed using the NLTK English
stopwords list. The word counts distribution of the cleaned
texts and headlines can be seen in Figure1.

Fig. 1 Histogram of Word Counts in the Inshorts News Dataset

With reference to the histograms, amaximumword length
of 57 for texts and 15 for headlines were chosen. These num-

bers can further be justified because 99.9% of the text bodies
had word counts of less than 57 and 99.93% of the sum-
maries had word counts of less than 15. After adding the
SOS (Start of Sentence) and EOS (End of Sentence) tokens
to each summary example, the dataset was then split into
train and test splits in the ratio of 9:1. Consequently, the
train split consisted of 49512 rows and the test split had
5502 rows of cleaned text-summary pairs. The data was then
tokenized using the keras.preprocessing.text.Tokenizer class
[6]. The text data finally got converted to a sequence of num-
bers after the tokenization. It was followed by padding using
the keras.preprocessing.sequence.pad_sequences class. The
padding was done by appending zeros at the end of each
sequence to make all the examples have a similar length, in
our case 57 for texts and 15 for summaries.

4.1.2 LSTMs

Vanilla Recurrent Neural Networks (RNNs) pose a problem
of vanishing and exploding gradients. The LSTM [12] pro-
vides a solution to these problems through the modification
of the RNN. LSTMs perform notably well with data that is
sequential in nature, basically where prediction outputs de-
pend on previous inputs as well and can handle long-term
dependencies and contextual weights. It introduces a new
configuration to the typical vanilla architecture of RNNs
(Recurrent Neural Networks) i.e.- the memory cell consist-
ing of basically 4 constituents: input gate, forget gate, output
gate, and a neuron that simply links to the same neuron itself.
The LSTM cell deals with the gradient vanishing problem by
withholding the error information that can be disseminated
through the mechanism of back-propagation in between the
layers and time. Inside the LSTM, the cell state (𝐶𝑡 ) is well
connected to three gates, which are basically the input gate
(𝑖𝑡 ), output gate (𝑜𝑡 ), and forget gate ( 𝑓𝑡 ) separately. 𝐶𝑡

demonstrates the cell state at any timestamp, t, 𝑊𝑥 and 𝑏𝑥
denotes the weights and bias terms for the respective gates
𝑥, respectively. 𝑥 can either be a (𝑖) input gate, a ( 𝑓 ) forget
gate, an (𝑜) output gate, or even a (𝑐) cell state vector. We
consider ℎ𝑡−1 to be the output of the former LSTM cell at a
given timestamp 𝑡 − 1 and 𝑥𝑡 can denote the input at times-
tamp 𝑡. Equations 3, 4, 5, 6, 7, 8 clearly portray the functions
discussed above.

𝑓𝑡 = 𝜎(𝑏 𝑓 +𝑊 𝑓 · [ℎ𝑡−1, 𝑥𝑡 ]) (3)
𝑖𝑡 = 𝜎(𝑏𝑖 +𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ]) (4)
𝐶𝑡 = tanh(𝑏𝐶 +𝑊𝐶 · [ℎ𝑡−1], 𝑥𝑡 ) (5)
𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 (6)
ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡 ) (7)
𝑜𝑡 = 𝜎(𝑏0 +𝑊0 |ℎ𝑡−1, 𝑥𝑡 |) (8)
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4.1.3 Attention Mechanism

The attentionmechanismbasically improves the performance
of themodel to a great extent by imparting themodel the abil-
ity to weigh attention. In other words, it endorses the model
to know which are the relevant parts of the inputs. Bahdanau
et al. [2] first introduced and implemented this concept in a
Machine Translation task. Similar to their work, the attention
layer has been used in the decoder part of our base abstrac-
tive text summarizer. The context vector 𝑐𝑖 that generates
the most probable word on a particular time step is depend-
able on a sequence of annotations (ℎ1, ..., ℎ𝑇𝑥 ) to which the
encoder maps the input sequence (𝑇𝑥 is the total time steps
in the sequence). 𝑐𝑖 is calculated as a weighted sum of the
annotations ℎ𝑖 as shown in Equation 9.

