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Abstract

Two recent contributions have found conditions for large dimensional networks or sys-
tems to generate long memory in their individual components. We build on these and
provide a multivariate methodology for modeling and forecasting series displaying long
range dependence. We model long memory properties within a vector autoregressive
system of order 1 and consider Bayesian estimation or ridge regression. For these, we
derive a theory-driven parametric setting that informs a prior distribution or a shrink-
age target. Our proposal significantly outperforms univariate time series long-memory
models when forecasting a daily volatility measure for 250 U.S. company stocks over
twelve years. This provides an empirical validation of the theoretical results showing
long memory can be sourced to marginalization within a large dimensional system.
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1 Introduction

Long memory, i.e., a dependence between observations decaying hyperbolically with their
distance in time (see, e.g., Beran, 1992), is often encountered in economic and financial time
series, and long memory models have been found to provide a good empirical representation
of persistence that is stronger than stationary ARMA but weaker than unit-root processes.

The literature has found several potential sources of long memory, and our interest in
this paper concerns specifically two contributions that show that long memory can arise in
individual series that are linked within an infinite dimensional network or system. Chevillon,
Hecq and Laurent (2018, CHL henceforth) prove that long memory can result from the
marginalization of a large dimensional system. More specifically, they provide a parametric
framework in which the variables of an n-dimensional vector autoregressive model of order
one, i.e., a VAR(1), can be individually modelled as independent fractionally integrated white
noises (defined as in Granger and Joyeux, 1980) as n tends to infinity. Long memory may
therefore be a feature of univariate or low dimensional models that vanishes when considering
larger systems in their entirety: while the infinite dimensional system is Markovian, modeling
the series individually requires infinite lags. Working on dynamics of networks of infinite
dimension, Schennach (2018, Schennach henceforth) has found a related result of hyperbolic
response of outputs to distant input shocks. In linear networks, her results can also specialize
to VAR(1) dynamics.

Motivated by the theoretical result that a large VAR system of finite order can asymp-
totically (in the number of variables) generate long memory in its individual components,
our main contribution is to show that this result is empirically relevant, and to provide
operational techniques for implementing it fruitfully in applied work. Our strategy relies
on designing a long memory prone target model that combines the key characteristics of
CHL and Schennach: it specifies, in the case of a VAR(1), the magnitude of the on- and
off-diagonal elements and their sums. Since we operate in a context where there are many
parameters to estimate, relative to the number of observations, we design an empirical pro-
cedure that uses our long memory prone target via shrinkage (L2 penalization) or a Bayesian
prior. We recommend equation-by-equation estimation where each equation consists of an
AR(1) (autoregressive of order 1) model augmented by the first lag of all the other variables
in the system. The degree of shrinkage, which is governed by the L2 penalty weights or by
the prior variances, is chosen by cross-validation between the two extremes of dogmatic, or
no, restrictions. We illustrate the inferential performance of the strategy by simulations,
where we show we can uncover whether the source of long memory resides in the dependence
in the system or time dimensions. Given the large dimensions we operate with, we rely for
model evaluation on an out-of-sample forecasting competition against standard univariate
long memory models (namely, the ARFIMA model, and the HAR model of Corsi, 2009). We
also assess in-sample whether long memory is captured through measurements of residual
serial dependence.

We perform an empirical application in a context where long memory and multivariate
interdependence are established features, and where data with long time series and large
cross-sectional dimensions can be obtained. We therefore focus on the logarithm of a robust-

2



to-jumps estimate of the daily integrated variance computed from 5-minute returns for 250
US stocks over twelve years. Since we work with reduced form forecasting models based on
different information sets, it is sensible to use measures of forecast accuracy as comparison
criteria. Hence, we compare the forecasts, at horizons ranging from h = 1 to 50, produced
by the different models. We use the mean squared forecast error loss function, and we rely
on the model confidence set procedure of Hansen, Lunde and Nason (2011) to discriminate
between the models. We find that our proposal for shrinkage towards, or a prior centered
on, a multivariate long memory prone target successfully outperforms univariate models of
long memory at all horizons (depending on the horizon, we achieve between 5% and 20%
reduction in average mean squared forecast error compared to ARFIMA and HAR models).
This indicates that, in our dataset, long memory observed in individual series may likely be
caused by spillovers within the system.

The paper is organized as follows. Section 2 introduces the theoretical framework under
which a VAR(1) model can generate long memory in its components when the dimension
of the system is large. The theory implies restrictions on the VAR parameters that we
collect in a target model that is related to the literature on dynamic factor models. Section
3 shows how to use these restrictions to estimate the parameters of the VAR(1) model,
either through an informative prior density for conducting Bayesian estimation, or by ridge
estimation involving nonzero targets. Section 4 compares the in-sample fit and forecasting
performance of the proposed and competing methods via Monte Carlo simulations. Section
5 presents the empirical analysis and Section 6 our conclusions. Proofs, technical details and
additional figures are collected in an appendix. Throughout, we use the notation an � bn to
denote equal magnitude as n→∞, i.e., both an = O (bn) and bn = O (an) , and similarly for
�p and Op (·) .

2 Long memory in a VAR(1) system

This section reviews the elements of the theoretical frameworks of CHL and Schennach
that preside over our own modeling strategy. We provide a unifying treatment and derive
constraints that are germane to our estimation procedures.

Both CHL and Schennach prove that long memory observed in a univariate time series
can be the result of the marginalization of an infinitely large VAR(1) system that satisfies
some specific assumptions. For this reason, we let the observable vector yn,t of dimension n
satisfy, for t ≥ 1,

(In −AnL) (yn,t − µ) = εn,t, (1)

where εn,t is a short memory process with zero expectation and variance-covariance matrix
Σn with bounded L1 norm.

In order to reduce expositional complexity and simplify their derivations, both CHL
and Schennach restrict themselves to matrices that belong to the Toeplitz family since these
require only O (n) parameters. While their high-level assumptions differ, all can be subsumed
in

An = Tn + ηnDn,
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where ηn is a vanishing scalar sequence, and {Tn} and {Dn} denote generic sequences of
Toeplitz matrices that are, respectively, symmetric and antisymmetric. Both CHL and
Schennach assume that {Dn} plays no role asymptotically, so large-system dynamics are
governed by Tn, the entries of which are labelled as

Tn =


t
(n)
0 t

(n)
1 · · · t

(n)
n−1

t
(n)
1

. . . . . .
...

...
. . . . . . t

(n)
1

t
(n)
n−1 · · · t

(n)
1 t

(n)
0

 . (2)

In Schennach, the process yn,t can be seen as generated by a network that lies in a space of
dimension one (a linear network). She also considers higher dimensions (hence the Toeplitz
assumption to control complexity), but for the purpose of the analysis, we restrict ourselves
to a one-dimensional linear network, and assume each node lies in N. In the spirit of Diebold
and Yılmaz (2009, 2014), who model connectedness within a network using a VAR model, this
amounts to a system that consists of an infinite but countable number of variables indexed by
j ∈ N. We denote the limiting, infinite dimensional, vectors by (yt, εt) = limn→∞ (yn,t, εn,t),

and the ith elements of yt, εt by y
(j)
t , ε

(j)
t , for j ∈ N. We next describe the two models that

have been shown to generate long memory within an infinite dimensional VAR(1) model
such as (1).

Chevillon et al. (2018, CHL). These authors make a set of parametric assumptions
(their Assumption T) where they specify a mapping such that entries of Tn only depend on
a scalar sequence δn ∈ (0, 1/2) satisfying n2 (δn − 1/2) = o (1) . Their Assumption T implies
in particular that, as n→∞, with (n− 1) /4 ∈ N,

t
(n)
0 → 1/2, (3a)

t
(n)
k = O

(
n−1
)

, for k 6= 0, (3b)∑n−1

k=0
t
(n)
k = 1. (3c)

Under the additional assumption εn,t ∼ NID (0,Σn) , with Σn diagonal, they prove (in their
Theorem 1) that, as n → ∞, all components of yn,t tend to independent fractional white
noises with identical degrees of integration (all equal to 1/2), so for all j ∈ N:

y
(j)
n,t ⇒ µ(j) + ∆−1/2ε

(j)
t ,

where ∆ = 1− L and ⇒ denotes weak convergence of the associated probability measures.
Since the entries of An− 1

2
In tend to zero as n→∞, the cross-sectional dependence between

the elements of yn,t vanishes as n→∞. Yet, as in this setting
∑n−1

k=0 t
(n)
k = 1 remains nonzero,

the dependence across individual series is sufficient to generate long memory in each of the
components of the multivariate process.
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Schennach (2018). She considers the limiting structure where T = limn→∞An = limn→∞ Tn,
i.e., the case of an infinite dimensional network. She assumes that εt constitutes a short
memory MA(∞) process. The entries (tk) of T are assumed to be nonnegative and satisfy

t0 > 0, (4a)

card {k ∈ N, tk > 0} <∞, (4b)∑∞

k=0
tk = 1. (4c)

She proves (in her Theorem 4) that, for all i, j, there exists a cij > 0 such that, as k →∞,

∂y
(i)
t+k

∂ε
(j)
t

= cijk
−1/2 +O

(
k−3/2

)
,

i.e., the impulse response function of y
(i)
t+k to a shock ε

(j)
t is hyperbolic and its speed of decay

corresponds to that of a process that is integrated of order 1/2.

Both Schennach and CHLChevillon, Hecq, and Laurent (2018) find long memory of
fractional degree one-half in infinite dimensional networks. They use different approaches and
assumptions, but rely on the Toeplitz nature of dependence across the infinite – yet countable
– number of variables in the system (or nodes in the network). Both of them consider matrices
whose rows and columns sum to unity. Schennach focuses on the interactions within the
limiting system while CHL consider the evolution in dynamics as the finite system grows
larger.

