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Preface

This volume contains the proceedings of the 29th International Conference on Principles
and Practice of Constraint Programming (CP 2023), which was held in Toronto, Canada,
August 27–31, 2023. More details of the conference can be found at https://cp2023.a4cp.
org/index.html.

Held annually, CP is the premier international conference on constraint programming.
CP is concerned with all aspects of computing with constraints, including, but not restricted
to: theory, algorithms, environments, languages, models, systems, and applications.

As is customary for CP, papers could be submitted to multiple tracks. CP 2023 had the
following tracks:

Technical Track Chair: Roland Yap
Applications Track Chair: Helmut Simonis
Machine Learning Track Chair: Tias Guns
Operations Research Track Chair: Gilles Pesant
Trustworthy Decision Making Chair: Peter Stuckey

In addition, there was a SAT Fast Track to synchronize with the SAT 2023 conference.
A total of 109 papers (excluding abstracts) were submitted to these tracks. Authors could

submit either a full paper with a maximum length of 15 pages (references excluded) or a short
paper with a maximum length of 8 pages (references excluded). Each paper was reviewed with
a senior Program Committee together with Program Committees and additional reviewers
recruited by the Program Committee. The track chairs managed the review process for their
respective tracks. All papers had at least three reviews. Authors had the opportunity to
answer questions from reviewers in an author response phase. Based on extensive discussion
on the papers from reviewers, program and senior program committee, and track chairs taking
into account reviews and author responses, a total of 44 papers were accepted. A meta-review
was prepared for each paper by a senior program committee member summarizing the
decision with suggestions to authors. The Senior Program Committee and Chairs nominated
papers for the best paper prizes. A select committee from the Senior Program Committee
together with the Program Chair awarded the Best Paper Prize to Mathew J. McIlree
and Ciaran McCreesh for “Proof Logging for Smart Extensional Constraints” and the best
application paper prize to Matthias Klapperstueck, Frits De Nijs, Ilankaikone Senthooran,
Jack Lee-Kopij, Maria Garcia De La Banda and Michael Wybrow for “Exploring Hydrogen
Supply/Demand Networks: Modeller and Domain Expert views”.

In addition to the paper tracks, the conference had a number of satellite events. Lars
Kotthoff (University of Wyoming) organized the workshops on the first day of the conference
with five workshops. The doctoral program, also on the first day, was organized by Xavier
Gillard (Université catholique de Louvain) and forms an important part of the conference to
give students an environment to present their research with discussions with senior researchers,
and networking activities combined with a poster presentation during the conference reception.
CP features two tutorials organized by Emir Demirović (TU Delft) on the timely topics of
explainable constraint solving and machine learning for solvers. The conference program
featured four invited talks given by Maria Garcia de la Banda, Jimmy Lee, Laurent Perron,
Thomas Schiex and Petr Vilím. The talks were selected to showcase a range of research in CP
and include constraint solver design, designing proteins with applications to the SARS-Cov2
virus, teaching of CP, and making optimisation technology more usable.

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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0:x Preface

Many people have contributed to make the conference a success. The conference would
not be possible for the hard work of the authors in submitting high-quality scientific work
which forms the basis of the conference proceedings. The program and senior committee
together with track chairs had the challenging tasks of selecting papers as well as providing
authors with suggestions on paper improvements. A special thanks goes to Andre Cire and
Eldan Cohen, the conference and local chairs respectively, both at the University of Toronto,
who made CP possible in Toronto. In addition to the above mentioned conference organizers,
I would like to thank the following co-organizers. The diversity, equity, and inclusion (DEI)
chairs, Maria Andreina Francisco Rodriguez (Uppsala University) and Andrea Rendl (Satalia).
Arvind Raghunathan (Mitsubishi Electric Research Laboratories), the sponsorship chair.
Anna Latour (National University of Singapore) was instrumental in managing the website
and also handled the publicity and social media.

I would also like to thank the Association for Constraint Programming (ACP) which
makes the CP conference series possible. The conference is grateful to the ACP president,
David Bergman (University of Connecticut) and the ACP conference coordinator, Hélène
Verhaeghe (KU Leuven) for their support and feedback.

The conference acknowledges the generous support of all our sponsors:
ACP
The Artificial Intelligence Journal (Elsevier)
Cosling
Department of Management, University of Toronto Scarborough
Google
IBM
MERL
The Optimization Firm
ScheduleOpt

July 2023, Singapore Roland Yap
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Abstract
Combinatorial optimisation technology has come a long way. We now have mature high-level
modelling languages in which to specify a model of the particular problem of interest [18, 7, 24, 6];
robust complete solvers in each major constraint paradigm, including Constraint Programming
(CP) [1, 19], MaxSAT [5, 11], and Mixed Integer Programming (MIP) [2, 3]; effective incomplete
search techniques that can easily be combined with complete solvers to speed up the search such
as Large Neighbourhood Search [23]; and enough general knowledge about modelling techniques
to understand the need for our models to incorporate components such as global constraints [25],
symmetry constraints [8], and more. All this has significantly reduced the amount of knowledge
required to apply this technology successfully to the many different combinatorial optimisation
problems that permeate our society.

And yet, not many organisations use such advanced optimisation technology; instead, they often
rely on the solutions provided by problem-specific algorithms that are implemented in traditional
imperative languages and lack any of the above advances. Further, while advanced optimisation
technology is particularly suitable for the kind of complex human-in-the-loop decision-making
problems that occur in critical sectors of our society, including health, transport, energy, disaster
management, environment and finance, these decisions are often still made by people with little or
no technological support. In this extended abstract I argue that to change this state of affairs, our
research focus needs to change from improving the technology on its own, to improving it so that
users can better trust, use, and maintain the optimisation systems that we develop with it. The rest
of this extended abstract discusses my personal experiences and opinion on these three points.

Trust

I highlight trust (which focuses on the user’s point of view) rather than trustworthiness (which is a
characteristic of the software itself) because I think it is the former rather than the latter that is at
stake for the adoption of optimisation technology.

One of the biggest hurdles I have found for trust in the context of optimisation systems is for
the domain experts to (feel like they) understand the underlying model. While many users will never
do (or have to), I believe it is key for domain experts to have a high-level understanding of the
constraints in the model, since their (dis)trust will likely spread through the organisation, impacting
the adoption of the system. Thanks to the use of high-level modelling languages in CP, our group
has achieved this [13] by documenting the constraints in a language the user knows (mathematics)
and linking each constraint to the particular part of the model that implements it (via comments).
While domain experts do not completely understand the model, the similarity between the format
they understand (mathematics) and the model constraint has helped them verify our perception
of their problem and improved their trust in the model. However, more needs to be done in this
direction via the development of formal techniques. For example, our group is exploring the use of
domain-specific languages [10] as a bridge between domain experts and modellers that helps both
trust and maintenance (see later). This [27] and other approaches need to be explored.

A very significant source of trust for our domain experts (and of trustworthiness for the software)
has been the development of two different models implemented by two different people for the same
problem [13]. While this can be seen as a prohibitively expensive exercise, it did not take that long
once the first model was mature, is a good way to onboard new optimisation team members, and has
helped up detect not only bugs but also differences in the interpretation of domain expert information.
For optimisation problems where it is not possible to verify the optimality (or even correctness) of
the solution, we see such redundant modelling as the only solution for now. Interestingly, a significant

© Maria Garcia de la Banda;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 1; pp. 1:1–1:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maria.garciadelabanda@monash.edu
https://orcid.org/0000-0002-6666-514X
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Beyond Optimal Solutions

step forward in obtaining the trust of our domain experts has been the generation of an optimality
gap whenever an optimal solution could not be found due to time constraints. While explaining this
concept took time, once understood it has boosted their trust, particularly when tackling problems
where the solution is not easy verifiable or when approximated models/data are used (needed for
speed, see later). This makes it difficult to work with CP and SAT solvers, as they usually lack tight
lower bounds. Finally, trust is often developed through the use of the system, which I discuss below.

Use

Usability is known to be key for the deployment of software systems. By “system” in our context, I
refer to the combination of the problem model(s), the associated solver(s) and, importantly, the User
Interface (UI) that often integrates them and is fundamental to their success. In addition to the
traditional usability characteristics of software systems, I believe an optimisation system requires
particular care in the following areas. Interaction, i.e., the system must allow users to interact with
the UI not only to provide and modify the input data, but also to modify the constraints (at the
very least by turning some on/off) as well as explore and compare solutions, as argued in [17, 15].
Incremental compilers and solvers would significantly help in making this easier, as well as generic
ways for the UIs to communicate with them. Conflict resolution, that is, ensuring the system can not
only detect infeasible instances, but also support users in understanding the data/constraints that
cause infeasibility and how to modify the instance to make it feasible. Any interactive optimisation
system that has users, will likely have conflicts. Thus, it is mandatory for CP to improve its conflict
resolution technology which, while existent [16, 14, 22], is not widespread and it is often still problem-
dependent, overwhelming (in the number of constraints shown to the user) and slow. Without it,
users will be “stumped” when (rather than if) infeasibility is reached. Solution diversity, that is,
supporting users in obtaining a diverse set of (close-to-optimal) solutions, where diversity is measured
by a user-provided metric modelled somehow. While some solver-independent technology has been
developed and implemented for this [9, 20, 12], it should be easier to use and more widespread.
Further, it requires sophisticated solution comparison capabilities and, importantly, for optimal
solutions to be found in seconds rather than hours. This brings me to speed, an area where CP
solvers are falling behind. Most of our research group applications now use MIP solvers due to the
need for floats (which precludes us from using learning solvers such as Chuffed [4]), but also to the
lack of effective warm-start processes that are available in MIP solvers. Interestingly, data and model
approximations have been proved to achieve orders of magnitude speedups with small reductions in
optimality [13]. Developing generic (i.e., problem independent) accurate approximations would be
extremely useful for complex decision systems. Other areas where I think generic CP methods are
worth investigating more include dealing with uncertainty and online problems, ensuring solution
fairness (even if it is over time), and studying predict + optimise approaches.

Maintain

I know very few papers devoted to the issue of maintenance in optimisation technology. While this
may be due to my lack of knowledge, I suspect it is also due to the limited adoption of optimisation
technology. While the issues in this area are again common to other software systems, I believe the
solutions for CP require special attention. For example, the issue of changes in user requirements
(that our research group calls problem drift) seems particularly prevalent in decision-making systems,
as such problems can evolve rapidly due to unforeseen circumstances. This can make optimisation
systems obsolete faster than expected. Our research group has proposed to tackle problem drift
by developing a requirements model implemented in the above-mentioned MDSLs and created
by both domain experts and modellers that, when modified re-generates parts of the model to
support the modifications [27]. This and other approaches such as the creation of reusable models
components [21, 26], or instantiatable classes for common problem domains, are worth investigating.
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A Tale of Two Cities: Teaching CP with
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Abstract
This presentation is all about story-telling. It tells the story, the pedagogical innovations and
experience of the co-development of three MOOCs on the subject of “Modeling and Solving Discrete
Optimization Problems” by The Chinese University of Hong Kong (CUHK) and the University of
Melbourne, each with unique culture and tradition. The MOOCs feature the Fable-based Learning
approach, which is a form of problem-based learning encapsulated in a story plot. Each MOOC
video begins with an animation that follows a story adapted from a Chinese classic. The heroes of
the story encounter various optimization problems requiring technical assistance from two professors
from modern time via a magical tablet granted to the heroes by a genie old man. The animation
thus sets the stage for lecturing modeling and solving techniques. The new pedagogy provides a
movie-like immersive experience to the learners, and aims at increasing learners’ motivation and
interests as well as situating them in a coherent learning context. In addition to scriptwriting,
animation production and embedding the teaching materials in the story plot, another challenge of
the project is the remote distance between the two institutions as well as the need to produce all
teaching materials in both (Mandarin) Chinese and English to cater for different geographic learning
needs. The project and production spanned across 2016 and 2017. The MOOCs have been running
recurrently on Coursera since January, 2017. We present learner statistics and feedback, and discuss
our experience and preliminary observations of adopting the online materials in a Flipped Classroom
setting at CUHK.
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Abstract
The CP-SAT-LP solver is developed by the Operations Research team at Google and is part of
the OR-Tools [8] open-source optimization suite. It is an implementation of a purely integral
Constraint Programming solver on top of a SAT solver using Lazy Clause Generation [11]. It draws
its inspiration from the chuffed solver [4], and from the CP 2013 plenary by Peter Stuckey on Lazy
Clause Generation [12].

The CP-SAT-LP solver improves upon the chuffed solver [4] in two main directions. First, it uses
a simplex alongside the SAT engine. Second, it implements and relies upon a portfolio of diverse
workers for its search part.

The use of the simplex brings the obvious advantages of a linear relaxation on the linear part of
the full model. It also started the integration of MIP technology into CP-SAT-LP. This is a huge
endeavour, as MIP solvers are mature and complex. It includes presolve – which was already a
part of CP-SAT –, dual reductions, specific branching rules, cuts, reduced cost fixing, and more
advanced techniques. It also allows to integrate tightly the research from the Scheduling on MIP
community [3, 1, 9] along with the most advanced scheduling algorithms [13]. This has enabled
breakthroughs in solving and proving hard scheduling instances of the Job-Shop problems [5] and
Resource Constraint Project Scheduling Problems [6, 2].

Using a portfolio of different workers makes it easier to try new ideas and to incorporate
orthogonal techniques with little complication, except controlling the explosion of potential workers.
These workers can be categorized along multiple criteria like finding primal solutions – either using
complete solvers, Local Search [7] or Large Neighborhood Search [10] –, improving dual bounds,
trying to reduce the problem with the help of continuous probing. This diversity of behaviors has
increased the robustness of the solver, while the continuous sharing of information between workers
has produced massive speedups when running multiple workers in parallel.

All in all, CP-SAT-LP is a state-of-the-art solver, with unsurpassed performance in the Constraint
Programming community, breakthrough results on Scheduling benchmarks (with the closure of many
open problems), and competitive results with the best MIP solvers (on purely integral problems).
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Abstract
The use of discrete optimization, including Constraint Programming, for designing objects that we
completely understand is quite usual. In this talk, I’ll show how designing specific biomolecules
(proteins) raises new challenges, requiring solving problems that combine precise design targets,
approximate laws, and design rules that can be deep-learned from data.
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1 Introduction

Proteins are biomolecules that support most mechanisms in living organisms, from viruses
to human beings. They already have major commercial applications in green chemistry (as
enzymes) but also in the health domain (e.g., the anti-CoViD Regeneron™ antibodies are
proteins). Most commercially used proteins are either natural proteins or engineered versions
of natural proteins. To go beyond the repertoire of natural proteins, it is important to be able
to reliably and efficiently design new proteins, with new capacities [9]. Proteins are defined
by their amino acid sequence, a discrete object defined over an alphabet of 20 characters.
Once the sequence of a protein is fixed, it can be encoded into a suitable microbe, enabling
the cheap manufacturing of these complex microscopic assemblies.

Optimization is often used to design objects such as schedules, assignments, time-tables
or packing, which we completely understand. Instead, proteins are tiny physical objects
that live in the realm of quantum physics. Their behavior is hard to formally, precisely and
concisely capture. Designing new proteins therefore requires to combine knowledge, expressed
as approximate laws of physics, with targeted design constraints and criteria, in the context
of large sets of data of past successful designs (natural proteins) that also embody the many
hidden laws which a successfully expressed protein must satisfy.

2 Designing proteins and SARS-CoV2 variants with CP

In this talk, we will see how Cost Function Networks (CFNs), a weighted variant of Constraint
Networks/CP) can help us design new proteins [1, 6]. Alone, CFNs can already capture
both logical information (constraints) and numerical information, enabling the simultaneous
representation of approximate laws of physics and design targets. By solving suitable instances
of Weighted Constraint Satisfaction Problems, one can already produce protein sequences
that can be tested in silico (with e.g., AlphaFold2 [7]), characterized experimentally, and
lead to successful designs [8].
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By leveraging the exhaustive enumeration capabilities of exact discrete solvers, it becomes
possible to tackle previously unsolvable questions. To infect us, the SARS-Cov2 virus
relies on its own spike protein, designed by evolution to be stable and efficiently bind to
the human ACE2 receptor. Using a protein structure produced in the early months of
2020, we exhaustively enumerated SARS-CoV2 variants that would, in theory, bind to
ACE2 and kept those that remained sufficiently stable. After a drastic selection among
tenths of millions of predicted variants, 59 sequences were tested experimentally for affinity,
infectivity, and resistance to antibodies, resulting in a list of non-yet-existing infectious
therapeutic-antibodies-resistant variants that could be used to design vaccines proactively [3].

3 Learning how to play the Protein Design and Sudoku games

Because the laws of physics and modeling assumptions used in such approaches lead to
approximate results, it becomes crucial to exploit the massive amount of data that has been
produced by experimentalists in terms of natural protein structures and sequences. This
raises the exciting question of learning CFNs describing the “quality” of sequences for a given
protein structure to eventually learn how to design proteins. This problem is reminiscent of
learning “how to reason” or “how to play Sudoku” which has been addressed by various recent
decision-focused learning architectures. By leveraging a usual probabilistic interpretation
of CFNs, we recently proposed a simple scalable learning architecture [4] that combines
Deep Learning with an exact CFN solver (toulbar2 [2]) to learn how to design proteins (or
how to play Sudoku) which outperforms existing architectures in terms of training time,
data-efficiency and accuracy. Because solving the WCSP is NP-hard, powerful polynomial
time relaxations then become handy [5].
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Abstract
In this talk, I explain how to improve the performance of a solver without focusing on algorithms,
search, propagation or parallelism. Performance is achieved instead with better CPU utilization,
efficient code and more precise design of the solver itself.

In the words of Fedor G. Pikus [1], the time of “performance taking care of itself” is over. In
today’s hardware the number of cores is increasing while the CPU clock speed has reached a plateau.
Main memory access is slow in comparison to the CPU. And despite multiple memory cache levels,
the CPU can easily become idle waiting for data from the memory, slowing down the computation
considerably. Unfortunately, those trends are probably not going to change in the near future.

For those reasons we are witnessing revived interest in efficient code and performance-centered
software design, especially in areas where the performance is critical: computer games, compilers,
internet browsers, language interpreters (e.g. JavaScript or Python), etc.

The good news is that many of the tricks used in the above-mentioned areas, can be used in
constraint programming as well. The bad news is that the performance has to be taken into account
from the very beginning of the design. It is not possible to add it easily later. Sometimes, better
performance can be achieved only by radical shifts in the design such as from object-oriented to
data-oriented programming.

The design of a CP solver is not an exception in this regard. Without the efficient core of the
CP solver, it is not possible to write truly efficient propagation or search algorithms. On the other
hand, all algorithms in the solver must take the design of the solver into account and leverage it.

In this talk, I will describe what I consider the most important aspects of the design of ScheduleOpt
Optal solver. I will concentrate on the performance, but I will also mention other aspects such as
ease of use, maintainability, and testing.
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Abstract
Short-term underground mine planning problems are often difficult to solve due to the large number
of activities and diverse machine types to be scheduled, as well as multiple operational constraints.
This paper presents a Constraint Programming (CP) model to optimize short-term scheduling for
the Meliadine underground gold mine in Nunavut, Canada, taking into consideration operational
constraints and the daily development and production targets of the mine plan. To evaluate the
efficacy of the developed CP short-term planning model, we compare schedules generated by the
CP model with the ones created manually by the mine planner for two real data sets. Results
demonstrate that the CP model outperforms the manual approach by generating more efficient
schedules with lower makespans.
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1 Introduction

The mining industry is an important component of Canada’s economic vitality. In 2019, its
economic contribution was estimated at $ 109 billion, or 5 % of Canada’s GDP [10]. Mining
projects involve a variety of operations that handle significant amounts of material and
require substantial investment. Even small reductions in costs or increases in ore yield can
have a considerable economic impact. These projects can generate significant profits when
they are managed efficiently. Furthermore, the mining industry is evolving and transitioning
towards automated mining. With the advent of new communication and data collection
tools, mining operation data is becoming more easily accessible. This creates opportunities
to develop new optimization tools that can use the available data to enhance the operational
efficiency in mines.

The model presented in this study is designed for an underground gold mine. The price
of gold is set by the market and the same for all mining companies. Among other things, 47
% of the gold produced in Canada is purchased by the London Bullion Market, which trades
gold worldwide. The only options for gold mines to increase their profits is to reduce their
operating costs. One way to reduce operating costs is to make better use of available resources.
Minimizing the makespan indirectly reduces operating costs by doing more activities with
the same equipment and reducing downtime.

Short-term planning in underground mines plays a crucial role in ensuring the profitability
and success of mining operations. It involves allocating resources to activities and determining
the sequence and start time of activities during each work shift over a planning horizon
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ranging from one to two weeks [1, 3]. Currently, scheduling decisions in underground mines
are typically made manually based on the planner’s experience. Planning has been done
manually for several reasons. First, communication systems in the underground mines
were virtually non-existent. As a result, the exchange of information between the planning
teams was essentially done between shifts. In addition, the management systems are not yet
standardized in the mines, which means that information on geology, equipment maintenance
and production management are found in different systems and the transfer of one system to
another is not always trivial. However, manual planning is prone to errors and often results in
infeasible schedules with low accuracy and efficiency. Therefore, developing a decision tool to
optimize short-term scheduling in underground mines can help achieve high-quality schedules,
improve mine productivity, and reduce reliance on the planner’s experience, while ensuring
technical and safety requirements are met [17]. In this paper, a Constraint Programming (CP)
model is presented for the short-term scheduling of activities at the Meliadine underground
gold mine located in Nunavut, Canada. The model considers both operational constraints
and the mine’s development and production targets to generate more practical and reliable
schedules.

1.1 Why CP?
Previous research has shown that Constraint Programming is an effective and efficient method
for solving scheduling problems across various industries, including planning, scheduling,
transportation, and automated systems [9]. CP uses a wide variety of variable types, functions,
and global constraints to offer modeling at a high level of abstraction, making it a more
flexible and intuitive approach than other model-based methods such as Mixed Integer
Programming (MIP)[4]. Consequently CP models are more concise and require fewer decision
variables and constraints which makes them an attractive tool for addressing large-scale
scheduling problems. In the context of underground mining, the use of CP functions (as
described in detail in Section 3) makes it easier to model operational constraints in the
short-term scheduling problem, resulting in a more compact and efficient model.

1.2 Plan of the Paper
Section 2 describes the problem we address, Section 3 introduces the CP model we developed
to solve it, and Section 4 discusses the outcomes of implementing the presented model on
two actual data sets. Section 5 highlights the advantages of using CP for this short-term
underground mine planning problem. Section 6 presents an overview of related computational
approaches in the literature. Finally Section 7 concludes the paper.

2 Problem Description

Underground mining operations involve two primary categories of activities: development
and production. In order to access economically valuable ore deposits, development activities
are conducted in waste rocks that lack financial value. Production activities take place in
economically significant rocks located in areas referred to as stopes [5]. Mining activities
occur in a cycle at one of several sites that serve as a workplace to perform these activities.
Figures 1a and 1b show the development and production cycles with activities arranged in a
sequence-dependent order. Table 1 provides the description of activities in the cycle, along
with the required machine type. There are several machines available for each type of activity.
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Each machine can be viewed as a renewable unitary resource, limited to performing one
activity at a time. Short-term scheduling for underground mines includes assigning activities
in the cycle to eligible machines and determining the start and end times for each activity [1].

(a) (b)

Figure 1 Typical development (a) and production (b) cycles in underground mining.

Table 1 Activities and the required machine type in the cycle.

Activity Machine Description
Drilling Drilling rigs Drilling blast holes in the rock face

Charging Anfo loader Charging drilled holes with explosives
Loading Scooptram Removing broken rocks after blasting
Bolting Bolter Stabilizing drifts by installing bolts into the rock mass

Cleaning Scooptram Removing small rocks from the site (the gallery)
Cabling Cabling machine Reinforcing stope by installing steel cables into rock mass

Slot raising Raise borer Creating a vertical or inclined hole into the rock

There are several underground mining methods for extracting deep mineral deposits. The
Meliadine mine uses the long-hole stoping method, which is one of the most commonly-used
underground mining techniques that involve extracting a significant amount of material from
each stope (Figure 2). This method is particularly suitable for large-scale and steeply dipping
ore deposits with preferably tabular shapes. The long-hole stoping method begins with the
development of main shafts or declines for transportation and ventilation purposes. Next,
drill drives are excavated to access the intended location of the ore body and to create stopes.
In each stope, production holes are drilled and charged with explosives. Once the blasting is
completed, the fragmented rock is accessed through draw points developed at the bottom
level of the stope. Scoop trams and trucks are used to collect the broken ore and transport
it to the surface or other underground locations via drifts or ramps. In the final stage, the
evacuated space in the stope is filled with a mixture of waste rocks and concrete to provide
sufficient stability for the subsequent adjacent opening stopes [16].

At Meliadine work is organized into a succession of day and night shifts, each lasting 55
time units. Blasting activities are performed only during designated blast windows. A blast
window corresponds to the period between shifts in the morning, during which resources
cannot be used by operators due to safety regulations. The team rotation takes approximately
1 hour and 30 minutes, and the blast window requires roughly 4 hours and 30 minutes,
including the time needed for team rotation and gas clearance (18 working hours for both
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Figure 2 Typical representation of the long-hole stoping operation [8].

day and night shifts + 1 hour 30 minutes for team rotation at the end of day shift + 4 hours
30 minutes for blast window at the end of night shift = 24 hours). The shift at the end of
which team rotation occurs is referred to as the day shift, while the subsequent shift, which
includes the blasting window at the end, is known as the night shift. Figure 3 illustrates the
shift organization in the studied underground mine. Mining activities are preemptive as they
can be interrupted at the end of each shift and continue in the next shift.

Figure 3 Timeline of alternating day and night shifts including time to rotate the teams and to
perform blasting (above). Its representation in the CP model (below).

Short-term planning at the Meliadine mine incorporates several key performance indicators
(KPI) such as progress of development rounds in the drift, total length of production holes
drilled in the stope, and total amount of material mucked from the stope to meet the
medium-term planning goals. The KPI values vary monthly and are updated every three
months by the medium-term mine planner. Development and production constraints will be
introduced in our CP model to consider the defined KPIs in short-term scheduling.



Y. Aalian, G. Pesant, and M. Gamache 6:5

3 How our Problem is Modeled in CP

An optimization model is developed using Constraint Programming (CP) for short-term
underground mine scheduling, taking into account operational requirements of underground
mining operations. Additional constraints are introduced to ensure that the mine planning
development and production targets are met and that practical and reliable short-term
schedules are generated. In other words, the produced schedule determines the detailed
execution of mining activities in underground operations considering the required daily
rates of development and production. It is important to note that the same model can be
used for both development and production activities in underground mining, which ensures
consistency and accuracy in short-term scheduling.

CP Optimizer (CPO) from IBM ILOG Optimization Studio [9] was used to create
the model presented in this article. In this CPO model, interval variables are used to
represent activities, each with several related optional interval variables depicting the choice
of resource. Optional interval variables include a Boolean status reflecting the fact that the
corresponding activity is present or absent from the solution (i.e. not considered by the
constraints). The ordering of resources can be represented by a set of interval variables,
known as a sequence variable. This sequence variable is used in the scheduling model to
prevent activities in the sequence from overlapping in time. More formally, an interval
variable a is defined by a start time s and an end time e, which are non-negative integer
values, such that a ∈ {[s, e) | s, e ∈ N, e ≥ s}. Optional interval variable b is presented such
that b ∈ {∅} ∪ {[s, e) | s, e ∈ N, e ≥ s}. Additionally the developed CPO model uses various
functions and constraints that are described as follows [9]:

endOf: A function that provides the end value of an interval variable if it exists, or else
returns zero.

alternative: This constraint ensures that if a given interval variable is present, then
only one related optional interval variable is chosen with the same start and end values.

noOverlap: This constraint is used to ensure that a set of interval variables defined by a
sequence variable do not overlap, while maintaining a minimum distance between them
as specified by a transition distance matrix.

endBeforeStart: This constraint guarantees that if two interval variables are present,
then the first ends before the second starts, with an optional minimum delay between
them.

forbidExtent: This constraint makes sure that an interval variable cannot overlap with
a forbidden region where the value of the step function is zero. As a result, the interval
variable must either end before the forbidden region or start after it.

stepAtEnd: This step function returns an elementary cumulative function with a non-
negative integer value at the end of an interval variable. Such functions model a known
function of time, such as the resources used during a particular time period, by returning
a non-negative integer value (height of the elementary function) within the range of the
interval variable and zero outside of it.

cumulFunction: This expression models a known function of time, such as the cumulative
amount of resources used by an activity during a specific time period.

alwaysIn: This constraint restricts the potential values of a cumulative function to a
specific range during a time interval.
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Tables 2 and 3 present lists of sets, parameters, and variables used in the CP model,
along with their corresponding descriptions.

Table 2 Sets and parameters of the CP model.

Set Description
J Index set of activities
M Index set of all available equipment
Mj Index set of eligible machines to perform activity j

Aj Index set of activities that must occur after activity j

B Index set of blast activities
T Index set of time windows (starting at 1)

Parameter Description
pj Processing time of activity j

D Matrix of transition time between sites where the value of its
element is equal to 0 for the same site and greater than 0 otherwise

dj Development (meter) of activity j

hj Production hole drilling (meter) of activity j

oj Stope ore mucking (ton) of activity j

st Starting time of time window t

et Ending time of time window t

d Lower bound for daily development
d Upper bound for daily development
h Lower bound for daily hole drilling
h Upper bound for daily hole drilling
o Lower bound for daily ore mucking
o Upper bound for daily ore mucking

Blast_calendar The time periods during which only blasting activities are permitted (all
activities except blasting are forbidden to be performed during these periods

Table 3 Decision variables of the CP model.

Variable Description
Yj Interval variable for activity j

Xjm Optional interval variable to perform activity j using machine m

Sm Sequence variable for machine m (Sm = {Xjm | j ∈ J})
Qd Integer variable for total development in drifts
Qh Integer variable for total amount of production hole drilling in stopes
Qo Integer variable for total amount of ore material mucked from stopes
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The CP model is given as (1)-(11):

Objective function

Minimize max
j∈J

(endOf(Yj)) (1)

Constraints

alternative(Yj , Xjm | m ∈ Mj) ∀ j ∈ J (2)
noOverlap(Sm, D) ∀ m ∈ M (3)
endBeforeStart(Yj , Yi) ∀ j ∈ J, i ∈ Aj (4)
forbidExtent(Yj , Blast_calendar) ∀ j ∈ J \ B (5)

cumulFunction(Qd) =
∑
j∈J

stepAtEnd(Yj , dj) (6)

alwaysIn(Qd, st, et, t × d, t × d) ∀ t ∈ T (7)

cumulFunction(Qh) =
∑
j∈J

stepAtEnd(Yj , hj) (8)

alwaysIn(Qh, st, et, t × h, t × h) ∀ t ∈ T (9)

cumulFunction(Qo) =
∑
j∈J

stepAtEnd(Yj , oj) (10)

alwaysIn(Qo, st, et, t × o, t × o) ∀ t ∈ T (11)

Objective (1) of the CP model is to minimize the makespan. Constraint (2) ensures that
only one optional variable is chosen for an interval variable i.e. only one machine (with the
appropriate type) is used to perform a given activity. Constraint (3) prevents machines
from being used simultaneously, meaning that each machine can only be assigned to one
activity at a time. Constraint (4) takes into account the order in which activities must be
performed at a site, with most activities having only one predecessor and some having none.
It is important to note that the site where each activity must be carried out is predefined in
the input data. Therefore, all activities can be executed in their respective predetermined
sites.

Constraint (5) is used to ensure that only blasting activities occur during designated
blast windows. In order to model the blasting constraint in the CP model, the day and night
work shifts are compressed into a 110-time unit period (each shift consists of 55 time units),
where each time unit represents 10 minutes in the real world. This compression allows for
blasting activities with a length of zero time units to occur only at the end of compressed
periods, every 110 time units (see Figure 3). Multiple blasting activities can be performed at
the same time during each blasting window.

Constraints (6) and (7) are introduced to ensure that the progress of development
rounds each day (measured in meters per day) is maintained within specific limits based
on the defined development target. To model these development constraints, we define
time windows [st, et) each representing a day in the schedule. For each time window, we
establish cumulative upper and lower bounds (based on daily bounds) for total development
in drifts (in meters) that must be achieved. Next, we use the cumulFunction to model the
cumulative amount of development per meter and apply the alwaysIn constraint to ensure
that the cumulative function stays within the target value bounds for each time window. The
function stepAtEnd(i, j) returns an elementary cumulative function with a step of height j

(a non-negative integer value) at the end of interval variable i. The presented development
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constraints aim to achieve the desired daily development target in the generated schedule.
Furthermore, by using the cumulFunction in this constraint, the model is able to flexibly
compensate in the following days for any shortfall in achieving the daily development goal
(see e.g. Figure 6a). This feature of the constraints closely resembles what is taken into
account in actual short-term underground mine planning, making the model more practical
for real-world operations.

Constraints (8) and (9) model the production drilling constraint to ensure that the
amount of production holes drilled in the stope per day (measured in meters per day)
is restricted within certain bounds, defined based on the production drilling objectives.
Furthermore, Constraints (10) and (11) are used to model the stope mucking constraint,
which ensures that the amount of ore material mucked from stopes each day (measured in
tons per day) is maintained within specific limits determined based on the production target.
These constraints (Constraints (8)-(11)) aim to achieve the production plan in the produced
schedule by controlling the daily amount of production holes drilled and ore mucked. Similar
to the development constraints, the production constraints also allow for making up for
shortfalls in meeting the daily production goal. An activity can perform either development
or production depending on the type of cycle. If the activity is part of a development cycle,
it can have development (dj), and if it is involved in a production cycle, it can have either
production hole drilling (hj) or stope mucking (oj). The development cycle includes activities
that are performed in waste rocks lacking financial value to access economically valuable
deposits, while the production cycle is conducted in valuable rocks to extract ore material
from the stope.

In the presented short-term mine planning model, operational development and production
targets (KPIs) are considered to achieve the tactical decisions made at the medium-term
planning level. Specifically, tactical decisions in underground mine planning are typically
associated with defining the extraction sequence over a planning horizon of one to three
months [7].

4 Implementation and Results

The experiments were conducted on a computer featuring an Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz and 16 GB of RAM. The CP models were solved using the Constraint
Programming Optimizer in IBM ILOG CPLEX Optimization Studio version 12.8.0.

The model was tested on two real data sets collected from the Meliadine underground
gold mine in Nunavut, Canada. Both data sets involve scheduling activities for a roughly
one-week planning horizon. The first data set (Instance 1) relates to development operations,
which consist of 15 machines and 291 activities to be performed across 18 sites. The total
advancement achieved by all available development rounds in this instance is equal to 188
meters. Specifically, each round (cycle) results in approximately 4 meters of advancement in
the development drift. The second data set (Instance 2) concerns production operations and
includes 27 machines, 185 activities, and 27 sites. In this instance, a total of 1500 meters of
production holes have been drilled across all accessible stopes, resulting in the extraction of
27,000 tons of ore material. The available resources are categorized into different equipment
types, and the number of each type is reported in Table 4. Although the developed CP
model takes into account both development and production activities, there was no data
available (in the mine) that included both activities together. Therefore, we applied our
model separately to two different datasets: one for development and another for production.
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Table 4 Number of machines per equipment type for Instances 1 and 2.

Equipment type Instance 1 Instance 2
Scooptram 2 7

Bolter 6 -
Scooptram clean face 1 -

Jumbo 3 -
Anfo loader 3 3

Truck - 7
Raise borer - 1

Production drill rig - 4
Cabling machine - 5

The results obtained by implementing the CP model on Instances 1 and 2 are presented
in the following subsections.

4.1 Instance 1
Table 5 presents the results of schedules generated for Instance 1 with different daily
development upper bounds (d) in the development constraint. All the models in the table are
solved to optimality in a short amount of time. As the primary objective of the scheduling
model is to minimize the makespan, the lower bound on daily development specified in
the development constraint is readily satisfied. Therefore to evaluate the effect of different
development targets on the resulting schedule, we only modify the upper bound value for
the total amount of development to be accomplished per day.

Table 5 Results of different CP models on Instance 1.

Model Development upper Makespan Solving time
bound (d)

1 24 882 12 sec
2 28 772 13 sec
3 32 678 12 sec
4 36 635 13 sec
5 40 600 11 sec
6 44 600 10 sec
7 ∞ 600 10 sec

As can be seen from Table 5, increasing the upper bound in the development constraint
results in lower makespans in the produced schedule. Furthermore, the schedule makespan
remains unchanged for bounds greater than 40. Therefore, d = 40 can be considered a suitable
daily development target for generating a short-term schedule on Instance 1. Interestingly,
this value coincides with the daily development target employed by the human planner at
the mine – our model confirms this empirical choice. Figure 4 displays the location-based
Gantt chart for the short-term schedule generated on Instance 1 with d = 40.

The daily and cumulative development resulting from the schedule produced using Model
3 on Instance 1 with d = 32 are displayed in Figures 5a and 5b. As seen in Figure 5a, the
maximum daily development limit of 30 meters is respected, resulting in a total cumulative
development of 188 meters in six days (Figure 5b).
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Figure 4 Location-based Gantt chart for the generated schedule on Instance 1.

(a) (b)

Figure 5 Daily (a) and cumulative (b) development in Model 3 (d = 32) on Instance 1.

Figures 6a and 6b show the daily and cumulative development obtained from Model 6 on
Instance 1 with d = 44. According to Figure 6a, 36 meters of development are achieved on
Day 2, which is lower than the maximum daily target of 44 meters. However, this shortfall is
made up on Day 3 by completing 48 meters of development, above the maximum daily target.
In other words, 48 meters of development are completed on Day 3 to compensate for the
shortfall on Day 2. After Day 3, it is not possible to meet the maximum daily goal due to the
limited number of drifts available. As shown in Figure 6b, the total cumulative development
of 188 meters is reached in five days. This feature of the development constraints in the CP
model can be practical for short-term planning in underground mines, where operational
restrictions or a relatively small number of accessible drifts (sites) prevent the achievement
of the development target on certain days.

Figure 7 shows the comparison of the average utilization rate of several machine types
in schedules produced using CP models on Instance 1 with different d for the development
constraint. The utilization rate of a machine is the total amount of time units during which
the machine was actively operating at the site relative to the total amount of time for which
it was available for use. As can be seen from this figure, increasing d results in a higher
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(a) (b)

Figure 6 Daily (a) and cumulative (b) development in Model 6 (d = 44) on Instance 1.

average utilization rate of machines in the schedule. This is due to the fact that larger d

values lead to more compact schedules with lower makespans, which in turn, reduces waiting
time for machines.

Figure 7 Average utilization rate of machines in schedules with different development bounds (d)
on Instance 1.

4.2 Instance 2
Table 6 displays the makespan of schedules generated by implementing different models on
Instance 2, with distinct upper bounds for the daily production drilling (h) and stope mucking
(o) in production constraints. According to Table 6, reducing the upper bound values in
production constraints leads to longer makespans in the generated schedule. Specifically, for
the production drilling constraint, the suitable h value is 400 meters, as it leads to the lowest
makespan value that remains unchanged for larger upper bounds. Similarly, for the stope
mucking constraint, o = 6, 000 appears to be an appropriate stope mucking target for the
schedule generated on Instance 2. Figure 8 shows the location-based Gantt chart for the
created schedule on Instance 2 with o = 6, 000.

Figures 9a and 9b present the daily and cumulative production drilling rates in the
schedule generated using Model 5 with h = 500 on Instance 2. Figure 9a demonstrates that
the drilling rate exceeds the daily limit by reaching 600 meters on Day 2 to compensate for
the shortfall on Day 1. As depicted in Figure 9b, the total production drilling of 1500 meters
is achieved within four days.
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Table 6 Results of different CP models on Instance 2.

Model Production drilling Stope mucking Makespan Solving time
upper bound (h) upper bound (o)

1 ∞ ∞ 730 16 sec
2 200 – 1060 17 sec
3 300 – 840 16 sec
4 400 – 730 16 sec
5 500 – 730 16 sec
6 – 4000 881 17 sec
7 – 5000 771 16 sec
8 – 6000 730 17 sec
9 – 7000 730 17 sec

Figure 8 Location-based Gantt chart for the generated schedule on Instance 2.

(a) (b)

Figure 9 Daily (a) and cumulative (b) drilling in Model 5 (h = 500) on Instance 2.

Figures 10 and 11 compare the average utilization rate of several machine types in
schedules produced using CP models on Instance 2, with different values for h and o,
respectively. According to these figures, the average utilization rate of machines increases for
schedules with higher upper bounds in production constraints.
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Figure 10 Average utilization rates of machines in schedules with different production drilling
bounds (h) on Instance 2.

Figure 11 Average utilization rates of machines in schedules with different stope mucking bounds
(o) on Instance 2.

5 Added Value of CP

Constraint Programming allowed us to efficiently address short-term underground mine
planning by quickly producing optimal schedules minimizing the makespan. Moreover the
model identifies d = 40 as the appropriate daily development target, which aligns with the
value selected by the mine planner and confirms the practice of setting the development upper
bound at 40. Additionally, the model can explore what-if scenarios by varying parameter
values, such as the impact of changing daily development or production targets in the
model on machine utilization rates in the generated schedule. These results demonstrate
the practicality and efficiency of using the CP model for short-term scheduling in real-world
underground mining operations.

5.1 Comparison of CP model and manual approach
In order to demonstrate the effectiveness of our optimization model, we compared the short-
term schedules produced by the CP model with those manually created by the mine planner
for the same instance. Since a detailed schedule of activities with similar time fidelity to
the schedule produced using the CP model was not provided in the studied mine, we only
compared the schedule makespan. In particular, we compared the number of shifts required
to complete all activities in the generated short-term schedule using the CP model and
manual approach for both Instances 1 and 2, as shown in Table 7. The development KPI
considered for scheduling activities in Instance 1 is 40 meters per day (m/day). In Instance
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2, the production drilling KPI is 400 m/day, and the stope mucking KPI is 6,000 tons per
day. As previously mentioned, each day consists of two working shifts, where each shift is
equivalent to 55 time units in the CP model.

Table 7 Comparison of schedule makespan between CP model and manual approach for Instances
1 and 2.

Instance CP model Manual approach
1 11 Shifts 14 Shifts
2 14 Shifts 16 Shifts

Table 7 shows that the CP approach outperforms the manual scheduling method on both
Instances 1 and 2 by creating more compact schedules with lower makespans (based on the
number of shifts) while satisfying the daily development and production targets (KPIs).
Additionally, the CP models are quickly solved to optimality, making it an efficient tool for
mine planners to rapidly generate updated short-term schedules whenever changes occur in
the underground mine plan.

The results of this study demonstrate advantages of the developed CP model for optimizing
short-term planning in underground mines and reducing the reliance on manual scheduling,
which is highly dependent on the planner’s experience. Moreover, the CP model can be
easily adjusted to accommodate or exclude additional activity types and related constraints
based on the specific requirements of underground mining operations.

6 Literature review

Short-term underground mine planning models are often difficult to solve (NP-hard) due to
various operational constraints to consider and to the large number of variables involved.
However there has been notable research interest in developing new mathematical models
and algorithms to optimize short-term scheduling in underground mines.

Nehring et al. (2010) designed a MIP model to optimize the short-term scheduling and
allocation of loader-trucks in sublevel stoping mines. The model allows for the reallocation
of equipment in response to changes in underground operations. The proposed model was
applied to a copper mine, demonstrating satisfactory results in terms of tonnage deviations
from predetermined amounts throughout the planning period [11]. O’Sullivan and Newman
(2015) introduced an Integer Programming (IP) model for scheduling activities in an Irish
lead and zinc underground mine to maximize the discounted amount of produced metal.
Both exact and heuristic solutions were used to reduce the number of variables in the model.
Additionally, an optimization-based decomposition heuristic was developed to generate feasible
schedules in less computation time for complicated problem instances [12]. Song et al. (2015)
developed a decision support tool to determine the scheduling of activities in underground
mines. The tool was tested on a real mine dataset in Finland and significantly decreased
the makespan compared to manual scheduling methods, thereby improving operational
performance. However, the proposed method did not take into account uncertainty related
to unexpected activities in underground operations [15].

Schulze and Zimmermann (2017) introduced a solution approach for short-term production
scheduling in underground mining. The developed approach assigns staff and machines to
mining activities while considering operational constraints with the goal of minimizing
deviations from targeted production in a potash mine. The method was tested on various
instances and demonstrated superior performance when compared to manual scheduling [13].
Seifi et al. (2019) proposed a two-stage solution approach for scheduling machines and staff
in an underground potash mine in Germany. The first step involves solving the relaxation
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of the MIP model, and in the second step, a heuristic algorithm is used to modify the
solutions obtained from the relaxation model to achieve feasible schedules. The experiments
conducted on real-word datasets show that the developed approach outperforms the heuristic
procedure presented by Schulze and Zimmermann (2017)[14]. Wang et al. (2020) utilized
a genetic algorithm (GA) for optimizing the scheduling of equipment used in underground
mining. A Non-Linear Programming (NLP) model is presented with a significant number of
decision variables associated with multiple mining sites and equipment types [17]. A MIP
model was presented by Campeau and Gamache (2020) to optimize short-term planning in
underground mines. The goal was to maximize material extraction while ensuring a minimum
ore production rate to keep the mill active. The model considers operational and resource
constraints to generate feasible schedules. When applied to a gold mine data set, the model
produced an optimal short-term schedule [5]. Campeau et al. (2022) introduced a novel
MIP model to address short- and medium-term planning in underground mines. The model
integrated continuous variables for time discretization, resulting in realistic schedules. The
effectiveness of the model was demonstrated by applying it to a dataset from a Canadian
gold mine, which produced promising results [7].

Over the last few years, several CP approaches have been proposed to tackle the short-
term underground mine planning problem. A model using CP was suggested by Astrand et al.
(2018) for scheduling a mobile fleet in underground operations, which was tested on data from
an actual underground mine [2]. Astrand et al. (2020) extended the previously developed CP
model by incorporating the time it takes for mobile machinery to travel between different sites
in an underground cut-and-fill mine. They also proposed a revised CP model with compressed
blasting time and post-processed solutions to obtain schedules for the primary problem.
In order to improve the quality of schedules and reduce computation time, a specialized
neighborhood definition was implemented in a Large Neighborhood Search (LNS) algorithm.
The effectiveness of this algorithm was assessed using several instances of an underground
mine in Sweden. The outcome showed that the suggested method successfully enhanced the
initial feasible solution and generated high-quality schedules [3]. Campeau and Gamache
(2022) presented a CP model for short- and medium-term planning in underground mining.
They evaluated the model’s ability to address long-term production planning objectives by
testing it on five data sets from a Canadian underground gold mine, considering a planning
horizon of up to one year. The outcomes revealed that the CP model was superior to the
equivalent MIP model in terms of computational efficiency and application [6].

These previous CP approaches for short-term underground mine planning exhibit a
limited ability to incorporate daily mine planning development and operational goals during
the short-term scheduling process. To overcome this limitation, this paper introduced a
CP model for the short-term scheduling of activities in underground mining that takes into
consideration operational constraints and the development and production targets of the
mine plan to generate more practical and reliable schedules.

7 Conclusion

This paper presented a CP model that takes into account various operational constraints
and daily development and production targets for short-term scheduling optimization in
underground mines. The model was tested on two data sets from the Meliadine gold mine
using the long-hole stoping mining method. We conducted a comparative analysis of the
schedules generated by our CP model and those created manually by the mine planner.
The experiments showed that the CP model outperforms the manual approach, resulting
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in more efficient schedules with lower makespans. Results highlight the potential benefits
of implementing the CP model in actual underground mining operations to improve both
development and production through optimized short-term mine planning. Underground
mines are somewhat unpredictable environments which may affect how long an activity
actually takes. For future work, it could be beneficial to incorporate uncertainty in activity
durations which would improve the robustness of the short-term schedule.
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Abstract
In this paper, we describe how we can effectively exploit alternative parameter configurations to a
MaxSAT solver. We describe how these configurations can be computed in the context of MaxSAT.
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solver to obtain a better solving approach.
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1 Introduction

Since 2006, the MaxSAT Evaluation (MSE) [5] has been held annually with the primary
objective of advancing MaxSAT technology and assessing its current state-of-the-art. The
evaluation consists of multiple solvers being tested on various benchmarks across different
evaluation tracks. This event has undeniably spurred the MaxSAT community to create
more cutting-edge solvers and enhance their competitiveness.

It is not surprising that solver performance depends on several factors, including the
power of the algorithm implemented by the solver, proper configuration of solver parameters
to unleash its full potential, and implementation issues. Therefore, we must interpret the
MaxSAT Evaluation ranking results carefully and derive conclusions according to the goal of
our analysis. For example, a similar or weaker algorithm could outperform other approaches
thanks to better implementation of data structures or a previous tuning process of its input
parameters.

From an industrial point of view, we mainly care about obtaining an effective solving
approach that is ready for deployment for a particular problem subject to available resources
(computing power, environment restrictions, licenses available, etc). From a research point of
view, we are more interested in identifying the potential of new solving approaches that lead
to further promising research avenues.
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7:2 Exploiting Configurations of MaxSAT Solvers

Our aim is to satisfy both industrial and research perspectives by identifying the best
possible solving approach that can be achieved from a single solver while adhering to certain
restrictions. In particular, we treat the solver as a black box, meaning that we cannot access
its source code, nor do we have any domain knowledge of the problem to be solved, meaning
that we cannot utilize any specific structure feature.

Despite these constraints, our approach enables us to unleash the hidden potential of the
solver and avoid incorrect rankings of better algorithms that have not been appropriately
configured or restarted. Additionally, our study emphasizes the importance of being cautious
when interpreting rankings based on the MaxSAT Evaluation, as we mentioned previously.

In this paper, we first show how to effectively configure MaxSAT solvers using Automatic
Configuration (AC) tools (tuners), specifically GGA [4] and SMAC [14]. Then, we show
that we can take advantage of not only the best configuration returned by the tuners but
also a selection of the configurations seen by the tuner during the AC process. With these
configurations, we can then build a simple portfolio that runs in parallel these configurations
if enough computational resources are available.

We also demonstrate how to create a sequential portfolio that schedules the execution of
different parametrizations of a single MaxSAT solver on a given number of cores within a
specified timeout. This approach can be thought of as a restarting strategy, where a different
configuration of the solver parameters is selected at each restart.

It is worth mentioning that all these approaches are agnostic of the structure of the
instances. Otherwise, we should explore extending other approaches available in the literature
such as ISAC++ [13].

Finally, we integrate all these building processes in the OptiLog framework [1]. With the
new APIs, the user can provide an input MaxSAT solver and its parameters through the
BlackBox Module, and OptiLog automatically generates a new solving approach for a given
number of cores.

We conducted an extensive experimental investigation on the Weighted Incomplete track
of the MaxSAT Evaluation 2022, with a particular focus on the highly configurable MaxSAT
solver Loandra [6]. In this track, Loandra ranked sixth when restricted to a timeout of 60
seconds. Our approach involves the construction of parallel and sequential portfolios based
solely on Loandra, which significantly improves its performance.

2 Preliminaries

MaxSAT is the optimization variant of the SAT decision problem. While for SAT the goal
is to find an assignment to the Boolean variables (solution) that satisfies all the clauses
in the input CNF formula, in MaxSAT we look for a solution that satisfies the maximum
possible number of clauses. Since some of these clauses can be falsified we refer to them
as soft clauses. Within the MaxSAT community, it is typical to reformulate the problem
from a minimization perspective aiming to find a solution that falsifies the minimum possible
number of soft clauses.

There are several variants of the MaxSAT problem. We can add weights to the soft
clauses that represent the cost of falsifying the clause. In this case, we want to look for a
solution that minimizes the aggregated cost of the Weighted soft clauses. Additionally, we
can have hard clauses, i.e., clauses that cannot be falsified by the solution.

MaxSAT solvers have experimented a great success in the last decade. Among these
solvers, we find complete (or exact) solvers and incomplete solvers. Complete solvers provide
optimal solutions while incomplete solvers report solutions as good as possible, but are not
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required to guarantee their optimality. These solvers can either refine a lower bound (lb) on
the cost of the optimal solutions or an upper bound (ub), or both. In particular, incomplete
solvers iteratively report (whenever possible) a better (smaller) upper bound on the optimal
solution.

3 The MaxSAT Evaluation

The MaxSAT Evaluation 2022 was structured into three tracks: main track complete
(unweighted and weighted variants), main track incomplete (unweighted and weighted
variants), and the special incremental MaxSAT track. In this paper, we focus on the
incomplete track for weighted MaxSAT instances with a timeout of 60 seconds.

The term incomplete refers to the type of MaxSAT solvers which are not required to
be exact, i.e., they do not need to certify the optimum. Their goal is to report the best
possible solution within a given timeout. The term weighted refers to the variant of MaxSAT
instances. The weighted MaxSAT variant allows integer weights for the soft clauses plus the
hard clauses.

We consider the timeout of 60 seconds useful for our study since it is a realistic scenario
of industrial applications where we require a suboptimal solution in a short time window
and because our automatic configuration process, given the computational resources we have
available, can be restricted to two days (see Section 5).

The MaxSAT Evaluation 2022 incomplete (weighted) track involved 197 MaxSAT instances
and 10 incomplete solvers: DT-HyWalk [18], noSAT-MaxSAT [15], NuWLS-c [7], Exact [8, 11],
Loandra [6], Open-WBO-inc (two variants) [12], and TT-Open-WBO-Inc (three variants) [16].

Each solver s was ranked according to the scoring function score(s) shown in Equation 1.

score(s) =
∑i=n

i=1 score(s, i)
n

(1)

Given a set of n instances, the score(s) of a MaxSAT solver s is the average of the scores
for each instance, computed by score(s, i) in Equation 2.

score(s, i) = 1 + best-known ub for instance i

1 + ub for i found by s
(2)

The score(s, i) function computes the ratio between the best-known upper bound of an
instance i and the bound reported by the solver s on the same instance. Assuming that
(best-known ub) ≤ ub (which is the case for the MaxSAT Evaluation), the computed value
ranges between 0 and 1, where higher values correspond to better upper bounds.

The competition has some specific rules about what is and is not allowed in the im-
plementation of the solvers. In particular, the solvers are not allowed to employ triggers
to modify their behavior, which is deemed to be specific to particular instances. However,
solvers can concatenate the usage of different solving techniques.

In the most recent competition, the MaxSAT solvers used a variety of strategies and
solvers. Some of these solvers are outlined below, along with the various approaches they
employ in order to find improved solutions.

1. NuWLS-c: This solver adopts two solvers, the NuWLS solver, which is an improvement
of SATLike, and the integration of TT-Open-WBO-Inc.

2. TT-Open-WBO-Inc: This solver uses four different strategies, including SATLike for
inprocessing, a modified version of Mrs. Beaver for unweighted instances, BMO-clustering
for weighted instances, and Polosat, a SAT-based local search method. This MaxSAT
solver has three different distributions:
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(g) Which incorporates the Glucose 4.1 SAT Solver.
(i) Which incorporates the new Intel SAT Solver.
(is) Which incorporates the new Intel SAT Solver and is tuned for short invocations.

3. DT-HyWalk: This solver employs three distinct strategies, including a direct call to a
SatSolver, the SATLike solver for local search, and the use of another MaxSAT solver,
TT-Open-WBO-Inc.

4. Loandra: This solver utilizes two core algorithms, namely a Core-Based algorithm and
a Linear algorithm.

Table 1, column “MSE”, shows the results of the MaxSAT Evaluation 2022 for the top
six solvers at the incomplete weighted track with 60 seconds timeout. As we can see, the
MaxSAT solver Loandra was not competitive within this category. In this paper, we propose
an approach that is agnostic of the structure of instances and only allows the usage of
alternative configurations of the same input MaxSAT solver. We experimentally show the
goodness of our approach on the MaxSAT solver Loandra.

3.1 Reproducing the MaxSAT Evaluation for the Incomplete track
All of our executions of the MaxSAT solvers are run on a computation cluster composed of
nodes with two AMD 7402 processors (each with 24 cores at 2.8 GHz) and 21 GB of RAM
per core, managed by Sun Grid Engine (SGE). All the experiments are managed using the
Running Module of the OptiLog framework.

Each execution is given 60s of CPU time and 32 GB of memory. As the memory
requirements exceed the memory per core available, two slots are reserved and an affinity
mask is set by SGE to restrict the execution to only one of the two cores. In contrast to the
MaxSAT evaluation, each solver was evaluated with 50 different random seeds and we report
results on the average score, and in some of the experiments, we also show the minimum and
maximum scores, and the standard deviation.

In the course of developing our experiments, we detected two problems with some
executions of the solvers: 1) some executions report a bound that does not correspond to the
real cost of the solution reported, and 2) some executions report a solution that does not
satisfy the hard clauses.

To address these issues we conduct a validation step executed after the solver exhausts
the 60s of CPU time. In particular:

For 1), we trust the cost we compute from the solution reported, ignoring the bound
reported by the solver.

For 2), we consider the solver was not able to find any solution at all.
This validation step is also conducted during the automatic configuration process when

we evaluate a particular configuration of the solver on a given instance (see Section 5).
The score for each solver is computed using the MaxSAT evaluation rules. In particular, it

is important to define which is the set of best-known upper bounds that we use to compute the
score. Table 1 shows in column “MSE 2022”, the scores reported in the MaxSAT Evaluation
2022.

The rest of the columns present the results of the experimentation we conducted (in our
cluster) using different sets of best-known upper bounds. “V BSb” uses the upper bounds found
by the Virtual Best Solver of the solvers we executed, “MSEb” uses the set of best-known
upper bounds provided by the MaxSAT Evaluation, and “LRUNSb” (Long Runs) uses a
set of new best-known upper bounds we computed by running Loandra and NuWLS-c (both
with the default parameters) with a timeout of 12 hours. We recall that the score presented
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is the average score on 50 seeds in contrast to the MSE results where only 1 seed is used.
As we can observe in Table 1, the relative ranking of the solvers is preserved although we
can observe variations in the scores reported. We will use in the rest of the paper the best
bounds from MSEb + V BSb + LRUNSb.

Table 1 Results of the MaxSAT Evaluation 2022 on the incomplete weighted track (60 seconds
timeout) and reproduction of the Evaluation in our system with different sets of Best-Known Upper
Bounds.

MSE 2022 MSE 2022 on our system

Best-known UBs MSEb V BSb V BSb + MSEb V BSb + MSEb + LRUNSb

Solvers

NuWLS-c 0.759 0.7831 0.7590 0.7524
DT-Hywalk 0.732 0.7625 0.7414 0.7351
TT-Open-WBO-inc (g) 0.728 0.7412 0.7221 0.7164
TT-Open-WBO-inc (is) 0.726 0.7354 0.7201 0.7141
TT-Open-WBO-inc (i) 0.720 0.7354 0.7178 0.7118
Loandra 0.693 0.7107 0.7003 0.6953

4 Automatic Configurators (AC)

In this section, we review the Automatic Configuration Problem and two state-of-the-art
automatic configuration algorithms or tuners.

4.1 The Automatic Configuration Problem

Given a target algorithm A with parameters {p1, . . . , pn} of domain d(pi). We define the
parameter space Θ of A as the subset d(p1) × . . . × d(pn) of valid parameter combinations.
Depending on the parameter, d(pi) can be categorical, a discrete domain of fixed values with
no predefined order, or numerical, which represent integer or real values. Then, we define
the Automatic Algorithm Configuration (AAC) problem as the optimization problem that
consists of exploring Θ to find a configuration θ ∈ Θ of A, which given a set of problem
instances Π, minimizes a cost metric ĉ : Θ × Π → R, without exceeding a configuration
budget B.

It is common for A to be a black box (target algorithm), meaning it accepts some
inputs (the parameters) and provides some output (e.g., ĉ), but we cannot see its internal
functionality. This allows AAC to generalize to any type of algorithm but makes it more
challenging for algorithm tuners since they cannot use A to infer additional information
about Θ. In practice, A is implemented as a binary file that outputs its results in a format
suitable for its domain but may not be suitable for the AAC tool. Moreover, it may be
necessary to limit the resources that A can use to solve an instance, such as memory or CPU
time. The standard way of addressing these issues in AAC tools is for the user to replace A

with a wrapper script that handles these and any other necessary aspects. Figure 1 describes
the automatic configuration process where the tuner is a solver for the AAC problem.
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Figure 1 Visualization of the Automatic Configuration process.

4.2 The GGA Automatic Configurator
The Gender-Based Genetic Automatic Algorithm Configuration (GGA) is a genetic algorithm
that was introduced in [4] to search for high-quality configurations. It was one of the pioneering
algorithms that supported continuous parameters and introduced the novel concept of gender
to apply diverse selection pressures to the population’s individuals.

Algorithm 1 GGA.
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Performance Metric ĉ, # MiniTour-

naments N , Configuration Budget B

1: function GGA(A, Θ, Π, ĉ, N, B)
2: pop ← initPopulation(Θ)
3: j = 0
4: while B not exhausted and threshold not achieved do
5: j = j + 1
6: Πj ← selectInstances(Π, j)
7: <w1, ..., wN > ← runMiniTournaments(A, pop.comp, Πj , ĉ, pop.comp/N)
8: offspring ← applyCrossoverAndMutate(pop.noncomp, <w1, ..., wN >, Θ)
9: pop ← agingAndDeath(w1, pop) ∪ offspring

return w1

Algorithm 1 shows the pseudocode of the GGA algorithm, which takes as input the target
algorithm A, its parameter space Θ, a set of training instances Π, a performance metric ĉ to
optimize (e.g., time, accuracy, quality within a fixed timeout, etc), the number N of GGA
mini-tournaments (which will be explained shortly), and a configuration time budget B.

GGA starts by initializing a population (pop) of configurations (named genomes) as a
subset of Θ in line 2. This population is partitioned into a competitive group (pop.comp,
which is directly evaluated on the target algorithm) and non-competitive group (pop.noncomp,
which simply acts as a source of diversity).

The algorithm proceeds in a main loop that finishes when GGA reaches the configuration
budget B or a threshold on the performance (line 4). At each iteration (which we call
generation), GGA selects a subset of the instances Πj to evaluate the genomes in line 61.
Then, in line 7, GGA evaluates the competitive genomes of the population over the selected
instances Πj using a parallel racing scheme called mini-tournament. This procedure returns

1 There are different policies that can be applied to select the instances at each generation, see [4].
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a set of N winners, <w1, ..., wN >, which will be the only competitive genomes that will
generate new offspring in this generation (line 8). Finally, GGA applies an ageing policy
in line 9 that is used to prevent population growth. The only exception is the overall
best competitive genome (w1), which survives as long as it performs better than the other
mini-tournament winners. At the end of the main loop, GGA returns the best competitive
genome w1 of the last generation.

For more details on the GGA algorithm, we refer the reader to [4].

4.3 The SMAC Automatic Configurator
Sequential Model-Based Algorithm Configuration (SMAC) is an automatic configuration
algorithm based on Bayesian optimization [10, 14]. In Bayesian optimization, we use a few
evaluations of the target algorithm to train a surrogate model that predicts the performance
of the algorithm for a given configuration. This fast-to-evaluate surrogate model is used to
search for promising new configurations that will be executed on the training instances.

Algorithm 2 SMAC.
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Performance Metric ĉ, Configuration

Budget B

1: function SMAC(A, Θ, Π, ĉ, B)
2: [R, θinc] ← initialize(Θ, Π)
3: while B not exhausted do
4: [M , tfit] ← fitModel(R)
5: [Θ⃗new, tselect] ← selectConfigurations(M , θinc, Θ)
6: [R, θinc] ← intensify(A, Θ⃗new, θinc, R, Π, ĉ)

return θinc

Algorithm 2 shows the pseudocode of SMAC. This algorithm receives as input the target
algorithm A, its parameter space Θ, a set of training instances Π, a performance metric ĉ to
optimize and a configuration time budget B. First, SMAC initializes a best candidate config-
uration θinc and the history of conducted evaluations of different (configuration, instance)
pairs R (which might be empty) in line 2.

As in GGA (see Section 4.2), SMAC has a main loop defined in line 3 that proceeds
until the configuration budget B is reached. At each iteration, it fits a surrogate model
M using the information in R in line 4. Then, it uses M to select a new set of promising
candidate configurations Θ⃗new in line 5. Finally, it evaluates Θ⃗new and θinc on instances
from Π to determine the next best candidate θinc, according to ĉ in line 6. Similar to the
GGA algorithm, SMAC returns the best candidate configuration θinc .

4.4 Support for Tuning into the OptiLog framework
In this section, we present an excerpt of the code that uses the OptiLog framework to
generate the configuration environment (from now on Tuning Scenario) of the solver Loandra
for GGA and SMAC tuners.

1 # example_ac . py
2
3 from optilog.blackbox import ∗
4 from optilog.running import ParsingInfo
5 from optilog.tuning import ∗
6
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7 class LoandraBB(SystemBlackBox):
8 config = {

9 "weight−strategy": Int(0, 2, default=2),
10 "preprocess": Bool(default=True),

11 (...)

12 }

13 (...)

Listing 1 Sample code to wrap the solver Loandra into an OptiLog BlackBox.

Listing 1 defines a custom BlackBox class named LoandraBB that inherits from System-
BlackBox. This class represents the binary that we want to optimize. The config dictionary
defines the parameters of this binary that can be tuned by the optimization algorithm. We
show the parameters “weight-strategy” and “preprocess”, with their respective types and
default values. In particular, we need 18 lines of code to wrap Loandra, with 40 additional
lines defining the parameters.

1 # scenario_gga . py
2
3 from optilog.tuning.configurators import ∗
4 from example_ac import LoandraBB
5
6 i f __name__ == "__main__":
7 configurator = GGAConfigurator(

8 LoandraBB(),

9 input_data="/path/to/instances/∗",
10 ...

11 )

12 configurator.generate_scenario("./scenario")

Listing 2 Sample code to create a Tuning Scenario for the solver defined in Listing 1.

Listing 2 is a definition of a Tuning Scenario for the solver Loandra. It imports the
custom LoandraBB class defined in Listing 1, and sets up a tuner (in this case GGA) to
optimize the parameters of LoandraBB. The input_data parameter specifies the path to the
instances used during the optimization process. Lastly, the generate_scenario method is
called with the desired output path for the scenario that is being created.

Similar code to Listing 2 could be used to define a Tuning Scenario to be used with the
SMAC AC tool, as OptiLog supports both GGA and SMAC.

5 Configuring MaxSAT Solvers

Although the AC tools (tuners) presented in the previous section have also parameters that
impact the effectiveness of the configuration process, tuning the tuner is out of reach in this
paper and we focus on providing a good cost function to be used during the tuning process.

Ideally, we would use the score(s, i) function from the MaxSAT Evaluation (Equation 2).
Notice though that in the MaxSAT Evaluation we are trying to maximize this scoring
function, whereas tuners minimize a cost (see Section 4). Therefore, we have to convert
the score function to a cost function. Additionally, it is not guaranteed that the bounds
found are equal or worse than the previously best-known upper bounds (see Section 3), and
we cannot update the best-known upper bounds sets during the tuning process (otherwise
previous results computed in the same tuning process would not be comparable).
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We define the costac(s, i) function, shown in Equation 3, as follows. First, we split the
function in two cases: 1) the reported bound is worse (or equal) than the previous best-known
upper bound, and 2) the bound reported is better.

For 1), we compute 1 − score(s, i) to obtain a value in the range [0, 1), where better
bounds are closer to 0.

For 2), notice that we are breaking the assumption (best-known ub) ≤ ub, which may
lead to unbounded values that tend to ∞. To restrict the values to the range (−1, 0), we use
the inverse of the score(s, i) function, and then subtract 1.

The costac(s, i) function returns values between (−1, 1), where better bounds correspond
to values closer to −1.

costac(s, i) =
{

1 − score(s, i), if ub for i found by s ≥ best-known ub for i
1

score(s,i) − 1, otherwise
(3)

As stated in Section 3.1, some executions might report a bound that does not match the
reported solution. Thus, we integrate a validation step (see Figure 2) that certifies the real
cost of the solution returned by the solver and reports it to the tuner.

Regarding the tuning environment, all experiments are conducted on the same computation
cluster. Each tuning process is given a wall-time tuning budget of 48 hours, a memory limit
of 32G per worker, and is allowed to use up to 50 parallel workers unless otherwise specified.
Each configuration instance is given a CPU time limit of 60 seconds for the solver, and then
a validation step is executed. As training instances for the tuning process, we will use the
197 instances from the MaxSAT Evaluation 2021 (incomplete weighted track, 60 seconds)
and we will test the best configuration returned by GGA and SMAC (see Section 4) on the
151 instances from the MaxSAT Evaluation 2022.

GGA allows for the selection of how many instances are used in each generation. Incre-
mentally increasing the training set across generations till including the whole set of available
instances is often recommended, as it facilitates discarding bad configurations with less effort,
therefore more generations can be reached within the tuning budget. However, as discussed
in Section 6, prioritizing the evaluation of more configurations on the whole training set
within the same tuning budget may be preferable over having more generations. GGA also
can preserve a set of elite configurations that are run at every generation. We define as an
elite the default configuration of Loandra. Finally, we use the PyDGGA [2] (version 1.7.0)
distribution of GGA which has support for distributed execution. The following non-default
parameters were used for GGA: cost tolerance set to 0, population set to 100, generations
set to 300, and minimum generations set to 50.

Regarding SMAC, although it can be executed in parallel, it does not report an overall
winner in contrast to GGA. Instead, it reports as many winners as computation cores
were used since it basically runs several sequential SMACs in parallel. Thus, after SMAC
completes, we have to take all the winners from each SMAC sequential execution, which
may not have been evaluated on all training instances, and perform the missing evaluations.
Then, the winner with the best performance on the training set is selected to be the overall
winner. We use the SMAC3 [14] (version 1.4.0) implementation of the algorithm.

As we have described earlier, the cost function used during the tuning process is not
strictly the minimization version of the score we maximize according to the MSE 2022 (see
Section 3). Therefore, one may argue that it would be better to return a winner for the
training set with respect to the score function computed by the MSE. This is easy to do if
the tuner provides the logs of each evaluation so, in the case of incomplete MaxSAT solvers,
we can retrieve the best bound found by the solver on a given instance.
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Therefore, we add a selection phase (see Figure 2) after the tuning phase that recomputes
the scores (according to the MSE) of the configurations traversed by the tool during the
tuning process.
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Figure 2 Visualization of the Automatic Configuration process extended with the validator and
a selection phase over the explored configurations.

In particular, for SMAC, we compute the MSE score of the 50 winners reported by the
tuner on the training set and select the one with the highest score. Even though we have
access to the logs of the evaluations of SMAC and could use those scores to select the winning
configuration, we need to make sure that all the configurations are evaluated with all the
instances.

For GGA, we order the configurations first by their ranking in a generation (according to
the cost function in Equation 5), and within the same rank, we order by the most recent
generation. Then, we select the first 50 distinct configurations. We look into their logs,
recompute their MSE score according to Section 3, and report the winner2.

Table 2 Comparison using GGA and SMAC to tune the Loandra solver (using V BSb + MSEb +
LRUNSb bounds).

Mean Median Min Max Std

NuWLS-c 0.7524 0.7522 0.7484 0.7560 0.0017
Loa (GGA, all-i) 0.7393 0.7391 0.7313 0.7475 0.0037
Loa (GGA, incremental) 0.7353 0.7354 0.7275 0.7433 0.0038
DT-Hywalk 0.7351 0.7355 0.7288 0.7415 0.0030
Loa (SMAC) 0.7237 0.7234 0.7149 0.7355 0.0048
TT-Open-WBO-inc (g) 0.7164 0.7165 0.7128 0.7194 0.0015
TT-Open-WBO-inc (i) 0.7141 0.7142 0.7093 0.7188 0.0020
TT-Open-WBO-inc (is) 0.7118 0.7117 0.7098 0.7145 0.0008
Loandra 0.6953 0.6957 0.6872 0.7036 0.0037

Table 2 shows the result of the best configurations provided by GGA using all the
instances from the first generation (“Loa (GGA, all-i)”), or adding them incrementally at
each step (“Loa (GGA, incremental)”) and the best configuration provided by SMAC (see

2 In our experiments, the winner reported by GGA was the same configuration as the best one found in
the selection phase.
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“Loa (SMAC)”) after the additional selections process described in the paragraph above.
For the incremental approach of GGA, we use 20% of instances at the first generation and
instruct GGA to use all the instances on generation 25. Those values were selected based
on preliminary experiments taking into account the number of generations that GGA can
do in the given time. It is clear by the results that the usage of all the instances from the
beginning benefits GGA, allowing it to lift Loandra from the sixth position to the second
one. In the next section, we will focus on the variant of GGA “Loa (GGA, all-i)”.

We also ran the variants “Loa (GGA, all-i)” and “Loandra” on another set of benchmarks,
the MSE 2020 instances. The default parameters variant achieves a score of 0.755, and the
tuned version a score of 0.777.

6 Exploiting Configurations Discarded by the Tuner

As it has been shown in the literature [9, 17], from the most pragmatic point of view, we can
obtain an efficient parallel approach by just running the same non-deterministic solver with
different seeds in parallel, or we can also run in parallel different configurations of the same
solver.

In case resources are limited, we can also schedule the execution of different configurations
of the same solver. In this section, we concrete and study these different approaches. We use
OptiLog [1] to generate all the portfolios, as we explain in Section 6.3.

6.1 Parallel Portfolios of seeds and configurations
As we have already explained, tuners report the best configuration they have found. However,
many other potentially good configurations are also explored and discarded during the
automatic configuration process with respect to their performance on the particular training
set. These configurations may exhibit good performance in different kinds of instances. As
observed in [3] on SAT benchmarks, superior performance can be achieved by combining
these complementary configurations.

The first approach we explored is the parallel execution of N different random seeds over
a given MaxSAT solver. This approach can be applied to both the default MaxSAT solver
and the best configuration obtained in the tuner.

Another approach is to extract N configurations of a MaxSAT solver from the ones
traversed by the tuner and execute them in parallel. There are many strategies that we
could follow to extract these configurations from the tuner. In particular, we use the set
of configurations considered during the selection phase (after the tuning phase) process as
explained in Section 5. Notice that we do not analyze any structure of the instances and we
only incorporate configurations of the same solver.

Table 3 shows the results of the parallel portfolios that we explained. We tested parallel
portfolios with 25, 30, 35, 40, 45, and 50 parallel executions. Each row shows the results of a
parallel portfolio (rows marked with (Seeds) refer to a parallel portfolio of seeds, whereas the
row marked with (Configs) refer to a parallel portfolio of configurations). We show the score
as computed in the MaxSAT evaluation using the V BSb + MSEb + LRUNSb upper bounds
and the rank of each portfolio with respect to the others.

As we can observe, the portfolio over different seeds for the default Loandra (“(Seeds)
Loandra” in Table 3) is not competitive while the portfolio of different seeds for the best
configuration of Loandra computed by GGA (column “(Seeds) Loa (GGA, all-i)”) already
outperforms NuWLS-c. Additionally, a portfolio of the best configurations provided by the
selection phase (column “(Configs) Loa (GGA, all-i)”) systematically outperforms the rest
of the approaches. These observations hold almost for any number of parallel executions.
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Table 3 Score and rank (#) for each parallel portfolio, given N parallel processes (using
V BSb + MSEb + LRUNSb bounds).

N 25 30 35 40 45 50
# score # score # score # score # score # score

(Configs) Loa (GGA, all-i) 1 0.813592 1 0.818663 1 0.823986 1 0.825208 1 0.826448 1 0.827105
(Seeds) Loa (GGA, all-i) 2 0.806889 2 0.808078 2 0.809922 2 0.812589 2 0.813007 2 0.815263
(Seeds) NuWLS-c 3 0.768409 3 0.769302 3 0.769785 3 0.770293 3 0.771219 3 0.771263
(Seeds) DT-Hywalk 4 0.759271 4 0.764688 4 0.765736 4 0.765764 4 0.765862 4 0.766397
(Seeds) TT-Open-WBO-inc (g) 5 0.728901 5 0.728903 5 0.729766 5 0.729902 5 0.730165 5 0.730235
(Seeds) TT-Open-WBO-inc (i) 6 0.725971 6 0.726171 6 0.726253 6 0.726315 6 0.726510 6 0.727468
(Seeds) Loandra 8 0.717788 8 0.722663 7 0.723954 7 0.723996 7 0.724521 7 0.724648
(Seeds) TT-Open-WBO-inc (is) 7 0.722672 7 0.722704 8 0.722918 8 0.723174 8 0.723324 8 0.723489

6.2 Sequential Portfolios of configurations
In some settings, we will not have enough resources to run a parallel portfolio as described
in Section 6.1. Potentially, we can have just one computation core available. In this case, we
can schedule the sequential execution of different configurations of Loandra within the given
timeout.

Let us describe how we construct this sequential portfolio. We assume we have a sequence
of solvers (or configurations of a solver) (S) that iteratively report better solutions, a time
budget (TO), and a maximum time budget a solver can exhaust between two consecutive
reported solutions (MTBS). The solvers are executed according to their order in the sequence
until the time consumed globally by all the solvers exceeds TO.

Each solver is run as follows: first, we wait for the first solution reported by the solver.
Once this first solution is reported, we start a timer of MTBS seconds. If the solver reports
a new solution before this timer expires, we reset the timer and wait for a new solution. This
is repeated until the solver is unable to report a new solution before the timer is consumed.
At that point in time, the solver is stopped and the next one in the ordered list of solvers is
executed. Note that, at any point in this process, a solver can also be stopped if the global
time budget of TO seconds gets exhausted. A special case is the last solver of the sequence,
which is allowed to run until the time budget expires (i.e. it is not stopped even if it took
more than MTBS seconds to find a new solution). Obviously, we keep track of the best
overall solution seen so far.

To identify which sequence of solvers S and MTBS value the portfolio should use, we
carry out a simulation of sequential portfolios with the configurations provided by the
selection phase (see Section 5) and their respective logs on the training instances computed
during the tuning phase. In particular, we explore all sequences of up to size 3 and MTBS

values of {2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} seconds. Once we identify the best virtual
sequential portfolio for the training instances, we simulate again the execution of this virtual
sequential portfolio on the test set. In Table 4 we present the results of this simulation.

To implement this virtual sequential portfolio we would need to take into account an
additional thread that keeps track of the evolution of the solvers in the sequence, which may
decrease the overall performance. Therefore, we see this virtual sequential portfolio as a
restarting policy that MaxSAT developers could integrate into their solvers, with the added
benefit that they may be able to reuse information computed by each solver in the sequence.

Table 4 shows the results of the virtual sequential portfolios (rows prefixed with “Virtual
portfolio”), compared to the results that obtained the solvers from the competition with the
default parameters, and with the best approach obtained using a tuner (“Loa (GGA, all-i)”).
As in the MSE we run each solver with the same seed, except for NuWLS-c for which we also
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Table 4 Score of the virtual sequential portfolio compared with the single-execution approach
(using V BSb + MSEb + LRUNSb bounds).

Score

Virtual sequential portfolio (N=2) - Loa (gga, all-i) 0.7642
Virtual sequential portfolio (N=3) - Loa (gga, all-i) 0.7642
NuWLS-c (max score on 50 seeds) 0.7560
NuWLS-c 0.7554
Loa (gga, all-i) 0.7513
DT-Hywalk 0.7432
TT-Open-WBO-inc (g) 0.7214
TT-Open-WBO-inc (i) 0.7180
TT-Open-WBO-inc (is) 0.7180
Loandra 0.6965

report on the best score value from 50 seeds. The N value shown in the virtual sequential
portfolios rows indicates the length of the solvers’ sequence. The portfolios are built on top
of the configurations obtained after the selection phase with (“Loa (GGA, all-i)”).

We notice that virtual sequential portfolios do perform better than NuWLS-c, and a
selection of two configurations suffices to that end. Interestingly, if we build the virtual
sequential portfolio on the test instances from the MSE 2022, then we get a better portfolio
using three configurations that achieves a score of 0.7689, however, we cannot predict this
portfolio based on the analysis we perform on the training instances from the MSE 2021.

Additionally, we conducted experiments to analyze the potential of combining solvers. In
particular, we used the solver TT-Open-WBO3. We tuned this solver, and generated a virtual
sequential portfolio combining the best configurations of TT-Open-WBO and Loandra. The
virtual sequential portfolio (based on the analysis of the performance on the MSE 2021)
obtained a score of 0.779 on the MSE 2022, which is the best score obtained for single-core
evaluations. In comparison, the individual performance of Loandra and TT-Open-WBO
after tuning is 0.747 and 0.751 respectively.

6.3 OptiLog Portfolio Generator

To facilitate the creation of the parallel and virtual sequential portfolios, we added support
to compute them using the OptiLog framework.

1 from optilog.portfolio import get_parallel_portfolio
2
3 get_parallel_portfolio(
4 gga_scenario=’./tuning−scenario’,
5 n_solvers=10,

6 save_to=’./parallel−portfolio’
7 )

Listing 3 Computing a parallel portfolio with OptiLog.

3 A version provided by the author of the solver with the parameters exposed.

CP 2023
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Listing 3 shows how we can generate and save a parallel portfolio with OptiLog. This
portfolio is built by selecting N configurations as explained in Section 5, thus requir-
ing a Tuning Scenario (generated with OptiLog as seen in Section 6.3). The function
get_parallel_portfolio receives as parameters the Tuning Scenario that contains the
results of the tuning process (gga_scenario), the number of solvers that will compose the
parallel portfolio (n_solvers), and the directory where the scripts to launch each individual
solver that composes the portfolio will be saved (save_to).

1 from optilog.portfolio import get_sequential_portfolio
2
3 get_sequential_portfolio(
4 path_scenario="./running−scenario",
5 n_solvers=2,

6 solution_regex=r"^o\s(\d+)",

7 save_to="./sequential−portfolio",
8 score_fn=maxsat_score_fn ,

9 max_time_between_solutions=[5, 15, 25, 35]

10 )

Listing 4 Computing a sequential portfolio with OptiLog.

Listing 4 shows how we are generating a sequential portfolio with the results of a Running
Scenario. Note that to generate the virtual sequential portfolio we require the full trace of
the solvers (in particular for the incomplete MaxSAT case, we need the evolution of the best
bound over time), so we cannot build it from a Tuning Scenario directly. The parameters
gga_scenario, save_to, and n_solvers mean the same as in the function to compute a
parallel portfolio. Additionally, we have to specify the following parameters: score_fn is
used to transform the lines matched by solution_regex to a score that the portfolio will
try to maximize (in this example the score function is score(s) defined in Section 3), and
max_time_between_solutions contains the possible values that the portfolio can choose
from when selecting the parameter MTBS.

7 Conclusions

Given a target solver, we have presented an approach to easily generate a potentially much
better solving approach. To this end, we exploit a set of alternative configurations of the
same target solver coming from the residues of a tuning process. It is important to notice
that we do not exploit any structure feature of the input problem or instance since in some
domains these features are not easy to compute. In particular, we have shown how from a
MaxSAT solver with a low ranking in one of the tracks of the MSE 2022 we can obtain a
more competitive approach.

Our sequential portfolio generation approach can be seen as a first attempt to come up
with effective restarting policies for MaxSAT solvers, something that has not been studied in
depth in the literature.

Finally, the approach described has been integrated into the OptiLog framework avoiding
the tedious process of setting up tuning environments and generating portfolios. Moreover,
the API is general enough to be applied not only to MaxSAT solvers but to other solving
approaches.
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Abstract
The cube-and-conquer paradigm enables massive parallelization of SAT solvers, which has proven
to be crucial in solving highly combinatorial problems. In this paper, we apply the paradigm in
the context of finite model finding, where we show that isomorphic cubes can be discarded since
they lead to isomorphic models. However, we are faced with the complication that a well-known
technique, the Least Number Heuristic (LNH), already exists in finite model finders to effectively
prune (some) isomorphic models from the search. Therefore, it needs to be shown that isomorphic
cubes still can be discarded when the LNH is used. The presented ideas are incorporated into the
finite model finder Mace4, where we demonstrate significant improvements in model enumeration.
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1 Introduction

An important tool that working algebraists need in their research is libraries of the algebras
they are interested in. These libraries allow them to get intuitions, test or refute hypotheses
and conjectures, and gain insights into the properties of the algebras (see examples on p. 2891
of [30]). Many libraries of algebraic models of small orders, such as the smallsemi package [14]
for semigroups and the loops package [36] for quasigroups, are available in the GAP [16]
system. A lot more such libraries are needed, but they often take an inordinate amount of
time and computing resources to generate.

First-order logic (FOL) has been the most popular language to define algebras. There are
two major resource-intensive steps in generating non-isomorphic models from FOL [27]. The
first step is to generate models according to the laws specified by the FOL formula. This
step often generates a huge number of isomorphic models. For example, given the first-order
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formula for semigroups, which is (x ∗ y) ∗ z = x ∗ (y ∗ z), Mace4 [35] generates 1,021,120,198
models of order 7, out of which only 1,627,672 (≈ 0.16%) [44] are pairwise non-isomorphic.
The second step is to eliminate the isomorphic models generated in the first step. In this
paper, we propose a novel efficient and scalable parallel algorithm that not only speeds up
the first step but also generates fewer isomorphic models. Suppressing the generation of
isomorphic models in the first step reduces the workloads of both the first and the second
steps. Not only does it make the whole process much faster, but the required computing
resources (disk space, etc.) are also reduced.