𝑐𝑖 =

𝑇𝑥∑︁
𝑗=1

𝛼𝑖 𝑗ℎ 𝑗 (9)

where, 𝛼 is the attention weight, the amount of attention that
should be paid to ℎ 𝑗 . The attention weights are calculated
using Equation 10.

𝛼𝑖 𝑗 =
𝑒𝑖 𝑗∑𝑇𝑥
𝑗=1 𝑒𝑖 𝑗

(10)

where, 𝑒𝑖 𝑗 can be calculated using a small neural network
(usually having one hidden layer) that learns the weights
during gradient descent while backpropagating to formulate
a relevant function that attempts to capture the alignment
between input at 𝑗 and output at 𝑖. Consequently. the inputs
to this neural networkwould be 𝑠𝑖−1, the hidden state from the
previous time step before emitting 𝑦𝑖 (output at 𝑖), and ℎ 𝑗 , the
𝑗 th annotation of the input sequence. Equation 10 is basically
a softmax function used on 𝑒𝑖 𝑗 in order to make the total sum
of the attention weights equal to one. 𝛼 essentially exhibits
the importance of ℎ 𝑗 with respect to the previous hidden
state 𝑠𝑖−1 in order to decide the next state 𝑠𝑖 and generating
a probable target word 𝑦𝑖 . Henceforth, the decoder is able
to decide which parts of the input sentence it should pay
attention to while generating a word at a particular time step.
In this work, global attention is used, i.e all the hidden states
of the encoder LSTM network is used while calculating the
context vector.

4.1.4 Experimental Setup

For our base abstractive text summarizer, an embedding di-
mension of 110 was used for the text inputs. The encoder
consisted of an embedding layer and three stacked LSTM
layers with a latent dimension of 200. Dropouts and recur-
rent dropouts were used to restrict overfitting. The decoder

is comprised of an embedding layer, an LSTM layer, an at-
tention layer, and finally a time-distributed dense layer with
the same number of nodes as the vocabulary space of the
summaries with a softmax activation function. The skeleton
of the model is shown in Figure 2. The Adam optimizer [13]
and the categorical-cross-entropy loss function were used.
Due to limited resources, the training ran for 10 epochs with
a batch size of 16. The Tensor Processing Unit available in
Google Colaboratory (16 GB RAM, NVIDIA Tesla V100
GPU) was exploited to fasten the training process. It took
approximately 5 hours for the training to complete.
For comparison of the results, summaries of the test set

were also generated using a pre-trained BART [16] trans-
former [36] model fine-tuned on the CNN/DailyMail dataset
[11].
An example of summaries generated by both models is

shown below:
Cleaned text: saudi stock exchange appointed sarah al ceo
investment bank ncb capital first female head first woman
chair major government financial institution kingdom chair
arab world 39 largest stock exchange time preparing offer
shares public
reference summary: saudi stock exchange appoints its first
female head
Base model generated summary: saudi arabia sign 1st ever
female woman
Transformer generated summary: saudi stock exchange
appointed sarah al ceo investment bank ncb capital first
female

4.2 Text Entailment model

Text entailment is a crucial metric to check for a given set of
premises and their corresponding hypotheses. A typical base
model would simply run through the sentence pairs using a
simple RNN cell and a final softmax activation function on
the concatenated fully connected linear layers which would
put the sentence pairs into one of the three classes based on
the maximum probability of the class value.