Schennach’s assumptions on εt are less restrictive. She also does not specify the values of
the entries of A but assumes that only a finite number of tk coefficients are nonzero, so that
a rotation of A is banded (i.e., all subdiagonals are zero beyond a point). Hence, the system
she considers (i.e., the one dimensional version) is sparse, each variable being only directly
connected to a finite number of variables. By contrast, CHL rely on i.i.d. shocks and make
parametric assumptions on Tn. Their setting is dense, variables being directly connected
to all other variables, but with a connection that becomes weaker as the dimension of the
system increases.

Schennach’s result is, then, that all response functions of all variables to all shocks ex-
hibit hyperbolic decay, whereas CHL’s applies only to the responses of variables to their
idiosyncratic shocks in the VAR system.

Target proposal. The similarities between Equations (3a)-(3c) and (4a)-(4c) are clear.
The main differences relate to specifications of the Toeplitz assumptions, (3b)-(4b) in par-
ticular. In empirical work, the Toeplitz assumption unreasonably requires a specific ordering
of the variables so we cannot retain it. This implies that we cannot either assume without
extra knowledge that specific variables are unconnected. Hence, denoting by a

(n)
ij the entries

of An in Equation (1), the model can be said to be long memory prone, i.e., compatible with
the theoretical results of both CHL and Schennach, if there exist ‘small’ ε, ε′ > 0 such that
for all (i, j) ,
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C1: the autoregressive coefficients
(
a
(n)
ii

)
are close to 1/2:

a
(n)
ii ∈ (1/2− ε, 1/2] ,

C2: the off-diagonal elements
(
a
(n)
ij

)
i 6=j

are nonnegative, close to 0 and of order O (n−1):

0 ≤ na
(n)
ij < ε′,

C3: the sums of row and column elements of An are equal to 1:∑∞

k=0
a
(n)
ik =

∑∞

k=0
a
(n)
kj = 1.

A simple family of matrices that aligns with Conditions C1-C3 consists in setting, for
some d0 close to 1/2,

A0
n = d0In +

1− d0
n− 1

(Jn − In) , (5)

where Jn is a square matrix of dimension n whose elements are all equal to unity. Hence, for
all i, j, the entries of A0

n satisfy a
(n)
ii = d0 and a

(n)
ij = (n− 1)−1 (1− d0) if i 6= j. In practice,

we do not expect A0
n to hold exactly but it constitutes a proposal for a long memory prone

target of a shrinkage estimator or, in a Bayesian context, the mean of a prior distribution.
Conditions C1-C3 participate to the empirical methodology we propose in the next

sections but we, first, explore the link of target A0
n with factor models.

Factor representation. Under the proposed targetA0
n, off-diagonal elements are an order

of magnitude smaller than those on the diagonal, yet each row sums to unity. Hence, each
individual equation in the VAR, yi,t = a

(n)
ii yi,t−1+

∑n
j=1,j 6=i a

(n)
ij yj,t−1+εi,t writes as a weighted

average of the idiosyncratic innovation εi,t, the lagged variable yi,t−1, and of a common factor
– the cross-sectional average ȳt = n−1

∑n
j=1 yj,t−1 – all with non-degenerate weights:

yi,t =
nd0 − 1

n− 1
yi,t−1 + (1− d0)

n

n− 1
ȳt−1 + εi,t. (6)

Yet, denoting by in = (1, ..., 1)′ the n-vector of ones, and under condition C3 that columns
of An sum to unity, we see that i′n (In −An) = 0 and i′n (In −AnL) = (1− L) i′n. Hence, for
finite n, the cross-sectional average process ȳt = n−1i′nyn,t follows a random walk:

ȳt = ȳt−1 + ε̄t,

where ε̄t = n−1
∑n

j=1 εj,t, and the variance of this average innovation decreases when n gets

large, i.e., Var (ε̄t) = n−2i′nΣnin � n−1 since Σn with entries Σ
(ij)
n has bounded L1 norm,

defined by ‖Σn‖1 = max1≤j≤n
∑n

i=1

∣∣∣Σ(ij)
n

∣∣∣. The average ȳt therefore corresponds to a damped
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stochastic trend process: ȳt = Op

(√
T/n

)
= op (1), where the sample size T is assumed

to be fixed, and we assume that ȳ0 �p 1. The attenuation of the random walk is due to
cross-sectional averaging. This differs from the temporal averaging considered in the long-
range dependence literature, such as, e.g., the “local level” model yt = 1

T

∑t
s=1 ηs + εt of

Harvey (1990) that Müller and Watson (2008) study as a model for long range persistence
constituting an alternative to fractional integration and near stochastic trends.

Each equation of the system therefore involves one autoregressive element and the cross-
sectional average common factor (see Pesaran, 2006) that follows a damped stochastic trend.
Hence, although the data generated by (6) exhibits a stochastically trending common factor
that impacts all variables, its damped nature for finite T (the asymptotic degeneracy of
Var (ȳt−1) as n gets large) implies that yn,t is cross-sectionally weakly dependent following
the definition of Chudik and Pesaran (2011) – note, however, that our setting violates their
Assumption 4 of stationarity.

In practice, we do not expect the target to hold exactly, but the discussion above shows
that the multivariate source of long memory is close to a model admitting an equivalent factor
representation (possibly via a cross-sectional weighted average of the variables). The latter’s
implied dynamics bear some resemblance with the local-level (damped trend) model studied
in the literature, by Müller and Watson (2008) in particular, as an alternative source of long
range persistence, with the difference that, here, the stochastic trend is a cross-sectional
rather than a time series average.

3 Methodology for long memory prone estimation

We turn to the question of estimating An when yn,t may exhibit long range dependence. We
present a methodology that shrinks the estimates of An in a manner that is informed by
the stylized conditions C1-C3 combining the frameworks of CHL and Schennach. Indeed,
it does not seem efficient when the system has a large dimension to ignore these stylized
assumptions altogether, and estimate the VAR by ordinary least-squares (OLS).

An obvious approach to being informed by C1-C3 consists in imposing them strictly
such as, e.g., via parametrizing explicitly the elements of An. For instance CHL use in their
Assumption T a mapping that defines all the elements of An through a single scalar δn.
The latter could be estimated by minimum distance or maximum likelihood (ML). This is
certainly too restrictive as explained in the previous section, and we may want to retain a
certain degree of flexibility around these restrictions.

We therefore consider intermediate strategies. One of them is penalized regression (e.g.,
ridge or the LASSO), where the least squares criterion is augmented by restrictions whose
strength is modulated through penalty parameters. The resulting estimator is shrunk in
the direction of the restrictions. We prefer to use ridge estimation rather than the LASSO
that leads to estimating some of the coefficients exactly at their target values. Indeed, since
our target model differs from CHL and Schennach, we do not want to impose it exactly (as
would arise with L1 regularization around the target), nor do we want to exclude specific
variables (as in the standard LASSO). Since L2 regularization does not impose the target
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values, ridge estimation permits more ambivalence when it comes to estimating parameters
close to our target model.

Bayesian estimation provides another intermediate method, whereby the restrictions are
embedded in a prior density, so that they hold a priori on average (through the prior ex-
pectation of the parameters), but with some degree of uncertainty (through prior positive
variances on the parameters or functions thereof). Depending on the degree of tightness of
the prior, the prior information pulls the data information more or less strongly in the di-
rection of the restrictions. Several authors have contributed to Bayesian estimation of VAR
models, using different types of prior information, see Karlsson (2013) for a review. The
types of restrictions considered in the literature, such as the so-called “Minnesota prior” for
unit roots (see Doan, Litterman, and Sims, 1984), or the “long run” forecasting restrictions
(Giannone, Lenza, and Primiceri, 2019) are relevant to modeling and forecasting short mem-
ory macroeconomic time series. Our contribution differs in that we use a prior density that
shrinks the parameters to values informed by long memory prone restrictions.

We detail the regression model in the next subsection, and suggest an “equation-by-
equation” estimation of the VAR system. Our approaches to ridge regression and Bayesian
estimation are exposed in Subsections 3.2 and 3.3, respectively. We denote the resulting
models estimated by ridge or Bayesian methods by RAR-X and BAR-X.

3.1 Framework

We consider the estimation of a VAR(1) system, written at date t (dropping the subscript
n on An and on the processes) as

yt = τ +Ayt−1 + εt, (7)

for the vector yt consisting of n variables. In this paper, we suggest to estimate parameters
τ and A “equation-by-equation”, instead of globally for the entire system. Assuming εt
is multivariate Gaussian with zero expectation and constant covariance matrix Σ, then
estimating each equation separately by OLS is equivalent to estimating the system jointly
by Maximum Likelihood (ML), even if Σ is not diagonal. For Bayesian estimation, equation-
by-equation estimation is not equivalent to the joint estimation of all equations, but the latter
approach is much more demanding in computing time for the dimensions we are interested
in (e.g., 250 as in the empirical application).

A typical equation of the VAR(1) system is an AR-X – dropping (1)– regression equation
that is written at date t as

yt = γ0 + γ ′xt + εt, (8)

where yt denotes a variable of the system, γ0 is the intercept parameter, xt is the column
vector containing the first lag of the n variables of the system (including the first lag of yt),
γ = (γ1, γ2, . . . , γn)′ is the vector of n slope coefficients of xt, and εt is an error term assumed
to be Gaussian with zero expectation and constant variance σ2. By convention, for any
variable of the VAR, xt is ordered in such a way that its first element is the lagged dependent
variable (yt−1), and γ is ordered accordingly: its first element (γ1) is the autoregressive
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coefficient of the dependent variable, and the remaining elements are the coefficients of the
other lagged variables. For example, if yt is the first element of yt, γ

′ is the first row of
matrix A, and γ0 is the first element of τ .