While modern-day general-purpose computers are predominantly multi-core, harnessing
parallelism for combinatorial search is surprisingly difficult. Consequently, there are few
parallel algorithms in constraints programming in general, and in finite model enumeration
in particular. Indeed, in satisfiability modulo theories (SMT), even negative results are
concluded for cube-and-conquer [23]. A recent literature review concludes that “there is little
overall guidance that can be given on how best to exploit multi-core computers to speed up
constraint solving” [18]. We aim to help close this gap by devising new parallel algorithms
for finite model enumeration.
This paper advances finite model enumerators toward the following two objectives:
1. Mathematicians can use the tool to quickly generate all models (up to isomorphism) of

the classes of algebras of their interests on their multi-core computers.
2. The tool can also take advantage of massively parallel computing architectures to pre-

generate models (up to isomorphism) of the classes of algebras of general interest.

We find inspiration in the well-established cube-and-conquer approach introduced for
SAT [20]. In SAT this means splitting the search space by mutually exclusive conjunctions of
propositional literals (cubes). In the context of finite model finding, the structure is richer – a
decision of the solver corresponds to inserting a point into the graph of one of the considered
functions, e.g., f(0, 1) = 3. We comment on cube-and-conquer in more detail in Section 6.

We show that a cube can be excluded from the search if it is isomorphic to an existing one.
Effectively, this is breaking symmetries in the search space. However, the task is nontrivial
because finite model finders already contain a technique, called the least number heuristic
(LNH), to exclude some isomorphic models. The LNH1 enables the solver to consider only
certain values from the co-domain for a given decision point. Therefore, we show that
isomorphic cubes can be pruned in the presence of the LNH. Like so, we can take advantage
of the two powerful and complementary techniques and ultimately suppress the generation
of a large number of isomorphic models.
This paper’s contributions are the following:
1. Devise a low runtime overhead parallel algorithm based on the cube-and-conquer approach

for finite model enumeration. This scalable algorithm divides finite model enumeration
into many independent non-overlapping search jobs to make full use of the available
resources.

2. We show that isomorphic cubes can be discarded without losing isomorphic models even
in the presence of the well established symmetry breaking technique already present in
finite model finders – the least number heuristic (LNH).

3. We extend the model finder Mace4 with the proposed techniques and evaluate it on a
large number of problems, where significant speed-up is observed.

1 Despite the technique being called a heuristic, it does not sacrifice the completeness of the solver.
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2 Preliminaries

Familiarity with the general notions of abstract algebra such as groups, semigroups, and
quasigroups is assumed, and so is general knowledge about functions and isomorphisms. A
good reference is Chapters 2 and 5 of [9].

In this paper, the domain of the search space is denoted by the set D = {0, . . . , n − 1},
where n ≥ 2, That is, we exclude the trivial case of searching on domains of size 1.

Let π denote an arbitrary permutation on D, πid denote the identity permutation, and
π(a,b) denote the permutation cycle (a, b). For example, π(0,1) is the permutation cycle (0, 1).

2.1 Finite Model Enumeration
For a signature Σ and a FOL formula F on Σ, a traditional finite model finder first expands
the FOL formula to its ground representation by its domain elements in D, then searches for
models by backtracking to exhaustively explore the search space [49]. The domain elements
in D are seen as special constants not appearing in the original F , c.f. [40].

Following the terminology of [49], a value assignment (VA) clause is a term f(a1, . . . , ak) =
v, where f is a k-ary function symbol in Σ and aj , v ∈ D. We refer to the term f(a1, . . . , ak)
as the cell term (or simply cell) since conceptually the search fills the operation table of f .

To search for finite models in F , the finite model finder employs a cell selection strategy
to pick cell terms successively, without duplicates, to assign values from D to form VA
clauses. If a newly formed VA clause causes any failure in the axioms in F , then a new
value will be tried for that cell term. If no value can be assigned to that cell term without
failing the axioms in F , then the model finder backtracks to the previous cell term to try to
assign another value to it. When all cell terms in F are assigned values without violating
the axioms in F , a model, as represented by its VA clauses, is found. After a model is found,
the process can continue with backtracking to find more models.

A set of models can be partitioned into equivalence classes by isomorphisms. Intuitively,
a model can be transformed into any other model in the same equivalence class by renaming
its domain elements. Two models are said to be isomorphic to each other if an isomorphism
exists from one model to the other.

The search space can be organized as a search tree in which nodes are VA clauses and
edges join successive nodes with cell terms in the search order. The root node is an empty
VA clause. The cell term in each node is selected by the cell selection strategy. A search path
in a search tree is a path from the root to a node in the search tree. It can be represented by
a sequence of VA clauses ⟨t0 = v0; t1 = v1; · · ·⟩, where ti is the cell term in the ith position
of the sequence and vi ∈ D, and ti ≠ tj when i ̸= j. Furthermore, a search path will be
terminated at the first VA clause that results in a violation of any axiom of F .

If the length of a search path is the same as the total number of cell terms in F , then it is
a complete search path and its VA clauses represent a model. Otherwise, it is an incomplete
search path representing partial assignments of cell values in F .

The backtracking algorithm in its simplest form is to try every possible value assignment
for every cell. For example, to search an FOL formula F with just one binary operation,
there are nn2 possible combinations (n2 cells with n possible values each). Even the very
small domain size of 4 gives over 4 billion combinations of cell values. However, in practice,
the number of viable combinations to check is much smaller than the theoretically maximum
number because of the constraints imposed by F . Furthermore, a finite model finder may
infer new VA clauses from existing ones by propagation.

CP 2023
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▶ Example 1. Suppose the FOL formula contains only the equation f(x, y) = f(y, x), that
is, the operation f is commutative. After the assignment f(0, 1) = 0, the finite model finder
can infer f(1, 0) = 0. This is referred to as positive propagation.

On the other hand, if the FOL formula contains the inequality f(x, y) ̸= f(y, x), then
after the assignment f(0, 1) = 0, the finite model finder can exclude 0 from the list of possible
values for the cell f(1, 0). This is referred to as negative propagation. ◀

2.2 Least Number Heuristic
The least number heuristic (LNH) [4, 50, 51] is a very effective symmetry-breaking algorithm
widely implemented in model finders/enumerators such as Mace4. The main idea of the LNH
is that all domain elements that have not yet appeared in any VA clauses and the current
cell term in the search are indistinguishable to each other and therefore only one of them,
say, the smallest one, needs to be considered in a cell value assignment.

To ease discussions of the LNH, we introduce the notation Vals(P ) to denote the set of all
domain elements appearing in P , where P can be a search path, a VA clause, or a cell term.

▶ Example 2. For the cell term f(1, 1): Vals(f(1, 1)) = {1}. For the VA clause f(1, 1) = 0:
Vals(f(1, 1) = 0) = {0, 1}. For the partial search path S = ⟨f(0, 0) = 0; f(1, 1) = 0⟩:
Vals(S) = {0, 1}. ◀

The LNH can now be stated precisely: In adding a VA clause, t = v, to extend a search
path S, the possible choices of v allowed under the LNH are Vals(S)∪Vals(t)∪{s} where s is
the smallest domain element in D\(Vals(S)∪Vals(t)), and they are D if Vals(S)∪Vals(t) = D.
Strictly speaking, it is not necessary to set s to be the smallest domain element not seen
so far, it could as well be the biggest one, for example. But the rule to set s must be
unambiguous - only one value is consistently picked by the rule each time. In this paper, we
always set s to be the the smallest domain element not seen so far.

Furthermore, we say a search path is LNH-compliant if it respects the LNH restrictions
on the choices of values assigned to its VA clauses.

▶ Example 3. Suppose the domain size, |D|, is 4. Then the complete search path ⟨f(1) =
0; f(0) = 3; f(3) = 1; f(2) = 1⟩ is not LNH-compliant.

For the first VA clause in the search path, S = ∅ and t = f(1). So, Vals(S) ∪ Vals(t) =
∅ ∪ {1} = {1}, and therefore D \ (Vals(S) ∪ Vals(t)) = {0, 2, 3}. Thus, s = min({0, 2, 3}) = 0.
The LNH limits the choices of the value for f(1) to Vals(S) ∪ Vals(t) ∪ {s} = {0, 1}. So
the first VA clause f(1) = 0 is LNH-compliant. However, for the second VA clause in the
search path, S = {f(1) = 0} and t = f(0). So, Vals(S) ∪ Vals(t) = {0, 1} ∪ {0} = {0, 1}, and
therefore D \ (Vals(S) ∪ Vals(t)) = {2, 3}. Thus, s = min({2, 3}) = 2. The LNH limits the
choices of the value for f(0) to Vals(S) ∪ Vals(t) ∪ {s} = {0, 1, 2}, so f(0) = 3 is not allowed
under the LNH. Therefore, the whole search path is not LNH-compliant. ◀

The LNH does not impose any restrictions on the order of the cell terms in the search
path2. It speeds up the search by limiting the choices of the values for the cell terms.
Therefore, its effectiveness decreases with the increase in the length of the search path as
more domain elements are used when more VA clauses are added to the search path.

2 In practice, a number called the maximal designated number (mdn) is often used to partition the domain
into 2 subsets so that {0, . . . , mdn} are domain elements already seen, and {mdn + 1, . . . , n − 1} are
domain elements not seen so far [49]. In this case, cell selection strategies that keep the mdn small are
preferred because the search tree will be kept narrower.
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▶ Example 4. The concentric cell selection strategy is a simple cell selection strategy to
minimize the growth of choices of values in the finite model search with the LNH. This
strategy picks the cell f(a0, . . . , ak−1) with the least r = max(a0, . . . , ak−1) from all available
cells. Any fixed tie-breaker can be used in case of a tie. For example, one of the possible
orders of the cells by this cell selection strategy for a binary operation is f(a0, a1) < f(b0, b1)
if a0 = a1 ∨ a0 + a1 < b0 + b1 ∨ (a0 + a1 = b0 + b1 ∧ a0 < b0). This gives the sequence f(0, 0),
f(1, 1), f(0, 1), f(1, 0), f(2, 2), f(0, 2), f(2, 0), f(2, 1), f(1, 2), f(3, 3) . . . . ◀

2.3 Cube
A cube is a prefix of a search path, and as such, it can be specified by a sequence of VA
clauses. Permutations and isomorphisms can be applied to a cube by applying them to
its VA clauses. Specifically, if π is a permutation on D and B is a cube, then π(B) :=
{f(π(a1), . . . , π(ak)) = π(v) | f(a1, . . . , ak) = v is a VA clause in B}. Observe that πid(B)
is the (unordered) set of all individual VA clauses in the cube B.

Note that predicates in an FOL formula can be implemented as functions with two values,
T (true) and F (false), which do not affect the LNH because they are not domain elements.
For convenience, we consider I(T ) = T and I(F ) = F for any isomorphism I so that the
same terminology is used for both relations and functions.

Cubes are said to be isomorphic if their VA clauses are isomorphic. In particular, two
cubes B0 and B1 are isomorphic if there is a permutation π on D such that π(B0) = πid(B1).

▶ Example 5. If B0 = ⟨f(0) = 0; g(0, 0) = 0; f(1) = 0; g(1, 1) = 0⟩ and B1 = ⟨f(0) =
1; g(0, 0) = 1; f(1) = 1; g(1, 1) = 1⟩, then B0 and B1 are isomorphic because π(0,1)(B0) =
{f(1) = 1, g(1, 1) = 1, f(0) = 1, g(0, 0) = 1} = πid(B1). ◀

3 Isomorphic Cubes Redundancy

The main objective of this section is to show that isomorphic cubes can be removed from
the search. More formally, if cubes B0 and B1 are isomorphic, then it is sufficient to explore
assignments extending B0 and ignore all assignments extending B1. We need to prove that
any model lost by discarding B1 must necessarily be isomorphic to some model obtained
from extending B0 under the LNH. This statement is intuitive, but the proof requires some
care as effectively, we are dealing with a combination of two symmetry-breaking techniques:
LNH and isomorphic cube pruning, under an arbitrary search strategy.

As a motivational example, consider the cube ⟨f(0, 0) = 0⟩, which states that f is
idempotent in 0. But because 0 does not appear in the original FOL formula, intuitively, the
constant 0 cannot play a special role in the formula. Consequently, this cube searches all
interpretations of f that have at least one idempotent. For instance, the cube ⟨f(1, 1) = 1⟩
will search the same interpretations, up to isomorphism. Now, we need to show this property
formally and that it holds when the solver searches with the LNH restriction.

The key idea of the proof is that given a model B1 with VA clauses A, any cube that is
isomorphic to a subset of A can be gradually extended to be a model isomorphic to B1. Each
extension step of the cube must uphold the following properties: (1) The cube is isomorphic
to some subset of A. (2) The cube is LNH-compliant. The extension step is illustrated
in Figure 1. We are given a cube B0 that is isomorphic to an A0 ⊆ A. When the finite
model finder decides on some empty cell t, we need to show that it is possible to find a
value according to the LNH such that the extended cube is isomorphic to some subset of A

containing A0.
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t0 = v0· · ·
tm = vm

t = ?

B0
A0 A \ A0

R

Figure 1 Extension of a cube according to the VA clauses A.

▶ Notation 1. For a mapping R from D to D and a value d ∈ D we write Ed
R for a mapping

that maps d to R(d) if d ∈ dom(R) and otherwise maps d to min(D \ rng(R)). We further
write Ed1,...,dk

R for successive extensions by d1, . . . , dk, i.e. Ed1,d2
R = Ed2

Ed1
R

etc. ◀

▶ Example 6. Suppose D = {1, 2, 3} and R : {1} → {2} s.t. R(1) = 2 and R−1(2) = 1
(so, R is a bijection). Then E2

R s.t. R(2) = E2
R(2) = 1 is a valid extension of R because

min(D \ {2}) = 1. Furthermore, E2,1
R s.t. E2,1

R (1) = 2 is a valid (but trivial) extension of
E2

R. ◀

▶ Lemma 7. If R is a bijection between some D0, D1 ⊆ D and d ∈ D then Ed
R is well-defined

and also a bijection.

Proof. If d ∈ D0, then Ed
R = R and there is nothing to proof. If d ∈ D \ D0, then by

definition, Ed
R = R ∪ {(d, p)} for some p ∈ D \ D1. Since R is a bijection from D0 to D1,

d /∈ dom(R), and p /∈ rng(R), so Ed
R is well-defined, one-one, and onto. That is, it is a

bijection. ◀

▶ Notation 2. B ⊕ ⟨t = u⟩ is the new cube formed by extending the cube B with the VA
clause t = u. ◀

The following lemma is the core of our proof. We have a cube B isomorphic to some
partial assignment A0 and now we need to prove that for any model A completing A0 and any
search strategy, we are able to extend B while observing the LNH. Then, the lemma is used
to prove that isomorphic cubes can be discarded by induction on cube length (Theorem 9).

▶ Lemma 8. Let B be an LNH-compliant cube and A a model s.t. B is isomorphic to some
A0 ⊆ A. Then for any cell term t not appearing in B, there exists a value u and a VA clause
t′ = u′ ∈ A \ A0, s.t. B ⊕ ⟨t = u⟩ is LNH-compliant and isomorphic to A0 ∪ {t′ = u′}.

Proof. Let R be an isomorphism mapping B to A0 and let t be a cell term f(a1, . . . , ak).
Define R1 as Ea1,...,ak

R , and let t′ denote the cell term f(R1(a1), . . . , R1(ak)), i.e., map the
cell that the solver searches on into a cell in the prescribed model A.

Since A is a model, there must exist a value u′ ∈ D with (t′ = u′) ∈ A, i.e. u′ can be
found by a lookup of t′ in A. Since t is not a cell term in B and R1 is a bijection, so t′ is not
a cell term in A0 and must therefore be in A \ A0. Thus, t′ = u′ is a VA clause in A \ A0.

To obtain u (a value for cell t), define R2 as Eu′

R−1
1

, i.e. map u′ back into the search by
extending the inverse. Then, set u = R2(u′). By Lemma 7, R2 is bijection and it is therefore
an isomorphism from A0 ∪ {t′ = u′} to B ⊕ ⟨t = u⟩. Finally, by definition of R2, u either
already appears in B or otherwise is the smallest domain element not in B. Therefore, the
extension of the cube B by the VA clause t = u is LNH-compliant. ◀

▶ Theorem 9. Suppose we are searching under the LNH with any cell selection strategy on
a signature Σ and a FOL formula, F , on Σ. If B0 and B1, of length l ≥ 0, are isomorphic
cubes, and if M1 is a model obtained by completing (not necessarily under the LNH) the
search path in B1, then B0 can be extended by a search path S under the said LNH and cell
selection strategy to a model M0 which is isomorphic to M1.
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Proof. We will use mathematical induction on the length of the extension, m, on S to prove
the theorem. Let A denote the VA clauses of M1, and A0 denote the VA clauses of B1.

Base case is trivial as B0 and B1 are given as isomorphic when m = 0.
Induction step: Suppose the search path S is extended m times, where m > 1, so that

Sm is LNH-compliant and isomorphic to a subset Am ⊆ A. Then by Lemma 8, Sm can be
extended by one VA clause with the cell term tm+1, chosen by the said cell selection strategy,
to Sm+1 which is LNH-compliant and isomorphic to Am+1 ⊆ A.

Note that a model finder may do propagations after a cell value assignment. That is,
some cell terms can be assigned values inferred from existing VA clauses. Propagations can
be viewed as part of the cell selection strategy and be handled the same way as regular cell
value assignments.

We can therefore conclude by mathematical induction that S can be extended to a
complete search path when all cell terms in F are filled with values such that S represents
the model M0, is LNH-compliant, and is isomorphic to As ⊆ A. Since M0 and M1 are of
the same size, so As and A must necessarily be of the same size and hence must be equal.
Therefore, M0 is isomorphic to M1. ◀

Theorem 9 shows that isomorphic cubes always extend to isomorphic models. So, one of the
isomorphic cubes may be discarded without losing any non-isomorphic model.

▶ Corollary 10. On searching under the LNH with any cell selection strategy on a signature
Σ and an FOL formula F on Σ, if M1 is a model in F , then there is a complete search path
S under the said LNH that results in a model M0 which is isomorphic to M1.

Corollary 10 proves the completeness of the LNH in that every model in any search is
isomorphic to some model found by searching under the LNH. An alternative proof of the
corollary is given in [50].

4 Searching with Cubes

Cubes can be constructed to partition the search space into non-overlapping subtrees that
can be processed in parallel. It is not necessary to search all the subtrees that originate
from the collection of cubes that span the entire search space because isomorphic cubes in
the same collection can be eliminated without losing non-isomorphic models. For example,
suppose we want to search for models of order 3 or more on a function f : D2 → D under
the LNH with a cell selection strategy that selects f(0, 0) then f(1, 1) as the first 2 cell terms
in the search process. There are at most 6 cubes of length 2 (listed below) under the said
LNH and cell selection strategy, so together they must span the whole search space in the
sense that every search path that starts with the cell terms f(0, 0) then f(1, 1) in the search
tree must include one of the 6 cubes in it.
1. ⟨f(0, 0) = 0; f(1, 1) = 0⟩.
2. ⟨f(0, 0) = 0; f(1, 1) = 1⟩.
3. ⟨f(0, 0) = 0; f(1, 1) = 2⟩.
4. ⟨f(0, 0) = 1; f(1, 1) = 0⟩.
5. ⟨f(0, 0) = 1; f(1, 1) = 1⟩.
6. ⟨f(0, 0) = 1; f(1, 1) = 2⟩.
Since π(0,1)(Cube 1) = {f(1, 1) = 1, f(0, 0) = 1} = πid(Cube 5), so Cubes 1 and 5 are
isomorphic and one of them can thus be discarded without losing non-isomorphic models per
Theorem 9. This example demonstrates the importance of keeping the LNH in the search –
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root

t0 = 0 t0 = 1

• • •

t0 = 2 t0 = n−1• • •

• • •
• • •

t1 = 0 t1 = 1 t1 = 2 t1 = 3 t1 = n−1

t1 = 0 t1 = 1 t1 = 2 t1 = 3 t1 = n−1

• • •

• • •

Note: t0 denotes f(0, 0) and t1 denotes f(1, 1). A dotted line with a cross is a branch
pruned by the LNH, except for the branch ending on the VA clause t1 = 1 (the shaded
node), which is pruned by the isomorphic cubes removal algorithm.

Figure 2 Partial Search Tree Showing Cubes of Length 2.

it cuts the search space from potentially n2 cubes down to 6. Theorem 9 allows us to further
cut the number of cubes down to 5 (see Figure 2 for illustration). More isomorphic cubes
can be removed with longer cubes (see Table 2).

The procedure of removing isomorphic cubes starts with generating a set of short cubes
(typically of length 2 for a binary operation) that spans the entire search space. The model
finder takes short cubes as inputs and runs with them as if they are generated by itself to
generate longer cubes of predefined length l. Specifically, the model finder runs as usual,
except that it emits the cubes of length l when the depth of the search tree reaches l. After
outputting the cube, the model finder backtracks as if it has reached the bottom of the search
tree, and runs on a new branch as usual until all cubes of length l are generated. Some
models may be generated in this process due to propagation, and they are kept as part of
the final outputs. Next, the cubes are compared for isomorphism and only one of any pair of
isomorphic cubes is kept. This new set of non-isomorphic cubes of length l will be used as
inputs to the model finder in the next round of generation of longer cubes. The process is
repeated until the desired length of cubes is reached.

For searching models defined by one operation of arity k, we use the sequence of lengths
l: k, 2k, 3k, 4k, . . . . This is to match the concentric cell selection strategy (see Example 4 for
its definition) of the finite model finder such as Mace4. We will discuss the best cube length
to use in Section 5.3.

Finally, non-isomorphic cubes of the target length can then be processed independently
in parallel and their output models collected separately.

4.1 Invariants

To speed up the isomorphic cubes removal process, the same invariant-based algorithm
described in [2] to remove isomorphic models can be applied to cubes. Invariants, such
as number of distinct domain elements, are properties that must be identical for cubes to
be isomorphic. For example, the cubes A = ⟨f(2, 2) = 2; f(2, 3) = 4⟩ and B = ⟨f(3, 3) =
2; f(1, 2) = 2⟩ cannot be isomorphic because A contains an idempotent 2 but B does not.
Powerful and inexpensive invariants for binary operations include:
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1. Number of y such that x = (x ∗ y) ∗ x.
2. Number of y such that y = x ∗ z for all z ∈ D.
3. Number of y such that y = z ∗ y for all z ∈ D.
4. Number of idempotents x (i.e. x ∗ x = x) for all x ∈ D.
5. Number of y such that y ∗ y = x for each x ∈ D.

First, invariant vectors (i.e. ordered lists of invariants) for cubes are calculated and used
as hash keys to group cubes having the same invariant vectors into hash buckets. Then, cubes
within the same bucket are tested for isomorphism. There is no need to test for isomorphism
across buckets because isomorphic cubes must have the same invariant vectors. This saves
tremendous amounts of testing time. Furthermore, buckets can be processed independently
and in parallel to further speed up the process.

4.2 Work Stealing
In the basic form of this cube-based parallel algorithm, cubes are statically generated before
the model enumeration process begins. It has the advantage of low runtime overheads as no
synchronization among running finite model finders is needed. The preprocessing time for
generating the cubes is also small for short to medium-length cubes. The disadvantage is
that the workload may be uneven among the parallel processes. Some jobs may take a long
time to finish when free workers sitting idle after finishing their jobs.

This problem can be solved with work stealing algorithms (also used in SAT [26]) in
which a busy finite model searcher releases cubes that are not currently being worked on.
For example, suppose a running model searcher is working on a cube B0 = ⟨f(0, 0) = 0⟩, and
its cell selection strategy picks the cell f(1, 1) to assign value next. Under the LNH, f(1, 1)
may be assigned a value from {0, 1, 2}. If the model searcher is requested to spin out some
work for other free workers, then it generates three cubes, B0 = ⟨f(0, 0) = 1; f(1, 1) = 0⟩,
B1 = ⟨f(0, 0) = 1; f(1, 1) = 1⟩, and B2 = ⟨f(0, 0) = 1; f(1, 1) = 2⟩. It continues to work on
the cube B0 and releases B1 and B2 to other free workers.

5 Experimental Results

We integrate the cube-based algorithms into the finite model enumerator Mace4, which sup-
ports searching on FOL with the LNH and many cell selection strategies [35]. Parallelization
is controlled outside Mace4. Only minor changes are made to Mace4 to
1. Accept cubes as inputs and continue searching for longer cubes or models from them.
2. Periodically check for signal for work stealing to spin off cubes for other workers.
The model searching logic in Mace4 remains intact. The concentric cell selection strategy
(see Example 4 for its definition) is used in the experiments. A separate program removes
isomorphic cubes by separating the cubes with equal invariants then check for isomorphisms
(two cubes are isomorphic if one can be transformed to the other by a permutation).

We run the experiments on an Intel® Xeon®Silver 4110 CPU 2.0 GHz ×32 computer,
with 64 GB of random access memory (RAM), using 30 parallel processes unless otherwise
stated. All times reported are wall clock times.

We pick many disparate and challenging problems from the MarcieX database [3], which
contains a collection of 158 most popular algebras. We also draw an example of semigroup
subvariety from [1]. The definitions of the algebras used in the experiments in this section
are listed in Table 1, in which all clauses are implicitly universally quantified.
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Table 1 Definitions of Algebras Used in Experiments.

Algebra FOL Definition

Semigroups x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Loops x ∗ y = x ∗ z → y = z. y ∗ x = z ∗ x → y = z. x ∗ 0 = x. 0 ∗ x = x.

var{N1
2 ∩ [x2 = y2]} x ∗ (y ∗ z) = (x ∗ y) ∗ z. (x ∗ x) ∗ x = x ∗ x. x ∗ y = y ∗ x. x ∗ x = y ∗ y.

Tarski Algebras (x ∗ y) ∗ y = (y ∗ x) ∗ x. x ∗ (y ∗ z) = y ∗ (x ∗ z). (x ∗ y) ∗ x = x.

Quasi-ordered Set x < y ∧ y < z → x < z. x < x.

Involutive Lattices (x ∗ y) ∗ z = x ∗ (y ∗ z). x ∗ y = y ∗ x. (x + y) + z = x + (y + z).
x + y = y + x. (x ∗ y) + x = x. (x + y) ∗ x = x.

−(x + y) = −x ∗ −y. − − x = x.

In the tables showing experimental results in this section, the rows with cube length 0
show the results of running Mace4 in a single thread without the cube-based algorithms.

Table 2 shows the results of applying Theorem 9 to remove isomorphic cubes for the
binary operation of the semigroups of order 7. Observe that the percentage reduction of
the number of cubes increases as the cube length increases. The isomorphic cubes removal
algorithm is therefore complementary to the LNH because the LNH removes a lot of short
cubes but loses its effectiveness as the length of the cubes grows.

Table 2 #Cubes for Semigroups of Order 7.

# Cubes

Cube
Length

w/o Removal of
Isomorphic Cubes

w/ Isomorphic
Cubes Removed

Reduction
(%)

2 6 5 16.7
4 34 28 17.6
9 1,568 888 43.4

16 56,206 12,036 78.2
25 1,028,171 59,056 94.3

We run Mace4 to enumerate semigroups defined by a single binary operation. The results
show a speedup of over 100 times when cubes of length 25 are used, with over 96% of the
isomorphic models suppressed (see Table 3). The results on semigroups are indicative of
the algorithm’s usefulness in general to the computational algebraists because algebraic
structures related to semigroups are ubiquitous in algebra. Not only are there many well-
known semigroup-related algebras, but also many semigroup varieties and subvarieties that
are of high research interests [1].

Table 4 shows the results for loops (a quasigroup-related class of algebra) defined by a
single non-associative binary operation. Here the reduction in the number of the output
isomorphic models is not as pronounced. This is expected because the LNH works very well
with the Latin square and removes a high percentage of the isomorphic models [48] before the
isomorphic cubes removal takes place. For example, while only 0.16% of semigroups of order
7 generated by the LNH are non-isomorphic, 8.7% (106,228,849 out of 1,216,226,816) of the
models generated for the loops of order 8 under the LNH are non-isomorphic. Nevertheless,
the parallel algorithm provides 15 times improvement in speed for cube length of 16.
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Table 5 shows the results of running the algorithms on the semigroup subvariety var{N1
2 ∩

[x2 = y2]} (see p. 40 of [1] for its definition and discussions). With longer cubes, the
algorithms speed up the process by 26 times with 30 threads. The results confirm that the
proposed algorithms work remarkably well with semigroup-related algebras.

The Tarski algebras are unlike both the semigroups and the quasigroups in that its
multiplication table is not associative and is not a Latin square [3]. It shows the cube-based
algorithms perform better and better as the length of the cube increases (see Table 6).

The quasi-ordered set is defined by one binary relation. The isomorphic cubes algorithms
work well on relations just as it works well on functions. As shown in Table 7, when cubes
of length 36 are used, over 99% of the isomorphic models are suppressed, and the search
process is sped up by over 200 times.

As an example to demonstrate the effectiveness of the algorithms on more complex
algebras, consider the Involutive Lattice [3], which is defined by two associative binary
operations and one unary operation. For Involutive Lattices of order 13, the search tree has
a maximum depth of 351. Using cubes of length of 105, we obtain a speedup of 300 times,
with almost 98% of the isomorphic cubes suppressed (see Table 8). The results show that
the isomorphic cubes algorithms are highly effective for both simple and complex algebras.

Table 3 Running Cubes on Semigroups of
Order 7.

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 1,021.1 235.2
2 5 717.7 0.0 12.5
4 28 611.1 0.1 9.4
9 888 360.2 0.1 5.2

16 12,036 158.2 0.2 2.8
25 59,056 39.5 0.9 1.7

Table 4 Running Cubes on Loops of Order
8.

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 1,216 564.0
2 1 1,216 0.0 47.4
4 2 1,216 0.1 47.3
9 18 1,216 0.1 46.2

16 3,583 1,214 0.1 45.3

Table 5 Running Cubes on var{N1
2 ∩ [x2 =

y2]} of Order 9.

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 313.0 72.0
2 1 156.5 0.0 2.9
4 1 156.5 0.1 2.8
9 2 156.5 0.1 2.8

16 5 120.9 0.1 2.3
25 16 55.5 0.2 1.3
36 70 13.0 0.3 0.8
49 331 1.5 1.0 1.1

Table 6 Running Cubes on Tarski Algeb-
ras of Order 13.

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 379.6 1,949.9
2 3 189.8 0.0 70.2
4 1 189.8 0.1 69.9
9 3 183.3 0.1 67.7

16 11 158.8 0.1 58.1
25 55 111.9 0.2 40.1
36 157 62.1 0.2 21.8
49 174 24.9 0.5 8.8
64 171 6.6 1.0 3.7
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Table 7 Running Cubes on Quasi-ordered
Set of Order 8.

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 642.8 59.9
2 1 642.8 0.0 4.2
4 3 474.6 0.1 3.2
9 9 209.5 0.1 1.7

16 33 61.3 0.1 0.8
25 139 12.6 0.2 0.3
36 713 2.0 0.3 0.3

Table 8 Running Cubes on Involutive Lat-
tices of Order 13.

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 423.0 4,719.7
3 2 423.0 0.0 432.5
6 3 423.0 0.1 432.8

10 6 263.9 0.1 270.0
21 23 178.6 0.1 180.9
36 108 84.9 0.2 88.3
55 555 46.0 0.3 46.2
78 1,710 19.8 0.5 20.6

105 5,048 8.7 4.9 14.3

The reductions in time and number of models (on top of the LNH) are summarized in
Figures 3 and 4. Note that the reduction in total time is over 90% even for short cubes.
However, the biggest gain in both reduction in time and in isomorphic models is when
longer cubes are used. Reduction in isomorphic models also helps tremendously in the post
processing step to extract non-isomorphic models.
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Figure 3 Reduction in Number of Output
Models.
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Figure 4 Reduction in Total Time with
30 Parallel Processes.

5.1 Speedup of Finite Model Enumeration with Parallelization
As discussed, the cubes algorithms allow low-cost parallelization of the finite model enumera-
tion process. Figure 5 and Table 9 show the performance of the parallel cubes algorithms with
1 to 16 parallel processes. Here, the reported times do not include isomorphic mode filtering;
they are for Mace4 to generate models only. Note that when many processes compete for
limited amount of RAM, swapping could slow down the processes substantially. This helps
to explain why larger algebras, such as the Involutive Lattice of order 13, have their curves
flattened out much faster than small algebras, such as the Semigroups of order 7. More
processes also mean more work-stealing and higher overheads.
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Table 9 Performance w/ Multiprocessing.

Time in seconds

Algebra Order Cube
Length

1
Process

2
Processes

4
Processes

8
Processes

16
Processes

Semigroups 7 25 6,626 3,397 1,757 940 425
Loops 7 16 202 108 50 35 21
Tarski algebras 13 64 1,766 973 552 273 250
var{N1

2 ∩ [x2 = y2]} 9 49 130 84 80 57 53
Quasi Ordered 8 36 123 77 51 37 25
Involutive Lattices 12 105 1,496 794 480 378 320
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Figure 5 Performance w/ Multiprocessing.

5.2 Isomorphic Cubes Removal Speeds up Isomorphic Models Filtering

As pointed out Section 1, reducing the number of Mace4 outputs also reduces the efforts
needed to filter out isomorphic models. Table 10 shows, using involutive lattices as an
example, the out-sized effect of the reduction of Mace4 outputs on the time to filter out the
isomorphic models using the invariant-based isomorphic model filtering algorithm [2], with
30 parallel processes. With the reduction in number of Mace4 models, the isomorphic model
filtering process is sped up by 2 orders of magnitude. The improvement in speed is observed
to be better with models of higher orders. We would also point out that the isomorphic
model filter generates the same non-isomorphic models with or without the cubes algorithms.

Table 10 Running Invariant-based Isomorphic Models Filter on Involutive Lattices.

w/o Cubes w/ Cubes

Order #Non-iso
Models

#Mace4
Output

Isomorphic Model
Filter Time (s)

Cube
Length

#Mace4
Output

Isomorphic Model
Filter Time (s)

9 122 72,470 29 78 3,670 1
10 389 575,463 496 105 13,789 4
11 906 4,771,035 28,424 105 97,680 135
12 3,047 43,851,030 N/A 105 971,416 2,802
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5.3 Optimal Cube Length

In general, the search process using longer cubes finishes earlier with fewer isomorphic models.
However, we observe that there are three limiting factors on the lengths of the cubes.

First, as the length of the cubes gets longer, more and more models are generated as a
result of propagations. This reduces the impact of removing isomorphic cubes because they
represent a progressively smaller proportion of the isomorphic models. It is observed that
when more than n − 2 symbols out of the n domain elements are used in the cell terms, the
number of (isomorphic) models will be substantial and extending the cube length does not
bring enough reduction in isomorphic models to justify the increase in processing time.

Second, the isomorphic cubes removal time grows quite fast as the length of the cube
grows. When the isomorphic cubes removal process takes more than a few minutes, further
lengthening of the cubes will result in prohibitive overheads in the search process.

Lastly, when the final number of cubes is more than tens of thousands, the overheads
in processing them becomes so high that the search becomes slower. This factor depends
heavily on the number of processors available. More processors mean more parallel processes
can be run without slowing down the whole search process.

One heuristic is to run cube generation until the number of cubes reaches some threshold
or the runtime exceeds some threshold, then switch to model generation. The thresholds are
system-dependent and can further be fine-tuned by experiments with algebras of interest.

6 Related Work

There is extensive research on paralyzing SAT solving, where the predominant approaches are
search space partitioning and portfolios, c.f. [33]. We find inspiration in the cube-and-conquer
approach proposed by Heule and colleagues [20–22], where the search space is partitioned
by a lookahead solver into (many) cubes and then each subspace is solved by a CDCL
SAT solver. In SAT, partitioning by a CDCL solver is nontrivial [32] and that is why the
lookahead solver is useful for this task. Nevertheless, the use of the lookahead solver is not
seen as an indispensable feature of the cube-and-conquer, as noted by Subercaseaux and
Heule [46]. In our approach, we have a tight control over the decisions of the solver and we
do not need a separate solver to perform the splitting. Additionally, we invest extra effort
into search space splitting by identifying symmetries in the cubes.

The adaptive prefix-assignment technique [25] is a symmetry reduction algorithm used
in SAT. The prefix is equivalent to a propositional cube, and the algorithm also tries to
eliminate isomorphic cubes. In our case, we exploit symmetries specific to FOL – LNH and
isomorphism at FOL level, which is absent in their algorithm (and in SAT in general).

Parallel algorithms can be characterized by how the search is done. There are two main
search methods: embarrassingly parallel search (EPS) and work stealing search [7, 10,26, 33,
41, 42]. In the former method, the task is decomposed into many sub-tasks that are queued
up to be processed by free worker threads/processes. In the latter method, when a worker
completes its task, it asks other workers for more work. The busy workers may split their
tasks into smaller sub-tasks and pass some of them to the free workers. The main focus of
this method is to keep all the CPUs running until all jobs are done, although for some cases,
the work stealing scheme can affect efficiency [10]. The EPS method is a natural choice for
the cube-based parallelization scheme because preprocessing can be performed to generate
numerous non-isomorphic cubes by splitting the search space. However, a work-stealing
procedure is essential in supplementing the EPS to balance uneven workloads [33].
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Parallel algorithms can also help select the best strategy in solving a problem with the
EPS method [39]. After a problem is decomposed into a large number of sub-tasks, a small
number (e.g., 1%) of these sub-tasks are run in parallel using different strategies of the same
solver or different solvers. The strategy that gives the best performance on the subset of
sub-tasks will be used to run all sub-tasks. The same idea is used in the invariant-based
isomorphic models removal algorithm [2]: it randomly generates a large number of invariants,
then applies them to a small percentage of models to pick the best performing random
invariants to apply to the whole set of models. This idea can be applied to the finite model
finders that support multiple cell selection strategies to pick the best function order and cell
selection strategy for any specific problem.

Finite model enumeration can be posed as a constraint programming (CP) task [27].
Some CP solvers, e.g., Minion [17] and Gecode [37], support parallelization [31]. In CP, the
search space can be partitioned by adding constraints to rule in and/or out partitions. Each
partition can be processed by a separate worker thread/process. Minion further implements
a work stealing search scheme that also partitions the search space dynamically by splitting
the existing constraint model after the search has started [15, 29]. However, to effectively
add symmetry-breaking constraints such as lex-leaders to a CP solver often requires deep
knowledge of the solver and the problem at hand (e.g., the semigroups in [15]) which may
not be available when mathematicians first define and study a new algebraic structure.

Moreover, to use traditional CP solvers for finite model enumerations, mathematicians
need to learn a new CP-specific language such as CHR [45] and Savile Row [38]. It is possible
to use a translator to translate between languages, but that adds uncertainties to the fidelity
and the optimality of the translated specifications. FOL remains one of the most popular
languages among mathematicians due to its simple and intuitive syntax. Moreover, a popular
automatic theorem prover, Prover9 [34], shares the same input language with Mace4. This
adds more than just convenience to the process, as it also reduces the chances of discrepancies
between Prover9 and Mace4 on the same problem.

A well-known issue with enumerating models defined with FOL are the isomorphic
models included in the outputs. This is an inherent symmetry property of FOL [40]. There is
extensive research on symmetry-breaking [4,11–13,28,40,43,47]. Although complete symmetry-
breaking is known to be computationally challenging [13,47], many useful algorithms, such
as the LNH and the XLNH [4,5], have emerged in partial symmetry-breaking. The LNH can
be considered a symmetry-breaking with interchangeable values in constraint satisfaction
problems (CSP) [19]. The XLNH is more restrictive as it only works on unary operations.
The LNH is implemented in many systems such as Falcon [50], SEM [51], FMSET [6], and
Mace4. The isomorphic cubes algorithm, which removes more cubes as the cube length
grows, complements the LNH.

Another important symmetry-breaking strategy is to steer the search engine away from the
fruitless exploration of sub-search space by adding symmetry-breaking input clauses [13, 47].
The cube-based parallel algorithms are compatible with algorithms of this kind of strategy
as long as they do not break the LNH.

Some finite model finders, such as SEMK [8] and SEMD [24], try to completely suppress
isomorphic models in the search process. However, these isomorph-free algorithms are not
easy to parallelize as global information is generated and consumed in many steps, requiring
high-cost synchronizations between cooperating workers, especially when they run on different
computers. The cube-based parallel algorithm, on the other hand, is an EPS method that
requires no synchronizations between workers. The static removal of isomorphic cubes done
in a preprocessing step is shown to be effective in suppressing isomorphic models even
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before the actual search begins. The augmented work stealing algorithm is not high in
synchronization costs because it does not involve communications between running jobs. The
remaining isomorphic models from the cube-based algorithms can be efficiently removed by
the invariant-based isomorphic model filtering algorithm as a postprocessing step.

Another algorithm, DSYM [4], exploits local symmetries by finding symmetries (synonym
to isomorphisms in their terminology) under invariant partial interpretations (which are
invariant cubes) and without parallelism. It also works with the LNH and XLNH. DSYM is
a predictive algorithm that works at the parent level and predicts which of its immediate
children will be isomorphic cubes. It can be seen as a special case of the isomorphic cube
algorithm because it removes isomorphic cubes having the same immediate parents, while
the isomorphic cube algorithm removes all isomorphic cubes, irrespective of their parents.
Nevertheless, for the cases that DSYM covers, it does so right before the cubes are generated,
while the isomorphic cube algorithm only detects the symmetries right after the cubes are
generated. A disadvantage of DSYM is that it is not clear how it can be effectively parallelized.
Furthermore, DSYM only detects symmetries under the same subtree. The isomorphic cubes
removal algorithm, on the other hand, detects both global and local symmetries the same
way, and hence detects and removes more symmetries than DSYM. Moreover, DSYM uses
only two invariants in testing isomorphism between cubes, while we use many invariants
that are proven successful in the invariant-based isomorphic model removal algorithm in
our isomorphic cubes removal process. Nevertheless, DSYM can be applied to the cube
generation process as well as the final model generation process. That is, the isomorphic
cube removal algorithm is compatible with DSYM, as with any other symmetry-breaking
algorithm that works with the LNH.

7 Conclusions and Future Work

In this paper, we introduce an efficient parallel algorithm together with a novel symmetry-
removal mechanism for enumerating finite models. The approach is inspired by the cube-and-
conquer paradigm, successfully used in SAT solving, which partitions the search space into
cubes and then massively paralyzes. In contrast, our approach applies symmetries specific to
finite model finding.

In conclusion, this paper fulfills an important unmet need for an efficient algorithm for
enumerating finite algebraic models in computational algebra by enhancing the existing
finite model enumeration process with the parallel cubes algorithm and the isomorphic cubes
removal algorithm that reduce both the runtime and the number of output isomorphic models.
These new algorithms are so scalable that they can be used on a laptop as well as on a cluster
of powerful computers, and they require minimal efforts to safely integrate into existing
finite model finders. Very importantly, these algorithms can be used as a black-box without
requiring the users to have any knowledge about the way they work.

Future research will focus on improving isomorphic cube removal, on best cell selection
strategy, and on predicting of optimal cube length.
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Abstract
It is well-known that variable ordering heuristics play a central role in solving efficiently Constraint
Satisfaction Problem (CSP) instances. From the early 80’s, and during more than two decades,
the dynamic variable ordering heuristic selecting the variable with the smallest domain was clearly
prevailing. Then, from the mid 2000’s, some adaptive heuristics have been introduced: their principle
is to collect some useful information during the search process in order to take better informed
decisions. Among those adaptive heuristics, wdeg/dom (and its variants) remains particularly robust.
In this paper, we introduce an original heuristic based on the midway processing of failing executions
of constraint propagation: this heuristic called pick/dom tracks the variables that are directly
involved in the process of constraint propagation, when ending with a conflict. The robustness
of this new heuristic is demonstrated from a large experimentation conducted with the constraint
solver ACE. Interestingly enough, one can observe some complementary between the early, midway
and late forms of processing of conflicts.
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1 Introduction

Backtrack search remains a classical approach for solving instances of the Constraint Satis-
faction Problem (CSP), and the related Constraint Optimization Problem (COP). It is based
on depth-first exploration, which is conducted by instantiating variables in sequence and
backtracking when dead-ends occur. For efficiently exploring the search space, a filtering
process is performed at each step of the search so as to reduce the domains of the variables;
typically most of the constraints guarantee the property known as (generalized) arc consist-
ency [5, 1, 26, 14]. The order in which variables are chosen during the depth-first traversal
of the search space is decided by a variable ordering heuristic H. At each internal node of
the search tree built by the backtrack search algorithm, the next variable x is selected by
H, and a value is assigned to x according to a value ordering heuristic. Choosing the right
heuristics for solving a given constraint network is a key issue since different heuristics can
lead to drastically different search trees.

In modern constraint solvers, three main principles are considered for guiding search (i.e.,
performing depth-first exploration):

First, one should start by assigning variables that belong to the most difficult part(s)
of the problem instance. This principle is derived from the recognition that there is no
point in traversing the easy part(s) of an instance and then backtracking repeatedly when
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9:2 Guiding Backtrack Search by Tracking Variables During Constraint Propagation

it turns out that the first choices are incompatible with the remaining difficult part(s).
Here the underlying fail-first principle is [13]: “To succeed, try first where you are most
likely to fail”.
Second, value selection should be based on the succeed-first or promise principle, which
comes from the simple observation that to find a solution quickly, it is better to move at
each step to the most promising subtree, primarily by selecting a value that is most likely
to participate in a solution.
Third, when starting to build the search tree, one should pay attention to the initial
variable/value choices that are particularly important. Indeed, bad choices near the root
of the search tree may turn out to be disastrous because they lead to exploration of
very large fruitless subtrees. To make good initial choices, one strategy is to select the
first branching decisions with special care, perhaps calling sophisticated and expensive
procedures for this purpose. Another relevant strategy is to restart search several times,
ideally learning some information each time in order to refine search guidance.

The current response (in solvers) to following these principles is as follows:
Generic adaptive variable ordering heuristics that learn from conflicts during exploration
are usually employed; a classical such heuristic being wdeg/dom [3], possibly combined
with a mechanism, called last-conflict reasoning (lc) simulating a certain form of intelligent
backjumps [18].
Promising attempts to select values (or pairs variable-value) according to some elegant
mechanisms such as Belief Propagation [23] have been introduced, but, unfortunately,
we are not aware of any generic robust value ordering heuristic. One exception may be
BIVS (Bound-Impact Value Selector) [8], but controlling its computation cost remains
a difficult question. Consequently, it is rather frequent that the first (smallest) value
be the default choice. Interestingly, for optimization, it is highly recommended to use
in priority the value present in the last found solution, which is a technique known as
solution(-based phase) saving [27, 7], clearly in concordance with the promise principle
(as initially mentioned in [6, 10]).
To address the issue of heavy-tailed runtime distributions [11], the search is restarted
regularly, following a geometric progression (or the Luby sequence). Besides, by collecting
nogoods [17] along the leftmost branch of the search tree at the end of each run (i.e.,
just before restarting), we have the guarantee of never exploring again the same parts of
the search space (which is a nice feature when exhibiting all distinct solutions of a CSP
instance).

This is the context of our contribution. More specifically, we focus our interest on the
first crucial component: variable ordering heuristics. Indeed, in this paper, we introduce
an original heuristic called pick/dom that learns from conflicts by identifying the variables
that are directly involved in the process of constraint propagation (when failing). We show
how to implement it in the variable-oriented propagation scheme. The robustness of this
new heuristic is demonstrated by conducting a large experimentation with the well-known
constraint solver ACE [15].

2 Preliminaries

A Constraint Network (CN) is composed of a finite set of n variables X , and a finite set of e

constraints C. Each variable x must be assigned a value from its current domain, denoted by
dom(x). Each constraint c represents a mathematical relation over an ordered set of variables,
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called the scope of c, and denoted by scp(c). The arity of a constraint c is the size of its
scope. The degree of a variable x is the number of constraints of C involving x. A solution to
a CN P = (X , C) is the assignment of a value to each variable of X such that all constraints
of C are satisfied. A constraint network is satisfiable iff it admits at least one solution. The
Constraint Satisfaction Problem (CSP) is to determine whether a given constraint network is
satisfiable, or not. A classical approach for solving this NP-complete problem is to perform
a depth-first search with backtracking, while filtering domains after each taken decision.
This procedure builds a binary search tree T : for each internal node ν of T , a pair (x, v) is
selected where x is a variable and v is a value in dom(x). Then, two cases are considered:
the assignment x = v (positive decision) and the refutation x ̸= v (negative decision). The
future variables of a constraint c, denoted by fut(c), are the variables in scp(c) at a given
node of the search tree that have not been explicitly assigned by the search algorithm.

When an objective function (integer or real-valued function defined on a subset of
variables of X ) is added to the constraint network, we obtain an instance of the Constraint
Optimization Problem (COP). Backtrack search for COP relies on an optimization strategy
based on decreasingly updating the maximal bound (assuming minimization) whenever a
solution is found; this is a kind of ramp-down strategy (related to Branch and Bound), whose
principle is equivalent (still assuming a minimization problem) to adding a special objective
constraint obj <∞ to the constraint network (although it is initially trivially satisfied), and
to update the limit of this constraint whenever a new solution is found.

3 Variable Ordering Heuristics

We provide in this section a quick overview of popular general-purpose search heuristics. The
simple variable ordering heuristic dom [13], which selects variables in sequence of increasing
size of domain, has long been considered as the most robust backtrack search heuristic.
However, twenty years ago, adaptive heuristics were introduced: they take into account
information collected along the part of the search space (tree) already explored.

In this paper, we shall mainly focus our attention to the popular adaptive heuristics
based on constraint weighting (wdeg, wdeg/dom, cacd, chs), and failure rating (frba/dom).
We will also refer to impact, activity and counting-based heuristics, which are defined as
follows:

impact, or ibs (Impact-Based Search), selects in priority the variable with the highest
impact. The impact of a variable x gives a measure about the importance of x in reducing
the search space [25]. The size of the search space of a CN P is the product of all current
domain sizes:

size(P ) =
∏
x∈X
|dom(x)|

The impact I of a variable assignment x = a on P is computed as follows:
I(x = a) = 1− size(P ′)

size(P )
where P ′ = ϕ(P |x=a) denotes the CN obtained after assigning x to a and running the
filtering process ϕ (e.g., enforcing arc consistency). Note that if P ′ leads to a failure, then
I(x = a) = 1. It is easy to see that this heuristic can be used for value selection as well.
activity, or abs (Activity-Based Search), selects in priority the variable with the highest
activity. The activity of a variable x is roughly measured by the number of times the
domain of x is reduced during search [22]. This heuristic is motivated by the key role of
propagation in constraint programming and relies on a decaying sum to forget the oldest
statistics progressively. More formally, the activity A(x) of a variable x is updated at
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each (new) node of the search tree (after a decision has been taken by the solver followed
by constraint propagation) regardless of the outcome (success or failure) by the following
two rules:

A(x) = A(x) ∗ γ, where 0 ≤ γ ≤ 1 is an age decay parameter, if the domain of x has
not been affected (i.e., has not been reduced)
A(x) = A(x) + 1 otherwise

The activities are initialized by making random probing in the search space.
Counting-based search relies on computing the solution density of each variable-value
assignment for a constraint in order to build an integrated variable-selection and value-
selection heuristic [24]. Depending on the constraints, computing such information can
carry a high computational cost although some mechanisms have been proposed to
accelerate it [9].

Now, to introduce wdeg and wdeg/dom, we need to describe the way constraint propagation
is run each time a decision is taken by the backtrack search algorithm. Algorithm 1 describes
the constraint-oriented propagation scheme, which uses of a set of constraints for piloting
propagation. This simplifies the presentation here, whereas later, we will introduce the
new heuristic pick/dom in the context of the variable-oriented scheme. Initially, the set Q

contains the whole set of constraints of the constraint network. Then, each constraint c in
Q is picked in turn and a filtering process is applied from c: typically, this is for enforcing
arc-consistency (or a partial form) by calling filter(c) at Line 4. The call to this function
returns a subset of variables involved in c, denoted by X, whose domains have been modified
(i.e., such that at least one value has been removed from each of these domains). By means
of X, we can update Q so as to ensure constraint propagation is run until a fixed point is
reached. If ever the domain of one variable of X is empty, it simply means that a conflict
occurred (a dead-end has been identified) and so, a backtrack is required. This is triggered
by the returned Boolean value false, after having called the function incrementWeight
with the culprit constraint (responsible for the domain wipeout) passed as a parameter. In
the initial paper [3], the principle of constraint weighing is very simple: the weight of the
culprit constraint c is incremented by 1.

Algorithm 1 propagate((X , C): CN): Boolean.

1 Q← C
2 while Q ̸= ∅ do
3 pick and delete c from Q

4 X ← filter(c) // X are variables in scp(c) with reduced domains
5 if ∃x ∈ X | dom(x) = ∅ then
6 incrementWeight(c)
7 return false // detected inconsistency

8 foreach c′ ∈ C | c′ ̸= c ∧X ∩ scp(c′) ̸= ∅ do
9 Q← Q ∪ {c′}

10 return true

To summarize, each constraint c admits a weight, initially set to 1, which is incremented
whenever a domain wipeout occurs while filtering c. Importantly, it was observed experi-
mentally that it was more effective to consider only the future variables involved in a culprit
constraint. Technically, instead of associating a global weight c.weight with each constraint
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c, one can introduce a local weight c.weight[x] to be associated with each variable x in
scp(c). Hence, when a conflict occurs, instead of incrementing the weight c.weight of the
culprit constraint, one can decide to increment the local weight c.weight[x] of each future
variable involved in scp(c).

The heuristics wdeg and wdeg/dom are defined as follows:
wdeg selects in priority the future variable with the highest “weighted degree”. Each
variable x is given a weighted degree, which is the sum of the weights over all constraints
involving x and at least another future variable. For each future variable x, the score of
x according to wdeg is:∑

c∈C : x∈scp(c)∧|fut(c)|>1

c.weight[x]

wdeg/dom selects in priority the future variable with the highest ratio “weighted degree to
current domain size”. For each future variable x, the score of x according to wdeg/dom is:∑

c∈C : x∈scp(c)∧|fut(c)|>1 c.weight[x]
|dom(x)|

In classical forms of wdeg and wdeg/dom, counters are incremented by 1., which remains
very simplistic and does not differentiate between constraints. This is why constraint
weighting, in the so-called variant cacd [28], has been refined by exploiting as information
both the “current arity” of the culprit constraint (i.e., the number of future variables) and
the size of the current domains of the future variables. The increment values computed for
the classical and cacd variants are precisely shown in Algorithm 2.

Algorithm 2 incrementWeight(c: Constraint).

1 foreach x ∈ fut(c) do
2 if variant cacd then
3 c.weights[x]← c.weights[x] + 1

|fut(c)|×(1+|dom(x)|)
4 else
5 c.weights[x]← c.weights[x] + 1

Note that to break ties, which correspond to sets of variables that are considered as
equivalent by the heuristic, one can use a second criterion. However, for adaptive heuristics,
it is usual that the first encountered variable with the best score is selected.

Finally, we introduce two recent heuristics: the former, chs [12], exploits the history of
search failures, while the latter, frba/dom [20], computes the proportion of failing assignments
for each variable.

chs (Conflict-History Search), selects in priority variables appearing in recent failures.
All failures are registered with a timestamp. More precisely, chs maintains for each
constraint c, a score q(c) and updates it at every domain wipeout with an exponential
recency weighted average:

q(c) = (1− α)× q(c) + α× r(c)

where α = 0.4 (decreasing as time goes by) and r(c) is the reward given when a domain
wipeout occurred. The reward is higher when the constraint frequently enters in conflict:

r(c) = 1
#Conflicts− Conflict(c) + 1
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where #Conflicts is the total number of conflicts and Conflict(c) stores the last value
of #Conflicts when c led to a failure. The conflict history score of a variable x which
will be used in selecting the branching variable is given by:

∑
c∈C : x∈scp(c)∧|fut(c)|>1 q(c) + δ

|dom(x)|

where δ is a positive real number close to 0 that avoids random selection at the beginning
of search.
frba/dom (Failure Rate Based Search), selects in priority the variables that most often lead
to a conflict when assigning them. For this purpose, two counters are associated with each
variable x: the former, #Conflicts(x), records the number of times a failure has been
observed just by propagating an assignment involving x, and the latter, #Assigns(x),
the number of times the variable x was assigned. The failure rate of a variable x is then:

fr(x) = #Conflicts(x)
#Assigns(x)

In addition, similarly to the factor used for chs, we compute:

a(x) = 1
#Conflicts− Conflict(x) + 1

where #Conflicts is the total number of conflicts and Conflict(x) stores the last value
of #Conflicts when x being assigned led to a failure.
The failure rate score of a variable x by frba/dom is then:

fr(x) + a(x)
|dom(x)|

4 Variable Tracking in Conflicting Propagation

In this section, we introduce the principle of Variable Tracking in Conflicting Propagation
(VTCP). More specifically, we introduce a new variable ordering heuristic called pick/dom,
whose principle is to track the variables that are used to trigger filtering operations during
constraint propagation. However, it is important to note that this tracking is only used to
update counters (called “pick degrees”) associated with variables when constraint propagation
ends with a conflict. We show how to implement such variable tracking within the variable-
oriented propagation scheme.

To record information about tracked variables, we just need to associate a counter pick[x]
with each variable x of the CN. Initially, this counter (“pick degree”) is set to 0. According
to the selected mode (see below) used to update these counters, recorded values may be in
real or integer forms. The heuristic pick/dom is simply defined as follows:

pick/dom selects in priority the future variable with the highest ratio “pick degree to
current domain size”. For each future variable x, the score of x according to pick/dom is:

pick[x]
|dom(x)|

In the rest of this section, we show how pick degrees are computed.
In ACE, constraint propagation follows the variable-oriented scheme (as initially intro-

duced in [21]): the set Q contains variables. The principle is that whenever a value is removed
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from the domain of a variable x, this variable is added to Q. In a first step, by ignoring
any statement related to L and ∆x, we can rather easily recognize the variable-oriented
propagation scheme in Algorithm 3: as long as there is a variable in Q, one of them, x is
picked, and we execute the filtering algorithms (propagators) attached to all constraints
involving x, while updating Q when necessary.

Algorithm 3 propagate((X , C): CN): Boolean.

1 L = ⟨⟩
2 Q← X
3 while Q ̸= ∅ do
4 pick and delete x from Q

5 ∆x ← 0
6 for c ∈ C | x ∈ scp(c) do
7 X ← filter(c, ∆x) // ∆x is updated during call
8 if ∃y ∈ X | dom(y) = ∅ then
9 append (x, ∆x) to L

10 incrementPick(L)
11 return false // detected inconsistency

12 Q← Q ∪X

13 if ∆x > 0 then
14 append (x, ∆x) to L

15 return true

Algorithm 4 incrementPick(L: Sequence).

1 foreach i ranging from 1 to |L| do
2 (xi, ∆xi)← L[i]
3 switch VARIANT do
4 case 0 do
5 increment← 1
6 case 1 do
7 increment← ∆xi

8 case 2 do
9 increment← 100× ∆xi

Σ|L|
j=1∆xj

10 case 3 do
11 increment← n−depth

n × 100× ∆xi

Σ|L|
j=1∆xj

12 pick[xi]← pick[xi] + increment

Now, let us consider first the structure L, which is a list, initially empty, keeping track of
any variable x that plays a role (i.e., triggers some effective filtering) during propagation,
together with an information indicating the degree ∆x of this role. Notice that, since L is
a list, the same variable may occur several times. Concerning the local variable ∆x, it is
initialized to 0 in Line 5. When the loop starting at Line 6 ends, ∆x indicates how many
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9:8 Guiding Backtrack Search by Tracking Variables During Constraint Propagation

values have been deleted from the domain of x in the different calls to Function filter at
Line 7. In practice, it is possible to handle ∆x in a non-intrusive way by introducing a global
variable whose value is incremented whenever a value is deleted (whatever the domain is). If
at Line 13, the value of ∆x is 0, it means that no filtering/reduction was performed at all
since the time x was picked. This is then a useless “pick”, which is the reason why we do
not update the structure L at Line 14. Importantly, the list L is only exploited if Algorithm
3 returns false (because a conflict is detected). Before returning false, the last picked
variable is added to L (because we have the guarantee of some filtering) and the function
incrementPick is called in order to update some picked degrees.

The way picked degrees are updated is shown in Algorithm 4. Four modes (denoted by
values ranging from 0 to 3) are possible. In mode 0, the picked degree of any occurrence
of a variable present in L is incremented by 1. In mode 1, the increment is given by ∆x,
the impact of x after having been picked. In mode 2, each time constraint propagation is
run, 100 points are shared according to the relative impacts of the variables present in L. In
mode 3, a coefficient is applied to 100, depending on the current depth of the solver. As a
first extreme case, the current depth is 0, which means that we are at the root node, and so,
100 points are spread. As a second extreme case, the current depth is n, meaning that we
are a leaf, and 0 point is shared. The rationale is that we give more importance to nodes
near the top of the search tree.

5 Experimental Results

In our experiments, we have compared general-purpose variable ordering heuristics based
on constraint weighting, failure rating and variable tracking during conflicting propagation,
with the constraint solver ACE [15]. More specifically, we have compared the four variants of
pick/dom with wdeg-cacd [28], wdeg/dom [3] and chs [12], as well as the recently introduced
frba/dom. From now on, for simplicity, pick/dom, wdeg-cacd and frba/dom will be referred
as pick (while appending the mode in subscript text), cacd and frba, respectively. Note
that ibs and abs are not retained in our experiments because they are usually outperformed
when used in ACE. Concerning the value ordering heuristic, it systematically chooses the
smallest value in domains.

We have considered two benchmarks, denoted by xcsp-csp and xcsp-cop, which are
respectively composed of all CSP and COP instances selected for the main tracks of the
XCSP3 competitions (In 2019, instances were randomly selected from existing series, and
there were no competitions held in 2020 and 2021) organized in 2017, 2018 [16] and 2022
[2] (most of them generated by the Python library PyCSP3 [19]). They correspond to two
full sets of 942 and 1, 034 instances in format XCSP3 [4], for exactly 77 and 50 problems,
respectively. A time limit of 1, 200 seconds was given per instance.

Ranking. Results will be partly analyzed from the scoring function used for the 2022 XCSP3

competition. For self-containedness, we recall it now. The number of points won by a solver
S is decided as follows:

for CSP, this is the number of times S is able to solve an instance, i.e., to decide the
satisfiability of an instance (either exhibiting a solution, or indicating that the instance is
unsatisfiable)
for COP, this is, roughly speaking, the number of times S gives the best known result,
compared to its competitors. More specifically, for each instance I:
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if I is unsatisfiable, 1 point is won by S if S indicates that the instance I is unsatisfiable,
0 otherwise,
if S provides a solution whose bound is less good than another one (found by another
competing solver), 0 point is won by S,
if S provides an optimal solution, while indicating that it is indeed the optimality, 1
point is won by S,
if S provides (a solution with) the best found bound among all competitors, this
being possibly shared by some other solver(s), while indicating no information about
optimality: 1 point is won by S if no other solver proved that this bound was optimal,
0.5 otherwise.

5.1 Global Overview of Results

We start this experimental section with a global overview of the obtained results. The scores
of tested heuristics on xcsp-csp and xcsp-cop are given in Table 1 and Table 2. First, let
us make some comments on CSP. Here, the default version of ACE is the best one (cacd).
The heuristics are relatively close, and the differences mainly come from the number of
(solved) SAT instances. On our benchmark, the heuristic frba appears to be the worst one.
Concerning the pick variants, they are quite close, even if pick3 is the one that is most
often the fastest heuristic.

Table 1 Ranking on xcsp-csp. For each heuristic, we report the number of SAT/UNSAT
instances, the total number of solved instances and the number of times a heuristic is the fastest for
solving an instance. We also report the result for the virtual best solver/heuristic (VBS).

Heuristic Solved SAT UNSAT Fastest

VBS 676 481 195 676

cacd 646 457 189 411
chs 636 449 187 390
pick3 632 441 189 442
pick0 631 442 188 439
pick1 630 441 189 427
wdeg/dom 626 442 183 377
pick2 625 437 188 434
frba 618 431 187 391

For COP, all pick variants are the most efficient heuristics: indeed, the gap with the other
heuristics is significant. The variant pick3 is the best one in terms of the number of proved
optima and the number of found best bounds. The heuristics based on constraint weighting
got quite similar results, and even if the heuristic frba appears to be also outperformed, it
is important to report that this heuristic is very good in proving optima.

In order to provide a deeper analysis of the results of our experiments, we propose, in the
next section, to focus only on the following three heuristics:

cacd as a robust representative of the heuristics based on constraint weighting. The
results of cacd, wdeg/dom and chs are quite similar on COP but cacd appears to be the
most efficient heuristic on CSP. In addition, this is the default search strategy of ACE.
frba as a recent proposed heuristic based on failure rating.
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9:10 Guiding Backtrack Search by Tracking Variables During Constraint Propagation

Table 2 Ranking on xcsp-cop. For each heuristic, we report the number of proved optima, the
number of times the best bound has been found and the score as computed for the 2022 XCSP3

competition. We also report the results for the virtual best solver/heuristic (VBS).

Heuristic Score Optimum Best Bound

VBS 959.00 372 956

pick3 624.50 347 627
pick2 618.00 343 621
pick1 617.50 336 621
pick0 612.50 341 617
wdeg/dom 569.50 312 583
cacd 557.50 315 570
frba 557.00 341 560
chs 554.50 324 563

pick3 as the best variant of variable tracking in conflict propagation. Actually, it is the
best heuristic on COP, able to find, most often, best bounds and also to prove them. On
CSP, it is also the most efficient variant of VTCP and the fastest one.

5.2 Comparing Best Heuristics
In this section, we compare the three selected heuristics, namely, cacd, frba and pick3. We
start this comparison on the xcsp-csp benchmark with Figure 1, which shows some classical
scatter plots (permitting to compare two algorithms with rather good precision).
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Figure 1 Scatter plots for CSP instances. Each dot represents an instance: its value on the x-axis
(resp. y-axis) represents the time needed by the heuristic labelling the x-axis (resp. y-axis) to solve
it. Blue (resp. Orange) dots corresponds to SAT (resp. UNSAT) instances. The dots below the
diagonal represent then the instances where the y-axis heuristic is faster than the x-axis one.

Here, it is clear that frba is less efficient than cacd and pick3. Even if cacd is the best
heuristic on CSP (see Table 1), notably on the hardest instances, an instance-by-instance
comparison between cacd and pick3 looks less obvious, as the dots are uniformly distributed
over both parts separated by the diagonal.

As an alternative for visualizing these results, a Venn diagram is depicted in Figure 4a.
In such a diagram, each circle represents the instances solved by a heuristic. An overlapping
region represents a set of instances solved in an equivalent manner by two heuristics, or



G. Audemard, C. Lecoutre, and C. Prud’homme 9:11

three in the case of the central region. For CSP, two heuristics are equivalent if they require
the same amount of time (with a tolerance of one second) to find the same result (SAT or
UNSAT). A region with no overlap emphasizes the instances that are better solved by a
single heuristic. Here, the ranking is clear: pick3 is the winner, followed by cacd and finally
frba. To summarize the results for CSP: although cacd is the most robust heuristic when
considering the number of solved instance (with a timeout set to 1, 200 seconds), pick3 is
usually the fastest heuristic.

Next, we consider the xcsp-cop benchmark. A first analysis can be made from the scatter
plots in Figure 2. Each plot is based only on the instances whose optimality has been proved
by at least one of the two compared heuristics. On the one hand, one can see in Figure 2a
and Figure 2b that frba and pick3 are better at proving optimality than cacd. On the
other hand, Figure 2c does not show any dominance between frba and pick3.
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Figure 2 Scatter plots for COP instances. Each dot represents an instance: its value on the
x-axis (resp. y-axis) represents the time needed by the heuristic labelling the x-axis (resp. y-axis)
to prove its optimum. The dots below the diagonal represent then the instances where the y-axis
heuristic is faster than the x-axis one.

(a) cacd vs frba. (b) cacd vs pick3. (c) frba vs pick3.

Figure 3 Plots for COP Instances. Above each figure, the number of instances (partially) solved
by at least one of the two heuristics as well as the total number of instances is indicated. When a
heuristic is better than the other, this contributes to its area, representing the difference in resolution
time. The vol. value indicates the volume of this surface, the perc. value indicates the ratio of the
volume to the sum of the two volumes. The difference between two heuristics takes into account the
best bounds found and possibly the proof of optimality.

Figure 3 allows a complementary analysis. Each graphics shows a pairwise comparison
with two areas. When a heuristic is better than the other, the difference in solving time is
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computed. An heuristic a is better than a heuristic b if it proves optimality whereas b does
not, or if it finds a better bound than b, or, finally, if they find the same bound and it is
faster than b. In the two first cases, the resolution time of b is set to the time limit, namely
1, 200. Each computed time difference contributes to the area of the best heuristic. Hence, a
larger area means that the attached heuristic offers better performances than the other one.
Each area is annotated with vol. and perc. which respectively denote the volume of the area
and the ratio, in percentage, of the volume to the sum of the two volumes. Finally, strictly
equivalent instances are indicated between the 2 vertical bars. In Figure 3a, one can observe
that cacd is slightly more robust than frba. Interestingly, in Figure 3b and Figure 3c, the
competitiveness of pick3 is clearly visible: the area of pick3 is almost twice as large as that
of cacd or frba.

(a) Venn Diagram on CSP Instances. (b) Venn Diagram on COP Instances.

Figure 4 Venn diagrams for cacd, frba and pick3 on CSP and COP instances. Each circle
represents the instances solved by a heuristic. An overlapping region represents a set of instances
solved in an equivalent manner by two heuristics, or three in the case of the central region. Two
heuristics are considered as being equivalent if they found the same result in the same amount of
time. For CSP, this is the time for proving (un)satisfiability. For COP, this is for getting the best
bound or proving optimality. A region not overlapped emphasizes the instances that are better
solved by a single heuristic.

These results are confirmed by the Venn diagram in Figure 4b. The circles, and especially
the one for pick3, stand out from the centre. This Venn diagram also suggests that each
heuristic would be more suitable for certain problems. This is confirmed in Table 3. First,
frba performs particularly well on five problems, namely Cutstock, DC, ItemsetMining
OpenStacks and TravelingSalesman. Indeed, it is able to close more instances and provides
better bounds than cacd and pick3. In turn, cacd behaves better on six problems: Cyc-
licBandwith, Ramsey, StillLife and Taillard, and to a lesser extent PseudoBoolean and
QueenAttacking. As for pick3, the set of problems where it dominates is clearly larger:
Auction, BinPacking, ChessBoardColoration, CoinsGrid, EchelonStock2, FAPP, GraphColor-
ing, MultiAgentPathFinding, NurseRostering, OPD, QuadraticAssignment, RCPSP, RLFAP,
Spot, SteelMillSlab, SumColoring TAL, TravelingTournament, Triangular and Warehouse.
This is just under half of the problems. For some problems the gap is quite large, namely
BinPacking, FAPP or RCPSP.

Finally, we show in Table 4 some details for some chosen (representative and singular)
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instances of some problems. This may be helpful for testing and reproducing the results we
have obtained.

Table 3 Details per problem (COP). For each problem, the number of instances is displayed, and
for each heuristic, the couple ’number of proved optima : number of best bounds found’ is provided.
Best results are highlighted (when at least one heuristic is outperformed by the other(s)).

Problem cacd frba pick3 Problem cacd frba pick3

AirCraft (13) 4:10 5:6 4:10 NursingWork (12) 1:2 1:4 1:4
Auction (16) 2:6 2:4 2:14 OPD (17) 8:9 9:14 9:15
BACP (24) 4:24 4:24 4:24 OpenStacks (16) 12:16 14:16 12:16
BinPacking (51) 1:17 0:25 2:33 PeacableA (14) 4:9 4:9 4:8
BusScheduling (10) 1:5 1:5 1:8 PizzaVoucher (10) 4:7 6:8 5:10
CVRP (10) 0:2 0:2 0:8 PseudoB (30) 13:23 13:18 13:22
ChessBoard (17) 3:13 2:13 3:14 Quadratic (36) 6:26 6:14 6:27
ClockTriplet (10) 2:9 2:6 2:9 QueenAtt (17) 7:11 5:3 8:6
CoinsGrid (10) 2:7 2:4 3:9 Rack (4) 2:4 3:4 3:4
CrosswordDes (13) 3:5 3:3 3:5 Ramsey (17) 5:17 4:16 5:14
CutStock (17) 6:9 8:9 7:9 RCPSP (43) 31:34 34:35 35:43
CyclicBand (12) 4:9 2:3 2:6 RLFAP (50) 10:22 12:32 12:48
DC (26) 7:14 10:25 12:18 Spot (10) 2:7 2:6 2:8
EchelonStock2 (10) 0:9 0:7 0:10 SteelMill (17) 2:2 2:2 2:7
FAPP (18) 2:2 2:7 3:13 StillLife (47) 15:46 14:21 13:29
FastFood (17) 17:17 17:17 17:17 SumColoring (14) 4:8 4:7 4:10
Filters (8) 8:8 8:8 8:8 Taillard (51) 5:17 5:6 5:13
GolombRuler (47) 19:31 18:27 18:35 TAL (20) 9:16 10:15 10:18
GraphCol (28) 14:24 15:23 17:24 TemplateDes (15) 12:13 12:13 11:12
ItemsetMining (15) 3:10 7:12 6:10 TravelingTour (14) 2:7 2:2 2:10
Knapsack (31) 22:31 26:31 26:31 TravelingSale (29) 3:16 3:17 3:15
LowAuto (31) 12:21 12:23 14:19 Triangular (10) 0:3 1:5 1:9
Mario (10) 10:10 10:10 10:10 VRP (17) 0:9 0:1 0:9
MultiAgentP (20) 4:6 8:9 9:17 WarOrPeace (10) 6:10 6:10 6:10
NurseRost (41) 2:16 3:3 3:29 WareHouse (9) 0:3 0:0 0:9

6 Discussion

The three different ways of exploiting conflicts for guiding search, as experimented in the
last section, show somewhat complementary behaviors. This can be explained by the fact
that information is extracted at different moments: at the very beginning of the process
conducting to a conflict (i.e., at the time of the decision), during constraint propagation,
or at the time the last propagator (filtering algorithm) is solicited. One can then refer to
such approaches as early (E), midway (M) and late (L) operational treatment of conflicts.
This is illustrated in Figure 5 where a new decision x = a is taken, when solving a CN P , in
the continuity of two previously taken decisions v = a and w ̸= b. In our scenario, running
constraint propagation ϕ on (the current state of) P after having assigned the value a to
x, i.e., ϕ(P |x = a), reveals a new conflicting (dead-end) situation (denoted by ⊥). The
early processing of this new conflict consists in considering the variable x involved in the
decision as the main culprit. This is the principle behind the heuristic frba/dom. The
midway processing of this conflict consists in considering all variables having played a role
(i.e., having been picked) during propagation as having contributed to the failure. This is
the principle underlying the heuristic pick/dom. The late processing of this conflict consists
in considering the last constraint (here, c2

w) provoking a domain-wipeout (i.e., removing the
last value of a domain) as the object of interest. This is the principle of constraint weighting,
as in wdeg/dom.

One related heuristic, which is based on some form of midway strategy, is abs. However,
VTCP and abs collect information according to different strategies. abs updates activity
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Figure 5 Illustration of pivotal moments for collecting information about conflicts: this correspond
to early (E), midway (M) and late (L) processing of conflicts.

counters at each node, whereas VTCP only considers conflicting nodes. abs systematically
updates the activity counters of each variable, whereas VTCP only increments the counters
of variables at the origin of calls to effective propagators.

Importantly, we do believe that the experimental results we have obtained are significant,
for several reasons. First, they can be reproduced in an open-source constraint solver (with
a repository available in GitHub). Second, the number of models and instances used for
our experiments is very large, involving more than 120 problems of various nature. Third,
ACE is a competitive constraint solver and (although not officially engaged) showed good
performances in (notably the COP main track) of the 2022 XCSP3 competition.

Finally, it is true that the importance of variable tracking in conflicting propagation looks
more limited when solving CSP instances. Actually, solving a (satisfiable) CSP instance
involves one single phase: finding a solution, whereas solving a COP instance involves two
subsequent phases: moving down towards an optimal solution, and proving optimality. We
believe that pick/dom is rather efficient for the first phase of COP solving (for the second
phase, a learning mechanism like in Picat [29] or OR-Tools becomes central).

7 Conclusion

In this paper, we have introduced a new way of exploiting conflicts during backtrack search so
as to build a well-informed variable ordering heuristic. In contrast to existing heuristics relying
on the early and late treatments of failing nodes, this new heuristic, pick/dom, consists
in a midway processing of conflicts by tracking variables during constraint propagation.
The robustness of pick/dom has been demonstrated from a vast experimentation campaign
involving more than 120 problems (and around 2, 000 instances). Interestingly, the three
different forms of exploiting conflicts, based on different moments when to collect information,
entail somewhat complementary behaviours of the solver. This opens some perspectives for
building a still more robust solver by combining these conflict-based heuristics in a clever
way. Identifying features or properties of problem instances (e.g., tree width, backbone size,
presence of strong communities, structure of variable arrays, etc.) which are favorable for a
certain form of conflict processing is an issue which would deserve to be addressed.
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Table 4 Details per instance. For each selected instance and each heuristic, the best bound,
the time (in seconds) to find it (TB) and the time (in seconds) to prove the optimum (TO, if
proven) are provided. Best results are highlighted. DC-A, DC-B, DC-C and DC-D stands for
DC-midori-xor4-d1-t0-r05-v128, DC-midori-xor4-d1-t0-r08-v128, DC-skinny-xor0-d0-t0-r09-v64-z0,
and DC-midori-xor4-d1-t0-r09-v128, respectively. Some other names have been shortened for more
visibility.

cacd frba pick3

Instance Bound TB TO Bound TB TO Bound TB TO

DC-A 5 733 739 5 9 23 5 21 28
DC-B 41 59 - 8 174 - 8 316 484
DC-C 41 5 - 41 9 - 41 3 1,087
DC-D 53 753 - 9 699 - 43 179 -

Fapp-m2s-21-0500 180,499K 1,195 - 63,832K 870 881 177,187K 1,008 -
Fapp-m2s-02-0250 221,762K 1,191 - 221,520K 1,158 - 221,591K 1,197 -
Fapp-m2s-test03-0400 453,213K 1,199 - 449,289K 1,192 - 450,098K 1,200 -

QueenAttacking-09 0 94 98 1 119 - 0 439 442
QueenAttacking-11 2 245 - - - - 1 708 736
QueenAttacking-13 11 158 - - - - - - -

StillLife-11-14 81 264 - 79 652 - 81 625 -
StillLife-wastage-12 76 12 872 76 23 - 76 549 -
StillLife-wastage-37 681 1,189 - 619 1,182 - 585 398 -

Auction-cnt-d100 829K 200 - 825K 1,099 - 849K 1,197 -
Auction-sum-d100 840K 69 - 824K 77 - 854K 102 -
Auction-sum-d500 3,368K 186 - 3,264K 224 - 3,344K 89 -

CVRP-A-n32-k5 1,095 15 - 1,006 257 - 835 492 -
CVRP-A-n36-k5 1,050 77 - 1,039 1,112 - 892 74 -
CVRP-A-n34-k5 - - - 915 57 - 813 385 -

NurseRostering-01 607 1 - 607 1 11 607 1 10
NurseRostering-02 1,024 5 - 928 62 - 833 383 -
NurseRostering-19 68,621 1,200 - - - - 60,805 1,197 -

Rlfap-graph-05-opt 2,882 883 - 221 2 10 221 62 70
Rlfap-graph-06-opt 46,647 1,198 - 34,004 1,198 - 8,882 769 -
Rlfap-scen-06-opt 11,211 1,166 - 10,102 491 - 3,389 124 -

Triangular-10 20 89 - 20 4 138 20 0 142
Triangular-22 50 46 - 50 161 - 52 167 -
Triangular-38 95 10 - 97 224 - 97 337 -

SteelMillSlab-m2s-3-0 68 1,059 - - - - 43 995 -
SteelMillSlab-m2s-3-2 306 794 - - - - 171 1,177 -
SteelMillSlab-m2s-4-0 161 1,109 - - - - 94 1,186 -
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Abstract
Clustering is a well-known task in Data Mining that aims at grouping data instances according to
their similarity. It is an exploratory and unsupervised task whose results depend on many parameters,
often requiring the expert to iterate several times before satisfaction. Constrained clustering has been
introduced for better modeling the expectations of the expert. Nevertheless constrained clustering is
not yet sufficient since it usually requires the constraints to be given before the clustering process.
In this paper we address a more general problem that aims at modeling the exploratory clustering
process, through a sequence of clustering modifications where expert constraints are added on the
fly. We present an incremental constrained clustering framework integrating active query strategies
and a Constraint Programming model to fit the expert expectations while preserving the stability of
the partition, so that the expert can understand the process and apprehend its impact. Our model
supports instance and group-level constraints, which can be relaxed. Experiments on reference
datasets and a case study related to the analysis of satellite image time series show the relevance of
our framework.
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1 Introduction

Clustering is a popular task in Data Mining in which data instances (i.e. points of a dataset)
are grouped into distinct clusters according to their similarity. Over time, many strategies
have been explored to compute data partitions, each of them having their own strengths and
biases. Constrained clustering [16] aims to find relevant clusters by stating some desired
properties in the form of constraints, thus alleviating the aforementioned biases. The most
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commonly used constraints for clustering state that two points must be clustered together
(must-link) or apart (cannot-link) [32]. Other constraints exist as for instance limiting the
size or the diameter of the clusters [1]. They are usually given by a subject matter expert
(SME) that possesses domain knowledge on the data; they model his/her knowledge and
expectations about the result by expert constraints.

In practice, it may be difficult for an expert to express constraints solely on the basis
of the data. It is usually easier to him/her to provide feedback on the current partition
to refine it. This leads to a human-in-the-loop clustering process, where new constraints
given or validated by the expert are incrementally integrated, modifying the result until
user satisfaction. However, this raises several non trivial questions such as how to elicit the
constraints, how to integrate them, or how to further exploit them. By incorporating human
feedback and domain knowledge, the resulting clusters are more likely to align with the
expert expectations while making them more intuitive and interpretable. This incremental
setting mimics the natural step-by-step progression of an exploratory task such as clustering,
where the user needs to iterate several times before satisfaction. In such a process, the result
at each step should (1) be computed fast enough, (2) exploit the expert constraints efficiently
(3) be similar to the result of the previous step, in order not to disturb the expert.

A naive way to integrate new expert constraints is to restart a constrained clustering
algorithm. However, this presents at least two weaknesses: it starts from scratch without
ever considering intermediate results and the new constraints can lead to a partition very
different from the one previously shown to the expert. To cope with this problem, we propose
a first generic framework that allows for truly interactive and iterative constrained clustering
that fulfills the conditions mentioned above. Our main contributions are :

an incremental constrained clustering framework designed for human interaction, combin-
ing active constraint selection and clustering modification;
a new constraint programming model for minimal clustering modification, which ensures
the stability of the partition.

The paper is organized as follows. We review in Section 2 related work on incremental
constrained clustering and minimal clustering modification and present our method in Section
3. Experiments on reference and satellite image time series datasets are presented in Section
4 and perspectives are discussed in Section 5.

2 Related Work

The first works on using constraints in clustering are extensions of classic algorithms for
handling must-link/cannot-link constraints [33, 10, 35]. They either search for a solution
satisfying all the constraints [33] or a compromise between constraint satisfaction and
clustering quality [6]. Thereafter methods allowing to integrate more general constraints,
using declarative frameworks such as SAT [12], ILP [29] or CP [9] have been proposed. When
new constraints are given by the user, all these methods require to restart from scratch,
without any guarantee that the new partition will be similar to the previous one. Therefore
they are not suited for an incremental setting.

There is a growing body of works related to incremental constrained clustering. In [7], the
idea of gathering feedback from an existing result rather than expecting the user to provide
insightful constraints by themselves is demonstrated. Later, the authors of [11] studied the
problem of adding or removing a constraint from a constraint set satisfied by a partition.
They described conditions under which the problem is easy to solve and an algorithm working
under these conditions. In [26], a cluster refinement framework uses subclustering to find
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representatives to present to the user before learning an embedding using the feedback.
More recently, [21] proposed an incremental variant of a collaborative constrained clustering
system that integrates constraint satisfaction in its objective function. Among declarative
approaches, an ILP model for minimal clustering modification (MCM) is proposed in [20].
It constrains cluster diameters with the objective of removing undesirable properties from
a partition. Another ILP model [28] computes a membership score for each point to each
cluster and optimizes a criterion based on this score. It can modify the assignment of points
to clusters, even if they are not involved in constraints. However those models are restrictive
since they cannot handle conflicting constraints, which make the problem unsolvable.