4.2.1 Pre-Processing

Most of the pre-processing are usually done while summa-
rizing itself in the base seq2seq model, but since a more ad-
vanced transformer-based summarizer was introduced, the
SNLI dataset, as well as the generated summary set for test-
ing, has to undergo pre-processing. Lemmatization was car-
ried out on the corpus, stop words and special symbols were
removed. Unnecessary columns were dropped and the gold
labels were identified for each sentence sets from the SNLI
dataset and were sequenced efficiently.
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Fig. 2 Base Abstractive Summarizer Architecture

4.2.2 Word Embeddings

Word Embeddings can be considered to be the mathematical
representation of words in a vectorized form, that portrays
the semantic meaning of the word. The concept is based on
the intuition that words that occur in similar contexts tend to
have relatable meanings. The word embeddings used for the
textual entailment model, the GloVe [28] (Global Vectors)
Embeddings, is a count-based, unsupervised learning model
that models the vector representations of words at a global
level using co-occurrence data (how frequently two words
appear together). It is built on word-word co-occurrence
matrix probability ratios, which combines the intuitions of
count-based models with the linear structures captured by
embedding approaches like word2vec.
As demonstrated in Equation 11, GloVe employs a global

log-bilinear (LBL) regression model that leverages a simple
weighted least squares algorithm.

𝑤𝑖 .𝑤 𝑗 = log 𝑃(𝑖 | 𝑗) (11)

4.2.3 Experimental Setup

The pre-trained GloVe embeddings have been provided by
Stanford forNLP research. For better results, 300-dimensional
GloVe vectorswere used in the embedding layer of the textual
entailment model.
After the word embeddings were invoked, the sentences

and words were stored along with their indexing in a special-
ized class called vocabulary. The vocabulary would contain
all the words used in the cleaned text corpus and the test

dataset and will be assigned a hash based on when they are
inculcated into the vocabulary class. These hashed words
and sentences were then used by the word vectors to gen-
erate similarities between the different words by referring
to their indexes (since strings cannot be understood by the
systems). The vocabulary class hashing and searching were
done by exploitingCUDA libraries that used the full potential
of the local graphics processing unit for maximum speed.

On the modification of a typical text entailment model,
our model, depicted in Figure 3 , was made to use Bidirec-
tional LSTM cells [12][32].

The bi-LSTM model made use of a ReLU layers, which
applied the Rectified Linear Unit function [1] in an element-
wise manner.

Instead of the more widely used tanh functions, we used
ReLU because ReLU offers sparsity in activation, which
means that it can produce more zero-valued activations com-
pared to tanh. This sparsity property can be beneficial for
certain applications, such as text summarization, where not
all words or phrases contribute equally to the final summary.
Furthermore, ReLU is computationally more efficient com-
pared to tanh activation. ReLU simply sets negative values to
zero, whereas tanh involves more complex calculations. This
efficiency can be crucial in scenarios where computational
resources are limited, which was our case as well.

The model also contained a dropout layer [34] to restrict
overfitting. There were three fully connected concatenation
layers being implemented to trickle down the size of the
matrices after each passing layer. Finally an output layer
was used to take the matrix as input and output 3 values
corresponding to the final class scores: entailment, neutral
and contradiction
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Fig. 3 Entailment Model Architecture

The defined layers of the model were then put into a Se-
quential layer, which is basically a layer that combines all the
defined layers in a structured sequential manner to ultimately
make the pipeline of layers for the textual entailment model.
The model architecture is depicted in Figure 3.
The textual entailment model made use of two forward

propagation functions, one calling the other on initializa-
tion. The first forward function, ’forward_once’ initializes
the embedding Layer with the GloVe word vectors for the
word-indexes in the vocabulary class for the neural network,
as it is the first layer.

𝑝𝑟𝑒𝑚𝑖𝑠𝑒 := 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑_𝑜𝑛𝑐𝑒(𝑝𝑟𝑒𝑚𝑖𝑠𝑒, (ℎ0, 𝑐0))
ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 := 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑_𝑜𝑛𝑐𝑒(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, (ℎ0, 𝑐0))
𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 → 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙_𝑙𝑎𝑦𝑒𝑟 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑜𝑢𝑡𝑝𝑢𝑡)
Given as input the token indexes in the concatenation of

premise and hypothesis, the embeddings obtained after the
first layer, initialized with Glove embeddings, are processed
by the three bidirectional LSTM.

