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Abstract. In this paper we investigate some properties of the Fiedler
vector, the so-called first non-trivial eigenvector of the Laplacian ma-
trix of a graph. There are important results about the Fiedler vector to
identify spectral cuts in graphs but far less is known about its extreme
values and points. We propose a few results and conjectures in this di-
rection. We also bring two concrete contributions, i) by defining a new
measure for graphs that can be interpreted in terms of extremality (in-
verse of centrality), ii) by applying a small perturbation to the Fiedler
vector of cerebral shapes such as the corpus callosum to robustify their
parameterization.
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1 Introduction

Let G = (V,E) be an undirected graph where V = {vi}i=1...n are the vertices
and E = {(vi, vj)} the edges. The adjacency matrix A is defined by Ai,j = 1 if
i 6= j and ei,j ∈ E. Ai,j = 0 otherwise. The degree matrix D is a diagonal matrix
where Di,i = deg(vi) :=

∑
j=1...nAi,j . The (unnormalized) graph Laplacian is

the matrix L := D − A. L is a symmetric, semi-definite positive matrix. It has
n eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn. The multiplicity of 0 equals the number
of connected components of G. In our case we will consider connected graphs
and in that case the associated eigenfunction is constant. In this article we will
focus more precisely on the second smallest eigenvalue (algebraic connectivity)
and associated eigenvector that is called Fiedler vector, denoted by Φ. In the
following we will assume that ||Φ|| = 1 and the eigenvalue λ2 is simple, so Φ is
uniquely defined up to a sign. We have first a very classical and useful result
that is obtained from the Courant min-max principle:

λ2 = min
||X||2=1

>XLX =
∑
i,j

Ai,j
(
Φ(i)− Φ(j)

)2 (1)

Given that eigenvectors are orthogonal and the eigenvector associated to
eigenvalue 0 is constant we have

∑
i Φ(i) = 0 and Φ has sign changes. Since
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seminal works by Fiedler [4] there has been a considerable amount of theoretical
results on spectral properties of graph Laplacian. Even if not of interest in our
case, the subgraph of G induced on the vertices v with Φ(v) ≥ 0 is connected.
This property allows to decompose a graph in two sub-domains, according to
the sign of Φ.

In the past ten years stimulating connections have been made between the
Fiedler vector and the first non trivial Laplacian eigenfunction u with Neumann
boundary conditions on ∂D. In this continuous setting it has been postulated
since the 70’s that the maximum and minimum of u are located on ∂D. The
underlying hot-spots conjecture turns out to be false but it has raised new in-
terests regarding the extreme points of the Fiedler vector. In [1] it has been
conjectured that such points, for a closed surface with no holes, maximized the
geodesic distance. The conjecture has been proved to be false on a specific class
of trees called Rose graphs [3, 9]. A few recent works have generalized the pre-
vious examples to offer better characterization of extreme points of the Fiedler
vector for trees [7, 8]. To state it very rapidly, the most general and simple re-
sult we have comes from a theorem by Fiedler [5](see also [8]) stating that the
Fiedler vector is monotonic along branches of a tree which implies that the maxi-
mal and minimal values are attained in vertices with degree 1 (pendant vertices).

Given this rapid state of the art, it is possible to present our contributions:

– We are interested in understanding more the properties of extreme values of
Fiedler vector and for that we will use perturbations of graph Laplacian. A
natural question is to know whether extreme points of Fiedler vectors are
stable under perturbations of the graph.

– The perturbation we will consider first consists in adding a pendant vertex
to any vertex of the graph. Besides we will vary the weight x on the new
edge, not only for small values but also by looking at the limit x→ +∞.

– In the previous process we can wonder for which value of x the Fiedler
vector of the new graph has an extrema on the new vertex. This will allow
us to define a new measure of graphs that can be interpreted in terms of
centrality/periphery.

– Last we apply the (small) perturbation procedure to characteristic points of
medical shapes and demonstrate that it allows to robustify the description
of a longitudinal structure such as the corpus callosum.