Our approach seeks to preserve the general cluster structure of an existing partition while
satisfying new constraints. To the best of our knowledge, this is the first approach explicitly
tackling both quality and stability. It is based on CP, therefore it can integrate different kinds
of constraints that can be either soft or hard, with some control over constraint relaxation
and the ability to handle conflicting constraints. We use subclustering in a similar way to
[26], albeit for a different purpose as it allows generalizing the changes decided by our CP
model as well as finding cluster representatives used in our objective function.

3 Incremental and Active Clustering Framework

Figure 1 Schematic view of the incremental clustering cycle.

In this section, we describe our proposed incremental and active clustering (IAC) frame-
work. Figure 1 gives a general overview of IAC. The incremental constrained clustering
loop starts from an initial partition computed by any clustering algorithm. This partition
is then shown to the user to collect his/her general feedback (satisfied or not). If he/she is
not satisfied, he/she can modify this partition in two ways: by manually providing a set of
constraints and/or by inferring it through an active constraint selection method. He/she can
also set the proportion of constraints to satisfy as well as the scope of modifications. The
clustering modification step updates the current partition according to these new constraints,
optionally generalizing modifications to unconstrained data instances. The output is a new
partition satisfying the constraints while preserving its stability, i.e. similar to the previous
one. This process is repeated until the user is satisfied by the resulting partition. It is
noteworthy that our framework is generic as any active constraint selection method and
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any modification algorithm could be used as long as the constraints generated match the
constraints handled in modification. We formulate the problem of clustering modification in
a declarative way and present a CP model. This has the benefit of being able to integrate
several types of constraints for the user feedback.

3.1 Minimal Weighted Clustering Modification
We consider the minimal weighted clustering modification (MWCM) problem: given a
partition P of N data instances (numbered from 1 to N) into a number K of clusters, and a
set of user constraints C, the objective is to find a new partition P ′ such that the constraints
are satisfied while minimizing some function f modeling the difference between P and P ′.
For solving this problem, Algorithm 1 shows the different steps that are detailed below.

Algorithm 1 Minimal Weighted Clustering Modification.
Input: Dataset X , partition P, constraints C, anchor generation rate α, super-instance rate β,

constraint satisfaction rate δ

Output: modified partition P ′

1: anchors← ComputeRepresentatives(X ,P, α) ▷ See section 3.1.1
2: X ← ComputeCOPInstances(X ,P, C, β) ▷ Instances used in COP (Section 3.1.2)
3: D ← DistanceMatrix(X, anchors) ▷ See section 3.1.1
4: p← GetConstrainedPartition(X,P) ▷ Cluster membership of the constrained instances
5: mods← SolveModel(D, p, C, δ) ▷ Solves the COP in Section 3.2
6: return ApplyModifications(mods,P) ▷ Updates P and generalizes modifications

3.1.1 Objective function and anchors
A straightforward candidate for f is to count the number of instances that have changed
their cluster membership between P and P ′ [20]:

arg min
N∑

i=1
I(P[i] ̸= P ′[i]) (1)

where P[i] denotes the number c ∈ [1, K]1 of the cluster containing instance i ∈ [1, N ] and
I the indicator function that returns 1 if the expression given as argument is true, and 0
otherwise. The main drawback of Equation (1) is that it does not take into account the
structure of the clusters. For example, it is reasonable to consider that putting two instances
in a nearby cluster is more akin to the idea of minimal modification than putting one instance
into a faraway cluster. Therefore we propose an alternate objective function that integrates
a distance-based weighting of the modifications:

arg min
N∑

i=1
I(P[i] ̸= P ′[i]) D[i,P ′[i]] (2)

where D is a distance matrix of dimensions N ×K such that D[i, c] is the distance of instance
i to cluster c. This objective function measures the changes between P and P ′ and keeps the
cumulative distances resulting from these changes small. This objective function is integrated
into the model for MWCM that will be presented in Section 3.2.

1 We use the notation [1, K] for the set {1, .., K}.
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A simple way to compute D[i, c] is to set D[i, c] = d(i, µc), where µc is the representative
(medoid or centroid) of c and d is a distance measure, typically the Euclidean distance. This
has however a known limitation: the modifications made by the model implicitly treat all
clusters as spherical. It can be counterproductive if the user seeks more complex shaped
clusters. To overcome this, we use anchors [17] such that each cluster will be represented by
a subset of its instances, in order to better represent its structure. Anchors are computed
by dividing each cluster c of the input partition into smaller sub-clusters using Single-Link
hierarchical clustering. For each of these sub-clusters, an anchor is defined as the instance
minimizing the sum of its distances with the other instances of the sub-cluster. Using anchors,
D[i, c] represents the distance of instance i to its closest anchor belonging to cluster c. A
parameter α defining the proportion of instances per cluster (in percentage) that will become
anchors is used. For example, a rate of 0% means that we only use medoids, while at a rate
of 100%, all instances are anchors (cf. Figure 2).

(a) α = 0% (medoids). (b) α = 5%. (c) α = 20%.

Figure 2 Anchor positions for different values of α computed from the partition generated by
Kmeans on lsun dataset. The anchors are represented bigger than normal instances.

3.1.2 Generalizing constraints with super-instances
In a real use case, we assume that the expert will only react on a small number of instances
per iteration. As a result, the clustering modification could become unnoticeable when the
dataset size is large compared to the number of constraints, which is a fairly common case.
Hence, exploiting expert feedback to generalize the modifications to relevant unconstrained
instances is an important issue w.r.t. the challenge of asking a reasonable number of queries.
This issue has been highlighted in [34], and is especially relevant in our incremental setting.
Furthermore, this generalization must be controlled to ensure the expert can grasp the scope
of potential modifications. We assume that, in most cases, the expert will want to modify
a zone around the selected instances and not only the instances themselves. Bearing this
intuition in mind, making use of nearest neighbors or a proximity radius seem adequate, but
these methods lack predictability: if an instance is within the radius of two constrained points
who were reassigned to different clusters, determining how to resolve the generalization is
not obvious.

We propose to use super-instances, i.e. virtual instances grouping several real data points,
to generalize the modifications. Note that generalization does not mean that new constraints
are generated, rather that the super-instances are passed directly to the model instead of
the data instances (see Appendix C). Thus any modification in the cluster membership of a
super-instance amounts to changing the membership of every real data instance that compose
it. The generalization scope is controlled as follows: the less a cluster is divided, the stronger
the impact of a modification. Thus the scope depends on the number of super-instances,
determined by a rate β proportional to the cluster size. As such, setting β to e.g. 10%
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means that each cluster will be split into a number of super-instances equal to 10% of its
size, with 1 being equivalent to not generalizing at all. Super-instances are determined by
sub-clustering each cluster of the current partition into small groups, each group representing
a super-instance. We empirically found that complete-link hierarchical clustering is adequate,
despite its memory usage which makes it unsuitable on large datasets. Other alternatives
include the density-based OPTICS as in [26], or the Furthest Point First (FPF) algorithm
[15]. However, user constraints defined on instances need to be transferred to super-instances.
This may raise potential conflicts. To avoid this pitfall, we ensure that every super-instance
contains no more than one constrained data point. If this is not the case, we split the
super-instance using the constrained instances as centers of the new split super-instances.
An illustrative case is given in Appendix A.

3.2 Constraint Optimization Problem Formulation
Taking advantage of declarative approaches, we formulate the problem of finding a similar
partition satisfying user constraints as a Constraint Optimization Problem (COP). In the
following, we use the term instance to denote a data instance or a super-instance if it is used.

Variables and Objective Function. Only instances that are subject to the constraints will
be concerned by the COP. Function GetConstrainedPartition in Algorithm 1 produces
the subset X containing the constrained instances. For each instance in i ∈ X, we define a
variable Gi with the domain [1, K], where Gi = c means instance i is assigned to cluster c in
the new partition P ′. Using Eq. (2), the objective function is:

arg min
∑
i∈X

I(Gi ̸= P[i]) D[i, Gi] (3)

User constraints. Several instance-level and group-level constraints can be expressed in
our model, as below. Must-link (ML)/cannot-link (CL) constraints on two instances i, j

stating that the instances must/cannot be in the same cluster, can be expressed by Gi = Gj

for ML and Gi ̸= Gj for CL. We also compute the transitive closure on ML/CL constraints
[25], which derives supplementary constraints according to three rules : (i) if ML(a, b) and
ML(b, c), then ML(a, c); (ii) similarly ML(a, b) and CL(b, c) imply CL(a, c) ; (iii) in a
binary clustering case (K = 2), CL(a, b) and CL(b, c) imply ML(a, c).
Triplet constraint (a, p, n) [23] states that a reference instance a is more similar to instance
p than to instance n. Instance p is therefore called positive instance and n negative. This
constraint can be expressed using an implication constraint as follows:

Ga = Gn =⇒ Ga = Gp (4)

Span-limited constraints [27] restricting the span of a set of instances S ⊆ X. A specific
span-limited constraint states that the instances of S must be assigned only to clusters from
a given subset C ⊆ [1, K]. It can be expressed using the count global constraint2:

count(c, [Gi | i ∈ S], =, 0) ∀ c /∈ C (5)

A generic span-limited constraint specifies that the instances of S must be assigned to at
most a number γ of clusters. It can be expressed using the constraint atmost_nvalue3 [5]:

atmost_nvalue(γ, [Gi | i ∈ S]) (6)

2 https://sofdem.github.io/gccat/gccat/Ccount.html
3 https://sofdem.github.io/gccat/gccat/Catmost_nvalue.html

https://sofdem.github.io/gccat/gccat/Ccount.html
https://sofdem.github.io/gccat/gccat/Catmost_nvalue.html
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More thematic expert feedback can also be integrated as implication constraints. In our
model, they are of the form P =⇒ Q, where P and Q are conjunctions of simpler constraints
such as ML/CL.

Cluster creation. Our model allows P ′ to have more clusters than P , by defining the domain
of Gi as [1, K ′], with K ′ > K. This enables assigning an instance to a new cluster if some
constraints are unsatisfied. For example, if K = 2 and the expert states three constraints
Gi ̸= Gj , Gj ̸= Gl and Gl ≠ Gi, then it is necessary to create a new cluster. Given its
conditions of apparition, it will typically be very small. In order to prevent the model from
creating clusters because it would be optimal to do so w.r.t. the objective function, we set
the distance D[i, k′] to a value greater than all other distances for K < k′ ≤ K ′.

Relaxing constraints. During the incremental process, the expert could make mistakes
when trying to improve the partition, which would result in adding conflicting constraints,
thus leading to an over-constrained CP model. We reify the user constraints to gain control
over constraint satisfaction. Each constraint c ∈ C is associated with a Boolean variable Sc

such that Sc = 1 iff c is satisfied. The satisfaction rate δ sets a lower/upper bound or the
exact value of the number of constraints the model must satisfy:∑

c∈C
Sc ⪌ δ · |C| (7)

Constraint relaxation can both solve problems with conflicting constraints and ignore - or warn
the user about - constraints that would modify instances far from their new cluster. Relaxation
however increases runtime due to the additional Boolean variables. As is, our framework
automatically detects ML/CL conflicts and reduces the satisfaction rate accordingly.

Managing the constraint store. Algorithm 1 solves this COP with the user constraints
collected at each iteration. The incremental setting raises the issue of managing the constraints
between iterations. It is possible to store every constraint received since the beginning of
the process to ensure that all expert feedbacks are respected. In the experiments, we choose
instead to treat the constraint set given at each iteration independently. In this way, if the
expert adds a constraint in conflict with another one given previously, we consider that the
user is simply rescinding some of his/her feedback. The expert can also mark some constraints
as mandatory so that they are kept satisfied throughout the process. Appropriately managing
the constraint store is a potential future research lead.

3.3 Active Constraint Selection
Obtaining constraints manually can be costly. This motivates active constraint selection
methods [2, 25, 37], which select the most informative constraints to query. To evaluate
the interest of exploiting an active constraint selection approach within our framework,
we use NPU [37], a neighborhood-based sampling strategy. Neighborhoods N are groups
of instances whose cluster assignment is certain, they represent the underlying clusters.
NPU iteratively builds the neighborhoods by selecting the most informative instance x∗

and querying its relation with respect to existing neighborhoods. The informativeness of an
instance x is defined by the ratio H(N|x)/E[q(x)], where H(N|x) is the entropy measure of
the uncertainty to assign x to a neighborhood in N , and E[q(x)] the expected number of
queries needed to discover its neighborhood.
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Exploiting this informativeness, we adapt the NPU framework to the incremental setting.
The neighborhoods N , which are initially empty, are constructed and kept throughout the
iterations. For each informative instance x∗, queries are put on the membership relation
between x∗ and each neighborhood N ∈ N . Once the user answers favorably, a ML constraint
is created with the queried neighborhood, otherwise a CL is created. If no ML is achieved, a
new neighborhood is created for x∗ (see the detailed algorithm in Appendix B). In relation
to constraint management between iterations, it must be pointed out that the preservation
of the neighborhoods between iterations prevents selecting constraints conflicting with those
selected in earlier iterations. Indeed, an instance stored in a neighborhood is never picked
again by NPU, and is only used to generate constraints with an instance that has not
been presented to the user before. The only factor that could cause previous constraints
to be involuntarily relaxed is a high generalization scope. We found no such occurences in
our experiments with the values we tested for β (see Section 4.2.1). Fig. 3 illustrates the
framework walkthrough on a toy example, with noticeable separation between non-spherical
clusters that KMeans is unable to recover.

(a) t = 0, ARI = 0.44. (b) t = 4, ARI = 0.66. (c) t = 7, ARI = 0.94. (d) t = 10, ARI = 1.

Figure 3 Illustration of IAC with (α = 20%, β = 30%) over 10 iterations on lsun dataset, starting
from a KMeans partition (Fig. 3a). Subsequent figures show the evolution of the partition after t

iterations of IAC with NPU. Adjusted Rand Index with ground truth is reported on each figure.

4 Experiments

In this section, the experiments aim to answer the following research questions (RQ):
1. What effect do IAC parameters (α and β) have on clustering results ? (Section 4.2.1)
2. How does our CP model scale with the number and type of constraints ? (Section 4.2.2)
3. How does the constraint relaxation of IAC compare with other methods that use soft

constraints ? (Section 4.2.3)
4. How effective is IAC in an active constraint selection context ? (Section 4.2.4)
5. What is the performance of our framework in terms of clustering quality, partition

similarity and runtime when compared to state of the art methods ? (Section 4.2.4)
6. How effective is our framework on a real use case with human feedback ? (Section 4.3)

4.1 Experimental Methodology
Evaluation measures. For all experiments we use datasets for which a ground-truth labeling
is known. The produced partition is then compared to the known partition using an
external measure. A high value of the measure indicates a good partition, meaning that the
clustering algorithm has successfully identified the already known structure. We consider
three measures: Adjusted Rand Index (ARI) [19], Adjusted Mutual Information (AMI) [31]
and Folkes-Mallows Index (FMI) [13]. ARI measure is defined by:

ARI(P,P ′) = 2(ab− cd)
(a + d)(d + b) + (a + c)(c + b) (8)
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where a (resp. b) is the number of instances pairs clustered together (resp. apart) in P and
P ′, and c (resp. d) is the number of pairs clustered together (resp. apart) in P and apart
(resp. together) in P ′. AMI is a variation of Normalized Mutual Information corrected for
chance:

AMI(P,P ′) = MI(P,P ′)− E(MI(P,P ′))
max(H(P), H(P ′))− E(MI(P,P ′)) (9)

where MI is the measure of mutual information, H the entropy of a partition, and E the
expected mutual information if the partitions are random. Finally FMI is the geometric
mean of precision and recall, using one partition as a reference for the other:

FMI(P,P ′) =
√

TP

TP + FP
· TP

TP + FN
(10)

We also measure the runtime of the modification step (reclustering or MWCM) since it is
crucial to take it into account in the incremental setting. We set a timeout after 1 hour of
modification time.

Experimental protocol. We have implemented our CP model in Python 3.11 using the
CPMpy library [18], interfacing with CP-SAT solver from or-tools4. We chose this library
because it allows to easily use landmark ML libraries such as scikit-learn together
with CP. Code for reproducing the experiments is available at the repository given at
the summary of this paper. The implementation of NPU and all clustering algorithms
we considered for comparison (COPKMeans, PCKMeans and MPCKMeans) are from the
active-semi-supervised-clustering5 library. All experiments were run on a computer
with two 48-core Intel Xeon processors at 4 GHz and 64 GB of RAM running Ubuntu 20.04.

For each dataset, we first generate an initial partition with KMeans [24] with K set to
the true number of clusters. Queries correspond to pairwise constraints. We emulate user
feedback using the ground truth labeling of the data as an oracle i.e. a must-link constraint is
added if the selected pair of instances belong to the same class, and a cannot-link otherwise.
For RQs 1, 4 and 5, we perform 10 iterations of selection-modification loop. At each
iteration, we use the current partition to select a batch of 10 queries with NPU, get feedback
from the oracle, and apply either a constrained clustering algorithm to the full dataset or our
CP model for cluster modification. In order to smooth out the random effects occurring in
the partition initialisation and in constraint selection, we repeat each experiment 90 times.

To evaluate the overall performance over the 11 successive partitions (including the initial
partition) obtained for each run, we compute for each metric the area under the budget
curve (AUBC) [38]) for different fixed budgets of queries to ask the user. Given the budget
curve, the AUBC is calculated by the trapezoid method, and the higher value reflects better
performance of the evaluated method under varying budgets. For each metric, we compute
two types of AUBC: AUBCquality when comparing the successive partitions to the ground
truth partition, and AUBCsimilarity when comparing two consecutive intermediate partitions.
Since AUBCsimilarity values are defined over the interval [0, 0.9], we perform a min-max
normalization so that all metrics are defined over the [0, 1] range. To statistically compare the
performance of different algorithms and/or configurations of the same algorithm for different
parameter settings on multiple data sets, we resort to Bayesian pairwise comparison [4] using

4 https://developers.google.com/optimization
5 https://github.com/datamole-ai/active-semi-supervised-clustering
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Table 1 Dataset Characteristics, with N the number of instances, A the number of features and
K the number of clusters or classes.

UCI FCPS

Name (N , A, K) Name (N , A, K) Name (N , A, K) Name (N , A, K)

iris (150, 4, 3) ionosphere (351, 34, 2) lsun (400, 2, 3) chainlink (1000, 3, 2)
wine (178, 13, 3) yeast (1484, 8, 10) target (770, 2, 6) wingnut (1016, 2, 2)
sonar (208, 60, 2) statlog (2310, 19, 7) atom (800, 3, 2) engytime (4096, 2, 2)
glass (214, 9, 6) Letters (20000, 16, 26)
ecoli (336, 7, 8) MNIST (70000, 784, 10)

baycomp6 library. The principle is to use Bayes’ rule to update a prior statistical distribution
representing the null hypothesis (both compared algorithms have the same performance),
with a likelihood function modeling the experimental observations. We then get a posterior
distribution, reflecting how the prior belief has changed, taking the observations into account.
Using the Markov chain Monte Carlo method, the posterior is sampled 50, 000 times to
estimate the probability of one algorithm being better than the other as well as the probability
of being in the region of practical equivalence (or rope). In practice, querying the posterior
distribution allows to simulate repeating the whole experimental process and to quantify the
likelihood of our results. We choose to fix to 1% the difference of performance between the
methods as the rope.

4.2 UCI and FCPS Datasets
In this section, we report experimental results on ten real-world datasets from the UCI
repository7 and on six synthetic datasets from the FCPS [30] suite designed to address
specific challenges to the clustering algorithms such as lack of linear separability, classes
defined by data density rather than data spacing, no cluster structure at all, etc. A summary
of the basic characteristics is given in Table 1. We used the versions of datasets available
under the library clustering-benchmarks8 [14].

4.2.1 Parameter Settings of IAC
To answer RQ1, we evaluate the effects of different parameter settings of the clustering
modification step of our IAC framework: the anchor generation rate α ∈ {0%, 5%, 20%}
and the super-instance generation rate β ∈ {10%, 30%, 50%, 100%}. This makes a total
of 12 configurations of parameter combinations to evaluate. Recall that α = 0% means
that we only compute the cluster medoids, while β = 100% means no generalization by
super-instances is performed. For each configuration and each metric, we perform Bayesian
pairwise comparison according to AUBCquality and AUBCsimilarity values for each of the
three metrics ARI, AMI and FMI over all the datasets and count the number of wins. More
precisely, given a pairwise comparison between two configurations conf1 and conf2, using a
Bayesian hierarchical model [8], we get three probabilities: the probability that conf1 has
higher scores than conf2, the probability that differences are within the region of practical
equivalence (rope), or that conf2 has higher scores. If (pconf1 > pconf2 + prope), then we
count this comparison as winning for conf1.

6 https://baycomp.readthedocs.io/en/latest/index.html
7 https://archive.ics.uci.edu/ml/index.php
8 https://clustering-benchmarks.gagolewski.com/weave/suite-v1.html

https://baycomp.readthedocs.io/en/latest/index.html
https://archive.ics.uci.edu/ml/index.php
https://clustering-benchmarks.gagolewski.com/weave/suite-v1.html
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(a) ARI. (b) AMI. (c) FMI.

Figure 4 Pairwise plot comparing the number of wins for each configuration (α, β) using a
Bayesian hierarchical model, according to AUBCquality (horizontal) or AUBCsimilarity (vertical).
Best values are close to the top left, with configurations on the Pareto front in orange.

The table of wins is available in Appendix D. Configurations using anchors (i.e. α ̸= 0)
ensure the highest AUBCquality values in almost all configurations. Additionally, the best
values are obtained with α = 20%. For a fixed value of α, AUBCquality values increase
significantly with the decrease of β, 10% being the best value. This result suggests that
a large scope of generalization does not strongly impact the modification of the clustering
and thus its quality. AUBCsimilarity values have the opposite behavior: β = 10% is the
worst setting for similarity. Note that the impact of α seems negligible compared to β. It
slightly improves similarity when β is low, while its contribution seems negligible in the
absence of generalization. Generalizing modifications understandably degrades similarity,
albeit not dramatically. A Pareto front made of three configurations on every metric (see
Fig. 4) emerges from the results: one best in quality (20%, 10%), another best in similarity
(20%, 100%), and a compromise setup (20%, 30%).

Figure 5 plots the posterior distribution of pairwise comparison of configurations in a
simplex. The distribution is shown as a triangle with regions corresponding to different
samples of the distribution, e.g. Figure 5a compares the posterior distribution obtained with
α = 0% (medoids only) and β = 10% with the one obtained without generalization. This
indicates that there is a 88.9% probability that using medoids combined with SI for this
value of β is better than using medoids without SI.

(a) (0%, 10%) vs. (0%, 100%). (b) (5%, 100%) vs. (20%, 100%). (c) (20%, 30%) vs. (20%, 100%).

Figure 5 Simplex view of Bayesian comparison of two configurations w.r.t AUBCquality of ARI.
Each sample is plotted according to probabilities pconf1 (left), prope (top) and pconf2 (right).

4.2.2 Impact of Number and Types of User Constraints on Runtime
In this section, we answer RQ2 by studying two points: the computational efficiency of our
CP model and the expressiveness of our approach (see Sect. 3.2). For these experiments, we
consider 3 sizes of constraint set (10, 100, 1000). For each test case, we randomly generate sets
of four types of constraints (pairwise, triplet, span-limited specific and generic). We compute
an initial KMeans partition and run our CP model only once for each set of constraints and
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(a) letters. (b) MNIST.

Figure 6 Evolution of running time of our CP model for the two largest datasets when varying
the number and type of constraints, with 95% confidence interval. CPU times are in log-scale.

we report the average CPU times over 90 runs. For pairwise constraints, we disable the
computation of transitive closure to keep the number of constraints unchanged. Span-limited
constraints are created by randomly choosing 10 instances and finding the ground truth set
of clusters - or number of clusters, in the generic case - to which the group belongs.

Runtime analysis. Figure 6 shows the results we obtained for letters and MNIST datasets
with α = 0% and β = 100%. Our CP model can process 10 ML/CL constraints in less than
0.05 seconds, while for triplet and specific span-limited constraints the runtime reaches 0.035
and 0.15 seconds respectively. This seems very reasonable in an incremental context. For the
yeast dataset, with 100 pairwise constraints, it takes 0.35 seconds, whereas for triplet and
span-limited constraints the runtime increases up to 1.36 seconds. With 1000 constraints,
the runtime is more than 44s for specific span-limited, 67s for ML/CL, and over 180s for
triplet; generic span-limited constraints took up too much memory to finish. However, in
practice, the number of constraints expected from the user is in the tens rather than the
hundreds or thousands. Triplet and span-limited constraints show a substantial increase in
runtime compared to ML/CL constraints.

Mixed constraint types. One of the advantages of our approach is its ability to easily
combine different types of constraints without the need to create a specialized algorithm. To
demonstrate this ability, we compared two composite settings:

mlcl+triplet: generate pairwise and triplet constraints in equal proportions, e.g. 50
ML/CL and 50 triplet constraints for the 100 constraints case.
all: similar to mlcl+triplet, except a pairwise (resp. triplet) constraint is replaced by a
specific (resp. generic) span-limited constraint.

As far as we are aware, such problems cannot be solved by any existing techniques. Problems
with ML/CL and triplet constraints take much less time to solve than those involving the
three types of constraints, the latter being much more time-consuming. Surprisingly, with
1000 constraints, the ML/CL+Triplet combination takes less time compared to the case
where only triplet constraints are involved. All these results underline the relevance of
carefully selecting a small number of constraints to guarantee a good compromise between
efficiency and quality of the final clustering.
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Table 2 Comparative study for clustering with pairwise constraints relaxation for the mk2 dataset.
Metrics are ARI with ground truth (Quality), ARI with unconstrained KMeans (Similarity), runtime
and number of constraints relaxed in the solution (nr).

Test case with conflicts Test case with δ = 94%

Quality Similarity Time nr Quality Similarity Time nr

IAC+Anchors 0.576 0.075 5.262 49.7 0.309 0.177 3.051 60.1
IAC+Anchors+SI 0.760 0.024 4.868 49.83 0.393 0.108 2.972 60.1
PCK-Means 0.081 0.051 3.639 149.3 0.375 0.045 2.834 66.5
MPCK-Means 0.078 0.017 29.27 159.9 0.406 0.019 26.98 61.2

4.2.3 Relaxing Constraints

We address the research question RQ3 by comparing IAC with existing constrained clustering
methods for constraint relaxation. We selected two methods: Pairwise Constrained K-
Means (PCK-Means) [3] allows the violation of ML and CL constraints, and Metric PCK-
Means (MPCK-Means) [6] combines PCK-Means with distance-metric learning [36]. As the
alternatives only support pairwise constraints, we compare performance for problems that
involve only ML/CL constraints. To that end, we consider two settings: in the first one,
we generate 950 constraints at random based on the ground truth and add 50 conflicting
constraints so that some constraints must be relaxed to solve the problem; in the second,
we generate 1000 constraints at random without any explicit conflict constraint and set the
satisfaction rate δ of IAC to the mean satisfaction rate of PCK-Means and MPCK-Means.
We run two variants of IAC: IAC+Anchors (α = 20%, β = 100%) and IAC+Anchors+SI
(α = 20%, β = 30%). Table 2 shows the performance of the different approaches for the
mk2 dataset, measured by ARI, runtime and number of constraints relaxed. Each value
in the table is the average of 90 runs with different sets of constraints. As previously, for
each run, we compute an initial KMeans partition and run our CP model only once for
each set of constraints. Results show that in the presence of conflicts, our method violates
fewer constraints than the other methods. Furthermore, the runtimes of IAC are comparable
to those of PCK-Means. In contrast, MPCK-Means is significantly more expensive. In
terms of clustering accuracy (measured by ARI), our approach clearly outperforms the
compared to the alternatives. When imposing a satisfaction rate to the model, PCK-Means
and MPCK-Means achieve comparable or better quality than IAC, but similarity stays low.
However, IAC achieves again better performance in number of constraints relaxed.

4.2.4 Comparing IAC with alternatives in the incremental setting

In this section, we address research questions RQ4 and RQ5, and conduct experiments to
evaluate the interest and performance of our IAC framework for active constraint section
context. NPU can be used in combination with any semi-supervised clustering algorithm,
we use the same ones as in the previous section, including COPK-Means algorithm [33].
This leads to several combinations, and for each combination we perform 10 iterations of
selection-modification loop. For each iteration, we use the current partition to select a batch
of 10 queries with NPU and at random, get feedback from the user, and perform either a
reclustering or MCM. In this experiment, queries correspond to pairwise constraints. In light
of the results of Section 4.2.1, we choose the compromise configuration between quality and
similarity (α = 20%, β = 30%) for this experiment.

CP 2023



10:14 Incremental Constrained Clustering by Minimal Weighted Modification

(a) Comparison to the ground truth. (b) Comparison to the previous partition.

Figure 7 ARI scores of the partition at each iteration of selection-modification, compared to
ground truth (left) or to the previous partition (right), for the glass dataset. All ARI scores are
the mean and 95% confidence interval over 90 runs. Higher is better.

Clustering quality comparison. Figure 7 shows the evolution of the ARI scores over 10
iterations of incremental and active clustering modification for the glass dataset. IAC+NPU
produces increasingly better clusterings as more iterations are given (cf. Fig. 7a), while
keeping a high similarity throughout the iterations (cf. Fig. 7b). None of the competitors
produces a clustering with a high ARI. Interestingly, both PCK-Means and COPK-Means
with NPU are able to find good clusterings while MPCK-Means is not, even after a relatively
large number of iterations. However, the behaviour of the competitors are more chaotic in
terms of similarity. We observe similar results for the other datasets (due to lack of space,
all other results are available via our link in the summary). These results also show that
methods with a random selection of constraints produce typically worse results. We validate
these observations by Bayesian comparison w.r.t. AUBCquality and AUBCsimilarity values
for each metric. Fig. 8 show that IAC has a high probability to perform better than the
alternatives on ARI ; we have similar results for AMI and FMI. Interestingly, using NPU
leads to better similarity (see Fig. 9). This suggests that the use of an active constraint
selection strategy brings another advantage besides improving the quality of the clustering.
However, in an online context, runtime is particularly important as it requires user interaction
and selecting the next query can be very costly, superseding the time taken for modification.
For the biggest datasets (Letters and MNIST), only methods using random selection finish
before timeout. We can conclude from these results that our model for minimal clustering
modification is effectively a better way for active incremental constrained clustering compared
to the naive approach to incrementality.

(a) IAC vs. COPK-Means. (b) IAC vs. PCK-Means. (c) IAC vs. MPCK-Means.

Figure 8 Bayesian comparisons with IAC using NPU w.r.t. AUBCquality values for ARI.
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(a) ARI. (b) AMI. (c) FMI.

Figure 9 Bayesian comparison of IAC with or without NPU w.r.t AUBCsimilarity for all metrics.

Runtime comparison. In Fig. 10, the runtime of modification (reclustering or MWCM) is
shown for each dataset. The runtime of our model is comparable to those of the competitors,
although it seems to have better scaling on the largest datasets. Empirically, IAC is an order
of magnitude faster on yeast, statlog and letters datasets that have a large number of
clusters. It is also noteworthy that MPCK-Means is much slower than other methods due to
metric learning, yet this increase does not translate into better quality or similarity than
IAC. The limiting factor for the modification step of IAC is the computation of anchors and
super-instances, whose scaling is worse than solving the COP in itself.

Figure 10 Evolution of the runtime of tested methods on our benchmark datasets, in seconds
(log scale). Methods using NPU are hatched.

4.3 Tree Cut Data
Introducing the data. Our case study for research question RQ6 concerns the analysis of
satellite image time series (SITS) composed of 11 images of dimensions 724× 337 of a zone
of the Vosges mountains in eastern France, taken irregularly on the span of 3 years from
2016 to 2018. Each pixel is associated to a series of NDVI (Normalized Difference Vegetation
Index) values denoting the level of vegetation at each timestamp. At our disposition are
labels that separate the SITS into three classes: vegetation, artificial structures, and tree
cut zones. This last class has several properties: it was precisely labeled by domain experts,
whereas the two other classes are more approximately defined. It is also a very small class as
shown in Fig. 11a, containing only 639 instances (less than 0.3% of the data), which makes
it hard to detect with unsupervised learning. Image-wise, 10 zones have been identified as
places where trees have been cut within the time interval. Lastly, the evolution of these
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zones (a sharp decrease of NDVI value followed by a slow return to normal) is similar to that
of field harvesting or grassland mowing, which complicates the problem further. In these
conditions, expert intervention is paramount.

Problem definition. A set of 179 ML/CL constraints has been collected in [21] from domain
experts, focused on the two largest tree cut zones (204 and 147 instances, i.e. more than
half of tree cuts) as shown in Fig.11b. We define the problem as recovering these areas with
binary constrained clustering. Following [22], we clustered the dataset with K-Means and
K = 15, only retaining the cluster covering the areas the most as the “positive” cluster of
our problem. In Fig. 11c, this cluster is displayed in colors, while the “negative” cluster is
composed of all pixels not colored. We then used this binary partition as input of IAC, and
selected the unsatisfied user constraints in the partition to improve it. In our experiments,
79 constraints were unsatisfied. IAC was set to iterate until all constraints are satisfied. We
set β to 100% as the large dataset size means that super-instance computation takes hours
to complete, which is not compatible with a real life setting.

(a) Original image with highlighted tree cuts (red). (b) User constraints, ML (red) and CL (dashed blue).

(c) Initial partition (with inset). (d) Modified partition (with inset).

Figure 11 Some views of the use case ; pictures (c) and (d) show the “positive” cluster, before
and after modification. Highlighted therein are the true positives (green), false negatives (yellow),
and false positives (purple). Best viewed in colors.

Results. The modified clear cut cluster is displayed in Fig. 11d. The recovering of tree
cut can be observed as the green zone of true positives enlarges in this figure : the left area
progressed from 37 to 92 true positives, covering almost half the area. The right area gained
10 true positives. The modification was made within 22 seconds.

5 Conclusion

We have developed IAC, a framework for clustering modification that can be used in an
incremental setting where an expert iteratively adds constraints, either manually or using
an active method. A CP model for minimal weighted clustering modification ensures that
the general cluster structure is preserved to maintain some continuity between iterations, as
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shown in experiments on reference datasets and on a real use case. It can also efficiently
exploit an active query strategy to converge faster, and handle contradictory constraints
that the user may give as input. The runtime of IAC is dependent of the constraint selection
step, which requires further experiments with more active methods and/or to develop a
new one suited for the incremental setting. It would also be interesting to explore the
use of multiple CP models for modification, such as [20] for minimal modification with
cluster-level constraints. Lastly, there remain open questions about the potential reuse of
relaxed constraints at a later iteration : What constraints to choose ? When to propose
them to the user ? The conception of a strategy answering these interrogations is worth
considering.
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A Super-instances generation

This is an example case of generating super-instances and splitting to prevent emergent
conflicts. In Fig. 12a, the clusters of the partition in Fig. 2 are divided into super-instances.
However, some super-instances contain multiple constrained instances, e.g. the green one in
the bottom left, which could lead to conflicts. In Fig. 12b, these super-instances have been
splitted.

(a) Result of generating super-instances through complete-link hierarchical clustering on every cluster.

(b) Final super-instances after splitting. Greyed instances are unconstrained and not used in the CSP.

Figure 12 Exemple preprocessing for super-instance generation on lsun dataset. Instances
sharing a color are represented by the same super-instance. ML constraints are in red, CL constraints
in dashed blue.
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B Incremental NPU

This is the variant of NPU we use in the selection step of IAC. In Algorithm 2, the main
modifications are the removal of the reclustering step of the original NPU, and the output
of the set of constraints obtained from the queries for the modification step. Algorithm 3 is
unchanged and is shown to give a complete view of the algorithm.

Algorithm 2 Incremental NPU.
Input : Dataset D, partition P, oracle
Output : constraint set C

1: C ← ∅ ; l← 1 ; N ← N1 | N1 = {random(D)}
2: x∗ ←MostInformative(D,P,N )
3: for each Ni ∈ N in decreasing order of P (x∗ ∈ Ni) do
4: Query x∗ against any xi ∈ Ni to the oracle
5: if (x∗, xi, ML) then
6: C ← (x∗, xi, ML)
7: Ni = Ni ∪ x∗

8: break
9: else

10: C ← (x∗, xi, CL)
11: if no ML is returned then
12: l + + ; Nl = x∗ ; N ← N ∪Nl

return C

Algorithm 3 MostInformative.
Input : Dataset D, partition P, set of neighborhoods N
Output : most informative data point x∗

1: Learn a random forest classifier using P as labels
2: Compute the similarity matrix M s.t. M [i, j] is the number of leaves where i and j are

together normalized by the number of trees of the RF
3: for each x ∈ U = D \ N do
4: for i = 1 to l do

5: p(x ∈ Ni) =

1
|Ni|

∑
xj ∈Ni

M(x,xj)∑l

p=1
1

|Np|

∑
xj ∈Np

M(x,xj)

6: H(N|x) = −
∑l

i=1 p(x ∈ Ni) log2 p(x ∈ Ni)

7: E(x) =
l∑

i=1
i ∗ p(x ∈ Ni)

return arg max
x∈U

H(N |x)
E(x)
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C Modifications and generalization

For each modified instance (or super-instance), we store its initial cluster membership and its
new cluster membership. This allows the framework to keep a history of modifications and
to easily retrieve the partition at any given iteration. Considering generalization, we also
keep track of the composition of each constrained super-instance. When the COP produces
a solution, Algorithm 4 transmits the modifications from the super-instance to the real data.

Algorithm 4 ApplyModifications.
Input : dataset X , super-instances S, modifications M, partition P
Output : modified partition P ′

1: P ′ ← P
2: for each sp ∈ S do
3: points← {x ∈ X | x ∈ sp}
4: for each p ∈ points do
5: Update the membership of p in P ′ with the corresponding value in M

return P ′

D Bayesian pairwise comparison of IAC configurations

Table 3 Number of wins for each configuration (α, β) using a Bayesian hierarchical model. Values
in parentheses indicate the number of cases where the probability that a configuration has a higher
score is greater than 95%. Values of α and β are in percentage (%).

AUBCquality AUBCsimilarity

(α, β) ARI AMI FMI ARI AMI FMI

(0, 10) 9 (1) 10 (1) 9 (1) 0 0 0
(0, 30) 2 (0) 1 (0) 1 (0) 3 (1) 2 (0) 1 (1)
(0, 50) 0 0 0 6 (3) 6 (2) 4 (2)
(0, 100) 0 4 (1) 3 9 (9) 9 (9) 9 (9)
(5, 10) 10 (3) 10 (3) 10 (3) 1 (0) 1 (0) 1 (0)
(5, 30) 7 (3) 5 (3) 7 (3) 4 (2) 4 (1) 3 (1)
(5, 50) 1 (0) 2 (0) 1 (0) 6 (4) 6 (3) 4 (2)
(5, 100) 5 (2) 4 (0) 5 (1) 9 (9) 9 (9) 9 (9)
(20, 10) 10 (7) 10 (6) 10 (6) 1 (1) 2 (1) 1 (0)
(20, 30) 8 (3) 6 (3) 7 (3) 4 (2) 4 (2) 3 (1)
(20, 50) 4 (1) 3 (1) 4 (1) 6 (5) 6 (4) 6 (4)
(20, 100) 5 (2) 7 (3) 5 (1) 9 (9) 9 (9) 9 (9)
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But also explaining formal models themselves, such as constraint programs and satisfiab-
ility problems [37], is of high importance. Although individual constraints typically have
a clear meaning, their interaction can be highly non-trivial, which led to the development
of explanation methods for constraint programs [21]. A prominent branch of explainable
constraint solving is occupied with explaining why a set of constraints is unsatisfiable. Most
of these methods [30, 32, 26, 28, 31, 25, 29] extract a minimal unsatisfiable subset (MUS):
a (minimal) subset of the constraints that renders the problem unsatisfiable. Such a MUS
provides a user with a (potentially large) subset of constraints that yield inconsistency.
Recently, there has been work on guiding users with respect to what can be done to restore
feasibility [22, 39], but there is a lack of tools to better explain why a problem is inconsistent.

In a sense, traces or proof-logs of a solver (as common in SAT [24] and recently also
finding its way into richer formalisms [2, 18, 3, 8, 4]) provide an explanation of why a model
is unsatisfiable. Still, they would quickly overwhelm a user, as it involves constraint reformu-
lations, auxiliary variables, and branching decisions. Other solver-generated explanations can
be extracted from highly effective Lazy Clause Generation solvers [34] combining constraint
propagation and SAT solving. In this setting, every propagation is explained by adding a
clause to the SAT solver. However, these kinds of explanations are by nature restricted to
explaining the propagation of a single constraint. Instead, we start from step-wise explana-
tions [7, 15] where each explanation step in a sequence refines a partial assignment, using a
minimal set of constraints as well as facts derived in previous steps.

These step-wise approaches were developed in the context of explaining the unique solution
of satisfiable logic puzzles. Each step explains why a certain variable in the unique solution
took that specific value. An example is explaining how to solve a Sudoku-puzzle [13, 20]
where each step derives the value of a cell in the solution. In this context, the number of
explanation steps is at most the number of variables in the problem.

But this explanation framework can be applied more broadly to constraint satisfaction
problems (CSPs), in particular also to those that are unsatisfiable. A step-wise explanation
of an over-constraint model allows to debug it, by listing steps similar to a debugger for
programming languages. Each step shows a (preferably small) subset of constraints causing
the removal of allowed values in variables domains, up to where a conflict is derived.

In contrast to explanation sequences for satisfiable problems, in the unsatisfiable case, only
a subset of the variables and derived values contribute to the conflict and should therefore
be explained. Therefore, directly applying the step-wise explanations framework to this new
setting results in overly complex explanations.

Furthermore, finding the shortest sequence of explanations is a hard problem. A recent
paper [6] touches upon the complexity of finding the shortest sequence of arc-consistency
propagations steps. In that setting, the goal is to explain the full result of the arc-consistency
algorithm. In the general case, where other/stronger propagation algorithms are used to find
propagation steps, the problem may become even harder.

In this paper, we do not consider finding the best explanation sequence. Instead, we
investigate how to find good – interpreted here as short and with small steps – step-wise
explanations in the context of explaining why a CSP is unsatisfiable. The proposed techniques
also apply to explaining the objective value of an optimization problem, explaining the
solution(s) of constraint problems, and can be of use in interactive configuration problems
[23].

For this, we contribute the following:
1. For the first time, we consider the quality of explanation sequences as a whole;
2. We formalize the properties that good explanation sequences, and explanation steps from

which they are built, should adhere to;
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3. We propose a new normal form for explanation sequences;
4. In sections 5 and 6 we propose new algorithms to simplify sequences in this normal form;
5. We show our methods significantly simplify explanation steps and sequences compared to

current approaches.

2 Preliminaries

We now formalize constraint satisfaction problems and step-wise explanation sequences as
used throughout this paper.

2.1 Constraint Satisfaction Problems (CSPs)
▶ Definition 1 (CSP). A CSP is a triple (X ,D, C) [37] with
X a set of variables;
D a set of domains Dx of allowed values for each variable x of X , i.e., D = {Dx | x ∈ X};
C a set of constraints, each over a subset of the variables.

A full assignment to a CSP (X ,D, C) is a mapping such that each variable takes a value
from its domain. A constraint is a function mapping full assignments to true or false, typically
described by a formula (e.g., x + y ≥ 1). A constraint is satisfied by a full assignment if
it maps the constraint to true. A solution to a CSP is a full assignment satisfying all
constraints in C. A CSP is unsatisfiable if it has no solution. A set of constraints S is a
logical consequence of another set S ′ if all solutions to S ′ are solutions to S – written as
S ′ |= S. Constraints can be arranged in a constraint graph where nodes represent variables
that are connected by an edge if they co-occur in a constraint.

For the remainder of this paper, we assume the set of variables and their domains are
known. A positive literal is an equality x = v and a negative literal is an inequality x ̸= v for
variable x and value v. Negative literals represent the constraint that a variable cannot be
assigned to some value from its domain. We will often employ sets of negative literals, where
we use x ∈ R as a shorthand for {x ̸= v | v ∈ Dx \ R}. For example, with Dx = {0, 1, 2, 3},
x ∈ {1, 2} means the negative literals {x ̸= 0, x ≠ 3}. In other words, x ∈ R denotes a set of
negative literals enforcing that x can only take values remaining in R. Note that a positive
literal x = v is equivalent to the set of negative literals x ∈ {v}. For the remainder of this
paper, literals are assumed to be negative unless explicitly mentioned otherwise. With ⊥
we denote the trivial inconsistency, i.e., the singleton set containing the literal false.

For simplicity, this paper only uses integer domains for variables. An integer domain is
represented as either a finite range with a lower and upper bound, or an enumerated set.
E.g., the range [0..3] and the set {0, 1, 2, 3} are identical. All ideas and algorithms in this
paper apply to non-integer finite domains as well.

Given a set of constraints partitioned in soft constraints and a set of hard constraints, a
minimal unsatisfiable subset (MUS) is a subset of the soft constraints that is unsatisfiable
in conjunction with the hard constraints, and for which all strict subsets are satisfiable in
conjunction with these hard constraints. MUS-calculation techniques are a well-studied
research field and several algorithms for this exist [25, 32]

2.2 Step-wise explanations
The step-wise explanation framework was introduced in the context of first-order logic
and Boolean satisfiability [10, 9, 7, 15]. We here reinterpret it from a finite-domain CSP
perspective.
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Given a CSP (X ,D, C), an explanation step is a triple (E ,S,N ), where the input E and
the output N are disjoint sets of literals, and S ⊆ C is the constraint subset, such that
E ∪S |= N . Informally, an explanation step consists of a subset of constraints which, together
with some input literals, imply “new” output literals.

Given a CSP (X ,D, C), a target set of literals T and a given set of literals G, an explanation
sequence of length n from G to T is a sequence ⟨(Ei,Si,Ni)⟩1≤i≤n of explanation steps where
Ei ⊆ G ∪

⋃
1≤j<iNj and T ⊆ G ∪

⋃
1≤j≤nNj . Informally, an explanation sequence is a

sequence of explanation steps where each step derives some new literals and can do so using
G as well as previously derived outputs. Eventually, the sequence should derive all literals in
T . As a whole, an explanation sequence explains how a target set is entailed by the union of
a given set and the constraints of a CSP.

For satisfiable CSPs with a unique solution, we can let T be a unique variables assignment.
In general, we can set T to the intersection of all solutions. An explanation sequence where
G = ∅ and T is inconsistent explains a CSP’s unsatisfiability.

We say an explanation step derives or explains a literal l if l ∈ N , and a sequence derives
or explains a literal if one of its steps does.

The maximal output for an input E and constraint subset S is the set of all literals
implied by E ∪S, minus E . The maximal output can be calculated using a FullPropagate
algorithm which finds the set of literals that are true in all solutions to the constraints.
Such a FullPropagate function is implemented in multiple systems such as the Answer
Set Programming system Clasp [16], the IDP system [11], and more recently in the pseudo-
Boolean solver Exact [12, 14].

▶ Definition 2 (Maximal sequence). An explanation step (Ei,Si,Ni) in a sequence is maximal
if (1) Ei is the union of all previously derived literals and the given set, i.e., Ei = G ∪

⋃
j<iNj ,

and (2) Ni is the maximal output of Ei and Si. An explanation sequence where all steps are
maximal is a maximal sequence.

Given a sequence of constraint sets ⟨Si⟩1≤i≤n and a given set G, the maximal step-
wise explanation sequence is the unique sequence ⟨(Ei,Si,Ni)⟩1≤i≤n where all explanation
steps are maximal. Clearly, maximal sequences contain much more input/output literals
than a user would care about. Moreover, calculating the maximal output of a step using
FullPropagate is an expensive operation. In the general case, any sound propagation
algorithm can be used to calculate the output of a step, but using a maximal one will provide
us with a useful normal form.

▶ Example 3. Consider the following unsatisfiable CSP and explanation sequences which we
will use as a running example:
X = {x, y, z, v, w}
D = {Dx = Dy = [1..3], Dz = Dv = Dw = [0..3]}
C = {x + y + z ≥ 7, x + y + w ≤ 4, x ≤ v, v + z ≤ 3}

3 Greedy initial sequence construction

Naively, generating explanation sequences involves constructing sequences of explanation
steps that neatly match each other’s input and output. In existing work [7, 15], explanation
sequences are constructed using an iterative loop that greedily searches for the best next
explanation step to add. Each individual step in the explanation sequence is optimal with
respect to an assumed cost function or heuristic. This cost function for example takes into
account the number of constraints and the number of input literals used for each step.
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Table 1 Two explanation sequences for the same unsatisfiability for G = ∅ and T = ⊥.

(a)

i E S N

1 ∅ x + y + z ≥ 7 z ̸= 0

2 ∅ x + y + z ≥ 7
x + y + w ≤ 4

z ∈ [3..3]
w ̸= 3

3 z ∈ [3..3] x ≤ v

v + z ≤ 3 ⊥

(b)

i E S N

1 ∅ x + y + z ≥ 7
x + y + w ≤ 4 z ∈ [3..3]

2 ∅ x ≤ v v ∈ [1..3]

3 v ∈ [1..3]
z ∈ [3..3] v + z ≤ 3 ⊥

To find a set of constraints and literals that explains a new literal n, given a sequence of
i − 1 previous steps, we can extract an unsatisfiable subset from C ∪ G ∪

⋃
j<iNj ∪ {¬n}.

This is precisely what is done in the algorithms presented in [7], by enumerating subsets S of
increasing size and finding a small MUS in this way for each literal to explain.

Such a construction method works well for explaining unique solutions, where the target
contains all consequences of the CSP. However, for arbitrary target set, a literal might be
derivable with a simple step, but deriving that literal doesn’t bring us any closer to explaining
the target. Nevertheless, literals that do not appear in the target may well be useful to build
other intermediate steps with. Balancing which literals (and their associated explanation
steps) to include in the sequence, or to exclude, will be a crucial theme in the next sections.

We propose a greedy sequence construction algorithm inspired by [7]. Given a CSP
(X ,D, C), a given set G and a target set T , Algorithm 1 Construct-greedy describes
our construction algorithm. It keeps track of an input set E that contains the union of
G and all literals explained so far. Using this set of input literals, it iteratively tests if
constraint subsets S ⊆ C of growing size |S| = i can produce an explanation step. For this,
the algorithm calculates the maximal output N for E ∪S for which E ∪S |= N and N ∩E = ∅
using a FullPropagate routine. If this output set N is not empty, i.e., a new literal could
be derived, it adds the step (E ,S,N ) to the sequence, extends E with N and resets the
constraint subset size i. This process is repeated until the target has been explained (T ⊆ N )
and the sequence is finished.

Notice the algorithm is guaranteed to terminate as S grows in every iteration. Eventually,
S will be equal to C if no smaller subset was able to derive a new literal. Of course, we here
assume G ∪ C |= T .

▶ Example 4. The table below shows a maximal explanation sequence with given set G = ∅
and target set T = ⊥ for the following unsatisfiable CSP:
X = {p, q, r, s}
D = {Dp = Dq = Dr = Ds = [0..3]}
C = {p + q ≤ 1, q + 2r ≤ 4, 3s + p + r ≤ 1, alldiff(p, q, r, s)}

3.1 Properties
▶ Lemma 5. For each step (E ,S,N ) in a sequence generated by Construct-greedy, and
for each S ′ ⊊ S, the maximal output for S ′ and E is empty.

Otherwise Construct-greedy would have picked S ′ to form a step with E . A direct
consequence of this is that the sequences constructed by Construct-greedy are atomic:

▶ Property 1 (Atomic). An explanation step (E ,S,N ) is atomic if no explanation sequence
from E to N exists in which each step uses a strict subset of S. An explanation sequence is
atomic if all its steps are.
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Algorithm 1 Construct-greedy .

Input: CSP (X ,D, C), given G, target T
1 Seq ← empty sequence
2 E ← G, i← 0
3 while true do
4 forall S ⊆ C where |S| = i and Connected(S) do
5 N ← FullPropagate(E ∪ S) \ E
6 if N ̸= ∅ then
7 extend Seq with (E ,S,N )
8 E ← E ∪ N , i← 0
9 if T ⊆ E then

10 return Seq
11 break
12 i← i + 1

Table 2 A maximal sequence that could have been constructed by Construct-greedy.

i E S N

1 ∅ p + q ≤ 1 p ∈ [0..1]
q ∈ [0..1]

2 p ∈ [0..1]
q ∈ [0..1] q + 2r ≤ 4 r ̸= 3

3 p ∈ [0..1]
q ∈ [0..1] r ̸= 3 3s + p + r ≤ 1 r ̸= 2

s ∈ [0..0]

4 p ∈ [0..1] q ∈ [0..1]
r ∈ [0..1] s ∈ [0..0] alldiff(p, q, r, s) ⊥

The third step of the first sequence of Example 3 is not atomic: it can be split into two
steps over x ≤ v and v + z ≤ 3 each, as is done in the second sequence of the same example.

We believe this property is desirable for easy-to-understand explanation sequences as it
requires each explanation step to be as small as possible. Note that explanation sequences
generated by the literature [7, 15] also exhibit atomicity.

3.2 Efficiency optimizations

The two main bottlenecks in this algorithm are enumerating large subsets of constraints and
calculating the maximal output N for a given E and S. To improve runtime, we employ
two efficiency optimizations. First, we cache calls to the FullPropagate routine. When
a maximal output call for some E and S is repeated, the output is just taken from the
cache. This is useful as the domains of many variables are unchanged between calls and the
propagation only considers the literals from E with regard to the variables occurring in S.

A second optimization inspects the constraint graph of each enumerated subset S using
the Connected function call on line 4 in the algorithm. This function checks if the constraint
graph is connected. If not, the graph can be split up into two or more components Sc and
the maximal output N for S and E is exactly the union of the maximal outputs Ni for each
component Sc and input E . By Lemma 5, all smaller Sc did not imply any new literal, so S
cannot imply any either. Naturally, this means Construct-greedy can skip subset S.
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3.3 Comparison to literature
The idea of Construct-greedy is similar to the first literature approach [7]: iterate over
increasingly larger subsets S ⊆ C and check whether an explanation step (E ,S,N ) exists.

In contrast to [7], Construct-greedy always greedily picks the first explanation step
that can derive at least one unexplained literal to add to the explanation sequence, instead
of generating multiple candidates and picking the optimal one under some quality function.
The reasons for this difference are twofold: a simpler algorithm and less computational effort
per step. Compared to logic puzzles, which are aimed to be solved by humans and contain
at most hundreds of literals, for arbitrary CSPs the literals can easily grow into the millions
(e.g., for large integer domains), so efficiency is more of a concern here. This is also the
reason we do not employ the second literature approach [15], whose algorithm computes the
optimal next explanation step according to a linear cost function directly, without explicit
enumeration, by exploiting the hitting set duality between MUS’s and correction subsets.

Still, by iterating over small constraint subsets first, Construct-greedy adds steps that
employ a small set of constraints, which is preferred to easily understand the explanation [7].

Note that Construct-greedy constructs maximal sequences. This contrasts with the
literature approaches which minimize the input literals for each step during construction.
The motivation for this difference is that we first want to minimize the number of steps and
the number of constraints for each step. The more literals are derived by a step, the more
literals future steps can use as input. Thereby potentially needing fewer constraints to derive
new literals. Moreover, by deriving more literals in a single step, the quicker we might reach
the target set.

One can also minimize the number of input literals for each step in the sequence during
post-processing of the sequence, thereby simulating the sequences produced by literature
approaches in terms of input literals [7, 15]. In Section 7, this is precisely what is denoted as
Filter simple.

4 Simple post-processing

In this section, we consider two straightforward ways to simplify explanation sequences
requiring little to no computational effort.

4.1 Looseness
For an explanation sequence to be interpretable, we deem the length of the sequence to be an
important metric. Each step in an explanation sequence requires effort by a user to process
and understand. Naturally, this means no loose steps should be part of the sequence:

▶ Property 2 (Loose). Given an explanation sequence ⟨(Ei,Si,Ni)⟩1≤i≤n of T from G, the
step (Ej ,Sj ,Nj) is called loose if ⟨(Ei,Si,Ni)⟩i̸=j still forms an explanation sequence of T
from G. An explanation sequence is loose if one of its steps is loose.

A step is loose if it can be left out of the sequence. This is the case for instance when
none of a step’s output literals is used as input for later steps or is part of the target set.

The first step in the sequence 1a of Example 3 is loose, as it can just be removed without
impacting the sequence. In sequence 1b of that same example, no loose steps are present as
at least one output of each step is used later on.

Existing approaches [7, 15] focused mostly on explaining a unique solution of a CSP,
where every step derives at least one yet unexplained literal of that unique solution. This
means every step is guaranteed to derive a literal in the target set. However, [7] also describes
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nested explanations. These clarify a single explanation step (E ,S,N ) by creating a new
explanation sequence from S with E and the negation of N as the given set, and ⊥ as target
set. The construction of nested explanations in [7] may lead to loose steps.

Loose steps are easy to detect in a sequence and can simply be removed from the
explanation sequence until none remain.

4.2 Pertinence
After constructing a sequence and filtering out loose steps, the output of a step may still
contain irrelevant literals as not all output literals have to be used later in the sequence.
This requires a user to “waste” effort in understanding why useless literals are implied by
the step. Clearly, this is undesired, motivating the following definition.

▶ Property 3 (Pertinent). An explanation sequence is pertinent if (i) G and the Ni are
pairwise disjoint, and (ii) all output literals are part of the target or the input of some
following step.

The first condition states that each literal should only be derived once (and obviously,
given literals should not be rederived). The second condition states that everything we
derived should be used. To transform an explanation sequence into a pertinent one, we can
simply loop over the sequence and remove any outputs not satisfying any of the conditions
in the definition. Removing loose steps from a pertinent sequence corresponds to removing
steps with an empty output set. In Example 3, the first step of sequence 1a is not pertinent,
as the literal w ̸= 3 in its output is not part of any input or of the target. For satisfiable
CSPs, the algorithms described in the literature [7] are guaranteed to produce a pertinent
explanation sequence, but not so for unsatisfiable CSPs.

5 Relaxation-based filtering

Informally, a sequence is pertinent if it derives only those literals that are (indirectly) needed
for the target. However, a step in a sequence may also contain input literals that are not
needed to derive its output. Naturally, this is an undesired property of explanation steps as
it requires the user to process more literals than needed.

▶ Property 4 (Sparse). An explanation step (E ,S,N ) is sparse if no step (E ′,S,N ) with
E ′ ⊊ E exists. An explanation sequence is sparse if all its steps are.

The sequence of Example 4 contains non-sparse steps, e.g., the second step does not need
the literals p ∈ [0..1] as input to derive z ̸= 3. The sequences in Example 7 are both sparse.

Previous approaches [7, 15] construct explanation steps by minimizing the input E , making
the resulting steps and sequences sparse. In contrast, Construct-greedy constructs a
maximal sequence which typically has non-sparse steps due to non-useful output literals of
previous steps. We address this by a relaxation-based filtering algorithm, which calculates a
so-called relaxation for each step.

▶ Definition 6 (Relaxation). A relaxation of a step (E ,S,N ) is a step (E ′,S,N ) with E ′ ⊆ E .

An explanation step is sparse if and only if it allows no strict relaxations. Given a set
of implied literals N , let ¬N be the constraint denoting that at least one of the literals in
N is false, i.e., ¬N =

∨
x ̸=v∈N x = v. Then, (E ,S,N ) is sparse if for every subset E ′ ⊊ E it

holds that E ′ ∪ S ∪ {¬N} is satisfiable, as in that case, E ′ ∪ S ̸|= N and E ′ cannot form a
relaxation for (E ,S,N ).
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Algorithm 2 Relaxation-based filtering.

Input: Explanation sequence Seq, given set G, target set T
1 Req ← T \ G
2 for (Ei,Si,Ni) ∈ reverse(Seq) do
3 Ni ← Req ∩Ni

4 if Ni is empty then
5 drop (Ei,Si,Ni) from Seq
6 else
7 Ei ←MUS(soft : Ei, hard : Si ∪ {¬Ni})
8 Ni ← FullPropagate(Ei ∪ Si)
9 Req ← ((Req \ Ni) ∪ Ei) \ G

To calculate sparse steps, we need to find a relaxation for each step. For this, we can
calculate a MUS with E as soft constraints and S ∪ {¬N} as hard constraints. This MUS is
a subset of E that yields a sparse step.

A straightforward algorithm to make all steps sparse would be to iterate over the steps
and calculate such a MUS. However, the disadvantage of this is that sequences may no longer
be pertinent: if the input of some step is reduced, then the output of a previous step may
no longer be needed. And conversely, naively making a sequence pertinent may make it no
longer sparse, as a smaller output for a step may reduce the number of input literals needed.

Instead, we propose a method that makes a sequence sparse by relaxing its steps from
back to front. Additionally, this will make some steps loose, allowing the method to remove
these steps. Hence, we call it Relaxation-based filtering.

Algorithm 2 shows the pseudocode. It loops from back to front over the sequence and
keeps a set of required literals Req that still need to be explained by some step earlier in the
sequence. Req is initialized as the target set T . For each step in the sequence, the algorithm
first keeps only those output literals that are also in Req, since keeping more would make the
sequence non-pertinent (they are not required for the rest of the sequence). Next, it relaxes
the step by calculating a MUS.

In the general case, many such MUSes may exist, and choosing one MUS over the other
can have a profound impact on the sequence. This is clearly visible in Example 7 where the
difference between both sequences arises from choosing a different MUS to relax the last step.

In this setting, we want a MUS allowing us to keep the set of required literals Req as
small as possible. The reason for this is twofold: we want to keep future relaxations as small
as possible and increase the number of detected loose steps. To compute a MUS satisfying
this preference, we can split the calculation into two parts: first, minimize the extra input
literals needed, and next minimize the subset of Req. Other techniques for this exist and
include the OCUS-algorithm from [15].

The above process yields a sparse step deriving all required literals the step originally
derived. However, the sparse input and constraints may imply more output literals than the
originally new literals. To detect this, we make N maximal in line 8 of the algorithm. Any
output this step can derive in this way can be removed from Req. But any input the step
uses should be added to Req. This is what happens in the last line.

Relaxation-based filtering guarantees sparsity by design since the input of each
step is generated by a MUS call. Transforming the sequence into a pertinent one can be
done trivially by removing literals from each N if they are not used later in the sequence or
if they are derived as well at some point earlier in the sequence, as argued in Section 4.2.
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Ensuring pertinence of this sequence in this way will not break sparsity in case the original
sequence was maximal (which is guaranteed by our construction). To see this note that by
definition in a maximal sequence, each literal is derived as soon as it can possibly be derived.
Hence, any literal in N after Line 3 of the algorithm will not be derived at any earlier point
in the sequence. Since these literals are required, they are part of some later input, and
hence will not be removed from the output. For this reason, the step will stay sparse after
making the sequence pertinent.

If the input sequence was maximal, then after Relaxation-based filtering and
making the sequence pertinent, there will also be no loose steps. To see this, note if
Relaxation-based filtering keeps a step, it is because some of its newly derived literals
were required. If the input sequence is maximal, all literals are derived as early in the
sequence as possible, meaning that this literal will not be derived earlier (and hence the
pertinence making of the sequence will never remove it).

▶ Example 7. Below are two filtered versions of the maximal sequence in Example 4

Table 3 Two sparse explanation sequences that could be produced using
Relaxation-based filtering by filtering the maximal sequence of example 4.

i E S N

1 ∅ p + q ≤ 1 p ∈ [0..1]
q ∈ [0..1]

2 ∅ 3s + p + r ≤ 1 r ̸= 2, r ̸= 3

3
p ∈ [0..1]
q ∈ [0..1]
r ∈ [0..1]

alldiff(p, q, r, s) ⊥

i E S N

1 ∅ 3s + p + r ≤ 1
p ∈ [0..1]
r ∈ [0..1]
s ∈ [0..1]

2
p ∈ [0..1]
r ∈ [0..1]
s ∈ [0..1]

alldiff(p, q, r, s) ⊥

6 Deletion-based filtering

The techniques proposed so far are essential to make explanation sequences more easily
understandable by users. The experiments in Section 7 will show that Relaxation-based
filtering significantly reduces the number of steps for many sequences. However, more
steps could be removed if we allow to change the input and output of other, later steps.
In the left sequence of Example 7, step 1 can be omitted from the sequence, as shown
on the right in that same example. However, depending on the exact MUSes (and hence,
relaxations) calculated by Relaxation-based filtering, it may miss this, and the step
remains redundant.

▶ Property 5 (Redundant). Given an explanation sequence ⟨(Ei,Si,Ni)⟩1≤i≤n of T from G,
the step (Ej ,Sj ,Nj) is redundant if the maximal explanation sequence arising from G and
⟨Si⟩i̸=j is an explanation sequence of T . An explanation sequence is redundant if one of its
steps is redundant.

Intuitively, a redundant step is a step for which all useful literals it derives could also
be derived by later steps in the sequence. The first and second steps in Example 4 are
redundant, as there exists a maximal sequence with the constraints of steps three and four:
it is exactly the right sequence of Example 7.

The literature approaches [7, 15] may very well lead to redundant sequences, as once a
step is added to the sequence under construction, no check is later made whether the step
could be subsumed by one added later. Notice this also holds for the application of explaining
the unique solution of a logic puzzle, whereas loose steps could not occur in that setting.
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Algorithm 3 Deletion-based Filtering.

Input: Explanation sequence Seq with maximal inputs and outputs, given set G,
target set T

1 for (Ei,Si,Ni) ∈ reverse(Seq) do
2 let Sub be a copy of Seq from i + 1 to end
3 if TryDeletion(Ei, Sub) then
4 shrink Seq to size i− 1
5 append Sub to Seq
6 Function TryDeletion(Ei, Sub):
7 Ni ← ∅
8 for (Ej ,Sj ,Nj) ∈ Sub do
9 Ej ← G ∪ Ej−1 ∪Nj−1

10 Nj ← FullPropagate(Ej ∪ Sj)
11 if T ⊆ Nj then
12 return True
13 return False

Algorithm Deletion-based filtering filters redundant steps. For this, it assumes a
maximal sequence as input – if not, the sequence can be made maximal by a linear iteration
over all steps from front to back. Next, Deletion-based filtering iterates over the
sequence from back to front. In every iteration, it leaves out the current step, calculates the
resulting maximal explanation sequence, and checks if it still explains the target. Calculating
the resulting maximal sequence requires a call to a full propagation routine for E ∪S for each
later step to derive the new outputs.

In the worst case where no step can be removed from a sequence of length n, this results
in n(n− 1)/2 calls to a full propagation routine. Although the pseudo-Boolean solver Exact
allows for stateful computation of these maximal outputs, this remains a computationally
expensive task and several optimizations are needed to make the algorithm work in practice,
as we now explain.

6.1 Necessary condition on the existence of a sequence
For a maximal sequence with given set G and target set T , Deletion-based filtering has
to check for a step (Ei,Si,Ni) whether the maximal sequence determined by ⟨Sj⟩i<j≤n and
Ei as given set, still derives T . A necessary condition is that Ei ∪

⋃
i<j≤n Sj |= T – if not, T

cannot be explained with just the constraints from the remaining steps in the sequence. This
can be checked via a simple solve call with the constraints Ei ∪

⋃
i<j≤n Sj ∪ ¬T . In case this

returns a solution, step i cannot be dropped from the sequence.

6.2 Partial propagation
Full propagation – calculating the maximal output of a step – is an expensive operation.
However, weaker and more efficient propagation algorithms are researched [5, 38] and are im-
plemented in several state-of-the-art constraint solvers. When Deletion-based filtering
has to check whether a target set T can be derived by the maximal sequence arising from
⟨Si⟩j≤i≤n and given set Ei, it can first compute a “partial maximal” sequence using a com-
putationally cheaper propagation algorithm. If the target set is explained according to this
weaker sequence, it also will be explained by the maximal sequence, so the step can be
dropped and Deletion-based filtering can continue to the next iteration.
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6.3 Caching
As explained in Section 3.2, we can cache the result of calls to a full propagation algorithm.
In addition, we can cache the result of computing a maximal sequence (containing multiple
maximal outputs), and we can cache the result of checking the necessary condition for a
maximal sequence as described in Section 6.1. These caching strategies become particularly
useful given the monotonicity of entailment, as formalized in the following lemma.

▶ Lemma 8. For any set of constraints S and any two sets of literals E ⊆ E ′, if E ∪ S |= N
then E ′ ∪ S |= N .

This entails that if a maximal sequence determined by ⟨Sj⟩i<j≤n with given set Ei entails
a target set T , so will the maximal sequence using the same constraints with a superset of Ei.
Conversely, if that maximal sequence does not entail T , neither will the maximal sequence
with any subset of Ei.

We propose to generate explanation sequences using Construct-greedy and filter these
sequences using Deletion-based filtering so no redundant steps remain. Lastly, these
non-redundant sequences need to undergo Relaxation-based filtering so all steps are
made sparse and can be made pertinent. In Appendix A, we construct a formal argument
to prove why this pipeline ensures atomicity, sparsity, pertinence and non-redundancy for
general explanation sequences.

Notice that filtering explanation sequences using Deletion-based filtering can po-
tentially filter more steps compared to Relaxation-based filtering but may increase the
complexity of individual steps as more literals are used/explained at a time. Nevertheless,
the constraint sets of each step are not altered by any of the algorithms we proposed. These
are entirely determined by the construction algorithm.

7 Experimental results

We evaluate and review the algorithms and ideas presented in previous sections using three
benchmark sets consisting of unsatisfiable CSP instances.

Sudoku. 50 9x9 sudoku instances in which an empty cell is given a wrong value, such that
this variable assignment is non-trivial, i.e., it does not directly falsify any constraint. The
original puzzles were generated by the QQwing [35] tool using the “Intermediate” difficulty
setting. The sudoku constraints are modelled with AllDifferent global constraints.

Jobshop. 50 jobshop instances generated by the approach in [40] with 5 machines and 5
tasks per job. The time horizon is equal to 50 units. Unsatisfiability arises from restricting
the makespan to a better-than-optimal value. All instances are modelled using Cumulative
constraints [1] as is usual in scheduling problems.

Debug. Using the diverse set of CSP models from Håkan Kjellerstrand,2 we construct a set
of 202 unsatisfiable CSPs by introducing artificial errors in the models to mimic a modelling
error by a user – an unsatisfiability bug. We follow a similar approach to [29]. The errors are
introduced such that each constraint separately remains satisfiable.

2 http://www.hakank.org/cpmpy/
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These three benchmark families correspond to three use cases where step-wise explanations
can be of help. Sudoku simulates the counterfactual explanation provided during an
interactive collaboration (e.g., [23]) by a human agent and an automated system. Here the
user wants to know why the system derived that a certain value was no longer possible for a
certain value. Jobshop corresponds to explaining to a user why an inferred objective value
is optimal for some optimization problem. Debug simulates the situation where a user is
modelling a CSP but discovers the model has no solutions and the user needs to “debug” it.

For every instance, we compute three explanation sequences using different random seeds.
As metrics, we consider the number of steps in sequences, as well as the complexity of
individual steps. This first metric is different from what literature approaches consider [7, 15]
as in their use-case of explaining a unique solution, they focus only on the complexity of
individual steps.

RQ1. How many redundant steps do explanation sequences of unsatisfiable CSPs contain?
RQ2. How well can the proposed filtering techniques simplify explanation sequences?
RQ3. How much time do the proposed algorithms take to run?
RQ4. How does simplifying the set of input constraints affect the explanation sequence?

7.1 Experimental setup
All experiments were run on a single core of an Intel(R) Xeon(R) Silver 4214 CPU with 128GB
of RAM. FullPropagate is handled by the stateful pruneDomains functionality of the Exact
solver [12, 14] v1.0.0.3 Partial propagation is calculated with OR-Tools [36] v9.6 presolve
routine. All algorithms are implemented using a custom branch of CPMpy [19] v0.9.12,
embedded in Python v3.10.9. To calculate MUSes we employ the mus tool provided by CPMpy
. Cardinal-minimal MUSes are computed using the hitting-set approach of [25]. All code and
benchmarks are available on GitHub: https://github.com/ML-KULeuven/SimplifySeq

7.2 Approaches under investigation
Throughout this section, we investigate all algorithms and combinations of them presented in
this paper. All sequences are generated using Construct-greedy and are indicated using
Original in each of the plots. By making each step sparse, we can mimic the explanation
sequences generated by approaches described in the literature [7, 15]. This can simply be
done by finding a minimal unsatisfiable subset with hard constraints S ∪ {¬N} and soft
constraints E . Afterwards filtering loose steps and making the sequence pertinent using
the approach described in Section 4 is denoted as Filter simple and is considered current
state-of-the-art. We consider two versions of Relaxation-based filtering differing in
the type of MUS extracted: a MUS and a smallest MUS (SMUS), shown as MUS Relax
resp. SMUS Relax. Lastly, we investigate sequences exposed to the entire pipeline using
Deletion-based filtering and both versions of Relaxation-based filtering. These
are shown as Del + MUS Relax and Del + SMUS Relax.

7.3 Redundant steps
The first research question is straightforward: how many redundant steps are there in naively
generated sequences, and how many can we filter using our proposed techniques? From
Figure 1 it is clear greedy explanation sequences contain a lot of redundant steps. For all

3 https://gitlab.com/JoD/exact git commit 34c4fa46
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Figure 1 Comparison of different filter algorithms in terms of number of steps in the sequence.

benchmarks, the deletion-based method leads the way in terms of the number of steps filtered
from the sequence. The price to be paid is a significant increase in computational effort for
some benchmarks and more complex individual steps as outlined in the next sections. Simple
filtering of loose steps as described in Section 4 is able to reduce the number of steps, but falls
short compared to fully-fledged relaxation-based methods. This is most prominently visible in
the Jobshop benchmark set. Interestingly, both variants of Relaxation-based filtering
(MUS Relax and SMUS Relax) show similar performance in terms of steps left in the
sequence after filtering.

7.4 Complexity of individual steps

3 4 5 6 7 8 9 10
#input literals

 
Filter simple

MUS Relax
SMUS Relax

 
Del + MUS Relax

Del + SMUS Relax

sudoku

10 15 20 25 30 35
#input literals

jobshop

100 101 102

Log #input literals

debug

(a) Comparison in terms of average number of input literals for each step in an explanation sequence.
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Filter simple
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SMUS Relax

 
Del + MUS Relax

Del + SMUS Relax

sudoku
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#output literals

jobshop

100 101 102

Log #output literals

debug

(b) Comparison in terms of average number of output literals for each step in an explanation sequence.

Figure 2 Complexity of individual steps in terms of literals, algorithms producing maximal
sequences are omitted from these plots.

Next, we investigate how different filtering methods compare in terms of input and output
literals for each step. The simple filtering method is able to keep the number of input literals
relatively low. As expected, it again falls short compared to relaxation-based methods as
Filter simple does not modify the set of input literals based on the output literals that are
actually useful. While the deletion-based methods are able to remove more steps, it increases
the number of input literals for the remaining steps compared to relaxation-based methods.
This is similar to the number of output literals, shown in Figure 2b. Deletion-based methods
require steps to derive more output while relaxation-based methods work better for this
metric. We argue this larger number of output literals is less of a concern compared to the
increase of input literals as steps can be split up so they derive fewer literals at a time.
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The left-hand side of Table 4 shows that the number of constraints is low for each
individual step, ranging from 1 to a few constraints propagated at a time. Notice how during
filtering, some steps occupying little constraints are deleted, while the largest step for each
sequence is always present after filtering still.

7.5 Explaining a MUS

Table 4 Effect of explaining a MUS of the unsatisfiable problem instead of all constraints in the
problem. Metrics are shown before filtering → after filtering using Deletion-based filtering.

Explaining all constraints Explaining a MUS
#steps Max |S| Avg |S| #steps Max |S| Avg |S|

Sudoku 79.62 → 26.33 1.00 → 1.00 1.00 → 1.00 46.10 → 27.87 2.04 → 2.04 1.07 → 1.08
Jobshop 118.03 → 35.69 1.02 → 1.02 1.00 → 1.00 96.55 → 38.10 1.35 → 1.35 1.01 → 1.01
Debug 18.70 → 5.91 1.32 → 1.32 1.10 → 1.17 6.86 → 5.51 1.48 → 1.48 1.20 → 1.26

In the literature, the most common way to explain why a model is unsatisfiable is to first
extract a MUS. What happens to step-wise explanations when we first extract a MUS and
build the explanation sequence from that MUS?

The result of this experiment is summarized in Table 4. Here we observe that when
extracting a MUS, the explanation sequence is much shorter before any filtering is applied.
Interestingly, explaining the full CSP may actually lead to shorter sequences after filtering, as
observed for Sudoku and Jobshop. Equally remarkable, limiting the explanation sequence
to a MUS increases the number of constraints used in individual steps. This is most clear from
Sudoku where the maximal number of constraints in a step increases from 1 constraint to 2.04
constraints on average. Intuitively, limiting the constraints with which to build an explanation
sequence to a smaller unsatisfiable subset reduces the ease with which explanations can be
built. E.g., the Sudoku problem contains many redundant constraints that are implied by
some subset of other constraints. Nevertheless, these redundant constraints can be very
useful to elegantly explain something to a user.

7.6 Runtime and optimizations
Figure 3 displays the runtime for each of the filtering algorithms for all benchmark sets. For
Jobshop, the deletion-based method is computationally more expensive compared to any of
the relaxation-based variants. This is not the case for Sudoku and Debug. As Cumulative
constraints are harder to fully propagate compared to AllDifferent constraints, the quad-
ratic number of full-propagation calls is much more prominent for the Jobshop benchmark.
For all benchmarks, calculating a smallest-minimal MUS requires more computational effort
while not impacting the sequence enough to justify this extra cost.

The optimizations implemented for Deletion-based filtering as described at the end
of Section 6 are most effective with the Debug benchmark, where only 7% of the theoretic
number of full-propagation calls are executed. For Sudoku and Jobshop, this is 19% resp.
34%. Overall, the proposed optimizations are necessary to reach the observed performance.

8 Conclusion and Future work

We investigated the problem of step-wise explaining unsatisfiable problems, with applica-
tions in debugging unsatisfiability, explaining optimality, and explanations in interactive
configuration. To ensure a simple step-wise explanation, both the number of steps and the
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Figure 3 ECDF plot relating solved instances to runtime for different filtering algorithms.

number of constraints and literals in each explanation step must be kept low. We proposed
the formal properties of atomicity, pertinence, sparsity, and (ir)redundancy, to which an
explanation sequence should strive to adhere. For this, we proposed a workflow combining
greedy construction, deletion-based filtering and relaxation-based filtering that guarantees
all properties are satisfied.

We presented extensive experimental results comparing current approaches to our proposed
techniques. This showed filtering of explanation sequences is especially essential in the
challenging setting of explaining unsatisfiability and is key in creating easy-to-understand
explanation sequences. Our methods are able to considerably shorten explanation sequences
with deletion-based filtering leading to sequences without any redundant steps. Compared
to relaxation-based techniques which may produce longer sequences, deletion-based methods
may lead to more complex steps after filtering.

For future work, observe that none of the filtering algorithms considered in this paper
alter the set of constraints for explanation steps, nor the order of explanation steps. These
are entirely determined by the construction algorithm. Changing either of these aspects
might further simplify an explanation sequence. We leave these areas for future work, where
both new sequence construction methods and more elaborate post-processing are viable
options to explore.

Finally, the small number of constraints in most explanation steps shows that computing
explanation sequences seem a worthwhile approach to help a user understand unsatisfiable
constraints. Still, the expressivity of explanation steps deserves further study with our results
opening the door for further investigation into what domain experts perceive as “simple”
explanation sequences. User studies or learning techniques can investigate how it helps them
to understand the interplay of complex constraints.
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A Satisfying all desirable properties

To transform a maximal sequence generated by Construct-greedy to one that is sparse,
pertinent, atomic and contains no redundant (and hence no loose) steps, we propose to generate
sequences with Construct-greedy, then filter those with Deletion-based filtering,
finally followed by Relaxation-based filtering.

The application of Relaxation-based filtering in the last step guarantees sparsity.
Modifying the output of steps to guarantee pertinence will not break sparsity as the output
of Deletion-based filtering is maximal (see the argument of Section 5).

After the application of Deletion-based filtering, all redundant steps have been
removed. In other words, for any i, there exists no strict subsequence ⟨Si⟩1≤i≤n,i ̸=j for which
its maximal sequence with the same given set G explains the same target set T . Hence,
Relaxation-based filtering will not actually filter any more steps, as also shown in the ex-
periments in Section 7. Moreover, Relaxation-based filtering does not change any of the
constraint subsets Si, so the maximal sequence after Relaxation-based filtering is equal
to the one after Deletion-based filtering. Therefore, Relaxation-based filtering
preserves the guarantee of Deletion-based filtering that no redundant steps exist.

To argue atomicity, we will consider three sequences
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⟨(Ei,Si,Ni)⟩1≤i≤n denotes the sequence obtained after construction,
⟨(E ′

i ,Si,N ′
i )⟩i not deleted the sequence obtained after Deletion-based filtering, and

⟨(E ′′
i ,Si,N ′′

i )⟩i not deleted the sequence obtained after Relaxation-based filtering.
Moreover, we will write Ii (resp. I ′

i, I ′′
i ) for G ∪

⋃
j<iNj (resp. G ∪

⋃
j<iN ′

j , G ∪
⋃

j<iN ′′
j ).

Intuitively, Ii represents the set of all facts available prior to step i. By definition of an
explanation sequence, we have that Ei ⊆ Ii (and similar for the other two sequences).

To argue that (E ′′
i ,Si,N ′′

i ) is still atomic, we first prove four claims.
1. Ii ⊇ I ′

i ⊇ I ′′
i ;

2. N ′
i ⊆ Ii+1 and N ′′

i ⊆ Ii+1
3. For each literal l in Ni \ Ii (i.e., every newly derived literal in step i), and every subset

S ⊊ Si, Ii ∪ S ̸|= l;
4. If step i is not deleted, then N ′

i ∩ (Ni \ Ii) ̸= ∅ and N ′′
i ∩ (Ni \ Ii) ̸= ∅, i.e., at least one

literal that was newly derived at step i is still derived at that step.
Claim 1 follows from the fact that, by construction, the first two sequences are maximal
(in their inputs as well as outputs), and hence derive everything that is derivable at each
point. Since the constraint sets in the three sequences are the same, nothing extra can then
be derived in the trimmed sequences. Claim 2 again follows directly from the fact that the
initial sequence is maximal: what is derived at step i can be at most Ii ∪Ni, which equals
Ii+1. Claim 3 holds by construction: our greedy construction algorithm only generates steps
for which there is no smaller set of constraints that can derive something. Claim 4 holds
since, using Claim 2, if that intersection would be empty, N ′

i would consist only of literals of
Ii, in which case Deletion-based filtering would clearly delete this step.

Now, take any i. We continue to show that (E ′′
i ,Si,N ′′

i ) is in fact atomic. Using Claim 4,
N ′′

i ∩ (Ni \ Ii) ̸= ∅. From Claim 2 it follows that N ′′
i is the union of two sets: O := N ′′

i ∩ Ii

and D := N ′′
i ∩ (Ni \ Ii), where O is the set of literals that were originally “old” at step i

(derived before i) and D are those that were actually derived at step i. By Claim 4, D is
non-empty. Now assume towards contradiction that our step (E ′′

i ,Si,N ′′
i ) is not atomic. In

that case, there is an explanation sequence that derives N ′′
i from E ′′

i in which each step uses a
strict subset of Si. From that sequence, consider the first step that derives an element from D.
By definition, the input of that step can consist at most of E ′′

i ∪O. Since E ′′
i ∪O ⊆ Ei, we find

an explanation step that violates Claim 3, and we can conclude our proof by contradiction.
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1 Introduction

Recent progress in the theory and application of the Boolean satisfiability (SAT) and maximum
satisfiability (MaxSAT) problems has led to the development of high-performance complete
solvers [11, 23, 1, 32, 2, 4, 31] and stochastic local search (SLS) solvers [8, 28, 7, 6, 27, 25, 5, 45].
SAT and MaxSAT solvers can address challenging problems in a wide variety of fields, and
they are usually designed to deal with formulas encoded in conjunctive normal form (CNF).

For problems involving cardinality constraints, CNF solvers usually become ineffective,
since expressing such constraints in CNF would dramatically increase the size of the formula
and introduce many auxiliary variables and clauses [30]. Linear pseudo-Boolean (PB)
constraints provide a more natural and direct way to express cardinality constraints than
CNF. Meanwhile, linear PB constraints stay close to CNF and can benefit from advancements
in SAT solving [33]. In practice, PB constraints occur in many areas, including VLSI design,
economics, computer vision, and manufacturing [43, 44, 33]. The pseudo-Boolean optimization
(PBO) problem is to find a satisfying assignment to a set of PB constraints that minimizes a
given objective function.