Over a sample of T observations, write the AR-X equation in the standard regression
notation

Y = Zβ + ε, (9)

where Y = (y1, y2, . . . , yT )′, ε = (ε1, . . . , εT )′ ∼ N(0, σ2IT ), Z is a T × k matrix, with
k = 1 + n and t-th row equal to (1, x′t), and β = (γ0, γ

′)′.
Estimation of β by OLS is likely to be imprecise when n is large compared to T , and this

will affect the quality of forecasts negatively. To align with the stylized conditions C1-C3,
we recommend shrinking the elements of the vector β = (γ0, γ

′)′ in (9) to a target such as
A0
n defined in Equation (5). Next, we suggest ways of introducing these conditions through

ridge and Bayesian estimation.

3.2 Ridge estimation

To achieve conditions C1-C3, we define as the shrinkage target of β the vector

β0 = (0, d0, a0, . . . , a0)
′, (10)

where a0 = (1 − d0)/(n − 1) is repeated n − 1 times, as in the first row of A0
n defined by

(5). The scalar d0 ∈ (0, 1) is the target for the autoregressive coefficient and it determines
the target a0 of the other coefficients that are shrunk to a value that is close to zero when
n is large. We allow d0 > 1/2 despite condition C1 to avoid boundary effects. We use two
penalty parameters to control the shrinkage strength: λ2d for the autoregressive parameter,
and λ2a for the other coefficients. The penalty function is defined as

λ2d(γ1 − d0)2 + λ2a

n∑
i=2

(γi − a0)2 = (β − β0)
′Λk(β − β0), (11)

where Λk = diag(0, λ2d, λ
2
a, . . . , λ

2
a).

In this way, the last n elements of β are shrunk to the corresponding elements of β0,
but the first element of β is not shrunk, the value (zero) of the first element of β0 being
practically irrelevant.

The choice of β0 implies that the sum of the last n coefficients is equal to 1 in the target,
but the penalty is distributed over the n coefficients. To better achieve C3, we add the
penalty term λ2s(ι

′β − ι′β0)
2, where λ2s is a penalty parameter and ι = (0, 1, 1, . . . , 1)′ is a

vector of k elements.
The extended ridge (ER) estimator is obtained by minimizing the objective function

(Y −Zβ)′(Y −Zβ) + (β − β0)
′Λk(β − β0) + λ2s(ι

′β − ι′β0)
2, (12)

and can be shown to be (see Appendix A)

βER =
(
Z ′Z + Λk + λ2sιι

′)−1 (Z ′Y + Λkβ0 + λ2sιι
′β0). (13)
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As usual, the ridge estimator simplifies to the OLS estimator if all the penalty parameters
are set to zero.

The values of d0, λ
2
d, λ

2
a, and λ2s can be chosen by cross-validation on a training sample.

A grid of values is set a priori for each of them. For each point of the grid, the estimator
is computed using 80 percent of the training sample, forecasts are computed for the last
20 percent, and a forecast loss function is computed. The chosen quadruplet is the value
minimizing the loss function over the grid. After this step, estimation is performed on a
subsequent sample, and forecasts are computed and evaluated over a post-estimation sample.
Details are provided in Section 4.

3.3 Bayesian estimation

Bayesian estimation is based on a prior density for β and σ2, and the likelihood function,
the latter resulting from the assumption of normality of the error terms. Since the theory
does not provide information on σ2, its prior “density” p(σ2) is chosen to be the usual
“non-informative” prior:

p(σ2) ∝ 1/σ2. (14)

The prior density of β is designed to include the theory restrictions, conditions C1-C3. We
opt for a Gaussian density for three reasons: (i) it is convenient for computing the posterior
density (see Section B of the appendix); (ii) implementation of the restrictions is easily done
using four scalar parameters, as explained below; and (iii) the restrictions do not explicitly
require an asymmetric density. The prior density is proportional to

exp[−1

2
(β − β0)

′Q0(β − β0)] exp[−1

2
h0(β

′ι− β′0ι)2]. (15)

The vector β0 is defined as in (10) and depends on the scalar hyperparameter d0 (which is
shown below to be the prior mean of γ1). To explain the prior, let us first fix the scalar
hyperparameter h0 to zero, and discuss the first Gaussian kernel of (15), which corresponds
to restrictions C1 and C2. There, β0 is the prior expectation, and Q0 is the prior precision
matrix. We specify this matrix to be diagonal:

Q0 = diag(0, 1/s2d, 1/s
2
a, . . . , 1/s

2
a), (16)

so that sd is the prior standard deviation of the autoregressive coefficient and sa is the prior
standard deviation of the other coefficients. The strength with which restrictions C1 and C2
are imposed depends on the values of sd and sa, respectively: values close to zero correspond
to a strong prior belief in favor of the restrictions. For the intercept term, the prior precision
is set to zero, so that data information dominates the prior information on this term.

Although the prior expectation β0 embeds restriction C3 that the sum of the last n
elements of β is equal to 1, the prior variance of this sum is equal to s2d + (n− 1)s2a. Hence,
to fix the latter variance to a small value, sa itself must be fixed to an even smaller value, thus
impacting how restriction C2 is introduced. The second Gaussian kernel of (15) is designed
to avoid the potential trade-off between the two restrictions, by adding a prior parameter
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that controls the strength imposed on the unit sum, independently of the strength imposed
on the individual coefficients. Notice that in the second exponential function of (15), we
have written β′0ι after the minus sign, instead of 1, to cover the case where one wants this
target to be different from 1, that is, the case where one defines β0 differently from (10).

If Q0 in the first kernel is a null matrix, the second kernel specifies that the prior mean
of the sum of the last n elements of β is equal to β′0ι – i.e., equal to 1 if β0 is given by (10) –
and that its prior precision is set to h0. Hence a large value of h0 corresponds to a strongly
informative prior on the target value for the sum of the coefficients.

It is well-known that the product of two Gaussian kernels is a kernel of a Gaussian density.
Hence, (15) is the kernel of the Gaussian density (see Section A of the appendix)

β ∼ Nk(β0,V0), (17)

where
V0 = (Q0 + h0ιι

′)−1. (18)

Notice that the expectation of β is β0, the same as in the first kernel in (15). If h0 > 0,
the prior covariance matrix is not diagonal: in fact, the covariances are negative, which is
what is needed to reduce the prior standard deviation of β′ι compared to the value it takes
when the prior covariance matrix is diagonal. Taking, for example, values that relate to the
empirical illustration of Section 5, i.e., d0 = 0.5, sd = sa = 0.02, h0 = 5000, n = 250, then
β0 = (0, 0.5, 0.002008 (repeated 249 times)), Q−10 = diag(100, 0.022 (repeated 250 times)),
the diagonal of V0 is (100, 0.019962 (repeated 250 times)), the off-diagonal elements are equal
to 0 in the first line (and column), and the other covariances are equal to −1.59681/106

(the corresponding correlation coefficient being equal to −0.004008). The prior standard
deviation of β′ι is equal to 0.014128, i.e., much smaller than its corresponding value of 0.317
when h0 = 0 and the prior is Nk(β0,Q

−1
0 ), where Q−10 is defined as diag(0, s2d, s

2
a, . . . , s

2
a).

To summarize, the prior density (17), when β0 is defined by (10) and Q0 by (16), is fully
determined by the four scalar hyperparameters d0, sd, sa, and h0, whatever the dimension n
of the VAR. These hyperparameters can be fixed to some values, as in the example above,
or they can be chosen for each equation of the VAR by a cross-validation procedure similar
to the procedure defined in the last paragraph of the previous subsection.

The computation of the posterior mean of β for the prior (14)-(17) is performed by a
simple Gibbs sampling algorithm defined in Section B of the appendix. The prior is not
conjugate since V0 is not proportional to σ2. It becomes conjugate if (17) is replaced by

β|σ2 ∼ Nk(β0, σ
2V0). (19)

The posterior mean corresponding to this conjugate prior is

(Z ′Z +Q0 + h0ιι
′)
−1

(Z ′Y +Q0β0 + h0ιι
′β0) , (20)

where (18) has been used. If we set Q0 = Λk (by setting λ2d = 1/s2d and λ2a = 1/s2a) and
h0 = λ2s, this posterior mean is exactly the ER estimator (13). With the non-conjugate prior,
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one can only derive the conditional (to σ2) posterior mean of β, which can be expressed (see
Section B of the appendix) as

β∗(σ
2) =

(
Z ′Z

σ2
+Q0 + h0ιι

′
)−1(

Z ′Y

σ2
+Q0β0 + h0ιι

′β0

)
. (21)

This differs from (20) only by the presence of σ2. The Gibbs sampler, also defined in
Section B of the appendix, is a way to marginalize β∗(σ

2) with respect to σ2. The resulting
unconditional posterior mean of β then differs from the corresponding posterior mean/ER
estimator when the prior is conjugate.

3.4 Forecasting

After obtaining a point estimate of β for an equation of the VAR system, such as the
OLS estimator, the extended ridge estimator, or the posterior mean, a one-step ahead point
forecast of yt+1 is simply obtained using a point estimate of (8) and the regressor xt. This
is equivalent to using the point estimates of all equations to form the estimated τ and A of
the VAR system (7), and then computing one-step ahead point forecasts as ŷt+1 = τ̂ + Âyt.

To compute h-step ahead forecasts, with h > 1, we can use either iterated multistep
forecasting or direct multistep forecasting. An iterated h-step ahead forecast is based on the
estimated VAR and computed recursively as ŷt+h = τ̂+Âŷt+h−1. This approach amounts to
computing Âh, i.e., to forecast all variables even if we are only interested in a subset of them
(even just a single one). Hence, the forecast of a variable of interest may be contaminated
by erroneous and imprecise forecasts of the other variables (see, e.g., Schorfheide, 2005).