4.2.4 Training

With the testing and training datasets loaded, vocabulary
classes spawned and the textual entailment model defined,
the hyperparameters were fine-tuned before training for op-
timal results. Batches of 32 sentence pairs were loaded into
the model, GloVe-embedded words using an embedding size
of 300 and the padded sequences were propagated into the
sequential layer. The training ran for 15 epochs in a local
system comprising of a GTX 1050 GPU with 4GB VRAM,
16GB of primary RAM, and an Intel i7 - 7𝑡ℎ generation
processor. The Cross-Entropy criterion was used as the loss
function.

5 Results

The seq2seq base abstractive summarizer and the Bart-based
summarizer have been used to generate summaries for 100
text samples from the test data. The generated sentences
have been compared with the original summaries using the
standard evaluation metrics. The average scores are enlisted
in Table 1. Additionally, the pre-trained ’stsb-roberta-large’
sentence transformer [36] has been used to measure the
BERTScore score between the original summary and pre-
dicted summary. A higher semantic similarity score for the
Bart-based model was achieved, as expected since it was
a pre-trained transformer-based model optimized and fine-
tuned on a much larger dataset for a longer period of time.

A typical entailment model having vanilla RNN layers
was noted to have a training loss of 0.8754 and a training ac-
curacy of 60.14%. It was also noted to have a validation loss
of 0.8718 resulting in a validation accuracy of 61.04%. It had
a similar test statistic record of 60% accuracy and 0.87 loss.
After training the entailment model having bi-LSTM layers
for 15 epochs, the training loss was reduced to 0.7113 and
a training accuracy of 70.53%, recording a 10.39% increase
in accuracy from the typical model was achieved. It also
yielded a validation loss of 0.6588 pointing to a validation
accuracy of 73.20%, recording a decent 12.16% increase in
accuracy from the base model. On the test set too, a testing
loss of 0.6575 was recorded along with a test accuracy of
73.21%, which is big step up from the base model test ac-
curacy of around 60%. A higher validation accuracy can be
attributed to the smaller validation domain and a low vari-
ance among training and validation sets, meaning a more
robust model when it comes to validation and testing. This
is also attributed to the existence of dropouts (20% dropout
was being implemented) so as to prevent overfitting. The en-
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BLEU BERTScore ROUGE-1
F-score

ROUGE-2
F-score

ROUGE-L
F-Score

Base Model 0.754882 0.391581 0.22535 0.071559 0.219551
BART based
pre-trained

model
0.654945 0.556738 0.267859 0.079555 0.23525

Table 1 Standard Evaluations Metrics

tailment model was then tested on the dedicated test dataset
provided by SNLI itself. The training results are shown in
Table 2.

Accuracy Loss
Training Set 0.7053 0.7113

Validation Set 0.7320 0.6588
Test Set 0.7321 0.6575

Table 2 Model Training Statistics

Now, while using the text entailment model to evalu-
ate the generated summaries both from the base seq2seq
model and the transformer model, two scoring metrics were
devised from the bi-LSTM based entailment model to get a
better understanding of the sentence pairs’ entailment scores.
100 rows of test data were generated from the base summa-
rizer and the BART-based summarizer containing the origi-
nal texts, original (reference) summaries, and predicted sum-
maries. Various results are recorded for both summary-based
entailment and mutual entailment.

5.1 Summary-based Entailment

The Entailment score of the generated summary was calcu-
lated with respect to the text body whose summary was gen-
erated. In other words, the entailment between the text and
the generated summary was evaluated. The raw softmax()
values (raw tensor values from the softmax() function) of
each class (entailment, neutral, and contradiction) were ex-
tracted before applying argmax() and were then normalized
so as to get an idea as to how much entailment, neutrality or
contradiction was present in the summarized sentence with
respect to the original text (premise) using Equation 12.

𝑛𝑜𝑟𝑚𝑎𝑙𝑖 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑚𝑎𝑥(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) − 𝑚𝑖𝑛(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) (12)

5.1.1 Base summarizer model

After applying argmax() on the output probabilities of the
base seq2seq summarizer, we found that 41 sentence pairs
were identified to have 𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡, 40 sentence pairs have
𝑁𝑒𝑢𝑡𝑟𝑎𝑙 and 19 sentence pairswere identified to be𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠.
Therefore, our Entailment-based evaluator could mark the

base seq2seq based summarizer to have 41% Entailment,
which was decent, but not groundbreaking.