1.1 Related Work
Existing pseudo-Boolean solvers are primarily based on complete methods. A number of
PB solvers are based on resolution: they express the PB constraints in CNF and then call
conflict-driven clause learning (CDCL) solvers, such as MINISAT+[13], Open-WBO[29], and
NaPS [34]; alternatively, they deal with the PB constraints but derive new information
only in the form of clauses [17]. CDCL is somewhat limited in its reasoning in that it is
based on a resolution-proof system, for which exponential lower bounds are known for simple
combinatorial principles [20, 15]. Another method requires going beyond resolution and using
cutting planes, which can be found in recent PB solvers such as Sat4j [24], RoundingSat
[14, 12] and RoundingSat-Card [15]. The success of the implicit hitting set (IHS) method
in MaxSAT motivates another work, i.e., the implementation of the PBO-IHS solver for
solving PBO [36, 37]. In addition, since PB constraints can be considered as 0-1 linear
constraints, mixed integer programming (MIP) solvers can be directly applied to solving
PBO. Representative and high-performance MIP solvers include SCIP [16] - one of the fastest
non-commercial solvers, and Gurobi [19] - one of the most powerful commercial solvers.

Stochastic local search (SLS) is recognized to be one of the most powerful techniques
for solving computationally hard problems in many areas of computer science, operations
research, and engineering, and it has shown great success in solving SAT and MaxSAT [22].
In the book [21], a model for local search to solve constraint problems is presented. Somewhat
surprisingly, there are only a few research works on using SLS for solving PBO [3, 39, 26].

Since the introduction of dynamic local search (DLS) methods [35, 9, 40, 41], weighting
schemes play critical roles in the development of high-performance SLS algorithms. Modern
SLS solvers for MaxSAT employ a scoring function defined as the weighted cost of unsatisfied
clauses and incorporate a clause weighting scheme to adjust the weights during the search.
In particular, most SLS solvers for MaxSAT focus on improving the scoring function through
carefully designed weighting schemes. In recent years, the introduction of new weighting
schemes has led to breakthroughs in the SLS algorithms for the (weighted) partial MaxSAT
((W)PMS) problem. The newly proposed weighting scheme, Weighting-PMS, in the SATLike
[25] algorithm significantly improves the performance of SLS for (W)PMS. Currently, the
state-of-the-art SLS algorithms for (W)PMS all employ the Weighting-PMS technique [5, 45].
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It is intuitive that the scoring function commonly used in SLS algorithms for MaxSAT
(i.e., measuring the total weight of all unsatisfied clauses) does not work well for the PBO
problem, because it does not take into account the unsatisfied degree of PB constraints.
Indeed, this issue has already attracted attention in the literature, and a scoring function
that considers the unsatisfied degree of PB constraints is proposed in [42] and can effectively
handle linear PB-constrained problems.

A recent SLS solver called LS-PBO [26] has been proposed for PBO and currently
represents the state of the art in SLS for PBO. For LS-PBO, its scoring function measures
the sum of the product between the degree of violation of all unsatisfied constraints and the
weights of the constraints. However, such scoring function does not consider the balance
between the degree of violation among different constraints. In addition, weighting schemes
have not been applied to PBO until the introduction of LS-PBO. The weighting scheme
in LS-PBO resembles the existing one named Weighting-PMS, which aims to increase the
weights of unsatisfied constraints and the objective function when the algorithm falls into a
local optimum, and to set an upper bound on the weight of the objective function. However,
in the context of PBO solving, the research of designing weighting schemes is still in its
infancy, which urgently calls for more powerful weighting schemes for PBO.

1.2 Contributions
In this work, we focus on improving the performance of SLS for solving PBO. In particular, we
propose two main ideas. The first idea is a novel scoring function that considers the violation
degree of unsatisfied constraints and utilizes a smooth function to balance the violation
degree of different constraints. For each constraint, its smooth function is instantiated as
the average of the coefficients of all variables appearing in the corresponding constraint.
Since our scoring function is equipped with a weighting scheme, our second idea is a novel
weighting scheme for PBO. Rather than setting an upper bound on the weight of the objective
function, we adopt a weighting scheme with a stricter condition for updating the weight of
the objective function.

On the basis of these two ideas, we develop a new SLS algorithm, named NuPBO. We
conduct experiments on 6 benchmarks, which include 3 benchmarks encoded from real-world
applications, and 3 standard benchmarks. On these 6 benchmarks, NuPBO is compared to
5 solvers, including LS-PBO [26], PBO-IHS [37], RoundingSat [12], Gurobi [19], and SCIP
[16]. On the 3 application benchmarks, NuPBO achieves improvement over LS-PBO, and
significantly outperforms other competitors. On the other 3 benchmarks, NuPBO exhibits
competitive performance compared to its competitors, including the commercial solver Gurobi.
This represents a significant advance in the research of SLS solvers for PBO. In addition, we
evaluate the effectiveness of the underlying ideas on all benchmarks.

2 Preliminaries

Given a set of n Boolean variables V = {x1, x2, . . . , xn}, a literal is either a variable xi or
its negation ¬xi. A clause is a disjunction of literals, i.e., ci = li1 ∨ li2 , . . . , ∨lik

, where k

denotes the length of clause ci. A CNF formula F is a conjunction of clauses. An assignment
is a mapping that assigns a Boolean value (True (i.e., 1) or False (i.e., 0)) to each variable.
Given an assignment α, a clause c is satisfied if at least one literal in c is True; otherwise,
c is unsatisfied. Given a CNF formula F , the Boolean satisfiability (SAT) problem is to
decide whether an assignment exists such that all clauses are satisfied, and the maximum
satisfiability (MaxSAT) problem is to find an assignment that maximizes the number of
satisfied clauses.

CP 2023
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A linear pseudo-Boolean constraint (LPB constraint, PB constraint for short) has the
following form:

n∑
j=1

aj lj ▷ b, aj , b ∈ Z (1)

where b is called the degree of the constraint, lj is a literal, aj is the coefficient of lj , n is the
length of the constraint, ▷ is one of the classical relational operators (=, >, ≥, < or ≤), and
Z is the integer set.

For each Boolean variable, xi = 1 − ¬xi. It is important to note that for an equality
constraint, there need to be two normalized constraints to represent it. Therefore, all PB
constraints can be normalized into the following form:

n∑
j=1

aj lj ≥ b, aj , b ∈ N+
0 (2)

where N+
0 is the non-negative integer set [33].

In the following sections, we assume that the PB constraints are of the normalized form.
A PB formula F is a conjunction of PB constraints. An assignment is a mapping that assigns
a Boolean value to each variable. Given an assignment α, a PB constraint c is satisfied if
the corresponding inequality holds under α; otherwise, c is unsatisfied. If an assignment α

satisfies all constraints in F , then we say α is a feasible solution (or solution for short).
A pseudo-Boolean optimization (PBO) instance consists of a PB formula F and a linear

Boolean objective function
∑n

j=1 ej lj + d, ej ∈ N+, d ∈ Z, and the task is to find an
assignment that satisfies all PB constraints in F and minimizes the objective function. Given
an assignment α, we use obj(α) to denote the value of the objective function. Given a
solution α, the cost of the solution α is equal to obj(α). We say a solution α1 is better than
another solution α2, if obj(α1) < obj(α2).

The average coefficient of a PB constraint c is denoted as avgcoe(c) = (
∑n

j=1 aj)/n. The
average coefficient of an objective function o is denoted as avgcoe(o) = (

∑n
j=1 ej)/n. Because

PB constraints must be satisfied in a PBO problem, the PB constraints are referred to as
hard constraints.

Given an assignment α, we define the value of violation of a hard constraint c as

viol(c) = max

0, b −
n∑

j=1
aj lj


In other words, if the hard constraint c is satisfied under α, then viol(c) = 0; otherwise (i.e.,
c is unsatisfied), viol(c) is the integer distance of c from being satisfied. In a PBO instance,
a solution is an assignment, under which all hard constraints are satisfied.

The SLS algorithms that employ constraint weighting schemes usually maintain weight
for each constraint. We use w(c) to represent the weight of each hard constraint c, and w(o)
to represent the weight of the objective function o.

3 Main Ideas

In general, the search directions of SLS algorithms are guided by the scoring function. It is
recognized that the effectiveness of the scoring function could be enhanced through working
with a weighting scheme. In this section, we first propose a new scoring function, and then
design a new weighting scheme to work with it.
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Table 1 The violation and objective value under all assignments of the PBO instance I1 in
Example 3.1.

viol/obj
Assignment (x1, x2, x3)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
viol(c1) 0 0 0 0 4 3 3 2
viol(c2) 1 0 0 0 4 2 3 1
viol(c3) 29 13 14 0 0 0 0 0
obj(α) 1 1 0 0 2 2 1 1

3.1 A New Scoring Function
Given a PBO instance, which consists of n PB constraints (hard constraints) and one objective
function, we assume that the current assignment is α.

Scoring Function in LS-PBO. Before introducing our new scoring function, we first describe
the existing scoring function proposed in LS-PBO [26], which is presented as follows.

For a hard constraint c, the penalty function is defined as penalty(c) = w(c) × viol(c);
then the hard score of a variable x is defined as the decrement of the sum of the penalty
function values of all hard constraints caused by flipping x, which is denoted by hscore(x).
For the objective function o, the value of the objective function is obj(α), and the penalty
function is defined as penalty(o) = w(o) × obj(α); then the soft score of a variable x is
defined as the decrement of the penalty function value of the objective function caused
by flipping x, which is denoted by sscore(x).
The score of a variable x is defined as score(x) = hscore(x) + sscore(x).

An Intuitive View. The above scoring function has a drawback, which is due to its underlying
penalty function. The penalty function above considers the weights and viol (resp. obj)
values of hard (resp. soft) constraints. In this way, it measures the importance of a variable
in a constraint c by the coefficient of the corresponding variable in c. Nevertheless, it should
be noted that, as the value of score(x) is determined by all hard constraints and the objective
function involving x, the above penalty function may overemphasize the importance of x in
constraints with relatively large coefficients, resulting in an unreasonable value of its score.
In the following, we illustrate our intuition through a simple PBO instance.

▶ Example 3.1. Let us consider a PBO instance I1, which consists of three hard constraints
and an objective function: c1 : 4¬x1 + x2 + x3 ≥ 4, c2 : 3¬x1 + x2 + 2x3 ≥ 4, c3 :
29x1 + 15x2 + 16x3 ≥ 29, minimize: x1 + ¬x2. The values of viol of hard constraints and
the value of obj of the objective function under all assignments are presented in Table 1.
Solutions for I1 are those resulting in the zero value of viol for all hard constraints. From
Table 1, the optimal solution is α∗ = (0, 1, 1), and obj(α∗) is 0.

Given instance I1, consider a scoring function without any weighting scheme, or equival-
ently, the weight of each constraint is 1, i.e., w(c1) = 1, w(c2) = 1, w(c3) = 1, w(o) = 1; the
initial assignment α = (0, 0, 0). In accordance with the definition of the scoring function in
LS-PBO, score(x1) = 21, score(x2) = 17, and score(x3) = 17. Actually, in order to optimize
the assignment, SLS algorithms tend to select the variable to be flipped as the one with the
largest score, so in this situation, x1 is picked. After flipping x1, the assignment becomes
α = (1, 0, 0), and the score value of each variable becomes score(x1) = −21, score(x2) = 3,
score(x3) = 3. Then, no matter whether x2 or x3 is flipped, the Hamming distance between

CP 2023
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the current assignment and the optimal solution is the same as that between the initial
assignment and the optimal solution, which is two. The search is not progressing in the
direction towards the optimal solution.

In practice, PBO instances encoded from real-world problems are much more complex
than the given illustrative example. If SLS algorithms conduct the search in incorrect
directions, it would be difficult to identify a promising search space that is more likely to
contain the optimal solution or those close to optimality.

As presented in Table 1, when we focus on the value of viol(c3), for those cases where
the value of viol(c3) is not 0, its value is much larger than the viol value of other hard
constraints. Considering that each hard constraint has a penalty value directly proportional
to its viol value, utilizing scoring function aims to guide the search towards the area with a
lower sum of penalty values. Consequently, through making use of such scoring function,
the algorithms would prefer the falsified literal with the largest coefficient to be True (in
instance I1, under the assumption that the current assignment is (0, 0, 0), this falsified literal
is x1 in the hard constraint c3).

Our New Scoring Function. In our opinion, a good scoring function for PBO should balance
the viol values of different constraints. To this end, we propose to smooth the penalty values
of constraints. For simplicity, we denote the smoothing function of a hard constraint c as
smooth(c), and the smoothing function of the objective function o as smooth(o). Based on
the idea of balancing the viol value, we propose the following, new scoring function:

For a hard constraint c, the penalty function is defined as penalty(c) =
w(c)×viol(c)

smooth(c) ; then the hard score of a variable x is defined as the decrement of the
sum of the penalty function values of all hard constraints caused by flipping x, which is
denoted by hscore(x).
For the objective function o, the value of the objective function is obj(α), and
the penalty function is defined as penalty(o) = w(o)×obj(α)

smooth(o) ; then the soft score
of a variable x is defined as the decrement of the penalty function value of the objective
function caused by flipping x, which is denoted by sscore(x).
The score of a variable x is defined as score(x) = hscore(x) + sscore(x).

In order to instantiate the above scoring function, we propose to use a method for smooth-
ing by using the average of the constraint coefficients, i.e., smooth(c) = round(avgcoe(c)),
smooth(o) = round(avgcoe(o)) (round is a rounding function). Consider the PBO instance
I1 in Example 3.1, which has smooth(c1) = 2, smooth(c2) = 2, smooth(c3) = 20, and
smooth(o) = 1. Assume that each hard constraint and the objective function have a
weight of 1 and the current assignment α = (0, 0, 0). Based on the new scoring function,
score(x1) = −3.05, score(x2) = 2.25, and score(x3) = 1.3. Hence, SLS algorithms would
select variable x2 to be flipped. Flipping x2 would change the current assignment α to (0,1,0),
and the score value of each variable would become score(x1) = −3.3, score(x2) = −2.25,
score(x3) = 0.7. Afterward, SLS algorithms would select variable x3 to be flipped. If x3 is
flipped, assignment α becomes (0, 1, 1), which is the optimal solution of instance I1.

According to this illustrative example, it can be observed that, by using the average of
constraint coefficients to smooth the penalty value, the issue of the large difference among
coefficients of a variable in various constraints can be alleviated, resulting in a more effective
scoring function.
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3.2 A New Weighting Scheme

Combinatorial optimization problems with both hard and soft constraints require effective
weighting schemes that balance the weights of hard and soft constraints. A potential problem
was pointed out in a previous study [10]: the excessive weight given to soft constraints
may make it difficult to satisfy all the hard constraints, thereby hindering the algorithm’s
capability of finding solutions. Moreover, an existing study [38] demonstrates that designing
a weighting scheme for problems with hard constraints is challenging as it requires weighting
unsatisfied constraints while maintaining the distinction between hard and soft constraints.

To alleviate the above problem, the weighting scheme proposed in LS-PBO sets an upper
bound ζ (an integer parameter) to the maximum value of the objective function weight. We
use unsat hard set to denote the set of unsatisfied hard constraints. For a PBO instance
I, the average of the product of the avgcoe(c) and w(c) of all constraints c is denoted as
wavgcoe(I), that is, wavgcoe(I) = (

∑m
i=1(avgcoe(ci) × w(ci)))/m. Assuming that the current

assignment is α, the best solution that has been found is α∗, and its corresponding objective
function value is obj(α∗).

The weighting scheme adopted in LS-PBO is described as follows:

Initialization phase: at the start of the local search process, the weight of each hard
constraint c is initialized as 1, i.e., w(c) := 1; the weight of the objective function o is
also initialized as 1, i.e., w(o) := 1.

Update phase: when the search is trapped in a local optimum (i.e., there is no variable
whose score value is greater than 0), for each c in unsat hard set, w(c) := w(c) + 1; if
obj(α) ≥ obj(α∗) and w(o) × avgcoe(o) − wavgcoe(I) ≤ ζ, w(o) := w(o) + 1, where ζ is a
parameter introduced by LS-PBO.

In fact, the setting of ζ greatly affects the performance of LS-PBO, and if the average of
the coefficients of the objective function is much greater than the average of the coefficients
of the hard constraints, the weight of the objective function basically would not be updated.
In addition, varying the timing of weighting constraints could be a promising strategy to
improve the performance of the weighting scheme.

We propose to deal with these problems by modifying the condition of updating weights.
Specifically, we propose a stricter condition for increasing objective function weight. Our
proposed weighting scheme is as follows:

Initialization phase: at the start of the local search process, the weight of each hard
constraint c is initialized as 1, i.e., w(c) := 1; the weight of the objective function o

is initialized as 0, i.e., w(o) := 0.

Update phase: when the search is trapped in a local optimum (i.e., there is no variable
whose score value is greater than 0), for each c in unsat hard set, w(c) := w(c) + 1; if
unsat hard set is empty, w(o) := w(o) + 1.

In the beginning, the weight of the objective function is initialized as 0, so that the
algorithm would first focus on finding solutions. If the search is trapped in a local optimum,
the weight of the objective function is increased only when the current assignment α is a
solution (all hard constraints are satisfied under α). Accordingly, if the algorithm frequently
visits solutions, then the objective function would have a greater chance to increase its weight.
Otherwise, there would be limited opportunities to increase the objective function weight.

CP 2023
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Algorithm 1 The NuPBO Algorithm.
Input: A PBO instance I, cutoff time.
Output: The best solution (α∗) found and its objective function value obj∗, or “No

solution found”.
1 α∗ := ∅; obj∗ := +∞;
2 while no terminating criteria are met do
3 α := an initial assignment;
4 for each c in hard constraints do
5 w(c):=1;
6 for the objective function o, w(o):=0;
7 L=10000000;
8 for step=0; step<L; step++ do
9 if α is feasible and obj∗>obj(α) then

10 α∗:=α; obj∗:=obj(α); L=step+10000000;
11 if D := {x|score(x) > 0} ̸= ∅ then
12 v:=a variable in D with the highest score;
13 else
14 update constraints weights by the new weighting scheme described in Section 3.2;
15 if ∃ unsatisfied hard constraints then
16 c:=a random unsatisfied hard constraint;
17 v:=the variable whose literal is false with highest score in c;
18 else
19 v:=a randomly chosen variable with sscore > 0;

20 α:=α with v flipped;

21 if α∗ ̸= ∅ then return α∗ and obj∗;
22 else return No solution found;

4 The NuPBO Algorithm

In this section, we develop a new SLS algorithm named NuPBO, which is based on the main
ideas proposed in Section 3. NuPBO adopts the Dynamic Local Search (DLS) framework as
does LS-PBO. The pseudo-code of NuPBO is outlined in Algorithm 1. We use α∗ and obj∗

to denote the best-found solution and the corresponding objective function value (i.e., the
cost of the best-found solution), while α denotes the current assignment which is maintained
during the search.

In the beginning, α∗ is initialized as an empty set, and obj∗ is initialized as +∞ (Line 1).
NuPBO then iteratively calls the local search process until reaching a terminating criterion
(e.g., reaching a preset cutoff time, or achieving a feasible assignment α whose corresponding
obj value is equal to 0) (Lines 2–20).

In the local search process, an initial assignment is generated by assigning each Boolean
variable to a default value 0 (as in LS-PBO) (Line 3). NuPBO then initializes the weights
of all hard constraints as 1, and sets the weight of objective function to 0 according to our
proposed weighting scheme. After initialization, NuPBO conducts the search process (Lines
8–20). During the search process, whenever NuPBO finds a solution whose obj is lower than
obj∗, then α∗ and obj∗ are updated accordingly.

In each search step, NuPBO selects a variable and flips it based on two situations: (I)
If the set D of decreasing variables (i.e., the variable x with score(x) > 0) is not empty, a
variable with the highest score is selected from D, breaking ties by preferring the variable
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that has been flipped least recently. (II) When D is empty, which indicates that the search
is trapped in a local optimum, then NuPBO updates the weights of constraints according to
our new weighting scheme. Then, if there exist unsatisfied hard constraints, an unsatisfied
hard constraint c is randomly picked. As we know, for a MaxSAT instance, if a clause cm is
unsatisfied, then it would become satisfied after flipping any variables in cm. For a PBO
instance, if a hard constraint cp is unsatisfied (i.e., viol(cp) > 0), only flipping variables
whose literals are False under the current assignment can reduce viol(cp) (Assuming under
the current assignment α, x1 is 1, then the literal x1 is True, while the literal ¬x1 is False).
Therefore, NuPBO picks the variable whose literal is False with the highest score in c.
Otherwise (i.e., all the hard constraints are satisfied), NuPBO randomly chooses a variable
whose sscore is greater than 0.

Finally, when any terminating criterion is met, NuPBO stops and reports the best solution
α∗ and obj∗ if a solution is found; otherwise, it reports “No solution found”.

5 Experimental Evaluations

In this section, we introduce experimental preliminaries and then conduct extensive exper-
iments on 6 PBO benchmarks. First, we compare NuPBO with 5 state-of-the-art PBO
solvers. Second, we conduct experiments to show that combining NuPBO with complete
solvers can lead to better portfolios. Third, we report experimental results to demonstrate
the effectiveness of our main ideas. Finally, we examine the stability of the SLS solvers by
running each SLS solver 10 times with seeds ranging from 1 to 10.

5.1 Experimental Preliminaries

Benchmarks. We evaluate NuPBO on 6 benchmarks, which are described as follows:
PB16: the OPT-SMALLINT-LIN benchmark from the latest 2016 pseudo-Boolean com-
petition. As a mainstream benchmark for evaluating the performance of PBO solvers, it
consists of 1600 instances of various categories.2

MIPLIB: 0-1 integer linear programming optimization problems. This benchmark contains
291 instances of various categories, provided in the literature [12].3

CRAFT: crafted combinatorial benchmarks whose coefficients are small integers. This
benchmark contains 955 instances of various categories, provided in the literature [12].4

MWCB: the Minimum-Width Confidence Band Problem. This benchmark contains 24
instances.
SAP: the Seating Arrangements Problem. This benchmark contains 21 instances.
WSNO: the Wireless Sensor Network Optimization Problem. This benchmark consists of
18 instances.

For the benchmarks of MWCB, SAP, and WSNO, the descriptions, the downloading websites,
and the methods of converting the real-world applications into PBO instances and the
encoded PBO instances are presented in the literature [26].5

2 http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
3 https://zenodo.org/record/3870965
4 https://zenodo.org/record/4036016
5 https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/
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State-of-the-Art Competitors. We compare NuPBO with 5 state-of-the-art solvers, includ-
ing one SLS solver (i.e., LS-PBO) and 4 complete solvers. The 4 complete solvers include 2
PB solvers (i.e., PBO-IHS and RoundingSat) and 2 MIP solvers (i.e., Gurobi and SCIP):

LS-PBO [26]: the state-of-the-art SLS algorithm for solving PBO. Adopt the parameter
setting recommended by its authors. It outperforms Gurobi and RoundingSat on many
real-world application benchmarks.5

PBO-IHS [37]: a recent IHS PBO solver building upon RoundingSat [14].6

RoundingSat [12]: a recent PBO solver combining core-guided search with cutting planes
reasoning.7

Gurobi [19]: one of the most powerful commercial MIP solvers (Version 9.1.2). The
default configuration is used, along with a single thread.8

SCIP [16]: one of the fastest non-commercial solvers for MIP (Version 7.0.3, using SoPlex
5.0.2 as its internal LP solver).9

Experimental Setup. LS-PBO and NuPBO are implemented in C++, and compiled with
g++ (version 8.5.0) using the option “-O3”. Installation procedures for other solvers follow
their detailed guidelines. All the experiments are carried out on a workstation under the
operating system CentOS, with the AMD EPYC7702 2.0GHz CPU.

In these experiments, we adopt two cutoff times of 300 CPU seconds (300s) and 3600
CPU seconds (1h). Each solver performs one run within a given cutoff time on each instance,
and we record the cost of the best solution found by solver Sj on instance Ik, denoted as
solSjIk

. The cost of the best solution found among all solvers in the same table within the
same cutoff time on instance Ik is denoted as bestIk

. For each solver S solving a benchmark
Bi within a cutoff time, we use 3 metrics to evaluate the performance of S.

#win.: the number of instances where the corresponding bestIk
can be obtained by solver

S on Bi (i.e., the number of winning instances).
avgscore: in our experiments, the competition score of solver Sj on instance Ik is repres-
ented by scoreSjIk

= bestIk
+1

solSj Ik
+1 , which measures the gap between solSjIk

and bestIk
. If

solver Sj could not report a solution on instance Ik, then scoreSjIk
= 0. We use avgscore

to denote the average competition score of a solver on a benchmark. The competition
score of each solver on each instance is the metric to measure the performance of solvers
in the incomplete track of recent MaxSAT Evaluations (2017-2023).
#feas.: the number of instances where solver S obtains solutions on Bi.

In our experiments, avgscore is calculated by ignoring the instances that are proven
to have no solution by the complete solvers. Based on the preliminary experiments, we
conclude that at least 123 instances in the PB16 benchmark and at least 17 instances in the
MIPLIB benchmark do not have solutions. All instances in the CRAFT, MWCB, SAP, and WSNO
benchmarks have solutions.10

The number of instances in each benchmark is indicated by ‘#inst.’. For each of the
above three metrics, if a solver obtains a larger metric value on a benchmark, then the solver
exhibits better performance on the benchmark. The results highlighted in bold indicate the
best performance for the corresponding metric.

6 https://bitbucket.org/coreo-group/pbo-ihs-solver/
7 https://doi.org/10.5281/zenodo.4043124
8 https://www.gurobi.com/products/gurobi-optimizer/
9 https://www.scipopt.org/index.php#download
10 Note that the definition of the competition score (metric) in this subsection has no relationship to the

definition of the score in the scoring function in subsection 3.1.

https://bitbucket.org/ coreo-group/pbo-ihs-solver/
https://doi.org/10.5281/zenodo.4043124
https://www.gurobi.com/products/gurobi-optimizer/
https://www.scipopt.org/index.php#download
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Table 2 Experimental results of NuPBO and all the competitors on all the benchmarks (top:
cutoff 300s, bottom: cutoff 1h) (Benc, i.e., Benchmark. avgs, i.e., avgscore).

Benc #inst.

SLS solvers PB solvers MIP solvers

NuPBO LS-PBO PBO-IHS RoundingSat Gurobi SCIP

#win.
avgs

#win.
avgs

#win.
avgs

#win.
avgs

#win.
avgs

#win.
avgs#feas. #feas. #feas. #feas. #feas. #feas.

cutoff 300s

PB16 1600 1049 0.8800 700 0.7516 930 0.8712 964 0.8916 1158 0.9011 887 0.79181351 1183 1401 1392 1365 1244

MIPLIB 291 130 0.8480 75 0.7375 84 0.7350 89 0.7855 166 0.8013 114 0.7360242 222 230 245 235 221

CRAFT 955 894 0.9868 816 0.9682 809 0.9433 825 0.9639 893 0.9961 764 0.9583943 930 930 936 955 921

MWCB 24 24 1.0000 0 0.9448 0 0.4496 0 0.6247 0 0.4004 0 0.076124 24 19 24 12 3

SAP 21 21 1.0000 0 0.9750 0 0.0000 0 0.0000 0 0.0395 0 0.000021 21 0 0 1 0

WSNO 18 18 1.0000 11 0.9026 2 0.1738 4 0.6624 4 0.2431 0 0.163118 18 5 18 5 6
cutoff 1h

PB16 1600 1064 0.8897 814 0.8164 990 0.8875 1012 0.9100 1229 0.9354 1012 0.85651360 1278 1412 1401 1396 1304

MIPLIB 291 127 0.8519 83 0.7673 100 0.7903 87 0.8099 199 0.9023 142 0.8104243 231 239 247 253 238

CRAFT 955 891 0.9992 844 0.9714 886 0.9841 873 0.9902 930 0.9987 824 0.9704955 932 947 955 955 930

MWCB 24 23 0.9998 1 0.9690 0 0.5620 0 0.7116 0 0.7437 0 0.505824 24 24 24 24 17

SAP 21 21 1.0000 0 0.9785 0 0.0000 0 0.0000 0 0.0451 0 0.000021 21 0 0 1 0

WSNO 18 18 1.0000 15 0.9985 5 0.5989 11 0.8660 4 0.4904 0 0.084218 18 14 18 13 4

5.2 Comparisons with State-of-the-Art Solvers

The comparative results of NuPBO and all the competitors on all the benchmarks are shown
in Table 2. We first analyze the results with a cutoff time of 300s.

In terms of the number of winning instances, NuPBO gives the best performance on 4
benchmarks, including CRAFT and the 3 real-world application benchmarks, and ranked
second on the PB16 and MIPLIB benchmarks (with Gurobi being the best).

In terms of avgscore, NuPBO outperforms all the competitors on 4 benchmarks, including
MIPLIB and the 3 real-world application benchmarks. On the PB16 benchmark, its
avgscore ranks third after Gurobi and RoundingSat. The avgscore value of NuPBO ranks
second on the CRAFT benchmark behind Gurobi.

In terms #feas., NuPBO and LS-PBO find solutions for all instances in the 3 real-world
application benchmarks, while PBO-IHS , RoundingSat, and Gurobi are respectively the
best for finding solutions on PB16, MIPLIB, and CRAFT. Although the value of #feas.

of NuPBO ranks second on MIPLIB and CRAFT benchmarks, and ranks fourth on PB16
benchmark, NuPBO performs considerably better than LS-PBO, an SLS solver for PBO.

CP 2023
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Table 3 Experimental results of VBSall, VBSexclude_lspbo, and VBSexclude_nupbo on all the
benchmarks (top: cutoff 300s, bottom: cutoff 1h).

Benchmark #inst. VBSall VBSexclude_lspbo VBSexclude_nupbo

#win. avgscore #feas. #win. avgscore #feas. #win. avgscore #feas.

cutoff 300s
PB16 1600 1434 0.9709 1434 1430 0.9703 1434 1356 0.9690 1433
MIPLIB 291 254 0.9270 254 254 0.9270 254 218 0.9119 254
CRAFT 955 955 1.0000 955 955 1.0000 955 939 0.9999 955
MWCB 24 24 1.0000 24 24 1.0000 24 0 0.9448 24
SAP 21 21 1.0000 21 21 1.0000 21 0 0.9750 21
WSNO 18 18 1.0000 18 18 1.0000 18 11 0.9032 18

cutoff 1h
PB16 1600 1440 0.9749 1440 1438 0.9747 1440 1394 0.9730 1438
MIPLIB 291 262 0.9562 262 262 0.9562 262 238 0.9492 262
CRAFT 955 955 1.0000 955 955 1.0000 955 953 >0.9999 955
MWCB 24 24 1.0000 24 23 0.9998 24 1 0.9690 24
SAP 21 21 1.0000 21 21 1.0000 21 0 0.9785 21
WSNO 18 18 1.0000 18 18 1.0000 18 15 0.9985 18

With the cutoff time of 1h, NuPBO outperforms LS-PBO on the 3 real-world application
benchmarks. On the other 3 benchmarks, NuPBO shows competitive performance compared
to Gurobi, and significantly outperforms the state-of-the-art SLS solver LS-PBO in terms of
all metrics of #win., avgscore, and #feas..

5.3 Complementarity between SLS Solvers and Complete Solvers
In this subsection, we conduct experiments to investigate the complementarity between SLS
solvers and complete solvers when solving PBO.

To investigate the complementarity between SLS solvers and complete solvers, we construct
three perfect portfolio selectors: given a set of base solvers Θ, for each instance, the solution
of the perfect portfolio selector constructed on Θ is the best among the entire collection of
solutions reported by all solvers in Θ. These three perfect portfolio selectors are built based on
Θ1={LS-PBO, NuPBO, PBO-IHS , RoundingSat, Gurobi, SCIP }, Θ2={NuPBO, PBO-IHS ,
RoundingSat, Gurobi, SCIP }, and Θ3={LS-PBO, PBO-IHS , RoundingSat, Gurobi, SCIP
} dubbed VBSall, VBSexclude_lspbo and VBSexclude_nupbo, respectively. Then we conduct
experiments to evaluate the performance of these three perfect portfolio selectors on all
benchmarks. The related results are presented in Table 3.

The comparison between VBSall and VBSexclude_lspbo reveals the number of instances
where only the LS-PBO solver can achieve the optimal solution among all solvers. Similarly,
comparing VBSall and VBSexclude_nupbo shows the number of instances where only the
NuPBO solver can obtain the optimal solution among all solvers. As shown in Table 3,
taking the PB16 benchmark with a cutoff time of 300 seconds as an example, out of the
1600 instances, there are 4 instances where only LS-PBO can achieve the optimal solution
among all solvers, and there are 78 instances where only NuPBO can obtain the optimal
solution among all solvers. Additionally, in 1 instance, only NuPBO was able to find a
feasible solution. The results in Table 3 demonstrate that, compared to the state-of-the-art
SLS solver LS-PBO, NuPBO is able to enhance the complementarity between SLS solvers
and complete solvers, which indicates that a portfolio selector, which combines NuPBO and
complete solvers, could advance the state of the art in PBO solving.
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Table 4 Experimental results of NuPBO, NuPBO-alt(s), and NuPBO-alt(w) on all the benchmarks
(top: cutoff 300s, bottom: cutoff 1h).

Benchmark #inst. NuPBO NuPBO-alt(s) NuPBO-alt(w)

#win. avgscore #feas. #win. avgscore #feas. #win. avgscore #feas.

cutoff 300s
PB16 1600 1141 0.9026 1351 1024 0.8288 1253 1034 0.8822 1323
MIPLIB 291 182 0.8687 242 147 0.8347 242 112 0.8312 239
CRAFT 955 941 0.9874 943 941 0.9864 942 848 0.9648 925
MWCB 24 24 1.0000 24 0 0.9466 24 0 0.9700 24
SAP 21 13 0.9990 21 9 0.9974 21 0 0.9782 21
WSNO 18 17 0.9995 18 18 1.0000 18 15 0.9704 18

cutoff 1h
PB16 1600 1170 0.9076 1360 1113 0.8842 1329 1090 0.8911 1336
MIPLIB 291 188 0.8754 243 149 0.8520 244 121 0.8620 245
CRAFT 955 953 >0.9999 955 953 >0.9999 955 864 0.9683 926
MWCB 24 24 1.0000 24 0 0.9459 24 0 0.9655 24
SAP 21 11 0.9986 21 13 0.9988 21 0 0.9824 21
WSNO 18 18 1.0000 18 18 1.0000 18 18 1.0000 18

5.4 Analysis on the Underlying Ideas
In order to demonstrate the effectiveness of our two main ideas in our NuPBO solver, we
conduct comparative experiments on 3 solvers. We develop two alternative versions of
NuPBO, by replacing its scoring function and weighting scheme with the ones proposed in
LS-PBO, dubbed NuPBO-alt(s) and NuPBO-alt(w), respectively. The weighting scheme
proposed in LS-PBO introduces a parameter ζ for NuPBO-alt(w), which is set to 100 as
recommended by LS-PBO’s authors [26].

The comparative results of the cutoff time of 300 seconds and 1 hour are shown in Table 4.
From Table 4, NuPBO outperforms its alternative versions on the majority of instances. We
first discuss the effectiveness of the new scoring function.

Regarding the New Scoring Function. With the cutoff time of 300s, in terms of the metrics
of #win. and avgscore, NuPBO exhibits the best performance on 5 benchmarks. In terms of
the metric of #feas., NuPBO performs better than NuPBO-alt(s) on the PB16 benchmark
and CRAFT benchmark. On the remaining 4 benchmarks, the number of feasible solutions
obtained by NuPBO is equal to that obtained by NuPBO-alt(s).

With the cutoff time of 1h, NuPBO exhibits significantly better performance than
NuPBO-alt(s) on 3 benchmarks including PB16, MIPLIB, and MWCB. On the remaining 3
benchmarks, namely CRAFT, SAP and WSNO, the performance of NuPBO is comparable to
that of NuPBO-alt(s).

To examine the intuition in Section 3.1, we conduct an experiment to analyze the
relationship between the instance feature and the performance difference between NuPBO
and NuPBO-alt(s). Due to the difficulty of counting the coefficients of all variables in
different constraints within an instance, we use the Gini coefficient [18] of the degree of hard
constraints as the instance feature, denoted by Ginid. For a PBO instance I1, if the degree
values of all hard constraints in I1 are arranged in ascending order, Ginid can be calculated
as follows: Ginid = 2

n2d

∑n
i=1 i(di − d), where n is the number of hard constraints, i is the

CP 2023
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Figure 1 The ratio of the score metric of NuPBO and NuPBO-alt(s) on instances from all the 6
benchmarks (cutoff 300s).

rank of degree values in ascending order, di is the degree of i-th hard constraint (di values
are in ascending order), and d is the mean value.11 The greater Ginid(I1), the greater the
inequality between the degrees of constraints in instance I1. In those instances whose Ginid is
large, the coefficient of a variable may differ greatly between constraints. For an instance I1,
we use scoreNuPBOI1 to represent the competition score of NuPBO, and scoreNuPBO-alt(s)I1

to represent the competition score of NuPBO-alt(s). R(I1) = scoreNuPBOI1 +1
scoreNuPBO-alt(s)I1 +1 is used to

denote the performance difference between NuPBO and NuPBO-alt(s). Thus, if NuPBO
finds a solution while NuPBO-alt(s) does not, R = 2 (on the contrary, R = 0.5). If R = 1,
NuPBO and NuPBO-alt(s) obtained the same competition score (or no solution has been
found).

We conduct an experiment on all 6 benchmarks with a cutoff time of 300s. The related
results are presented in Figure 1. According to Figure 1, the x-axis represents 2909 instances
of the 6 benchmarks, sorted by Ginid in ascending order, and the y-axis represents the
corresponding R values.

Results in Figure 1 demonstrate that NuPBO outperforms NuPBO-alt(s), as the number
of instances with R > 1 exceeds those with R < 1. In addition, on instances with Ginid ≥ 0.9,
NuPBO exhibits a significant performance advantage over NuPBO-alt(s), and many instances
in this category have an R value of 2, which indicates that NuPBO performs much better
in terms of the metric of #feas.. On instances with Ginid ≥ 0.5, NuPBO also shows
performance improvement over NuPBO-alt(s).

Regarding the New Weighting Scheme. With the cutoff time of 300s, in terms of the
metrics of #win. and avgscore, NuPBO outperforms NuPBO-alt(w) on all the benchmarks.
In terms of the metric of #feas., NuPBO achieves better performance than NuPBO-alt(w)
on 3 benchmarks. On the other 3 benchmarks, the value of #feas. achieved by NuPBO is
equal to that obtained by NuPBO-alt(w).

With the cutoff time of 1h, regarding the metrics of #win. and avgscore, NuPBO outper-
forms NuPBO-alt(w) on 5 out of 6 benchmarks, and achieves the same performance on the
WSNO benchmark. Regarding the metric of #feas., NuPBO demonstrates better performance
than NuPBO-alt(w) on 2 benchmarks. On the MIPLIB benchmark, the performance of
NuPBO-alt(w) is only slightly better than that of NuPBO. On the 2 real-world application
benchmarks, these SLS solvers achieve the same performance. The experimental results
clearly indicate the effectiveness of our proposed new weighting scheme.

11 https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm

https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm
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Table 5 Experimental results of NuPBO, LS-PBO, NuPBO-alt(s), and NuPBO-alt(w) with seeds
ranging from 1 to 10 on all the benchmarks (left: cutoff 300s, right: cutoff 1h).

Benchmark #inst. cutoff 300s cutoff 1h

avgavgsol avgstdev
avgstdev

avgavgsol
avgavgsol avgstdev

avgstdev
avgavgsol

NuPBO
PB16 1600 34567.32 259.79 0.75% 34721.64 123.30 0.36%
CRAFT 955 3035410.02 0.10 <0.01% 3000465.70 0.09 <0.01%
MIPLIB 291 59271045.04 240944.55 0.41% 58116554.74 299542.17 0.52%
MWCB 24 197890.62 1504.80 0.76% 193513.34 888.91 0.46%
SAP 21 1039.04 3.74 0.36% 1033.64 3.00 0.29%
WSNO 18 1301.21 225.55 17.33% 1158.61 0.00 0.00%

LS-PBO
PB16 1600 30844.62 143.86 0.47% 34305.81 213.45 0.62%
CRAFT 955 3074484.99 1.69 <0.01% 3071190.03 1.11 <0.01%
MIPLIB 291 53327323.12 1262751.16 2.37% 50874231.31 924287.05 1.82%
MWCB 24 209821.48 1582.87 0.75% 201482.90 1525.52 0.76%
SAP 21 1066.74 4.61 0.43% 1059.17 3.43 0.32%
WSNO 18 1448.88 299.06 20.64% 1174.76 44.64 3.80%

NuPBO-alt(s)
PB16 1600 36842.12 112.50 0.31% 35779.84 129.39 0.36%
CRAFT 955 3038627.52 0.10 <0.01% 3000465.70 0.10 <0.01%
MIPLIB 291 65612369.74 911077.41 1.39% 63282671.88 90491.84 0.14%
MWCB 24 210377.43 1688.62 0.80% 205368.10 1267.23 0.62%
SAP 21 1039.50 3.49 0.34% 1034.15 2.68 0.26%
WSNO 18 1295.50 192.98 14.90% 1158.65 0.12 0.01%

NuPBO-alt(w)
PB16 1600 34535.79 312.20 0.90% 34594.61 214.89 0.62%
CRAFT 955 3094400.67 1.45 <0.01% 3094398.61 1.15 <0.01%
MIPLIB 291 59063484.68 259177.44 0.44% 57971941.39 350572.11 0.60%
MWCB 24 205188.29 1467.44 0.72% 201127.28 929.57 0.46%
SAP 21 1061.47 4.08 0.38% 1054.01 3.41 0.32%
WSNO 18 1293.97 143.69 11.10% 1159.25 2.02 0.17%

5.5 Stability of Local Search Solvers

In order to examine the stability of all four SLS solvers adopted in our experiments, each of
the four SLS solvers runs 10 times with seeds ranging from 1 to 10 on all instances from all 6
benchmarks.

For a given solver S and an instance I: solSIJ denotes the cost of the best solution found
by solver S with seed J on instance I, avgsol denotes the average cost of best solutions
obtained by solver S over all 10 runs on instance I, while stdev denotes the standard deviation
of the cost of the best solutions obtained by solver S over all 10 runs on instance I. On
a benchmark B consisting of multiple instances: avgavgsol represents the average value of
avgsol obtained by solver S over all instances where solutions are obtained, while avgstdev

stands for the average value of stdev obtained by solver S over all instances where solutions
are found. The calculation of avgavgsol is based on instances where solutions are found,

CP 2023
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different solvers may find solutions on different subsets of instances for a given benchmark
and cutoff time. In addition, for a given benchmark, it is possible that a solver finds solutions
on more instances within a cutoff time of 1h than adopting a cutoff time of 300s. Moreover,
according to the above definition of avgavgsol, we note that the value of avgavgsol cannot be
used to compare the performance of different solvers.

The experimental results presented in Table 5 demonstrate that, with the cutoff time
of 300s, all four SLS solvers exhibit stable performance on 5 out of 6 benchmarks, while on
the WSNO benchmark, the performance is less stable compared to the other benchmarks. In
addition, the values of avgstdev

avgavgsol
for NuPBO are less than 1% on all 5 benchmarks, which

clearly indicates that NuPBO can achieve stable performance. With the cutoff time of 1h,
all four SLS solvers perform stably on the 6 benchmarks.

6 Conclusions and Future Work

This paper is devoted to improving the performance of SLS solvers for solving the PBO
problem via a new scoring function and a new weighting scheme. First, we introduced our
new scoring function. Furthermore, we proposed a new weighting scheme that effectively
determines when to increase the weight of the objective function. Based on these two
main ideas, we developed a new SLS solver named NuPBO. Extensive experimental results
demonstrate that NuPBO significantly outperforms LS-PBO on all testing benchmarks.
NuPBO outperforms all its competitors on 3 real-world application benchmarks and shows
competitive performance compared to state-of-the-art competitors on solving PB16, MIPLIB,
and CRAFT benchmarks. In addition, NuPBO enhances the complementarity between SLS
solvers and complete solvers on all testing benchmarks.

For future work, we would like to develop more efficient heuristic strategies and explore
the effect of instance features on the performances of different categories of PBO solvers.
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Abstract
Discrete optimization problems expressible as dynamic programs can be solved by branch-and-bound
with decision diagrams. This approach dynamically compiles bounded-width decision diagrams to
derive both lower and upper bounds on unexplored parts of the search space, until they are all
enumerated or discarded. Assuming a minimization problem, relaxed decision diagrams provide
lower bounds through state merging while restricted decision diagrams obtain upper bounds by
excluding states to limit their size. As the selection of states to merge or delete is done locally, it
is very myopic to the global problem structure. In this paper, we propose a novel way to proceed
that is based on pre-solving a so-called aggregate version of the problem with a limited number of
states. The compiled decision diagram of this aggregate problem is tractable and can fit in memory.
It can then be exploited by the original branch-and-bound to generate additional pruning and guide
the compilation of restricted decision diagrams toward good solutions. The results of the numerical
study we conducted on three combinatorial optimization problems show a clear improvement in the
performance of DD-based solvers when blended with the proposed techniques. These results also
suggest an approach where the aggregate dynamic programming model could be used in replacement
of the relaxed decision diagrams altogether.
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1 Introduction

On top of their use for Boolean encodings [27], formal verification [25], model checking
[15], computer-aided design [29] and much more, decision diagrams (DDs) have recently
emerged as a tool for discrete optimization. They provide a compact way to encode a set
of solutions to a problem. Still, for large problems, DDs representing the whole solution
space – called exact DDs – can quickly become intractable to compute. Two variants of
DDs can be used instead: restricted [10] and relaxed [1, 8] DDs that respectively encode a
subset and superset of the set of solutions. When compiled based on a dynamic programming
(DP) model, these approximate DDs allow to compute bounds on the objective function for
any subproblem while controlling the size of the DD compiled. Restricted DDs aim to find
good admissible solutions by iteratively extending a bounded set of promising candidates
while dropping others, in a beam search fashion. On the other hand, relaxed DDs rely
on a problem-dependent state merging scheme to maintain an acceptable DD size while
preserving all solutions of the problem. In [9], Bergman et al. presented a branch-and-bound
algorithm solely based on these two ingredients, thus introducing a new general-purpose
discrete optimization framework and solver.
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In addition to exploiting the compactness of DP models, the main novelty of this
approach is its unique way of deriving lower and upper bounds. In the last few years, some
algorithmic improvements have been suggested to further strengthen these bounds. Assuming
a minimization problem, Gillard et al. [19] showed how user-defined lower bound formulas
can be integrated to prune DDs during their compilation and thus concentrate the search
on promising parts of the search space. They also proposed a way to compute tighter lower
bounds for all nodes contained in a relaxed DD through local bounds. Rudich et al. [30]
introduced a peeling operator that splits a relaxed DD in two: one part containing all paths
traversing a selected exact node and the other containing all remaining paths. It allows both
to warm-start the compilation of subsequent relaxed DDs and to strengthen the bounds of
the nodes inside the relaxed DD on which the peeling has been performed. More recently, [16]
generalized the ideas of [19] and introduced the use of a cache storing new thresholds that
further enhance the pruning power of the solver. Other factors impacting the quality of the
bounds provided by relaxed DDs have been studied, including variable orderings [7, 11, 26]
and alternative compilation schemes [24]. Yet, all these approaches rely on a problem-specific
state merging operator at the heart of the relaxation, which does not yield tight relaxations
for all problems, as our computational experiments show.

After covering the necessary background about DD-based optimization, this paper presents
an alternate relaxation scheme for deriving good bounds by incorporating ideas from aggregate
dynamic programming [2, 3] to the DD-based discrete optimization framework. The underlying
idea of the approach is to deduce information about an original problem instance by creating
and solving an aggregate – relaxed – version of it. This is achieved by aggregating the
states of the DP model as to obtain a much smaller DP state space. If this aggregation is
adequately specified, one can compute a lower bound for any original subproblem by finding
the optimal solution of its aggregate version. Furthermore, this optimal aggregate solution
can be disaggregated and transposed in the original problem to find good heuristic solutions.
In practice, the aggregation-based lower bounds are used as additional pruning within the
compilation of relaxed and restricted DDs. Moreover, aggregate solutions are translated
into node selection heuristics to steer the compilation of restricted DDs toward resembling
solutions to the original problem, which are thus expected to be good.

Throughout the paper, the framework is illustrated on three different combinatorial
problems: the Talent Scheduling Problem, the Pigment Sequencing Problem and the Aircraft
Landing Problem. They are then used for the experimental evaluation of the framework,
the results of which show that the aggregation-based bound brings additional pruning and
enables solving more instances. Furthermore, the aggregation-based node selection heuristic
improves the quality of the solutions found early in the search and thus contributes to
speeding up the overall resolution. Finally, we show that a DD-based solver using only the
aggregation-based bound as relaxation performs almost equally well, which is a promising
direction for problems for which defining a merging operator is difficult or inefficient.

Although this paper is – to the best of our knowledge – the first to combine aggregate
dynamic programming with the DD-based branch-and-bound paradigm proposed by Bergman
et al, there has already been some hybridization work to combine discrete optimization with
DDs and other methods. For instance, in [12], Cappart et al. propose to use reinforcement
learning to guess the variable ordering that should be used to derive the best possible bounds
from the compiled approximate DDs. Other attempts combined DDs with Lagrangian
relaxation [13, 23] or MIP [5, 22, 31, 32]. On a slightly different note, a method has
been proposed where restricted DDs are used to generate good neighborhoods in a large
neighborhood search framework [20].
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2 Preliminaries

2.1 Discrete Optimization
A discrete optimization problem P involves finding the best possible solution x∗ from a
finite set of feasible solutions Sol(P) = D ∩ C. This set is determined by the domain
D = D0 × · · · ×Dn−1 from which the variables x = ⟨x0, . . . , xn−1⟩ each take on a value, i.e.
xj ∈ Dj , and by a set of constraints C imposed on the value assignments. The quality of
the solutions is evaluated according to an objective function f(x) that must be minimized.
Formally, the problem is defined as min {f(x) | x ∈ D ∩ C} and any optimal solution x∗ must
satisfy x∗ ∈ Sol(P) and ∀x ∈ Sol(P) : f(x∗) ≤ f(x). We describe below three optimization
problems that will be utilized in the paper as illustrations for the aggregation-based framework.

Talent Scheduling Problem. The Talent Scheduling Problem (TalentSched) is a film shoot
scheduling problem that considers a set N = {0, . . . , n− 1} of scenes and a set A =
{0, . . . , m− 1} of actors. Each scene i ∈ N involves a required set Ri ⊆ A of actors for
a duration Di ∈ N. Moreover, each actor k ∈ M has a pay rate Ck and is paid without
interruption from their first to their last scheduled scene. The objective of TalentSched is to
find a permutation of the scenes that minimizes the total cost of the film shoot.

Pigment Sequencing Problem. The Pigment Sequencing Problem (PSP) is a single-machine
production planning problem that aims to minimize the stocking and changeover costs while
satisfying a set of orders. There are different item types I = {0, . . . , n− 1} with a given
stocking cost Si to pay for each time period between the production and the deadline of
an order. For each pair i, j ∈ I of item types, a changeover cost Cij is incurred whenever
the machine switches the production from item type i to j. Finally, the demand matrix Q

contains all the orders: Qi
p ∈ {0, 1} indicates whether there is an order for item type i ∈ I at

time period p with 0 ≤ p < H and H the time horizon.

Aircraft Landing Problem. The Aircraft Landing Problem (ALP) requires to schedule the
landing of a set of aircrafts N = {0, . . . , n− 1} on a set of runways R = {0, . . . , r − 1}.
The aircrafts have a target Ti and latest Li landing time. Moreover, the set of aircrafts
is partitioned in disjoint sets A0, . . . , Ac−1 corresponding to different aircraft classes in
C = {0, . . . , c− 1}. For each pair of aircraft classes a, b ∈ C, a minimum separation time
Sa,b between the landings is given. The goal is to find the schedule that minimizes the total
waiting time of the aircrafts – the delay between their target time and scheduled landing
time – while respecting their latest landing time.

2.2 Dynamic Programming
Dynamic programming (DP) is a divide-and-conquer strategy introduced by Bellman [4]
for solving discrete optimization problems with an inherent recursive structure. It works
by recursively decomposing the problem in smaller and overlapping subproblems. The
cornerstone of the approach is the caching of intermediate results that allows each distinct
subproblem to be solved only once. A DP model of a discrete optimization problem P can
be defined as a labeled transition system consisting of:

the control variables xj ∈ Dj with j ∈ {0, . . . , n− 1}.
a set of state-spaces S = {S0, . . . , Sn} among which one distinguishes the initial state r,
the terminal state t and the infeasible state 0̂.

CP 2023
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a set t of transition functions s.t. tj : Sj ×Dj → Sj+1 for j = 0, . . . , n − 1 taking the
system from one state sj to the next state sj+1 based on the value d assigned to variable
xj , or to ⊥ if assigning xj = d is infeasible. These functions should never allow one to
recover from infeasibility, i.e. tj(0̂, d) = 0̂ for any d ∈ Dj .
a set h of transition value functions s.t. hj : Sj ×Dj → R representing the immediate
reward of assigning some value d ∈ Dj to the variable xj for j = 0, . . . , n− 1.
a root value vr.

On that basis, the objective function f(x) of P is formulated as follows:

minimize f(x) = vr +
n−1∑
j=0

hj(sj , xj)

subject to sj+1 = tj(sj , xj), for all j = 0, . . . , n− 1, with xj ∈ Dj

sj ∈ Sj , j = 0, . . . , n and x ∈ C. (1)

TalentSched. A DP model for TalentSched was introduced in [17] that we slightly adapt
here to make it suitable for the relaxation discussed in Section 2.3.1. States of this model
are pairs (M, P ) where M and P are disjoint sets of scenes that respectively must or might
still be scheduled. The only case where P is non-empty happens when a state is relaxed.

Control variables: xj ∈ N with 0 ≤ j < n decides which scene is shot in j-th position.
State spaces: S = {(M, P ) |M, P ⊆ N, M ∩ P = ∅}. The root state is r = (N, ∅) and
the terminal states are of the form (∅, P ).
Transition functions:

tj(sj , xj) =


(sj .M \ {xj} , sj .P \ {xj}) if xj ∈ sj .M,

(sj .M \ {xj} , sj .P \ {xj}), if xj ∈ sj .P and |sj .M | < n− j,

0̂, otherwise.

A scene from P can only be selected if there are more spots left than scenes in M .
Transition value functions: let a(Q) = ∪i∈QRi be the required set of actors for a set
of scenes Q. Given a state s = (M, P ), the set of actors that are guaranteed to be
on-location is computed as o(s) = a(s.M)∩ a(N \ (s.M ∪ s.P )) because they are required
both for a scene that must still be scheduled and for another that is guaranteed to be
scheduled. In the transition value functions, we add all the actors from Rxj

to this set
and sum the individual costs: hj(sj , xj) = Dxj

∑
k∈o(sj)∪Rxj

Ck.
Root value: vr = 0.

PSP. The PSP was already tackled with a DD-based approach in [16, 20]. We hereby recall
the DP model from [16] that allows the machine to be idle at some time periods. In this
model, the decisions are made backwards – this allows to define transition functions that only
lead to feasible production schedules. If variable xj decides the type of item to produce at
period j, the reverse variable ordering xH−1, . . . , x0 is thus used. To simplify the transition
functions, let us denote by P i

r the time period at which the r-th item of type i must be
delivered, i.e. P i

r = min{0 ≤ q < H |
∑q

p=0 Qi
p ≥ r} for all i ∈ N, 0 ≤ r ≤

∑
0≤p<H Qi

p.
Moreover, we define a dummy item type ⊥ used for idle periods and N ′ = N ∪ {⊥}.

States are pairs (i, R) with i the item type that the machine is currently set to produce
and R a vector that gives the remaining number Ri of demands to satisfy for each type i.

Control variables: xj ∈ N ′ with 0 ≤ j < H decides the item type to produce at period j.
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State space: S = {s | s.i ∈ N ′, ∀i ∈ N, 0 ≤ s.Ri ≤
∑

0≤p<H Qi
p}. The root state is given

by r = ⟨⊥, (
∑

0≤p<H Q0
p, . . . ,

∑
0≤p<H Qn−1

p )⟩ and the terminal states are of the form
⟨i, (0, . . . , 0)⟩ with i ∈ N ′.
Transition functions:

tj(sj , xj) =


〈
ti
j(sj , xj), tR

j (sj , xj)
〉

, if xj ̸= ⊥ and sj .Rxj
> 0 and j ≤ P

xj

sj .Rxj
,〈

ti
j(sj , xj), tR

j (sj , xj)
〉

, if xj = ⊥ and
∑

i∈N sj .Ri < j + 1,

0̂, otherwise.

where

ti
j(sj , xj) =

{
xj , if xj ̸= ⊥
sj .i, otherwise.

tR
j (sj , xj) =

{
(sj .R0, . . . , sj .Rxj

− 1, . . . , sj .Rn−1), if xj ̸= ⊥
sj .R, otherwise.

In the transition function, the first condition ensures that there remains at least one
item to produce for the chosen type and that the current time period j is earlier than its
deadline. The second condition ensures that idle periods cannot be scheduled when the
remaining quantity to produce is equal to the number of periods left.
Transition value functions: the changeover and stocking costs are computed as:

hj(sj , xj) =
{

Cxjsj .i, if xj ̸= ⊥ and sj .i ̸= ⊥
0, otherwise.

}
+

{
Sxj
· (j − P

xj

sj .Rxj
), if xj ̸= ⊥

0, otherwise.

}
Root value: vr = 0.

ALP. We reproduce here the DP model presented in [28] where states are pairs (Q, ROP ),
with Q a vector that gives the remaining number of aircrafts of each class to schedule and
ROP a runway occupation profile: a vector containing pairs (l, c) that respectively give the
time and aircraft class of the latest landing scheduled on each runway. Similarly to the PSP
modeling, we denote by ⊥ either a dummy aircraft class or a dummy runway.

Control variables: we use pairs of variables (xj , yj) ∈ (C ×R) ∪ {(⊥,⊥)} with 0 ≤ j < n

that represent the decision to place an aircraft of class xj on runway yj , or to schedule
nothing at all in case of (⊥,⊥).
State spaces:
S = {(Q, ROP ) | ∀i ∈ C : Qi ≥ 0, ∀k ∈ R : ROPk.l ≥ 0, ROPk.c ∈ C ∪ {⊥}}. The root
state is r = (⟨|A0|, . . . , |Ac−1|⟩ , ⟨(0,⊥), . . . , (0,⊥)⟩) and the terminal states are of the
form (⟨0, . . . , 0⟩ , ROP ).
Transition functions: if Ak

i gives the aircraft from class i that must be scheduled when
there are k aircrafts left from this class, we can define the function computing the earliest
landing time given a state s, a class x and a runway y:

E(s, x, y) =


T

A
s.Qx
x

, if s.ROPy.l = 0 and s.ROPy.c = ⊥,
max(s.ROPy.l + mini∈C Si,x, T

A
s.Qx
x

), if s.ROPy.l > 0 and s.ROPy.c = ⊥,
max(s.ROPy.l + Ss.ROPy .c,x, T

A
s.Qx
x

), otherwise.

This allows us to define the transition functions as:

tj(sj , xj , yj) =


(tQ

j (sj , xj , yj), tROP
j (sj , xj , yj)),

if xj ̸= ⊥ and sj .Qxj > 0
and E(sj , xj , yj) ≤ L

A
sj .Qxj
xj

,

(tQ
j (sj , xj , yj), tROP

j (sj , xj , yj)), if xj = ⊥ and
∑

i∈C
sj .Qi = 0,

0̂, otherwise.
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where

tQ
j (sj , xj , yj) =

{ 〈
sj .Q0, . . . , sj .Qxj

− 1, . . . , sj .Qc−1
〉

, if xj ̸= ⊥
sj .Q, otherwise.

tROP
j (sj , xj , yj) =

{ 〈
sj .ROP0, . . . , (E(sj , xj , yj), xj), . . . , sj .ROPr−1

〉
, if xj ̸= ⊥

sj .ROP, otherwise.

The first condition of the transition function ensures that there remains at least one
aircraft of the chosen class and that its earliest landing time is not greater its latest
landing time. The second condition only allows us to schedule dummy aircrafts when
there are no aircrafts left to schedule.
Transition value functions: the waiting time of the aircraft is computed as:

hj(sj , xj , yj) =

 E(sj , xj , yj)− T
A

sj .Qxj
xj

, if xj ̸= ⊥

0, otherwise.

Root value: vr = 0.
Because the runways are identical and independent, there are many symmetries in this model.
This can be mitigated by sorting the ROP of every state by increasing latest landing time,
breaking ties according to the previous aircraft class scheduled.

2.3 Decision Diagrams
When used to manipulate the DP model of a discrete optimization problem P, DDs are
graphical encodings that represent a set of solutions of the problem. More precisely, a
DD B = (U, A, σ, l, v) is a layered directed acyclic graph composed of a set of nodes U

interconnected by a set of arcs A. Starting from a single node ur corresponding to a DP state
given by the function σ(ur), the process of iteratively extending a set of partial solutions is
called the compilation of a DD and is described by Algorithm 1. Note that the highlighted
portions concern the ingredients introduced in Section 3 and can be ignored for now. The
algorithm begins by initializing a layer Li that only contains the root node ur, assuming its
state σ(ur) belongs to the i-th stage of the DP model. The subsequent layers of the DD are
then constructed sequentially by applying each valid transition of the DP model to every
node of the last completed layer at lines 8–16. Each layer thus corresponds to a stage of
the DP model and contains a single node for each state reached in order to preserve the
compactness of the model. The arcs a ∈ A materialize the transitions that exist between
the states of consecutive stages. In particular, the arc a = (u d−→ u′) connecting nodes
u ∈ Lj , u′ ∈ Lj+1 represents the transition between σ(u) and σ(u′). The decision associated
with this transition is stored by the label l(a) = d ∈ Dj and the transition value is given by
the arc value v(a).

The algorithm completes when the last layer Ln is generated, constituted by a single
node t called the terminal node. The DD thus constructed contains a set of ur ⇝ t

paths that can be combined with any previously discovered r ⇝ ur path, connecting
the root of the problem to ur. Any r ⇝ t path p = (a0, . . . , an−1) represents a solution
given by x(p) = (l(a0), . . . , l(an−1)). The objective value of such solution can also be
retrieved from the sequence of arcs by accumulating their values, and adding the root
value: v(p) = vr +

∑n−1
j=0 v(aj). The set of solutions contained in the DD is denoted as

Sol(B) = {x(p) | ∃p : r ⇝ t, p ∈ B}. A DD rooted at a node ur is exact if it perfectly
represents the set of solutions of the corresponding subproblem P|ur

, i.e. Sol(B) = Sol(P|ur
)

and v(p) = f(x(p)), ∀p ∈ B. The best value among the u1 ⇝ u2 paths in B is denoted
v∗(u1 ⇝ u2 | B), and in particular v∗(u | B) = v∗(r ⇝ u | B).



V. Coppé, X. Gillard, and P. Schaus 13:7

Algorithm 1 Compilation of DD B rooted at node ur with maximum width W .
1: i← index of the layer containing ur

2: Li ← {ur}
3: P̃ ← ∆(p̃) with p̃ the optimal solution for π(σ(ur)) // retrieve disaggregate solution
4: for j = i to n− 1 do
5: if |Lj | > W then
6: restrict or relax the layer to get W nodes with Algorithm 2
7: Lj+1 ← ∅
8: for all u ∈ Lj do
9: vrlb(σ(u))← max

{
vrlb(σ(u)), vagg(π(σ(u)))

}
// inject aggregation-based bound

10: if v∗(u | B) + vrlb(σ(u)) ≥ v then // rough lower bound pruning w.r.t. incumbent
11: continue
12: for all d ∈ Dj do
13: create node u′ with state σ(u′) = tj(σ(u), d) or retrieve it from Lj+1

14: create arc a = (u d−→ u′) with v(a) = hj(σ(u), d) and l(a) = d

15: score(a)← 1 if l(a) ∈ P̃j , 0 otherwise
16: add u′ to Lj+1 and add a to A

▶ Example 1. Let us define a TalentSched instance with 4 scenes with durations D =
⟨3, 5, 2, 4⟩ and 4 actors with pay rates C = ⟨10, 20, 30, 40⟩. The actor requirements for each
scene are given by R = ⟨{0, 3} , {0, 1, 3} , {0, 2, 3} , {0, 1, 2, 3}⟩. Figure 1 shows the exact DD
compiled for this instance with the DP model recalled in Section 2.2. Note that for each
state s = (M, P ) corresponding to a node in the DD, we only show the set M since P is
always empty in exact nodes. An optimal solution of the problem is ⟨0, 2, 3, 1⟩, which gives
an objective value of 106.

As the reader might have guessed, the compilation of an exact DD for a combinatorial
optimization problem suffers from the curse of dimensionality as much as the corresponding
DP model. This is why DD-based discrete optimization rarely relies on exact DDs but rather
on restricted and relaxed DDs. These two variants follow two distinct compilation schemes
that allow to maintain the number of nodes of each layer – called the width – under a given
parameter W . In Algorithm 1, this logic is performed at line 5 where the width of the current
layer is compared with W . If needed, the layer is then either restricted or relaxed at line 6
by calling Algorithm 2.

2.3.1 Approximate Decision Diagrams
As stated by Algorithm 2, restricted DDs simply remove surplus nodes from the layer until it
is reduced to W nodes. A heuristic is used to evaluate the nodes and drop the least promising
ones. Restricted DDs thus generate a subset of the solutions of the corresponding problem,
i.e. Sol(B) ⊆ Sol(P) and v(p) = f(x(p)), ∀p ∈ B for a restricted DD B. They thus provide
upper bounds on the objective value.

As opposed to restricted DDs, a relaxed DD B yields lower bounds by representing
a superset of the solutions of the corresponding problem: Sol(B) ⊇ Sol(P) and v(p) ≤
f(x(p)), ∀p ∈ B. This is achieved through a problem-specific state merging operator ⊕(σ(M))
that defines an approximate representation that includes all states σ(M) = {σ(u) | u ∈M}
corresponding to the merged nodes M and preserves all their outgoing transitions, although
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r{0, 1, 2, 3}0

a1{0, 2, 3}35 a2{1, 2, 3}15 a3{0, 1, 2}40 a4{0, 1, 3}16

b1{2, 3}50 b2{0, 2}75 b3{1, 2}55 b4{0, 3}55 b5{1, 3}31 b6{0, 1}56

c1{2}90 c2{3}70 c3{0}91 c4{1}71

t∅106

1,35 0,15 3,40 2,16

0,21

3,40

2,20
1,35

3,40

2,16

1,50

0,30

2,20

1,50

0,24

3,40

3,40

2,20

0,24

2,161,50

2,20

0,30

3,40 1,50 3,40 1,35

0,21

2,16 3,40 0,15 1,35

Figure 1 The exact DD for the TalentSched instance given in Example 1. Nodes are annotated
with their state and the best prefix value. Arcs are labeled with the associated decision in bold and
transition value. The arcs constituting one of the optimal solutions are highlighted in bold.

Algorithm 2 Restriction or relaxation of layer Lj with maximum width W .
1: while |Lj | > W do
2: M← select nodes from Lj according to their score
3: Lj ← Lj \M
4: create node µ with state σ(µ) = ⊕(σ(M)) and add it to Lj // for relaxation only
5: for all u ∈M and arc a = (u′ d−→ u) incident to u do
6: replace a by a′ = (u′ d−→ µ) and set v(a′) = ΓM(v(a), u)

it may also introduce infeasible transitions. In Algorithm 2, a meta-node is created for this
merged state at line 4 and the arcs pointing to the deleted nodes are redirected to this
merged node at line 6. The operator ΓM permits to adjust the value of these arcs if needed.
In all three formulations given below, this operator is the identity function.

TalentSched. The merging operator is defined by ⊕(M) = (⊕M (M),⊕P (M)) where
⊕M (M) =

⋂
s∈M s.M and ⊕P (M) = (

⋃
s∈M s.M ∪ s.P ) \ (

⋂
s∈M s.M). The definition of

⊕P (M) ensures that the resulting set of scenes that might be scheduled contains any scene
that must or might be scheduled in any of the states, except those that still must be scheduled
for all states.

PSP. A valid merging operator is ⊕(M) = (⊥, ⟨mins∈M s.R0, . . . , mins∈M s.Rn−1⟩). The
configuration of the machine is always reset to the dummy item type ⊥ as there is little chance
that merged states agree on it. For each item type, the remaining number of demands is
computed by taking the minimum value among all merged states, meaning that any demand
satisfied by at least one state is considered satisfied in the merged state.
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r{0, 1, 2, 3}0

a1{0, 2, 3}35 a2{1, 2, 3}15 a4{0, 1, 3}16

b1{2, 3}50 b3{1, 2}55 b5{1, 3}31

c1{2}90 c2{3}70 c4{1}71

t∅106

1,35 0,15 2,16

0,21 1,35 3,40 2,16 0,24

3,40

2,20

1,50 2,20

1,50

3,40

2,16 3,40 1,35

r{0, 1, 2, 3}0

a1{0, 2, 3}35 a4{0, 1, 3}16 a3{0, 1, 2}40 a2{1, 2, 3}15

b246
{0}

{1, 2, 3}
55 b1{2, 3}50 b3{1, 2}55 b5{1, 3}31

c5
∅

{1, 2, 3}70 c6
{0}

{1, 3}
71 c134

∅
{0, 1, 2, 3}71 c2{3}70

t∅86

1,35 0,153,402,16

0,21

1,35

3,40
2,16

0,30

0,24

3,40

2,20

1,503,400,15 2,16

1,35 0,15

2,16

3,40

1,50
2,20

3,403,40

2,16

3,40
2,20

3,40

1,50

0,15
1,35

1,50

2,20

3,40

1,35

Figure 2 Respectively on the left and the right, a restricted and relaxed DD for the TalentSched
instance given in Example 1, compiled with W set to 3 and 4. Merged nodes are circled twice.

ALP. The merging operator is again defined separately for each component of
the states: ⊕(M) = (⊕Q(M),⊕ROP (M)). First, the minimum remaining
quantity of aircrafts for each class is stored in the merged state: ⊕Q(M) =
⟨mins∈M s.Q0, . . . , mins∈M s.Qc−1⟩. For the ROP, the minimum latest landing time on
each runway is kept and the last aircraft classes scheduled are reset to ⊥: ⊕ROP (M) =
⟨(mins∈M s.ROP0.l,⊥), . . . , (mins∈M s.ROPr−1.l,⊥)⟩.

▶ Example 2. Figure 2 shows approximate DDs for the TalentSched instance introduced
in Example 1. Despite having a maximum width of 3, the best solution contained in the
restricted DD is the optimal solution previously found. With a maximum width of 4, the
relaxed DD provides a global lower bound of 86. The path corresponding to this lower bound
is given by the assignment ⟨0, 2, 3, 0⟩, which is infeasible because scene 0 is scheduled twice.

2.3.2 Branch-and-Bound

In [9], a branch-and-bound algorithm based only on restricted and relaxed DDs was introduced.
It maintains a queue of open nodes that represent the set of subproblems that remain to
process. For each of them, a restricted DD is compiled in an attempt to improve the
incumbent solution. Then, a relaxed DD is constructed in order to both decompose the given
subproblem into even smaller ones and to compute a lower bound for each of them. These
nodes are then added to the branch-and-bound queue for further exploration, unless the
lower bound permits their direct elimination. Ultimately, the optimality of the best solution
discovered during the search is confirmed once the queue has been emptied.
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2.3.3 Rough Lower Bound
The rough lower bound (RLB) [19] is an additional optional modeling component that can
be specified to speed up the resolution of any optimization problem. For any node u, the
RLB gives a lower bound on the best value one can obtain when solving the corresponding
subproblem σ(u), i.e. vrlb(σ(u)) ≤ v∗(u⇝ t | B) with B the exact DD for the problem. It is
used at line 10 of Algorithm 1 to filter nodes a priori by comparing this lower bound with
the incumbent value v. Since the RLB is computed for each node of the approximate DDs
compiled throughout the branch-and-bound, it needs to be computationally cheap.

The RLB has the potential both to focus the compilation of restricted DDs on promising
parts of the search space and to strengthen the bounds obtained through relaxed DDs.
Furthermore, the branch-and-bound algorithm uses the RLB to make pruning decisions, if it
happens to be tighter than the bound obtained with relaxed DDs.

Example problems. In our computational experiments, we use the lower bound given by
Theorem 1 in [17] for TalentSched and the same RLB as in [20] for the PSP. We do not detail
them in this article for the sake of conciseness.

3 Aggregate Dynamic Programming for Decision Diagrams

As stated in the introduction, optimizations techniques based on DP and DDs can prove
highly effective [6, 13, 14, 18, 19]. In some cases, however, the state space of the DP models
is simply too large and the bounds derived from restricted and relaxed DDs are of little
to no use. This can be imputed either to the node selection heuristic or to the relaxation
scheme. The MinLP heuristic traditionally used favors keeping nodes with the best prefix
values. This locally-optimal selection policy may result in the elimination of all nodes that
lead to the optimal solution, or even to any feasible solution, particularly in cases of highly
constrained problems. In the latter case, the compilation of a restricted DD is a pure waste
of time: no feasible solution is found at the end of the compilation, and not even a bound on
the objective value can be exploited to reduce the optimality gap. The same phenomenon
is detrimental to the usefulness of compiled relaxed DDs whose bounds might be of low
quality when the node selection heuristic is oblivious to the global structure of the problem.
Indeed, the merging operator yields a loose representation when applied to an arbitrary set
of nodes for most problems. In the absence of a perfect heuristic, this situation will occur
under certain conditions. It inspired our pursuit of a more globally-focused approach that
could enhance the usefulness of the compiled DDs. This section presents a framework for
integrating aggregate dynamic programming ideas with DD-based optimization that aims to
address some of these shortcomings. Instead of relaxing the original problem by reasoning
on merged states, it proposes to use problem instance and state aggregation operators that
yield a simpler and relaxed version of the problem, which can be solved exactly. Solutions
of the aggregated problem can provide bounds that capture the global problem structure,
as well as guidance for the compilation of restricted DDs. This section details the role and
meaning of the components of the framework one by one.

3.1 Preprocessing: Problem Instance Aggregation
The goal of this preprocessing step is to create an aggregate and simpler problem instance by
reducing one or more dimensions of the problem. The instance aggregation operator Π must
be defined such that the aggregate problem instance P ′ = Π(P) is a relaxation of the original
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problem instance P. In practice, assuming the problem reasons over a set of elements, a
clustering algorithm can be used to create clusters of such elements. Then, the aggregate
problem instance can be obtained by considering aggregate elements that encompass all
elements in a given cluster and by adapting the instance data accordingly. Formally, if a
set E of elements is clustered into K clusters, we define two mapping functions: Φ : E →
{0, . . . , K − 1} that gives the cluster for each original element and Φ−1 : {0, . . . , K − 1} → 2E

that gives the set of original elements for a given cluster.

TalentSched. In [17], it is proved that there always exists an optimal solution to the
problem in which scenes with the same set of actors are scheduled together. This gives us the
opportunity to aggregate the problem by creating K clusters of scenes that require a similar set
of actors, which is plausible to occur in real film shoots. Scenes belonging to the same clusters
can then be aggregated by taking the intersection of their actor requirements and adding up
their durations. Formally, we write Π(P = (N, A, R, D, C)) = (ΠN (N), A, ΠR(R), ΠD(D), C)
with ΠN (N) = {0, . . . , K − 1}. The aggregate actor requirements are computed as ΠR(R) =
R′ with R′

i = ∩j∈Φ−1(i)Rj for all i ∈ ΠN (N) and the aggregate durations as ΠD(D) = D′

with D′
i =

∑
j∈Φ−1(i) Dj for all i ∈ ΠN (N).

PSP. The number of item types considered in a PSP instance dramatically impacts the
size of the state space – for instance, the case with only one item type can be solved
greedily. Therefore, and because it is not unlikely that the machine will produce several
sets of similar items, we propose to cluster item types that have similar stocking and
changeover costs. The instance aggregation operator is thus Π(P = (I, S, C, H, Q)) =
(ΠI(I), ΠS(S), ΠC(C), H, ΠQ(Q)), where the aggregate set of item types is given by ΠI(I) =
{0, . . . , K − 1}. Their stocking costs are computed as ΠS(S) = S′ with S′

k = mini∈Φ−1(k) Si

for all k ∈ ΠI(I) and the changeover costs as ΠC(C) = C ′ with C ′
kl = mini∈Φ−1(k),j∈Φ−1(l) Cij

for all k, l ∈ ΠI(I). The aggregate demand matrix is defined as ΠQ(Q) = Q′ with Q′k
p =∑

i∈Φ−1(k) Qi
p. However, as the demand matrix is only supposed to contain unit demands,

one must redistribute surplus demands in Q′ to the left.

ALP. Similarly to the item types of the PSP, the aircraft classes can be aggregated to
reduce the complexity of the problem. We thus propose to cluster them based on their
minimum separation time with other classes and define the instance aggregation operator as
Π(P = (N, R, C, A, S, T, L)) = (N, R, ΠC(C), ΠA(A), ΠS(S), T, ΠL(L)). The set of aircrafts,
their target landing time and the number of runways is kept. The aggregate set of classes is
given by ΠC(C) = {0, . . . , K − 1} and their corresponding set of aircrafts is computed as
ΠA(A) = A′ with A′

i = ∪j∈Φ−1(i)Aj for all i ∈ ΠC(C). The smallest separation times between
aggregate classes are kept, as formalized by ΠS(S) = S′ with S′

kl = mini∈Φ−1(k),j∈Φ−1(l) Si,j

for all k, l ∈ ΠC(C). Finally, the aggregation operator adapts the latest landing times of all
the aircrafts so that any aircraft with a given target landing time has a greater latest landing
time than all other aircrafts of the same class with a smaller target landing time: ΠL(L) = L′

with L′
i = max {Lj | Φ(i) = Φ(j), Ti ≤ Tj} for all i ∈ A. This property is assumed to hold

for the original problem instance, and must be preserved so that aircrafts from the same
class can be scheduled sequentially in the DP model.

▶ Example 3. Let us apply the problem instance aggregation to our running example by
creating K = 2 aggregate scenes. Assuming the following clustering is found: Φ(0) = 0, Φ(1) =
1, Φ(2) = 0, Φ(3) = 1 or equivalently Φ−1(0) = {0, 2} , Φ−1(1) = {1, 3}. We thus compute
the aggregate scene durations as: D′ = ⟨D0 + D2, D1 + D3⟩ = ⟨5, 9⟩ and the aggregate actor
requirements as: R′ = ⟨{0, 3} ∩ {0, 2, 3} , {0, 1, 3} ∩ {0, 1, 2, 3}⟩ = ⟨{0, 3} , {0, 1, 3}⟩.
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3.2 State Aggregation and Lower Bound
A second mapping function accompanies the problem instance aggregation operator: the
state aggregation operator π : S → S′ that projects each state of the state space S of the
original problem in the aggregate state space S′. The role of this operator is to translate each
original state to its aggregate version by adapting the state information to fit the aggregate
problem data. Let us denote by B and B′ the exact DD for problem P and Π(P), respectively.
If the aggregation operators Π and π are defined such that v∗(u⇝ t | B) ≥ v∗(u′ ⇝ t′ | B′)
for all u ∈ B, u′ ∈ B′ with π(σ(u)) = σ(u′) and π(σ(t)) = σ(t′), then v∗(u′ ⇝ t′ | B′) can be
used as a lower bound in the original problem, which we will denote by vagg(π(σ(u))).

Assuming the aggregate problem can be pre-solved exactly and the solution of each
subproblem is stored, this aggregation-based lower bound can be retrieved very quickly. One
way to exploit it is to incorporate it in the RLB as shown at line 9 of Algorithm 1 so that it
is used as often as possible. Another possibility would be to use the aggregate state space to
replace the state merging scheme in relaxed DDs. Once a layer with greater width than W is
reached, all the states contained in the nodes of the layer could be mapped to the aggregate
state space to pursue the compilation in a lower dimensional space.

TalentSched. The state compression operator for TalentSched is somewhat complex because
we can only map to states where complete aggregate scenes have yet to be scheduled. As a
result, if a state s contains scenes in s.P that can optionally be scheduled, we map it to a
dummy aggregated state. The same logic is applied when s.M only contains a subset of the
scenes that compose an aggregate scene.

π(s) =


(∅, ∅), if s.P ̸= ∅,
(∅, ∅), if ∃i ∈ ΠN (N) : (Φ−1(i) ∩ s.M) ̸= ∅ ∧ Φ−1(i) ⊈ s.M ,
(M ′, ∅), otherwise, with M ′ =

{
i ∈ ΠN (N) | Φ−1(i) ⊆ s.M

}
.

PSP. If we extend the definition of Φ such that Φ(⊥) = ⊥, the state aggregation operator
can be defined as π(s) = (Φ(s.i), R) with Ri =

∑
j∈Φ−1(i) s.Rj for all i ∈ ΠI(I). The item

type is projected to its corresponding aggregate type, and the remaining number of items to
produce for each type is separately accumulated within each cluster.

ALP. Again, assuming Φ(⊥) = ⊥, the state aggregation operator is defined by π(s) =
(Q′, ROP ′) with the remaining quantities of aircrafts aggregated as Q′

i =
∑

j∈Φ−1(i) s.Qj for
all i ∈ ΠC(C). For the ROP, one only needs to adapt the class of the last aircraft scheduled
on each runway ROP ′

i = (s.ROP0.l, Φ(s.ROP0.c)) for all i ∈ R.
If lower bounds for original states are obtained only by pre-solving the aggregate problem,

it is unlikely that the solution of an aggregate subproblem mapped with the state aggregation
operator will be available, since the aggregate separation times between aircraft classes lead to
very different landing times. However, a lower bound for an aggregate state s1 = (Q1, ROP 1)
can be provided by the solution of any state s2 = (Q2, ROP 2) such that Q1 = Q2 and
ROP 1

i .c = ROP 2
i .c and ROP 1

i .l ≥ ROP 2
i .l for all i ∈ R.

▶ Example 4. Let us compute the aggregation-based lower bound for the root state of
the running example r = ({0, 1, 2, 3} , ∅) given its aggregate version π(r) = ({0, 1} , ∅) and
the clustering performed in Example 3. The aggregate version is trivial to solve since the
objective function is symmetrical and there are only two scenes to schedule. We thus have
vagg(r) = D′

0 × (C0 + C3) + D′
1 × (C0 + C1 + C3) = 5× (1 + 4) + 9× (1 + 2 + 4) = 88, which

is a slightly better lower bound than the one obtained with the relaxed DD of Example 2.
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3.3 Solution Disaggregation and Node Selection Heuristic
In order to exploit the solution of the aggregate version of a subproblem to find good heuristic
solutions for the original subproblem, we need to specify the correspondence between decisions
in the aggregate problem with decisions in the original problem. We therefore define a last
modeling component, called the decision disaggregation operator δ(d) : D′

k → 2Di × · · · × 2Dj

that maps the instantiation of a variable x′
k in the aggregate problem to a vector of possible

corresponding assignments for variables xi, . . . , xj in the original problem.
Finally, we define the path disaggregation operator that transforms a sequence of decisions

in the aggregate problem to a sequence of sets of possible decisions in the original problem:
∆(p = (ak, . . . , an′−1)) = δ(l(ak)) · . . . · δ(l(an′−1)) where n′ is the supposed number of
aggregate variables and · denotes the concatenation of two vectors. Using this operator,
we can compute a score for each decision made during the compilation of restricted DDs.
At line 3 of Algorithm 1, we first retrieve the optimal value assignment of the aggregate
subproblem and apply the path disaggregation operator on it. Then, a binary score is
attributed to each arc at line 15, depending on its compatibility with the disaggregated
solution. At line 2 of Algorithm 2, the maximum score obtained along any path up to each
node can then be used to order nodes from most to least promising, favoring nodes with
incoming paths that are highly compatible with the disaggregated solution. By doing so, the
width of restricted DDs is controlled in the same way as before, enabling the preference of
solutions even when no feasible solution with the maximum possible score is available.

TalentSched. Each aggregate scene corresponds to a set of original scenes, we thus need to
map each aggregate decision to a sequence of original decisions: δ(i) = V where Vj = Φ−1(i)
for all 0 ≤ j < |Φ−1(i)|. It corresponds to any of the scenes from the cluster i, duplicated
|Φ−1(i)| times so that they are all scheduled one after another, preferably.

PSP. The operator is much simpler to define for the PSP, since each decision concerns the
production of one unit of a chosen aggregate item type. It can thus be interpreted as the
decision of producing one unit of any item type in the corresponding cluster: δ(i) =

〈
Φ−1(i)

〉
.

ALP. The only difference with the PSP is that decisions also contain the runway on which
the aircraft is scheduled to land, which remains the same: δ(a, r) =

〈{
(a′, r) | a′ ∈ Φ−1(a)

}〉
.

▶ Example 5. As computed in Example 4, the schedule ⟨0, 1⟩ is optimal for the aggregate
problem. By disaggregating this solution, we get ⟨{0, 2} , {0, 2} , {1, 3} , {1, 3}⟩. We can notice
that the optimal schedule ⟨0, 2, 3, 1⟩ found in Example 1 is compatible with the disaggregated
solution and would thus be favored by the aggregation-based node selection heuristic.