If the objective is to forecast a subset of the series, or if one wishes to avoid the drawback
inherent in the iterated multistep method highlighted above, the direct multistep forecasting
method is preferable (see, e.g., Chevillon and Hendry, 2005, and Jordà, 2005). The method
consists in directly projecting yt on its lag yt−h, as in

yt = τh +Ahyt−h + u(h)t, (22)

where for h = 1, u(1)t = εt in (7). Ignoring that Ah = Ah, a typical equation of (22) can
be cast in the form of (8) and (9), adapting the definitions of Y , xt and Z. For h > 1, we
denote the equation corresponding to (9) by

Y(h) = Z(h)β(h) + u(h), (23)

where u(h) is a vector of errors. Although the elements of u(h) are autocorrelated due to
the recursive substitutions to get (22) from (7), we ignore this feature and we estimate the
system (23) equation-by-equation, by OLS, ridge and Bayesian estimation, as is the case
when h = 1. By proceeding in this spirit, no direct use is made in estimation of the relation
Ah = Ah, because this would imply that the regression coefficients of the different equations
of (22) are nonlinear functions of the same parameters (those of A), so that equation-by-
equation estimation would be pointless. In brief, the parameter β(h) is not treated as a
function of the underlying parameters of A.
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Yet, for ridge and Bayesian estimations, we allow the target towards which β(h) is shrunk
to be function of h, and we denote it by β(h),0. The target β(h),0 relates to the first row of
Ah

0 , as in the case for h = 1, where β0 is directly the first row of A0 = d0In + a0 (Jn − In),
with Jn being a matrix of ones, and a0 = (1 − d0)/(n − 1). In practice, we choose the last
n elements of β(h),0 to be close to the first row of Ah

0 when n is large relative to h: this is
achieved by setting (see Section C of the appendix)

β(h),0 =

(
0, dh0 ,

1− dh0
n− 1

, . . . ,
1− dh0
n− 1

)′
. (24)

The extended ridge estimator for the corresponding β(h) is defined as in (13), replacing
β0 with β(h),0, the penalty parameters and the value of d0 being chosen by cross-validation
for each horizon h. For Bayesian estimation, we use the same type of prior as when h = 1
(i.e., (14) and (17)), also replacing β0 with β(h),0. Forecasts for specific elements of yt can
readily be formed by estimating only specific rows of (22), so that forecasts are obtained
from the corresponding individual equations, as in the case h = 1.

4 Monte Carlo Simulation

The results in CHL and Schennach do not imply that univariate long memory is necessarily
due to the marginalization of a large system, only that it is possible. In this section, we
explore via simulation whether the methods proposed above can shed light on this potential
source of observed long memory. Owing to the use of different information sets for the
univariate time series models and the AR-X models, we compare them via an out-of-sample
forecasting competition. Our purpose is twofold: first, we show that, when long memory
is not generated via a VAR(1) model satisfying the CHL or Schennach conditions but by
univariate ARFIMA models, the methods proposed in Section 3 give worse out-of-sample
forecasts than classical long memory models (such as the ARFIMA and HAR models), even
if the series are correlated. Second, we find that, when the data are indeed generated by
such a VAR(1) model, the use of our long-memory prone target or prior makes it possible
to obtain forecasts as good as, or better than, the ARFIMA and HAR models – despite
our use of only the first lag of a set of explanatory variables. More specifically, we compare,
using simulated data displaying long memory, the forecasting performances of five estimation
methods of the AR-X equations composing a VAR(1) system and three univariate time series
models.

4.1 Simulation set-up

We consider two data generating processes (DGPs) and generate T = 1, 500 observations for
n = 250 series. DGP1 is a set of n univariate ARFIMA(0, d, 0) processes with d = 0.45 and
correlated errors, i.e.,

(1− L)0.45yn,t = Σ1/2
n zn,t, (25)
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Figure 1: Top: Histogram of the values of the 249 off-diagonal elements of each row of the
matrix An of the VAR(1) corresponding to DGP2. Bottom: Autocorrelogram of the first
simulated series.

where zn,t is i.i.d. N(0, In) and Σn is an equicorrelation matrix with common correlation
coefficient equal to 0.5, so that the n series form a system of correlated variables that display
long memory.

DGP2 is the VAR(1) system considered by CHL, i.e.,

(In −AnL)yn,t = zn,t, (26)

where zn,t is defined as above and An is a Toeplitz matrix like (2). The entries of this matrix
are defined as in CHL (their Example 1, page 56) where

t
(n)
k = Re

[ 1

n

n−1∑
j=0

g
(
δn, e

i 2πj
n

)
e−i

2πjk
n

]
, (27)

where i is the imaginary unit, δn = 1/2 + o (n−2) and g(δ, eiω) is defined, for δ ∈ (0, 1/2) and
ω ∈ [0, 2π), as

g
(
δ, eiω

)
= 1{0≤ω<πδ} + 1{π( 3

2
−δ)<ω≤ 3π

2
}. (28)

Since the entries ofAn defined in this way satisfy the properties (3a)-(3c), and zn,t is i.i.d.
Gaussian with diagonal covariance matrix, each element of yn,t tends to a fractional white
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noise process, as explained in Section 2. We set δn = 0.45, so that in practice the diagonal
elements of An are close to this value (0.452, precisely). In this respect the estimated degree
of fractional integration of each generated series is essentially the same as in DGP1. To shed
light on DGP2, the top graph of Figure 1 shows a histogram of the values of the off-diagonal
elements of each row of the matrix An used for the data generation (the histogram is the
same for each row due to the Toeplitz property of the matrix). It is clear that the values
of these coefficients are close to, but different from, zero – illustrating (3b); the average of
these values is equal to 0.0022008, and the sum of each row is equal to unity. The bottom
graph illustrates the slow decay of the autocorrelation coefficients for one of the generated
series.

It is clear that the source of long memory in DGP1 differs from that of DGP2. In
DGP1, the long memory originates in individual fractional integration, irrespective of the
dependence across variables that is generated through correlations between the error terms
(we do not report the unrealistic situation where all errors and variables are independent, but
the results are qualitatively similar then). In DGP2, the long range dependence is directly
created by the dependence between the variables that is induced in the system through the
features of matrix An.

4.2 Competing models and set-up of the forecast comparison

We present below the set of eight competing models for a generic series yt, i.e., an arbitrary
element of yn,t.

1. AR: yt = γ0 + γ1yt−1 + εt, estimated by OLS.

2. ARFIMA(1,d,0): (1− L)d(yt − γ0 − γ1yt−1) = εt, estimated by Gaussian ML.

3. HAR (Corsi, 2009): yt = γ0 + γ1yt−1 + γ2
1
5

∑5
i=1 yt−i + γ3

1
21

∑21
i=1 yt−i + εt, estimated

by OLS.

4. AR-X: yt = γ0 + γ1yt−1 +
∑n

i=2 γixi,t−1 + εt, where xi,t for i = 2, . . . , n are the elements
of yn,t remaining after removing yt. This is the model defined in (8). It is estimated
by OLS.

5. RAR-X: this model is the AR-X estimated using the extended ridge estimator defined
by (13), see Section 3.2. Recall that in this case we shrink γ1 towards d0 with penalty
parameter λ2d, γi toward (1−d0)/ (n− 1) (∀i > 1) with penalty λ2a, and

∑n
i=1 γi towards

1 with a penalty of λ2s. The penalty parameters (i.e., λ2d, λ
2
a and λ2s) and d0 are chosen by

cross-validation as explained at the end of Section 3.2; details are provided in Section
D of the appendix.

6. bRAR-X: this model is a basic version of the RAR-X, where all parameters (but the
intercept) are shrunk towards 0 (i.e., a standard estimation of the model using the
ridge technique). This is a special case of the method presented in Section 3.2, where
d0 = a0 = 0, λ2d = λ2a = λ2 and λ2s = 0. λ2 is chosen by cross-validation.
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7. sRAR-X: this model is a strong version of the RAR-X model where the shrinkage
targets are strongly imposed. More specifically, we impose γ1 = d0 and γi = (1 −
d0)/(n− 1) for i = 2, . . . , n and chose d0 by cross-validation. Hence, this is the factor
model version (6) of the AR-X equation.

8. BAR-X: this specification is also the AR-X but it is estimated by the Bayesian method
presented in Section 3.3. The prior for the variance of εt is non-informative, see (14),
and the prior for the regression coefficients β = (γ0, γ1, γ2, . . . , γn)′ is the Gaussian
density defined by (17) together with (10), (18) and (16). More specifically, the prior
on γ0 is quasi-noninformative (with a mean of 0 and a variance of 100), the prior mean
of γ1 is set equal to d0, and the prior mean of γi, for all i > 1, is set to (1−d0)/(n−1).
The prior precision of γ1 is 1/s2d + h0, the prior precision of γi (i > 1) is 1/s2a + h0.
The co-precisions (the off-diagonal elements of the inverse of V0) are all set to h0. The
larger h0, the smaller the prior variance for the difference between the sum of the last
n elements of β and the corresponding sum in the prior mean (equal to 1 for (10)).
The prior parameters d0, sd, sa and h0 are chosen by cross-validation (see Section D of
the appendix for details).

For models 5 to 8, cross-validation is carried out for each equation, so that the tuning
parameters can differ from equation to equation.

If the data come from DGP1, the AR-X-type of models are not nested in the DGP,
whereas the ARFIMA(1,d,0) is a more general version of the DGP, the HAR is known to
be a good approximation of this DGP while the AR model is a short memory process and
therefore not able to capture long memory. Hence we expect the ARFIMA and HAR models
to have better forecasting performances for DGP1 than either the AR or the five AR-X
models. By contrast, for DGP2, we expect some of the AR-X-type of models estimated
using the ER or Bayesian methods to perform at least as well as the ARFIMA and HAR,
and the AR-X model estimated by OLS to underperform because of in-sample over-fitting.