2 Perturbation of Fiedler vector

2.1 Intuitions

First we can do a basic representation of our situation of interest involving a
graph G and a perturbation consisting in adding a weighted edge between a
vertex v and a new vertex n+ 1.
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The weight x can be interpreted as the inverse of a distance. Namely consid-
ering for G the line graph with n vertices, L(G) can be seen as a finite difference
approximation of the second derivative operator on a segment sampled by n
regularly spaced points ti, since f ′′(ti) ≈ f(ti+1) + f(ti−1) − 2f(ti). By adding
a perturbation at one end n we obtain the following matrix:

L(G̃) =


1 −1 0 ... 0 0
−1 2 −1 ... 0 0
... ... ... ... ... 0
0 ... −1 2 −1 0
0 ... 0 −1 1 + x −x
0 ... 0 0 −x x


Fig. 1: Evolution of the Fiedler vec-
tor when x varies in [0.01, 10].

We can see that it corresponds approximately to an irregular sampling of
the segment [0, n− 1 + 1/x] with n intervals of length 1 and the last interval of
length 1/x. When x is large we expect the Fiedler vector to be close to a cosine
function with only one oscillation on the segment. Besides the Fiedler vector on
n and n+1 converges to a same value. Conversely, if x is small, the n first points
will tend to share the same value of the Fiedler vector and the last point to have
the largest magnitude, of opposite sign. It is confirmed by numerical simulations
on Fig 1.
In the previous case, the graph has been perturbed at a very specific position
- one of the two extremities. In the following we will investigate first the more
general situation of a perturbation at any vertex.

2.2 Classical results

We recall classical results when considering eigenvalues and eigenvectors of a
symmetric matrix M and its perturbation by another symmetric matrix P [12].

Theorem 1 (Weyl’s inequalities). Let α1 ≥ ... ≥ αn, δ1 ≥ ... ≥ δn, γ1 ≥
... ≥ γn be the spectra of M , P and M + P respectively. Then we have:

γi+j−1 ≤ αi + δj ≤ γi+j−n (2)
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We have also a local counterpart when the perturbation is small.

Theorem 2. Let λ1 ≤ ... ≤ λn and λ̃1 ≤ ... ≤ λ̃n be the spectra of matri-
ces M and M̃ ; Φ1, ...Φn and Φ̃1, ...Φ̃n corresponding eigenvectors. Then if the
eigenvalue λi is simple, we have the two following approximations:

λ̃i = λi + >Φi
(
M̃ −M

)
Φi + o

(
||M̃ −M ||

)
(3)

Φ̃i = Φi +
∑
j 6=i

>Φj
(
M̃ −M

)
Φi

λi − λj
Φj + o

(
||M̃ −M ||

)
(4)

In practice, the formula are of little use in our case because the perturbed ma-
trix has the eigenvalue 0 with multiplicity 2 and of course when the perturbation
is large.

2.3 A new result for small perturbations

Proposition 1. We consider an undirected connected graph G = (V,E) and a
Fiedler vector Φ. Given a vertex v, we look at a weighted graph G̃ = (Ṽ , Ẽ, W̃ )
where Ṽ = V ∪ {n + 1}, Ẽ = E ∪ {(v, n + 1)}. The weights W̃i,j are 0 or 1

depending on the adjacency between i and j except for W̃v,n+1 = x > 0. Calling
Φ(x, ·) ∈ Rn+1 a Fiedler vector of the graph Laplacian of G̃. Then, there exist
a(v) > 0 that satisfies:

a(v) = max{a/∀x 0 ≤ x ≤ a, Φ(x, n+ 1) = arg max
i
Φ(x, i)} (5)

Proof. First we obtain an upper bound on λ2(x), the algebraic connectivity of
G̃. Indeed the graph Laplacian of G̃ can be expressed as:(

L 0
>0 0

)
+ x

(
Ev,v −ev
−>ev 1

)
where ev ∈ Rn is 0 everywhere except 1 on the row v and Ev,v = ev

>ev. Eigen-
values of those two matrices are respectively 0, 0, λ2, ..., λn and 0 (multiplicity
n), 2ε. Then by the left inequality in Theorem 1, with i = n and j = 1 we get
λ2(x) ≤ 0 + 2x. Since algebraic connectivity is positive then λ2(x) → 0 when
x→ 0.
Next we use Courant’s theorem:

λ2(x) = x
(
Φ(x, n+ 1)− Φ(x, v)

)2
+

∑
1≤i<j<n+1

Ai,j
(
Φ(x, i)− Φ(x, j)

)2
The sum on the right tends to 0 and since Ai,j ≥ 0 we obtain that as soon as i and
j are neighbors and different from n+ 1, Φ(x, i)−Φ(x, j)→ 0. But for i 6= n+ 1
(LΦ(x, 1 : n))(i) =

∑
j Ai,j

(
Φ(x, i) − Φ(x, j)

)
and so (LΦ(x, 1 : n))(i) → 0.