4 Computational Experiments

The impact of the aggregation-based bounds and heuristics was evaluated experimentally by
extending the generic DD-based solver DDO [21] and injecting the modeling of the three
discrete optimization problems presented throughout the paper. The version of DDO used
includes the improvements introduced in [16, 19]. For each problem, random instances were
generated with the following main parameters:

TalentSched: number of scenes n ∈ {20, 22, 24, 26, 28}, number of actors m ∈ {10, 15}
and average fraction of actors required for each scene ρ ∈ {0.3, 0.4}.
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Figure 3 Number of instances solved over time for each configuration and problem studied.

PSP: number of item types n = 10, horizon H ∈ {100, 150, 200} and fraction of time
periods with a demand ρ ∈ {0.9, 0.95, 1}.
ALP: number of aircrafts n ∈ {25, 50, 75, 100}, number of runways r ∈ {1, 2, 3, 4}, number
of aircraft classes c = 4 and mean inter-arrival time 40/r for generating the target landing
times according to a Poisson arrival process.

Furthermore, the instance generation tries to emulate an increasing number of groups of actor
requirements, item types and aircraft classes that lend themselves more or less to aggregation.
Each instance was presolved in its aggregate state space after aggregating its data according
to k-means clustering for PSP and ALP and a custom hierarchical clustering for TalentSched
that tries to maximize the remaining costs induced by the actor requirements. TalentSched
instances can be presolved exactly with 20 aggregate scenes and PSP instances similarly with
5 aggregate item types. On the other hand, not all ALP instances reduced to 2 aggregate
aircraft have a reasonable number of states so we employ a relaxed DD with maximum width
10000 for the presolving part instead. Note that the present approach does not compete
with the state-of-the-art for TalentSched as it lacks much of the custom symmetry-breaking
logic introduced in [17] and similarly for ALP regarding the dominance-breaking constraints
presented in [28]. Six different configurations were created by combining the default DD-based
solved DDO on one hand and a version using only restricted DDs and no relaxed DDs,
denoted rDDO, on the other hand, with the aggregation-based bounds (AggB) and heuristics
(AggH). Ten minutes were allotted for each configuration to solve each instance.

Figure 3 presents the cumulative number of instances solved with respect to the solving
time. For TalentSched, it appears that any configuration of rDDO performs better than any
of DDO. This suggests that the bounds provided by the relaxed DDs are looser than the RLB
while being more expensive to compute. It confirms our intuition that the state merging
scheme yields bounds with a limited impact for some problems, probably because the state
information gets very dilute when many states are merged together. In this case, the RLB
computation is also quite involved – see [17]. Still, adding the AggB and the AggH to either
configurations improves the results by a small margin, although not that significant. This
can be contrasted with the results obtained for the two other problems, which show a clear
improvement when the AggB and the AggH are added to either configurations. Furthermore,
in cases where rDDO alone yields the worst results, incorporating AggB leads to results that
are similar to or better than those achieved by DDO. Combining it with the AggH performs
better than DDO in both cases and almost equally well than DDO+AggB+AggH.

The impact of the AggB and the AggH can also be measured in terms of end gap UB−LB
UB .

Figure 4 compares the end gap obtained for each instance by DDO and DDO+AggB+AggH.
It shows that except for a few instances, DDO+AggB+AggH is always closer to terminating
the search than DDO, especially for PSP. To validate the relevance of the AggH, we also
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Figure 4 Comparison of the end gap obtained for each instance by DDO and DDO+AggB+AggH.
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Figure 5 Comparison of the value of the first solution found by DDO and DDO+AggB+AggH,
and of the iteration at which the solution is found for ALP.

compare the value of the first solution found by DDO and DDO+AggB+AggH on Figure 5(a).
For TalentSched and PSP, the quality of the first solution is always better when using the
AggH. However, there is no clear trend for the ALP. Unlike TalentSched and PSP, for which
a solution is always found at the first iteration, the landing time windows of ALP make it
difficult to find a feasible solution. This explains both the end gaps close to one in Figure 4
and the ∞ values in Figure 5(a), which represent the absence of a feasible solution. We thus
compare on Figure 5(b) the iteration at which the first solution is found. We observe that
DDO+AggB+AggH finds a feasible solution much earlier than DDO in most cases. This
showcases well the benefits of a node selection heuristic with a more global awareness.

5 Conclusion

This paper explained how ideas from aggregate dynamic programming can be incorporated
in DD-based optimization solvers. We proposed to derive lower bounds and node selection
heuristics from a pre-solved aggregate version of the original problem at hand, and explained
how these can be seamlessly added to the DD-based optimization framework. Computational
experiments on three different problems showed that they provide lower bounds that further
strengthen the current approach, and that could even be used as a replacement for relaxed
DDs in some cases. Furthermore, the aggregation-based node selection heuristics were shown
very valuable as they manage to steer the compilation of relaxed DDs toward better solutions
earlier in the search. When applying this idea to a highly constrained problem, the heuristics
proved to quickly lead to feasible solutions that were hard to find otherwise. These results
suggest that aggregation-based bounds and heuristics capture global problem structures well,
as opposed to the greedy MinLP heuristic traditionally used to compile approximate DDs.
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Abstract
It is known that the multiplication of an N ×M matrix with an M ×P matrix can be performed using
fewer multiplications than what the naive NMP approach suggests. The most famous instance of
this is Strassen’s algorithm for multiplying 2 × 2 matrices in 7 instead of 8 multiplications. This gives
rise to the constraint satisfaction problem of fast matrix multiplication, where a set of R < NMP

multiplication terms must be chosen and combined such that they satisfy correctness constraints on
the output matrix. Despite its highly combinatorial nature, this problem has not been exhaustively
examined from that perspective, as evidenced for example by the recent deep reinforcement learning
approach of AlphaTensor. In this work, we propose a simple yet novel Constraint Programming
approach to find algorithms for fast matrix multiplication or provide proof of infeasibility otherwise.
We propose a set of symmetry-breaking constraints and valid inequalities that are particularly helpful
in proving infeasibility. On the feasible side, we find that exploiting solver performance variability
in conjunction with a sparsity-based problem decomposition enables finding solutions for larger
(feasible) instances of fast matrix multiplication. Our experimental results using CP Optimizer
demonstrate that we can find fast matrix multiplication algorithms for matrices up to 3 × 3 with
R = 23 in a short amount of time.
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1 Introduction

Matrix multiplication is a fundamental operation in linear algebra with applications in
virtually every computational domain. As a result, extensive research has been dedicated to
the development of faster matrix multiplication algorithms.

The elementary way of multiplying two N × N matrices requires N3 multiplications. For
example, multiplying two 2 × 2 matrices naively requires a total of 23 = 8 multiplications. In
1969, Strassen [16] constructed an algorithm that finds the product of two 2 × 2 matrices
in only 7 multiplications. This discovery has had significant implications as it opened up

1 These authors contributed equally.

© Arnaud Deza, Chang Liu, Pashootan Vaezipoor, and Elias B. Khalil;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnaud.deza@mail.utoronto.ca
mailto:changy.liu@mail.utoronto.ca
mailto:pashootan@cs.toronto.edu
mailto:khalil@mie.utoronto.ca
https://doi.org/10.4230/LIPIcs.CP.2023.14
https://github.com/khalil-research/Matrix-Mult-CP/tree/main
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

the door for potentially faster algorithms for large-scale matrix or tensor computations.
Strassen’s algorithm has later been proved to be both canonical [4] (no smaller rank exists)
and essentially unique [6] (all other solutions of the same rank are equivalent up to symmetry).

Currently, the best-known algorithm for multiplying 3 × 3 matrices requires R = 23
multiplications, compared to the naive elementary method that requires 27 multiplications.
A known theoretical lower bound of R = 19 exists [2], however, it remains unclear whether
19 ≤ R ≤ 22 is truly attainable. This is a testament to the difficulty of the fast matrix
multiplication (FMM) problem, which has been intractable for existing methods even for tiny
matrices.

In the literature, the general approach to finding FMM algorithms starts by representing
matrix multiplication as a tensor operation using the multiplication tensor TN followed by
finding exact or approximate low-rank decompositions that represent TN . The factor matrices
that are used in the low-rank decomposition encode FMM algorithms. A rank-7 decomposition
(i.e., a multiplication algorithm that uses 7 multiplication operations) of a 2 × 2 matrix
multiplication using Strassen’s algorithm is shown in Figure 1. Existing methods for finding
such factor matrices have several limitations. The most successful and common methods
include local search [13] techniques for low-rank approximation, which cannot guarantee
optimality. A more recent successful approach [7] searches for low-rank decomposition using
reinforcement learning (RL) and was successful in finding faster algorithms for N = 4.
However, this method is not exhaustive and hence cannot prove the infeasibility of a given
rank.

In this work, we propose a novel approach to finding FMM algorithms by formulating the
tensor decomposition problem, for the first time, as a constraint satisfaction problem (CSP)
that is solved using Constraint Programming (CP). We believe that this is a very natural
formulation of this highly combinatorial problem. CP is advantageous for FMM in that it
is a flexible framework that can bring to bear a wide range of search and logical inference
techniques that have been developed over the last few decades. It provides the ability to
prove infeasibility when it is not possible to multiply two matrices using a given number of
multiplications.

Besides a base CP formulation for FMM, we propose a set of symmetry-breaking con-
straints and valid inequalities that are useful for infeasibility proofs. On the feasible side,
we show that “performance variability” w.r.t. solver random seeds can be exploited in con-
junction with a sparsity-based decomposition of FMM for faster solving. Our experimental
results, while limited to matrices of size up to 3 × 3, demonstrate the effectiveness of the
aforementioned constraints and techniques. The CP approach to FMM is uniquely positioned
to close open questions such as whether it is possible to multiply two 3 × 3 matrices in 19
to 22 multiplications. While we do not yet resolve this or other open questions, our work
opens up the potential for further enhancements to the CP formulation and search such as
customized branching strategies and CP-based heuristics.

2 Fast Matrix Multiplication: Problem Statement

The multiplication of two matrices A and B of sizes N ×M and M ×P , respectively, results in
a product matrix C of size N × P . This operation can be represented by a binary third-order
tensor TNMP (TN for square matrices A and B of size N × N). An entry Ti,j,k of this tensor
is equal to 1 if and only if the kth entry in the output matrix C uses the scalar product of
the ith entry of A and the jth entry of B. Here, i, j, and k are indices of a matrix entry
starting with 1 in the first row and column; and proceeding entry by entry, left to right, top
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to bottom. For example, for N = M = P = 2, it must be that T2,3,1 = 1 since the first entry
of C, c1, is equal to a1b1 + a2b3. Similarly, T1,2,1 = 0 must hold since a1b2 is not part of c1.
Figures 1a and 1b show a complete example of the indexing and tensor representation.

The FMM problem for a given tensor TNMP , rank R ∈ Z+, and field F (e.g., F =
{−1, 0, 1}) asks: can each entry Ti,j,k of TNMP be expressed as the sum of exactly R trilinear
terms involving the factor matrices U ∈ FN ·M×R, V ∈ FM ·P ×R, and W ∈ FN ·P ×R, as
follows:

Ti,j,k =
R∑

r=1
Ui,r · Vj,r · Wk,r ∀i ∈ {1, . . . , N · M}, j ∈ {1, . . . , M · P}, k ∈ {1, . . . , N · P}

Note that we use the notation FL×Q to refer to the set of matrices of dimension L × Q and
entries in F. The CSP is to find factor matrices with entries in F that produce the tensor
TNMP for a given rank R.

This decomposition is also referred to as the polyadic decomposition and its associated
rank is the minimal R needed. The rank can be interpreted as the number of multiplica-
tions required to compute the product. For example, for 2 × 2 matrices, the rank of the
decomposition using Strassen’s algorithm is 7. Figure 1 walks through an example of the
low-rank decomposition of a 2 × 2 matrix multiplication using Strassen’s algorithm. The
matrix multiplication of the two 2 × 2 matrices can be seen in Figure 1a, its associated tensor
representation TN in Figure 1b, the low-rank decomposition in Figure 1c, and the factor
matrices U , V , and W in Figure 1d.

3 Related Work

Since Strassen’s discovery [16], there has been substantial research on finding faster algorithms
for matrix multiplication. Mathematicians have discovered such algorithms manually over
the years for a variety of matrix dimensions and ranks. In this section, however, we will
focus on automated methods for discovering such algorithms and briefly discuss some of the
existing methods. A recent survey on the topic can be found in [3].

3.1 Continuous Local Search Methods
The most common approach in the literature to compute the factor matrices U , V , and W is to
use (heuristic, continuous) local search methods for low-rank tensor decomposition. The state-
of-the-art local method [13] uses alternating least squares with regularization. This method
has been the most successful in finding fast algorithms whilst remaining computationally
tractable and has been scaled up to N = M = P = 4, R = 492. However, this approach has
limitations which include getting stuck at local minima, facing ill-conditioned linear least-
squares problems, and solutions being only adequate up to machine precision. Additionally,
these methods are not exhaustive and hence cannot be used to provide a proof of infeasibility
for a given rank R.

3.2 AlphaTensor
More recently, DeepMind released AlphaTensor [7], a deep RL method that searches this
large combinatorial space by playing a single-player game, the TensorGame, formulated as
a Markov decision process (MDP). At every step t of this MDP, the state is characterized

2 Note that this particular result is not very useful as an R = 49 solution can be obtained by applying
Strassen’s R = 7 algorithm for 2 × 2 matrices on the four 2 × 2 blocks of the 4 × 4 matrices.
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(
c1 c2
c3 c4

)
=

(
a1 a2
a3 a4

)
·
(

b1 b2
b3 b4

)
(a) Multiplication of two 2 × 2 matrices. We highlight the term c1 = a1b1 + a2b3.

T:,:,1 =
( 1 0 0 0

0 0 1 0
0 0 0 0
0 0 0 0

)
T:,:,2 =

(
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
T:,:,3 =

(
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

)
T:,:,4 =

(
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

)
(b) Tensor representation of the 2 × 2 matrix multiplication operation. T:,:,1 represents c1, the entry T2,3,1
(in yellow) is set to 1 because the product a2b3 is required to compute c1 (similarly for T1,1,1 in red).

m1 = (a1 + a4)(b1 + b4) m5 = (a1 + a2)(b4)

m2 = (a3 + a4)(b1) m6 = (a3 − a1)(b1 + b2)
m3 = (a1)(b2 − b4) m7 = (a2 − a4)(b3 + b4)
m4 = (a4)(b3 − b1)

c1 = m1 + m4 − m5 + m7

= (a1 + a4)(b1 + b4) + (a4)(b3 − b1) − (a1 + a2)(b4) + (a2 − a4)(b3 + b4)

= a1b1 +✟✟a1b4 +✟✟a4b1 +✟✟a4b4 +✟✟a4b3 −✟✟a4b1 −✟✟a1b4 −✟✟a2b4 + a2b3 +✟✟a2b4 −✟✟a4b3 −✟✟a4b4

= a1b1 + a2b3

c2 = m3 + m5

c3 = m2 + m4

c4 = m1 − m2 + m3 + m6

(c) A low-rank decomposition of the 2 × 2 matrix multiplication using Strassen’s algorithm. The m
terms are the multiplication terms and the c terms represent the entries in the product matrix. Here
c1 = m1 + m4 − m5 + m7 gives c1 = a1b1 + a2b3 after expansion.

m1 m2 m3 m4 m5 m6 m7

U =


1 0 1 0 1 -1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 -1


a1
a2
a3
a4

V =


1 1 0 -1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 -1 0 1 0 1


b1
b2
b3
b4

W =


1 0 0 1 -1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 -1 1 0 0 1 0


c1
c2
c3
c4

(d) The factor matrices U , V , and W for Strassen’s algorithm. The columns in U and V represent the
coefficient of the a and b terms in each m. Each row in W represents the coefficient of the m terms in one
c term.

Figure 1 A low-rank decomposition of a 2 × 2 matrix multiplication using Strassen’s algorithm.
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by a tensor St which is initially set to the target multiplication tensor, i.e., S0 = TN . An
action at at iteration t corresponds to the player selecting a triplet of vectors (u(t), v(t), w(t))
which in turn will provide the next state St = St−1 − u(t) ⊗ v(t) ⊗ w(t) where ⊗ denotes
the outer tensor product. The goal of the player is to reach the zero tensor St = 0 in the
fewest number of steps possible. This is done by providing a reward of −1 to the player after
every non-terminal state whereas a large negative reward −γ(SRlimit) is given to the player
if the number of steps Rlimit is met, where γ(SRlimit) upper bounds the rank of the tensor
at iteration Rlimit. If the agent successfully reaches the zero tensor, the sequence of actions
taken constitutes a valid low-rank decomposition of TN , and hence an FMM algorithm is
found with the rank R corresponding to the number of steps taken by the agent.

This approach is the first to directly incorporate learning into the search which resulted
in the discovery of new minimal ranks for certain non-trivial cases. The largest case tackled
by this method is N = M = P = 5, R = 98. The sole focus of this purely heuristic method
is to find lower ranks than currently best-known ranks but it cannot prove the infeasibility of
a given rank. Additionally, rather complex architectures and multiple training phases were
required for successful learning. It is worth noting that AlphaTensor was trained for one
week on 64 Tensor Processing Units (TPUs), Google’s proprietary chip. The paper [7] does
not provide any estimates of the amount of computation required to produce the reported
results, namely how long the trained “agent” must be run to discover FMM algorithms. Our
CP runs use much fewer resources while leveraging thread parallelism in the CP solver on
readily-available CPU machines.

3.3 Integer Programming
The work that is the most related to our approach tackles this problem through a mixed-
integer linear program (MILP) formulation in an unpublished technical report [14]. The goal
of this methodology is to linearize the trilinear products in the low-rank decomposition of TN

to a MILP that aims to 1) maximize the sparsity of the integer decision variables representing
factor matrices U , V , and W and 2) minimize the reconstruction loss (L1 norm) from
the input TN and the multiplication tensor attained by the decision variables representing
factor matrices. The report [14] focuses solely on presenting the MILP formulation for
square matrices but does not include any computational experiments. However, the MILP
formulations for N ∈ {2, 3} are benchmark problems in MIPLIB 2017 [9]3. The linearization
of the trilinear products likely leads to a weak linear programming relaxation as well as an
explosion in the number of integer variables and constraints, which might explain why the
MILP approach to FMM has not picked up significant interest. A CP formulation is more
natural and compact, as we will show in this paper.

3.4 Classical AI Planning
Very recently, AI planning techniques were used for FMM [15]. They use a similar state
space as AlphaTensor but use various planning tools (with and without exhaustive search) to
solve this problem. They compared a number of heuristic and exact planning methods from
the literature on matrices of size up to 3 × 3. However, the experiments show that planning
approaches are severely limited, even failing to find Strassen’s algorithm for the 2 × 2 case
(see Table 1 in [15]). We will show that our CP approach is significantly more effective as we
are able to attack the 3 × 3 case with R = 23, matching the known upper bound from the
literature.

3 See https://miplib.zib.de/instance_details_fastxgemm-n3r21s3t6.html for example.
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3.5 Boolean Satisfiability-based Approaches

Boolean Satisfiability (SAT) formulations to solve the FMM problem were first proposed
in 2011 [5]. More specifically, the authors studied the multiplication of 3 × 3 matrices and
were able to find a new general algorithm with rank 23 with help from SAT solver tweaks
and improvements in a few days with one CPU. More recently, Heule et al. improved on
the SAT-based methods for the multiplication of 3 × 3 matrices and have successfully found
many thousands new general algorithms with rank 23 [10, 11]. In their SAT-formulation,
the authors transformed the multiplication to ‘and’ clauses and the addition to ‘xor’ clauses,
then a Tseistin transformation is performed to formulate the algebraic FMM problem into a
SAT problem.

The authors propose a random pairing method where value assignments are initialized
based on observed results from previously known solutions with streamlining constraints
to find new general solutions; then local search is used to find additional solutions. The
SAT-based formulations of the FMM problem demonstrates to be very difficult for complete
SAT solvers, thus making it difficult to provide proof of infeasibility.

4 Constraint Programming for Fast Matrix Multiplication

In the FMM problem, all variables have the same domain F = {−1, 0, 1}4. Since the variable
domains are small and this problem is highly structured, CP is a promising solution paradigm.

The base CP model for FMM is given in Equation (1). Let U denote the set {1, . . . , N ·M},
V denote the set {1, . . . , M · P}, W denote the set {1, . . . , N · P}, and R denote the
set {1, . . . , R}. The CP model uses three sets of variables: ui,r where i ∈ U , vj,r where j ∈ V ,
and wk,r where k ∈ W ; r ∈ R in all three cases. Each variable ui,r, vj,r and wk,r represents
the value of the i/j/kth row and rth column of the matrices U , V , and W . The domain of all
variables is {−1, 0, 1}. The set of constraints presented here requires that the decomposition
algorithm’s output matches the original tensor multiplication TNMP . Therefore the input to
the CSP model is 4 integers: (N, M, P ) and R. The model then reads as:∑

r∈R
(ui,r · vj,r · wk,r) = Ti,j,k, ∀i ∈ U , j ∈ V , k ∈ W

ui,r, vj,r, wk,r ∈ {−1, 0, 1}, ∀i ∈ U , j ∈ V , k ∈ W , r ∈ R (1)

The search space for this (NP-complete) problem grows very quickly with increasing
matrix sizes N, M, P and rank R. With only one set of equality constraints, a CP solver may
struggle with constraint propagation, thus failing to scale with increasing N, M, P . To that
end, we will introduce additional valid constraints to help CP prune and propagate more
efficiently.

4.1 Symmetry Breaking

There are many symmetric solutions to the FMM problem. We can reduce the search space
of our problem significantly by prohibiting symmetries.

4 One can consider bigger fields such as {−2, −1, 0, 1, 2} but the bulk of the work in the literature has
been with {−1, 0, 1}.
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4.1.1 Permutation Symmetry
Since addition is commutative, i.e., (a1 + a2) = (a2 + a1), there are many equivalent solutions
to the tensor decomposition problem. Therefore, any permutation of the columns of matrices
U , V , and W produces an equivalent solution. If we consider Strassen’s solution for the 2 × 2
case, Figure 2 provides an example of two equivalent solutions.

sol1: U =
( 1 0 1 0 1 -1 0

0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 -1

)
V =

( 1 1 0 -1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 -1 0 1 0 1

)
W =

( 1 0 0 1 -1 0 1
0 0 1 0 1 0 0
0 0 0 1 0 0 0
1 -1 1 0 0 1 0

)
sol2: U =

( -1 0 0 0 1 1 1
0 0 0 1 0 0 1
1 0 1 0 0 0 0
0 1 1 -1 0 1 0

)
V =

( 1 -1 1 0 0 1 0
1 0 0 0 1 0 0
0 1 0 1 0 0 0
0 0 0 1 -1 1 1

)
W =

( 0 1 0 1 0 1 -1
0 0 0 0 1 1 1
0 1 1 0 0 0 0
1 0 -1 0 1 1 0

)

Figure 2 Two equivalent solutions for Strassen’s solution of 2 × 2 matrix multiplication. sol2 is
the lexicographic-strict presentation of this solution.

In order to break this symmetry, we introduce a lexicographic-strict5 constraint on
the ui,r and vj,r variables. When applied to two variable arrays x and y, the lexicographic
ordering constraint enforces that x is strictly less than y in the defined lexicographic order.
Because of the strictness, this also enforces that the two variable arrays must be different.
This set of symmetry-breaking constraints is modelled as follows:

lexicographic-strict([u:,r; v:,r], [u:,r+1; v:,r+1]), ∀r ∈ R

where [u:,r; v:,r] represents the vector concatenating the rth column of the matrix U and V .
In Figure 2, sol2 satisfies the lexicographic-strict constraint.

4.1.2 Sign Symmetry
For the multiplicative mi terms, one can easily see that multiplying both sets of terms
from A and B by −1 will result in the same solution. For example, (a1 + a4)(b1 + b4) =
(−a1 − a4)(−b1 − b4), where we could multiply any subset of columns of U and V by −1 to
achieve the same solution. We call this symmetry the sign symmetry. In order to break it,
we introduce the following constraints:

u1,r ≤ 0

ui,r ≤
i−1∑
i′=1

|ui′,r| ∀r ∈ R, i > 1, i ∈ U

The main idea of these constraints is to enforce that the first non-zero entry in a column
of U can only take on the value of −1, enforcing that the first entry of the columns is either 0
or −1. The subsequent constraints ensure that for any column r, an entry in row i > 1 can
only be 1 if there has been an entry in the same column in an earlier row with value −1.
This set of constraints applies to the concatenation of the columns in U and V , however, in
modelling, it only needs to be applied to the columns of the U matrix as none of the columns
can be zero, so the leading −1 must appear in the U matrix. By applying these constraints,
we make sure that {−ui,r} is infeasible for any feasible {ui,r}. Employing this sign symmetry
breaking constraint to sol2 from Figure 2, we arrive at sol3 shown in Figure 3.

5 https://www.ibm.com/docs/en/icos/22.1.0?topic=variables-lexicographic-constraint
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sol3: U =
( -1 0 0 0 -1 -1 -1

0 0 0 -1 0 0 -1
1 0 -1 0 0 0 0
0 -1 -1 1 0 -1 0

)
V =

( 1 1 -1 0 0 -1 0
1 0 0 0 -1 0 0
0 -1 0 -1 0 0 0
0 0 0 -1 1 -1 -1

)
W =

( 0 1 0 1 0 1 -1
0 0 0 0 1 1 1
0 1 1 0 0 0 0
1 0 -1 0 1 1 0

)

Figure 3 sol3 is the solution derived from enforcing the sign symmetry constraints on sol2.

Similarly, the same type of sign symmetry-breaking constraints can be applied to the W

factor matrix as follows:

w1,r ≤ 0

wk,r ≤
k−1∑
k′=1

|wk′,r| ∀r ∈ R, k > 1, k ∈ W .

The interpretation is as follows. In Figure 1c, consider c4 = m1 − m2 + m3 + m6, and notice
that one can redefine m6 = (a3 − a1)(b1 + b2) to become m6 = (a3 − a1)(−b1 − b2) and then
rewrite c4 as c4 = m1 − m2 + m3 − m6. Recall that the coefficients of the m terms in an
output entry ck are the entries of row k of factor matrix W . The transformation we just
performed produces two equivalent solutions and is an instance of “value symmetry” that is
broken by the above constraint set as it forces the first non-zero entry of a column of W to
be −1.

4.2 Valid Inequalities
Based on the structure of this problem, we can also introduce a series of valid inequalities
that could potentially help a CP solver with propagation.

First, for the W matrix, we know that each multiplicative term mr must be used at
least once for sufficiently small R (i.e., for non-trivial cases of the FMM problem where
R ≤ NMP ). This means that the sum of each column in W must be at least one:∑

k∈W

|wk,r| ≥ 1, ∀r ∈ R.

Each result term cl must use at least M terms. This is due to a basic fact in algebraic
complexity theory which states that the dot-product of two vectors of size M requires at
least M multiplications [17]. This means that the sum of each row of W must be greater or
equal to M :∑

r∈R
|wk,r| ≥ M, ∀k ∈ W .

Each result term cl must differ in at least two mr terms; a simple proof by contradiction
is omitted for brevity. This can be modelled as follows:∑

r∈R
|wk,r − wk′,r| ≥ 2, ∀k ̸= k′ ∈ W .

Each term in the A and B matrices must appear in at least one of the multiplicative
terms mr. This translates to each row of U and V having at least one non-zero term as
shown in the constraints below:∑

r∈R
|ui,r| ≥ 1, ∀i ∈ U∑

r∈R
|vj,r| ≥ 1, ∀j ∈ V .
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Furthermore, each valid product of two terms from the A and B matrices, e.g., a2b3 for
2 × 2 matrices, must appear in at least one of the R multiplication terms. For a2b3 appears
in c1 and c2, see Figure 1a. This can be modelled as follows:∑

r∈R
|ui,r · vj,r| ≥ 1, ∀ valid i, j.

4.3 Full CP Model
Finally, the full CP model is presented in Figure 4. The constraints in Equation (2)
ensure that the output matches the original multiplication tensor and thus the validity of an
assignment as a matrix multiplication algorithm. We enforce permutation symmetry-breaking
with Equation (3) and sign symmetry-breaking with Equations (4)–(7). The valid inequalities
are modelled through Equations (8)–(13).

∑
r∈R

(ui,r · vj,r · wk,r) = Ti,j,k, ∀i ∈ U , j ∈ V , k ∈ W (2)

lexicographic-strict([u:,r; v:,r], [u:,r+1; v:,r+1]), ∀r ∈ R (3)
u1,r ≤ 0 ∀r ∈ R (4)

ui,r ≤
i−1∑
i′=1

|ui′,r|, ∀r ∈ R, i > 1, i ∈ U (5)

w1,r ≤ 0 ∀r ∈ R (6)

wk,r ≤
k−1∑
k′=1

|wk′,r| ∀r ∈ R, k > 1, k ∈ W (7)∑
k∈W

|wk,r| ≥ 1, ∀r ∈ R (8)∑
r∈R

|wk,r| ≥ M, ∀k ∈ W (9)∑
r∈R

|wk,r − wk′,r| ≥ 2, ∀k ̸= k′ ∈ W (10)∑
r∈R

|ui,r| ≥ 1, ∀i ∈ U (11)∑
r∈R

|vj,r| ≥ 1, ∀j ∈ V (12)∑
r∈R

|ui,r · vj,r| ≥ 1, ∀ valid i, j (13)

Figure 4 Full CP Model with symmetry-breaking constraints and valid inequalities.

4.4 Sparsity-based Problem Decomposition
Given that the factor matrices that have been found for known decompositions tend to
be sparse, we introduce some inexact inequalities to induce sparsity and trim candidate
assignments that have a high likelihood to be infeasible or that are unnecessarily dense. For
example, observe that Strassen’s solution in Figure 1c leads to many zeros in the factor

CP 2023
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matrices; no m term uses more than 2 out of 4 of the a or b terms, no c term uses more
than 4 out of the 7 m terms. It has been observed that as the matrix sizes grow, the best
solutions become even sparser.

We first introduce a constraint limiting the number of active (i.e., nonzero) terms in each
column r (i.e., multiplication term) of U and V . This constraint is written as:∑

i∈U
|ui,r| +

∑
j∈V

|vj,r| ≤ K1, ∀r ∈ R.

A similar constraint can be imposed on W , by restricting that each output must use at most
K2 multiplication terms. This constraint is written as:∑

r∈R
|wk,r| ≤ K2, ∀k ∈ W .

Based on these constraints, K1 has an upper bound of (NM +MP ) and K2 is upper bounded
by R. By observing decompositions for small to medium-scale matrices, we can estimate K1
and K2. For example, for 3 × 3 matrices with R = 23, we observe that K1 = 9 and K2 = 10
is the safest estimate possible compared to the upper bounds of 18 and 23, respectively,
which could restrict the CP search dramatically. Note that one could start with any such
estimates of the decomposition parameters K1 and K2, iteratively increasing them if the
restricted instances are found to be infeasible by the CP solver, eventually resulting in a
complete resolution of the original problem.

4.5 Cyclic Invariant Formulation
In contrast to the symmetries of the factor matrices discussed in Section 4.1, there exists
well-known cyclic symmetry for the multiplication tensors TN of square matrices. More
precisely, it is known that Ti,j,k = Tj,k,i = Tk,i,j . The authors in [1] proposed to leverage
this cyclic symmetry property and parameterize FMM algorithms with cyclic invariant
factor matrices: U = [ABCD], V = [ADBC], W = [ACDB] with A ∈ {−1, 0, 1}N2×S and
B, C, D ∈ {−1, 0, 1}N2×T corresponding to a rank R = S + 3T .

Although this parametrization reduces the number of integer variables by a factor of
three, helping with the combinatorial nature of the problem, there is no guarantee that
the minimal rank decomposition corresponds to solutions that exhibit cyclic symmetry.
That being said, Strassen’s solution of R = 7 for N = 2, which is optimal, exhibits such
a symmetry (S ∈ {1, 4}), as does the best-known rank of 23 for N = 3 (S ∈ {2, 5, 11}).
Performing two steps of Strassen’s algorithm for N = 2 yields a rank 49 cyclic invariant
solution for N = 4. It is currently unknown whether a solution of rank less than 49 exists for
N = 4, let alone one exhibiting cyclic invariance.

We implement Ballard and Benson’s cyclic invariant reduction [1] of the FMM problem
for square matrices by reducing the decision variables of our CP formulation as required and
imposing the invariant structure on the factor matrices.

5 Experiments

In this section, we present our experimental results starting by showing how our CP approach
can recover the best-known upper bounds on the rank in a small amount of time on
multiplication problems ranging from the trivial (N, M, P ) = (1, 1, 1) case all the way up to
the much harder (2, 2, 4) and (3, 3, 3) cases. We then present results for the infeasible cases
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for (2, 2, 2). We used IBM’s CP Optimizer (CPO) 22.1.06 to solve our CP models. We ran
our experiments on a compute cluster of AMD Ryzen Threadripper 2990WX cores with 128
GB of RAM per node.

5.1 Experimental Setup

To ensure the reproducibility and robustness of our results, all our experiments are run
with multiple random seeds. This accounts for the often observed performance variability in
combinatorial search; this is documented for example in MILP [12]. To that end, we ran
each experiment with 10 different seeds. We assigned 8 cores (CPO’s Workers parameter) to
the solver for each run (except for more compute-intensive experiments in Section 5.4 where
we assigned 20 cores) and timed out the experiments after 2 hours.

5.2 Evaluation Metrics

We will report the solver runtime and the number of branches during the solution process
for completed runs (i.e., runs that returned a feasible solution or a proof of infeasibility).
Given that each problem is attempted with multiple random seeds, the shifted geometric
mean with a shift of 0.00017, median, minimum, and maximum of the time in seconds and
the number of branches will be reported for a complete picture of the results. Runs that
terminated due to the time or memory limits will be discussed where applicable.

Table 1 Runtime results for the base CP model on various matrix dimensions. “geo mean”
refers to the shifted geometric mean as described in Section 5.2; “med” refers to the median and
“min”/“max” to the minimum and maximum, respectively.

Time (sec) Num Branches
N M P R geo mean (min, med, max) geo mean (min, med, max)

1 1 1 1 0.00 (0.00, 0.00, 0.01) 5.05×101 (4.50×101, 5.00×101, 5.80×101)
1 1 2 2 0.00 (0.00, 0.00, 0.01) 1.31×102 (1.00×102, 1.27×102, 2.13×102)
1 2 1 2 0.00 (0.00, 0.01, 0.01) 1.68×102 (1.08×102, 1.69×102, 2.31×102)
1 1 3 3 0.00 (0.00, 0.01, 0.01) 7.09×102 (3.47×102, 7.78×102, 1.38×103)
1 3 1 3 0.00 (0.00, 0.01, 0.01) 9.44×102 (3.68×102, 9.83×102, 1.82×103)
1 2 2 4 0.01 (0.00, 0.01, 0.01) 4.86×103 (1.68×103, 5.27×103, 7.68×103)
2 1 2 4 0.01 (0.01, 0.01, 0.02) 4.36×103 (2.63×103, 4.39×103, 7.14×103)
1 2 3 6 0.05 (0.02, 0.04, 0.10) 3.51×104 (1.41×104, 2.96×104, 9.83×104)
1 3 2 6 0.05 (0.03, 0.06, 0.12) 3.19×104 (1.40×104, 3.19×104, 7.18×104)
2 1 3 6 0.05 (0.02, 0.04, 0.11) 3.79×104 (1.45×104, 3.33×104, 8.93×104)
2 2 2 7 0.74 (0.28, 0.75, 1.84) 6.41×105 (2.03×105, 6.69×105, 1.70×106)
1 3 3 9 0.37 (0.26, 0.36, 0.60) 2.92×105 (1.84×105, 3.09×105, 4.16×105)
3 1 3 9 0.42 (0.18, 0.52, 0.61) 3.10×105 (1.64×105, 3.35×105, 4.36×105)
2 2 3 11 49.64 (0.98, 71.82, 245.06) 3.40×107 (6.90×105, 4.71×107, 1.74×108)
2 3 2 11 26.47 (6.68, 29.41, 133.29) 1.56×107 (3.52×106, 1.39×107, 9.00×107)

6 https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
7 The shifted geometric mean of a set of n values t1, . . . , tn is defined as

( ∏n

i=1 [ti + shift]
) 1

n − shift.
Compared to the arithmetic mean, it is less sensitive to large variations in the values.
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5.3 Feasible Cases: Searching for Solutions with the Base CP Model
Table 1 shows the time and number of branches (Num Branches) required by the base
CP model (i.e., without symmetry breaking or valid inequalities) to find solution for a
range of problems. Our approach was able to find Strassen’s solution for the 2 × 2 matrix
multiplication in less than a second whereas the AlphaTensor paper [7] reports a few minutes
of model inference to find that solution.

Performance variability. In Table 1, we can see that for (2, 2, 3) with R = 11, the worst
seed took 245 seconds to find a feasible solution compared to 0.98 seconds for the best seed.
This drastic difference in time (and ultimately the number of branches) is an indication that
minute parameters such as the seed can significantly impact the CP search. For feasible
instances, this phenomenon can be seen as a blessing rather than a curse if one has access to
multiple cores: the randomness can be exploited by running multiple copies of the solver,
terminating as soon as the first successful run is completed. This has been done in MILP [8].

5.4 Feasible Cases: Sparsity Constraints and Cyclic Invariance Help
Solving the base CP formulation, with our current time and memory budgets, does not yet
yield feasible decompositions for dimensions higher than (2, 2, 3) or (2, 3, 2). However, after
increasing both the time and memory limits, we were able to find a solution to the problem
for dimension (2, 2, 4) with R = 14 in 19.6 hours using the inexact inequalities (K1 = 11
and K2 = 7) developed in Section 4.4. Furthermore, our cyclic invariant formulation (with
S = 5) with inexact inequalities (K1 = 9 and K2 = 10) was able to find a solution for
(3, 3, 3), R = 23. More specifically, we ran the cyclic invariant formulation for 10 hours with
5 different seeds and observed that two seeds produced a feasible solution within one hour
whereas the other three seeds hit the time limit. Once again, this indicates that performance
variability in the CP search is significant for our problem. Additionally, we ran the base CP
formulation for (3, 3, 3) without inexact inequalities for 5 seeds which all hit the time limit
of 10 hours, demonstrating the benefit of the reduction of variables for the cyclic invariant
formulation and sparsity constraints. We have yet to check whether using only inexact
inequalities can help the base formulation for (3, 3, 3). A similar result was observed for
the (2, 2, 2) case in which the cyclic invariant formulation (S = 4) with inexact inequalities
(K1 = 6 and K2 = 4) produced an average solution time of 0.05 seconds across 10 seeds
whereas the base CP model has an average of 1.46 seconds. Our current implementation is
not able to find cyclic invariant solutions for N = 4 with R = 48, but we have hope that
this approach is a promising tool for the search for new cyclic invariant solutions for square
matrix multiplication.

5.5 Infeasible Cases: The Importance of Symmetry Breaking
Since CP performs an exhaustive search, it can provide a proof of infeasibility if a given
rank R is not achievable for certain matrix dimensions. As expected, the runtime to prove
infeasibility significantly increases as we approach the known minimum rank; this can be seen
in Table 2 for the (2,2,2) case. It is also apparent that the addition of symmetry-breaking
constraints helps tremendously when proving infeasibility given that they reduce the search
space significantly. More specifically, for R = 6 in Table 2, it is not even currently possible to
prove infeasibility without symmetry-breaking constraints in 2 hours whereas the CP model
with symmetry-breaking constraints (B+S) requires around 7 minutes. These results highlight
the importance of symmetry-breaking constraints when looking to prove infeasibility.
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Table 2 Runtime results for the base CP model and variants to prove infeasibility of R < 7 for
(2,2,2). “geo mean” refers to the shifted geometric mean as described in Section 5.2; “med” refers
to the median and “min”/“max” to the minimum and maximum, respectively. Overall, the use of
symmetry-breaking constraints (denoted by the letter “S”) on top of the base CP formulation (“B”)
is crucial for efficient proofs of infeasibility. “V” refers to the valid inequalities of Section 4.2 which
sometimes complement symmetry-breaking but are not always needed for the fastest results.

Time (sec) Num Branches
R Method geo mean (min, med, max) geo mean (min, med, max)

1 B 0.01 (0.00, 0.01, 0.02) 1.08×103 (1.06×103, 1.08×103, 1.10×103)
B+S 0.00 (0.00, 0.01, 0.01) 1.00×10−4 (0.00, 0.00, 0.00)
B+V 0.00 (0.00, 0.00, 0.01) 1.00×10−4 (0.00, 0.00, 0.00)
B+V+S 0.00 (0.00, 0.00, 0.00) 1.00×10−4 (0.00, 0.00, 0.00)

2 B 0.01 (0.00, 0.01, 0.03) 4.38×103 (3.72×103, 4.41×103, 5.30×103)
B+S 0.01 (0.01, 0.01, 0.02) 1.08×103 (1.08×103, 1.08×103, 1.08×103)
B+V 0.00 (0.00, 0.01, 0.02) 1.33×103 (1.31×103, 1.32×103, 1.34×103)
B+V+S 0.01 (0.01, 0.01, 0.03) 1.09×103 (1.07×103, 1.08×103, 1.10×103)

3 B 0.21 (0.17, 0.21, 0.28) 1.70×105 (1.42×105, 1.70×105, 1.95×105)
B+S 0.02 (0.01, 0.02, 0.03) 4.13×103 (3.06×103, 4.30×103, 5.32×103)
B+V 0.20 (0.13, 0.21, 0.25) 1.38×105 (1.14×105, 1.35×105, 1.78×105)
B+V+S 0.02 (0.01, 0.02, 0.03) 3.61×103 (2.52×103, 3.67×103, 4.92×103)

4 B 43.79 (31.33, 41.89, 66.93) 3.85×107 (3.06×107, 3.80×107, 5.00×107)
B+S 0.12 (0.07, 0.13, 0.18) 8.50×104 (6.94×104, 8.54×104, 1.03×105)
B+V 53.49 (39.10, 48.87, 69.35) 3.70×107 (3.18×107, 3.69×107, 4.23×107)
B+V+S 0.15 (0.11, 0.15, 0.20) 8.53×104 (7.34×104, 8.10×104, 1.06×105)

5 B T.O. (N/A, N/A, N/A) 6.03×109 (5.56×109, 5.75×109, 7.14×109)
B+S 3.06 (2.28, 3.02, 4.15) 2.22×106 (1.89×106, 2.19×106, 2.67×106)
B+V T.O. (N/A, N/A, N/A) 5.57×109 (3.97×109, 5.83×109, 6.16×109)
B+V+S 2.98 (2.56, 2.94, 3.44) 2.14×106 (1.91×106, 2.12×106, 2.56×106)

6 B T.O. (N/A, N/A, N/A) 5.99×109 (4.53×109, 5.79×109, 6.93×109)
B+S 429.26 (333.88, 441.63, 528.61) 3.28×108 (2.94×108, 3.31×108, 3.76×108)
B+V T.O. (N/A, N/A, N/A) 4.67×109 (3.82×109, 4.73×109, 5.48×109)
B+V+S 517.33 (414.07, 522.81, 640.65) 3.35×108 (2.97×108, 3.28×108, 3.95×108)

6 Conclusion

We have proposed a novel CP approach to solve the fast matrix multiplication problem. We
have provided a set of constraints for breaking permutation and sign symmetries as well as
a set of valid inequality constraints to help CP prune and propagate more efficiently. We
provide a decomposition framework that is beneficial for finding feasible solutions for the
largest case we have attempted, i.e., 3 × 3 matrix multiplication. Based on our experimental
results, we have been able to solve small instances of this problem within a reasonable amount
of time. This is in contrast to some existing search-based approaches (MILP, planning) that
seem to struggle. In contrast to the AlphaTensor approach [7], the CP model is far more
natural for this combinatorial task and is uniquely positioned to provide proof of infeasibility
for some open problems in this space.

While the results of our approach are promising given the limited amount of computing
used, there are several limitations that we aim to address in future work. First, our algorithm
struggles to scale for larger matrix dimensions or ranks due to the quick increase in the
number of variables of the CP model. Secondly, we have found that the base CP model
outperforms the addition of symmetry constraints and valid inequalities in the case of feasible
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solutions, likely due to the latter’s tendency to prune symmetric solutions early in the tree
search. However, we believe that our experiment’s small matrix dimensions may have skewed
these results and valid inequalities may be crucial for larger sizes. Moving forward, we
propose several areas for further exploration and improvement:

Conduct larger-scale experiments using larger compute clusters to take advantage of the
parallelizability of the CP solver’s search procedure.
Analyze the highly structured nature of this problem to develop more valid inequalities
that can further reduce the search space of our CP model, including inexact inequalities
that may not hold for all matrix multiplication dimensions but help for some cases.
Explore solver parameter tuning, particularly for branching strategies and other important
search-related decisions.
Further investigate the idea of sparsity-based problem decomposition as a means of
improving the scalability and performance of our approach.
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Abstract
Weighted model counting, that is, counting the weighted number of satisfying assignments of a
propositional formula, is an important tool in probabilistic reasoning. Recently, the use of projected
weighted model counting (PWMC) has been proposed as an approach to formulate and answer
probabilistic queries. In this work, we propose a new simplified modeling language based on PWMC
in which probabilistic inference tasks are modeled using a conjunction of Horn clauses and a particular
weighting scheme for the variables. We show that the major problems of inference for Bayesian
Networks, network reachability and probabilistic logic programming can be modeled in this language.
Subsequently, we propose a new, relatively simple solver that is specifically optimized to solve the
PWMC problem for such formulas. Our experiments show that our new solver is competitive with
state-of-the-art solvers on the major problems studied.
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1 Introduction

Weighted model counters are systems that calculate the weighted number of assignments
that satisfy a formula in conjunctive normal form (CNF). Weighted model counting (WMC)
is a hard problem: it is #P complete, and hence building efficient systems for this task is a
challenge.

An important application of WMC is probabilistic inference, that is, calculating the
probability of an observation according to a given probabilistic model. With increasing sizes
of probabilistic models, the performance of inference remains important. Model counters
have already been used to solve probabilistic inference problems on

Bayesian networks (BNs) [6, 9, 20];
Probabilistic networks (PNs) [12, 27]
Probabilistic logic programs (PLPs) [13].

In each of these studies, approaches were proposed for how to model a probabilistic inference
task as a WMC task on a CNF formula. Unfortunately, the resulting models are not always
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simple. For Bayesian networks the CNF formulas are polynomial in size given the size of the
BN, but a number of papers have proposed increasingly complex models to make solving
efficient [2, 4, 5]; for PNs and PLPs the CNF can even be exponentially larger than the
original probabilistic model [27]. A challenge remains how to model inference tasks in a
simple manner and obtain good performance at the same time.

A promising solution to this modeling problem may be the use of projected (weighted)
model counting (PWCM) [1] as a general approach for probabilistic inference; it was shown
that using PWMC a CNF of polynomial size can be used to solve reachability problems
on PNs [12]. Where in weighted model counting a sum is calculated over all models of a
formula F , in PWMC the models are projected on a subset of the variables (the priority
variables) and a weight is given only to each resulting projected model. For example, if
F = (a ∨ b) ∧ (b ∨ c ∨ d), then a model counter will sum over the 11 models of F . On the
other hand, if the priority variables are {a, c}, then a projected model counter sums over 4
projected models (as setting b = ⊤ always makes F true).

In this work, we study the challenge of efficient and simple probabilistic inference using
PWMC in more detail. We show that the aforementioned probabilistic inference tasks
can be modeled as PWMC tasks over a simpler form of CNF formulas: CNF formulas of
Horn clauses with a specific weighting scheme. We will call this task the task of projected
probabilistic Horn model counting (PPHMC). We will argue that the resulting weighted CNF
models are simple and polynomial in size given the original probabilistic models.

Subsequently, we will introduce a new solver, the Schlandals solver, which takes full
advantage of the probabilistic weighting scheme and the fact that all clauses in our formulas
are Horn clauses. The main intuition behind our solver is that it exploits the well-known
fact that the SAT problem over conjunctions of Horn clauses can be solved in linear time.
Using this observation, it is able to efficiently find assignments to the non-priority variables
that greatly reduce the number of constrained clauses in the input formula (like b = ⊤ in the
example above). At the same time, it is still able to exploit optimizations found in other
DPLL-style model counters, such as component caching, unit propagation and branching
strategies, to run with a bounded use of memory.

An experimental evaluation of our solver shows that it is competitive with state-of-the-art
existing tools. We compare our solver with the best performing solvers of the 2022 projected
(weighted) model counting competition on two probabilistic inference tasks: inference in
Bayesian Networks and reliability estimation in PNs. Our experiments show that our solver
is able to solve most of the instances for the BN task, beating other tools when using simple
forms of CNF models, and getting similar performance when compared to optimized complex
models. On PNs, our solver even outperforms the state-of-the-art, without any optimization
of our model. These results open up future possibilities for the use of PPHMC.

2 Related Work

This work is concerned with the task of Projected Weighted Model Counting (PWMC). In
the classical Model Counting problem, one is interested in finding the number of models
of a Boolean formula F , the assignments that makes the formula true. In this work we
focus on the most common setting, in which F is a formula in conjunctive normal form
(CNF). In Projected Model Counting, the goal is to count the assignments to a subset of the
variables (the priority variables) such that there exists an assignment to the other variables
that makes F true. If the set of priority variables contains all variables of F , the projected
and unprojected problems are the same. In the rest of this work, we thus assume that the
subset of priority variable is not empty. In the weighted version of these problems, each valid
assignment is weighted and the goal is to return the sum of the weights of the models.
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More formally, let F be a Boolean formula over a set of variables V with P ⊆ V the
priority variables and D = V \P the non-priority variables. In traditional projected weighted
model counting each priority variable is given two weights, w(v) and w(¬v), one for each
polarity. We denote by SX an assignment to the variables in X ⊆ V and SX [x] the assigned
value of x ∈ X. If X, Y ⊂ V are two disjoint sets of variables, then SX ∪ SY is defined as the
conjunction of the assignments. We define

SF = {SP | ∃SD : F [SP ∪ SD] = ⊤}

as the set of assignments to the priority variables that can be extended with an assignment
to the non-priority variables and satisfy the formula. The goal of the traditional PWMC
task is then to find

∑
S∈SF

 ∏
v∈V|S[v]=⊤

w(v)×
∏

v∈V|S[v]=⊥

w(¬v)

 .

Note that when weighted model counters are used to model probabilistic inference tasks,
the weights of assignments are set such that this sum corresponds to a probability. If for
every variable p ∈ P it holds that w(p) + w(¬p) = 1 the resulting sum will always be ≤ 1.
Unfortunately, the models for some problems require that w(p) + w(¬p) > 1, and hence
solvers cannot assume that w(p) + w(¬p) = 1.

Various solvers exist to solve the PWMC problem and its unweighted version. In [22], the
authors present Ganak is a model counter build upon sharpSAT, a DPLL-style model counter
with component caching [26]. Ganak uses probabilistic component caching while ensuring
guarantees on the validity of the returned count. Furthermore, the authors propose to use
information about the cache in the branching heuristics and show that this is beneficial to
model counters. Ganak can also be used for projected model counting, by first branching on
the priority variables, but it does not use other specialized techniques. Further modifications
of Ganak have been proposed and in particular it has been shown that integrating tree
decomposition in the branching heuristic can have a positive impact [15]. This has led to the
development of SharpSAT-TD [15], a (weighted) model counter, and GPMC [25], which is also
able to solve the PWMC problem.

The projMC solver [17] uses another approach to solve the PWMC problem1. To compute
the count over a formula F they first compute a disjunctive decomposition from a model of
F . They then use the pairwise incompatible parts of the decomposition to simplify F , and
they recursively solve the new sub-problems.

The aforementioned solvers use a strategy in which a limited amount of memory is used.
This is also the focus of our work. An alternative strategy is to use a model compilation in
combination with dynamic programming. Recently, Dudek et al. proposed the two-phased
ProCount solver [11]. In the first phase, the input formula is transformed into a graded
project-join tree (by a planner). Then, in the second phase, an executor (based on algebraic
decision diagrams) is used to compute the count, using a dynamic programming approach.

3 Problem Definition

First, let us note that, since this work focuses on probabilistic problems, the weights on the
priority variables are used to model probabilities. Hence, we refer to those as probabilistic
variables while the set of non-priority variables are called deterministic variables. In the rest

1 Although the original paper only describes the unweighted problem, a parameter in the solver enables
the retrieval of the count as a float, taking into account the weights
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of this paper, we denote with P (E) the probability that an event E occurs. In this work, we
introduce a combination of two novelties in how to model problems using PWMC. First, a
constraint on the clauses in F is imposed: we only allow clauses to be Horn clauses.

▶ Definition 1 (Horn clause). A Horne clause C is a formula of the form

v1 ∧ · · · ∧ vn ⇒ vt

where I = v1 ∧ · · · ∧ vn is called the implicant of the clause and h = vt is the head of the
clause. Here vi ∈ V is a variable, and vt is either a variable in V or ⊥. If n = 0 (the
implicant is empty) then the left-hand side reduces to ⊤.

It can be observed that when a Horn clause is written as an implication, as above, all the
literals in the clause have the same (positive) polarity. Hence, in order to simplify our
discussion and notation, we only talk about variables, and not literals. A Horn clause Ci can
be identified uniquely by its implicant Ii and its head hi. In the rest of this paper, we will
use the notation Ci and (Ii, hi) interchangeably. For simplicity of notation, we also denote
by v ∈ Ii the fact that v ∈ V is a variable of the implicant of Ci.

Horn clauses have been well studied in the literature. An important result is that the
SAT problem over a CNF formula of Horn clauses can be solved in linear time [10]; given
that the SAT problem in its general form is NP hard, this is a significant simplification.

Secondly, we add the notion of distributions over the probabilistic variables. We assume
that each probabilistic variable p ∈ P belongs to exactly one partition Pi ⊆ P of the
probabilistic variables. We define a distribution over each such partition, in the following
simple manner: we require that one weight is specified for each probabilistic variable and
require that

∑
p∈Pi

w(p) = 1 for all variables in the partition. Subsequently, we calculate the
weight of an assignment S to the probabilistic variables as follows. The weight of a partition,
given the assignment S, is defined as follows:

wPi
(S) =

{
w(p) if there is exactly one p ∈ Pi for which S[p] = ⊤
0 otherwise,

or, in other words, if exactly one variable in the partition is set to ⊤, the weight of that
variable is given to that partition; otherwise, the assignment is invalid. Implicitly, we allow
only one variable within a partition to be true at the same time. The weight of the assignment
S is the product of the partition weights given S and thus the solution of the PPHMC
problem is given by∑

S∈SF

∏
i

wPi
(S),

where we assume there is at least one partition of probabilistic variables.

3.1 Models
As our earlier discussion makes clear, in this work we study a simpler modeling language
in which non-Horn clauses are not allowed, and we combine this with a different approach
to weighting. In this section, we will show that even though we apply the aforementioned
restrictions, a number of different problems can still be modeled in our language.
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▶ Example 2 (Bayesian Networks). A Bayesian Network (BN) is a probabilistic model that
can be represented by a directed acyclic graph. Random variables are represented by nodes
and conditional dependency relationships by edges. Figure 1(a) shows an example of a BN
with four nodes. For simplicity, we illustrate the encoding in our language for a network with
nodes that have two values, but this generalizes for nodes with more than two values.

In this network, both B and C depend on A, while D depends on B and C. In addition
to the network structure, conditional probability tables (CPTs) give, for each node, the
probability of its values conditioned by its parent’s value. These are called the parameters of
the network and for conciseness we write P (x | u) for the parameter corresponding to the
probability that a node X takes value x given that its parents take values u = u1, . . . , un.

Various CNF encodings have been proposed for Bayesian networks [2, 4, 5, 7]. Even
though the author of these works use Horn clauses, the un-projected nature of their target
solvers imposes additional, non-Horn, clauses.

Let us present our encoding for BN by first defining the logical variables. For every
value x of node X in the network, we define one deterministic variable vx. For the BN in
Figure 1, we have the following variables: va0 , va1 , vb0 , vb1 , vc0 , vc1 , vd0 , vd1 . Moreover for
each parameter P (x | u) we define a corresponding probabilistic variable px

u. For the CPT of
node B, we introduce four such variables: pb0

a0
, pb1

a0
, pb0

a1
, pb1

a1
.

In our approach, we have to define the distributions over the probabilistic variables. The
CPTs of the network give a natural partition of the probabilistic variables. That is, for a
node X in the network, we define one partition for each line of its CPT. Hence, for node B

there are two partitions: PB1 = {pb0
a0

, pb1
a0
} and PB2 = {pb0

a1
, pb1

a1
}. Next, we define the weight

on the variables. Contrary to previous encodings, only weights on probabilistic variables are
needed, and we use as weight the parameter they represent: w(px

u) = P (x | u). For example,
we have that w(pb0

a0
) = 0.6 and w(pb1

a0
) = 0.4.

Finally, we define the clauses: for each parameter P (x | u) with u = u1, . . . , un, we
introduce one clause vu1 ∧ . . .∧ vun ∧ px

u ⇒ vx. The clauses for the BN in Figure 1 are shown
below.

pa0 ⇒va0 va0 ∧ pc0
a0
⇒vc0 vb1 ∧ vc0 ∧ pd0

b1c0
⇒ vd0

pa1 ⇒va1 va0 ∧ pc1
a0
⇒vc1 vb1 ∧ vc0 ∧ pd1

b1c0
⇒ vd1

va0 ∧ pb0
a0
⇒vb0 va1 ∧ pc0

a1
⇒vc0 vb0 ∧ vc1 ∧ pd0

b0c1
⇒ vd0

va0 ∧ pb1
a0
⇒vb1 va1 ∧ pc1

a1
⇒vc1 vb0 ∧ vc1 ∧ pd1

b0c1
⇒ vd1

va1 ∧ pb0
a1
⇒vb0 vb0 ∧ vc0 ∧ pd0

b0c0
⇒ vd0 vb1 ∧ vc1 ∧ pd0

b1c1
⇒ vd0

va1 ∧ pb1
a1
⇒vb1 vb0 ∧ vc0 ∧ pd1

b0c0
⇒ vd1 vb1 ∧ vc1 ∧ pd1

b1c1
⇒ vd1

The clause va0 ∧ pb0
a0
⇒ vb0 , for instance, represents that if A has value a0 and we pick the

variable pb0
a0

from the distribution {pb0
a0

, pb1
a0
}, B will have value b0; we believe this is a natural

and simple representation that directly reflects the BN.
Note that we can satisfy all clauses by setting the v variables to true. A common inference

problem on Bayesian Networks is that of calculating a probability P (X = x). We can solve
this problem by adding a clause vx′ ⇒ ⊥ for each value x′ of X such that x′ ̸= x. Effectively
this removes from the sum those assignments in which X ̸= x.

This encoding differs in a number of ways from the encodings used in WMC [2, 6]. The
general idea is similar: for rows of the CPT, clauses are created; probabilistic variables
receive weights that represent entries in the CPTs. Compared to earlier encodings, we do
not generate clauses to impose that the indicators variables (vx) are mutually exclusive for a
node X. Our weighting scheme takes care of this. Furthermore, the earlier encodings have
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A

B

C

A

B

(a)

D

C

D

A

B

C

D

E

(b)

Figure 1 a) An example of Bayesian Network with four binary variables. In this network B and
C depends on A and D depends on B and C. The probability tables are given next to the nodes. b)
An example of probabilistic network for reliability problems. The numbers labeled on the edges are
their probability of being present.

the parameter variables as the head of the implications in the CNFs, while in our encoding
they are in the implicants; while both representations are equivalent, we believe that in our
representation the structure of the BN is more closely reflected in the clauses.

▶ Example 3 (Reliability in Networks). Reliability in network (RN) problems study the
connectivity of nodes in probabilistic graphs. In such graphs, as shown in Figure 1(b), each
edge has a probability of being present. In this work, we consider the computation of the
probability that two nodes are connected.

More formally, let G = (V, E) be a probabilistic graph and fw : E 7→ [0, 1] a weighting
function that assign to each edge a probability of being present or not. We denote s the
source node, t the target node and Rs

t (R̄s
t ) the fact that t is (not) reachable from s. The

goal is then to compute P (Rs
t ).

The encoding of this problem in our language is similar to that in [12], in which the
authors propose to compute P (R̄s

t ) and then use the fact that P (Rs
t ) = 1− P (R̄s

t ) to answer
the initial query.

Let us first define the logical variables. For each node X ∈ V , we introduce one
deterministic variable vX . For each edge e ∈ E from u to v, we introduce two probabilistic
variables puv (the edge is present) and p̄uv (the edge is not present). The weighting scheme
of the probabilistic variables uses the weighting function of the edges: w(puv) = fw(e) and
w(p̄uv) = 1− fw(e). A distribution is defined for each edge, containing these two variables:
Pe = {puv, p̄uv}. Since the probabilistic variables for each edge are in their own distribution,
and each distribution contains no other variables, it is easy to see that an assignment to the
probabilistic variables corresponds to a possible instance of the graph.

We will use the deterministic variables vX to represent whether in the instance implied
by the probabilistic variables, X is reachable from s. The clauses, that we define hereafter,
must ensure that an assignment is a model only if vt = ⊥ given the choices for the edges.

To ensure that, the clauses use the transitive nature of the connectivity. That is, for each
edge e from u to v, a clause vu ∧ puv ⇒ vv is created. This can be interpreted as that if
u is reachable from s and e is present, then v is also reachable from s. We impose that s

is reachable from s by adding the clause ⊤ ⇒ s and that t is not reachable by adding the
clause vt ⇒ ⊥. The clauses for the query P (R̄A

E) for the graph in Figure 1 are shown below.

vA ∧ pAB ⇒ vB vB ∧ pBD ⇒ vD vC ∧ pCE ⇒ vE vE ⇒ ⊥
vA ∧ pAC ⇒ vC vC ∧ pCD ⇒ vD vD ∧ pDE ⇒ vE ⊤ ⇒ vA
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▶ Example 4 (Probabilistic programming). ProbLog is a probabilistic programming language
that extends Prolog with probabilistic predicates [8]. It can be used to represent both the
aforementioned inference problems. While a full discussion of this language is beyond the
scope of this paper, we wish to illustrate how PPHMC can be used in ProbLog. Consider
the following example ProbLog program, taken from the ProbLog website2:

0.4 :: heads.
0.3 :: col(1,red); 0.7 :: col(1,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
query(win).

For such a logic program, ProbLog performs grounding, creating a propositional version of
the program. This propositional version can be represented as follows in our language:

pheads, pcol(1,red) ⇒ vwin pcol(1,blue), pcol(2,blue) ⇒vwin

pheads, pcol(2,red) ⇒ vwin vwin ⇒⊥
pcol(1,red), pcol(2,red) ⇒ vwin

Here we have these partitions: w(pheads) = 0.4, w(p̄heads) = 0.6; w(pcol(1,red)) = 0.3,
w(pcol(1,blue)) = 0.7; w(pcol(2,red)) = 0.2, w(pcol(2,green)) = 0.3, w(pcol(2,blue)) = 0.5. The
probability of the query is obtained by PPHMC on this ground version. Given that our
previous example showed how reliability problems can be modeled in polynomial space, while
the model for this problem is exponential in the grounded ProbLog model, we hypothesize
that this is possible for all grounded programs without cycle breaking.

4 Algorithm

In the section we present the main algorithms of our solver. At the core, the problem is solved
by a backtracking search over the possible assignments for the distributions. When a value
is assigned to a variable, we call a new propagator designed specifically for the structure of
the clauses. We first present the general algorithm for a search-based solver for the PWMC
problem and then the specific propagation algorithm as well as some branching heuristics.

4.1 General Approach
The main algorithm is shown in Algorithm 1. In essence, it is similar to other DPLL-based
solvers. The computation of the count for a non-empty formula F starts by looking into a
cache (line 7) to determine if the formula has already been counted. If not, then it chooses
an unfixed variable (lines 8, 10) and assigns it a value. A residual formula is computed after
calling a propagation algorithm (line 11) which is then divided into independent components
(line 14). The components are then solved independently (line 17) and their count is stored
in the cache (line 18). In order to bound the memory consumption of search based solvers,
the cache has a limited number of entries. As cache cleaning techniques are not the focus of
this work, we simply fully clear the cache when the limit is reached.

2 https://dtai.cs.kuleuven.be/problog/tutorial/advanced/00_inference.html
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Algorithm 1 General PPHMC search algorithm.

1 Function PWMC(F,P)
input : A Horn-CNF formula F with probabilistic variables P
output : The projected (on P) weighted model count of F

2 C ← newCache()
3 return PWMCr(F , P, C)
4

5 Function PWMCr(F,P, C)
input : F,P same as PWMC()
input : C the cache of previously found counts
output : Same as PWMC()

6 if P = ∅ then return 1
7 if F ∈ C then return C[F ]
8 P ← a distribution of P such that ∃v ∈ P | v is not fixed
9 count← 0

10 foreach v ∈ P | v is not fixed do
/* Assign v = ⊤ and call the propagation algorithm. Returns the

residual formula F ′ and the unconstrained probability of F

given F ′. */
11 (F ′, UF |F ′)← Propagate(F , P, v)
12 proba← UF |F ′

13 if F ′ is not UNSAT then
14 Components← all connected components of F ′

15 foreach Comp ∈ Components do
16 P ′ ← P reduced to the variables in Comp

17 probaComp ← PWMCr (Comp, P ′, C)
18 C[Comp]← probaComp

19 proba← proba ∗ probaComp

20 end
21 count← count + proba

22 end
23 end
24 return count

There are a few differences between our solver and other model counters that need to be
pointed out. First, let us note that the variables in a distribution are mutually exclusive.
Indeed, if a distribution does not have exactly one variable set to ⊤ in an assignment, then
its weight is 0 and

∏
i wPi(S) = 0, which does not contribute to the count.

A consequence of this is that, unlike classical DPLL-based counters, the branching decision
is made on distributions and not variables. Indeed, since the distributions partition of the
probabilistic variables (i.e., the variables on which the number of weighted models must be
counted), assigning one variable to ⊤ in each distribution means that all other probabilistic
variables are set to ⊥. Moreover, when fixing a variable v in the selected distribution, only the
case of fixing to ⊤ needs to be explored. The case v = ⊥ is explored when the other variables
in the distribution are selected for branching. Notice that when there is no distribution
left in F , then 1 is returned as the remaining formula is SAT (line 6). Indeed, there are
no unit clauses (they are removed during the propagation) and all that remains in F are
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Horn clauses with deterministic variables. By setting all remaining variables to ⊥ we obtain
a model of this formula, as the implicant of all clauses evaluates to ⊥. This would not be
possible if F was not solely composed of Horn clauses. In this case, the SAT problem needs
to be solved on F , which is NP-hard.

The computation of independent components is also slightly different. In traditional
model counters, when the input formula F can be decomposed into multiple sub-formulas
that do not share any variable, each sub-formula is solved independently and the count of
F is the product of the sub-formulas’ count. However, since the probabilistic variables are
linked in partitions, we must add as condition that two independent sub-formulas cannot
share any variable in the same distribution.

Finally, we also devised a new propagation algorithm, explained in the next section. It
returns (line 11) a residual formula F ′ as well as what we call the unconstrained probability of
F given F ′: UF |F ′ . This probability accounts for the distributions of F that are unconstrained
in F ′. Indeed, if for a distribution Pi = {p1

i , . . . , pm
i } occurring in F , there are no clause in

F ′ that contains any of the pk
i ∈ Pi, Pi will never be selected by the branching heuristic.

Moreover, branching on it will not impact F ′. Hence, the probability obtained by branching
of Pi can be precomputed and is given by

∑
p∈Pi|p is not fixed w(p). Note that this sum may

not be 1 if propagation fixed one of the pk
i variables to ⊥ earlier, and |Pi| > 2. More generally,

for l such distributions Pu1 , . . . , Pul
we have UF =

∏l
i=1

∑
p∈Pui

|p is not fixed w(p).

4.2 Propagation
In this section, we describe the propagation algorithm used by our solver, summarized in
Algorithm 2. In brief, we first apply the classical Boolean Unit Propagation (BUP), in which
the links between probabilistic variables in partitions are also enforced, until a fixed point is
reached. Then we remove from the remaining formula the clauses that do not constrain the
count anymore. First, let us detail what the BUP does when a variable v is fixed in F :

If v = ⊤ then
If v is a probabilistic variable in a distribution P , apply the BUP on all v′ ∈ P, v′ ̸= v

with v′ = ⊥.
Every clause C = (I, h) such that h = v is removed from F . Indeed, for every
assignment on its remaining variables, it evaluates to ⊤.
For every clause C = (I, h) such that v ∈ I, replace I by I ′ = I \ {v}.

If v = ⊥ then
If v is a probabilistic variable in a distribution P and only one variable v′ remains
unfixed in P , apply BUP with v′ = ⊤.
Every clause C = (I, h) such that v ∈ I is removed from F for the same reason as
above.
The head of every clause C = (I, h) such that h = v is replaced by ⊥.

There are two cases in which, after a call to the BUP, a variable is forced to take a value,
and the BUP algorithm needs to be called again. First, when the last variable of an implicant
is removed from it, then the head of the clause must be ⊤. Secondly, when a clause (I, h)
has its head set to ⊥ and there is only one variable left in I, then this variable must be set to
⊥. In Algorithm 2, the call to BUP at line 2 is executed until no such clauses can be found.

However, in the context of projected model counting, a key insight for our work is that
further propagation can be done that is not entailed by BUP. The intuition is that the
deterministic variables can be used to remove additional clauses from F . For example, if
our formula includes a clause ¬a ∨ ¬b ∨ ¬c with a, b being probabilistic variables and c a

CP 2023
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A B

D

C E

F G

H

Figure 2 On the left: an instance of a reliability problem on probabilistic networks. In the center:
the associated clauses for the query P (R̄s

t ). On the right: the graph of clauses implication: there is
one node per clause and a link between Ci and Cj if hi ∈ Ij .

deterministic variable that does not appear in any other clauses, then setting c to ⊥ makes
the clause evaluate to ⊤, regardless of the choice for a and b. Since we are only interested in
finding an assignment to the deterministic variables, this assignment does not impact the
final count.

Let us show how this works on the clauses in Figure 2, taken from a reliability query in a
probabilistic networks, in which we want to compute P (R̄s

t ), the probability that s and t

are not connected in the graph on the left. Applying BUP gives vs = ⊤ and vt = ⊥, which
removes these variables from C1, C3 and C6. No further propagation can be done with BUP.
However, when looking at the graph on the left, it is clear that only the nodes B, C and D

impact the connectivity between s and t, but this is not detected by BPU. For instance, let us
look at nodes A and the associated clause C0, which contains the distribution {eAB , ēAB}. It
can be seen that for both choices for the edge eAB , setting vA = ⊥ (a deterministic variable)
reduces the clause C0 to ⊤. Since there are no clauses that have vA in their head, setting vA

to ⊥ has no impact on the other variables in F . Moreover, since it is a deterministic variable,
it does not impact the projected weighted model count. A similar reasoning can be made for
H and C11 by setting vH = ⊤, since vh does not appear in any implicant in F .

The intuition behind our propagation is the following. In order for an assignment to not
be a model of the input formula, it must generate a clause ⊤ ⇒ ⊥. Some clauses cannot
contribute to such a contradiction, by setting a deterministic variable to ⊥ in its implicant
or its head to ⊤. We formalize this intuition next.

First, let us define in which case we cannot know if a clause will have its head set to ⊥ or
its implicant set to ⊤.

▶ Definition 5 ({⊤,⊥}-reachability). A clause Ci = (Ii, hi) ∈ F is ⊥-reachable if one of the
two following conditions is met:
1. Ci is of the form Ii ⇒ ⊥ or Ii ⇒ p with p ∈ P
2. There exists a clause Cj = (Ij , hj) ∈ F such that Cj is ⊥-reachable and hi ∈ Ij.
Similarly, Ci is ⊤-reachable if one of the two following conditions is met:
1. There exists no deterministic variables in Ii

2. There exists a clause Cj = (Ij , hj) ∈ F such that Cj is ⊤-reachable and hj ∈ Ii.

We say that a clause is constrained if it is ⊥-reachable and ⊤-reachable. The {⊥,⊤}-
reachability can be seen for the clauses in Figure 2 on the right, on the implication graph
of the clauses. The implication graph of a set of Horn clauses is a graph G = (V, E) such
that there is one node per clause and an edge from a clause Ci = (Ii, hi) to Cj = (Ij , hj) if
hi ∈ Ij . If a clause is ⊤-reachable (⊥-reachable), so are all its descendants (ancestors) in the
implication graph.
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Algorithm 2 Propagation algorithm of Schlandals.

1 Function Propagate(F,P, v)
input : A boolean formula F with probabilistic variables P
input : A variable v set to ⊤
output : The residual formula F ′ and a propagation probability pprog

/* Call the BUP procedure with the initial assignment of ⊤ to v

until fix point is reached */
2 F ′ ← BUP(F , v, ⊤)
3 foreach C = (I, h) ∈ F ′ do
4 if h = ⊥ or h ∈ P then SetFReachable(F ′, C)
5 if ∄v ∈ I | v /∈ P then SetTReachable(F ′, C)
6 end
7 foreach C ∈ F ′ do
8 if C is not ⊤-reachable or C is not ⊥-reachable then
9 F ′ ← F ′ − C

10 end
11 end
12 UF |F ′ ← 1
13 foreach distribution P such that P ∈ F ∧ P /∈ F ′ do
14 UF ← UF ∗

∑
p∈P |p is not fixed w(p)

15 end
16 return (F ′, UF |F ′)

We have the following theorem, which states that if a clause is not constrained, then it
can be removed safely (without impacting the count) from F .

▶ Theorem 6. Let F = C1 ∧ . . .∧Cn be a formula with n Horn clauses over the variables V,
P ⊆ V the set of probabilistic variables and D = V \ P the set of deterministic variables. Let
Cu1 , . . . , Cuk

be k unconstrained clauses of F with Cui
= (Iui

, hui
).

There exists a subset of k deterministic variables X = {x1, . . . xk} ⊆ D with xi ∈
Iui
∪ {hui

} and an assignment SX on X such that

SF = SF [SX ]

where SF denotes the set of models of F , projected on P, and F [SX ] the formula obtained by
applying the BUP algorithm on F with the assignment SX .

We now prove this theorem and give the procedure to find the assignment on the deterministic
variables.

Proof. Let G = (V, E) be the graph of the implications of F and Ci an unconstrained clause
in F . We prove that an assignment can be found for one of the deterministic variables of Ci

such that it does not impact the count of F .
First, let us assume that Ci is not ⊥-reachable. We denote Gd

Ci
= (V d

Ci
, Ed

Ci
) the sub-graph

of G that contains Ci and all its descendants. By definition there is no clause Cj ∈ V d
Ci

that is
⊥-reachable, otherwise Ci would be ⊥-reachable. Hence, all clauses in V d

Ci
are unconstrained.

Let Xd = ∪Cj∈V d
Ci

{hj} be the set of (deterministic) heads in Gd
Ci

. We define the assignment
SXd such that SXd [x] = ⊤, ∀x ∈ Xd. This removes all the clauses in V d

Ci
from F without

impacting the values of the other variables in the clauses.
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Next, if Ci is ⊥-reachable but unconstrained, then it is not ⊤-reachable. Let Gp
Ci

=
(V p

Ci
, Ep

Ci
) be the sub-graph of G that contains Ci and all its parents. Since Ci is ⊥-reachable,

so is every clause in V p
Ci

. Thus we have that every clause Cj ∈ V p
Ci

has at least one
deterministic node dj ∈ Ij , otherwise they would be ⊤-reachable. Let Xp = ∪Cj∈V p

Ci

{dj}
be the set of such nodes. We set SXp such that SXp [dj ] = ⊥ for all clause dj ∈ Xp which
removes all clauses in V p

Ci
from F without constraining the other variables. ◀

Algorithm 3 Procedure to mark the clauses of a formula F as ⊥-reachable.

1 Function SetFReachable(F, C)
input : A boolean formula F , a clause C = (I, h) of F

2 if C is not marked as ⊥-reachable then
3 Mark C as ⊥-reachable
4 foreach C ′ = (I ′, h′) ∈ F | h′ ∈ I do SetFReachable(F, C ′)
5 end

This additional propagation is shown in lines 3-11 of Algorithm 2. After the application
of BUP until a fix point is reached, the remaining clauses are iterated over. If a clause
is of the form C = (I,⊥) or has a head with an unfixed probabilistic variable, then the
procedure SetFReachable is called, for which the code is shown in Algorithm 3. This
algorithm basically traverses the implication graph of F , starting from C and marks every
clause it encounters as ⊥-reachable. Notice that it does not mark multiple times the same
clause. Hence, the cost of marking all the ⊥-reachable clauses is O(n) with n the number of
clauses in F ′. A similar procedure is defined for the ⊤-reachability, but we do not include it
for conciseness. After marking the clauses (lines 3-5), every unconstrained clause is removed
from the formula obtained after BUP (lines 7-11). Finally, the algorithm computes the
unconstrained probability UF |F ′ (lines 12-15).

It can be noted that in some cases our propagation is similar to Pure Literal Elimination
(PLE) on the deterministic variables. For instance, in Figure 2, vA never appears in the head
of any clause. Hence, it can be set as ⊥, which is also the value found by our procedure.
However, PLE cannot detect that the nodes E, F and G are not useful for the query. It
should also be noted that although our propagation implies that PLE is performed, the
procedure only reasons about the clauses, which makes it more efficient.

4.3 Branching Heuristic

At line 8 of Algorithm 1, a distribution is selected within the set of distributions for which
no element is set to ⊤. In this section we explain the heuristics implemented in our solver
to choose the distribution. We must note that our solver is not a conflict-driven clause
learning (CDCL) solver, making it impossible to use the heuristics of such solvers [19, 22].
Instead, we implemented some easy to understand, fast to evaluate, but effective heuristics
based on the implication graph of a formula F . We provide three heuristics related to the
degree of a clause in the implication graph. These heuristics select a clause with i) the lowest
in-degree ii) the lowest out-degree and iii) the maximum degree, and then a distribution
in this clause. Each time they are called, they re-evaluate the score of each clause in the
current sub-formula.
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5 Results

In order to evaluate the effectiveness of our approach, we compare our solver3 with GPMC [25]
and ProjMC [17] on Bayesian networks and reliability queries in probabilistic networks. We
chose these solvers as they were the best performing on the Projected Model Counting and
Projected Weighted Model Counting tracks of the 2022 model counting competition. We did
not include the proCount solver [11] as it is a knowledge compilation based solver. Ganak
[22] also was not used as we found it was the worst performing on the projected tasks (as
also observed in the 2022 competition). For the reliability queries, we also ran ApproxMC
[3, 23, 24] as it is known to perform well on this problem, although it should be stressed
ApproxMC solves an approximate model counting problem, while we solve an exact model
counting problem. For each of the two problems we first present the methodology used to
generate the instances and then present the results4. For each instance, a timeout of 600
seconds and a memory limit of 15 GB were set.

5.1 Baysian Networks
The Bayesian networks come from the bnlearn R package [21] repository and range from
small networks (fewer than 20 nodes) to large (up to hundreds of nodes). We selected all the
networks in the repository for which at least one solver did not time out. For each of these
networks, the queries are done on the leaves of the networks without any evidence. Hence,
for a leaf L of the network that takes values l1, . . . , ln, we create n instances for the queries
P (L = l1), . . . , P (L = ln).

The goal of this experiment is to answer the following questions: i) how do the evaluated
PWMC solvers perform using our simple encoding? ii) How does our encoding perform
compared to other state-of-the-art, but more complex encodings for BNs, designed for
weighted model counters? For i) we use a CNF formula in other PWMC solvers similar to
our model, where we add additional clauses to enforce the distribution constraints that we
have in our weighting scheme. For ii), we follow the nomenclature in [6], and we compare
our encoding with ENC1 [7], ENC3 [4], and ENC4 [5]. We also add the encoding recently
presented in [2], which we denote ENC4linp. Briefly, ENC1 is the simplest encoding: there
is one indicator variable λx for each value x of node X and one parameter variable θx

u per
parameter P (x | u) of the network. For the clauses, the indicator variables of the same
node are mutually exclusive; a clause λu1 ∧ ... ∧ λun ∧ λx ⇔ θx

u is created for each parameter
P (x | u). The main addition of ENC3 is that, for a given CPT in the network, the same
variable θx

u is reused for all the entries having the same probability. In ENC4, The CPTs
are simplified using a modified version of Quine/McCluskey algorithm for finding prime
implicants, resulting in a better decomposition of the input CNF. Finally, in ENC4linp, the
authors propose two novelties for encoding BNs in a CNF: the use of log-encoding for the
elementary assignment of a variable and one parameter variable per CPT is kept implicit.
For these encodings, GPMC and projMC are run in WMC mode (which is the d4 [16] model
counter for the latter).

Figure 3 shows the percentage of instances solved within the time limit.
First, it can be seen that if we use our model in other PWMC solvers, their performance

is much worse; these solvers solve a few instances.

3 Available at https://github.com/aia-uclouvain/schlandals
4 The instances can be found here https://github.com/AlexandreDubray/pwmc_benchmarks
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Figure 3 Percentage of instances solved in 600 seconds for the Bayesian Network data sets.

Compared to the ENC1 model used in traditional WMC, which is arguably the model for
traditional WMC most similar to our model, we can still observe that our approach performs
significantly better, solving 80% of the instances for the minimum in degree heuristic. We
believe it is highly encouraging that our approach works so well for such a simple model.

When evaluating the more complex, optimized models ENC3, ENC4 and ENC4linp
developed for WMC, we can see that these have increasingly better results. This confirms
the benefit of the various improvements made, over the years, to the encodings. Overall, the
GPMC solver is the best performing of all, even when using only the ENC3 encoding. The
biggest gap between the ENC encodings is between ENC1 and ENC3. Indeed, using the
same parameter variables for multiple parameters of a CPT gives a huge drop in the number
of variables, especially for the hardest instances, which contain large CPTs. The benefits of
the Quine/McCluskey reduction are clearly visible for the d4 solver.

The nature of our modeling language is such that the optimizations of ENC3, ENC4
and ENC4linp cannot be directly applied to our models. Unlike the ENC encodings, we
require that one variable per distribution is set to ⊤. However, we hypothesize that similar
optimizations can also be developed for our solver in future work.

5.2 Connectivity in Probabilistic Networks

For this problem, the data sets used come from two sources. First, we used the power grid
network of Europe and USA as extracted by the GridKit tool [18, 28]. The extracted graphs
represent the electric power system in these geographical areas. In order to have various
sizes of instances, both networks are divided by country (Europe) or by state (USA). Then
for each subnetwork, five random pairs of nodes are selected and the probability that they
are connected is computed. Notice that since the edges in the power-grid network have no
orientation (the graph is undirected), we transformed it into a directed graph by replacing
each edge between u and v by one edge from u to v and one edge from v to u. We assume
that each edge has a probability of 0.125 to be down, as done in [12].

Secondly, we used (oriented) graphs representing water distribution systems from the
WNTR Python package [14]. We considered as sources (sinks) nodes having no parents
(children). Then, we compute P (R̄s

t ) between each source-target pair (s, t) such that there
exists a path between s and t. As for the power grid network data set, we assume a fix
probability of 0.125 that each link is down.

Unlike for Bayesian Networks, our encoding and the one proposed in [12] are almost
identical and can be reused for all the evaluated solvers. The only difference is that we do not
create two variables per edge for the encoding passed to GPMC and projMC. Figure 4 shows
the percentage of instances solved in the given amount of time for both of these data sets.
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Figure 4 Percentage of instances solved in 600 seconds for the power-grid networks (left) and the
water networks (right).

First, let us note that GPMC performs the least well on both data sets. While it is able to
solve up to 25% of the instances for the power grid network, it is unable to solve the largest
instances of the water networks. For the latter data set, it quickly reaches the memory limit
(15 GB) and stagnates until the time-out. On the other hand, it can be seen that projMC
and Schlandals solve roughly the same number of instances on the power grid networks,
while Schlandals solves 10% more instances on the water networks. On these types of data
sets, the min-in degree and min-out degree heuristics work best for our solver. It can be seen
that for the water networks, Schlandals outperforms projMC.

Interestingly, on the power grid data sets, our solver is still able to match the performance
of projMC even though our propagation is not used to its full capacity. Indeed, since the
original graphs are not directed, they were transformed by adding two directed edges for
each undirected edge. As a result, either all clauses in a component are constrained, or no
clause is constrained. Indeed, by doubling the edges in the original graph, the edges in the
implication graph of the resulting CNF are also doubled. Hence, every clause which is a
descendant of a ⊥-reachable clause is also one of its ancestors and a similar argument can
be made for ⊤-reachable clauses. Hence, our propagation algorithm has less pruning power.
On the other hand, for the water network data set, our solver uses the full strength of our
propagation and is more efficient than projMC.