Each competing model is used to produce h-step ahead forecasts (for h = 1, 5 and 10). For
h > 1, we use iterated multistep forecasts (i.e., recursive substitution) for AR, ARFIMA and
HAR, and direct multistep forecasts for AR-X, the three RAR-X and BAR-X. As discussed
in Subsection 3.4, this avoids contaminating forecasts across variables when additional (non
autoregressive) regressors are present.

The eight models are estimated, for each of the 250 available series, on rolling windows
of T0 = 1, 000 observations. We start with the initial estimation window (t = 1, ..., T0), and
keeping the same parameters estimates, we compute 25 consecutive h-step ahead forecasts
(h = 1, 5, 10). Next, we shift the estimation window forward by 25 observations (to the
subsample t = 26, ..., T0 + 25) and re-estimate all parameters, which we use to produce 25
consecutive h-step ahead forecasts. This procedure is continued until the last estimation
window, t = 476, ..., T0 + 475. This results in a number of 500-h individual h-step ahead
forecasts.

To speed up the estimations, the tuning parameters of the three RAR-X and BAR-
X models are only selected once by cross-validation on the first window of T0 = 1, 000
observations and then kept constant.

16



The out-of-sample forecasts are compared to the observed values using the mean squared
forecast error (MSE) loss functions defined for each model m and horizon h as

MSE
(m)
h =

1

Th

Th∑
t=1

(ŷ
(m)
t,h − yt)

2, (29)

where Th is the number of forecasts at horizon h, and ŷ
(m)
t,h is the forecast of yt at horizon h

by model m.
The comparison tool is the model confidence set (MCS) procedure of Hansen, Lunde,

and Nason (2011), see Section D of the appendix for details about the implementation. Note
that for both DGPs, the variance of the error term is equal to one for each series so that we
expect the MSE of well-performing models to be close to 1 for h = 1.

4.3 Simulation results

The results of the simulations are reported in Table 1 for three forecast horizons. We only
present results for one simulated dataset since this involves comparing 250 × (500 − h + 1)
forecasts for each model and horizon h, i.e., 371,750 forecasts in total for each model – yet the
results are essentially identical when we use other seeds for the random number generators.

For DGP1, ARFIMA, closely followed by HAR, has the lowest average MSEs and the
highest proportions of series included in the MCS at the 95% level. The other models are
much less effective. AR is unable to capture long memory; bRAR-X is shrinking all slope
parameters to zero (including the AR(1) coefficient) and does not improve much compared to
the AR. AR-X has too many parameters relative to the number of observations and therefore
suffers from a problem of over-fitting. The sRAR-X model specifies long memory too tightly
in the direction of CHL and Schennach (which are distinct from the DGP), while RAR-X
and BAR-X do the same but less tightly so: their average MSE is approximately ten percent
higher than those of ARFIMA and HAR.

For DGP2, sRAR-X, RAR-X and BAR-X have the lowest average MSEs and the highest
proportions of series included in the MCS at the 95% level, at the three forecast horizons.
These models are designed to exploit the multivariate asymptotic mechanism of the DGP
which generates long memory; this is more the case for sRAR-X than for RAR-X and BAR-
X, hence the excellent performance of sRAR-X is not surprising, while the very good one of
RAR-X and BAR-X is reassuring. ARFIMA and HAR do not use the multivariate asymp-
totic mechanism of the DGP which generates long memory, but they are able to capture the
long memory in the data, although less systematically than the models that are congruent
with the DGP. AR and AR-X perform as badly as for DGP1, for the same reasons. That
bRAR-X is as good as RAR-X and BAR-X at horizons 5 and 10 is the single surprising
result of this simulation.

The conclusions from this simulation exercise are that our long memory prone target
proposals and associated estimation methods appear well designed and that they possess
good model discovery properties. Indeed, their success at forecasting in the context of a
long-memory DGP based on CHL (DGP2) contrasted with their lower performance when

17



Table 1: Results of the Monte Carlo simulations

h AR ARFIMA HAR AR-X bRAR-X sRAR-X RAR-X BAR-X

DGP1: ARFIMA, eq (25)

Frequencies at which each model belongs to the 95%-MCS

1 0.092 1.000 0.932 0.000 0.028 0.000 0.148 0.144
5 0.244 0.996 0.920 0.000 0.316 0.008 0.448 0.416
10 0.316 0.984 0.876 0.012 0.396 0.008 0.512 0.460

Average MSE

1 1.131 1.026 1.033 1.459 1.281 1.282 1.119 1.119
5 1.828 1.468 1.484 2.402 1.764 2.109 1.622 1.628
10 2.019 1.616 1.641 2.366 1.878 2.407 1.770 1.777

DGP2: VAR, eq (26)-(28) with δ = 0.45

Frequencies at which each model belongs to the 95%-MCS

1 0.148 0.680 0.636 0.000 0.172 0.988 0.964 0.908
5 0.400 0.604 0.464 0.000 0.900 1.000 0.828 0.896
10 0.412 0.772 0.384 0.000 0.896 1.000 0.852 0.900
1 0.004 0.576 0.592 0.000 0.112 0.988 0.924 0.896
5 0.000 0.456 0.428 0.000 0.868 1.000 0.816 0.896
10 0.000 0.452 0.372 0.000 0.844 0.988 0.828 0.892

Average MSE

1 1.114 1.054 1.062 1.363 1.151 1.024 1.026 1.026
5 1.490 1.409 1.455 1.930 1.327 1.311 1.323 1.321
10 1.516 1.406 1.491 1.971 1.353 1.338 1.349 1.347
1 1.172 1.060 1.061 1.367 1.158 1.024 1.028 1.028
5 2.007 1.445 1.456 1.922 1.329 1.308 1.320 1.320
10 2.212 1.467 1.489 1.946 1.340 1.321 1.332 1.331

The models are defined in Section 4.2. The top parts of each panel report the
frequencies (over the 250 series) at which each model belongs to the MCS at the 95%
confidence level (i.e., the proportions of p-values above 5% in the MCS procedure)
for a given forecasting horizon h, an MSE loss function and over the full forecasting
period of 500 − h + 1 observations. The bottom parts of each panel record the
corresponding average MSE (over the 250 series).

18



the source of long memory is idiosyncractic rather than systemic (as is the case with DGP1)
shows that the performance of the proposed methods constitutes a good gauge for eliciting
the multivariate source of long memory of CHL and Schennach. We turn next to assessing
this property empirically.

5 Empirical illustration

In this section, we present an application to data where long memory has been well doc-
umented in the literature, for which a large number of variables assumed to belong to the
same system are available, and where long time series can be obtained. For these three
reasons we chose to focus on the logarithm of a measure of daily volatility for a set of 250
U.S. company stocks.

5.1 Tracing the source of the long memory in log realized volatility

The initial dataset (purchased from tickdatamarket) consists of transaction prices at the 1-
second sampling frequency for 1,412 stocks from the NYSE, AMEX and NASDAQ markets,
for the period ranging from January 1st, 1991 to October, 14, 2019 covering 7,510 trading
days. We ordered the stocks by decreasing average daily transaction volume, and kept the
250 largest capitalization stocks for the period from 2005-01-03 to 2017-07-24 (3,276 trading
days). These start and end dates were chosen to maximize the number of available series
out of the larger dataset of 7,510 trading days.

We aggregated the data at the 5-minute frequency and computed the MedRV estimator
of Andersen, Dobrev, and Schaumburg (2012), a non-parametric robust-to-jumps estimator
of the integrated variance. If rt,i is the ith 5-minute return of a given stock on a day t
containing M = 78 (since trading is from 9:30 to 16) such returns, log(MedRVt) (denoted
by yt hereafter) is computed as the logarithm of

MedRVt =
π

6− 4
√

3 + π

M

M − 2

M∑
i=3

median(|rt,i|, |rt,i−1|, |rt,i−2|)2.

The presence of long memory in the volatility of the log-returns of financial assets is
a well recognized stylized fact (see Baillie, Bollerslev and Mikkelsen, 1996, Breidt, Crato
and de Lima, 1998, Comte and Renault, 1998, Andersen, Bollerslev, Diebold and Ebens,
2001, among others), and numerous models that have been proposed generate long memory
in volatility (e.g., Giraitis, Robinson and Surgailis, 2000, Hurvich, Moulines and Soulier,
2005, or Lieberman and Phillips, 2008, who focus specifically on realized volatility). There is
however a debate on whether the short-run autoregressive parameter in an ARFIMA(1,d,0)
for the logarithm of realized volatility may be near-unity so the corresponding d would be
close to -1/2 to generate the same long range dependence, see Shi and Yu (2022). Multivariate
techniques, VAR and Vector Heterogenous Autoregressive (VHAR) models, have been used
for forecasting realized volatility measures by Anderson and Vahid (2007) and Cubadda,
Hecq, and Riccardo (2019), respectively.
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For our data, the average value (over the 250 series) of the estimated d parameters of
the ARFIMA(1, d, 0) model obtained on the full sample is 0.48, with a standard deviation
of 0.02. We estimated the same eight competing models as in Section 4.2, again on rolling
windows of T0 = 1, 000 observations. The first estimation sample spans the period from
2005-01-03 to 2008-10-31, and h-step ahead forecasts of yt are computed for several horizons
(h = 1, 2, . . . , 10, 20, 30, 40, 50) leading to a total number of 2, 277 minus h forecasts. As in
Section 4, we rely on the MCS procedure of Hansen et al. (2011) and a MSE loss function
to rank the models in terms of their forecasting performance.

Table 2 reports the results of the MCS procedure applied to the full out-of-sample period.
More specifically the figures in this table report for each forecasting horizon h the frequencies
(over the 250 series) at which each model belongs to the MCS at the 95% confidence level
(or equivalently the percentage of p-values higher than 5%). The second part of the table
reports the corresponding relative average (over the 250 series) MSE of each model with
respect to the RAR-X model, i.e. the ratio of the value for a model to the value for RAR-X.
Results for the AR-X-type of models with iterative forecasts (as explained in Section 3.4)
are not reported since their predictive performance is much lower than when forecasts are
obtained by the direct multistep forecasting method.