5.1.2 BART-based summarizer model

After applying argmax() on the output probabilities of the
BART-based summarizer, we found that 89 sentence pairs
were identified to have 𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡, 10 sentence pairs have
𝑁𝑒𝑢𝑡𝑟𝑎𝑙 and only 1 sentence pair was identified to be Con-
tradictions. Therefore, our Entailment-based evaluator could
mark the BART-based summarizer to have a 89% Entail-
ment score, which is a notable score for any well-trained
summarizer.

5.1.3 Summarizer model comparison

From the summary-based Entailment categorizations ob-
served, we can clearly come to the conclusion that on a
premise text to hypothesis summary form of entailment train-
ing, the BART summarizer model simply outperforms the
base seq2seq summarizer model. A comparison table is
shown Table 3.

Base seq2seq model BART model
Entailment 41 89

Neutral 40 10
Contradiction 19 1

Table 3 Summary-based Entailment Scores

5.2 Mutual Entailment

A two-way Entailment score was also calculated between
both the reference summary and the predicted summary. This
means that a classification score list was generated where the
reference summary was taken as premise and the predicted
summary was taken as the hypothesis and vice versa.
Four Categories were classified from the two sets of La-

bels (label of premise and label of hypothesis)

1. Perfect Entailment:
If both the premise → hypothesis and hypothesis →
premise were entailing each other, this meant both the
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reference summary and the predicted summary were en-
tailing each other, and hence were considered to have full
or perfect entailment.

2. Partial Entailment:
If neither one of the summaries was a contradiction of
the other, excluding the case of perfect entailment, these
sentence pairs were categorized as having Partial Entail-
ment.

3. Perfect Contradiction:
If both the premise and the hypothesis were a contradic-
tion of each other, it was termed as a contradiction.

4. Mutually Neutral:
The rest of the sentence pairs, more predominantly hav-
ing the hypothesis as a neutral/contradiction of the premise
and vice versa (but both weren’t neutral or contradiction
of each other simultaneously) were categorized to be
under the class of Mutually Neutral. This is because, al-
though one may be the contradiction of the other, we
cannot fully commit to the categorization of negative en-
tailment, as it is an experimental metric with a very high
case of this happening naturally.

On a sentence pair level analysis, two categories were
given as output once taking the reference summary as premise
and the predicted summary as hypothesis, and in the next
scenario the vice versa. Depending on the two scores, one
of the four discussed categories were assigned to that par-
ticular sentence pair, and depending on this category, a
𝑀𝑢𝑡𝑢𝑎𝑙𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 score was conjured, which is later used
on generating the overall Entailment Metric Score comple-
menting with the summary-based entailment category score
as well.

5.2.1 Base summarizer model

After evaluation, we found that there were only 7 perfectly
entailed sentence pair, where the [reference summary →
predicted summary] label and [predicted summary→ refer-
ence summary] labelwas Entailment. Therewere 56 partially
entailed sentence pairs, where either the [reference summary
→ predicted summary] label or the [predicted summary→
reference summary] label was Entailment/Neutral, or both
cases were neutral to each other. There was only 1 Perfectly
Contradictory sentence pair, where the [reference summary
→ predicted summary] label and the [predicted summary
→ reference summary] label were both contradictions (pure
contradictions).

5.2.2 BART-based summarizer model

Entailment results of 100 test cases generated from theBART
abstractive text summarizer were also analyzed. It yielded
interesting results. We found that there were 13 perfectly
entailed sentence pair, where the [reference summary →

predicted summary] label and [predicted summary→ refer-
ence summary] label was Entailment. There were 66 partiall
entailed sentence pairs, where either the [reference summary
→ predicted summary] label or the [predicted summary→
reference summary] label was Entailment/Neutral, or both
cases were neutral to each other. There were 0 Perfectly
Contradictory sentence pairs, where the [reference summary
→ predicted summary] label and the [predicted summary
→ reference summary] label were both contradictions (pure
contradictions).