Let us briefly comment on the performance of approxMC [12]. Again, it should be noted
that approxMC is an approximate model counter that provides provides (δ − ϵ)-guarantees
and does not consider weights on the literals. Hence, the problem it solves is quite different
from the other solvers compared in this work: if the count returned by approxMC is C,
and the exact count C⋆, it ensures that C⋆

1+ϵ < C < C⋆(1 + ϵ) with a confidence of 1 − δ

(δ, ϵ ∈ [0, 1]). In Figure 4 the results are shown for ϵ = 0.1 and δ = 0.05. This is an example
of configuration in which the solver is quite confident in its solution, and hence the results
are more comparable to that of the other solvers. It can be seen that it performs very well
on the power grid network instances, but poorly on the water supply network ones. Using
ϵ = 0.8 and δ = 0.2, as reported in [12], the solver is able to solve all instances on both
data sets, but it is much less confident in its solution. Overall the performance of approxMC
heavily depends on the acceptable margin of error.
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6 Conclusion

Weighted model counters have become an essential tool in probabilistic reasoning, but the
CNF models have grown more and more complex. A step towards simplicity for some
problems has been taken by the introduction of projected weighted model counting. In this
work, we propose the Projected Probabilistic Horn model counting (PPHMC) problem, in
which only Horn clauses are allowed, making the modeling language simpler. We have shown
that with an appropriate weighting scheme it is possible to model important probabilistic
problems as PPHMC problems. In particular, we provide an encoding for Bayesian networks,
probabilistic networks and probabilistic logic programs. We also introduced a new tool, the
Schlandals solver, specifically designed for our language. Our experiments show that our
solver is competitive with state-of-the-art solvers and opens the path to further work on
PPHMC.

As we have seen for the Bayesian Networks, the encoding can have a great impact on
the performance. An interesting line of work would be to investigate how the optimizations
developed during the past twenty years, for the encoding of Bayesian Networks into a logical
formula, can be applied with our weighting schema, and how our solver can be integrated in
probabilistic logic programming systems. On the other hand, a lot of work has been done
to make model counters efficient. In the future, integrating such techniques (probabilistic
caching, tree decomposition, symmetry breaking, advanced branching heuristics, etc.) with
the specificity of PPHMC can also increase the performance of our solver. Finally, this paper
has been focused on PWMC within bounded memory. However, the core of our solver can
be reused in a knowledge compiler or an approximate solver.
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The liner shipping network design problem consists, for a shipowner, in determining, on the one
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1 Introduction

Nowadays, maritime transport plays a major role in world trade. According to the Interna-
tional Maritime Organization (IMO), more than 80% of international trade is carried out by
sea. The transport of containerized commodities constitutes the major part of this trade. It
relies on more than 5,000 container ships that serve more than 500 ports worldwide. In this
context, many combinatorial optimization problems [6, 9, 28] may arise with non-negligible
economic and ecological impacts given their scale.

In this paper, we focus on the Liner Shipping Network Design Problem (LSNDP [9]).
A shipping line, also called a service, is defined by a cyclic route (called a rotation) that
visits a given set of ports in a given order and at regular times (see, for example, Figure 1).
Generally, each port is thus visited by a vessel of the line at a weekly or biweekly frequency.
All the vessels on a line are assumed to be homogeneous in terms of their main features
(loading capacity, speed, fuel consumption, engines, . . . ). Operating a weekly line with a
rotation lasting k weeks requires k vessels of the same type. Given a set of ports, a fleet of
container ships, and a container flow (defined by a set of triples consisting of the original port
of the commodities, their destination port, and the number of containers they represent), the
LSNDP problem consists, for a shipowner, in determining, on the one hand, which shipping
lines to open, and, on the other hand, which ships to operate on each line in order to carry as
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Figure 1 Example of a line connecting Asia and Europe.

many commodities as possible while ensuring a weekly frequency of visits to each port and
optimizing costs. It is classified as NP-hard [7]. To give an idea of its difficulty, we can note
that, taken separately, each of its two subproblems is already an NP-hard problem [7, 13].
Moreover, from a practical viewpoint, its solving by exact methods is currently limited to
instances with a dozen ports at most. Although recent, this problem has been the subject of
many works, especially in the last ten years. Most of them are from operational research.
Note that, in the literature, different variants of the LSNDP problem are studied according
to the assumptions and properties taken into account (transit time, transshipment, constant
or variable speed from one rotation to another or from one leg (i.e. a trip between two
consecutive ports in the rotation) to another, type of service, possibility of refusing some
commodities, . . . ).

Different approaches have been considered, often based on integer (mixed) linear program-
ming (e.g. [18, 19, 21, 22, 23, 27, 30]). They are mainly based on two types of formulations.
The first type of formulation is service-oriented. The set of possible services is calculated
upstream and provided as input to the model. The latter is then limited to selecting the
services to be kept among the candidates. The main disadvantage of this type of formulation
is that the number of possible services grows exponentially with the number of ports, which
limits its practical interest in the context of a solving performed with complete methods. On
the other hand, it can be interesting in the context of incomplete methods, because one can
then consider only a subset of the possible services. In practice, the solution proposed in [2]
and based on a tabu method coupled with column generation allowed handling instances
up to 120 ports. The second type of formulation is based on the selection of the arcs of the
graph representing the possible links between each pair of ports. A service is then defined
by the arcs that compose it, and the same arc can be used to define several services. From
a practical viewpoint, such modeling coupled with complete methods [18, 23, 22] allows
handling instances with up to a dozen ports [9].

Other approaches (e.g. [1, 2]) are based on two-step solving. Since the LSNDP problem
consists of two subproblems, they process each subproblem separately. For example, the
approaches presented in [2, 5, 13, 12] solve, in the first step, the problem of creating services
and, in the second step, consider the vessel assignment and the management of the commodity
flow based on the services found by the first step. In [17], the first phase is devoted to the
management of the flow, while the second defines the services. Generally, the solving is done
in several passes, the first phase then benefiting from some feedbacks from the second phase
of the previous pass. Of course, this type of approach corresponds to incomplete methods.
In practice, these approaches provide satisfactory results for instances with up to 120 ports
[2]. They are often based on matheuristics (e.g. [5, 13, 12]) or the Variable Neighborhood
Search algorithm (VNS) such as [17].
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Beyond that, there are many related problems to the LSNDP problem. For example,
the Vehicle Routing Problem (VRP [15]) and its variants have strong similarities with the
LSNDP problem. In particular, the routes are circuits and, for some variants, the vehicle load
or transit times can be taken into account. In maritime transport, the Liner Shipping Fleet
Repositioning Problem (LSFRP [28]) consists in moving container ships from one service to
another while taking into account the commodities to be transported, the empty containers
to be relocated and maximizing the difference between the revenues and the costs generated.
Among the approaches studied to solve this problem, we can underline the interest in using
constraint programming (CP) put forward in [14].

While the VRP and LSFRP problems (and other shipping-related problems such as
[16, 24]) have been studied from a CP perspective, this does not seem to be the case for the
LSNDP problem. In this paper, we propose a model to handle a relatively general version
of the LSNDP problem. Our model considers variable speeds from one trip to another and
takes into account transshipments and transit times. Although developed in partnership
with one of the world’s leading container shipping companies, the model presented takes into
account a relatively general version of the LSDNP problem. It can, of course, be adapted
to specific needs, taking advantage of the flexibility of constraint programming. One of the
aims of this work is to study the interest of a CP-based approach to modeling and solving
such problems.

This paper is organized as follows. Section 2 introduces the notions necessary to un-
derstand the paper. Then, in Section 3, we propose a CP model for the LSNDP problem.
Finally, we present some experimental results, in Section 4, before discussing related work in
Section 5 and concluding in Section 6.

2 Preliminary

2.1 Constraint Programming
An instance P of the Constraint Optimization Problem (COP) can be defined as a 4-tuple
(X, D, C, f) where X = {x1, . . . , xn} is the set of variables, D = {Dx1 , . . . , Dxn

} is the set
of domains, the domain Dxi

being related to the variable xi, C = {c1, ..., ce} represents the
set of the constraints which define the interactions between the variables and describe the
allowed combinations of values and f specifies the criterion to be optimized. Solving a COP
instance P = (X, D, C, f) amounts to finding an assignment of all variables of X satisfying
all constraints of C and optimizing the criterion given by f . This is an NP-hard problem.

One of the advantages of constraint programming lies in the existence of specialized
constraints (the global constraints) which will make easier the modeling of problems, but
also, their solving thanks to their dedicated filtering algorithms. In the following, we will
exploit the following global constraints (where ⊙ denotes a relational operator among ≤, <,
=, ̸=, > or ≥):

Alldiff-except(Y, v) [3, 10] which ensures that the values of the variables of Y are
pairwise distinct, except in the case where they are equal to v,
Circuit(Y, ℓ) [4] which imposes that the values of the variables of Y form a circuit of
length ℓ (in the sense of graph theory), each variable yi having for value i if it does not
take part in the circuit, and j (with i ̸= j) if j is the successor of i in the circuit,
Count(Y, V ) ⊙ k [4, 8] which ensures that the number of variables of Y whose value
belongs to V satisfies the condition imposed by the relation ⊙ with respect to k,
Elt(Y, i) = k [29] which ensures that the ith value of Y (using a 0-based indexing) is
equal to k (Y can be here an ordered set of variables or values),

CP 2023



16:4 A CP Approach for the Liner Shipping Network Design Problem

Eltm(Y, i, j) = k [4, 3] which ensures the same property as Elt, but, for an orderede set
Y of variables or values organized in the form of a two-dimensional matrix,
Maximum(Y ) = k which ensures that the greatest value of Y is equal to k (Y can here be
a set of variables or expressions),
Sum(Y, Λ) ⊙ k which imposes that the sum of the values of Y weighted by the coefficients
of Λ satisfies the condition imposed by the relation ⊙ with respect to k. In the following,
this constraint will be represented in the more explicit form

∑
i

λi.yi ⊙ k.

2.2 The Liner Shipping Network Design Problem
Liner shipping involves the use of standardized vessels that will reliably move cargo between
ports according to a pre-determined route and schedule. It is often compared to scheduled
passenger service, such as a train or bus service because it operates on a fixed schedule
and provides regular and predictable service for shippers and receivers of commodities. A
shipping line, also called a service, is defined by a cyclic route (called a rotation) that serves
a set of ports in a specific order and on a regular schedule. Figure 1 describes the example of
a line connecting Asia and Europe.

In this paper, we consider only the transportation of commodities in their containerized
form, as this mode of transportation constitutes the bulk of freight transportation in terms
of quantity and value. Thus, a customer wishing to move commodities from a port of loading
(POL) to a port of destination (POD) needs to place them inside one or more containers.
Containers have the advantage, for the shipowner, that their dimensions are standardized,
thus facilitating their handling and placement on board of specialized vessels such as container
ships. There are mainly two sizes of containers: 20-foot containers (about 6.1 m) and 40-foot
containers (12.2 m) with a height of 8.6 feet (2.6 m) and a width of 8 feet (2.4 m). The
majority of containers transported are of one of these two sizes. Also, the storage space of
the vessels is divided into 40-foot unit spaces on which it is possible to stack both 40-foot
and 20-foot units. The Twenty-foot Equivalent Unit (TEU) is the unit generally used to
count a number of containers. For example, a 40-foot container counts as 2 TEUs.

From the carrier’s viewpoint, each commodity k is seen as a quantity q(k) of containers
(expressed in TEUs) to be transported from the port of origin pol(k) to the port of destination
pod(k) in exchange for a revenue rev(k) per TEU (expressed in dollars). This revenue may
be zero in the case of empty containers. Some commodities may have a maximal transit
time ttmax(k) that must be respected. This time is the maximum time allowed for their
transport. Generally, such commodities are transported within the framework of premium
offers proposed by the carriers. It should be noted that a batch of containers sent by a
customer from one port to another cannot be divided into several sub-batches. Finally, cargo
can be transported from its port of origin to its port of destination via the successive use
of different lines. The operation of unloading a commodity from one line and loading it on
another is called “transshipment”. It may require the commodities to be stored for several
days in the transshipment port until the vessel of the next line arrives and loads them on
board. This can result in costs (see transshipment costs below) and longer travel times.

Concerning vessels, container ships are grouped by type of vessel with identical or similar
features. Thus, each class v is characterized by its capacity κ(v) (i.e. the maximum number
of containers (in TEU) that can be transported), its daily charter rate tc(v) (corresponding to
the daily cost of using the vessel), its interval of possible speeds [νmin(v), νmax(v)] (in knots),
its hourly consumption cons(v, ν) of fuel for the main engine (in tons per hour), for each
type of fuel fuel(v) and each possible speed ν. Regarding consumption, other parameters
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that could have an impact such as wind strength, sea currents, draft or load on board are
ignored. These parameters can be variable in time and difficult to anticipate, as the lines are
generally defined on a yearly scale.

Each port p also has its own features, namely its productivity prod(p, v) (i.e., the number of
containers loaded or unloaded per hour for vessels of type v), its waiting time wt(p, v) (time at
anchor before entering the port), its maneuvring time manin(p, v) and manout(p, v) to enter
and leave the port respectively, its call charges pc(p, v) (in dollars), and its transshipment
cost ts(p) (in dollars). The times are given in hours and depend on the type v of vessels, as
do the call charges. A canal c (e.g. the Suez or Panama Canal) is characterized by a waiting
time wt(c, v), a traversal time trav(c) (in hours), and a traversal cost pc(c, v) (in dollars).

The number of vessels operating on a service is determined by the length of the rotation
and the frequency of departures. Indeed, a rotation must guarantee a regular frequency of
visits to each port it serves. This rotation frequency is generally weekly or biweekly. For a
weekly frequency, the duration of the rotation must be a multiple of seven days. The number
of vessels deployed per rotation must then be equal to the number of weeks in that rotation.
For example, the line shown in Figure 1 has a duration of 91 days or 13 weeks. It is therefore
operated with 13 vessels.

The liner shipping network design problem (LSNDP) can be defined as follows: Given
a set of ports, a set of vessels divided by type (each type v having nb(v) vessels) and a
set of commodities to be transported, define a set of rotations having a weekly frequency
and determine the vessels operating them to transport the commodities while respecting, if
necessary, the transit times and maximizing the profit. The profit is defined as the difference
between the revenues generated by the commodities transported and all the costs generated
by this transport (fuel costs, vessel operating costs, port call and canal costs, transshipment
costs, . . . ). To calculate fuel costs, for each type of fuel f , we have the price fp(f) per ton
of fuel (expressed in dollars).

While the primary purpose of this problem is to design maritime transportation networks,
it can also be used to assist in decision-making. For example, it can be used to simulate
situations such as traffic jams to enter certain ports and determine whether or not it is
relevant to adapt existing rotations. It can also be used to consider changes in the flow
of containers to be transported, to evaluate the interest in taking market share in certain
commodity flows or to anticipate the construction of new ships.

3 Model

3.1 Modeling Choices
In our model, we adopt the usual assumptions of the literature. In particular, we assume
that all container ships of a given type have identical features and that the frequency of
services is weekly. Furthermore, we choose to treat canals (such as the Suez and Panama
canals) in the same way as ports. The time it takes to cross a canal replaces the time it takes
to load/unload a ship in a port. As a result, the notion of rotation now also takes canals into
account. Since a rotation can pass several times through the same canal, but not through
the same port, we consider, in our model, two instances of each canal so that a canal can be
used both on the “outbound” and on the “return”. For example, we can see that the line
represented in Figure 1 passes twice through the Suez Canal, once on the “outbound” (blue
route) and once on the “return” (red route). Note that creating more than two instances of
the same canal is of little interest because a solution passing more than twice through the
same canal has little chance of being optimal.
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p1 p2 p3 p4 p5

840
0 12 50 60 275 280 600 620 725 740

srp1 = p2 srp2 = p3 srp3 = p4 srp4 = p5

srp5 = p1

Figure 2 A rotation involving five ports.

Circuit({sr
p | p ∈ P ∪ C}, ℓr) r ∈ R (R.1)

vr > 0 ⇒
∑
p∈P

(sr
p ̸= p) ≥ 3 r ∈ R (R.2)

vr > 0 ⇐⇒ ℓr ≥ 3 r ∈ R (R.3)

Figure 3 Constraints related to rotations and routes.

Our model takes, as inputs, all the information about the ports and canals, the flow of
commodities, the types of vessels, and the distances between pairs of ports/canals. It also
relies on the maximum number rmax of rotations to be defined, the time horizon hmax (in
hours), that is the maximum duration to achieve a rotation, and the maximum number tsmax

of transshipments allowed per commodity. One of the particularities of this model is that the
main operations will be time-stamped to handle rotation or transit times of the commodities
as precisely as possible. Moreover, speeds can be different from one leg to another. Finally,
it takes into account the possibility of refusing to transport a commodity in the network if it
is not profitable or impossible.

Thereafter, given the large number of variables, we define the variables progressively
when needed. The set of ports is denoted P = {0, 1, . . . , |P| − 1}, the set of canals C =
{c, c+ |C0| s.t. c ∈ C0} (with C0 = {|P|, . . . , |P|+ |C0|−1} the set of canals before duplication),
the set of type of vessels available V = {1, 2, . . . , |V|} and that of the commodities K =
{1, 2, . . . , |K|}. We note respectively I and I+ the index sets [0, tsmax] and [0, tsmax + 1].
Let R = {1, . . . , rmax} be the set of the indices of the possible rotations.

3.2 Definition of Rotations
Our model does not necessarily use all possible rmax rotations. Therefore, we consider a
variable vr per rotation r. Its value is an integer between 1 and |V| representing the type of
vessels exploited if the rotation is used, 0 otherwise. Each rotation r must correspond to a
circuit. To define such circuits, we introduce a variable sr

p per port/canal p and rotation r.
Its value is p if the port/canal p is not involved in the circuit, the successor of port/canal
p otherwise. Figure 2 illustrates this for a rotation involving five ports. We also introduce
a variable ℓr specifying the length of the circuit associated with rotation r. Thus, for each
rotation r, the existence of a circuit can be guaranteed by constraint (R.1) (see Figure 3).
Note that this constraint avoids the existence of subtours, a property that is not generally easy
to guarantee. For instance, in MIP, avoiding subtours requires adding non-linear constraints
that must then be linearized. Then, thanks to constraint (R.2), a circuit must involve at least
three ports (this is a business rule generally desired by carriers), and so, cannot involve only
canals. Finally, constraint (R.3) ensures that rotation r is used if and only if the associated
circuit has a length at least equal to three.
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portk,0
pol(k)

portk,1 portk,2 portk,nbrk−1 portk,nbrk
pod(k)

rotk,0 rotk,1 · · · rotk,nbrk−1

Figure 4 Transport of a commodity k from its origin port pol(k) to its destination port pod(k).

3.3 Cargo Flow
Our model allows for the possibility of not carrying a commodity k if it is not possible or not
profitable. To do this, we define a Boolean variable αk that is true if commodity k is accepted
in the network, false otherwise. Taking charge of commodity k means that it is loaded
at the original port pol(k) and unloaded at the destination one pod(k), possibly passing
through intermediate ports. In our model, we consider only the intermediate ports where the
commodity will be transshipped as shown in Figure 4. Also, we introduce a variable rotk,i

per commodity k and step i to represent the ith rotation used to transport the commodity
k. rotk,i has the value r if commodity k is carried thanks to rotation r during the ith step,
−1 if this step is not needed. Similarly, the variable portk,i represents the port where the
commodity k enters its ith rotation. By so doing, commodity k enters in its ith rotation at
port portk,i and leaves it at port portk,i+1 (i.e. the port in which it starts its next rotation
if portk,i+1 differs from pod(k)). These variables have the value of the corresponding port
p (p ∈ P) if the ith rotation is used, −1 otherwise. More precisely, the domain of portk,i

is {−1, pol(k)} if i = 0, {−1, pod(k)} if i = tsmax + 1, {−1} ∪ P − {pol(k)} otherwise. For
each commodity k, a variable nbrk specifies the number of rotations used (between 0 and
tsmax + 1).

We can now define the associated constraints (see Figure 5). First, constraint (F.1)
specifies that commodity k is accepted in the network if and only if there is at least one
rotation that carries it. Of course, the port of departure of an accepted commodity k is
necessarily its port of origin pol(k) (constraint (F.2)). The last port used is necessarily
the destination port pod(k). To ensure this, we introduce a variable podk per commodity
k that can take two values: either pod(k) if commodity k is accepted, or −1 otherwise.
Constraint (F.3) guarantees that podk has the relevant value depending on the value of αk

while constraint (F.4) ensures that the last used port is consistent with podk. Naturally, no
port or rotation can be used beyond the destination port (constraints (F.5)–(F.7)). Moreover,
a commodity cannot transit several times through the same port or the same rotation, what
is ensured by constraints (F.8) and (F.9). To facilitate the expression of some constraints
about the path followed by the commodities, we introduce Boolean variables fromr

k,p (resp.
tor

k,p) which are true if commodity k enters (resp. leaves) the rotation r at port p, false
otherwise. These variables are directly related to the previous ones as seen in constraints
(F.10) and (F.11). These variables are also used to link the cargo flow to the definition of
routes. Indeed, if commodity k is (un)loaded at a port p for a rotation r, it implies that
the port p is used in this rotation (constraints (F.12) and (F.13)). Conversely, if a port
p is used in rotation r, then there is at least one commodity that is (un)loaded in that
port for that rotation (see constraints (F.14) and (F.15)). Finally, if a rotation is not used,
no commodities can transit through it, and vice versa (constraint (F.16)). Note that this
constraint is redundant, but in most cases, it allows finding some conflicts earlier.

3.4 Properties of Rotations and Vessels
In some MIP models in the literature (e.g. [18, 9]), each service is associated with a predefined
type of vessel. While this choice facilitates the consideration of the specificities of each type
of vessel, it leads to handling many rotations, few of which will be used in the end. Moreover,
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αk = 1 ⇐⇒ nbrk > 0 k ∈ K (F.1)
αk = 1 ⇐⇒ portk,1 = pol(k) k ∈ K (F.2)
αk = 1 ⇐⇒ podk = pod(k) k ∈ K (F.3)
Elt({portk,i+1 | i ∈ [1, tsmax]}, nbrk) = podk k ∈ K (F.4)
i ≥ nbrk ⇐⇒ rotk,i = −1 k ∈ K, i ∈ I (F.5)
nbrk < i ⇒ portk,i = −1 k ∈ K, i ∈ I+ (F.6)
portk,i = −1 ⇒ nbrk ≤ i k ∈ K, i ∈ I+ (F.7)
Alldiff-except({portk,i | i ∈ I+}, −1) k ∈ K (F.8)
Alldiff-except({rotk,i | i ∈ I}, −1) k ∈ K (F.9)

fromr
k,p =

∑
i∈I

(portk,i = p) · (rotk,i = r) k ∈ K, p ∈ P , r ∈ R (F.10)

tor
k,p =

∑
i∈I

(portk,i+1 = p) · (rotk,i = r) k ∈ K, p ∈ P, r ∈ R (F.11)

fromr
k,p = 1 ⇒ sr

p ̸= p k ∈ K, p ∈ P, r ∈ R (F.12)
tor

k,p = 1 ⇒ sr
p ̸= p k ∈ K, p ∈ P, r ∈ R (F.13)

sr
p ̸= p ⇒ Count({portk,i | k ∈ K, i ∈ I+}, {p}) ≥ 1 p ∈ P , r ∈ R (F.14)

sr
p ̸= p ⇒ Count({rotk,i | k ∈ K, i ∈ I}, {r}) ≥ 1 p ∈ P , r ∈ R (F.15)

vr = 0 ⇐⇒ Count({rotk,i | k ∈ K, i ∈ I+}, {r}) = 0 r ∈ R (F.16)

Figure 5 Constraints related to cargo flow.

trying a new vessel type for a rotation requires the solver to change the assignment of a
lot of variables. In our model, we choose to let the solver decide on the type of vessels
associated with each rotation. Therefore, it is necessary to ensure that the type of vessels
chosen for a rotation matches the features of the rotation. This requires the introduction
of a certain number of variables whose values will then be fixed using Elt constraints. The
variable κr represents the maximum capacity (expressed in TEUs) of commodities that can
be transported via rotation r. Its value is 0 if the rotation is not used, the capacity of the type
of vessel used otherwise. The variables νr

min and νr
max specify the minimum and maximum

speeds of the rotation r (0 if the rotation is not used). The variable fpr expresses the price
per ton of fuel for rotation r (0 if the rotation is not operated). For each rotation r, we post
the constraints (P.1)–(P.4) (see Figure 6). Likewise, some information (call costs, waiting
time, . . . ) related to ports or canals also depends on the type of vessels associated with
rotation r. For each rotation r, we then introduce the variables wtp,r, manin

p,r and manout
p,r

which specify respectively the waiting time of port/canal p and the maneuvring time to enter
and leave port p. The cost of calling at port p for rotation r is represented by the variable
pcp,r while the productivity for port p and rotation r is expressed by the variable prodp,r.
Constraints (P.5)–(P.9) ensure the consistency of these features. Finally, we consider the
variable tcr which, for each rotation r, specifies the daily cost of using the vessels associated
with the rotation and its related constraint (P.10).
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Elt({0} ∪ {κ(v) | v ∈ V}, vr) = κr r ∈ R (P.1)
Elt({0} ∪ {νmin(v) | v ∈ V}, vr) = νr

min r ∈ R (P.2)
Elt({0} ∪ {νmax(v) | v ∈ V}, vr) = νr

max r ∈ R (P.3)
Elt({0} ∪ {fp(fuel(v)) | v ∈ V}, vr) = fpr r ∈ R (P.4)
Elt({0} ∪ {wt(p, v) | v ∈ V}, vr) = wtp,r r ∈ R, p ∈ P ∪ C (P.5)
Elt({0} ∪ {manin(p, v) | v ∈ V}, vr) = manin

p,r r ∈ R, p ∈ P ∪ C (P.6)
Elt({0} ∪ {manout(p, v) | v ∈ V}, vr) = manout

p,r r ∈ R, p ∈ P ∪ C (P.7)
Elt({0} ∪ {pc(p, v) | v ∈ V}, vr) = pcp,r r ∈ R, p ∈ P ∪ C (P.8)
Elt({1} ∪ {prod(p, v) | v ∈ V}, vr) = prodp,r r ∈ R, p ∈ P ∪ C (P.9)
Elt({0} ∪ {tc(v) | v ∈ V}, vr) = tcr r ∈ R (P.10)

Figure 6 Constraint related to properties of rotations and vessels.

fromr
k,p = 1 ⇒ leaver

k,p = 1 k ∈ K, r ∈ R, p ∈ P (L.1)
tor

k,p = 1 ⇒ leaver
k,p = 0 k ∈ K, r ∈ R, p ∈ P (L.2)

(sr
p = p′ ∧ fromr

k,p′ = 0 ∧ tor
k,p′ = 0) ⇒ leaver

k,p = leaver
k,p′ k ∈ K, r ∈ R, p, p′ ∈ P

(L.3)
sr

p = p ⇒ leaver
k,p = 0 k ∈ K, r ∈ R, p ∈ P (L.4)∑

k∈K

q(k) · leaver
k,p ≤ κr r ∈ R, p ∈ P (L.5)

Figure 7 Constraints related to loads.

3.5 Vessel Load
We need to ensure that vessels do not leave each port loaded beyond their maximum capacity.
This requires knowing, for each rotation, which commodities it carries at the exit of each port.
To do this, we use a Boolean variable leaver

k,p per commodity k, port p, and rotation r. This
variable is true if commodity k leaves port p via rotation r, false otherwise. Constraints (L.1)
and (L.2) (see Figure 7) deal with the cases when the commodities are respectively loaded in
rotation r and unloaded from rotation r while constraint (L.3) guarantees the transitivity all
along the trip. Finally, the constraint (L.4) corresponds to the case where a port p does not
appear in rotation r. Constraint (L.5) then allows ensuring that, for each port p, the load,
when leaving the port, does not exceed the maximum capacity κr of rotation r.

3.6 Timestamp and Transit Times

3.6.1 Duration of Port Operations and Canal Traversal
To express the duration of loading/unloading operations in a port or the duration of traversing
a canal, we introduce a variable tr

p per port/canal p and rotation r. In the case of a canal the
value of this variable is defined as equal to the duration of the traversal if the canal is used, 0
otherwise (see constraint (T.1) in Figure 8). For a port p, two cases are possible. If the port
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tr
p = trav(p) · (sr

p ̸= p) r ∈ R, p ∈ C (T.1)
sr

p = p ⇐⇒ tr
p = 0 r ∈ R, p ∈ P (T.2)

teup,r =
∑
k∈K

(fromr
k,p + tor

k,p) · q(k) r ∈ R, p ∈ P (T.3)

sr
p ̸= p ⇒ tr

p =
⌈

µ.teup,r

prodp,r

⌉
r ∈ R, p ∈ P (T.4)

vr = 0 ⇐⇒ depr = −1 r ∈ R (T.5)
vr > 0 ⇒ Maximum({p.(sr

p ̸= p) | p ∈ P}) = depr r ∈ R (T.6)

depr = p ⇒ timein
p,r = 0 r ∈ R, p ∈ P (T.7)

timeout
p,r = timein

p,r + tr
p r ∈ R, p ∈ P ∪ C (T.8)

sr
p = p′ ⇒ str

p =
⌈

δ(p, p′)
νr

p

⌉
r ∈ R, p, p′ ∈ P ∪ C (T.9)

(vr > 0 ∧ sr
p ̸= p) ⇒ νr

p ≥ νr
min r ∈ R, p ∈ P ∪ C (T.10)

vr > 0 ⇒ νr
p ≤ νr

max r ∈ R, p ∈ P ∪ C (T.11)
sr

p = p ⇐⇒ str
p = 0 r ∈ R, p ∈ P ∪ C (T.12)

sr
p = p ⇒ timein

p,r = 0 r ∈ R, p ∈ P ∪ C (T.13)
sr

p = p ⇐⇒ νr
p = 0 r ∈ R, p ∈ P ∪ C (T.14)

(sr
p = p′ ∧ p′ ̸= depr)

⇒ timein
p′,r = timeout

p,r + manout
p,r + str

p + wtp′,r + manin
p′,r r ∈ R, p, p′ ∈ P ∪ C (T.15)

(fromr
k,p ∧ tor

k,p′ )

⇒ (timein
p,r < timein

p′,r ∨ timein
p′,r < timein

p,r < timein
p′,r + Tr) r ∈ R, p, p′ ∈ P ∪ C, k ∈ K (T.16)

Figure 8 Constraints related to timestamps.

is not used in the rotation r, the variable tr
p is 0 (see constraint (T.2)). Otherwise, its value

depends on the number of TEUs loaded and unloaded in the port p for the rotation r. So,
we consider the variable teup,r which indicates the number of TEUs loaded and unloaded at
port p for rotation r. Its value can be defined thanks to constraint (T.3). We can express
the duration of the operations thanks to constraint (T.4). A crane movement allows moving
a container whatever its size. To take into account the existence of 20-foot and 40-foot
containers among the commodities to be handled, the parameter µ makes it possible to
calculate the number of containers to be handled and thus the number of crane movements
necessary from the number of containers expressed in TEUs.

3.6.2 Call Timestamps

In order to establish the schedule for each call, it is necessary to designate a port as the
departure port in each rotation. To do this, we consider a variable depr per rotation r which
has, for value, a port p if the rotation is used, −1 otherwise. The choice of the starting
port being purely arbitrary, we choose the one with the largest index. This can be achieved
thanks to constraints (T.5) and (T.6). Then, in our model, we consider two key moments:
the moment when the vessel arrives at the berth (resp. enters the canal) and the moment
when it leaves the berth (resp. leaves the canal). For each rotation r and each port/canal p,
these two moments are represented respectively by the variables timein

p,r and timeout
p,r which

take their values in [0, hmax]. For each rotation, we consider that time 0 coincides with the
time of arrival at the berth in the departure port thanks to constraint (T.7). The time
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of leaving a port or a canal depends only on the time of arrival and the duration of the
operations in the port or the traversal of the canal (constraint (T.8)). Then, to determine
the arrival time at a port or canal as a function of the exit time from the port/canal ahead
of it in the rotation, we need to define the travel time as a function of the vessel’s speed.
The variables str

p and νr
p represent respectively the travel time from the port/canal p to its

successor (if any) in rotation r and the speed (expressed in knots) used on this leg. The two
variables are correlated by constraint (T.9). Of course, the speeds used must be consistent
with the capabilities of the vessels operating the rotation (constraints (T.10) and (T.11). We
can now define the time of arrival at the port/canal p′ from its predecessor p in rotation r

thanks to constraint (T.15). Note that for canals, we consider that the variables manin
p,r

and manin
p,r are 0. This allows us to avoid defining the previous constraint according to the

different possibilities of port/canal successions. In the case where a port p is not operated in
a rotation r, we set the values of the variables str

p, νr
p and timein

p,r to the value 0 (constraints
(T.12)–(T.14)).

Finally, if a commodity k is loaded in rotation r at port p and unloaded at port p′, this
imposes that the arrival at port p takes place before the arrival at port p′ if the trip between
p and p′ does not pass through the departure port of rotation r. If this path passes through
the departure port, then the arrival at port p′ will occur in the next rotation, and the arrival
at port p is between the two visits to port p′. For example, if we consider the rotation in
Figure 2 (which lasts 840 hours) and a commodity sent from port p2 to port p4, a vessel
operating this rotation enters port p2 at hour 50 (in blue) and arrives in port p4 at hour 600.
In this case, we have timein

p2,r < timein
p4,r. On the other hand, if we consider a commodity

going from p4 to p3, the vessel enters port p3 at hour 275 before visiting p4. This commodity
will then be delivered only at the next passage of the vessel at time 1,115. We then have
timein

p3,r < timein
p4,r < timein

p3,r + Tr. This is ensured by constraint (T.16).

3.6.3 Transit Times
To accurately consider the transit time of commodities, we need to know the key moments
in their transportation, namely when they are loaded on board a rotation or unloaded. To
simplify the model, we consider that a commodity is loaded on board a rotation when the
rotation leaves the port and that it is unloaded when the rotation arrives at the port. These
two times are represented by the variables ctimein

i,k and ctimeout
i,k respectively. Constraints

(T.17) and (T.18) (see Figure 9) ensure the correspondence between the key times of the
rotations and the ones of the commodities.

The time spent by the commodity k in its ith rotation is represented by the variable δi,k.
It corresponds naturally to the difference between the exit time and the entry time. However,
we must take into account the particular case where the journey passes through the port of
departure. In this case, the commodities are unloaded at the next rotation. For example, if
we consider the previous example, a commodity sent from port p2 to port p4 leaves port p2
at hour 60 (in red) and arrives in port p4 at hour 600 (in blue). This gives a travel time of
540 hours. On the other hand, a commodity shipped from port p4 to port p3 leaves port
p4 at time 620 and arrives at port p3 at time 1,115 and thus takes 495 hours to reach its
destination. Constraints (T.19) and (T.20) deal respectively with the first and second cases.

In the case where a transshipment takes place, the time that the commodities spend on
the quay between the two rotations must be taken into account. Given the weekly frequency
of the rotations, this time can be of the order of a week at most. To consider it more precisely,
we introduce a variable ∆i,k per commodity k and ith rotation used. The value of this
variable is related to the weekly frequency of rotations. For example, consider a commodity
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Eltm({timeout
p,r | p ∈ P , r ∈ R}, portk,i, rotk,i) = ctimein

i,k k ∈ K, i ∈ I (T.17)
Eltm({timein

p,r | p ∈ P , r ∈ R}, portk,i+1, rotk,i) = ctimeout
i,k k ∈ K, i ∈ I (T.18)

ctimein
i,k ≤ ctimeout

i,k ⇒ δi,k = ctimeout
i,k − ctimein

i,k k ∈ K, i ∈ I+ (T.19)

(rotk,i = r ∧ ctimein
i,k > ctimeout

i,k ) ⇒ δi,k = ctimeout
i,k − ctimein

i,k + Tr k ∈ K, i ∈ I+

(T.20)
i + 1 < nbrk ⇒ ∆i,k = (ctimein

i+1,k − ctimeout
i,k )%168 k ∈ K, i ∈ I (T.21)

i + 1 ≥ nbrk ⇒ ∆i,k = 0 k ∈ K, i ∈ I (T.22)∑
i∈I+

δi,k +
∑
i∈I

∆i,k ≤ ttmax(k) k ∈ K (T.23)

Figure 9 Constraints related to transit times.

k that arrives at a port p at hour 200 (according to its ctimeout
i,k value) on a rotation r and

leaves it at hour 2,000 (according to its ctimein
i+1,k value) via a rotation r′. The weekly

frequency of the rotations r and r′ implies that, in practice, commodity k leaves the port
at hour 320. Indeed, a vessel of rotation r′ leaves the port at hours 152 (i.e. 2, 000 modulo
(7 × 24)), 320, 488, . . . If the arrival in the port is later than the departure from the port
(according to the values ctimeout

i,k and ctimein
i+1,k), it means that the commodity must wait

for the vessel of the next week and so we have to add 168 hours to the considered difference.
Constraint (T.21) takes into account these two cases. The ith rotations that are not used for
commodity k have a ∆i,k variable whose value is zero (constraint (T.22)). The transit time
of commodity k can then be guaranteed by constraint (T.23). Note that not all commodities
have a transit time constraint. Also, if commodity k does not have a maximum transit time
constraint, the variables and constraints presented here are not considered for it.

3.7 Vessel Availability

Since the frequency of the rotations is weekly, each port is visited by one vessel operating the
rotation each week. The number of vessels needed is therefore the total time of the rotation
divided by the duration of one week. If the variables nr and Tr represent respectively the
number of vessels used by the rotation r and the total time of the rotation r, we can impose
constraint (A.1) (see Figure 10). The time of the rotation is, of course, zero if the rotation
is not used (constraint (A.2)). Otherwise, since each rotation starts at time 0, the total
time is the arrival time at the departure port from the last port of the rotation (constraint
(A.3)). Finally, we guarantee that, for each type of vessel, the number of vessels used does
not exceed the number of available vessels thanks to constraint (A.4).

3.8 Objective Function

Briefly, the objective function is the difference between the revenues generated by accepting
commodities into the network and the total costs of transporting them (fuel, vessel operations,
port calls, . . . ). The fuel cost depends on the fuel price and the fuel consumption of each trip
made. For this latter, we consider a variable consr

p per port and rotation that specifies the
amount of fuel consumed per hour by the rotation r for the trip made between the port/canal
p and its successor. In the absence of successors, the variable consr

p has, of course, the value
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nr =
⌈

Tr

7 × 24

⌉
r ∈ R (A.1)

vr = 0 ⇐⇒ Tr = 0 r ∈ R (A.2)
depr = p′ ∧ sr

p = p′ ⇒ Tr = timeout
p,r + manout

p,r + str
p + wtp′,r + manin

p′,r r ∈ R, p, p′ ∈ P
(A.3)∑

r∈R

nr.(vr = v) ≤ nb(v) v ∈ V (A.4)

Figure 10 Constraints related to vessel availability.

Eltm({cons(v, ν) | v ∈ {0} ∪ V, ν ∈ {0} ∪ [νmin(v), νmax(v)]}, vr, νr
p) = consr

p r ∈ R, p ∈ P ∪ C
(O.1)

teuts
p =

∑
k∈K|p̸=pod(k)

tor
k,p · q(k) p ∈ P (O.2)

Figure 11 Constraints related to the objective function.

0. The quantity consumed here depends only on the type of vessel used and the speed. In
constraint (O.1) (see Figure 11), we assume that cons(v, ν) is 0 if v or ν is 0.

The costs associated with transshipment depend on the port and the quantity of commod-
ities transshipped. So we need to represent the quantity of commodities transshipped at each
port. To do this, we introduce a variable teuts

p per port. The commodities k transshipped at
port p are those that are unloaded at port p (i.e., those for which tor

k,p is 1) and for which
port p is not their destination port (see constraint (O.2)). We can now express our objective
function based on revenues (R), fuel costs (C), canal and port call costs (E), vessel operating
costs (X), and transshipment costs (T):

max
∑

k∈K
rev(k) · q(k) · αk (R)

−
∑

r∈R

∑
p∈P∪C

fpr · consr
p · str

p (C)

−
∑

r∈R

∑
p∈P∪C

pcpr · (sr
p ̸= p) (E)

− 7
∑

r∈R

tcr · nr (X)

−
∑

p∈P
ts(p) · teuts

p (T )

3.9 Additional Constraints
Given the size of the search space, it may be desirable to avoid certain symmetries as much
as possible. Starting each rotation at time 0 (see constraint (T.7)) allows for avoiding
any translation on the time axis. However, other symmetries may exist. For example, the
rotations are interchangeable. To avoid this, we can ensure that the first rotations are
used in priority and these rotations are sorted in decreasing order of their duration thanks
to constraint (S.1) (see Figure 12). One of the main practical difficulties of the LSNDP
problem lies in the enumeration of the different possible circuits. For a circuit of length
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T1 ≥ T2 ≥ . . . ≥ Tr (S.1)∑
r∈R

(sr
p ̸= p) ≤ max(|Kpol

p |, |Kpod
p |) p ∈ P2 (S.2)

vr = v ⇒ sr
p = p r ∈ R, p ∈ P3 (S.3)

teuts
p = 0 p ∈ P4 (S.4)

Figure 12 Possible additional constraints where Pi denotes the set of ports impacted by the
constraint (S.i).

ℓ, since it is possible to go from one port to any other, the solver may have to consider
a non-negligible part of the ℓ! possible permutations. Since, in addition, several rotations
are usually considered simultaneously, this can quickly become very time-consuming. To
reduce the number of rotations and thus of circuits to consider, we introduce constraint
(S.2). Let Kpol

p and Kpod
p denote respectively the set of commodities for which p is the origin

port and one for which p is the destination port. This constraint ensures that the number
of rotations that uses a port p does not exceed the maximum between |Kpol

p | and |Kpod
p |.

In a way, it eliminates some solutions in which the call in the port would only be used for
transshipments. Generally, calling a port for only transshipments is not wished by shipping
companies, except for some particular ports (e.g. hubs). Thanks to the flexibility of CP, we
can add this constraint depending on the needs of the shipowner.

On the other hand, some ports cannot handle certain types of vessels. For example, the
port of Dutch Harbor in Alaska is not deep enough. It can therefore only handle small
container ships. Thus, if v vessels cannot berth at port p, we impose constraint (S.3) for
each rotation r. Similarly, some ports do not have enough space to store containers. It is
therefore impossible to carry out transshipments there. For such ports, we can then exploit
constraint (S.4) to prohibit any transshipment.

4 Experiments

4.1 Experimental Protocol and Implementation Details
The LINER-LIB benchmark1 [7] is the reference for experiments on the LSNDP problem.
It consists of seven instances with 12 to 197 ports, thus allowing the evaluation of both
complete and incomplete methods. In order to have instances of a reasonable and varied
size, we have produced sub-instances from instances of the LINER-LIB benchmark. To do
this, from an instance, we select n ports in the following way. The first selected port is the
one that handles the most commodities. The next n − 1 ports are the ones that exchange
the most commodities with the already selected ports. For our test set, we considered
the smallest instance (Baltic) of the LINER-LIB set and 40 instances produced from the
instances Baltic, EuropeAsia, Mediterranean and WAF. The number of ports varies from
3 to respectively 11, 10, 10 and 17. Moreover, as the LINER-LIB benchmark does not
take into account productivity, waiting or maneuvring times, we generate randomly these
values. Note that this partial random generation introduces no bias, since these values have
a negligible impact on the solving efficiency. For the following experiments, the number of

1 https://github.com/blof/LINERLIB/

https://github.com/blof/LINERLIB/
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rotations rmax is fixed at 4 and that of transhipments at 1 per commodity (a higher value
not being desired by the experts) while the maximum duration hmax is set to 12 weeks. The
chosen values of rmax and hmax seem reasonable to us taking into account the commodities
to be transported and the distances to be covered. In practice, the optimal solutions we
found require less time and fewer rotations than our choice of parameters allows. For µ,
we take the value 0.54 given by the experts. The instances we consider are available at
https://pageperso.lis-lab.fr/cyril.terrioux/LSNDP/instances.zip.

The presented model is implemented in the OR-Tools CP-SAT solver (version 9.6.2534
[26]) via its Python interface. This choice is first guided by the solver efficiency, since the
OR-Tools CP-SAT solver won several gold medals during the past MiniZinc Challenges [25].
Moreover, lazy clause generation [20] provides good results for the LSFRP problem [14].
Finally, another advantage is the possibility of exploiting a certain form of parallelism. Hence,
for the solving, we run from 1 to 16 threads. When a single thread is run, it corresponds to
the CP-SAT solver. Except for the number of threads, all the parameters are the default ones.
The experiments are being conducted on servers with Intel Xeon Gold 5218R processors
running at 2.1 GHz and 192 GB of memory with a time limit of two hours. When exploiting
several threads, each instance is solved 10 times and the reported runtime is the average time.
The solving step involving t threads is denoted ×t. We apply it to our model M , but also,
to two derived versions denoted M -1,2 and M -2. Model M -1,2 does not consider constraints
(S.1) and (S.2) while model M -2 uses constraints (S.1), but not constraints (S.2).

4.2 Results
First, we compare our model with its two derived versions from the efficiency viewpoint
(see Table 12 and Figure 13). Clearly, model M is the most efficient. Indeed, the addition
of constraints (S.1) and (S.2) allows us to solve optimally more instances (24 instances for
model M against 14 for models M -1,2 and M -2 when using a single thread) while reducing
significantly the runtime. As there often exists an arc between each pair of ports/canals, the
circuit constraint admits a huge number of allowed tuples. In practice, the number of allowed
tuples studied by the solver is mainly restricted by the load and transit time constraints or
the objective function. In the latter case, as the objective function considers all the rotations,
it may take some time for the solver to realize that a rotation is not suitable. So finding an
optimal solution may require exploring a huge number of feasible solutions. Constraints (S.1)
and (S.2) allow us to reduce this number significantly, as we can see in our results. Then, as
shown in Table 1, exploiting several threads allows improving the efficiency, but mostly by
reducing the runtime. For instance, using 16 threads instead of a single one leads to reducing
the runtime by a factor of 5 on average and up to 20 at best.

Figure 13 indicates that the runtime increases exponentially with the number of ports.
However, other parameters affect the runtime like the number of commodities to be processed
or the type of instances. For example, our model performs well on Baltic and WAF instances,
which corresponds to feedering instances (i.e. a collection of small services that ensures the
transport of commodities between some main ports and satellite ones). In contrast, it turns
out to be less efficient for instances like EuropeAsia ones that connect the more important
ports of two commercial areas. Then, our model finds interesting solutions even if it does not
accept all the commodities or visit all the ports (see Table 2). One explanation is related to

2 See Appendix A for the other instances.
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Table 1 Runtimes in seconds for some representative instances (a runtime different from 7,200 s
corresponds to an instance solved optimally).

Instance M -1,2 ×1 M -2 ×1 M×1 M×2 M×4 M×8 M×16
Baltic 7,200 7,200 3,502 3,385 386 372 343

Baltic_sub7 1,483 301 6.7 4.8 3.0 3.3 3.2
EuropeAsia_sub7 7,200 7,200 7,200 7,200 7,200 7,200 7,200

Mediterranean_sub7 7,200 7,200 7,200 7,200 7,200 7,001 6,234
WAF_sub7 7,200 7,200 27.4 19.0 6.6 5.6 5.7
WAF_sub17 7,200 7,200 7,200 7,200 7,200 7,021 5,117

Table 2 Information of some instances and solutions (the value in k$ of the best solution found,
the number of visited ports, accepted commodities and used rotations).

Instance Solution
Name |P| |K| Cost #ports #comm. #rot
Baltic 12 22 4,752 10 16 3

Baltic_sub7 7 12 2,508 6 9 2
EuropeAsia_sub7 7 42 4,228 6 23 3

Mediterranean_sub7 7 26 225 6 15 2
WAF_sub7 7 12 5,823 7 12 3
WAF_sub17 17 32 11,952 10 16 4

the way the LINER-LIB benchmark was built (namely by aggregating data from different
shipowners without ensuring that the considered fleet can handle all the commodities).

Finally, our approach manages to optimally solve some instances of up to 17 ports. While
the literature reports solving of up to a dozen ports, it is difficult to compare accurately with
existing exact methods: implementations are generally not available and each work treats
the problem with a different point of view, in particular regarding the working hypotheses or
the cost function to optimize (see Section 5).
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Figure 13 Runtime (in s) for Baltic (a) and WAF (b) instances w.r.t. the number of ports.

5 Related Work

The Liner Shipping Fleet Repositioning Problem (LSFRP [28]) aims to adapt the network
in order to take into account some evolution of the customer needs (e.g. seasonality, port
congestion, increase or decrease of the demands, . . . ). Moving container ships from one
service to another while considering commodity transport is a complex and expensive task
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for shipping companies. In this context, the CP approach presented in [14] turns out to
be more efficient than MIP ones. In the case of LSFRP, services are already defined while
LSNDP aims to design them. Moreover, the number of vessels and commodities to handle
may be reduced for LSFRP. Finally, an LSFRP instance corresponds to a one-shot task while
an LSNDP one leads to a schedule for several weeks or months.

LSNDP is close to Vehicle Routing Problem (VRP [15]) and its variants like the pickup
and delivery problem (PDP [11]). Indeed, in both cases, vehicles carry commodities from one
location to another. The first difference is that generally, for VRP and PDP, a commodity is
carried by a single vehicle whereas, for LSNDP, the transport can be achieved by several vessels
operating different rotations thanks to transshipments. Taking into account transshipments
makes the problem more difficult. This requires additional variables and constraints, while
significantly increasing the number of possible routes for commodities (and therefore the
number of feasible solutions to study). Moreover, in general, VRP and PDP aim to transport
all the commodities while, for LSNDP, some commodities may be rejected. Finally, the
objective function is often more complex for LSNDP than for VRP and PDP. For instance,
the variety of considered costs (e.g. call cost, transshipment cost, fuel cost, charter rate, . . . )
is more important.

Regarding the exact solving of LSNDP, unlike our model, the models proposed in
[18, 23, 22] use a constant speed for each leg and do not handle transit time constraints.
Those of [18, 23] cannot reject a commodity. In contrast, [18] takes into account the
empty container repositioning while [23, 22] consider the transshipment costs. The objective
functions consist in minimizing costs [18, 23] or maximizing the profit [22]. Regarding the
type of service, the three models consider a more general form than ours. For instance,
they can exploit butterfly services (i.e. services that can call several times in the same
port). However, such an extension could be taken into account in our model by duplicating
ports as we do for canals and relaxing some constraints like constraints (F.9). Note that
the experimentations achieved in [22] rely on the LINER-LIB benchmark, but the proposed
approach does not succeed in solving optimally the Baltic instance.

6 Conclusions and Perspectives

In this paper, we have proposed a first CP model to solve the LSNDP problem. The first
practical results are very encouraging with optimally solved instances with up to 17 ports
and show the interest in a CP approach. In the future, this model will have to be extended
to better handle some kinds of instances and take into account other forms of services (e.g.
butterflies) or the constraints imposed by the International Maritime Organization (IMO)
concerning the gas emissions of ships (e.g. related to carbon intensity indicator). Another
extension would be to differentiate containers by type (full, empty, reefers, . . . ). In particular,
the repositioning of empty containers is an important issue, while the transport of reefers is
highly profitable and raises specific questions. Moreover, to facilitate scaling up, the use of
incomplete methods will need to be explored more deeply.
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Tables 3 and 4 provide the same information as Tables 1 and 2 but for all the instances we
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Table 3 Runtimes in seconds for all the considered instances (a runtime different from 7,200 s
corresponds to an instance solved optimally).

Instance M -1,2 ×1 M -2 ×1 M×1 M×2 M×4 M×8 M×16
Baltic_sub3 0.4 0.2 0.2 0.2 0.2 0.3 0.3
Baltic_sub4 15.8 4.5 0.6 0.4 0.4 0.4 0.5
Baltic_sub5 134 16.9 1.6 2.8 2.3 1.6 1.2
Baltic_sub6 256 120 2.9 1.9 1.3 1.4 1.4
Baltic_sub7 1,483 301 6.7 4.8 3.0 3.3 3.2
Baltic_sub8 7,200 7,200 29.2 14.2 5.8 5.2 5.1
Baltic_sub9 7,200 7,200 87.7 55.8 12.9 9.8 10.6
Baltic_sub10 7,200 7,200 158 126 22.9 16.9 15.2
Baltic_sub11 7,200 7,200 637 504 49.6 42.6 38.7

Baltic 7,200 7,200 3,502 3,385 386 372 343
EuropeAsia_sub3 2.5 1.0 0.9 1.0 1.2 1.3 1.2
EuropeAsia_sub4 157 244 134 100 37.3 18.1 10.5
EuropeAsia_sub5 7,200 7,200 7,200 3,736 4,101 4,459 2,356
EuropeAsia_sub6 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub7 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub8 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub9 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub10 7,200 7,200 7,200 7,200 7,200 7,200 7,200

Mediterranean_sub3 0.4 0.2 0.3 0.3 0.3 0.3 0.3
Mediterranean_sub4 2.8 0.8 0.8 0.8 0.8 0.9 1.0
Mediterranean_sub5 85.0 28.9 26.5 22.4 5.2 3.8 3.8
Mediterranean_sub6 621 229 281 307 30.6 25.2 21.5
Mediterranean_sub7 7,200 7,200 7,200 7,200 7,200 7,001 6,234
Mediterranean_sub8 7,200 7,200 7,200 7,200 7,200 7,200 7,200
Mediterranean_sub9 7,200 7,200 7,200 7,200 7,200 7,200 7,200
Mediterranean_sub10 7,200 7,200 7,200 7,200 7,200 7,200 7,200

WAF_sub3 0.9 0.7 0.6 0.3 0.3 0.4 0.3
WAF_sub4 401 42.8 0.8 0.6 0.7 0.6 1.1
WAF_sub5 896 248 1.8 1.8 1.6 1.6 1.4
WAF_sub6 7,200 7,200 7.5 4.4 3.9 3.4 3.5
WAF_sub7 7,200 7,200 27.4 19.0 6.6 5.6 5.7
WAF_sub8 7,200 7,200 31.3 19.9 6.7 6.1 6.1
WAF_sub9 7,200 7,200 17.0 18.0 7.5 7.0 7.0
WAF_sub10 7,200 7,200 39.4 35.7 16.0 12.3 12.7
WAF_sub11 7,200 7,200 249 187 32.2 32.6 29.3
WAF_sub12 7,200 7,200 1,093 600 73.4 66.7 64.9
WAF_sub13 7,200 7,200 7,200 7,200 815 792 499
WAF_sub14 7,200 7,200 4,662 3,779 323 262 263
WAF_sub15 7,200 7,200 7,034 5,365 542 494 349
WAF_sub16 7,200 7,200 7,200 7,200 4,182 3,106 2,154
WAF_sub17 7,200 7,200 7,200 7,200 7,200 7,021 5,117
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Table 4 Some information about instances and solutions. For solutions, we provide the value
(in k$) of the best solution found, the number of visited ports, one of accepted commodities and one
of used rotations.

Instance Solution
Name |P| |K| Cost #ports #comm. #rot

Baltic_sub3 3 4 1,876 3 4 1
Baltic_sub4 4 6 1,895 3 4 1
Baltic_sub5 5 8 2,074 5 8 2
Baltic_sub6 6 10 2,074 5 8 2
Baltic_sub7 7 12 2,508 6 9 2
Baltic_sub8 8 14 3,322 7 10 3
Baltic_sub9 9 16 3,733 8 11 3
Baltic_sub10 10 18 4,187 9 13 3
Baltic_sub11 11 20 4,345 10 15 3

Baltic 12 22 4,752 10 16 3
EuropeAsia_sub3 3 6 616 3 4 1
EuropeAsia_sub4 4 12 616 3 4 1
EuropeAsia_sub5 5 20 1,463 4 8 1
EuropeAsia_sub6 6 30 1,463 4 8 1
EuropeAsia_sub7 7 42 4,228 6 23 3
EuropeAsia_sub8 8 56 4,425 6 19 2
EuropeAsia_sub9 9 72 4,425 6 19 2
EuropeAsia_sub10 10 89 2,935 7 24 2

Mediterranean_sub3 3 5 177 3 5 1
Mediterranean_sub4 4 9 177 3 5 1
Mediterranean_sub5 5 14 196 4 8 1
Mediterranean_sub6 6 20 196 4 8 1
Mediterranean_sub7 7 26 225 6 15 2
Mediterranean_sub8 8 34 302 8 30 2
Mediterranean_sub9 9 43 509 8 30 2
Mediterranean_sub10 10 53 605 9 38 2

WAF_sub3 3 4 1,293 3 4 1
WAF_sub4 4 6 1,308 4 6 3
WAF_sub5 5 8 2,329 5 8 3
WAF_sub6 6 10 2,911 6 10 3
WAF_sub7 7 12 5,823 7 12 3
WAF_sub8 8 14 5,823 7 12 3
WAF_sub9 9 16 5,823 7 12 3
WAF_sub10 10 18 7,543 8 14 3
WAF_sub11 11 20 8,831 9 15 4
WAF_sub12 12 22 9,764 10 16 4
WAF_sub13 13 24 11,282 11 18 4
WAF_sub14 14 26 11,952 10 16 4
WAF_sub15 15 28 11,952 10 16 4
WAF_sub16 16 30 11,952 10 16 4
WAF_sub17 17 32 11,952 10 16 4
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Abstract
When a transportation service accommodates both people and goods, operators sometimes opt for
vehicles that can be dynamically reconfigured for different demands. Motivated by air service in
remote communities in Canada’s north, we define a pickup-and-delivery problem in which aircraft
can add or remove seats during a multi-stop trip to accommodate varying demands. Given the
demand for people and cargo as well as a seat inventory at each location, the problem consists in
finding a tour that picks up and delivers all demand while potentially reconfiguring the vehicle
capacity at each location by adding or removing seats. We develop a total of six models using three
different approaches: constraint programming, mixed integer programming, and domain-independent
dynamic programming. Our numerical experiments indicate that domain-independent dynamic
programming is able to substantially outperform the other technologies on both solution quality and
run-time on a set of randomly generated instances spanning the size of real problems in northern
Canada.
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1 Introduction

Pickup-and-delivery problems involve using vehicles to transport goods and/or passengers
from a set of origins to a set of destinations on a given transportation network [1]. A
typical pickup-and-delivery problem such as the Pickup and Delivery Traveling Salesperson
Problem (PD-TSP) includes a one or more vehicles, requests with different pickup and
delivery locations, and an objective to find a minimum-cost tour (or set of routes) that
visit(s) each pickup location before its corresponding delivery location [4]. There has been
substantial research literature on pickup and delivery problems over the past several years
(e.g., [19, 21]) motivated, in part, by global efforts to reduce transportation-related carbon
emissions [16]. Many variations of such problems have been proposed and studied in the
operations research literature. For example, some problems include handling costs when an
item is loaded or unloaded depending on the position of the item in the vehicle [24] and some
include subsets of requests that cannot be in a vehicle at the same time [5].

In this paper, we propose and study a novel variation of PD-TSP: requests can include
both goods (cargo) and passengers and the vehicle has a capacity that can be adjusted
en-route depending on the request and equipment stored at locations in the network. The
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problem is motivated by a real transportation problem faced by air services in northern
Canada. Since many communities in this region are reachable only by air during some parts
of the year, their access to basic human needs such as fresh food and healthcare services is
limited. The need for air transportation combined with the relatively small populations and
lack of resources led northern air services to adopt the practice of transporting both cargo
and passengers on the same flights. The vehicles are aircraft with removable seats, allowing
staff to either remove passenger seats and store them at airports to transport more cargo or
add additional seats, previously stored at airports, to carry more passengers. The problem,
which we call the Pickup-and-Delivery with Seat Replacement Problem (PD-SRP), therefore
requires finding the shortest tour delivering all goods and passengers from their origins to
destinations without exceeding aircraft capacity but allowing seats to be removed from or
added to aircraft at each location, subject to seat availability and total aircraft capacity.

To solve the PD-SRP, we developed three types of optimization models: one Constraint
Programming (CP) model, three Mixed Integer Programming (MIP) models, and two Domain-
Independent Dynamic Programming (DIDP) [14] models. We compare their performance
on randomly generated instances based on the size of the problem in Canada’s north,
demonstrating that both of the DIDP models outperform the CP and MIP models in terms
of the number of instances solved and proved optimal, solution quality, and solve time.

2 Related Works

Reconfigurable capacity is a general term in the transportation literature, typically indicating
that vehicle capacity can be changed at some cost and/or limited by some constraints [22, 23].
Other terms such as multi-compartment vehicle or multi-purpose vehicle are used to convey
a similar meaning [20, 8]. We review the vehicle routing and dial-a-ride problems literature
for studies that considered adjustable vehicles.

Vehicle Routing Problems (VRP): The Vehicle Routing Problem and its many variations
have been studied extensively over the past 50 years [18]. The idea of adjusting the vehicle
to handle different types of demand has been studied in multi-compartment vehicle routing
problems [20]. For example, Henke et al. [9] studied how to split the capacity of a truck
into different compartments to maintain the separation of different colors of recycled glass.
Similarly, for grocery distribution, different temperature-sensitive products can be transported
on the same truck with multiple compartments [11]. In both of these problems, a vehicle’s
capacity configuration is fixed for its entire route and cannot be modified during the trip.

Dial-a-Ride Problems (DARP): In the Dial-a-Ride Problem a transportation request
takes the form of pickup and delivery location pair and the service provider utilizes its fleet
of vehicles to fulfill the requests while minimizing a cost function that typically includes
some travel distance component [10]. Some variants include a reconfigurable vehicle capacity
to serve the needs of different users: those who use seats or those who use wheelchairs
[23]. Some of the vehicle seats can be folded and stored inside the vehicle to make room
for passengers in wheelchairs. Unlike this problem, the seats of the vehicle in the PD-SRP
cannot be stored on the aircraft without occupying cargo capacity and are instead detached
and stored at the airports.

Hatzenbühler et al. [8] studied a multi-purpose pickup and delivery problem that can
deliver passengers or cargo by exchanging the module of the vehicle at a depot or special
service site. Each vehicle includes a removable module and a fixed platform such that
changing modules modifies the ability of the vehicle from only carrying cargo to only carrying
passengers and vice versa. Compared to problems with conventional solo-purpose vehicles,
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requests can be served with a fewer vehicles but at the expense of adding extra service sites
and visits. We can view the core multi-purpose pickup and delivery problem as a special
case of PD-SRP where the seat exchange decisions must be all-or-none: either all seats are
removed to maximize cargo space or all seats are installed to maximize passenger capacity.

3 Problem Definition

In PD-SRP, we are given n requests, each potentially requiring the transportation of cargo
and passenger demands. Let V = P ∪ D where P = {v1, . . . , vn} is the set of pickup
locations and D = {vn+1, . . . , v2n} is the set of delivery locations. We assumed that cargo is
shipped in unit-sized boxes, each having the same weight and volume. Although, in reality
cargo is shipped in various shapes and weights, incorporating four-dimensional packing
(i.e., combining volume and weight) would substantially complicate the problem. Therefore,
similar to approximations done in practice by airlines (e.g., standard weight per passenger),
we opted for this simplification.

Each request i includes picking up q̂i boxes of cargo and π̂i passengers from location
vi and delivering them to location vn+i. Thus, the demand of the corresponding delivery
location has an equal magnitude negative value (i.e., −q̂i = q̂i+n, −π̂i = π̂i+n, ∀i ∈ P ). Note
that this representation can model more complex patterns (e.g., requests that share pickup
or delivery locations but not both) by copying locations for each unique pickup-delivery pair.

When an aircraft is at its maximum seat capacity, it has Ŝ seats and can carry Ĉ boxes
of cargo. By removing a seat, L boxes of cargo capacity are added to the aircraft. Therefore,
the maximum cargo capacity when removing all the seats is K = ŜL + Ĉ. Each location i

starts with S0
i stored seats and therefore the aircraft can add at most min(Ŝ, S0

i ) seats or
remove at most Ŝ seats when visiting location i. There is no maximum number of seats that
can be stored at a given location.

In order to represent the problem as a path, two nodes are assigned to the depot:
v0 is the start node and v2n+1 is the end node. For modeling purposes we define sets
VN+1 = V ∪ {v2n+1}, V0 = V ∪ {v0} and V0,N+1 = V ∪ {v0, v2n+1}. Therefore, the problem
is defined on graph G = (V0,N , A) where A = {(i, j)|i, j ∈ V0,N+1, i ̸= j} with each arc
having an associated distance, dij . The vehicle is initially at the depot v0 with a cargo and
passenger capacity of C̃0 and S̃0 where C̃0 = K − LS̃0 and S̃0 ≤ Ŝ, respectively, and must
finish the trip at depot v2n+1. We assume that the start and end nodes are not the pickup
or delivery location of any requests. Again, this assumption is not limiting as such requests
can be represented by adding extra nodes at the same location as the start and end nodes.

In PD-SRP we aim to minimize the travel distance while deciding how many seats to
add or remove at each location to fulfill all the requests while respecting capacities. The
PD-SRP is NP-hard because if we fix the seat decisions and set all the demands to zero, the
problem can be reduced to TSP which is known to be NP-hard [13].

An instance of this problem can be seen in Figure 1. The optimal tour is shown in pink,
and the seat icon near each vertex represents the number of seats stored at the corresponding
base. The optimal tour for this instance is (v0, v2, v4, v1, v3, v5) with two seats left at v1.

4 Methods

We develop six models for the PD-SRP using constraint programming (CP), mixed integer
programming (MIP), and domain independent dynamic programming (DIDP). One of the
MIP models solves a restricted version of the PD-SRP and is used to warm-start the CP
model and the two other MIP models. In this section, we describe each of the models in
detail.

CP 2023
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Figure 1 Example of an PD-SRP instance with 2 requests. The optimal tour is shown by dotted
pink edges. In the aircraft configuration, white seats and boxes show the current passenger and cargo
capacity, respectively. The colored seats and boxes show the corresponding cargo and passenger
requests that are picked up.

4.1 A Constraint Programming Model (CP)
Our CP model equates distance and time and, thus, uses a one-machine scheduling approach
where jobs correspond to the visits and the setup times between two consecutive jobs
correspond to the distance between two locations. The model uses |V0,2n+1| interval variables
xi that represent visits to each location, and a sequence variable, π, that constrains interval
variables to form a sequence with an extra end node representing the return to the depot.
The size of the interval variable is 0 because there is no service time associated with the
visits. For every location i ∈ {0, ..., 2n}, variable si is introduced to represent the number of
seats that are added or removed. The formulation of the CP model is presented in Figure 2.
Note that CP model is written in CP Optimizer language.

The objective function is the minimization of the total distance traveled by the aircraft.
EndOf(x2n+1) corresponds to the end-point of the last interval variable in the sequence
variable π: the time (i.e., total distance travelled) when the aircraft returns to the depot.
Constraint (1a) ensures that each pair of consecutive interval variables is scheduled with a
transition time equal to at least the required travel distance between the two corresponding
locations. Constraint (1b) enforces that the pickup location of each request is visited before
the delivery location. Constraint (1c) specifies that the aircraft begins and ends at the start
and end depot locations.

We used three cumulative functions to represent the following values that are potentially
changed by each interval variable (aircraft visits): available cargo space, number of empty
seats, and the total number of seats. In particular, cumulative functions (1d) and (1f) are
used to represent the available passenger and cargo space as the trip proceeds. H represents
the number of empty seats in the aircraft (i.e., the available passenger space) and C represents
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min EndOf(x2n+1) (CP)
s.t. NoOverlap(π, {di,j : (i, j) ∈ A}) (1a)

EndBeforeStart(xi, xn+i) ∀i ∈ {1, ..., n} (1b)
First(π, x0), Last(π, x2n+1) (1c)

C = StepAt(x0, C̃0) +
2n∑

i=0
StepAtStart(xi, −q̂i − L · si) (1d)

C ≥ 0 (1e)

H = StepAt(x0, S̃0) +
2n∑

i=0
StepAtStart(xi, −π̂i + si) (1f)

H ≥ 0 (1g)

S = StepAt(x0, S̃0) +
2n∑

i=0
StepAtStart(xi, si) (1h)

S ≤ Ŝ (1i)
xi : intervalVar(0) ∀i ∈ V0,2n+1 (1j)

si : integerVar(−Ŝ, min(Ŝ, S0
i )) ∀i ∈ V0 (1k)

π : sequenceVar(x0, ..., x2n+1) (1l)

Figure 2 The CP Model for the PD-SRP.

the available cargo space. Before the trip starts, K = H + C and, if there are Ŝ0 seats in
the aircraft at the start, H = L · Ŝ0. The expression StepAtStart(var, impact) specifies
the change (increment or decrement) to the cumulative function at the start of an interval
variable. The available cargo space C will decrease as cargo and seats are picked up, therefore
we use StepAtStart(xi, −q̂i − L · si) to represent the changes to available cargo space at
each location i ∈ {1, ..., 2n}. The available passenger space will decrease when cargo is
picked up, while increasing when adding seats as represented by StepAtStart(xi, −π̂i + si)
at each location i ∈ {0, ..., 2n}. The cumulative function S is introduced in constraint (1h)
to describe the change of the total number of seats in the aircraft. S will change with the
number of seats being added or removed as represented by si. Constraint (1i) restricts the
total number of seats by the maximum seat capacity Ŝ. In constraint (1k), the domain of si

is [−Ŝ, S0
i ] reflecting the range of the number of seats that the aircraft can remove or add at

location i.
It should be noted that every interval variable contributes to the cumulative constraint,

which means that these bounds are maintained throughout the sequence. Therefore, we do
not need to have a separate cumulative function for every location of the tour.

4.2 Mixed Integer Programming Models
In this section, we describe three MIP models motivated by existing models for pickup and
delivery problems. The first two models exactly represent the PD-SRP and therefore admit
optimal solutions. The final model is a restriction of the PD-SRP problem that can be used
to quickly find a feasible solution and, therefore, an upper bound for the PD-SRP. In our
experiments, we investigate the use of this restricted model to warm-start the CP model and
two other MIP models.

CP 2023
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min
∑
i∈V0

∑
j∈VN+1,i ̸=j

dijxij (MIPloc)

∑
j∈VN+1

xij = 1 i ∈ V0 (2a)

∑
j∈V0,j ̸=i

xji −
∑

j∈VN+1,i̸=j

xij = 0 i ∈ V (2b)

τi + xij − |V |(1 − xij) ≤ τj i ∈ V0, j ∈ VN+1, i ̸= j (2c)
1 ≤ τi ≤ |V | i ∈ V (2d)
τi + 1 ≤ τn+i i ∈ P (2e)

yi + πi ≤ Ŝ i ∈ V0 (2f)

yi + πi + si ≤ Ŝ i ∈ V0 (2g)

πi + π̂i ≤ Ŝ i ∈ V0 (2h)
ui + qi + Lyi + Lπi ≤ K i ∈ V0 (2i)
uj ≤ ui − Lsi − q̂ixij + (2K)(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2j)
uj ≥ ui − Lsi − q̂ixij − (2K)(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2k)

yj ≤ yi + si − π̂ixij + 2Ŝ(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2l)

yj ≥ yi + si − π̂ixij − 2Ŝ(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2m)

πj ≥ πi + π̂ixij − Ŝ(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2n)
qj ≥ qi + q̂ixij − K(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2o)

− yi ≤ si ≤ min (Ŝ, S0
i ) i ∈ V (2p)

τ0 = π0 = q0 = 0, u0 = C̃0, y0 = S̃0 (2q)
xij ∈ {0, 1} i ∈ V0, j ∈ VN+1, i ̸= j (2r)
ui, yi, πi, qi, τi ∈ R0+, si ∈ R i ∈ V0,N+1 (2s)

Figure 3 The MIPloc Model for the PD-SRP.

4.2.1 Two-indexed Location-Based MIP (MIPloc)
We propose a two-indexed location-based MIP model for PD-SRP (MIPloc) based on a model
for an existing pickup and delivery variant [7]. In MIPloc, xij is a binary variable that is 1 if
arc (i, j) ∈ A is traveled and is 0 otherwise. Non-negative continuous variables τi, ui, and
yi represent the distance, available cargo space, and empty seats, respectively, on arrival at
vertex i ∈ V0,N+1. As above, let variable si be the number of seats that are added (si > 0) or
removed (si < 0) at location i. Finally, let πi and qi be the number of passengers and boxes
of cargo on the aircraft on arrival at vertex i ∈ V0,N+1, respectively. The MIPloc model is
shown in Figure 3.

The objective function minimizes the total distance traveled. Constraint (2a) ensures that
each customer is visited exactly once while constraint (2b) forces an arrival and departure
at each non-depot vertex. Constraints (2c) and (2d) prevent the formation of the subtours,
using Miller-Tucker-Zemlin (MTZ) constraints [17]. Constraint (2e) forces the aircraft to
visit the pickup location of each commodity before the delivery location. Constraints (2f) and
(2g) respectively ensure that the total number of seats before and after adding or removing
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new seats does not exceed the passenger capacity. Similarly, constraint (2h) ensures that the
total number of passengers on the aircraft after fulfilling the demand of vertex i does not
exceed the passenger capacity. Constraint (2i) enforces the relationship between ui and yi.
Note that the left hand side of the constraint restricts the picked-up cargo and passengers to
not exceed the aircraft capacity. Constraints (2j) and (2k) define the upper bound and lower
bound on the available cargo space, respectively. Similarly, constraints (2l) and (2m) set the
upper and lower bounds on the number of empty seats. Constraint (2n) ensures that the
passenger demand is met at each location, while constraint (2o) does the same thing for the
cargo demand. Constraint (2p) restricts the number of the seats that can be added based on
their availability. The lower bound on the number of removed seats, when si < 0, is always
the number of seats on the aircraft at the arrival of location i. Lastly, constraints (2q) - (2s)
specify binary and continuous variable domains.

4.2.2 Three-indexed Rank-Based MIP (MIPrank)
The three-indexed ranked-based MIP model for PD-SRP (MIPrank) is adapted from a model
for the multi-commodity pickup and delivery traveling salesperson problem [3]. In MIPrank,
zt

i,j is a binary variable indicating that aircraft goes directly from location i to location j

and location i is at position t of the tour, for i, j ∈ V0,N+1, i ̸= j, t ∈ {0, . . . , 2n + 1}. Binary
variable yi,t is 1 if location i is visited at position t of the tour, i ∈ V0,N+1, t ∈ {0, . . . , 2n+1}
and 0 otherwise. Variable st is the number of seats added or removed at the t’th position of
the tour, for t ∈ {0, . . . , 2n + 1}, with a negative value corresponding to the number of seats
removed. Variables wt and ut represent the empty seats and available cargo space on arrival
at t’th position of the tour, for t ∈ {0, . . . , 2n + 1}. Finally, let πt and qt be the number
of passengers and boxes of cargo on arrival at t’th position of the tour. The MIPrank is
presented in Figure 4.

The objective function minimizes the total travel distance. Constraints (3a) and (3b)
ensure that tour positions are assigned to exactly one location and that each location is
visited exactly once, respectively. Constraint (3c) calculates the number of empty seats just
before visit t, where

∑n
i=1 yi,t−1π̂i is the number of passengers picked up at position t − 1

of the tour. Similarly, constraint (3d) calculates the available cargo space just before visit
t, where

∑n
i=1 yi,tq̂i is the amount of cargo picked up at position t of the tour. Constraint

(3e) states that each commodity is picked up before it is delivered. Constraint (3f) enforces
the relationship between wt and ut. The left hand side of the constraint enforces that the
picked-up cargo and passengers do not exceed the available aircraft capacity. Constraint
(3g) ensures that there is always Ĉ space available for cargo on the aircraft. From (3f)
and (3g) we can conclude that πt + wt ≤ Ŝ: the total number of seats does not exceed
the passenger capacity. Constraint (3h) ensures the feasibility of the number of seats to
be added or removed. Constraints (3i) and (3j) calculate the number of passengers and
boxes of cargo at each position of the tour, respectively. Constraints (3k) and (3l) enforce
the relationship between y and z variables and, together with (3e) and (3m), prevent the
formation of subtours in a MTZ fashion. Lastly, constraints (3n) - (3q) specify the domains
of the variables.

4.2.3 Upper bound MIP Model (MIPUB)
Our preliminary experiments suggested that the CP amd MIP models presented above
struggled to find good feasible solutions. We, therefore, investigate the use of a third MIP
model, designed to quickly find an upper bound on the PD-SRP by solving a restriction of
the full problem. Such a model provides a heuristic solution as well as a potential warm-start
solution for the complete models.

CP 2023
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min
2n∑

t=0

∑
i∈V0,N+1

∑
j∈V0,N+1,j ̸=i

di,jzt
i,j (MIPrank)

∑
i∈V0

yi,t = 1 t ∈ {0, . . . , 2n} (3a)

2n∑
t=1

yi,t = 1 i ∈ V (3b)

wt = wt−1 + st−1 −
n∑

i=1
yi,t−1π̂i t ∈ {1, . . . , 2n + 1} (3c)

ut = ut−1 − Lst−1 −
n∑

i=1
yi,t−1q̂i t ∈ {1, . . . , 2n + 1} (3d)

n∑
t=1

tyi,t −
n∑

t=1
tyn+i,t ≤ −1 i ∈ P (3e)

qt + ut + Lwt + Lπt ≤ K t ∈ {0, . . . , 2n + 1} (3f)

qt + ut ≥ Ĉ t ∈ {0, . . . , 2n + 1} (3g)

− wt ≤ st ≤ min (Ŝ,

n∑
i=1

S0
i yi,t) t ∈ {0, . . . , 2n + 1} (3h)

πt = πt−1 +
n∑

i=1
yi,t−1π̂i t ∈ {1, . . . , 2n + 1} (3i)

qt = qt−1 +
n∑

i=1
yi,t−1q̂i t ∈ {1, . . . , 2n + 1} (3j)

yi,t −
n∑

j=0
zt

i,j = 0 i ∈ V0, t ∈ {0, . . . , 2n} (3k)

yj,t −
n∑

i=0
zt−1

i,j = 0 j ∈ V0,N+1, t ∈ {1, . . . , 2n + 1} (3l)

y0,0 = y2n+1,2n+1 = 1, y0,t = 0 t ∈ {1, . . . , 2n} (3m)

st ≤ Ŝ, wt ≤ Ŝ, ut ≤ K t ∈ {0, . . . , 2n + 1} (3n)
u0 = C̃0, w0 = S̃0, π0 = q0 = 0 (3o)
yi,t ∈ {0, 1}, zt

i,j ∈ {0, 1} i, j ∈ V0,N+1, t ∈ {0, . . . , 2n + 1} (3p)
ut, wt, πt, qt ∈ R0+, st ∈ R t ∈ {0, . . . , 2n + 1} (3q)

Figure 4 A Three-Indexed MIP Model for the PD-SRP.
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min
∑
i∈P0

∑
j∈P0,i ̸=j

ci,jxi,j (MIPUB)

s.t.
∑

j∈P0,i ̸=j

xi,j = 1 ∀i ∈ P (4a)

∑
i∈PN+1,i ̸=j

xj,i −
∑

i∈P0,i ̸=j

xi,j = 0 ∀j ∈ P (4b)

ti + xi,j − |P |(1 − xi,j) ≤ tj ∀i ∈ PN+1, j ∈ PN+1, i ̸= j (4c)

sj ≤ si + (S0
i+n + S0

j )xi,j + |Ŝ|(1 − xi,j) ∀i ∈ P0, j ∈ PN+1, i ̸= j (4d)
Lsi + q̂i ≤ K ∀i ∈ PN+1 (4e)
1 ≤ ti ≤ |P | ∀i ∈ P (4f)

si ≤ Ŝ ∀i ∈ P (4g)
si ≥ π̂i ∀i ∈ P (4h)
t0 = 0 (4i)
S̃0 ≤ s0 ≤ S̃0 + S0

0 (4j)
xi,j ∈ {0, 1} ∀i ∈ P (4k)
ti ∈ N, si ∈ N ∀i ∈ P0,N+1 (4l)

Figure 5 The Upper Bound MIP model for a restriction of PD-SRP.

The upper bound model is obtained by over-constraining the original problem to require
that a request must be delivered immediately after being picked up. The nodes in this
problem include the start depot v0, the end depot vN+1, and all the pickup nodes P =
{v1, . . . , vn}. For modeling purposes we define sets PN+1 = P ∪ {vN+1}, P0 = P ∪ {v0}
and P0,N+1 = P ∪ {v0, vN+1}. The delivery nodes are not explicitly included because each
origin-to-destination trip takes place immediately after the visit to the pickup node with the
total distance increased by both the travel to the pickup node and the travel between the
pickup node and the delivery node.

The MIPUB model is presented in Figure 5. Let xi,j be a binary variable indicating that
the aircraft goes from the delivery location of the request i to the pickup location of request
j. Let si be the number of seats in the aircraft right after visiting location i. Finally, let ti

be the position of location i on the tour. The solution returned by this model is likely to be
sub-optimal for the PD-SRP.

The objective function minimizes the total distance traveled. The coefficient cij represents
the total distance starting from the delivery location of request i, visiting the pickup location
of request j, and then travelling to the delivery locations of request j. Request 0 is to travel
from the depot to the pickup location of the first request. The delivery and pickup locations
of request 0 are nodes v0 and v2n+1, respectively.

Constraints (4a) and (4b) ensure that each node is visited exactly once. Constraints
(4c), (4f), and (4i) prevent the formation of subtours. Constraint (4d) describes seat changes
when the aircraft visits a node and constraint (4e) requires that the space taken up by the
seats in the aircraft must be less than or equal to the remaining space after picking up the
cargo of the current request. Constraint (4g) restricts the number of seats to never surpasses
the maximum number of seats allowed in the aircraft and constraint (4h) ensures that the
number of seats in the aircraft never drops below the number of passengers to be picked up.
Constraints (4j) - (4l) specify the domains of the variables.

CP 2023
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4.3 Domain-Independent Dynamic Programming Models
Domain-Independent Dynamic Programming (DIDP) is a recently proposed methodology
for solving combinatorial optimization problems by formulating the problem as state-based
dynamic program (DP) and using a generic solver to solve it [14]. DP models are declaratively
formulated in Dynamic Programming Description Language (DyPDL), a solver-independent
modeling formalism for DP that is inspired by AI planning. In DyPDL, a model consists of
the following:

state variables: variables that take on numeric, set, or set-element values that define the
states in the search space of the problem
target state: the problem state for which the optimal value is to be computed by the
recursive formulation
constants: state-independent values
transitions: decisions in the DP that move between states
base cases: a set of conditions that define states that terminate the recursion
state constraints: conditions that must be satisfied by all states
dual bound: an optional lower (upper) bound on the objective function for minimization
(maximization) problems.

We developed two DIDP models for the PD-SRP.

4.3.1 A Two-transition DIDP Model (DIDP2T )
Our first DIDP model has two types of transition: one to represent adding or removing seats
and picking up or delivering cargo and passengers and a second to model moving the aircraft
to a different location. In the model, a state is a tuple ⟨U, i, q, π, s, α⟩, which represents
the set of unvisited vertices, U , the current location, i, the cargo load, q, the number of
passengers, π, the number of seats, s, and a flag representing which type of transition to
apply, α. We set α = 1 if we have finished pickup/delivery at a location to indicate that the
next transition should be to move the aircraft. Otherwise, α = 0.

The DIDP2T model is defined in Figure 6. We focus first on Eqs. (5c) and (5d), which
respectively define the possible seat changes and possible next locations at a location i.

Suppose that the number of seats at the current location i is increased by δ. Since there
are S0

i seats stored at each location initially, when the aircraft has s seats, at i we can add
at most min{S0

i , Ŝ − s} seats and remove at most s seats. For simplicity we will denote
Ŝi = min{S0

i , Ŝ − s}. Therefore, δ ∈
[
−s, Ŝi

]
. Let numeric constants wi and ui be the net

change of cargo and passengers at location i, respectively. The cargo will be increased by
wi, so the current cargo will become q + wi ≤ K − (s + δ)L, the current space for cargo.
Similarly, the number of passengers will be π + ui ≤ s + δ. Lastly, δ must only take integer
values. With these conditions, Eq. (5c) specifies the values of δ.

Consider visiting the next location, j, from current location i. To be a valid location to
visit next, j must be unvisited (j ∈ U), it must be connected by an edge in the graph to
i ((i, j) ∈ A), and it must be either a pickup location (j /∈ D) or its corresponding pickup
location must have already been visited. If we let pj be the pickup location for the request
whose delivery location is j, then this final condition is: pj /∈ U . Eq. (5d) represents the
candidate locations to visit next after current location i.

The objective function specifies the state for which the optimal cost needs to be computed:
the state where all pickup and delivery nodes are unvisited, the current location is the start
depot (v0), the cargo and passenger loads are 0, the aircraft has S̃0 seats, and the next
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compute Z(V, 0, 0, 0, S̃0, 0) (DIDP2T )

Z(U, i, q, π, s, α) =


di,2n+1 if U = ∅, α = 1
minδ∈T (q,π,s,i) Z(U, i, q + wi, π + ui, s + δ, 1) if U ̸= ∅, α = 0
minj∈R(U,i) di,jZ(U\{j}, j, q, π, s, 0) if U ̸= ∅, α = 1

(5a)

Z(U, i, q, π, s, α) ≥ 0 (5b)

T (i, q, π, s) =
{

δ ∈
[
−s, Ŝi

]
| q + wi ≤ K − (s + δ)L ∧ π + ui ≤ s + δ, δ ∈ Z

}
(5c)

R(U, i) = {j ∈ U | (i, j) ∈ A ∧ (j /∈ D ∨ pj /∈ U)}. (5d)

Figure 6 The Two-transition DIDP Model (DIDP2T ) for PD-SRP.

compute Z(V, 0, 0, 0, S̃0) (DIDP1T )

Z(U, i, q, π, s) =

{
di,2n+1 if U = ∅ ∧ ∃δ ∈ T (i, q, π, s)

min
(δ,j)∈T (i,q,π,s)×R(U,i)

di,j + Z(U\{j}, j, q + wi, π + ui, s + δ) if U ̸= ∅

(6a)
Z(U, i, q, π, s) ≥ 0 (6b)
Eq. (5c), Eq. (5d).