We notice the following results in Table 2:

• AR, AR-X, bRAR-X and sRAR-X are strongly outperformed by the other models over
the full forecasting period. Their average losses (see the bottom panel of Table 2) are
larger (often much more so) than those of other models. The AR, AR-X and sRAR-X
models are almost never included in the MCS, while bRAR-X performs better than
these three models for h ≤ 6.

• ARFIMA and HAR perform similarly, especially in terms of average losses. Their fre-
quencies of inclusion in the MCS are also close, except for horizons above 10, where
HAR underperforms compared to ARFIMA. Overall, these frequencies fluctuate be-
tween 14.8 and 44 percent.

• RAR-X and BAR-X perform better than all the other models in terms of average losses
and also generally for the MCS inclusion rates – for which, RAR-X actually beats
BAR-X always except at h = 1. Furthermore, like HAR, the performance of BAR-X
deteriorates for h > 10. Overall, the best model is RAR-X. This model belongs to the
MCS for between 48.8 and 76 percent of the cases.

In brief, the use of the theoretical constraints in the AR-X model through the proposed
Bayesian and ridge estimation methods strongly improves the model forecasting performance
with respect to OLS. The bad performance of the latter is due to a lack of precision because
251 coefficients are estimated using 1,000 observations, whereas the shrinkage methods im-
pose a relevant theoretical structure on the estimated coefficients. The performance of the
shrinkage methods is on average markedly superior to that of the ARFIMA and HAR models;
this difference can be attributed to the use of a larger, but relevant, information set.
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Table 2: Results of the MCS test and average MSE values for h-step-ahead
forecasts

h AR ARFIMA HAR AR-X bRAR-X sRAR-X RAR-X BAR-X

Frequencies at which each model belongs to the 95%-MCS

1 0.000 0.424 0.388 0.000 0.108 0.000 0.488 0.544
2 0.000 0.384 0.360 0.000 0.076 0.000 0.700 0.552
3 0.000 0.384 0.364 0.004 0.152 0.000 0.700 0.456
4 0.000 0.396 0.364 0.004 0.184 0.000 0.604 0.536
5 0.000 0.424 0.364 0.000 0.260 0.000 0.556 0.504
6 0.000 0.416 0.396 0.000 0.216 0.000 0.608 0.548
7 0.000 0.420 0.400 0.000 0.012 0.000 0.648 0.480
8 0.000 0.440 0.436 0.000 0.008 0.000 0.676 0.528
9 0.000 0.408 0.380 0.000 0.012 0.004 0.636 0.556
10 0.000 0.352 0.340 0.000 0.004 0.000 0.664 0.540
20 0.000 0.336 0.284 0.000 0.016 0.000 0.760 0.276
30 0.000 0.316 0.236 0.000 0.004 0.004 0.748 0.364
40 0.000 0.316 0.156 0.000 0.012 0.004 0.668 0.304
50 0.000 0.332 0.148 0.000 0.000 0.012 0.636 0.284

Average MSE of model in column header, relative to RAR-X

1 1.245 1.047 1.051 1.285 1.126 1.221 1.000 0.998
2 1.391 1.089 1.096 1.289 1.092 1.418 1.000 1.007
3 1.496 1.095 1.103 1.278 1.074 1.539 1.000 1.007
4 1.554 1.077 1.085 1.260 1.060 1.575 1.000 0.997
5 1.594 1.062 1.071 1.253 1.041 1.574 1.000 0.989
6 1.645 1.064 1.071 1.247 1.084 1.575 1.000 0.991
7 1.695 1.073 1.079 1.252 1.249 1.579 1.000 1.000
8 1.724 1.071 1.077 1.251 1.246 1.565 1.000 0.998
9 1.751 1.073 1.080 1.249 1.246 1.558 1.000 0.995
10 1.773 1.080 1.087 1.248 1.246 1.551 1.000 0.997
20 1.762 1.088 1.098 1.268 1.266 1.437 1.000 1.046
30 1.756 1.144 1.161 1.290 1.287 1.428 1.000 1.017
40 1.687 1.154 1.183 1.331 1.328 1.379 1.000 1.011
50 1.665 1.188 1.224 1.358 1.350 1.369 1.000 1.009

The models are defined in Section 4. The top part reports the frequencies (over the
250 series) at which each model belongs to the MCS at the 95% confidence level (i.e.,
the proportions of p-values above 5% in the MCS procedure) for a given forecasting
horizon h, an MSE loss function and over the full forecasting period of 2277 − h
observations The bottom part reports the ratios of the average MSE (over the 250
series) of each model to that of RAR-X.
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5.2 Subsample stability

To check if the empirical results for the full sample are not specific to the chosen forecasting
period, we study their subsample stability.

First, we report in Figure 2 the evolution over the sample of the average (over the 250
series) cumulative sum of squared (forecast) errors (CSSE) of each model divided by the
CSSE of the RAR-X model (with a burning period of 21 days). The figure shows that the
rankings of the models are very stable through the forecasting period. The values at the
last date correspond to those reported in Table 2; for example, at horizon 50, the MSE of
ARFIMA is 18.8% larger than the MSE of RAR-X on the full forecasting period.

Second, we also apply the MCS procedure on rolling windows of 250 forecasts., and
report the results graphically, see Figure 3, More specifically, the graphs on the left-hand
side panels of the figure show, for three representative forecast horizons (h = 1, 10 and 50)
the averages (over the 250 stocks) of the MSE loss functions computed over rolling windows
of 250 forecasts. The corresponding panels on the right-hand side of the figure show the
time evolutions of the frequencies at which each model belongs to the MCS at the confidence
level of 95%. A frequency of 50 (percent) for model m at date t means that the model m
is in the MCS for fifty percent of the 250 series, the MCS in question being obtained using
the loss function computed from the 250 forecasts ending at date t. Note that to reduce
the computing time, the MCS procedure is not applied to every consecutive window of 250
forecasts, but to every twenty-fifth window, so that each line is drawn by joining 82 values.
The full-sample rankings of model forecasting performances – as analyzed in the previous
subsection – remain valid over most subsamples, but it can be seen that ARFIMA or HAR
occasionally perform better than BAR-X or RAR-X. The differences between RAR-X/BAR-
X and ARFIMA/HAR are more pronounced at horizon h = 50 than at shorter horizons.

Overall, the results above show that full-sample dominance of RAR-X and BAR-X meth-
ods over ARFIMA and HAR constitutes a feature that is reflected in most of the subsamples.

5.3 Impact of the cross-sectional dimension

The results presented so far used the maximum possible number of variables in the AR-X
equations, i.e., the n = 250 available series. To assess the theoretical models of CHL and
Schennach where long memory is an asymptotic feature, we can vary the number of regressors
in the AR-X equations. Indeed, if the data exhibit long memory due to marginalization of
a large system, the RAR-X and BAR-X model performances should be improving when the
number of regressors is increased. Hence, we carry out estimations and forecasts for the
250 series, keeping always the idiosyncratic autoregressive term, but changing the number
of “X” regressors, i.e., the lagged realized volatilities of the other assets. We denote by K
the total number of regressors in the equation and compare the results for the corresponding
RAR-X model. We only focus on the latter as it is the best forecasting model according to
the results presented in Table 2.

The results are presented in Table 3 for six values of K and four forecast horizons. The
six models estimate different numbers of parameters using, each, a different target, A0

K in
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Figure 2: Evolution of the ratio of the cumulative sum of squared forecast errors of each
model with respect to the RAR-X model, over the sample period, for three forecast horizons
(h = 1, 10, 50). The models are the same as reported in Table 2.
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Figure 3: Left panels: Average (over the 250 series) MSE loss computed on rolling windows
of 250 forecasts. Right panels: Frequencies (over the 250 series) at which each model belongs
to the MCS (at the 95% confidence level) for the MSE loss function and rolling windows of
250 forecasts. The top graph is for forecast horizon h = 1, the middle one for h = 10, and
the bottom one for h = 50.
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equation (5). The MCS frequencies for K = 250 in Table 3 differ from those in Table 2
because the sets of models of the MCS procedure differ: for Table 3, the model set includes
only the RAR-X models for the six selected values of K.

Table 3: MCS frequencies and average MSE values for the RAR-X
model, for an increasing number of regressors (K)

h K = 10 K = 50 K = 100 K = 150 K = 200 K = 250

Frequencies at which model K belongs to 95%-MCS

1 0.008 0.080 0.184 0.380 0.528 0.828
5 0.016 0.060 0.212 0.372 0.536 0.832
10 0.028 0.060 0.192 0.412 0.564 0.864
50 0.252 0.220 0.192 0.344 0.520 0.760

Average MSE of model K, relative to model with K = 250

1 1.167 1.065 1.035 1.016 1.006 1.000
5 1.264 1.110 1.053 1.021 1.008 1.000
10 1.267 1.129 1.062 1.026 1.012 1.000
50 1.305 1.120 1.068 1.042 1.010 1.000

The RAR-X model is defined in Section 4, item 5. K is the number of
regressors, not counting the constant term.

Increasing the number of regressors decreases the average MSE, and this effect is stronger
for small values of K than for large values. By contrast, while increasing K also increases the
frequency at which the RAR-X model for a given K is included in the MCS, the latter effect
is stronger at larger values of K. We can conclude that it is worth using a large number of
lagged realized volatilities of other assets to improve the forecasts, in line with the theoretical
predictions of CHL and Schennach.

5.4 In-sample residual serial correlation

Although the BAR-X and especially RAR-X models, as implemented so far, forecast better
than their univariate time series competitors (ARFIMA, HAR), one may ask (as raised
by a referee) whether the in-sample residuals of these models (i.e., the residuals over the
estimation period) are exempt from autocorrelation. If it is not the case, this could indicate
that the models do not fully capture in-sample the long memory observed in the data, or at
least that they do not perform in this respect as well as their time series competitors.