5.2.3 Summarizer model comparison

From the mutual Entailment categorizations observed, we
can clearly come to the conclusion that on a reference sum-
mary to predicted summary form of entailment training,
the BART summarizer model simply outperforms the base
seq2seq summarizer model. Although the base model per-
formed well with only 1 perfect contradiction, the BART
model simply surpassed the base model with 0 perfect con-
tradictions. A comparison table is shown in Table 4:

base seq2seq model BART model
Perfect Entailment 7 13
Partial Entailment 56 66
Mutually Neutral 36 21

Perfect Contradiction 1 0

Table 4 Mutual Entailment Scores

Based on the above mutual scores and summary scores,
we attain the line graphs that are shown in Figures 4 and 5.We
can clearly see that theBARTmodel dips very little compared
to the base model in both the metric systems. In case of the
mutual entailment scores, the values are figuratively similar,
but we can see a large dip in score to as low as -1.00 [The
scoring system for both the entailment paradigms have been
explained thoroughly in the next section]. Hence, even in this
case, the BART model performs better.

Fig. 4 Summary-based entailment score
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Fig. 5 Mutual entailment score

5.3 Final Entailment Metric Score

On analysis of both the summary-based and mutual entail-
ment paradigms, an accumulated final entailment score was
more or less arbitrarily devised from both the above men-
tioned metric systems. The mutual perspective being a more
experimental approach, a weightage of 0.30 was given to the
results of this section while the basic summary-based entail-
ment was given a higher priority of 0.70 while calculating
the final entailment metric score. The Scoring protocols are
mentioned below:

𝐹𝐸𝑀𝑆 = 0.70(𝐸𝑆) + 0.30(𝐸𝑀 ) (13)

Where, 𝐸𝑆: Summary-based Entailment, 𝐸𝑀 : Mutual
Entailment.
Here, in the Summary based Entailment, the categorical

scoring are:

– Entailment: 1
– Neutral: 0.2
– Contradiction: -1

A partial advantage is given to neutral sentences. This
is because Neutral Sentences are simply not an entailment
of the given sentence, but that doesn’t mean it is a total
contradiction of the sentence. Neutrality also signifies that
the entailment is not strong enough for the correlation to
exist, but is good enough for a user to match the two as
somewhat similar sets of lexicons.
Now, in the Mutual Entailment, the categorical scoring

are:

– Perfect Entailment: 1
– Partial Entailment: 0.5
– Mutually Neutral: 0
– Perfect Contradiction: -1

Therefore, for a given premise text, a summary will be
generated. Then the text, reference summary and predicted
summary will be fed into the text entailment model. Here,
the Summary based entailment category (SE) will be pre-
dicted, and then the Mutual Entailment Category (ME) will
be predicted. Then, both these categorical scores will be used
to calculate the final entailment metric score (FEMS) 13 to
give a vivid idea as to how good the generated summary is.

Fig. 6 Final Entailment Metric Scores

The FEMS vary from as low as -1.00 to as high as +1.00.
The FEMS of all the generated summaries were averaged
out for both the base model summaries and the transformer
generated summaries and were compared to each other. The
findings are visualized in Figure 6 and recorded in Table 5.
From Table 5 and Figure 6, we can clearly summarize

that the BART transformer model not only has a higher av-
erage FEMS of 0.768 compared to the base model’s FEMS
of 0.312, but is also much more consistent with its good en-
tailment results with a standard deviation of just 0.234 com-
pared to the base model’s 0.545 standard deviation value.
Thus, from these findings, it can be safely concluded that the
BART-based transformer outperforms the base summarizer
model.