We conclude that Φ(x, 1 : n) converges to the eigenspace of L associated to
eigenvalue 0, i.e. the span of the constant vector.
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By using the fact that ||Φ(x, ·)|| = 1 and
∑n+1
i=1 Φ(x, i) = 0 we get that:

Φ(x, ·)→ 1√
n(n+ 1)

(
−1
n

)
By continuity of Φ(x, ·), it is possible to find an interval [0, a(v)[ where n + 1
remains a maximum point. ut

Since our previous result is independent from the choice of v one can be
naturally interested to know what is the maximum value of a(v).

2.4 The case of large perturbations

Here we consider the situation where x is large. It is interesting to examine first
the case of complete graph with n vertices. As before we add a vertex n+1 to the
vertex n with weight x large. By arguments of symmetry it is reasonable to look
at a perturbed Fiedler vector of the form >(−1, ...,−1, a, b) (up to a constant).
The n− 1 first lines of the eigenvalue problem are the same: λ2(x) = a+ 1. The
last lines yields −x(a−b) = λ2(x)b. Rearranging all those terms and considering
that n−1−a−b = 0 we obtain that a should be one of the root of the polynomial
a2 − a(2x+ n− 2) + (n− 1)(x− 1). Asymptotically one is like 2x and the other
one tends to (n − 1)/2. So λ2(x) → (n + 1)/2 with associated Fiedler vector
>(−1, ...,−1, (n− 1)/2, (n− 1)/2). Given that b− a > 0 we conclude that n+ 1
is an extremum of the Fiedler vector for x sufficiently large.
The empirical result observed for the line graph is preserved here and we can
propose the following conjecture:

Conjecture 1. Given an undirected connected graph G. We consider v an ex-
tremum of the Fiedler vector of the graph G. G̃ is the graph obtained from G
and v as in Proposition 1. Then for all x > 0 the Fiedler vector Φ(x, ·) of G̃ has
an extremum at n+ 1.

3 Applications

3.1 A new measure for graphs

Definition 1. We consider an undirected connected graph G = (V,E). Given a
vertex v we consider a(v) > 0 as defined in equation 5 of Proposition 1. We will
denote Fcd(v) := 1/a(v) the Fiedler centrality distance (Fcd), which is a finite
and positive number.

Following the previous conjecture we expect that d(v) = 0 if v is an extremum
of the Fiedler vector of G. This measure is supposed to reflect a distance to what
could be a boundary.

On Figure 2 we illustrate the evolution of Φ(x, ·) on an Erdös-Renyi random
graph G(n,m) with n = 20 vertices and m = 45 edges. Note that when x
exceeds the threshold a(v), Φ(x, 1 : n) is very similar to the Fiedler vector of the
unperturbed graph.



6 J. Lefevre et al

Fig. 2: From left to right: Fiedler vector of a Erdös-Renyi random graph, values
are encoded from blue (−) to yellow (+) ; Fiedler vector of the perturbed graphs
with x = 0.1 and x = 2 ; Plot where each curve corresponds to Φ(x, i) with i
fixed. In blue i = v, in red i = n+ 1 and in black the vertices of the two extrema
of the initial Fiedler vector. The dotted line corresponds to the value a(v) after
which n+ 1 is no more an extremum of Φ(x, ·)

Implementation aspects We can propose a variation on the previous definition
by considering the quantity ā(v) = max{x > 0/ Φ(x, n+ 1) = arg maxi Φ(x, i)}
Clearly a(v) ≤ ā(v) and we conjecture that a(v) = ā(v) based on empirical
observations. If this conjecture is true, it allows a fast computation of a(v) based
on a dichotomous search in an interval [xmin = 10α, xmax = 10β ] then iterating
by computing the geometric mean x̄ of the extremities and choosing the good
side depending if v is an extrema of Φ(x̄, ·). It requires at most K = log2(β/α)
steps.