For each model and each of the 250 series of in-sample residuals, we therefore computed
Box-Pierce statistics of order 20, denoted by BP(20). By choosing an order of 20 instead of
a very small or very large value, we should be able to conclude if long memory is captured
(if the statistic is insignificant) or not (if it is significant). We prefer to refer to the BP(20)
statistic rather than an estimate of the degree of residual long memory as it is a more
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Figure 4: Empirical distributions over 250 variables of BP(20) statistics computed for in-
sample residuals. Each line corresponds to one of the models (estimated at horizon h = 1)
presented in Table 4 (see the corresponding table note for definitions).

direct measure that residuals follow the canonical assumption of no serial correlation. For
reference below, note that an asymptotic, 5% sized, chi-squared test based on the BP(20)
statistic rejects the null of no residual autocorrelation (until order 20) for realizations greater
than 31.4.

We consider the residuals of the eight models presented in Table 2 and complement them
with three models that we explain progressively below. To synthesize this information, Figure
4 shows the empirical distributions of the 250 BP(20)-statistics for nine models. Two models
(bBAR-X and sRAR-X) are not reported in the graph as the corresponding distributions
show that they do not correct the in-sample residuals for serial correlation better than BAR-
X and RAR-X. The nine distributions are shown on two comparable graphs to enhance their
visibility.

It is obvious in Figure 4 that the AR model fails, for all series, to clean the residuals
of autocorrelation. BAR-X-MSE and RAR-X-MSE (denoted previously, and respectively,
BAR-X and RAR-X in Table 2) also present a large proportion (approximately 90%) of
BP(20) statistics above the 31.4 critical value. By contrast, for ARFIMA, HAR, and AR-X,
the proportion of statistics below 31.4 are 77%, 85%, and 84% respectively. As regards AR-X
(estimated by OLS), its good performance – as good as HAR – is explained by overfitting
caused by the estimation of a large number of parameters (n) relative to the number of
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observations (T0), since overfitting produces zero residuals in the limiting case where n = T0.
Hence, it is clear that the best out-of-sample forecasting models do not clean the in-

sample autocorrelation of the data as well as the time-series models. To investigate this
issue further, we consider two additional empirical strategies.

Regularly updated cross-validation: instead of choosing the tuning parameters
by cross-validation over a first training sample of 1000 observations, and keeping them
fixed for the whole forecasting exercise, we renew regularly the tuning parameters
after updating the training sample using a rolling window scheme, by removing the
250 observations at the beginning of the previous training sample and adding 250 new
observations; we call this a ‘250-rolling-scheme’.

Box-Pierce cross-validation: instead of choosing the tuning parameters on the basis
of the MSE values of the forecast period of the training sample, we choose them based
on the BP(20)-statistics of the residuals of the training sample.

We therefore add three models to the eight models presented in Table 2; the three new
models are also included in Figure 4. We report the forecasting results for the extended set
of eleven models in Table 4. The three new models are:

• RAR-X-MSE-250: the RAR-X model with “Regularly updated cross-validation” (i.e.,
the ‘250-rolling-scheme’ defined above) based on the MSE criterion;

• RAR-X-BP: the RAR-X model with “Box-Pierce cross-validation” computed for the
initial training sample only;

• RAR-X-BP-250: the RAR-X model with “Box-Pierce” and ”Regularly updated” cross-
validation (i.e., based jointly on the BP(20)-statistic and the ‘250-rolling-scheme’).

To distinguish BP from MSE cross-validation, we add an “-MSE” suffix when this cri-
terion is used. We do not consider the BAR-X-BP, BAR-X-MSE-250 and BAR-X-BP-250
models because the required computing time was beyond our computing resources and also
because RAR-X globally outperforms BAR-X so far.

Regarding the average MSE values, we note that, since the values in the first eight models
are the same in Tables 2 and 4, the interesting point is to compare them with those of the new
models (i.e., those in the last three columns of Table 4). We see that, while RAR-X-BP-250
has the smallest average MSE for almost all horizons, the five RAR-X and BAR-X models
(in the last five columns of the table), with different cross-validation schemes (including the
previously identified best models, RAR-X-MSE and BAR-X-MSE) perform very similarly,
with very small differences in average MSEs.

When comparing the models on the basis of their frequencies of inclusion in the MCS,
we find more important differences, namely that:
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Table 4: Results of the MCS test and average MSE values, with three additional models

h AR ARFIMA HAR AR-X bRAR-X sRAR-X RAR-X BAR-X RAR-X RAR-X RAR-X
-MSE -MSE -MSE -MSE -MSE-250 -BP -BP-250

Frequencies at which each model belongs to the 95%-MCS

1 0.000 0.404 0.368 0.000 0.016 0.000 0.400 0.396 0.628 0.524 0.568
2 0.000 0.384 0.364 0.000 0.056 0.000 0.572 0.536 0.604 0.572 0.676
3 0.000 0.376 0.368 0.000 0.100 0.000 0.632 0.424 0.464 0.532 0.556
4 0.000 0.364 0.356 0.000 0.104 0.000 0.556 0.436 0.448 0.672 0.636
5 0.000 0.412 0.380 0.000 0.172 0.000 0.504 0.420 0.416 0.580 0.592
6 0.000 0.396 0.368 0.000 0.140 0.000 0.536 0.420 0.460 0.560 0.660
7 0.000 0.408 0.384 0.000 0.004 0.000 0.556 0.412 0.444 0.608 0.704
8 0.000 0.420 0.400 0.000 0.000 0.000 0.556 0.428 0.432 0.648 0.720
9 0.000 0.388 0.360 0.000 0.004 0.000 0.544 0.448 0.472 0.656 0.688
10 0.000 0.348 0.360 0.000 0.000 0.000 0.576 0.452 0.484 0.688 0.708
20 0.000 0.288 0.268 0.000 0.000 0.000 0.604 0.164 0.556 0.640 0.696
30 0.000 0.308 0.244 0.000 0.000 0.004 0.616 0.328 0.492 0.572 0.684
40 0.000 0.308 0.172 0.000 0.000 0.004 0.516 0.224 0.500 0.516 0.524
50 0.000 0.332 0.152 0.000 0.000 0.008 0.468 0.228 0.436 0.424 0.480

Average MSE of model in column header, relative to RAR-X-BP-250

1 1.252 1.053 1.057 1.292 1.132 1.228 1.006 1.004 0.994 1.006 1.000
2 1.401 1.097 1.104 1.299 1.100 1.429 1.008 1.015 1.013 1.008 1.000
3 1.514 1.108 1.116 1.293 1.086 1.557 1.012 1.019 1.019 1.005 1.000
4 1.594 1.105 1.113 1.292 1.088 1.616 1.026 1.023 1.026 1.001 1.000
5 1.644 1.095 1.104 1.293 1.074 1.624 1.031 1.020 1.028 1.002 1.000
6 1.698 1.098 1.106 1.288 1.120 1.626 1.033 1.024 1.030 1.002 1.000
7 1.741 1.102 1.108 1.286 1.282 1.621 1.027 1.026 1.030 1.002 1.000
8 1.774 1.102 1.109 1.288 1.282 1.610 1.029 1.027 1.034 1.002 1.000
9 1.802 1.105 1.112 1.286 1.282 1.604 1.029 1.024 1.031 1.000 1.000
10 1.823 1.110 1.117 1.284 1.281 1.595 1.028 1.026 1.032 1.000 1.000
20 1.810 1.117 1.128 1.303 1.301 1.477 1.027 1.074 1.021 1.000 1.000
30 1.768 1.152 1.169 1.299 1.295 1.438 1.007 1.024 1.009 1.001 1.000
40 1.685 1.153 1.182 1.329 1.326 1.377 0.999 1.010 0.993 1.000 1.000
50 1.640 1.170 1.205 1.337 1.330 1.348 0.985 0.993 0.984 1.001 1.000

The models with MSE in their name (columns 5-8) are the same as the models in columns 5-8 of Table 2. RAR-X-
MSE-250, RAR-X-BP and RAR-X-BP-250 are defined in Subsection 5.4. All other models are defined in Section 4.2.
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1. The BP criterion for cross-validation improves upon MSE: RAR-X-BP has larger fre-
quencies than RAR-X-MSE for 9 horizons (among which 6 differences are larger than 5
percentage points), and RAR-X-BP-250 has larger frequencies than RAR-X-MSE-250
for 13 horizons (among which 11 differences are larger than 5 points);

2. Updating the training sample regularly (the ‘250-rolling-scheme’) versus using only
one training sample is beneficial when using the BP criterion for the cross-validations:
RAR-X-BP-250 has higher frequencies than RAR-X-BP for 13 horizons (among which
7 differences are larger than 5 points). By contrast, when the criterion is MSE, RAR-
X-MSE-250 has lower frequencies than RAR-X-MSE for 12 horizons (among which 9
differences are larger than 5 points).

From these comparisons, we conclude that, although the average MSEs do not vary much
with respect to the cross-validation criterion, the best forecasting model is the RAR-X-BP-
250. It therefore appears preferable to use the BP criterion for cross-validation, especially
when the training sample is updated regularly, as we implemented (with a ‘250-rolling-
scheme’).

Looking back at Figure 4, we see that the distributions of the BP(20)-statistics for RAR-
X-BP-250 and RAR-X-BP are much closer to those of ARFIMA and HAR than the distri-
butions for RAR-X-MSE and RAR-X-MSE-250.

The interesting lesson of this section is that the BP criterion improves both the out-of-
sample forecasts and the in-sample residuals.