6 Conclusion

Being one of the major NLP tasks presently being tackled
by many, automatic evaluation of deep learning-based text
Summarization is in its development phases. To “summa-
rize”, in our work a base seq2seq abstractive text summarizer
model was developed to summarize news articles. A BART
transformer-based model was also used, and test sets from
both summarizers were used for the analysis of the textual en-
tailment model’s performance of evaluation. The model was
trained on the standard SNLI dataset provided by Stanford.
A summary-based Entailment result was recorded on 100
transformer-generated summaries along with the Mutual En-
tailment based score between the original and generated sum-
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FEMS mean FEMS median FEMS standard deviation
Base

summarizer
model

0.312 0.29 0.545

BART
summarizer

model
0.768 0.85 0.234

Table 5 FEMS evaluations

maries. The same was also done for the seq2seq summarizer-
generated summaries. We finally came to the conclusion that
the pre-trained BART transformer-based summarizer per-
formed objectively better in generating more accurate ab-
stractive summaries, as was expected.

Throughout the experimentation and research on this
field, many shortcomings were noticed and a lot of poten-
tial for improvements were recorded so as to better tackle
this problem in further publications. For starters, to have a
better grasp of the reference summary from where to evalu-
ate our model by in case of mutual entailment, the Inshorts
dataset of news and summary was used instead of the stan-
dard CNN/Daily Mail dataset more prevalent in this sort of
NLP tasks. In future endeavors, this can be easily tackled
in order to get a better result of the summaries. The entail-
ment model made from scratch too has a lot of room for
improvement. It does not make use of an extensive Attention
Layer, which has newly become very popular in the NLP
field due to its efficiency to handle complexities of higher
degrees. Due to shortcomings in our processing power, this
attention mechanism was omitted out but is mentioned for
future endeavors in this problem. The aim of the experiment,
although values the importance of accuracies in training and
testing, was not solely built on the premise of exceeding the
SOTA models already prevalent in the NLP domain. Thus,
although the entailment model performs better than most
models present rooting to naive probabilistic approaches or
other such approaches (that have been mentioned above, that
mostly require hard coding lexical rules and logic), it does
not stand out among the baseline Deep Learning-based mod-
els mentioned in the SNLI projects, as most of them use high
complexity transformers or use attention mechanisms. There
is potential in this model as it can inculcate attention mecha-
nisms and also use transfer learning to yield better results, but
for now, a 73% accuracy is fairly decent. Moreover, for bet-
ter testing, the efficiency of the entailment model, a rigorous
round of RTE test datasets could be used. RTE is standard
when it comes to tackling the text entailment problem, hence
for future research and experimenting, RTE can be surely
used along with the SNLI corpus. Also, with higher perfor-
mance GPUs and processors, higher complexities of matrix
multiplications can be done in a shorter time, and this will
drastically help with preventing the OOV problem (Out Of
Vocabulary), where different vocabulary classes were cre-

ated to cater to different testing paradigms, instead of mak-
ing one giant vocabulary class. This was done to make the
word indexes comparatively smaller numbers, so as to ease
up on calculations (Otherwise we found ourselves crashing
the CUDA ports entirely, and the entire model had to be
retrained).
With that said, the entailment performs close to human

judgement. The BART-based summaries were more mean-
ingful than the base summarizer-generated summaries, as
expected. The FEMS was found to be much more reliable
than other metrics such as ROUGE and BLEU. This is be-
cause BLEU and ROUGE do not take into account semantic
complexities. Due to the usage of LSTMs, important contexts
are remembered by the entailment model and it portrays the
relationships between a text and the corresponding summary
with better efficiency.
The objective of the work was to basically exhibit the

potential of textual entailment to become one of the factors
for an efficient evaluation of abstractive text summarization
systems. There are tremendous future scopes. Due to limited
resources, relatively smaller and simpler architectures were
trained on a few epochs in thiswork. Thus, futureworks could
use more sophisticated models to deliver further promising
results and derive more mathematically appropriate expres-
sions to use the entailment results. This may not solely be
the best evaluation method for such systems, however, us-
ing it in conjunction with other transformer-based metrics
like the BERTScore, and other conventional metrics shall
certainly lead to a highly efficient method that may become
comparable to human evaluations.
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