Thus, computing a(v) needs K steps where a symmetric eigenproblem is
solved. In practice we have used the function eigh of scipy to obtain the two first
eigenpairs. Experiments on random graphs G(n,m) with n varying in [10, 200]
and m = pn with p varying in [0.2, 0.9] have revealed that the time complexity
is between O(n2) and O(n3) which is consistent with existing results 1. All the
codes used for the article are available on github 2.

Comparison with other centrality measures Next we can compare our new cen-
trality measure with existing ones such as betweenness centrality, closeness cen-
trality and eigenvector centrality. Figure 3 left illustrates visually the similarity
between those 4 measures. We also generate N = 100 random graphs from the
G(n,m) model and compute all the correlations between the 4 measures. For
n = 20 we observe on Figure 3 right the evolution of the correlations with m in
the same spirit as in [10]. There are differences between our measure and the 3
others when the graphs are fully or weakly connected and a good correlation in
between.
1 For instance on https://stackoverflow.com/questions/50358310/how-does-numpy-
linalg-eigh-vs-numpy-linalg-svd

2 https://github.com/JulienLefevreMars/GSI_2023
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Fig. 3: Left: Same graph as in Figure 2 with Fiedler centrality distance, be-
tweenness centrality, closeness centrality and eigenvector centrality. Right: Cor-
relations between 3 centrality measures and ours (fcd) for the G(n,m) model
with n = 20 and m varying in [30, 160] .

Those preliminary results suggest to test the Fiedler distance centrality on
real networks to see whether complementary information can be obtained with
respect to classical centralities.

Finally, we would like to draw the reader’s attention to an important point.
Worst case complexity of centrality algorithms is O(n3) which makes them not
scalable on very large graphs. Our method is no exception to this situation
and it is tempting to follow the general trend to use deep learning methods to
approximate the centrality metrics [13]. At this stage, an essential question is to
know the interest and benefits of this choice, especially with regard to the risks
linked to the massification of deep learning and its environmental and societal
impacts [11].

3.2 Longitudinal parameterization of the corpus callosum

Finally, we show a very practical and useful application of the previous theoret-
ical framework in the context of shape morphometry. The corpus callosum is a
cerebral structure composed of axons of the two hemispheres joining in the cen-
ter of the brain. The corpus callosum is easily visualized in MRI brain imaging,
on medial sagittal slices. This structure can be affected in some neurological dis-
orders, as in the fetal alcohol syndrome. In their study, the authors [6] measured
manually the thickness of the corpus callosum. They needed to replicate their
results by making fully automated measurements of this geometrical 2D shape.

From the MRI acquisitions a segmentation of the corpus callosum is obtained
and it is possible to build a planar graph modelling this 2D shape. Given the
elongated shape of the corpus callosum (see Figure 4) we use the Fiedler vector of
this graph to compute a quasi-isometric parameterization [2]. Figure 4 illustrates
how we can obtain at the end a map of the corpus callosum thickness on regularly
spaced slices following the longitudinal orientation of the shape given by the level
sets of the Fiedler vector.
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Fig. 4: Left: Fiedler vector of the corpus callosum S1 and the two extrema in
yellow. Right: thickness map on each isoline.

The anatomical main axis of the corpus callosum is well described by the
Fiedler vector but among the 125 processed shapes, 38 showed a discordance
between the maximum of the Fiedler vector and the tip of the corpus callosum
as defined by the expert neurologist. This situation is illustrated on Figure 5.
Then it is possible to inject the information of the correct position v of this
maximum by perturbating the graph Laplacian by adding a pendant vertex at
v with a weight close to a(v). Then the new Fiedler vector follows the correct
elongation of the corpus callosum as shown on Figure 5 left. Eventually the pa-
rameterization procedure can be applied without any adaptation. On Figure 5
right we can observe that the unperturbed thickness of S2 has a value at the tip
much more comparable to the one of S1. The thickness remains almost the same
on the rest of the shape for S2 with and without perturbations.
Our approach allows a more realistic evaluation of the thickness which will ben-
efit group studies of corpus callosum shapes in a future work.

Fig. 5: Top Left: example of corpus callosum S2 where the maximum of Fiedler
vector (yellow dot on the right) is not correctly located. Bottom left: perturbed
Fiedler vector from the correct position of the maximum. Right: Thickness pro-
files for the two corpus callosum S1 and S2. In black the same shape with the
perturbed and unperturbed parameterization.
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