6 Conclusions

This paper considers a novel approach for the empirical modeling of variables exhibiting
long memory, using one lag of a large cross-section of related variables instead of the usual
technique that models variables using a long history of their own lags. This approach is
based on two theoretical contributions that prove that long memory in a variable can be
caused by its dependences within a large system or network. We provide two estimation
methods that harness the informativeness of the theoretical models and use them to drive
the estimation, either via an extended ridge regression that shrinks the estimates toward a
structure derived from the theory, or by using the latter to design an informative prior in a
Bayesian setup.

In an application to realized volatilities of stocks, we show that the proposed modeling
and estimation strategy improves upon standard univariate models (between 5% and 20%
reduction in mean square forecast error compared to ARFIMA and HAR models, depending
on the forecast horizon) in terms of predicting series characterized by the presence of long
memory. Such results suggest that it may be fruitful to model variables that exhibit long
range dependence by using one lag of a set of related variables, provided that the cross-
sectional dimension is large. Among the other possible empirical applications with these
potential properties, we may think for instance of sectorial consumer price indices, bond
yields, river streamflows, or input-output production networks.
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The success of the proposed approach opens the door to more exploration of the impact
that dependences within a large network or system may have on each variable’s idiosyncractic
long range persistence. It could be extended to include richer short-term dynamics (e.g.,
through VAR(p) modeling, with p > 1) or higher dimensional, e.g., spatial, networks.

Appendix

A: Proof of (13) and of (17)

Proof of (13): notice that (β′ι−β′0ι)2 = (β′ι−β′0ι)(β′ι−β′0ι)′ = β′ιι′β−2β′ιι′β0+β′0ιι
′β0.

By developing the quadratic forms, the ER objective function (12) is equal to β′Z ′Zβ −
2β′Z ′Y +β′Λkβ−2β′Λkβ0 +λ2sβ

′ιι′β−2λ2sβ
′ιι′β0 +Y ′Y +λβ′0Λkβ0 +λ2sβ

′
0ιι
′β0. Solving

the first-order condition yields the solution (13).

Proof of (17): to show that the kernel (15) corresponds to (17), we can write that (15) is
equal to

exp{−1

2
[(β − β0)

′Q0(β − β0) + h0(β
′ι− β′0ι)(β′ι− β′0ι)′]} = K0 exp[−1

2
f(β)],

where K0 does not depend on β and

f(β) = β′(Q0 + h0ιι
′)β − 2β′(Q0β0 + h0ιβ

′
0ι) = (β − β̄0)

′V0
−1(β − β̄0) + C0,

where V0
−1 = Q0 + h0ιι

′, β̄0 = V0(Q0β0 + h0ιβ
′
0ι), and C0 = β̄′0V

−1
0 β̄0 does not depend

on β. Hence, the prior density depends on β only through exp[−1
2
(β − β̄0)

′V0
−1(β − β̄0)],

which is the kernel of the Gaussian density Nk(β̄0,V0). To show that this Gaussian density
is the same as (17), we show that β̄0 = β0:

β̄0 = (Q0 + h0ιι
′−1(Q0β0 + h0ιβ

′
0ι) = (Q−10 −

h0Q
−1
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1− 1
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−1
0 ι
− h0ι

′Q−10 ι

1 + h0ι′Q
−1
0 ι

)
= β0.

In the first line, the explicit form of the inverse of Q0 + h0ιι
′ is obtained by applying the

Sherman-Morrison formula.

B: Bayesian estimation of the AR(1)-X model

The results exposed in this appendix are included for ease of reference. They are well known,
see e.g., Bauwens, Lubrano, and Richard (1999) for details.
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For the regression Equation (9), with the assumption of normality of the error term, the
prior (14) and (17), the posterior density of β and σ2 is proportional to

(σ2)−(T+2)/2 exp{− ŝ

2σ2
} exp{−1

2
(β− β̂)′

Z ′Z

σ2
(β− β̂)} exp{−1

2
(β−β0)

′V −10 (β−β0)}, (30)

where β̂ is the OLS estimator (Z ′Z)−1Z ′Y , and ŝ is the sum of squared OLS residuals.
Because the prior density is not conjugate, the posterior marginal density of β is not

available analytically. However, the posterior density of (β, σ2) can be simulated by applying
a Gibbs sampler iterating between β and σ2. Indeed, the posterior density of β conditional
on σ2 is Gaussian:

β|σ2,Y ,Z ∼ Nk(β∗,V∗), (31)

where

V∗ =

(
Z ′Z

σ2
+ V −10

)−1
, (32)

β∗ = V∗

(
Z ′Y

σ2
+ V −10 β0

)
:= β∗(σ

2). (33)

and the complementary conditional density of σ2 is inverted-gamma:

σ2|β ∼ IG(T, (Y −Zβ)′(Y −Zβ)). (34)

The Gibbs sampling algorithm to generate S draws (β(s), (σ2)(s)), for s = 1, 2, . . . , S,
from the posterior of the parameters (after S0 warming-up draws) is organized as follows:

1. Choose an initial value (σ2)(0) (e.g. ŝ/(T − k − 2)).

2. Set s = 1.

3. Draw successively β(s) from the normal density (31) where β∗ and Q∗ are computed
with σ2 = (σ2)(s−1), and (σ2)(s) from IG(T, (Y −Zβ(s))′(Y −Zβ(s))).

4. Set s = s+ 1 and go to step 3 unless s > S0 + S.

5. Discard the first S0 values of β(s) and (σ2)(s).

The posterior expectation of β is approximated by the mean of the S draws β(s), or by
the mean of the S conditional expectations β∗[(σ

2)(s)].
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C: Explanation of (24)

Using a0 = (1−d0)/(n−1),A0 = d0In+a0 (Jn − In) = nd0−1
n−1 In+ 1−d0

n−1 Jn. Using Jhn = nh−1Jn
for h ≥ 1 and denoting In as J0

n,

Ah
0 =

h∑
j=0

h!

j! (h− j)!

[(
nd0 − 1

n− 1

)h−j (
1− d0
n− 1

)j]
J jn

=

(
d0 +

d0 − 1

n− 1

)h
In +

1

n

[
1−

(
d0 +

d0 − 1

n− 1

)h]
Jn

and hence Ah
0 =

(
dh0 + o (n−1)

)
In +

(
1−dh0
n

+ o (n−1)
)
Jn, for n >> h, so that the first row is

then close to
(
dh0 ,

1−dh0
n
, ...,

1−dh0
n

)′
. The target β(h),0 in (24) is obtained by putting 0 as first

element and dividing the last n− 1 elements by n− 1 (instead of n) to ensure that the sum
of the target is exactly equal to 1. The reason why we prefer this target to using exactly
the first row of Ah

0 is that it ensures the autoregressive coefficient does not depend on the
dimension of the system.

D: Technical details

Model confidence set

The procedure of Hansen et al. (2011) is applied using the MSE loss function defined in
(29) to perform the hypothesis tests of equal predictive accuracy needed to obtain each
model confidence set. Let M0 be the set of competing models. The relative performance is
measured by di,j,t = Li,t − Lj,t for all i, j ∈ M0. The MCS test is an iterative procedure.
For iteration s, it applies a model equivalence test for the null hypothesis of

H0,Ms : E (dij,t) = 0 for all i, j ∈Ms ⊂M0,

against the alternative

HA,Ms : E (dij,t) 6= 0 for some i, j ∈Ms.

If H0,Ms is ‘accepted’ the confidence set M̂1−α =Ms, otherwise use an elimination rule to
remove objects fromMs and repeat the test. Let PH0,Ms

be the p-value associated with the
null hypothesis H0,Ms and eMs be the model eliminated from setMs when H0,Ms is rejected.
The MCS p-value for model eMs is defined by

p̂eMs
= max

k≤s
PH0,Mk

,

where M1 ⊃M2 . . . ⊃Ms.
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The MCS test is performed at the 5% significance level, so that the resulting MCS is at
the confidence level of 95%. The test statistic is the range statistic that requires a bootstrap
procedure. 1,000 bootstrap samples are used, with a block length of 5 observations to account
for potential serial correlation and conditional heteroscedasticity in the losses.

Cross validation

Table 5 reports the grids of the cross validations performed to choose the values of the tuning
parameters that determine the shrinkage of the RAR(1)-X and BAR(1)-X models for the
simulations and the application.

Table 5: Grids for the cross validations

d0 0.2 to 0.55 by steps of 0.025
RAR(1)-X λ−1d 0.01 to 0.05 by steps of 0.01

λ−1a 0.01 to 0.05 by steps of 0.01
λ2s 0 to 5,000 by steps of 1,000
d0 0.2 to 0.55 by by steps of 0.05

BAR(1)-X sd 0.01 to 0.05 by steps of 0.01
sa 0.01 to 0.05 by steps of 0.01
h0 0 to 5,000 by steps of 1,000

Figure 5 provides the histograms of the values obtained by the cross validations, for
RAR-X and BAR-X and h = 1. The ordinates show the number of series, for example d0 is
equal to 0.55 for a little less than 150 series (out of 250) for RAR-X and a little more than
150 for BAR-X.

The parameters 1/λd of RAR-X and sd in BAR-X are selected at the lowest values of the
grid (0.01 or 0.02) for about two-thirds of the series. The parameters 1/λa of RAR-X and
sa in BAR-X are selected differently between RAR-X and BAR-X.

The additional shrinkage of the sum of the coefficients toward 1 by the parameter λ2s
(RAR-X) or the equivalent parameter h0 (BAR-X) is effective for abound 120 series (about
48 percent). The impact of the shrinkage of the sum towards unity is, however, effective
through the other constraints. The OLS estimated sum ranges from -0.06 to 1.50 (over the
150 series), the mean being 0.92 and the standard deviation 0.23; RAR-X estimation results
in the range (0.66, 1.44), with mean 0.97 and standard deviation 0.11; the BAR-X range is
(0.65, 1.48) with the same mean and standard deviation as RAR-X.
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Figure 5: Histogram of the four tuning parameters estimated by cross validation on the first
sample of 1,000 observations for the application.
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