Figure 7 The One-transition DIDP Model (DIDP1T ) for PD-SRP.

transition should be to move the aircraft (α = 0). In Eq. (5a), the first line computes the
cost to return to the depot from node i, the second line describes the cost of adding or
removing δ seats at node i, and the third line describes the cost of visiting node j from i.
Note that when the aircraft is moved, the state variable α is set to 0 and if the decision
regarding seats is made in this transition, α is set to 1. Constraint (5b) is a dual bound for
the DIDP model which is optional but may be exploited by the solver.

4.3.2 A One-transition DIDP Model (DIDP1T )

We present the DIDP1T model in Figure 7. In this model, instead of two types of transitions,
we define one type that performs the pickup/delivery and seat exchange at a location and
then moves the aircraft to a new location. A state is the same as in DIDP1T with the
exception of the α flag which is no longer necessary: ⟨U, i, q, π, s⟩. As a transition first picks
up or delivers cargo, passengers, and seats at the current location and then moves the aircraft
to the next location, each transition corresponds to selecting (δ, j): δ is the number of picked
up seats and j is the next location to visit. The set of possible decisions at each state is
therefore T (i, q, π, s) × R(U, i) as defined in the second line of Eq. (6a).

The objective function of DIDP1T defines the state for which the optimal cost is to be
calculated. It is identical to the target state in DIDP2T with the removal of α. In Eq. (6a),
the first line describes the cost of returning to the depot from node i, and the second line
describes the cost of visiting node j from i. Note that the first line checks if there exists
some δ such that the capacity constraints on the cargo and the passengers are satisfied. If
there is no such δ, we assume Z(∅, i, q, π, s) = ∞.
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4.3.3 Model Sizes and Solver
In a DIDP model, we need to define all transitions that are applicable in a state. In DIDP2T ,
δ can take an integer in [−Ŝ, Ŝ] depending on a state, so there are 2Ŝ + 1 candidates. We
have |VN+1| locations to visit. Thus, DIDP2T requires 2Ŝ + 1 + |VN+1| transitions to be
defined in total. In contrast, DIDP1T needs to define (2Ŝ + 1)|VN+1| transitions but does
not have state variable α. An alternative perspective is that the two DIDP models make
different trade-offs between the maximum branching factor and solution length. DIDP1T has
a branching factor of at most (2Ŝ + 1)|VN+1| at each state and a solution path length of
|VN+1|. DIDP2T has a maximum branching factor that alternates between 2Ŝ + 1 and |VN+1|
and a solution length of 2|VN+1|. The performance of a solver is affected by the number of
state variables, the branching factor, and the solution length.

We solve the DIDP models with a complete anytime beam search (CABS) solver [25, 15].
CABS is an anytime algorithm meaning that seeks to quickly find a feasible solution and
then to improve it in the remaining run-time. CABS employs beam search: a heuristic search
algorithm that maintains a fixed number, b (beam width), of best states when exploring the
search space. In CABS, beam search is performed iteratively with increasing the beam width
until a stopping condition is met. Due to the iteratively increasing beam width, CABS is a
complete algorithm [25].

5 Numerical Evaluation

5.1 Experimental Setup
We have developed six different models, i.e., CP, MIPloc, MIPrank, MIPUB , DIDP1T , DIDP2T .
For the experiment, we use MIPUB to warm-start the MIP and CP models, producing three
additional approaches: MIPloc_W , MIPrank_W and CPW .

To implement and solve the models we used Python v3.8.0 and the corresponding Python
interfaces to the solvers: Gurobi Optimizer 10.0.1 and gurobipy for MIP, CP Optimizer
22.1.0.0 and DOCPlex for CP, and didppy 0.3.3 for DIDP.1 Each run has a time limit of
600s. The machine used to run the experiment has Intel(R) Core(TM) i7-9700 8 core CPU
@ 3.00GHz, 12MB cache, and memory of 31G.

The models are tested on randomly generated instances with sizes 4, 6, 8, 10, 12, 15, and
20 with 10 instances per size. The size of each instance is the number of requests, which is
half of the number of locations. We generate problem instances randomly, approximately
reflecting real-world problem size, aircraft capacity and configurations, and stored seats at
each location. We fix the maximum number of seats in the aircraft Ŝ = 6, the cargo-to-seat
ratio L = 100, and the cargo capacity on a full-seat aircraft Ĉ = 200. The number of seats
in the aircraft start configuration, S̃0, is selected uniformly from {0, ..., 6} and the cargo
capacity in the start configuration is C̃0 = 800 − 100S̃0. Similarly, the number of seats
available at location i, S0

i , is set uniformly from {0, ..., 6}, independently for each location.
The (x, y) coordinates of every location are uniformly generated from {0, ..., 100}2.

We generate the passenger and cargo demand to ensure the existence of capacity-feasible
solutions. For each request i ∈ {1, ..., n}, there is a demand of π̂i passengers and demand of
q̂i kg cargo (i.e., q̂i/L units of cargo). We first define the total number of passengers and
units of cargo as K̂ = q̂i/L + π̂i, and K̂ is uniformly generated from {1, ..., Ŝ + Ĉ/L = 8}.
The passenger request π̂i is then selected uniformly from {0, ..., min(Ŝ, K̂)}. Consequently,
the cargo request is q̂i = L(K̂ − π̂i).

1 https://didp.ai

https://didp.ai
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To compare the models, we used the number of instances solved and proved optimal, the
PAR10 score time [12] (i.e., mean run-time with 10 times the time limit used if no optimal
solution was proved), and mean relative error (MRE).

MRE compares the solution quality returned by each model. For an optimization problem
let objt,m,i be the objective value of the best solution achieved by time t of model m for
instance i and let obj∗

i be the best-known objective value for that instance considering all the
models. For the set of instances, I, the relative error and mean relative error are computed
in Eqs. (7) and (8). If a model did not find a feasible solution by a given time, the MIPUB

value is used to calculate a non-infinite measure.

RE(t, m, i) = objt,m,i − obj∗
i

obj∗
i

(7)

MRE(t, m) = 1
|I|

∑
i∈I

RE(t, m, i) (8)

5.2 Results

Figures 8a and 8b show the number of solved instances (i.e., proved infeasible or optimal) and
mean PAR10 times for all the models. We do not include MIPUB as it is incomplete, however
for each model, its run-time is less than 0.02s. The run times for MIPloc_W , MIPrank_W ,
and CPW models, include the warm-start time.

The DIDP models solved all of the instances with 12 or fewer requests, with DIDP2T

performing slightly better than DIDP1T for instances of size 15 as it could solve three instances
compared to none for DIDP1T . Neither CP nor CPW were able to solve any instances of size
larger than 6 while the MIP models scaled up to size 10 or 12. There was one instance of
size 4 that CPW could not prove optimality, but CP could.

In terms of solution time, the DIDP models were the fastest and CP models were the
slowest. For the MIP models, MIPrank_W performed slightly better than MIPrank in terms
of both the number of solved instances and mean solution time. For one instance of size 12,
MIPrank_W proved optimality where MIPrank could not.

The MRE graph is shown in Figure 8c. DIDP2T returns the best solutions and finds those
best solutions within a few 10s of seconds. Up to 300s, CPW outperformed MIPrank_W ,
MIPloc_W , MIPloc but after that point, their solution qualities are very similar. The solution
qualities returned by CP are the worst after 100 seconds. However, the use of MIPUB as a
warm start substantially improves CP quality especially for short run times. The performance
of the MIPloc and MIPloc_W models was very similar, however, the MIPloc_W model returned
slightly better solution qualities than MIPloc, especially before 200s. As we expected, the
solutions found by the incomplete MIPUB are substantially worse than other models.

Overall, DIDP models performed better than MIP and CP, and in particular DIDP2T

performed best in terms of the number of solved instances and average time to solve the
instances. We hypothesize that DIDP outperforms other models due to the combination
of tight capacity constraints and the precedence constraints induced by the pickup-and-
delivery structure. DIDP uses these constraints to prune many transitions and, thus, reduce
the search space. This result is consistent with previously observed behavior of DIDP on
constrained routing problems [15] and suggests an opportunity for research to understand
model characteristics that correlate with strong DIDP performance compared to other
optimization approaches.
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(a) Number of instances solved to optimality. (b) Mean PAR10 time to solve instances.

(c) Comparison of MRE of all the models.

Figure 8 Performance of MIP, CP and DIDP models.

6 Discussion

The contributions of this work are the introduction of a novel pickup-and-delivery problem
inspired by air services in northern Canada, the creation and evaluation of six optimization
models in three different frameworks, and the further demonstration that the recently
proposed domain-independent dynamic programming approach can out-perform incumbent
techniques in a model-and-solve paradigm.

While DP models are inherently state-based, the DIDP formalism provides a novel avenue
for constraint-based problem solving with connections to early ideas in CP (e.g., [6]). The
DIDP models for PD-SRP are unusual as DP models due to the extensive, constraint-based,
limitations on transitions (i.e., Eqs. (5c) and (5d)). While such limitations are key to strong
DP performance, they are typically procedurally implemented in a problem-specific DP
search algorithm. In DIDP, in contrast, constraint reasoning is used to prune transitions
based on the values of state variables rather than pruning variable domains based on partial
assignments. We believe that understanding this difference and developing constraint-based
reasoning for this context is a fruitful research direction for CP.

Our study has a number of limitations and opportunities for further research:
In the definition of PD-SRP, we discretized cargo into identical boxes with one size
dimension (i.e., weight). In reality, cargo can take many forms from boxes of different
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sizes and weights to baggage in various forms. Minimally, the volume of cargo needs to
be represented. More generally, the problem should address the four-dimensional (i.e.,
volume plus weight) packing of heterogeneous cargo.
We made the assumption that passengers do not have travel time restrictions. However,
as a potential avenue for future research it would be interesting to incorporate additional
constraints regarding how long a single passenger can be stowed in the aircraft or how
long they can wait to be picked up.
As is common in OR literature on transportation problems, our objective function is the
minimization of the travel distance. A more realistic objective would represent aspects
such as time and fuel consumption as well as handling and storage costs for seats.
Most airlines run regular services with defined timetables and routings. Preliminary work
indicates that determining seat exchanges is an easy problem when routes are decided.
If this result bears out, there are two implications. First, we may have tools to deal
with harder aspects of the real world problem including multiple aircraft, uncertain and
dynamically changing demand (e.g., due to extreme weather in Canada’s north), and
strategic decisions about timetable creation, seat inventory, and aircraft capacities. Second,
even with the version of PD-SRP presented here, we may be able to scale by exploiting
the “easy” seat exchange part of the problem through Benders decomposition [2].
Although, in this study, our focus was to design simple models that can be used “off the
shelf”, it is interesting to investigate sophisticated custom-constraint CP models in the
future development of this work to see if they outperform the currently developed MIP
and CP models.

7 Conclusion

This paper studied a novel pickup and delivery transportation problem with reconfigurable
capacities, a problem inspired by air service in northern Canada. We defined the problem
formally and developed six models in three different modeling formalisms: constraint pro-
gramming, mixed integer programming, and domain-independent dynamic programming.
We compared the performance of the models on a set of randomly generated instances. MIP
and CP models were solved with commercial solvers, the DIDP model was solved using the
recently developed domain-independent dynamic programming solver [15].

Our results show that domain-independent dynamic programming models are the fastest
in both finding high-quality feasible solutions to problem instances and in solving them to
optimality. For large instances, when the number of requests is greater than 15, even DIDP
models were not able to solve the instances to the optimality. Although in general, MIP
models were faster to find feasible solutions than CP, for short run times, CP found better
solutions than both of the MIP models.

Our future work will study generalizations of the problem by considering multiple aircraft
and more realistic representation of cargo size and aircraft capacity. We have also embarked
on a study of the decomposition of the problem both to better fit the real-world use case where
routes are often predefined and to exploit the computational advances of the mathematical
structure of the decomposition.
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Abstract
Building on Boolean satisfiability (SAT) and maximum satisfiability (MaxSAT) solving algorithms,
several approaches to computing Pareto-optimal MaxSAT solutions under multiple objectives have
been recently proposed. However, preprocessing in (Max)SAT-based multi-objective optimization
remains so-far unexplored. Generalizing clause redundancy to the multi-objective setting, we
establish provably-correct liftings of MaxSAT preprocessing techniques for multi-objective MaxSAT
in terms of computing Pareto-optimal solutions. We also establish preservation of Pareto-MCSes –
the multi-objective lifting of minimal correction sets tightly connected to optimal MaxSAT solutions
– as a distinguishing feature between different redundancy notions in the multi-objective setting.
Furthermore, we provide a first empirical evaluation of the effect of preprocessing on instance sizes
and multi-objective MaxSAT solvers.
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1 Introduction

Boolean satisfiability (SAT) solving [7] is arguably a noticeable success story of constraint pro-
gramming. The impact of SAT solvers goes beyond merely deciding satisfiability. Incremental
use of SAT solvers [13] today enables efficiently solving, e.g., hard optimization problems via
maximum satisfiability (MaxSAT) [1]. While MaxSAT allows for finding optimal solutions in
terms of a single objective function, practical applications have motivated various algorithmic
advances and non-trivial generalizations of MaxSAT solving techniques to optimization under
multiple objectives [43, 40, 10, 25, 20, 11]. These algorithms allow for computing one or
several of the so-called Pareto-optimal solutions of multi-objective MaxSAT instances, i.e.,
solutions in which no objective can be improved without negatively affecting the value of
another objective.
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Preprocessing has become a central part of the SAT solving pipeline [8], pruning the
instance through applying complex combinations of different inference and simplification
rules based on fundamental notions of (clause) redundancy. Motivated by its success in
SAT, preprocessing in MaxSAT solving, through both extensions of SAT-based simplification
techniques [3], and novel MaxSAT-specific techniques [5, 23, 39], is becoming increasingly
popular and better understood, especially through recent work generalizing fundamental
notions of redundancy in SAT [29, 28, 21, 22] to MaxSAT [24]. The MaxSAT liftings of
redundancy notions allow for uniformly establishing the formal correctness of a wide range
of MaxSAT preprocessing techniques [24, 4].

The advances in SAT and MaxSAT preprocessing, together with the recent advances in
extending the reach of SAT-based approaches to multi-objective combinatorial optimization,
call for studying fundamental and practical aspects of preprocessing in multi-objective settings.
So-far preprocessing for (Max)SAT-based multi-objective optimization remains unexplored,
with several open research questions. Developing correct liftings of MaxSAT preprocessing
techniques to multi-objective settings, where Pareto-optimal solutions are sought for, calls for
redundancy notions in order to uniformly capture the correctness of such liftings. In analogy
to work analysing the power of different redundancy notions in SAT and more recently
in MaxSAT, understanding the relationship between different redundancy notions in the
multi-objective setting is also fundamentally relevant. From a more practical perspective,
the effect of preprocessing for multi-objective problems in terms of simplifications achieved
and solver runtimes has also not been thoroughly explored.

We make contributions to each of these questions. We provide redundancy notions for
the multi-objective setting based on the notions of reconstructible and literal-reconstructible
clauses, allowing for establishing the correctness of a large number of preprocessing techniques
for multi-objective MaxSAT in terms of computing Pareto-optimal solutions. Additionally, we
identify the preservation of Pareto-MCSes (the multi-objective lifting of minimal correction
sets tightly connected to Pareto-optimal solutions [42]) as a distinguishing feature between
the two proposed redundancy notions. We also consider liftings of MaxSAT preprocessing
techniques which alter in a controlled way the objective functions at hand and thereby
cannot be directly captured by the clause redundancy notions. Putting these preprocessing
techniques lifted to the multi-objective setting into practice, we provide a first preprocessor
implementation for multi-objective MaxSAT, and perform a first empirical evaluation of the
effect of preprocessing both in terms of instance size reductions achieved and runtimes of
recently proposed approaches to multi-objective MaxSAT solving.

2 Multi-Objective MaxSAT

For a Boolean variable x there are two literals, x and ¬x. A clause C is a set (or disjunction)
of literals and a (CNF) formula F a set (or conjunction) of clauses. A (truth) assignment τ

assigns variables to truth values 0 (false) or 1 (true). Assignments are extended to literals l,
clauses C, and formulas F , in the standard way: τ(¬l) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C},
and τ(F ) = min{τ(C) | C ∈ F}, defining semantics for CNF formulas. An assignment τ is
a solution to a CNF formula F if τ(F ) = 1; τ is complete for F if τ assigns a value to all
variables in F , and otherwise partial for F . With slight abuse of notation, an assignment τ

can be viewed as the set of the literals it assigns to 1. Then τ(x) = 1 (τ(x) = 0) is shorthand
for x ∈ τ (¬x ∈ τ), ¬C for {¬l | l ∈ C}, and τ ⊃ ¬C means that τ falsifies a clause C.

We focus on the following natural generalization of the maximum satisfiability (MaxSAT)
problem to multi-objective combinatorial optimization [44, 17, 15]. An instance I = (F, O) of
multi-objective MaxSAT (MO-MaxSAT) consists of a CNF formula F , the clauses of which
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need to be satisfied by any solution to the instance, and a tuple O = (O1, . . . , Op) of p linear
objective functions with positive coefficients over literals (or equivalently, pseudo-Boolean
expressions) under minimization. We denote the set of literals appearing in Oi by Bi(I)
and the set of literals appearing in at least one of the objectives by B(I) =

⋃p
i=1 Bi(I).

Furthermore, we denote by ci(l) the coefficient of literal l in Oi. If l does not appear in Oi,
then ci(l) = 0.

The cost O(τ) = (O1(τ), . . . , Op(τ)) of a solution τ to I (i.e., a solution to F ) is obtained
by evaluating each objective under τ . If τ is not a solution of F , we let O(τ) = (∞, . . . , ∞).
As a central notion of optimality in the multi-objective setting in general, we focus on
Pareto-optimality, which is based on the following domination relation between solutions.

▶ Definition 1 ((Weak) Domination). Consider two solutions τ1 and τ2 with costs O(τ1) =
(O1(τ1), . . . , Op(τ1)) and O(τ2) = (O1(τ2), . . . , Op(τ2)). The solution τ1 weakly dominates τ2
(denoted τ1 ⪯ τ2) if Oi(τ1) ≤ Oi(τ2) holds for all i = 1, . . . , p. If additionally Oi(τ1) < Oi(τ2)
for some i, then τ1 dominates τ2 (denoted τ1 ≺ τ2).

Intuitively, the solution τ1 weakly dominates another solution τ2 if it is not worse in any
objective. We use τ1 ̸⪯ τ2 to denote that τ1 does not weakly dominate τ2. Note that
domination is not a total order on solutions, i.e., τ1 ̸⪯ τ2 does not generally imply τ2 ≺ τ1 or
τ2 ⪯ τ1.

A partial assignment τp dominates another (partial) assignment δp if for every extension
δ ⊃ δp there is an extension τ ⊃ τp that dominates δ. A solution τ to an MO-MaxSAT
instance I is Pareto-optimal1 if τ is not dominated by any other solution to I.

The notion of the non-dominated set of an MO-MaxSAT instance characterizes the
solutions of interest in terms of their (non-dominated) costs.

▶ Definition 2 (Non-dominated set). The non-dominated set non-dominated(I) = {O(τ) |
τ is Pareto-optimal} of an MO-MaxSAT instance I = (F, O) consists of the costs of the
Pareto-optimal solutions of I.

Practical algorithm for computing the non-dominated set of a given MO-MaxSAT instance
also provide for each cost o ∈ non-dominated(I) a Pareto-optimal solution having cost
o. It is worth noting that for an o ∈ non-dominated(I) there may be more than one
Pareto-optimal solution with cost o and that for a single-objective MaxSAT instance I the
set non-dominated(I) consists of the optimal (minimum) cost of I.

3 Clause Redundancy in MO-MaxSAT

Preprocessing an MO-MaxSAT instance I refers to the iterative application of a set of prepro-
cessing techniques (inference/simplification rules) on I, resulting in a preprocessed instance
P(I) for which non-dominated(I) = non-dominated(P(I)). In other words, correctness of
preprocessing requires that the non-dominated set of the original I does not change under
the preprocessing techniques applied.

As fundamental notions for capturing, establishing the correctness of, and analysing the
strengths of different MO-MaxSAT preprocessing techniques, we propose several (clause)
redundancy properties in MO-MaxSAT. These properties can be viewed as multi-objective
counterparts of earlier proposed redundancy notions in SAT [29, 28, 21, 22] and most recently

1 Sometimes in the literature also referred to as efficient or non-inferior [14].
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in MaxSAT [24], with similar motivations. In contrast to SAT (where clause redundancy
notions are required to preserve satisfiability) and similarly as in MaxSAT, clause redundancy
notions are required to preserve optimal costs. Compared to MaxSAT, however, the multiple
objectives and Pareto optimization require additional care.

For an MO-MaxSAT instance I = (F, O) and a clause C, I ∧ C = (F ∧ C, O) is the
instance obtained by adding C to I. We begin with a general notion of redundancy for the
problem of computing the non-dominated set in MO-MaxSAT.

▶ Definition 3 (Redundant clauses). A clause C is redundant wrt an MO-MaxSAT instance
I if non-dominated(I) = non-dominated(I ∧ C).

Note that this definition does not require that all Pareto-optimal solutions should be preserved.
We propose two refined redundancy notions which turn out to differ in strength and

thereby in terms of the preprocessing techniques they capture. The notions are based on
the following alternative characterization of redundancy that essentially states that a clause
C is redundant if every solution that falsifies it is weakly dominated by some solution that
satisfies C.

▶ Proposition 4. A clause C is redundant wrt an instance I = (F, O) iff, for any solution
τ ⊃ ¬C to I that falsifies C, there is a witnessing assignment (or simply witness) ωτ for
which ωτ (C) = 1 and ωτ ⪯ τ .

Proof. We prove each of the directions separately.
C is redundant ⇒ a witness exists: Consider a solution τ ⊃ ¬C to I. Then there

exists a Pareto-optimal solution δ ⪯ τ (we can pick δ = τ if τ is Pareto-optimal). Since
non-dominated(I) = non-dominated(I ∧ C) (as C is redundant), there is a solution ωδ to
I ∧ C with O(τ) = O(ωδ). Such ωδ satisfies C and weakly dominates δ. Thus, it also weakly
dominates τ , fulfilling the requirements of the proposition.

A witness exists ⇒ C is redundant: To show that C is redundant according to Defin-
ition 3 we show that non-dominated(I ∧ C) = non-dominated(I). For the direction
non-dominated(I ∧ C) ⊂ non-dominated(I), note that every Pareto-optimal solution τ

to I ∧ C is also a solution to I. Furthermore, τ is also Pareto-optimal wrt I. If this was
not the case, by the assumption the solution δ dominating τ wrt I would have a witness
ωδ dominating τ wrt I ∧ C. Since therefore every Pareto-optimal solution to I ∧ C is also
Pareto-optimal wrt I, it follows that non-dominated(I ∧ C) ⊂ non-dominated(I).
For the other direction consider an element o ∈ non-dominated(I) and let τ be a Pareto-
optimal solution to I for which O(τ) = o. For the interesting case, assume τ ⊃ ¬C, i.e.,
that it falsifies C. Then by the assumption τ is weakly dominated by some witness ωτ

that satisfies C. Now O(τ) = O(ωτ ) = o (as otherwise τ would not be Pareto-optimal)
demonstrating that o ∈ non-dominated(I ∧ C) and thus that C is redundant. ◀

The (weakly) dominating witness ωτ guaranteed by Proposition 4 for any redundant
clause C might differ depending on the specific solution τ that falsifies C. The redundancy
notions of reconstructible and literal-reconstructible clauses we propose next are based on
placing stronger requirements on this witness.

▶ Definition 5 (Reconstructible clauses). A clause C is reconstructible on the (partial)
assignment ω wrt an MO-MaxSAT instance I if (i) ω(C) = 1, and (ii) (τ \ ¬ω) ∪ ω ⪯ τ for
every solution τ ⊃ ¬C to I.
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In words, a clause C is reconstructible wrt an MO-MaxSAT instance I if there is a single
witnessing assignment ω that satisfies C and weakly dominates all solutions τ that do not.
Moreover, enforcing the partial assignment ω in any such solution τ allows for efficiently
obtaining a solution to I that satisfies C and weakly dominates τ . For the corner case, note
that if there are no solutions to I that falsify C, then C is reconstructible on any witness.

The fact that reconstructible clauses are redundant follows directly from Proposition 4.
The next example demonstrates that the converse does not hold. Central to the example is
to note that a direct consequence of Definition 5 is that if C is reconstructible on the partial
assignment ω, then ω weakly dominates the partial assignment ¬C.

▶ Example 6. Let I = (F, (O1, O2)) be an MO-MaxSAT instance with F = (a1 ∨ a2) ∧
(b1 ∨ b2) ∧ (a1 ∨ b1) ∧ (a1 ∨ b2) ∧ (a2 ∨ b1) ∧ (a2 ∨ b2), O1 = a1 + a2, and O2 = b1 +
b2. Then non-dominated(I) = {(1, 2), (2, 1)}, and the Pareto-optimal solutions are τ1 =
{a1, ¬a2, b1, b2}, τ2 = {¬a1, a2, b1, b2}, τ3 = {a1, a2, ¬b1, b2}, and τ4 = {a1, a2, b1, ¬b2}.
Consider the clause C = (¬a2 ∨ ¬b2). Since τ1 and τ4 are solutions to F ∧ C, adding C

does not change the non-dominated set of the instance. Thus, C is redundant wrt I. To
see that C is not reconstructible we show that no partial assignment ω that satisfies C

weakly dominates ¬C. There are two possible candidates for such ω (as C contains two
literals): ω1 = {¬a2} and ω2 = {¬b2}. The only solution of I that ω1 can be extended to is
τ1. However, ¬C can be extended to τ3, which is not weakly dominated by τ1. Similarly,
ω2 = {¬b2} does not weakly dominate τ2 ⊃ ¬C, showing that ω2 ̸⪯ ¬C.

Contrasting Example 6, the next proposition shows that the notions of (clause) redundancy
according to Definition 3 and reconstructible clauses according to Definition 5 coincide for
single-objective MaxSAT instances that have solutions.

▶ Proposition 7. For a single-objective MaxSAT instance I = (F, (O1)) with at least one
solution τ and clause C, it holds that C is reconstructible for I iff C is redundant.

Proof (sketch). For the non-trivial direction, assume that C is redundant. Then there is an
optimal (minimum-cost) solution τo to I that satisfies C. As I only has a single objective,
τo weakly dominates all solutions to I. Therefore, C is reconstructible on τo. ◀

As a further notion of redundancy, we consider literal-reconstructible clauses as a special
case of reconstructible clauses where the witness is required to consist of a single literal. In
Section 4 we discuss properties that literal-reconstructible clauses specifically satisfy and
overview in Section 5.1 preprocessing techniques that can be characterized by adding and
removing literal-reconstructible clauses.

▶ Definition 8 (Literal-reconstructible clauses). A clause C is literal-reconstructible wrt an
instance I = (F, O) if either (i) all solutions to F satisfy C, or (ii) there is a non-objective
literal l ∈ C \ B(I) s.t. if τ ⊃ ¬C is a solution to F , then τl = (τ \ {¬l}) ∪ {l} is a solution
to F ∧ C. If condition (ii) holds, we say that C is literal-reconstructible on the literal l.

Note that the definition of literal-reconstructible clauses does not explicitly require that
τl weakly dominates τ , as this follows from l not being an objective literal. The following
proposition states that literal-reconstructible clauses are redundant in terms of Definition 3.

▶ Proposition 9. If a clause C is literal-reconstructible wrt an MO-MaxSAT instance
I = (F, (O1, . . . , Op)), then non-dominated(I) = non-dominated(I ∧ C).
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Proof (sketch). For the interesting case, assume that there is a solution τ ⊃ ¬C to I that
does not satisfy C. Let l ∈ C \ B(I) be the literal on which C is literal-reconstructible and
consider the solution τl = (τ \ {¬l}) ∪ {l}. Then by the assumption τl is a solution to I ∧ C

and as l /∈ B(I) we have that Oi(τl) ≤ Oi(τ) for all objectives, i.e., for each i = 1, . . . , p. As
τl is a solution to both I and I ∧ C, the result follows. ◀

A clause that is literal-reconstructible on l is also reconstructible on the witness ω = {l}.
The following example shows that the opposite does not hold in general, i.e., there are
reconstructible clauses that are not literal-reconstructible.

▶ Example 10. Consider the MO-MaxSAT instance I = (F, (O1)) with F = (a1 ∨ a2)
and O1 = a1 + a2. The clause C = (¬a1) is reconstructible on the witness ω = {¬a1, a2}.
The assignment τ = {a1, ¬a2} is a solution to F but does not satisfy C. The only literal
l ∈ C \ B(I) is ¬a1, but ({a1, ¬a2} \ {a1}) ∪ {¬a1} = {¬a1, ¬a2} is not a solution to F ∧ C.
It follows that C is not literal-reconstructible.

The relative generality of these three MO-MaxSAT redundancy notion can be summarized
as follows. For any MO-MaxSAT instance I, the set of redundant clauses Red(I) is a superset
of the set of reconstructible clauses Rec(I), and Rec(I) is a superset of the set of literal-
reconstructible clauses LRec(I). Furthermore, there are clauses that are reconstructible but
not literal-reconstructible (i.e., there is an instance I for which Rec(I) ⊋ LRec(I)), and
clauses that are redundant (in terms of Definition 3) that are not reconstructible (i.e., there
is an instance I ′ for which Red(I ′) ⊋ Rec(I ′)). In contrast to single-objective MaxSAT, the
last statement holds also for instances that have solutions as for a single objective instance
I ′′ we have that Red(I ′′) ̸= Rec(I ′′) if and only if I ′′ does not have solutions.

As a side-remark, literal-reconstructible clauses are related to so-called cost literal propaga-
tion redundant clauses [24] recently proposed for (single-objective) MaxSAT: any cost literal
propagation redundant clause is literal-reconstructible under a single objective. The opposite
holds only when conditions (i) and (ii) in Definition 8 can be deterministically checked
by standard Boolean constraint propagation on clauses (i.e., unit propagation). Intuit-
ively, literal-reconstructible clauses extend and slightly generalize the concept of cost literal
propagation redundant clauses for the multi-objective setting.

4 Redundancy and Pareto-MCSes

We move on to analysing the effect that adding (literal-)reconstructible clauses to an MO-
MaxSAT instance has on the solution space in terms of so-called Pareto minimal correction
sets (Pareto-MCSes) [42, 43], that – informally speaking – correspond to subset-minimal sets
of objective literals that are assigned to 1 by at least one Pareto-optimal solution.

▶ Definition 11 (Pareto-MCS). Consider an MO-MaxSAT instance I = (F, O). A subset
M ⊂ B(I) of objective literals is a correction set if there is a solution τ of I that assigns
τ(l) = 0 for every objective literal l not appearing in M . M is a minimal correction set
(MCS) (or multi minimal correction subset as in [42]) if no M ′ ⊊ M is a correction set.
Finally, M is a Pareto-MCS if each solution τ that assign τ(l) = 0 for every l ∈ B(I) \ M is
Pareto-optimal. The set ParetoMCS(I) consists of the Pareto-MCSes of I.

For some intuition, note that assigning an objective literal to 1 can be seen as falsifying
a soft constraint. If M is an MCS or Pareto-MCS, then for any solution with τ(l) = 0 for
every literal not in M we also have τ(l′) = 1 for every literal l′ in M . From this point of
view, these definitions of MCSes align with the (arguably more classical) ones in terms of
subset-minimal sets of soft constraints falsified by some solution. Specifically, if I only has a
single objective, this definition is identical to MCSes in single-objective MaxSAT [36].
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The relationship between Pareto-optimal solutions, Pareto-MCSes and elements of the
non-dominated set is not one-to-one. For a Pareto-MCS M of an MO-MaxSAT instance
I = (F, O), there is at least one corresponding Pareto-optimal solution τ to I. The cost of
each such τ wrt each objective in O is the sum of the objective coefficients of the objective
literals included in M . There can be multiple Pareto-optimal solutions that correspond to a
Pareto-MCS which differ in how non-objective variables are assigned. Furthermore, for a
single element (cost tuple) in the non-dominated set, there can be multiple corresponding
Pareto-MCSes, since two different Pareto-MCSes can incur the same cost wrt each objective
of I. Hence, preserving the Pareto-MCSes of an input MO-MaxSAT instance I is a sufficient
but not necessary condition for preserving non-dominated(I). For computing the non-
dominated set, it suffices that at least one corresponding Pareto-MCS for each element in
the non-dominated set is preserved.

We establish the fact that preservation of the set of Pareto-MCSes is a property of
literal-reconstructible clauses, distinguishing this notion from the more general notion of
reconstructible clauses which does not have this property. More precisely, the following
summarizes the main theorem of this section: adding/removing literal-reconstructible clauses
does not change the set of Pareto-MCSes.

▶ Theorem 12. Assume that C is literal-reconstructible wrt an MO-MaxSAT instance
I = (F, O). Then ParetoMCS(I) = ParetoMCS(I ∧ C).

A proof of Theorem 12 relies on showing that, given any Pareto-optimal solution τ ⊃ ¬C of
I that does not satisfy C, the weakly-dominating (Pareto-optimal) witness τl obtained by
flipping the value of the literal l ∈ C \ B(I) that C is literal-reconstructible on corresponds
to the exact same Pareto-MCS as τ . Toward formalizing this intuition, we show that if the
negation of l is in any objective, then there is no Pareto-optimal solution that falsifies C.

▶ Lemma 13. Let C be literal-reconstructible on l wrt I = (F, O) and ¬l an objective literal,
i.e., ¬l ∈ B(I). Then there is no Pareto-optimal solution τ ⊃ ¬C to I that falsifies C.

Proof of Lemma 13. As C is literal-reconstructible on l, τ ′ = (τ \ {¬l}) ∪ {l} is a solution
to I. Because ¬l ∈ B(I) and therefore at least one of the objectives evaluates to less for τ ′

than for τ , τ ′ ≺ τ . Therefore, τ is not Pareto-optimal. ◀

With the inverse of Lemma 13 covering the (special) case of some Pareto-optimal solutions
falsifying C, we turn to the proof of Theorem 12.

Proof of Theorem 12. If C is literal-reconstructible because every solution of I satisfies C,
the solutions and therefore the set of Pareto-MCSes of I and I ∧ C are the same. Otherwise,
let C be literal-reconstructible on l and consider the following.

ParetoMCS(I) ⊂ ParetoMCS(I ∧ C): Let M ∈ ParetoMCS(I) and consider the Pareto-
optimal solution τM ⊃ {¬b | b ∈ B(I) \ M} to I that sets τ(b) = 0 for every objective literal
b not in M . Since C is literal-reconstructible on l, there is a solution δ to F ∧ C that weakly
dominates τM . If τM satisfies C, then δ = τM . Otherwise, δ = (τM \ {¬l}) ∪ {l}, and since
τM is Pareto-optimal and falsifies C, by Lemma 13 ¬l is not an objective literal. In both
cases δ corresponds to the same MCS (M) as τM . Furthermore, M must be a Pareto-MCS
of I ∧ C as any solution dominating δ would also be a solution to I and therefore M would
not be a Pareto-MCS of I.

ParetoMCS(I ∧ C) ⊂ ParetoMCS(I): Given M ∈ ParetoMCS(I ∧ C) and a Pareto-optimal
τM ⊃ {¬b | b ∈ B(I) \ M} to I ∧ C, τM is also Pareto-optimal for I as any dominating
solution could be reconstructed (by flipping the value of l) into a solution to I ∧C dominating
τM . ◀
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Contrasting Theorem 12, we show that a similar result cannot be obtained for recon-
structible clauses.

▶ Proposition 14. There is an MO-MaxSAT instance I and a reconstructible clause C wrt
I for which ParetoMCS(I ∧ C) ⊊ ParetoMCS(I).

Proof. Consider the MO-MaxSAT instance I = (F, (O1, O2)) with F = (a1 ∨ b1 ∨ b2),
O1 = a1, O2 = b1 + b2, and C = (¬b2). We have that ParetoMCS(I) = {{a1}, {b1}, {b2}}
and ParetoMCS(I ∧ C) = {{a1}, {b1}}.

Since the only clause in F and C are both satisfied by ω = {b1, ¬b2}, every superset of ω

is a solution to F ∧ C. Furthermore, given a solution τ to F that falsifies C, the solution
τω = (τ \ ¬ω) ∪ ω has O1(τω) = O1(τ) and O2(τω) ≤ O2(τ), hence τω ⪯ τ . It follows that C

is reconstructible on ω wrt I. ◀

This distinction between literal-reconstructible and reconstructible clauses in terms of
the preservation of Pareto-MCSes provides two important insights.

Firstly, the fact that adding/removing literal-reconstructible clauses does not change
the set of Pareto-MCSes implies that (single-objective) MaxSAT preprocessing techniques
that can be viewed as sequences of adding and removing literal-reconstructible clauses are
techniques that are “directly applicable” to MO-MaxSAT. In particular, it has been shown
that the non-dominated set of an MO-MaxSAT instance I = (F, O) can be computed by
enumerating its Pareto-MCSes, which can in turn be achieved by enumerating the MCSes of
the (single-objective) MaxSAT instance (F, Om) with the single objective Om =

∑
Oi∈O Oi

that sums all objectives of I [43]. Thus, any preprocessing technique for single-objective
MaxSAT that preserves MCSes is directly applicable to MO-MaxSAT by applying it to
(F, (Om)) and using the preprocessed formula in the MO-MaxSAT instance. The correctness
of such techniques – which we will overview shortly – can either be directly argued on the MO-
MaxSAT level by viewing them as sequences of adding and removing literal-reconstructible
clauses, or by using (MCS-preserving) redundancy notions such as cost literal propagation
redundancy on the level of single-objective MaxSAT. On the other hand, preprocessing
techniques captured by reconstructible clauses but which cannot be captured by literal-
reconstructible clauses – as detailed later on – go beyond preserving Pareto-MCSes, having
the ability to eliminate Pareto-MCSes that are redundant in terms of the non-dominating
set. Hence, reconstructible clauses are key in capturing the correctness of such techniques in
a uniform way.

5 Preprocessing for MO-MaxSAT

We proceed with overviewing a range of preprocessing techniques for MO-MaxSAT, lifting
earlier-proposed techniques from single-objective MaxSAT (some of which originate from
SAT) to the multi-objective setting. We detail in short which of the techniques are captured
by the notions of reconstructible or literal-reconstructible clauses by simulating the techniques
via sequences of additions and removals of redundant clauses of a specific type.

5.1 Preprocessing Techniques Captured by Literal-Reconstructible
Clauses

First, we shortly recall well-known single-objective MaxSAT preprocessing techniques that are
known to preserve MCSes [24]. We note again that the correctness of these techniques follows
from the previously mentioned fact that each of them preserve MCSes in single-objective
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MaxSAT, which further follows naturally from earlier work on capturing these techniques
in the setting of SAT solving via redundancy notions developed for SAT. Alternatively –
as we will detail in the following – the correctness arguments can be directly made on the
MO-MaxSAT level by showing that each technique can be simulated via removing and adding
literal-reconstructible clauses. For the following list of techniques, let I = (F, O) be an
MO-MaxSAT instance with O = (O1, . . . , Op).

Bounded Variable Elimination (BVE) [41, 12]. BVE as arguably the most important SAT
preprocessing technique allows eliminating a non-objective variable x /∈ B(I) (and ¬x /∈ B(I))
from I. A step of BVE on I and x results in the MO-MaxSAT instance bve(I, x) =
(F ∪ Fres \ (Fx ∪ F¬x), O), where Fx = {C ∈ F | x ∈ C}, F¬x = {C ∈ F | ¬x ∈ C} are the
sets of clauses containing x and ¬x, respectively, and Fres = {(A∨B) | (A∨x), (B ∨¬x) ∈ F}
is the set of all non-tautological resolvents on x of the clauses in F , bounded in practice
to eliminate variables when this decreases the number of clauses. Working directly on the
MO-MaxSAT level, bve(I, x) can be obtained from I = (F, O) by a sequence of additions
and removals of literal-reconstructible clauses as follows. First add Fres to F which does not
change the non-dominated set because every clause in Fres is satisfied by any solution to F

and therefore literal-reconstructible wrt I and any instance obtained by adding clauses from
Fres to I. Note that for every (A ∨ B) ∈ Fres, by construction of Fres, (A ∨ x), (B ∨ ¬x) ∈ F .
Second, remove the clauses Fx ∪ F¬x from the intermediate instance I ′ = (F ∪ Fres, O): every
clause in Fx (resp. F¬x) is literal-reconstructible on x (resp. ¬x) wrt I ′ and any instance
obtained by removing clauses in Fx ∪ F¬x from I ′.

Blocked Clause Elimination (BCE) [27]. BCE removes blocked clauses [33]: a clause
(C ∨ l) ∈ F is blocked on a literal l /∈ B(I) if for every clause (D ∨ ¬l) ∈ F containing ¬l,
the resolvent (C ∨ D) is a tautology. Note that a clause blocked on l is literal-reconstructible
on l.

Subsumption Elimination (SE). A clause C ∈ F is subsumed by another clause D ∈
F if D ⊂ C. One step of SE removes a subsumed clause C, resulting in the instance
se(I, C) = (F \ {C}, O). Note that any solution to se(I, C) also satisfies C, and thus C is
literal-reconstructible wrt se(I, C).

Unit Propagation (UP). Given a non-objective literal l /∈ B(I) and a unit clause (l) ∈ F ,
unit propagation removes each clause C ∈ F containing l (l ∈ C) and removes the negation
¬l from the remaining clauses. Similarly as in SAT, UP can be viewed as an application of
BVE on l (to remove negation ¬l from all clauses) followed by an application SE (to remove
resolvents introduced by BVE).

Self-Subsuming Resolution (SSR) [38, 12]. Given two clauses (x ∨ A), (¬x ∨ B) ∈ F

s.t. A ⊂ B, x /∈ B(I), and ¬x /∈ B(I), a step of SSR results in the formula ssr(I, (¬x∨B)) =
((F ∪ {B}) \ {(¬x ∨ B)}, O). Note that B is literal-reconstructible wrt I and that (¬x ∨ B)
is subsumed in F ∧ B.

Failed Literal Elimination (FLE) and TrimMaxSAT. FLE [46, 18, 34] and TrimMaxSAT [39]
allow for detecting unit clauses entailed by F , i.e., clauses satisfied by every solution to I.
Such clauses are by definition literal-reconstructible.
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Equivalent Literal Substitution (ELS) [35, 9, 45]. Two literals l1, l2 are equivalent if
τ(l1) = τ(l2) for every solution τ . If neither literal nor their negation occur in objectives,
equivalent literal substitution replaces every occurrence of l2 with l1 and ¬l2 with ¬l1.
Viewed in terms of literal-reconstructible clauses, first add the clauses in which l2 (¬l2) has
been replaced and then remove clauses containing l2 (¬l2). Both of these sets of clauses
are literal-reconstructible wrt the instance they are added to / removed from because
τ(l1) = τ(l2).

5.2 Preprocessing Techniques Captured by Reconstructible Clauses
We now turn to techniques that do not preserve all Pareto-MCSes and therefore require a
more general notion of redundancy. Specifically, we lift (group-)subsumed label elimination
((G)SLE) [5, 31] from MaxSAT, extending subsumption to objective literals, to MO-MaxSAT
and show that it is captured by adding reconstructible clauses.

▶ Definition 15. An objective literal l ∈ B(I) of an MO-MaxSAT instance I = (F, (O1,

. . . , Op)) is subsumed if there is a group of objective literals S ⊂ B(I) for which (i) ci(l) ≥
ci(¬l) +

∑
s∈S ci(s) for all objectives (i = 1, . . . , p), (ii) every clause C ∈ F that contains l

also contains some literal s ∈ S, and (iii) every clause C ∈ F that contains the negation of
any s ∈ S also contains ¬l.

Informally speaking, a step of GSLE on an MO-MaxSAT instance I wrt a subsumed literal l

fixes l = 0. More formally, it results in the instance gsle(I, l) = I ∧ (¬l).
In contrast to the preprocessing techniques discussed in the preceding subsection, GSLE

cannot be lifted from single-objective MaxSAT to MO-MaxSAT by simply combining multiple
objectives into a sum. To see this, consider the MO-MaxSAT instance from the proof
of Proposition 14. When applying single-objective GSLE by summing the objectives as
O1 + O2 = a1 + b1 + b2, a1 is subsumed by {b1}. However, adding the clause (¬a1) removes
(1, 0) from the non-dominated set.

The following example demonstrates that GSLE can remove Pareto-MCSes.

▶ Example 16. Consider the MO-MaxSAT instance in the proof of Proposition 14. According
to Definition 15 b2 is subsumed by {b1}, hence gsle(I, b2) = (F ∧ (¬b2), (O1, O2)), and thus
ParetoMCS(gsle(I, b2)) ⊊ ParetoMCS(I)

For an alternative proof of the fact that GSLE cannot be viewed as a sequence of adding/re-
moving literal-reconstructible clauses, consider Example 10 where it was argued that the
clause (¬a1) is reconstructible but not literal-reconstructible. Note that in the example a1 is
subsumed by {a2}, and hence applying GSLE on the instance wrt a1 would result in adding
exactly the clause (¬a1) into the instance.

The correctness of GSLE for MO-MaxSAT follows by observing that it can be viewed as
the addition of a reconstructible clause.

▶ Proposition 17. If l is subsumed in an MO-MaxSAT instance I = (F, O), then the clause
C = (¬l) is reconstructible wrt I.

Proof. Let S ⊂ B(I) be the group of literals that subsumes l, and τ ⊃ ¬C with τ(F ) = 1 a
solution that falsifies C. Consider the witness ω = S ∪{¬l} and the solution τω = (τ \¬ω)∪ω.
Since all clauses that l appears in contain at least one literal s ∈ S (condition (ii) of
Definition 15) and all clauses that a negated literal from S appears in also contain ¬l

(condition (iii) of Definition 15), τω is a solution to F ∧ C. Because l (note that τ(l) = 1)
increases every objective more than all of ω (condition (i) of Definition 15), τω weakly
dominates τ . ◀
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5.3 Preprocessing with Changes to Objectives
All techniques we have so far considered solely change the formula of an instance and not
the objectives. However, towards practical preprocessing for MO-MaxSAT, we note that
MaxSAT preprocessing techniques that may change the single objective in MaxSAT can also
be lifted to MO-MaxSAT. These include unit propagation and equivalent literal substitution
on objective literals, intrinsic at-most-ones, and binary core removal (BCR). Alike their
MaxSAT counterparts, these liftings cannot be expressed directly as a sequence of additions
and removals of redundant clauses due to the very fact that redundant clauses by definition
do not change costs of instances.

Unit Propagation on an Objective Literal. In addition to removing all clauses containing l

and removing ¬l from all clauses, unit propagation on an objective literal l ∈ B(I) replaces
the terms ci(l) · l with the respective constant ci(l) in each objective Oi for i = 1, . . . , p. It is
straightforward to see that by doing so costs of solutions are left unchanged.

Equivalent Literal Substitution on Objective Literals. An objective literal l1 is replaced
with another objective literal l1 by equivalent literal substitution if l1 and l2 are equivalent
– regardless of whether the literals or their negations appear in an objective. Specifically,
every occurrence of l2 (resp. ¬l2) is replaced by l1 (resp. ¬l1) and in every objective Oi

(i = 1, . . . , p) l1 (resp. ¬l1) gets the coefficient ci(l1) + ci(l2) (resp. ci(¬l1) + ci(¬l2)). In this
way, the costs of solutions to the preprocessed instance are left unchanged.

Intrinsic At-Most-One Technique [23, 24]. Lifted to MO-MaxSAT from MaxSAT, the
intrinsic at-most-one technique works as follows. Given a set L of objective literals at most
one of which are falsified in each solution to I (i.e., at least |L| − 1 of the literals in L will
incur cost in all solutions; such an L is sought heuristically using unit propagation), (i) a
new literal lL is introduced, (ii) the clause (lL ∨

∨
l∈L ¬l) is added to F , and (iii) for every

objective Oi (i = 1 . . . , p) the coefficients of all literals in L are reduced by the minimum of
these coefficients cm

i = min{ci(l) | l ∈ L} and the terms cm
i · lL + (|L| − 1) · cm

i are added.
For intuition, the preliminary condition implies that for any solution to I, at least |L| − 1 of
the literals in L will incur cost at least cm

i wrt each of the objectives. The added clause (ii)
enforces that lL must be true when all literals in L are true, incurring additional cost cm

i wrt
each of the objectives.

Binary Core Removal (BCR) [19, 31]. BCR can be phrased as first applying a restriction
of the intrinsic at-most-one technique and then applying BVE. In detail, assume that a
set L = {l1, l2} with ci(l1) = ci(l2) for all objectives satisfies the condition required for the
intrinsic-at-most-ones and that ¬l1 and ¬l2 do not appear in F . Then BCR can be viewed
as an application of intrinsic at-most-ones on L followed by applying BVE to eliminate l1
and l2 (in practice when the size of the instance does not increase). Thus, its correctness for
MO-MaxSAT follows directly from the correctness of intrinsic at-most-ones and BVE.

6 Experiments

Complementing our theoretical observations on redundancy notions for MO-MaxSAT, we
detail results from an empirical evaluation of the combined effect of the various MO-MaxSAT
preprocessing techniques overviewed in the preceding section in terms of their ability to
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reduce the size of real-world MO-MaxSAT instances and effect on runtime behaviour of
recent MO-MaxSAT solvers. To the best of our understanding, this is the first evaluation
on the effect of preprocessing on MO-MaxSAT instances and the runtime performance of
MO-MaxSAT solvers.

We extended the MaxSAT preprocessor MaxPre 2 [31, 24] to MaxPre 2.1, covering MO-
MaxSAT. The preprocessor implementation, empirical data, and benchmarks are available
via https://bitbucket.org/coreo-group/mo-prepro. As the technique specification for
MaxPre 2.1 in the experiments we used [[uvsrgc]VRTG], including unit propagation, BVE,
SE, SSR, GSLE, BCR, TrimMaxSAT, FLE, ELS, and intrinsic at-most-ones.2

We consider four MO-MaxSAT solvers: leximaxIST3 [10], BiOptSat4 [25], CLM5 [11],
and Scuttle, our own implementation of a SAT-based approach based on enumerating so-
called P -minimal models [40, 32]. BiOptSat, CLM, and Scuttle compute a Pareto-optimal
solution for each element in the non-dominating set. BiOptSat is specific for MO-MaxSAT
under two objectives (i.e., bi-objective MaxSAT), while Scuttle and CLM handle any number
of objectives. leximaxIST restricts to the simpler task of computing a leximax-optimal
solution, which corresponds to computing a specific element in the non-dominated set [16].
As BiOptSat and leximaxIST offer different configurations, for BiOptSat we consider the
three central variants of a linear SAT-UNSAT based algorithm (denoted LSU), a core-guided
(MSU3) algorithm (denoted CG), and a hybrid between the two that was found to perform
best in [25] (denoted Hybrid). For leximaxIST, we consider both a linear SAT-UNSAT and
a core-guided version of the approach. For CLM we evaluate both the core-guided (denoted
CG) and the implicit hitting set algorithm (denoted IHS). To achieve a tight integration, we
included MaxPre 2.1 as a library into the source code of each solver. The modified source code
of each solver is also available through https://bitbucket.org/coreo-group/mo-prepro.

We used three real-world benchmarks from the literature: package upgradeability
(PackUP) [26], learning interpretable decision rules (LIDR) [37], and development assurance
level (DAL) [6]. For PackUP we used the set of 3692 instances from [10], obtained from
Mancoosi International Solver Competition (https://www.mancoosi.org/misc-2011/) in-
stances using all combinations of 2–5 of the 5 original objectives. The 366 LIDR benchmark
instances with two objectives originate from [25], encoding the classification task for public
benchmark datasets. The 96 DAL benchmark instances originate from the LION9 challenge
(https://www.cristal.univ-lille.fr/LION9/challenge.html), each with 7 objectives.
The pseudo-boolean constraints in the DAL instances were encoded with a (generalized)
totalizer encoding [2, 30].

All runtime experiments were executed on 2.60-GHz Intel Xeon E5-2670 machines with
64-GB RAM in RHEL under a 1.5-hour per-instance time and 16-GB memory limit. Times
reported include the runtimes of MaxPre 2.1 whenever preprocessing is used.

6.1 Effect of Preprocessing on Instance Characteristics
We first consider the effect of preprocessing on four central characteristics of MO-MaxSAT
instances: the number of variables, the number of clauses, the sum of objective coefficients,
and the number of Pareto-MCSes.

2 We excluded BCE as using it in preliminary testing led to slightly worse runtimes overall.
3 leximaxIST obtained from https://github.com/miguelcabral/leximaxIST.
4 BiOptSat obtained from https://bitbucket.org/coreo-group/bioptsat
5 CLM obtained from https://gitlab.inesc-id.pt/u001810/moco

https://bitbucket.org/coreo-group/mo-prepro
https://bitbucket.org/coreo-group/mo-prepro
https://www.mancoosi.org/misc-2011/
https://www.cristal.univ-lille.fr/LION9/challenge.html
https://github.com/miguelcabral/leximaxIST
https://bitbucket.org/coreo-group/bioptsat
https://gitlab.inesc-id.pt/u001810/moco
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Figure 1 Per-instance instance size reductions achieved by preprocessing.

Figure 1 shows the reduction of variables (top left), number of clauses (top right), the
sum of objective coefficients (bottom left), and the number of Pareto-MCSes (bottom right)
obtained with MaxPre 2.1 for each of the three benchmark domains. The number of variables
(Figure 1 top left) is reduced significantly on each benchmark domain. In terms of medians,
after preprocessing 9.5% of the original variables remain for DAL, 32% for PackUP, and
64% for LIDR instances. In terms of clauses (Figure 1 top right), the reductions are very
significant for both DAL and PackUP, with 9.3% and 24% of the original number of clauses
remaining after preprocessing in terms of the median, respectively. For LIDR the number of
clauses is reduced less significantly, although a reduction can still be observed; 93% of the
original number of clauses remain.

Given an instance I = (F, (O1, . . . , Op)), we measure the sum of objective coefficients, i.e.,∑p
i=1

∑
l∈Bi(I) ci(l). Note that preprocessing can change the sum of objective coefficients

both by inferring that some objective literals can be set to 0 – conceptually decreasing the
trivial upper bound on the objective – and by inferring that some literal must be assigned to
1 – conceptually increasing the lower bound. Figure 1 (bottom left) shows the reduction in
the sum of objective coefficients achieved by preprocessing on each benchmark instance. The
magnitude of reductions achieved by preprocessing depend significantly on the benchmark
domain. For LIDR, preprocessing only seldom reduces objective coefficients. For PackUP a
significant reduction is observed; the median sum of objective coefficients after preprocessing
is 57% of the original. Furthermore, on 297 of the PackUP instances preprocessing reduced
at least one of the objectives to zero, removing it from the instance. For DAL, while for
some instances the objective coefficients are reduced only slightly, on every single instance
preprocessing reduced at least one of the objectives to zero. The median sum of objective
coefficients after preprocessing is 54% of the original for DAL.
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Table 1 Solved instances (#), uniquely solved instances (uniq.), and cumulative runtimes over
solved (

∑
t) in 103 seconds, with and without preprocessing (Prepro.).

PackUP LIDR DAL

Solver Prepro. # uniq.
∑

t # uniq.
∑

t # uniq.
∑

t

BiOptSat (LSU) no 1134 0 61.4 220 1 52.4 – – –
(bi opt.) yes 1161 27 47.7 223 4 34.1 – – –

BiOptSat (CG) no 1154 1 40.9 222 1 43.9 – – –
(bi opt.) yes 1159 6 34.5 222 1 38.4 – – –

BiOptSat (Hybrid) no 1154 1 46.6 222 0 40.4 – – –
(bi opt.) yes 1159 6 33.0 222 0 35.5 – – –

Scuttle no 1772 40 284.5 219 1 51.3 66 0 5.9
(multi opt.) yes 1778 46 244.1 218 0 44.1 67 1 5.3

CLM (CG) no 1593 88 301.3 206 2 48.0 60 7 8.1
(multi opt.) yes 1588 83 315.8 206 2 49.4 53 0 12.8

CLM (IHS) no 1301 91 258.5 134 19 26.8 48 7 0.3
(multi opt.) yes 1282 72 189.8 115 0 23.5 41 0 0.2

leximaxIST (LSU) no 2276 2 434.6 224 0 28.4 72 0 4.3
(leximax opt.) yes 2347 73 268.5 224 0 29.6 72 0 5.2

leximaxIST (CG) no 2450 13 140.7 220 2 43.7 72 1 12.9
(leximax opt.) yes 2453 16 140.0 218 0 38.0 73 2 9.7

For investigating how preprocessing affects the number of Pareto-MCSes, we used Scuttle
to enumerate Pareto-MCSes of each benchmark instance under a 1.5-h per-instance time
limit. On the LIDR instances, no reduction in the number of Pareto-MCSes was observed.
For PackUP and DAL, respectively, preprocessing reduced the number of Pareto-MCSes
significantly, by more than one third for 33% and 60% of the instances, respectively. Further-
more, considering the per-instance reduction shown in Figure 1 (bottom right), we observed
that for PackUP the number of Pareto-MCSes is often reduced significantly further.

6.2 Effect of Preprocessing on Solver Runtimes
We now turn to investigating the effect of preprocessing on the runtime performance of
MO-MaxSAT solvers.

Table 1 shows the number of solved instances, number of instances uniquely solved with
or without preprocessing, and cumulative runtimes over solved instances (in 103 seconds) for
each solver. We emphasize that here one should focus on comparing the effect of preprocessing
on each individual solver and configuration. Most importantly, the numbers reported for
the four different solvers – BiOptSat, Scuttle, CLM, and leximaxIST – are not directly
comparable to each other as they solve different variants of MO-MaxSAT: leximaxIST
computes a solution corresponding to a single element in the non-dominated set, while
BiOptSat, Scuttle, and CLM enumerate the whole non-dominated set. Furthermore,
since BiOptSat supports two objectives only, data for BiOptSat on PackUP is restricted to
the 1420 instances with two objectives, and data on DAL is unavailable as the DAL instances
involve more than two objectives.
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For PackUP, preprocessing has a clear positive impact on both the number of instances
solved and the runtimes of all solvers except for CLM: the solvers use less cumulative
runtime after preprocessing for solving more instances than what can be solved without
preprocessing. We observe that for each of the three variants of BiOptSat as well as the LSU
variant of leximaxIST, preprocessing strictly increases the number of PackUP instances
solved. There are close to no uniquely solved instances when preprocessing is not employed.
Interestingly, the runtime improvement obtained using preprocessing for the LSU variants of
BiOptSat, which without preprocessing is outperformed by the other BiOptSat variants, is
so significant on PackUP instances that the LSU variant ends up even slightly outperforming
the other variants. For Scuttle and the CG variant of leximaxIST the number of uniquely
solved instances with preprocessing is also higher than without, although there is a more
significant number of instances that are uniquely solved without preprocessing. For LIDR,
preprocessing speeds up all three configurations of BiOptSat and also increases the number
of instances solved for the LSU variant. However, preprocessing does not consistently improve
the performance of Scuttle, CLM, and leximaxIST on LIDR and DAL.

Overall, although somewhat modestly, preprocessing appears to have the most signific-
ant positive impact on linear SAT-UNSAT type algorithms, namely, the LSU variants of
BiOptSat and leximaxIST. This finding is in fact in-line with [24] where, in the con-
text of MaxSAT, the strongest positive impact of preprocessing was observed for a linear
SAT-UNSAT (solution-improving) MaxSAT solver.

Finally, we investigate potential correlations between the impact of preprocessing on
solver runtimes and the instance characteristics of number of clauses, number of variables,
sum of objective coefficients, and number of Pareto-MCSes. As a metric for the impact
of preprocessing on solver runtimes, we use relative solver performance, defined for a fixed
instance and solver as (tno prepro −tprepro)/(tno prepro +tprepro), where t(no) prepro is the solving
time with (without) preprocessing. This metric takes values from −1 to 1. A positive value
implies that runtime with preprocessing was shorter than without preprocessing, and the value
1 (value −1) means that the solver was able to solve the instance with (without) preprocessing,
but timed out without (with) it; the closer to 1 (−1), the more significant a positive (negative)
effect preprocessing has on overall runtime. As a metric for the impact of preprocessing
on instance characteristics, we use fraction remaining. For a specific instance and instance
characteristic, let f(no) prepro be the value of the feature with (without) preprocessing. The
fraction remaining is then fprepro/fno prepro, taking values from 0 to 1. For some intuition, the
closer to 0 the value is, the more significantly preprocessing affects the instance characteristic:
e.g., the value 0 for the number of clauses means that preprocessing removes all clauses from
an instance, and a value of 0.5 (1) means that the preprocessed instance contains half as
many (exactly as many) clauses as the original instance.

Figure 2 relates relative solver performance and the fractions remaining for the four
instance characteristics for each solver using the configuration the runtimes of which were
improved the most by preprocessing: BiOptSat (LSU), Scuttle, and leximaxIST (LSU),
focusing on “non-trivial” instances with runtimes > 60 seconds either with or without
preprocessing. We observe that a lower fraction of variables remaining (Figure 2 top left),
clauses (top right), or objective coefficient sum (bottom left) by preprocessing often also
somewhat tends to result in faster solver runtimes (i.e., a higher relative performance of the
solver), especially for leximaxIST. Interestingly, the data for the LSU variant of BiOptSat
as well as for Scuttle are quite scattered, with no clear correlations observed between
relative solver performance and changes in instance characteristics. Finally, we note that the
number of Pareto-MCSes appears to have little to no impact on the relative performance
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Figure 2 Relating solver runtimes with instance characteristic.

of these specific solvers. One possible explanation for this observation is that none of these
specific solvers explicitly enumerate Pareto-MCSes in their search. On the other hand, based
on the data, reducing the sum of the objective coefficients by preprocessing may be beneficial
for solver performance; also in light of this developing further techniques that are capable of
reducing the objective ranges appears to be an interesting direction for further work.

7 Conclusions

Motivated by recent advances in (Max)SAT-based approaches to multi-objective optimization,
we proposed redundancy notions and liftings of MaxSAT preprocessing techniques for
the multi-objective setting. We showed that the redundancy notions capture different
preprocessing techniques, with the (in)ability to remove Pareto-MCSes as the underlying
differentiating property. We provided a stand-alone preprocessor implementation of the
preprocessing techniques, and empirically evaluated the impact of preprocessing in multi-
objective MaxSAT. The preprocessor can significantly reduce the size of real-world multi-
objective MaxSAT instances and also has in cases a positive effect on runtimes of current
state-of-the-art multi-objective MaxSAT solvers. Interesting directions for future work include
developing redundancy notions that can capture changes to objectives; more fine-grained
analysis of preprocessing for the restricted case of leximax optimization; and empirical
evaluation of preprocessing on further problem settings with varying instance properties such
as different distributions of objective coefficients.
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Abstract
Constraint Programming has been widely, and very successfully, applied to scheduling problems.
However, the focus has been on uninterruptible tasks, and preemptive scheduling problems are
typically harder for existing constraint solvers. Indeed, one usually needs to represent all potential
task interruptions thus introducing many variables and symmetrical or dominated choices.

In this paper, building on mostly known results, we observe that a large class of preemptive
disjunctive scheduling problems do not require an explicit model of task interruptions. We then
introduce a new constraint programming approach for this class of problems that significantly
outperforms state-of-the-art dedicated approaches in our experimental results.
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1 Introduction

Many applications involve scheduling a set of tasks subject to resource constraints. Constraint
programming (CP) techniques lead to significant advances in this domain and, conversely,
some of the early work on the propagation of global constraints originated from scheduling
applications.

In preemptive scheduling problems, the processing of some tasks can be interrupted, to
be resumed at a later time. CP is generally much more successful on non-preemptive rather
than preemptive scheduling problems. The standard approach to modelling interruptible
tasks in constraint programming, while preserving completeness1, is to decompose each task
into as many unit-length tasks as its duration. A disjunctive resource can then be modelled
as an AllDifferent constraint, a parallel-machine resource as a GlobalCardinality

1 Without this restriction, the range of possible approaches is significantly wider.

© Carla Juvin, Emmanuel Hebrard, Laurent Houssin, and Pierre Lopez;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carla.juvin@laas.fr
mailto:emmanuel.hebrard@laas.fr
https://orcid.org/0000-0003-3131-0709
mailto:laurent.houssin@isae.fr
https://orcid.org/0000-0001-5975-7639
mailto:pierre.lopez@laas.fr
https://orcid.org/0000-0003-0413-3188
https://doi.org/10.4230/LIPIcs.CP.2023.19
https://github.com/ehebrard/Mistral-2.0.git
https://github.com/ehebrard/Mistral-2.0.git
https://archive.softwareheritage.org/swh:1:dir:90fe19df244134e5dfddd79360cd4b554fecabfb;origin=https://github.com/ehebrard/Mistral-2.0.git;visit=swh:1:snp:202568e199279bb61acab50605df6170222c5bbe;anchor=swh:1:rev:067977e13831b8fdf55556e7354a043bab01622c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 An Efficient Constraint Programming Approach to Preemptive Job Shop Scheduling

constraint, and a cumulative resource as a general flow constraint. Another approach is
to decompose the tasks into variable-size tasks. In this case, either the duration variables
have a null lower bound, which severely hinders constraint propagation, or constraints have
to be posted on the number of fragments and their duration, which entails searching over
the different ways to split the tasks. As a result, the former approach is often the best. In
either cases, the complexity of the methods heavily depends on the duration of the tasks,
and therefore do not scale well in practice.

In this paper, we use the observation that when preemptive resources are disjoint, there
is no need to compute the fragmentation of the tasks during search. In other words, the
problem can be modelled as a constraint satisfaction problem (CSP) with two variables per
task: one for its start time and one for its end time. Deciding whether a set of interruptible
tasks with release and due dates can be processed on a disjunctive constraint is easy (e.g., via
the Jackson Preemptive Schedule). Moreover, if some tentative release and due dates for the
tasks pass the overload check2 [29], then a feasible fragmentation of the tasks is guaranteed
to exist. Therefore, provided that the disjunctive resources are disjoint and that constraint
propagation is at least as strong as the overload check, one can simply branch on start and
end time variables for every task.

This condition of disjointness is true in many problems, and there is no further restriction
on the constraint graph. For instance in this paper we focus on the preemptive Job Shop
Scheduling Problem (pJSSP). In this problem, the resources are naturally disjoint, but tasks
requiring distinct machines can be linked by precedence constraints. Our method can be
applied to several other preemptive versions of disjunctive scheduling problems (e.g., open
shop scheduling where job sequences are to be decided, job shop scheduling augmented with
setup times, or generalised precedences, etc.).

The paper is organised as follows: In Section 2 we recall some background and define the
disjunctive preemptive constraint as well as the preemptive Job shop Scheduling problem.
In Section 3 we briefly review the existing CP models for preemptive scheduling. We show
that the standard approach of using the constraints AllDifferent or NoOverload on
unit-length tasks are weaker than the same approach using the AllDiffPrec constraint.
Then we discuss the main observations, which are not original, but are key to our main
result: it is often not necessary to introduce unit-length tasks, and without unit-length
tasks Edge-Finding is sufficient to enforce bounds consistency. Then we introduce a novel
constraint model for the preemptive Job Shop Scheduling Problem based on these observations
in Section 4 and finally we discuss the state of the art for the pJSSP and experimentally
compare our approach to it in Section 5.

2 Background and Related Work

2.1 CSP and bounds consistency
A constraint network is a triple (x,D, c) where x is a finite totally ordered set of variables, D
is a finite set, and c is a finite set of constraints. A constraint c is a pair (Sc , Pc) where the
scope Sc is a subset of x and Pc is a predicate on the variables Sc . An assignment σ : x 7→ D
is a mapping from variables in x to values in D, and σ(x) denotes the value assigned to
variable x by σ. Given a constraint network (x,D, c), the Constraint Satisfaction Problem
(CSP) asks whether there is an assignment σ of values in D to the variables x such that for
every constraint c ∈ c, the predicate Pc is true on the projection of σ onto Sc .

2 That the total duration of any set of tasks is not larger than their execution window.
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Most constraint solvers store a current domain D(x) ⊆ D for every variable x ∈ x and
use some form of consistency reasoning to reduce these domains without losing solutions.
We assume that the domain D is totally ordered and denote min(x) (resp. max(x)) the
minimum (resp. maximum) value in D(x). Moreover, we denote [l, u] the discrete interval
containing every element in D that is larger than or equal to l and lower than or equal to u.

▶ Definition 1 (Bounds Consistency). Let c be a constraint and x ∈ Sc be a variable
constrained by c. An assignment σ is a bound support of the pair (x, v) in a current domain
D if and only if:

σ(x) = v;
the predicate Pc is satisfied by σ (σ is said to be consistent and we write Pc(σ) = true);
and for every variable y ∈ x \ x, σ(y) ∈ [min(y), max(y)] (σ is said to be valid).

A constraint c is bounds consistent (BC) for the current domain D if and only if, for
every x ∈ Sc , (x, min(x)) and (x, max(x)) have a bound support in D.

A constraint network N = (x,D, c) is BC in a current domain D if and only if, for every
c ∈ c, c is BC in D.

The notion of consistency can be used to compare constraint models, and in particular
compare constraints to their decompositions.

▶ Definition 2 (Pruning power). Let c be a constraint and N = (x,D, c) be a decomposition
of the constraint, i.e., a constraint network such that:

Sc ⊆ x and
σ satisfies Pc if and only if, there is a solution σ′ of N such that the projection of σ′

onto Sc is equal to σ.
We say that BC on the decomposition N is as strong as BC on the constraint c if for any
current domain D, it holds that N is BC in D implies c is BC in D. Otherwise, we say that
BC on the decomposition is weaker than on the constraint.

2.2 Preemptive Scheduling
The constraint PreemptiveNoOverlap ensures that a set of interruptible tasks requiring
a disjunctive resource do not overlap. Let T = {t1, . . . , tn} be a set of tasks, and let
s = {s1, . . . , sn} and e = {e1, . . . , en} be two sets of variables standing respectively for the
earliest start and latest end times of the tasks, i.e., a task ti ∈ T must be processed in the
interval [si, ei) (closed at the start and opened at the end). Notice that although we will
often use the terms “start (or end) variable” for convenience, these variables actually define
an interval in which the task is processed. In particular, task tj might not be processed at
all at time sj and may be finished at a time strictly earlier than ej . This is apparent in
Definitions 3 and 4, and the reasons for this choice are discussed in Section 3.2.1.

Moreover, let pi be the duration of task ti. For a set of tasks Ω ⊆ T , we write sΩ for the
earliest start time of any task in Ω (sΩ = min({si | ti ∈ Ω})), eΩ for the latest end time of
any task in Ω (eΩ = max({ei | ti ∈ Ω})), and pΩ =

∑
ti∈Ω pi for the total processing time of

tasks in Ω. Since the tasks are interruptible, there must exist a “fragmentation” function
that maps at most one task to each time point. Let H = [0, ub) be a time interval where ub

is some upper bound on the end times of tasks in T , and let a = {ai,τ | ti ∈ T , τ ∈ H} be
Boolean activation variables, where ai,τ indicates whether task ti is active at time τ .

CP 2023
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▶ Definition 3. PreemptiveNoOverlap (on activation variables)

PreemptiveNoOverlap(T , a, s, e)
⇐⇒

∀τ ∈ H
∑
ti∈T

ai,τ ≤ 1 ∧ ∀ti ∈ T
ei−1∑
τ=si

ai,τ = pi

In this paper we consider the case where we do not make the fragmentation function
explicit (via activation variables), but rather only care about the start and end times of
the tasks, while only making sure that some fragmentation function exists. This leads to
Definition 4:

▶ Definition 4. PreemptiveNoOverlap (on start and end variables)

PreemptiveNoOverlap(T , s, e)
⇐⇒
∃f : H 7→ T ∪ {∅}, ∀ti ∈ T , |{τ ∈ [si, ei) | f(τ) = ti}| = pi

2.3 Preemptive Job Shop Scheduling (pJSSP)
In the pJSSP, a set J of n jobs are to be processed on a set M of machines. Each job
Ji ∈ J consists of a sequence of ni tasks that must be executed in order. Each task ti,j ∈ Ji

must be executed on one machine Mi,j ∈M with a processing time pi,j ∈ N. Preemption is
allowed, i.e. tasks can use a machine for some time, stop to let another task be processed,
and then resume at a later time. The objective is to minimise the total makespan, that is,
the maximum completion time of any task (denoted Cmax).

The pJSSP is NP-hard even with two machines and three jobs (J2|n = 3, pmtn|Cmax) [7]
while the non-preemptive version (J2|n = 3|Cmax) is solvable in polynomial time; an O(r4)-
algorithm with r = maxi∈J ni in given in [22]. We have observed that in most academic
data sets used to benchmark job shop scheduling algorithms, there is “no recirculation”, that
is, jobs have exactly one task per machine. However, this particular case is also NP-hard for
as few as three machines since it generalises the flow shop problem which is itself NP-hard
[16]. The approach introduced in this paper applies to job shop problems with or without
recirculation, although all the instances used in the experiments belong to the latter class.

3 Constraint Programming for Preemptive Scheduling

Many propagation algorithms for reasoning on resources for non-interruptible tasks rely on
relaxing non-preemption, and can therefore be applied to the preemptive case with very few
changes, as observed for instance in [24].

The Edge-Finding rule is of particular interest in the preemptive case. It relies on the
overload check implied by the disjunctive resource constraint:

▶ Definition 5. NoOverload

NoOverload(T ) ⇐⇒
∧

Ω⊆T
pΩ ≤ eΩ − sΩ

In the preemptive case, the overload check is not only implied, it is equivalent to
the PreemptiveNoOverlap constraint. The following theorem is a direct corollary of
Proposition 3 in [8]:
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▶ Theorem 6. PreemptiveNoOverlap(T , s, e) ⇐⇒ NoOverload(T , s, e)

The Edge-Finding rule consists in detecting precedence constraints whose violation would
in turn make the overload check false. In the non-preemptive case, they are defined as
shown in Definition 7. They are written here as constraints, but notice that they can be
directly translated to a propagation rule by considering “optimistic” values for variables
in the left-hand side (minima for start times and maxima for end times). Of course both
constraints have a symmetric version (by reflection).

▶ Definition 7. Edge-Finding (non-preemptive case)

sΩ∪{ti} + pi + pΩ > eΩ =⇒ si ≥ sΩ + pΩ ∀Ω ⊆ T , ∀ti ∈ T \ Ω

A slight adaptation is required for the preemptive case [4]. The precondition implies that
task ti must end last among Ω ∪ {ti}, which is not equivalent to starting last since the task
can be interrupted:

▶ Definition 8. Edge-Finding (Preemptive case)

sΩ∪{ti} + pi + pΩ > eΩ =⇒ ei ≥ sΩ∪{ti} + pi + pΩ ∀Ω ⊆ T , ∀ti ∈ T \ Ω

The following theorem is a direct corollary of Proposition 9 in [4] concerning fully elastic
schedules. A fully elastic schedule is one where tasks are preemptive and do not have a
constant demand on the resource when active (however, their total energy, i.e., total resource
demand integrated over time, is a constant). On disjunctive resource, since the demand is
an integer and can only be equal to 0 (inactive) or 1 (active), fully elastic schedules and
preemptive schedules are equivalent. Interestingly, this theorem shows that other rules that
are useful on non-preemptive scheduling (such as the “not-first/not-last” rule) are useless in
the preemptive case.

▶ Theorem 9. Edge-Finding constraints are all bounds consistent on a set of tasks T if and
only if PreemptiveNoOverlap(T ) is bounds consistent.

3.1 Formulation with fragmentation
It is easy to see Definition 4 is not sufficient when the same preemptive task requires
more than a single (disjunctive) resource. Consider the instance illustrated in Figure 1a.
Task t1 requires resources a and b while tasks t2 and t3 require resource a, and t4 and
t5 require resource b. All start and end times are fixed, and under Definition 4, the
constraint PreemptiveNoOverlap is satisfied both for the scope (s1, s2, s3, e1, e2, e3) and
(s1, s4, s5, e1, e4, e5). However, there is no assignment of the variables a = a1,0, . . . , a1,5
which satisfies both constraints under Definition 3. In this section we review the existing
formulations of the disjunctive constraint that model task fragmentation.

A standard way to model preemptive resources is to decompose each task ti into pi

unit-length tasks, where variable xi,k stands for the processing time of the k-th unit of task
ti. Then a disjunctive resource can be represented as an AllDifferent constraint:

▶ Definition 10. AllDifferent decomposition of PreemptiveNoOverlap (w.r.t. Defin-
ition 3)

PreemptiveNoOverlap(T , a, s, e) ⇐⇒
AllDifferent({xi,k | ti ∈ T ∀k ∈ [0, pi)}) (1)

∀ti ∈ T ∀k ∈ [0, pi) ∀τ ∈ H xi,k = τ ⇐⇒ ai,τ (2)
∀ti ∈ T ∀k ∈ [0, pi) si ≤ xi,k < ei (3)
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pi si ei Res.

t1 3 0 6 a and b

t2 1 1 2 a

t3 1 3 4 a

t4 1 2 3 b

t5 1 4 5 b

(a) with vs. without fragmentation

pi si ei

t1 2 0 3 2 5
t2 2 0 3 2 5
t3 2 0 5 2 7

(b) AllDifferent decomposition

Figure 1 An example showing that activation variables are necessary when a task requires
several distinct resources (Figure 1a), and an example showing that the decomposition using the
AllDifferent constraint hinders propagation (Figure 1b).

A similar decomposition holds for the constraint PreemptiveNoOverlap(s, e) when
we ignore the activation variables, and hence Constraint (2).

These two decompositions hinder propagation, i.e., BC on the decomposition is not
equivalent to BC on the global constraint.

▶ Theorem 11. Bounds consistency on Constraints 1, 2 and 3 is weaker than bounds
consistency on PreemptiveNoOverlap(T , s, e).

Proof. Consider the three tasks shown in Figure 1b. The AllDifferent constraint has 6
variables in both decompositions, and there is no Hall interval and hence is BC. Therefore,
the channelling constraints are also BC. Yet the values 2 to 5 are not BC for e3 in the global
constraint, since that would produce an overload in the interval [0, 5). ◀

The decomposition is weaker because the pi units of task ti are interchangeable. Indeed
we may add the following symmetry breaking constraints:

∀ti ∈ T ∀k ∈ [1, pi) xi,k−1 < xi,k (4)

However, there is a quadratic algorithm to achieve BC on the conjunction of an AllDif-
ferent constraint and a set of binary precedence constraints (the AllDiffPrec con-
straint [5]), and which therefore be used to achieve BC on the conjunction of Constraints 1
and 4. Let this formulation be “the AllDiffPrec decomposition”.

▶ Theorem 12. Bounds consistency on the AllDiffPrec decomposition is as strong as
bounds consistency on PreemptiveNoOverlap(T , s, e).

Proof. Let T be a set of tasks with start and end variables s, e, and suppose that
PreemptiveNoOverlap(T , s, e) is not BC. Then there exists a task ti ∈ T whose upper
bound is not BC. By Theorem 6, it means that there exist v ≤ max(ei) and Ω ⊂ T such
that pΩ + pi > max(eΩ, v) −min(sΩ, min(si)). Now, consider the assignment xi,pi

← v in
the decomposition. In order to satisfy the precedences xi,k−1 < xi,k for k ∈ [1, pi), all these
variables must take values less than or equal to v. Therefore, in the decomposition, there
are pΩ + pi variables which must take a value in the interval [min(sΩ, min(si)), max(eΩ, v))
which is unfeasible. It follows that the assignment xi,pi

← v is not BC for the AllDiffPrec
constraint. ◀

This decomposition, however, requires O(N) variables with N =
∑

ti∈T pi, and BC
can be achieved in O(N2) time. However, it can be achieved in a time complexity that
does not depend on N by direct application of Theorem 9. Indeed, there are algorithms
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in O(n log n) [29] or even in linear time (after sorting) [13] to achieve BC on at least one
Edge-Finding constraint. Moreover, since there are at most n2 precedences to enforce,
achieving BC on the PreemptiveNoOverlap constraint can be done in time polynomial
in n only.3

3.2 Formulation without fragmentation
When resources are disjoint, that is, when no task requires more than a single resource, then
the problem can be modelled without representing task fragmentation. Indeed, Definition 4
ensures that a fragmentation such that no two tasks requiring that resource are processed
simultaneously, and each task ti is processed within the time interval [si, ei), in other words,
we have:

∃a PreemptiveNoOverlap(T , a, s, e) ⇐⇒ PreemptiveNoOverlap(T , s, e)

Therefore, when activation variables (a) are not constrained otherwise, the two formulations
are equivalent.

Checking this constraint can be done efficiently: the Jackson Preemptive Schedule
algorithm [9, 18] finds a fragmentation, or proves that none exists in O(n log n) time.
Moreover, Theorem 6 entails that one does not need to find a witness fragmentation if
the constraint propagation of the disjunctive constraint involves the overload check.

3.2.1 Monotonicity
Notice that the definition of the PreemptiveNoOverlap constraint does not force a task
ti to be in process at time si, nor at time ei − 1. In other words, start and end times are
simply bounds within which the task can be processed. It follows that this constraint is
monotonic: decreasing the start time of a task (or increasing its end time) in a satisfying
assignment can never make this assignment inconsistent.

▶ Definition 13 (Monotonic constraints). Let σx←v be the assignment that associates value v

to variable x and that is equal to σ otherwise. We say that a constraint c is monotonic with
respect to a function f : x×D 7→ D if and only if:

Pc(σ) = true =⇒ (∀x ∈ Sc , Pc(σx←f(x,σ(x))) = true)

▶ Lemma 14. The constraint PreemptiveNoOverlap(T , s, e) is monotonic with respect
to any function that is non-increasing for start-time variables, or non-decreasing for end-time
variables.

Proof. The fragmentation of a task remains valid if its start time is decreased or its end
time is increased. ◀

▶ Corollary 15. If the constraint PreemptiveNoOverlap(T , s, e) is satisfiable, then, for
any ti ∈ T , the assignments si ← min(si) and ei ← max(ei) are bounds consistent.

Proof. If the constraint is satisfiable, there exists a consistent and valid assignment, and
by Lemma 14, changing the value of si to min(si) (resp. ei to max(ei)) is a non-increasing
(resp. non-decreasing) operation and hence yields a consistent and valid assignment. ◀

3 In practice a fix-point can be reached in far fewer iterations.
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There are two consequences to the PreemptiveNoOverlap constraint being monotonic.
Firstly, achieving bounds consistency on the PreemptiveNoOverlap constraint can

only prune the upper (resp. lower) bound of the start (resp. end) time variables. However,
bounds of end time variables could be pruned beyond BC without losing solutions. For
instance, assume that task ti is such that si = 0, ei = 3 and pi = 3. Clearly, this task requires
the resource on the whole interval [0, 3) and therefore no other task can start at a time
point earlier than 3. This corresponds to achieving BC on a restriction of Definition 4 where
we constrain every task tj ∈ T to be in process at time sj and at time ej − 1. We have
experimented with this formulation, and BC can be achieved in the same time complexity as
enforcing Edge-Finding, using a slight generalisation of the propagation algorithm for BC on
the AllDifferent constraint [27]. However, besides complexifying the definitions and the
algorithm, it turns out that achieving this extra pruning is counter-productive, at least on
pJSSP benchmarks.

Secondly, in the job shop scheduling problem, the only constraints besides disjunctive
resources are the chain of precedences to represent the job sequences. Therefore, the start
time of a task can always be extended to the end time of the previous task on that job (or
to 0 if it is the first task) without invalidating the schedule. Similarly, its end time can be
extended to the start time of the next task in that job. As a result, we can assume that a
task ends exactly when the next task of its job starts and forbid any idle gap between the
tasks of a job.

4 A Constraint Programming Approach to pJSSP

From the observation made in Section 3.2, we can propose the following constraint model for
the preemptive job shop scheduling problem, with si,j (resp. ei,j) standing for the start (resp.
end) variable associated to the j-th task of job i, and with T = {ti,j | Ji ∈ J , ∀j ∈ [1, ni)}.

min Cmax (5)
s.t. Cmax ≥ ei,ni

∀Ji ∈ J (6)
ei,j ≥ si,j + pi,j ∀Ji ∈ J , ∀j ∈ [1, ni] (7)

ei,j ≤ si,j+1 ∀Ji ∈ J , ∀j ∈ [1, ni) (8)
PreemptiveNoOverlap(Tm, sm, em) ∀m ∈M (9)

The objective variable Cmax represents the makespan, that is, the maximum completion
time of any task (Constraint 6). Constraints 7 and 8 encode respectively the durations
of the task, and the job sequences. As discussed in this section, Constraints 9 (with
Tm = {ti,j | Mi,j = m, Ji ∈ J }, sm = {si,j | ti,j ∈ Tm} and em = {ei,j || ti,j ∈ Tm}) are
sufficient to ensure that a preemptive schedule exists, and can be computed efficiently once
all start and end time variables are fixed.

Moreover, because of Corollary 15, we know that extending the end time of a task cannot
violate the resource constraints. Since the only other constraints are chains of precedences,
extending the end time of task up to the start time of the next task in its job (or extending
its start time to the end time of the preceding task in the job) cannot violate any constraint.

We can therefore replace Constraints 6 and 7 with the following constraints:

si,0 = 0 ∀i ∈ J (10)
ei,j = si,j+1 ∀i ∈ J , ∀j ∈ [1, ni) (11)
ei,ni = Cmax ∀i ∈ J (12)
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Constraints 10 and 12 force the start (resp. end) time of the first (resp. last) task of
every job to be equal to 0 (resp. the makespan), and Constraint 11 ensures that there is
no gap between the end of a task and the start of the next task on its job. With these
constraints, dominated solutions that leave a gap between two consecutive tasks of the same
job are pruned out.

5 Experimental Results

In this section we compare our approach with the state-of-the-art approaches for the pJSSP.
We first describe the two comparison methods: a recent dedicated branch-and-bound al-
gorithm and the commercial solver CP Optimizer.

5.1 State-of-the-art Approaches
Most solution methods for the pJSSP are approximation algorithms [3, 15, 20] and heuristics
[31]. Among the exact methods, Dantzig [10] introduced a linear programming model based
on time index. Le Pape and Baptiste [24, 25] proposed a branch-and-bound procedure
using classical constraint propagation techniques (timetable, disjunctive constraints and
Edge-Finding) extended to preemptive problems. Ebadi and Moslehi have recently proposed
two exact solution methods for the pJSSP, a mixed-integer programming (MIP) approach
[11], and a dedicated branch-and-bound algorithm [12]. As our method, the MIP model
requires no activation variable. It only involves variables for the start and times of the tasks,
with the same guarantee that feasible (resp. optimal) solutions of this MIP correspond to
feasible (resp. optimal) complete schedules, which task fragmentation can be computed
e.g., via application of the Jackson’s preemptive algorithm. However, in order to guarantee
that the overload check is satisfied for a given resource, the model involves a set of linear
constraints of size exponential in the number of tasks requiring this resource. This MIP
model is less efficient than the dedicated branch-and-bound method proposed by the same
authors, and hence we used the latter as reference in our experimental evaluation.

We do not compare with the recent method introduced in [21] in our experiments since
this approach deals with the more general preemptive and flexible JSSP. It uses a logic-based
Benders decomposition that splits the problem into a master problem of assigning operations
to machines and into non-flexible pJSSP subproblems. The master problem is solved by
mixed-integer programming while the subproblems are solved by existing approaches, such
as the one introduced in this paper.

5.1.1 Dedicated Branch-and-Bound
Ebadi and Moslehi’s branch-and-bound procedure [12] employs a depth-first search strategy
to explore the set of feasible schedules without proactively creating unit-length tasks.

However, since the propagation in their method is not as strong as the overload check,
a different technique is used to ensure that the produced schedule follows the Jackson’s
preemptive rule on each machine: unit-length tasks are created lazily when branching. In
the search tree, each node represents a partial schedule with a set of already scheduled
unit-length tasks and a disjunctive graph representing the current precedence relations.
At the root node, the set of scheduled tasks is empty, and the arcs of the graph are only
the precedences between the tasks of the same job. At each decision point, the machine
processing the non-scheduled unit-length task with the smallest availability date is selected.
The branching strategy consists in creating a node for each such task on this machine, with
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this task scheduled at its earliest possible start time. Moreover, dominance rules ensure that
many unit-length tasks can be created and added to the partial schedule at once as edges in
the disjunctive graph. Lower bounds are computed at each node, based on the disjunctive
graph, for pruning the search tree.

This method improved the state of the art for this problem at time of publication, and in
particular Le Pape and Baptiste’s CP model. It was the first to solve large instances (up to
50 jobs and 10 machines) to optimality. To our knowledge, this is currently the most efficient
method to solve the pJSSP problem.

5.1.2 CP Optimizer model
IBM CP Optimizer solver is the most efficient off-the-shelf tool in many scheduling problems.
We describe in this section the standard model for the preemptive job shop scheduling
problem in CP Optimizer.

CP Optimizer allows the use of specific decision variables and constraints. In particular,
interval variables can be used to represent the time during which a task is processed. Interval
variables are defined by a start value, an end value and a size, which are the decision variables
of the problem. We denote ti,j this interval variable, whose start and end time variables
correspond to si and ei respectively. Moreover, in this model, each preemptive task is divided
into unit-length parts. Therefore, for each task ti,j , we introduce pi,j unit-length interval
variables xi,j,k with k ∈ [1, pi,j ] besides the interval variable ti,j .

The problem is described as follows:

min Cmax (13)
s.t. Cmax ≥ ei,ni ∀Ji ∈ J (14)

EndBeforeStart(ti,j , ti,j+1) ∀Ji ∈ J , ∀j ∈ [1, ni) (15)
EndBeforeStart(xi,j,k, xi,j,k+1) ∀Ji ∈ J , ∀j ∈ [1, ni], ∀k ∈ [1, pi,j) (16)

Span(ti,j , xi,j,k : ∀k ∈ [1, pi,j ]) ∀Ji ∈ J , ∀j ∈ [1, ni] (17)
NoOverlap(xi,j,k : ∀Ji ∈ J , ∀j ∈ [1, ni],

∀k ∈ [1, pi,j ] |Mi,j = m) ∀m ∈M (18)

The objective function (13) is to minimise the makespan. Constraints (14) define the
makespan. The global constraint EndBeforeStart is used to model the precedence constraints,
as in the two following constraint sets. Constraints (15) ensure that the tasks of the same
job will be processed with respect to the job sequence. Constraints (16) aim at ordering the
parts of the task and so avoid symmetries, and ensure that each part is treated one after
the other. With the Span global constraint, Constraints (17) are used to ensure that task
interval spans over all its processing parts (i.e., each task starts with its first part and ends
with its last part). With the NoOverlap global constraint, Constraints (18) forbid the
overlapping of tasks processed on the same machine. We denote this model CPOp=1, and
we experimented with several variants of this models where a task tj is cut in fewer than pj

pieces. These variants are sound but incomplete: the optimal schedule on these models is
feasible but not necessarily optimal for the original problem. However, the idea is that they
should be easier to solve and hopefully approximate the optimal solution.

CPOp=ℓ refers to the model where each task ti,j is cut into ⌊pi,j

ℓ ⌋ subtasks of duration ℓ

and one task of duration pi,j mod ℓ.
CPOn=ℓ refers to the model where each task ti,j is cut into ℓ tasks of variable duration
but whose total is constrained to be pi,j (Constraint 19).
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ℓ∑
k=1

sizeOf(xi,j,k) = pi,j ∀Ji ∈ J , ∀j ∈ [1, ni] (19)

To avoid symmetries, we made sub-task interval variables optional and add the following
constraints:

PresenceOf(xi,j,k+1) =⇒ PresenceOf(xi,j,k) ∀Ji ∈ J , ∀j ∈ [1, ni], ∀k ∈ [1, ℓ) (20)
EndOf(xi,j,k) < StartOf(xi,j,k+1) ∀Ji ∈ J , ∀j ∈ [1, ni], ∀k ∈ [1, ℓ) (21)

Constraints (20) ensure that a sub-task can only be present if the previous sub-task is also
present. Constraints (21) guarantees that two successive pieces of the same task do not
immediately follow each other (a task is split only if it has preemption).

Interestingly, the CP Optimizer model using the constraint AllDifferent (as shown in
Definition 10, with the symmetry breaking Constraints 4) instead of NoOverlap turned out
to be much less efficient in our experiments.4 This is surprising because the latter constraint
is more general and yet equivalent when tasks are unit-length. We conjecture that this could
be explained by some hidden preprocessing in CP Optimizer.

5.2 Experimental protocol
We used some standard benchmark instances available in the literature [1, 2, 14, 23, 28].
These instances were proposed for the JSSP without preemption, but are often used in the
preemptive case as well. Characteristics of these benchmarks are summarised in Table 1. For
each benchmark, we report the number of instances (63 in total) that compose it, the size of
these instances (number of jobs × number of machines) as well as the intervals the processing
times are generated from. Detailed information on these instances is presented in [19].

All experiments were performed on three cluster nodes with Intel Xeon E5-2695 v4 CPU
at 2.1 GHz with a 1 hour time cutoff. The branch-and-bound algorithm is implemented in
C++, the exact CPOp=1 model and all of its variants (CPOp=ℓ and CPOn=ℓ for ℓ ∈ {3, 10})
are implemented with the C++ interface of CP Optimizer 12.10.

Our approach was implemented in C++ using Mistral [17]5 with the following search
strategy (corresponding to the default settings): the variable ordering uses the minimal ratio
between domain size and weighted degree heuristic [6], with an exponential decay on the
weights of 0.96 and with the last conflict procedure [26]. The value ordering uses binary
branching with the constraints x ≤ ⌊min(x) + max(x)⌋/2 and x > ⌊min(x) + max(x)⌋/2,
and a geometric restart policy [30] starting at 200 fails and increasing by a factor 1.05.

5.3 Numerical results
Figure 2a shows how many instances are optimally solved by each method as a function of
time. We include the results of the incomplete variants (dashed lines) although these proofs
are weaker: they show that there is no better solution for the restricted model. Nonetheless,
CPOp=ℓ obtains fewer such proofs for ℓ < 10, and CPOn=ℓ can only prove a single instance.

4 Hence we only report results for the best model using NoOverlap.
5 The source code of Mistral is available here: https://github.com/ehebrard/Mistral-2.0 and fea-

tures the model used in our experiments.
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Table 1 JSSP instances characteristics.

Data set Reference Number of Sizes Processing timesinstances

ft6,10,20 [14] 3 6× 6, 10× 10, 20× 20 [1,10],[1,99]10× 5, 15× 5, 20× 5,

la01-40 [23] 40 10× 10, 15× 10, 20× 10, [5,99]30× 10, 15× 15
abz5-9 [1] 5 10× 10, 20× 15 [50,100], [25,100], [11,40]
orb1-10 [2] 10 10× 10 [5,99]
swv16-20 [28] 5 50× 10 [1,100]

Essentially, among exact methods, CP Optimizer (CPOp=1) solves far fewer instances
than other methods in the time available and is slower on the instances it does solve. For
the easiest 50% of instances, both the branch-and-bound method (B&B) and Mistral can
solve them quickly, in about 10 seconds. For the other instances, Mistral is faster and
manages to solve 80% of the instances to optimality against 60% for the branch-and-bound.
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Figure 2 Number of proofs and gap to the best overall solution over time. Dashed lines correspond
to incomplete methods.

Figure 2b shows the average gap to the best known solution over time for Mistral
and four approximate methods namely CPOp=3, CPOp=10, CPOn=3 and CPOn=10. We
observe that none of these variants can find better solutions than Mistral, even considering
a short calculation time. We also notice that the variants that considers fixed subtasks
duration (CPOp=ℓ) are more efficient than the variant that considers a fixed number of
subtasks (CPOn=ℓ) and that for these two variants, the fewer the subtasks, the more efficient
is the method. In fact CPOp=10 finds better solutions than Mistral on two instances: abz7
and abz8.

Results on individual instances are reported in Table 2. Our approach is better than the
branch-and-bound on all but one instance: orb01 where the latter method proves optimality
in 2118 seconds whereas Mistral does not return a proof within one hour. Moreover, within
the one hour cutoff, it finds the best solution over all of the methods considered in these
experiments on all but two of the instances, for which approximate models are more efficient.
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Table 2 Results on every benchmark instance, proven optimal schedules are marked with a “∗”,
best Cmax are in bold font.

Inst. Mistral B&B CPOp=1 CPOp=10 CPOn=3

Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s)

abz5 1203∗ 213.22 1212 3600.00 1299 3600.00 1204 817.51 1266 3600.00
abz6 924∗ 27.28 924∗ 185.14 961 3600.00 924 205.52 957 3600.00
abz7 681 3600.00 749 3600.00 723 3600.00 672 3600.00 746 3600.00
abz8 694 3600.00 750 3600.00 723 3600.00 677 3600.00 766 3600.00
abz9 691 3600.00 752 3600.00 751 3600.00 695 3600.00 817 3600.00
ft06 54∗ < 0.01 54∗ < 0.01 54∗ 0.65 55 0.02 54 3600.00
ft10 900∗ 238.81 900∗ 1846.53 955 3600.00 900 526.71 1035 3600.00
ft20 1165∗ 0.93 1165∗ 6.89 1207 3600.00 1165 260.83 1204 3600.00
la01 666∗ < 0.01 666∗ 0.02 666∗ 24.59 666 0.17 670 3600.00
la02 655∗ 0.03 655∗ 0.05 655∗ 631.14 655 20.91 692 3600.00
la03 597∗ 0.08 597∗ 0.04 597 3600.00 597 19.64 635 3600.00
la04 567∗ 0.06 567∗ 0.14 583 3600.00 567 17.35 599 3600.00
la05 593∗ < 0.01 593∗ < 0.01 593∗ 1.65 593 0.04 593 3600.00
la06 926∗ < 0.01 926∗ 0.02 926∗ 5.52 926 0.1 926 3600.00
la07 890∗ 0.03 890∗ 0.05 890∗ 38.49 890 3.05 890 3600.00
la08 863∗ 0.04 863∗ 0.04 863∗ 144.41 863 2.81 863 3600.00
la09 951∗ 0.04 951∗ 0.02 951∗ 23.18 951 0.64 951 3600.00
la10 958∗ < 0.01 958∗ 0.02 958∗ 24.34 958 0.19 958 3600.00
la11 1222∗ 0.03 1222∗ 0.04 1222∗ 1025.62 1222 3.15 1222 3600.00
la12 1039∗ 0.03 1039∗ 0.05 1039∗ 396.78 1039 1.14 1039 3600.00
la13 1150∗ < 0.01 1150∗ 0.04 1150∗ 99.89 1150 1.56 1150 3600.00
la14 1292∗ 0.02 1292∗ 0.04 1292∗ 14.17 1292 0.23 1292 3600.00
la15 1207∗ 0.18 1207∗ 0.19 1207∗ 1920.59 1207 12.38 1207 3600.00
la16 934∗ 22.03 934 3600.00 961 3600.00 934 244.25 997 3600.00
la17 747∗ 0.1 759 3600.00 794 3600.00 747 110.23 793 3600.00
la18 822∗ 2.65 822∗ 676.12 850 3600.00 822 185.64 864 3600.00
la19 812∗ 318.24 812∗ 1469.22 825 3600.00 814 902.75 894 3600.00
la20 871∗ 3.21 892 3600.00 922 3600.00 875 342.32 926 3600.00
la21 1033∗ 2179 1110 3600.00 1121 3600.00 1033 2674.68 1122 3600.00
la22 913∗ 2.92 930 3600.00 982 3600.00 913 1695.98 1005 3600.00
la23 1032∗ 0.38 1032∗ 1.04 1054 3600.00 1032 221.06 1039 3600.00
la24 909 3600.00 939 3600.00 973 3600.00 910 3600.00 1001 3600.00
la25 947 3600.00 983 3600.00 1071 3600.00 947 2428.74 1073 3600.00
la26 1218∗ 3.45 1232 3600.00 1386 3600.00 1218 733 1272 3600.00
la27 1235∗ 116.59 1346 3600.00 1360 3600.00 1235 2458.09 1337 3600.00
la28 1216∗ 2.72 1255 3600.00 1402 3600.00 1216 1282.21 1299 3600.00
la29 1173 3600.00 1225 3600.00 1325 3600.00 1196 3600.00 1283 3600.00
la30 1355∗ 0.58 1355∗ 0.51 1499 3600.00 1355 143.42 1396 3600.00
la31 1784∗ 1.91 1784∗ 2.13 1835 3600.00 1784 60.13 1790 3600.00
la32 1850∗ 1.12 1850∗ 0.21 1874 3600.00 1850 104.93 1850 3600.00
la33 1719∗ 2.06 1719∗ 0.35 1817 3600.00 1719 59.96 1719 3600.00
la34 1721∗ 2.1 1721∗ 0.92 1836 3600.00 1721 397.13 1768 3600.00
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Table 2: continued from previous page
Inst. Mistral B&B CPOp=1 CPOp=10 CPOn=3

Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s) Cmax time (s)

la35 1888∗ 1.37 1888∗ 0.48 1944 3600.00 1888 587.35 1894 3600.00
la36 1252 3600.00 1297 3600.00 1358 3600.00 1252 3600.00 1360 3600.00
la37 1397∗ 2.72 1411 3600.00 1500 3600.00 1397 2609.27 1503 3600.00
la38 1175 3600.00 1255 3600.00 1308 3600.00 1191 3600.00 1350 3600.00
la39 1221∗ 2.98 1362 3600.00 1389 3600.00 1221 2119.53 1378 3600.00
la40 1199 3600.00 1311 3600.00 1357 3600.00 1234 3600.00 1332 3600.00
orb01 1035 3600.00 1035∗ 2118.7 1115 3600.00 1036 3600.00 1114 3600.00
orb02 864∗ 174.17 869 3600.00 887 3600.00 865 621.22 943 3600.00
orb03 973 3600.00 1054 3600.00 1043 3600.00 975 1191.62 1093 3600.00
orb04 980∗ 266.45 980∗ 182.2 1023 3600.00 981 382.11 1045 3600.00
orb05 849∗ 28.81 852 3600.00 870 3600.00 853 339.27 977 3600.00
orb06 985 3600.00 997 3600.00 1109 3600.00 985 870.98 1079 3600.00
orb07 389∗ 355.36 389∗ 439.51 395 3600.45 390 127.81 389 1511.23
orb08 894∗ 0.26 894∗ 55.94 959 3600.00 894 169.13 960 3600.00
orb09 917∗ 2.67 917∗ 214.58 969 3600.00 920 154.89 988 3600.00
orb10 930∗ 15.36 941 3600.00 1011 3600.00 930 211.73 986 3600.00
swv16 2924∗ 2.03 2924∗ 0.69 2924∗ 191.93 2924 1.94 2924 3600.00
swv17 2794∗ 0.41 2794∗ 0.7 2794∗ 3203.24 2794 9.5 2794 3600.00
swv18 2852∗ 2 2852∗ 0.74 2852∗ 232.57 2852 70.48 2852 3600.00
swv19 2843∗ 5.08 2843∗ 3.09 2970 3600.00 2843 141.85 2843 3600.00
swv20 2823∗ 1.14 2823∗ 0.75 2823∗ 226.14 2823 204.49 2823 3600.00

5.4 Evaluation of the compact model

Finally, we conducted further experiments to assess the gain attributable to the addition of
Constraints 10, 11 and 12 in order to reduce the number of variables and eliminate solutions
that leave a gap between two consecutive tasks of the same job. We ran Mistral on the
basic model (i.e., without Constraints 10, 11 and 12) on the same benchmark instances. We
only present aggregated data here.

The conclusion of these experiments is that both models (with or without) those constraints
are fairly equivalent when considering the objective value only. The average gain, on the
data set I containing only instances that are not proven optimal by both models, is:

1
|I|

∑
i∈I

Cmax(i)− C∗max(i)
Cmax(i) = 0.03

where C∗max(i) denote the objective value for instance i with the extra constraints and Cmax(i)
the objective value without these constraints. The difference is extremely small, and either
model can be best on a given instance.

On instances that were proven optimal, however, the difference is clear and significant:
proving optimality is done in 32.76 seconds on average with the extra constraints, whereas it
takes 81.42 seconds on average without them. Moreover, one instance (la21) can only be
proven optimal within the 1h time cutoff when the extra constraints are used.
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6 Conclusion

In this paper, we introduced a CP model for the preemptive job shop scheduling problem,
and our experimental evaluation shows that it significantly improves the state of the art for
this problem. The key aspect of this approach is the observation that when resources are
disjoint, the Edge-Finding propagation algorithm guarantees that a preemptive schedule
exists, without the need to explicitly compute a fragmentation of the tasks. This approach
generalises to all disjunctive scheduling problems where resources are disjoint.

Extending this approach to general resource hypergraphs is an interesting avenue for
future work. It could for instance be done in a decomposition scheme whereby after solving
the model described in this paper, unit-length tasks are added, however only for those tasks
whose fragmentations on two resources are in conflict.
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Abstract
In this paper, we propose an enhancement of the filtering power of the edge finding rule, based
on the Profile and the TimeTable data structures. The minimal slack and the maximum density
criteria are used to select potential task intervals for the edge finding rule. The strong detection rule
of the horizontally elastic edge finder of Fetgo and Tayou is then applied on those intervals, which
results in a new filtering rule, named Slack-Density Horizontally Elastic Edge Finder. The new rule
subsumes the edge finding rule and it is not comparable to the Gingras and Quimper horizontally
elastic edge finder rule and the TimeTable edge finder rule. A two-phase filtering algorithm of
complexity O(n2) (where n is the number of tasks sharing the resource) is proposed for the new
rule. Improvements based on the TimeTable are obtained by considering fix part of external tasks
which overlap with the potential task intervals. The detection and the adjustment of the improve
algorithm are further increased, while the algorithm remains quadratic. Experimental results, on
a well-known suite of benchmark instances of Resource-Constrained Project Scheduling Problems,
show that the propounded algorithms are competitive with the state-of-the-art algorithms, in terms
of running time and tree search reduction.
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1 Introduction

Scheduling is the allocation of scarce resources to tasks or activities over time. The economic
impact of the scheduling in industries and organizations [6] makes it an important combin-
atorial optimization problem. Industrial resources are workers, machines, electricity power
and raw materials, etc. In computer science, the resources are processors while tasks are
processes to be proceeded. The success of constraint programming on scheduling problems
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is due to the existence of specific global constraints like unary [28] and cumulative [1]
combined with special search strategies [2, 3, 28]. The global constraint is repeatedly called
at each node of the tree search, to remove values from the variables domains when there are
inconsistent by resource constraint. It is NP-hard [12] to remove all such inconsistent values
from the variables domain.

The filtering algorithms used to prune the domain of variables are generally based on
the relaxation of the problem. It can be called many times at each node of the tree search.
Therefore, each filtering algorithm has to be fast, sound, and powerful. The global constraint
cumulative [1] generally embeds timetabling [14, 21, 4] and edge finding [29, 19, 22] as basis.
Some extensions and enhancement of the edge-finding filtering power have been proposed for
more pruning of the domains of variables [18, 23, 30, 15, 11]. Energetic reasoning [24, 2, 7]
and not-first/not-last rules [9, 16, 17, 27] are two other rules generally embedded in the
cumulative constraint when the problem is highly cumulative [2]. The energetic reasoning
rule subsumes all other rules except the not-first / not-last rule [2, 30, 11].

In this paper, we propose a new enhancement of the edge finder rule with the Profile [15]
and to the TimeTable [30] data structures. The new rule called Slack-Density Horizontally
Elastic Edge Finder uses the minimum slack and the maximum density criteria of [19] to
select the potential edge finding task intervals on which the detection rule of [11] is going
to be applied. This new rule subsumes the edge finding rule, is not comparable to the
Gingras and Quimper rule [15], and the TimeTable edge finding rule [30]. A quadratic
algorithm of two-phase (Detection and Adjustment) is proposed for the new rule. To further
enhance the algorithm, we improve the new algorithm by considering the fix part of external
tasks, which overlap with the intervals during the horizontally elastic scheduling of the task
intervals. The final algorithm remains with a quadratic complexity. Experimental results
on a well-known suite of benchmark instances of Resource-Constrained Project Scheduling
Problems (RCPSPs) from the BL set [2] and the PSPLib set [20] show that, the propounded
algorithms are competitive to the state-of-the-art algorithms, in terms of running time and
tree search reduction.

The remaining part of the paper is organized as follows: Section 2 is devoted to preliminary
notions and related works on previous enhancement of the edge finder rule with data structures;
Section 3 presents the new rule based on the global minimum slack and maximum density
criteria; Section 4 proposes an O(n2) algorithm (where n is the number of tasks sharing
the resource) for the new rule; Section 5 uses the TimeTable data structure to improve the
detection and the adjustment of the previous algorithm; Section 6 consists of an empirical
evaluation of the propounded algorithms with the state-of-the-art algorithms on RCPSP
instances; and Section 7 concludes the paper.

2 Preliminaries

This section specifies the Cumulative Scheduling Problem (CuSP) and reviews the edge
finder rule and its enhancements based on data structures.

2.1 A Cumulative Scheduling Problem (CuSP)
In a Cumulative Scheduling Problem (CuSP), a set of tasks T has to be executed on a
resource of capacity C. Each task i ∈ T is executed without interruption during pi time
units and uses ci ≤ C units of the resource. For a task i ∈ T , the earliest starting time
esti and the latest completion time lcti are specified. A solution of a CuSP instance is an
assignment of a valid starting time si to each task i ∈ T such that the resource constraint is
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satisfied, i.e.,

∀i ∈ T, esti ≤ si ≤ si + pi ≤ lcti (1)

∀τ,
∑

i∈T, si≤τ<si+pi

ci ≤ C (2)

Inequalities in (1) ensure that each task is assigned a feasible starting and ending time, while
(2) enforces the resource constraint. We use the notation ei to denote the energy of a task
i ∈ T and it is computed with ei = ci · pi. Each task i ∈ T has an earliest completion time
ecti = esti + pi and a latest starting time lsti = lcti − pi. These notations can be extended
to nonempty sets of tasks as follows:

eΩ =
∑
j∈Ω

ej , estΩ = min
j∈Ω

estj , lctΩ = max
j∈Ω

lctj . (3)

By convention, for empty sets, we have: e∅ = 0, est∅ = +∞ and lct∅ = −∞. Throughout
the paper, we assume that for any task i ∈ T , ecti ≤ lcti and ci ≤ C, otherwise the problem
has no solution. We let n = |T | denote the number of tasks and k = |{ci, i ∈ T}| denote
the number of distinct capacity demands of the tasks. The global constraint cumulative
[1] is used to solve the CuSP problem, which is a NP-Hard problem [12]. The constraint
removes inconsistent values from the domain of starting time variable si ∈ [esti, lsti] and it
is NP-Hard to remove all such values.

2.2 Task Interval, Minimum Slack and Maximum Density
Given two tasks l and u with estl < lctu. A task interval denoted Ωl

u is a set of tasks that
must run entirely within the interval [estl, lctu]. It is formally specified in the following
definition.

▶ Definition 1. [8] Let u and l be two tasks that satisfy estl < lctu. The task interval Ωl
u is

a set of tasks specified by Ωl
u = {j ∈ T | estl ≤ estj ∧ lctj ≤ lctu}.

When the condition estl ≤ estj is released in the definition of the task interval, it is called
in [29] the left cut of T by task u denoted LCut(T, u), i.e., LCut(T, u) = {j ∈ T | lctj ≤ lctu}.
The slack and the density of a task interval are concepts that are useful when designing an
edge-finding algorithm [19].

▶ Definition 2. Let l and u be two tasks that satisfy estl < lctu.
1. The slack of the task interval Ωl

u is the integer denoted sl(Ωl
u) and defined by

sl(Ωl
u) = C · (lctu − estl)− eΩl

u
. (4)

2. The density of the task interval Ωl
u is the real number denoted ds(Ωl

u) and defined by

ds(Ωl
u) =

eΩl
u

lctu − estl
. (5)

In [19], the minimum slack and the maximum density criteria are successfully used to design
a fast edge-finding algorithm.

▶ Definition 3. [19] Let u ∈ T be a task.
1. The task interval of minimum slack Ωτ(u)

u (where τ(u) is a task depending on task u) is
the task interval satisfying the condition:

sl(Ωτ(u)
u ) ≤ sl(Ωl

u), ∀l ∈ T with estl < lctu. (6)
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2. The task interval of maximum density Ωρ(u)
u (where ρ(u) is a task depending on task u) is

the task interval satisfying the condition:

ds(Ωρ(u)
u ) ≥ ds(Ωl

u), ∀l ∈ T with estl < lctu. (7)

These two concepts are used in [19, 18] to select the task intervals that are of interest for the
(extended) edge-finder rule.

2.3 (Extended) Edge Finding Rule
Let Ω ⊂ T be a set of tasks, and i /∈ Ω be a task. If the scheduling of the set of tasks Ω
and the contribution of task i in the interval [estΩ, lctΩ) when task i starts at esti cause an
overload of the interval [estΩ, lctΩ), then it is deduced that all tasks in Ω end before the
end of i and is denoted Ω ⋖ i. The detection rules are specified by the formulas: ∀Ω ⊂ T ,
∀i ∈ T \ Ω

eΩ + ei > C · (lctΩ − estΩ∪{i})⇒ Ω ⋖ i (EF)
esti < estΩ
∧
eΩ + ci · (ecti − estΩ) > C · (lctΩ − estΩ)

⇒ Ω ⋖ i (EEF)

The rule (EF) is called edge-finder detection rule, while (EEF) is known as its extension.
After each detection, the adjustment follows, using this rule:

Ω ⋖ i⇒ esti ≥ max
Θ⊆Ω∧rest(Θ,ci)>0

estΘ +
⌈

rest(Θ, ci)
ci

⌉
(Adj)

where rest(Θ, ci) = eΘ − (C − ci) · (lctΘ − estΘ) is the energy of eΘ that disables the starting
time of task i when scheduled on a resource of capacity C − ci in the interval [estΘ, lctΘ).
A two-phase algorithm of complexity O(kn log(n)) (where n is the number of tasks and k

the different number of resource demands of tasks) based on Θ-Λ-tree data structure was
proposed in [29]. A quadratic algorithm based on the minimum slack and the maximum
density of task intervals is proposed in [19].

2.4 TimeTable Edge Finding Rule
Research revealed that, the first enhancement of the filtering power of the edge finder rule
was made with the TimeTable data structure in [30]. The fix part of the task is taken into
account in the computation of the energy of the set of tasks, resulting in a strengthened rule.
If i ∈ T is a task satisfying lsti < ecti, then the interval [lsti, ecti) determines the mandatory
spanning interval of i. We denote by f(Ω, t) the aggregate of the fix parts over time t by
tasks in Ω, and f(Ω, [a, b)) the fix parts aggregation over the time interval [a, b) by the tasks
in Ω.

f(Ω, t) =
∑

i∈Ω|lsti≤t<ecti

ci; (8)

f(Ω, [a, b)) =
∑

t∈[a,b)

f(Ω, t). (9)

Let eT T
Ω be the TimeTable energy of tasks in Ω. This energy is equal to the energy of

Ω plus the fix energy of the tasks in T \ Ω spent within the interval [estΩ, lctΩ), i.e.,
eT T

Ω = eΩ + f(T \ Ω, [estΩ, lctΩ)). The TimeTable edge finder rule, denoted (TT-EF), is
obtained from (EF), (EEF) and (Adj) by substituting eΩ and eΘ by eT T

Ω and eT T
Θ respectively.
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A quadratic algorithm was proposed in [30] and later refined in [23]. This algorithm
was used in [26] with the lazy clause generation approach, where the explanation of its
propagation is incorporated as nogoods.

2.5 Horizontally Elastic Earliest Completion Time of Tasks Set
The computation of the earliest completion time of a set of tasks for scheduling problems
with resource constraints is known to be NP-hard [12]. Depending on the way tasks are
scheduled, a lower bound of the earliest completion time can be computed. According to
[2], the set of tasks Ω is said to be fully elastic scheduled, if each task i ∈ Ω starts at estΩ
and occupies a total area of ei = ci · pi. At any time t ∈ [estΩ, lctΩ), a task i can occupy
more or less ci units of height and when time t reaches the height C, time t + 1 starts being
occupied. The fully elastic earliest completion time of Ω (denoted ectF

Ω) occurs when all
tasks are completed. It is computed in [29] with the formula.

ectF
Ω =

⌈
max{CestΩ′ + eΩ′ |Ω′ ⊆ Ω}

C

⌉
(10)

In [15], a new way of scheduling a set of tasks called horizontally elastic scheduling is
introduced. A set of tasks Ω is said to be horizontally elastic scheduled, when each task i ∈ Ω
starts at its earliest starting time esti and cannot consume more than its required capacity
at any time during the time interval [esti, lcti). At any time t ∈ [estΩ, lctΩ), the energy that
cannot be executed, due to the limited capacity, is accumulated as an overflow and released
when the resource is no longer saturated. The horizontally elastic earliest completion time of
Ω denoted ectH

Ω occurs when all tasks are completed. The computation of the horizontally
elastic earliest completion time of tasks set is done with a data structure called Profile that
stores the resource utilization over time. The tuples ⟨time, cap, ∆max, ∆req⟩ (where time is
the starting time, cap is the remaining capacity of the resource at the starting time, ∆max
is the maximum resource available at starting time, and ∆req is the maximum resource
required by tasks at starting time) are stored in a sorted linked-list whose nodes are called
time points. The Profile is initialized with a time point of capacity C for every distinct value
of est, ect and lct. A sufficiently large time point is added to act as a sentinel. Finally, while
initializing the data structure, the pointers t.esti, t.ecti and t.lcti are used to return the time
point associated with esti, ecti, and lcti for each task i ∈ T . The horizontally elastic earliest
completion time of a set of tasks Ω denoted ectH

Ω is computed using the functions creq(t),
cmax(t), ccons(t) and ov(t) on the Profile P .

cmax(t) = min
( ∑

i∈Ω|esti≤t<lcti

ci, C

)
is the amount of resource that can be allocated to

the tasks in Ω at time t;
creq(t) =

∑
i∈Ω|esti≤t<ecti

ci is the amount of resource required at time t by the tasks in Ω

if they were all starting at their earliest starting times;
ov(t) is the overflow of energy from creq(t) that cannot be executed at time t due to the
limited capacity cmax(t), and
ccons(t) is the amount of resource that is actually consumed at time t with ccons(t) =
min(creq(t) + ov(t− 1), cmax(t)); ov(t) = ov(t− 1) + creq(t)− ccons(t) and ov(−1) = 0.

The horizontally elastic earliest completion time occurs when all tasks are completed.
Given a set of tasks Ω, the horizontally elastic schedule of Ω uses in [15] the function
ScheduleTasks(Ω, C) of Algorithm 1 to compute the horizontally elastic earliest completion
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time of Ω. The properties of this data structure is the linearity of the function ScheduleTasks,
since the Profile contains at most 4n + 1 time points. For a set of tasks Ω, it is proved in
[15] that ectF

Ω ≤ ectH
Ω ≤ ectΩ where ectΩ is the earliest completion time of Ω.

Algorithm 1 ScheduleTasks(Ω, C) algorithm in O(n) time from [15].

Input: All time point t of the profile P , Ω a set of tasks, C the resource capacity.
Output: the earliest completion time ectH of the set Ω

1 forall t ∈ P do
2 t.∆max ← 0 and t.∆req ← 0
3 for i ∈ Ω do
4 Increase t.esti.∆max and t.esti.∆req by ci

5 Decrease t.lcti.∆max and t.ecti.∆req by ci

6 ect← −∞; ov ← 0; creq ← 0; S ← 0
7 t← P.first

8 while t.time < lctΩ do
9 l← t.next.time− t.time; S ← S + t.∆max; cmax ← min(S, C);

creq ← creq + t.∆req; ccons ← min(creq + ov, cmax)
10 if ov > 0 ∧ ov < (ccons − creq) ∗ l then
11 l← ⌈ ov

ccons−creq
⌉

12 t.InsertAfter(t.time + l, t.cap)
13 ov ← ov + (creq − ccons) ∗ l

14 t.cap = C − ccons

15 if t.cap < C then
16 ect← t.next.time;
17 t← t.next

18 if ov > 0 then
19 return +∞;
20 return ect

2.6 Existing Horizontally Elastic Edge Finder
The Profile data structure is used in [15] to enhance the edge finding rule with the detection
rule: for all i, j ∈ T with lcti > lctj ,

ectH
LCut(T,j)∪{i} > lctj ⇒ LCut(T, j) ⋖ i. (GQHE-EF)

where LCut(T, j) = {k ∈ T | lctk ≤ lctj}. The detection proceeds by batching of tasks of the
same height (capacity demand) and all precedences are made in O(kn2) where k ≤ n is the
number of distinct capacities required by the tasks, and n the number of tasks that share the
resource [15]. If the free energy of height ci of the profile of LCut(T, j) from lctj to esti is
less than the contribution of task i in the interval [esti, lctj) when i starts at esti, then it is
deducted that LCut(T, j) ⋖ i. When the relation LCut(T, j) ⋖ i is detected, the adjustment
phase schedules the tasks of LCut(T, j) on the lower part of the resource of capacity C − ci.
Because of the capacity restriction, it results in an overflow, scheduled on the upper part of
the resource of capacity ci. The ending time of the scheduling is where the earliest starting
time of task i (esti) is adjusted. A quadratic algorithm is presented in [15] for the adjustment
phase.
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In the horizontally elastic edge finder of [11], task i is more constrained than in the
previous one [15] (preemption is allowed to task i). The new rule is based on the formulation:
for all i, j ∈ T with lcti > lctj ,

ectH
LCut(T,j)∪{i′} > lctj ⇒ LCut(T, j) ⋖ i (FTHE-EF)

where i′ is a task derived from tasks i and j whose parameters ⟨esti′ , lcti′ , pi′ , ci′⟩ are

⟨esti, min(ecti, lctj), min(ecti, lctj)− esti, ci⟩.

It is proved in [11] that this rule is stronger than rule (GQHE-EF). Its authors propose
an algorithm of complexity O(kn2) (where k ≤ n is the number of distinct capacities required
by the tasks and n the number of tasks sharing the resource) for the detection. A quadratic
algorithm was proposed for the adjustment of this rule for an overall complexity of O(kn2)
[11].

3 Slack-Density Horizontally Elastic Edge Finder Detection Rule

According to [15, 10, 11], the most challenging part of the strengthening of edge finding rule
with Profile is the detection phase. The rule (GQHE-EF) proposed in [15] is a relaxation
of the rule (FTHE-EF) proposed in [11]. In this section, we propose another relaxation of
this rule based on the notions of minimum slack and maximum density. In fact, in [19], it
is proved that a complete edge finder can be designed using the minimum slack and the
maximum density of task intervals.

For a given task i ∈ T and for a given task u ∈ T with lcti > lctu, there exists a task
τ(u, i) such that estτ(u,i) ≤ esti and for all l ∈ T with estl ≤ esti we have sl(Ωτ(u,i)

u ) ≤ sl(Ωl
u)

(See Definition 6 of [19]). We denote by Ωα(i)
β(i) the task interval of minimum slack among the

task interval Ωτ(u,i)
u for all u ∈ T with lcti > lctu, i.e.,

Ωα(i)
β(i) = argmin{sl(Ωτ(u,i)

u ) | ∀u ∈ T with lcti > lctu}. (11)

In the following lemma, we are going to prove that each detection of the rule (EF) with pair
(Ω, i) is realized by the rule (FTHE-EF) with pair (LCut(T, β(i)), i).

▶ Lemma 4. Let i be a task and Ω be a set of tasks such that i /∈ Ω. If the edge finding rule
(EF) holds with the set Ω and task i, then the rule (FTHE-EF) holds also with LCut(T, β(i))
and task i.

Proof. Let u be the task such that lctu = lctΩ. We have sl(Ωα(i)
β(i)) ≤ sl(Ωτ(u,i)

u ) ≤ sl(Ω) by
definition of Ωα(i)

β(i) and Ωτ(u,i)
u . The rule (EF) applies to Ω and i (i.e., eΩ +ei > C(lctΩ−estΩ))

is equivalent to sl(Ω) < ei which implies sl(Ωα(i)
β(i)) < ei. According to [11, 15], we have

the following dominance properties (FTHE-EF) ⪰ (GQHE-EF) ⪰ (EF) + (EEF) where
(A) ⪰ (B) means that rule (A) subsumes rule (B) and (A) + (B) means the conjunction of
rules (A) and (B). Therefore, from the inequalities ectH

LCut(T,β(i))∪{i′} ≥ ectH
LCut(T,β(i))∪{i} ≥

ectF
LCut(T,β(i))∪{i} > lctβ(i), it follows that the rule (FTHE-EF) holds for LCut(T, β(i)) and

task i. ◀

▶ Example 5. Consider the CuSP instance of Figure 1a where four tasks share a resource of
capacity 2. The rule (EF) holds for Ω = {b, c} and i = d. The tasks interval of minimum
slack Ωα(d)

β(d) is the set Ωα(d)
β(d) = {b, c} and LCut(T, β(d)) = {a, b, c}. The profile of the set

LCut(T, β(d)) ∪ {d′} is depicted in Figure 1b. The overflow remaining after time 6 allows to
detect that LCut(T, β(d)) ⋖ d.
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0 4 8

a b c
d

esta=0

estb,c,d=2 lctd=11lcta,b,c=6

(a) CuSP instance of four tasks sharing a resource of
capacity 2

0 4 8
ov

ccons creq cmax

(b) The profile of the set LCut(T, β(d))∪{d′} =
{a, b, c, d′}

Figure 1 1a: CuSP instance of four tasks sharing a resource of capacity 2 where (EF) detects
{b, c} ⋖ d; 1b: The profile of the set LCut(T, β(d)) ∪ {d′} = {a, b, c, d′} and it is detected that
LCut(T, β(d)) ⋖ d.

For a given task i ∈ T and for a given task u ∈ T with lcti > lctu, there exists a task ρ(u, i)
such that esti < estρ(u, i) and for all l ∈ T with esti < estl we have ds(Ωρ(u,i)

u ) ≥ ds(Ωl
u)

(See Definition 8 of [19]). We denote by Ωγ(i)
δ(i) the task interval of maximum density among

the task interval Ωρ(u,i)
u for all u ∈ T with lcti > lctu, i.e.,

Ωγ(i)
δ(i) = argmax{ds(Ωρ(u,i)

u ) | ∀u ∈ T with lcti > lctu}. (12)

If the extended edge finding rule (EEF) holds with a set Ω and a task i, then the rule
(FTHE-EF) holds also with LCut(T, δ(i)) and task i as it is proved in the following lemma.

▶ Lemma 6. Let i be a task and Ω be a set of tasks such that i /∈ Ω. If the extended edge
finding rule (EEF) holds with the set Ω and task i, then the rule (FTHE-EF) holds also with
LCut(T, δ(i)) and task i.

Proof. Let i be a task and Ω be a set of tasks such that i /∈ Ω. We assume that the extended
edge finding rule (EEF) holds with the set Ω and task i. Let Θ be the set of tasks used
to update the earliest starting time of task i by rule (Adj). The proof of this lemma will
distinguish the case ecti ≥ lctδ(i) from the case ecti < lctδ(i).

If ecti ≥ lctδ(i) then ds(Ωγ(i)
δ(i) ) ≥ ds(Θ) > C − ci since rest(Θ, ci) > 0. The rule (EEF) is

detected by Ωγ(i)
δ(i) and task i since the contribution of task i in the interval [estγ(i), lctδ(i))

is ci(lctδ − estγ(i)). Thus, ectH
LCut(T,δ(i))∪{i′} ≥ ectH

LCut(T,δ(i))∪{i} ≥ ectF
LCut(T,δ(i))∪{i} >

lctδ(i), and the rule (FTHE-EF) holds for LCut(T, δ(i)) and task i.
We assume that ecti < lctδ(i). Let u be a task such that lctu = lctΩ. The task interval
Ωγ(i)

δ(i) has the highest resource consumption spike. Therefore, the set of tasks LCut(T, δ(i))
is the most indicated to disable the start time of task i. The rest of the proof is going to
distinguish two cases: lctδ < lctu and lctδ ≥ lctu.

If lctδ(i) < lctu then, LCut(T, δ(i)) ⊆ LCut(T, u) and the horizontally elastic scheduling
of ω = LCut(T, u) \ LCut(T, δ(i)) is not enough to fill the profile from lctu to lctδ(i).
Therefore, the slack of LCut(T, u) is greater than the one of LCut(T, δ(i)). Task i

has the same contribution in both intervals LCut(T, u) and LCut(T, δ(i)). When this
contribution is considered during the horizontally elastic scheduling of LCut(T, u), it
results to in an overload. The same overload happens when the contribution of task
i is considered during the scheduling of the interval LCut(T, δ(i)). Thus, the rule
(FTHE-EF) holds for LCut(T, δ(i)) and task i.
If lctδ(i) ≥ lctu then, LCut(T, u) ⊆ LCut(T, δ(i)) and the horizontally elastic scheduling
of ω = LCut(T, δ(i)) \ LCut(T, u) is not enough to fill the profile from lctδ(i) to lctu).
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Therefore, the slack of LCut(T, u) is greater than the one of LCut(T, δ(i)). The
contribution of task i in LCut(T, δ(i)) is greater than its contribution in LCut(T, u).
When this contribution is considered during the scheduling of LCut(T, u), it results
in an overload. Therefore, the same overload happens when the contribution of task
i is considered during the scheduling of the interval LCut(T, δ(i)). Thus, the rule
(FTHE-EF) holds for LCut(T, δ(i)) and task i. ◀

According to Lemmas 4 and 6, the application of rule (FTHE-EF) to the intervals
LCut(T, β(i)) and LCut(T, δ(i)) is enough to subsume the (extended) edge finding detection
rule. The new detection rule is based on the application of the rule (FTHE-EF) on the
intervals LCut(T, β(i)) and LCut(T, δ(i)) for all i ∈ T . This rule, denoted Slack-Density
Horizontally Elastic Edge Finder detection, is specified by the formula: for all i ∈ T ,{

ectH
LCut(T,β(i))∪{i′} > lctβ(i) ⇒ LCut(T, β(i)) ⋖ i

ectH
LCut(T,δ(i))∪{i′} > lctδ(i) ⇒ LCut(T, δ(i)) ⋖ i

(SDHE-EF)

We denote by (SDHE-EF) the filtering rule resulting from the combination of the detection
rule (SDHE-EF) with the adjustment of [15]. This rule subsumes the edge finding rule and
its extension combined with the rule (Adj).

▶ Theorem 7. When the detection rule (SDHE-EF) is combined with the adjustment of [15],
the resulting filtering rule subsumes the conjunction of rules (EF) and (EEF) combined with
the adjustment rule (Adj).

Proof. According to Lemmas 4 and 6, any detection made by (EF) and (EEF) is also done by
(SDHE-EF). It is proved in (Theorem 4 of [15]) that the adjustment of [15] is better than the
one performed by rule (Adj) after detection made by rules (EF) and (EEF). Therefore, the
propagation of (SDHE-EF) combined with the adjustment of [15] subsumes the conjunction
of rules (EF) and (EEF) combined with the adjustment rule (Adj). ◀

Back to the CuSP of Figure 1a, after filling the lower part of the resource of capacity 1,
the overflow of three units of energy remains. This overflow is scheduled on the upper part
of the resource of capacity 1. No energy is consumed in the interval [1, 2) since no task is
scheduled in this interval. The scheduling of the upper part of the profile ends at time 4
which corresponds to the same adjustment value made by rule (Adj) with Θ = {b, c}. Indeed,
rest(Θ, cd) = 2 > 0 and estΘ + rest(Θ, cd)/cd = 4. It is known from [11] that (GQHE-EF) is
a relaxation of (FTHE-EF). Therefore, (GQHE-EF) and (SDHE-EF) are both relaxations
of (FTHE-EF) which subsumes the (extended) edge finding rule. In the following theorem,
we prove that the rules (GQHE-EF) and (SDHE-EF) are not comparable, i.e., there exists
propagation only performed by (GQHE-EF) and propagation only performed by (SDHE-EF).

▶ Theorem 8. The rules (SDHE-EF) and (GQHE-EF) are not comparable.

Proof. Consider the CuSP instance of Figure 2a, where three tasks {x, y, z} share a resource
of capacity 2. We have Ωα(z)

β(z) = {x, y} and the rule (SDHE-EF) detects {x, y} ⋖ z. This
precedence is missed by the rule (GQHE-EF) since, in the profile of {x, y}, from time 8 back
to time 2, we have enough free energy to schedule task z.

Converse, we consider the CuSP instance of figure 2b, where four tasks {a, b, c, d} share a
resource of capacity 2. In the profile of {a, b, c}, it remains three units of free energy of height
1 when we move from time 8 back to time 2. This free energy is not enough to schedule task
d and the rule (GQHE-EF) detects the relation {a, b, c}⋖ d. We have Ωα(d)

β(d) = {b, c} and the
rule (SDHE-EF) misses the relation {a, b, c}⋖ d. ◀
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(a) CuSP instance of three tasks sharing a
resource of capacity 2
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(b) CuSP instance of four tasks sharing a resource
of capacity 2

Figure 2 2a: (SDHE-EF) detects {x, y} ⋖ z while (GQHE-EF) misses the detection; (2b):
(GQHE-EF) detects {a, b, c} ⋖ d while (SDHE-EF) misses the detection.

The rule (SDHE-EF) is a relaxation of the rule (FTHE-EF), since it restricts the detection
to two intervals instead of n. It is proved in [11] that the rule (FTHE-EF) is not comparable
to the rule (TT-EF). This result remains between (SDHE-EF) and (TT-EF) as it is proved
in the following theorem.

▶ Theorem 9. The rules (SDHE-EF) and (TTEF) are not comparable.

Proof. Consider the CuSP instance of Figure 3a where five tasks {a, b, c, d, e} share a resource
of capacity 2. We have Ωα(d)

β(d) = {a, b, c, d} and the rule (SDHE-EF) detects {a, b, c, d}⋖ e.
This precedence is missed by the rule (TTEF). Indeed, none of the tasks has a fix part and
the edge finding rule (EF) fails to detect {a, b, c, d}⋖ e.

Conversely, we consider the CuSP instance of figure 3b where six tasks {u, v, w, x, y, z}
share a resource of capacity 2. When the fix part of task x which intersects the interval
[0, 6] is considered, it is detected that {u, v, w} ⋖ z and the rule (TTEF) holds. This
detection is missed by the rule (SDHE-EF), since the contribution of task x in the interval
LCut(T, u) = {u, v, w} is not considered. ◀

0 4 8
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c d e
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estb,c,d,e=1 lcte=11lcta,b,c,d=7

(a) CuSP instance of five tasks sharing a
resource of capacity 2
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w x
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estx,y=4estu,v,w,z=0 lctz=12lctx,y=8

lctu,v,w=6

(b) CuSP instance of six tasks sharing a
resource of capacity 2

Figure 3 3a: (SDHE-EF) detects {a, b, c, d} ⋖ e while (TTEF) misses the detection; 3b: (TTEF)
detects {u, v, w} ⋖ z while (SDHE-EF) misses the detection.

4 Slack-Density Horizontally Elastic Edge Finder Algorithm

The detection algorithm identifies the right bound of the task intervals Ωα(i)
β(i) and Ωγ(i)

δ(i) for
any task i ∈ T . To do so, the function ComputesBound() receives as input the set Test (resp.
Tlct) of tasks sorted in increasing order of est (resp. lct). The global maximum density and
minimum slack are initialized at line 2, while the local maximum density and minimum slack
are initialized at line 4 of the loop of line 3. The loop of line 5 updates the value of the local
maximum density at line 9 and the global value at line 12. Similarly, the loop of line 14
updates the value of the local minimum slack at line 17 and the global value at line 19.

The function ComputesBound has a quadratic complexity as it is shown in Proposition 10.

▶ Proposition 10. ComputesBound runs in O(n2) in time.
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Algorithm 2 ComputesBound(Test, Tlct) in O(n2) time.

Input: Test and Tlct the sets of tasks sorted in increasing order of est and lct
respectively .

Output: The bounds β(i) and δ(i) for all task i ∈ T .
1 forall i ∈ Test do
2 β(i)← −1, δ(i)← −1, maxDensity(i)← 0, minSlack(i)←∞
3 forall j ∈ Tlct with lctj < lctj+1 do
4 E ← 0, maxD ← 0, minS ←∞
5 forall k ∈ Test in reverse order of est do
6 if lctk ≤ lctj then
7 E ← E + ek, density ← E/(lctj − estk)
8 if density ≥ maxD then
9 maxD ← density

10 else
11 if maxD ≥ maxDensity(k) then
12 maxDensity(k)← maxD, δ(k)← j

13 Energy(k)← E

14 forall k ∈ Test do
15 slack ← C(lctj − estk)− Energy(k)
16 if slack < minS then
17 minS ← slack

18 if lctk > lctj ∧minS < minSlack(k) then
19 minSlack(k)← minS, β(k)← j

Proof. The loop of line 3 of complexity O(n) calls sequentially the loops of lines 5 and 14 of
complexity O(n) each. Therefore, the overall complexity of ComputesBound is O(n(n+n)) =
O(n2). ◀

In Algorithm 3, the bounds of the task interval of minimum slack and maximum density
are computed at line 1. In the loop of line 2, for any unscheduled task (line 3), it is checked
at line 6 whether the task interval of minimum slack precedes the task and the relation is
recorded at line 7. When no detection is made by the task interval of minimum slack (line 8),
the task interval of maximum density is used to check the relation at line 10 and the relation
is recorded at line 11.

The complexity of Slack-Density Horizontally Elastic Edge Finder is analyzed in Proposi-
tion 11.

▶ Proposition 11. Slack-Density Horizontally Elastic Edge Finder runs in O(n2) in time.

Proof. The linear function ScheduleTasks is sequentially called twice in the linear loop of
line 2. Combined with the quadratic complexity of the function ComputesBound, the overall
complexity of Slack-Density Horizontally Elastic Edge Finder isO(n2+n(n+n)) = O(n2). ◀

We combine this detection algorithm with the quadratic adjustment algorithm of [15]
proposed for the rule (GQHE-EF). Therefore, the complexity of the two-phase algorithm
(Detection and Adjustment) is O(n2). To our knowledge, this is the first quadratic horizontally
elastic edge finder algorithm.
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Algorithm 3 Slack-Density Horizontally Elastic Edge Finder(Test, Tlct) in O(n2) time.

Input: Test and Tlct the sets of tasks sorted in increasing order of est and lct
respectively.

Output: Prec: the precedence relation.
1 β, δ ← ComputesBound(Test, Tlct)
2 forall i ∈ Tlct do
3 if ecti < lcti then
4 if β(i) ̸= −1 then
5 ect← ScheduleTask(LCut(T, β(i)) ∪ {i′})
6 if ect > lctβ(i) then
7 Prec(i)← β(i)
8 if Prec(i) ̸= −1 ∧ δ(i) ̸= −1 then
9 ect← ScheduleTask(LCut(T, δ(i)) ∪ {i′})

10 if ect > lctδ(i) then
11 Prec(i)← δ(i)

0 4 8

u v w x
y

estu,v,w,x,y=0
lctw,x=5

lctu,v=3

lcty=11

Figure 4 A CuSP instance of five tasks sharing a resource of capacity 3.

▶ Example 12. Consider the CuSP instance of Figure 4 where five tasks share a resource of
capacity 3.

In this example, Ωu
u = {u, v}, sl(Ωu

u) = 5 while Ωu
w = {u, v, w, x}, sl(Ωu

w) = 6. Therefore,
Ωα(y)

β(y) = {u, v} and the rules (EF) and (SDHE-EF) detect that Ωα(y)
β(y) ⋖ y.

5 Improvements

To improve our algorithm, we have taken into account the fix part of tasks T \LCut(T, β(i))∪
{i} (resp. T \ LCut(T, δ(i)) ∪ {i}) which overlap with LCut(T, β(i)) (resp. LCut(T, δ(i)))
during the computation of ectH

LCut(T,β(i))∪{i′} (resp. ectH
LCut(T,δ(i))∪{i′}) and the adjustment.

For a given task j ∈ T \ LCut(T, β(i)) ∪ {i} with a fix part (i.e., lstj < ectj), which
overlap with LCut(T, β(i)) (i.e., lstj < lctβ(i)), a new task denoted f(j, β(i)) is deduced
with the following attributes ⟨lstj , min(ectj , lctβ(i)), min(ectj , lctβ(i))− lstj , cj⟩. We denote
by f(T \ LCut(T, β(i)) ∪ {i}, β(i)) the set of deduced fix parts of tasks which overlap with
LCut(T, β(i)). Analogously, the set of fix part of tasks f(T \ LCut(T, δ(i)) ∪ {i}, δ(i)) which
overlap with LCut(T, δ(i)) is considered during the computation of ectH

LCut(T,δ(i))∪{i′}.
To do so, we first extend the initial time points, by adding those corresponding to

the lsti for all i ∈ T . The number of time points moves from 4n + 1 to 5n + 1 and the
function ScheduleTasks remains linear. During the initialization of increments, for any task
j ∈ T \ LCut(T, β(i)) ∪ {i} (resp. j ∈ T \ LCut(T, δ(i)) ∪ {i}), if tasks j has a fix part
which overlap with LCut(T, β(i)) (resp. LCut(T, δ(i))), ∆max and ∆req are increased by
cj at t.lstj . If ectj < lctβ(i) (resp. ectj < lctδ(i)) then ∆max and ∆req are decreased by cj
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at t.ectj . If ectj ≥ lctβ(i) (resp. ectj ≥ lctδ(i)) then ∆max and ∆req are decreased by cj at
t.lctβ(i) (resp. t.lctδ(i)). For the adjustment, the fix part tasks f(T \LCut(T, β(i))∪{i}, β(i))
(resp. f(T \ LCut(T, δ(i))∪ {i}, δ(i))) is considered during the computation of the maximum
overflow obtained when the set LCut(T, β(i)) (resp. LCut(T, δ(i))) is scheduled on a resource
of restricted capacity C − ci. The additional fix part of tasks can increase both the detection
and the adjustment of the Slack-Density Horizontally Elastic Edge Finder algorithm. For
example, in the CuSP of Figure 2b, when the fix part of task a is considered, the task interval
Ωα(d)

β(d) = {b, c} can detect that Ωα(d)
β(d) ⋖ d and the adjustment follows. It is also the case for

the CuSP instance of Figure 3b, when the fix part of task x is considered.

6 Experimental Results

The new algorithm with improvements was compared to the state-of-the-art horizontally
elastic edge finder algorithms ([15, 11]) on Resource-Constrained Project Scheduling Problems
(RCPSPs). Comparisons are done on instances of benchmark suites of RCPSP of libraries
BL [2] and PSPLib [20] (on sets j30, j60 and j90). Starting time of tasks and makespan
was used as variables of the model. They were constrained by the precedence graph and
resource limitations. Each resource was modeled with a single cumulative constraint [1].
The lower bound of the makespan variable was updated with the horizontally elastic earliest
completion time of the whole set of tasks T . The TimeTabling algorithm of [21] was added
to the common core model. The optimization is based on depth-first search and restart.
Anytime a solution is found, the resolution restarts with an additional constraint, which
states that the next makespan must be (strictly) better than the current one. The optimum
solution is the last solution found within the time limit.

Three configurations of the global constraint cumulative was considered. The first one
denoted GQHE-EF uses the horizontally elastic edge-finder from [15], while the second one
denoted FTHE-EF considers the horizontally elastic edge-finder algorithm of [11]. The last
configuration denoted SDHE-EF is based on the Algorithm 3 for detection, combined with
the adjustment algorithm of [15], all with improvements of Section 5.

Three strategies of selection of variables and values were used to speed up the solving
process. Static heuristic were unscheduled tasks are selected in the chronological order of the
indices and assigned to their lower bound value. COS + DomOvWDeg where the Conflict
Ordering Search heuristic (COS) [13] is combined with the default search strategy of Choco
solver domOverWDeg [5]. COS + Smallest where the COS is combined to the smallest
heuristic (a variable of smallest lower bound among those not yet instantiated is selected
and assigned to its lower bound). The implementation was done in Java using Choco solver
4.10.8 [25]. Any search taking more than 10 minutes was counted as a failure.

In Table 1, the column “solve” indicates the number of instances solved to optimality by
each configuration, “common solve” indicates the numbers of instances each configuration
solves commonly with the baseline configuration SDHE-EF. The column “back<” (resp.
“back>”) indicates the number of instances were each configuration reduces (resp. need) more
backtracks than the baseline configuration. The column “back” (resp. “time”) indicates the
average number of backtracks (resp. runtime in sec) on common solved instances for each
configuration with the baseline configuration.

SDHE-EF always solves more instances than the other configurations, whatever the
heuristic selection considers. On common instances solves with static heuristic by SDHE-EF
and GQHE-EF (resp. SDHE-EF and FTHE-EF) 100 (resp. 67) instances were solved by
SDHE-EF with fewer backtracks (see Table 1). Figures 5a, 5c and 5e compare the number of
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Table 1 Number of instances solved, commonly solved with the baseline configuration SDHE-EF,
where the number of backtracks is less (resp. great) than the one of the baseline. The average
number of backtracks and runtime (in sec) are also provided for commonly solved instances. The
one of the baseline configuration are in brackets.

solve common solve back< back> back time
Static

GQHE-EF 1037 1030 72 100 5569 (5939) 8.294 (4.666)
FTHE-EF 1031 1024 93 67 6997 (7810) 6.552 (3.695)
SDHE-EF 1044 - - - - -

COS + DomOvWDeg
GQHE-EF 1097 1093 213 238 4675 (4912) 9.377 (5.207)
FTHE-EF 1086 1085 209 219 3304 (3209) 11.788 (3.479
SDHE-EF 1121 - - - - -

COS + Smallest
GQHE-EF 1053 1053 32 87 6219 (5859) 7.976 (4.489)
FTHE-EF 1049 1049 42 69 2417 (2360) 10.003 (3.132)
SDHE-EF 1060 - - - - -

backtracks of GQHE-EF and FTHE-EF with the baseline configuration SDHE-EF on each
instances commonly solved. The points above the line y = x shown that SDHE-EF records
less backtracks than the other configurations. Figures 5b, 5d and 5f represent the number
of solved instances as a function of time for each configuration. The running time gains
between SDHE-EF and the two other configurations for static heuristic, is not significant
enough as it is illustrated in Figure 5b.

When the heuristic COS + DomOvWDeg is considered, the average number of backtracks
of SDHE-EF is 3209, which is less than the average number of backtracks of FTHE-EF
(3304), on commonly solved instances with baseline configuration (see Table 1). The average
number of backtracks of GQHE-EF (4675) is less than the one of SDHE-EF (4912). The
average runtime of SDHE-EF is half of the other configurations whatever the heuristic
selection considered (see Table 1). The running time gains between SDHE-EF and the two
other configurations is more prominent as illustrated in Figure 5d and 5f.

7 Conclusion

In this paper, we have proposed a new strengthening of the edge finder rule based on the
Profile data structure. The minimum slack and the maximum density are used to select
the potential task interval for the edge finder rule. The application of the Profile on those
task intervals results in a new rule named Slack-Density Horizontally Elastic Edge Finder.
This new rule subsumes the classic (extended) edge finder rule, but is not comparable to
Gingras and Quimper’s horizontally elastic edge finder rule [15], and the TimeTable edge
finding rule [30]. A quadratic detection algorithm for the new rule is combined with the
quadratic adjustment algorithm of [15], which results in an overall complexity of O(n2) in
time. Improvements based on the TimeTable data structure are obtained by considering fix
part of external tasks during the horizontally elastic scheduling of task intervals. Experimental
results showed that our new algorithm is competitive with start-of-the-art strengthening of
edge finding algorithms, with Profile for time and tree search reduction. It is a good trade-off
between the speed and the filtering power for the rule (FTHE-EF) of [11].

Future works will be devoted to the utilization of the Profile data structure in the energetic
reasoning to reduce its complexity and increase its filtering power.
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(a) # Backtrack Comparison (b) Runtime(sec) Comparison

(c) # Backtrack Comparison (d) Runtime(sec) Comparison

(e) # Backtrack Comparison (f) Runtime(sec) Comparison

Figure 5 5a, 5c and 5e: Comparison of the number of backtracks of different configurations of
the cumulative constraint. SDHE-EF is used as the baseline model. 5b, 5d and 5f : Number of
solved instances as a function of time for the different configurations of the cumulative constraint.
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Abstract
Energy companies are considering producing renewable fuels such as hydrogen/ammonia. Setting
up a production network means deciding where to build production plants, and how to operate
them at minimum electricity and transport costs. These decisions are complicated by many factors
including the difficulty in obtaining accurate current data (e.g., electricity price and transport costs)
for potential supply locations, the accuracy of data predictions (e.g., for demand and costs), and the
need for some decisions to be made due to external (not modelled) factors. Thus, decision-makers
need access to a user-centric decision system that helps them visualise, explore, interact and compare
the many possible solutions of many different scenarios. This paper describes the system we have
built to support our energy partner in making such decisions, and shows the advantages of having
a graphical user-focused interactive tool, and of using a high-level constraint modelling language
(MiniZinc) to implement the underlying model.
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1 Introduction

Moving away from fossil fuels is needed to achieve (net) zero carbon emissions [12]. Part
of this move focuses on the production of hydrogen and ammonia as storage carriers for
their use in mobile applications and seasonal storage. It is estimated the world production
of hydrogen needs to more than double by 2030 [9] and, given around 50% of the current
production [5] relies on natural gas, the demand for “green” hydrogen is even higher. This
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requires energy companies to expand their production capacity as efficiently as possible. To
achieve this, energy companies need to solve a complex combinatorial optimisation problem
with energy sourcing, operation, transport and demand constraints that can be summarised
as making two interdependent decisions – where to build the hydrogen production plants and
how to operate the production and supply process – that minimise costs.

This paper describes the system we have built to support our energy partner in solving
this problem, which we refer to as the facility location and operation problem. While already
deployed at our partner’s servers, the system is in constant evolution to incorporate the
new capabilities our partner requests, while they continue using it. Importantly, the system
does not just consist of a problem model that is instantiated with input data and solved
using a solver, as this did not satisfy our partner’s needs. Instead, we took advantage of
the capabilities of constraint programming modelling languages (MiniZinc [15]) and our
knowledge of interactive user interfaces to build a system that supports users in obtaining,
exploring and comparing solutions in different ways, tailored to our partner’s needs.

In particular, the system provides users with (a) a diverse set of solutions that can be
compared visually and numerically, (b) conflict resolution methods that, upon infeasibility,
identify conflicted constraints and guide users on which to modify, (c) different kinds of data
and model approximations that allow users to explore near-optimal solutions quickly, (d) the
ability to interactively add/remove/modify constraints via the interface to explore different
scenarios, (e) the ability to impose simple robustness constraints that ensure the solution is
resilient to unexpected facility outages, and (f) two different models of the same problem that
are used to cross-validate the correctness of the solutions. The amount of work required to
implement the system was significantly reduced thanks to the use of MiniZinc: its compiler
directly supports (a–b), while its high-level nature significantly simplifies (c–f).

Our industry partner has assessed our code against alternative tools and selected ours
based both on quantitative and qualitative measures (software design & architecture, user
interface, and technology stack), as well as its additional features (diversity and robustness).
This provides some measure of its quality and usefulness.

2 Facility location and operation problem overview

Intuitively, the facility location and operation problem solved by our Hydrogen Network Op-
timisation System (or HyNetOS) aims to select the location and configuration of the hydrogen
production plants needed to supply the demand of the given demand locations, in such a
way as to minimise the total cost of building and operating the resulting production/supply

Supply location

Electrolysis

Compression Gas H2
storage

Liquefaction Liquid H2
storage

Demand
location

boil-off
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Figure 1 Left: solution showing 4 plant locations (squares) and the demand locations each of
them supplies (circles in the plant’s colour). Right: abstraction of a single plant.
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network over a number of years. The left-hand-side of Figure 1 shows a visualisation of a
particular solution, where 4 plant locations (the squares) out of all 9 plant locations given
as input are selected by HyNetOS to supply all demand locations (the circles), also given as
input. The decision of who supplies who is visualised via colour, with demand locations
supplied by the same plant sharing the colour of that plant.

As shown in the right-hand-side of Figure 1, each production plant is itself built using one
or more units of three production components – electrolysers, compressors and liquefiers – and
two storage systems – for liquid and for compressed gas. The units in which each of these five
types of hardware can be delivered, referred to as stock keeping units (skus), have different
characteristics such as capacity, electricity consumption, and maximum change per hour in
production rates, which are given as input. The hydrogen is transported between supply
and demand locations using a truck-based transportation network, where the transport costs
between each supply-demand location are given via an input table. Note that during the
plant sizing, we take into account the impact boil-off has on the final quantity delivered after
transport. Boil-off is the decompression due to the boiling of residual hydrogen liquid as a
result of increased temperature inside a (nearly) empty truck’s storage tank. Further, we
also take into account the location specific price of the available electricity sources necessary
to operate each facility, including the generation of a facility operation schedule to minimise
electricity costs under variable electricity price and availability.

Importantly, the problem is defined across two timescales: periods and hours. A period is
the number of consecutive years during which the demand for hydrogen is assumed to stay
constant. Plants are built during some period and must only increase in size in later periods
since, currently, demand is assumed never to decrease. In contrast, the electricity prices
for some markets are given hourly for an entire year, yielding up to 8760 possible different
prices per market. Because of this, we can potentially perform market arbitrage by adjusting
production rates to fit the market price for electricity. However, this means the optimisation
needs to make power consumption decisions on an hourly resolution.

The problem’s objective is to minimise the total cost of the network, which can be broken
down into the following interdependent cost elements: building (CAPEX) and operating
(OPEX) the hydrogen production plants; transporting the product from supply to demand
locations; and powering the production plants using the available electricity sources. The
latter includes a monthly cost (demand charge) some electricity providers add to try to
flatten their consumer’s load profile, and is proportional to the plant’s highest monthly load.

From an optimisation perspective, this problem is challenging due to the large search
space created by the high number of demand locations to be supplied (several hundreds),
the different electricity sources often available, and the hourly electricity prices the system
must consider across an entire year (up to 8760 per source). This is further complicated
by decisions on two different timescales: plant construction decisions are taken for each
period, while operating decisions are taken hourly. In addition, the dramatic scale difference
between CAPEX (millions) and electricity costs (cents per kWh), makes the model numer-
ically unstable. Together, these factors mean that solving the hydrogen facility model to
optimality can quickly become out of reach even for commercial mixed-integer solvers such as
Gurobi [7]. Furthermore, due to the costs involved, plant construction decisions necessitate
the examination of a range of scenarios, requiring the problem to be solved many times.
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3 Modeller’s view

As HyNetOS is developed for industry and there is no ground-truth, we put special attention
on reducing modelling errors. To do this, we separately implemented and integrated two
models of the problem whose functional equivalence is continuously checked by ensuring
solutions to any model instance can be given to the other without drop in objective or
infeasibility. This practice increases the redundancy of the programming task, thereby
reducing the residual probability of errors [21]. This section presents the input data used by
both models (referred to as Ori for the original model, and Alt for the alternative one, both
always compiled into a MILP problem by MiniZinc), the constraints implemented by one
(Alt) due to space constraints, and the modelling changes that most improved solving time.

3.1 Input data
Both models require the following input data, which MiniZinc refers to as parameters:

D and S: set of client demand locations and set of candidate supply locations, respectively.
K: set of products; currently K = {liq, gas}, i.e., liquid and gas hydrogen, respectively.
H: set of hardware; currently H = {elec, comp, liqf, gas_str, liq_str} correspond-
ing to electrolyser, compressor, liquifier, gas and liquid storage types, respectively.
P : set of constant demand periods and, for each period p ∈ P , how many years py ∈ N it
covers within the given plan horizon (typically 20 years).
SOi: set of electricity sources (market labels) available at supply location si ∈ S.
Elements of set SOi correspond to year-long time series of electricity prices, recorded at
an hourly resolution. Markets are one of three types: (a) utility, a conventional metered
connection with mostly fixed prices, (b) ppa, a fixed-price power purchase agreement with
a renewable energy provider (e.g., solar or wind farm), and (c) wholesale, a market
with generally the lowest price but exposed to volatile price fluctuations. We distinguish
them for their unique features; demand charges typically only apply to utility, while
ppa is a zero carbon emissions source, necessary to achieve carbon targets in the future.
Ti ⊆ {t1, t2, . . . , tτ }: set of time steps considered for a single representative year at supply
location si ∈ S. Each time step t ∈ Ti has a duration in hours hi,t ∈ {1, . . . , 24}, during
which the price of electricity is constant. The value of τ ranges between 365 and 8760,
corresponding to the cases where every time step represents 1 day and 1 hour, respectively.
Their sum

∑
t∈Ti

hi,t must always be 8760.
Dk

p,j ∈ R≥0: daily demand of product k ∈ K from location dj ∈ D throughout period
p ∈ P , in tonnes per day.
T k

p,i,j ∈ R>0: transport cost in $ per kg of product k sent from supply location si ∈ S to
demand location dj ∈ D during period p ∈ P .
cso

p,i,t ∈ R>0: electricity cost of source so ∈ SOi at supply location si ∈ S during time
step t ∈ py of any year of period p ∈ P , in millions of $ per MW.
ĉso

p,i,t ∈ R≥0: demand charge of source so ∈ SOi at supply location si ∈ S during time
step t ∈ py of any year of period p ∈ P in millions of $ per MW. Common for utility.
lbso

i ∈ R≥0: minimum annual energy usage in MWh required to be allowed to consume
energy from source so ∈ SOi at location si ∈ S. In practice, only relevant for ppa.

For each hardware type h ∈ H, we also need the set of concrete stock keeping units (skus)
in which h can be delivered, and the following hardware-specific properties:

Nh: number of available skus for h, from which we build index set C = 1..N c.
Cc ∈ R>0: capacity of sku c ∈ C in tonnes per day.
Kc

p: ownership cost in millions of $ for one sku c ∈ Ch starting from period p ∈ P .
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νh ∈ [0..1]: minimum production (turndown) rate proportional to installed capacity for h.
eh ∈ R≥0: electricity usage in MWh per tonne of production needed to run h.
ρh ∈ [0..1]: overhead to production and storage for h ∈ {comp, liqf, gas_str, liq_str}
required to compensate for boil-off.
µ ∈ [0..1]: maximum ramping rate of the liquefaction units.

3.2 Decision variables, constraints and objective function
Figure 2 shows the objective and constraints in model Alt, where blue is used for decision
variables and black for input data, split into the following six groups.

Network constraints. As hydrogen demand is assumed to stay constant throughout any
period p ∈ P, we assume the supply network will also stay constant throughout p. Thus,
we only have to decide once per period p which location si ∈ S supplies (part of) the
daily demand of location dj ∈ D for product k ∈ K. The network constraints encode these
assumptions. Variable xk

p,i,j represents the percentage of the demand dj of product k supplied
by location si in period p. Constraint (1) ensures that every product of every demand location
is serviced in its entirety by the supply locations. In order to satisfy the demand induced
by the network, production plants must be built at one or more of the supply locations.
Binary variable bk

p,i represents whether a plant for product k is built at location si at (or
before) period p, i.e., whether there is a plant in si producing k in period p. Constraint (2)
ensures bk

p,i = 1 whenever any xk
p,i > 0, thereby capturing the need for a plant. Currently,

hybrid facilities (producing both gas and liquid for offtake) are disallowed via constraint (3);
a requirement of our industry partner.

The objective, shown in expression (26), includes as its first component the sum of the
total cost of transporting the product across the links selected with non-zero weight x, where
transporting the entire demand (of Dk

p,j tonnes per day) of product k from si → dj costs T k
p,i,j

in period p.

Offtake constraints. During a period p ∈ P, the daily demand Dk
p,j of product k ∈ K at

every location dj ∈ D is constant. Thus, we denote as zk
p,i the offtake rate (in tonnes per

day) of any supply location si ∈ S for period p and product k, i.e., the rate at which the
plant at location si must produce k over the long term, using storage to buffer production
rate changes in the short term. Constraints (4) and (5) define zk

p,i for k = liq and k = gas,
respectively. Note that the offtake of gas zgas

p,i includes the material needed to produce liquid
from that gas through liquefaction, and not just the transport requirements of gas.

Plant capacity constraints. Producing zk
p,i of product k ∈ K requires a production plant at

location si ∈ S during period p ∈ P that is of suitable capacity. This can be modelled using
the following five constraints. First, let variable uc

p,i represent how many of sku c ∈ Ch of
hardware type h ∈ H are newly installed at the start of period p (and thus available for use
in p) in supply location si. The maximum (or peak) production capacity of the plant at
location si in period p is defined by constraint (6) as the sum of the skus capacities installed
up to p, and denoted by variable yh

p,i. By tying the capacity to the cumulative number of
newly installed units, we ensure plants can only grow in size.

Second, the plant must be big enough for its peak capacity to meet the offtake rate zk
p,i.

This is ensured by constraint (7), which adds the overhead factor ρh to the normal offtake to
take transportation boil-off into account. The boil-off factor is applied differently to different
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∑
si∈S

xk
p,i,j = 1 ∀p, dj , k where Dk

p,j > 0 (1)

xk
p,i,j ≤ bk

p,i ∀p, si, dj , k (2)∑
k∈K

bk
p,i ≤ 1 ∀p, si (3)∑

dj ∈D

Dliq
p,jxliq

p,i,j = zliq
p,i ∀p, si (4)

zliq
p,i +

∑
dj ∈D

Dgas
p,j xgas

p,i,j = zgas
p,i ∀p, si (5)

∑
1≤p′≤p,

c∈Ch

Ccuc
p′,i = yh

p,i ∀p, si, h (6)

(1 + ρh)zh→k
p,i ≤ yh

p,i ∀p, si, h ∈ {elec, comp, liqf} (7)

zh→k
p,i ≥ νhyh

p,i ∀p, si, h ∈ {elec, comp, liqf} (8)

ρh→kzh→k
p,i + mh→kbh→k

p,i ≤ yh
p,i ∀p, si, h ∈ {gas_str, liq_str} (9)

mliqzliq
p,i ≤ yliq_str

p,i ∀p, si (10)

νhyh→k
p,i ≤ p̂h→k

p,i ∀p, si, h ∈ {elec, comp, liqf} (11)

p̂h→k
p,i + ph→k

p,i,t + ρhzh→k
p,i ≤ yh

p,i ∀p, si, t, h ∈ {elec, comp, liqf} (12)
pliq

p,i,t+1 − pliq
p,i,t ≤ µhi,ty

liqf
p,i ∀p, si, t (13)

pliq
p,i,t − pliq

p,i,t+1 ≤ µhi,ty
liqf
p,i ∀p, si, t (14)

pliq
p,i,0 − pliq

p,i,|Ti| ≤ µhi,ty
liqf
p,i ∀p, si, t (15)

pliq
p,i,|Ti| − pliq

p,i,0 ≤ µhi,ty
liqf
p,i ∀p, si, t (16)

sh→k
p,i,t ≤ yh

p,i ∀p, si, t, h ∈ {gas_str, liq_str} (17)

sgas
p,i,t+1 = sgas

p,i,t + hi,t

24
(
p̂gas

p,i + pgas
p,i,t − p̂liq

p,i −
pliq

p,i,t + pliq
p,i,t+1

2 − zgas
p,i + zliq

p,i

)
∀p, i, t (18)

sliq
p,i,t+1 = sliq

p,i,t + hi,t

24

(
p̂liq

p,i +
pliq

p,i,t + pliq
p,i,t+1

2 − zliq
p,i

)
∀p, i, t (19)

sk
p,i,1 = sk

p,i,|Ti| = 0 ∀p, si, k (20)
24ep,i,t = eelec(p̂gas

p,i + pgas
p,i,t) + ecomp(p̂gas

p,i + pgas
p,i,t + ρgaszgas

p,i ) +

eliqf
(

p̂liq
p,i +

pliq
p,i,t + pliq

p,i,t+1

2 + ρliqzliq
p,i

)
∀p, i, t (21)∑

so∈SO

eso
p,i,t = ep,i,t ∀p, si, t (22)

ĉso
p,i,te

so
p,i,t ≤ êso

p,i,m[t] ∀p, si, t, so (23)( ∑
t∈Ti

(hi,te
so
p,i,t) > 0

)
=⇒

( ∑
t∈Ti

(hi,te
so
p,i,t) ≥ lbso

i

)
∀p, si, so (24)

uc
p,i ∈ N0; bk

p,i ∈ {0, 1}; 0 ≤ xk
p,i,j ≤ 1; y, z, p, s, e ∈ R≥0 (25)

min
∑

p,i,j,k

(
T k

p,i,jxk
p,i,j

)
+

∑
p,i,c

(
Kc

puc
p,i

)
+

∑
p,i,t,so

(
cso

p,i,te
so
p,i,t

)
+

∑
p,i,m,so

(
êso

p,i,m

)
(26)

Figure 2 Objective and constraints for the Alt model of the HyNetOS decision system.
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types of hardware h ∈ H because boil-off comes in uncompressed gas form. Thus, it has to
pass through the compressor and the liquefactor but not the electrolyser. We use h → k to
indicate a mapping from hardware to product. For example, since the electrolyser h = elec
produces k = gas, the electrolyser must be scaled to meet gas demand zh→k

p,i . Third, the
plant should not be so big that running at minimum capacity yields more product on average
than is demanded. Constraint (8) captures this requirement, where the minimum production
rate depends on the minimum turndown capabilities νh of the hardware. Finally, we impose
two kinds of minimum storage size constraints. The first constraint ensures two things: 1)
that every plant has at least some gas storage for buffering boil-off during transport, which
is captured as a fraction ρh→k of daily production rate zk

p,i, and 2) that every plant meets a
global minimum storage amount mh→k if it is built (bh→k

p,i ) (constraint (9)).
The second constraint ensures enough liquid storage is built to sustain liquid hydrogen

offtake for a minimum number of days mliq (constraint (10)).
The construction of any sku c ∈ Ch of hardware h ∈ H incurs CAPEX and OPEX costs.

These are aggregated into the period-specific component cost Kc
p (in millions of $ per unit)

and accumulated via the number of skus newly installed in p (given by uc
p,i), yielding the

objective term Kc
puc

p,i. The sum of these objective terms forms the second component of the
objective, shown in expression (26).

Production constraints. For the plant operation, we model the average operating costs
through a representative year per period. This means we create a production schedule for
one year in each (constant demand) period, which then repeats for however many years the
period is long. The production rate of hardware h ∈ H for product k ∈ K at supply location
si ∈ S during period p ∈ P is allowed to change during each of the time steps t ∈ Ti defined
for that location. The production rate is measured in tonnes per day and modelled via two
terms: p̂h→k

p,i + ph→k
p,i,t . Here, p̂h→k is the constant baseline production amount, and ph→k

p,i,t

the component that is variable in time step t. Constraint (11) ensures the baseline exceeds
the minimum turndown production rate. Constraint (12) ensures the flexible component
never exceeds the installed capacity, while also keeping sufficient headroom for the boil-off
fraction ρ that has to be re-compressed and re-liquefied. Constraints (13) and (14) deal
with h = liqf having a slow ramping speed. They constrain the ramp up and down rate,
respectively, between two consecutive production rates (where the consecutive steps wrap
around the year, via constraints (15) and (16)), such that the change in rate does not exceed
the ramping capability µ of liquefaction (0.1 of total capacity, i.e., 10%) by the number of
hours hi,t for which the ramping is maintained.

Storage constraints. Variable production is buffered via storage: overproduction causes
the storage level to increase, while underproduction causes the constant offtake to drain the
storage. At every time step t ∈ Ti of supply location si ∈ S in period p ∈ P, we track the
storage level of product k ∈ K in tonnes via variable sk

p,i,t. Constraint (17) ensures we never
store more than the plants’ installed storage capacity. Changes in storage levels are captured
by constraints (18) for k = gas, and (19) for k = liq. In both, the storage in t+1 is an offset
from the storage in t, plus hourly production (baseline plus flexible), minus offtake (either
by the liquefaction unit, or by the demand locations constant offtake factor). In addition, we
anchor the storage to a baseline with a wrap-around constraint in (20). Adding a baseline
of 0 at each year’s end removes some of the symmetries in storage schedule solutions and
ensures the storage level is implementable across period changes.
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Electricity cost constraints. The last set of constraints connects the daily hydrogen produc-
tion to the electricity cost required to produce it. To this end, at every time step t ∈ Ti for the
plant of supply location si ∈ S in period p ∈ P , we represent the power consumption in MW
of the plant via variable ep,i,t. This variable is defined by constraint (21) as the sum of the
power consumed by the plant’s hardware h ∈ {elec, comp, liqf} to produce the required
hydrogen in t of p, i.e., as the electricity usage eh multiplied by the production rate at that
time which, as before, is formed by a baseline p̂k

p,i,t component, plus a flexible and possibly a
boiloff one. Since our production rates are daily, we downscale the power consumption by
factor 24 to the per-hour rate. Constraint (22) distributes the power consumption among
sources via variables eso

p,i,t, which represent the power consumed from each electricity source
so ∈ SO available at that location. These variables are used to derive the cost of this power,
which is accumulated in the third sum of the objective. Constraint (23) defines variable
êso

p,i,m[t] representing the monthly demand charge for the month m[t] ∈ {1, . . . , 12} where
time step t falls. It is the maximum demand charge (cost cso

p,i,t of each MW consumed eso
p,i,t)

that can be obtained due to the power consumed at each t of that month. This accounts for
the last sum of the objective. Finally, constraint (24) ensures electricity source so ∈ SO is
selected only if its minimum annual energy usage lbso

i is met.

3.3 Effective modelling and solving in practice

One of the primary benefits of using a Constraint Modelling Language such as MiniZinc is
that it takes care of the details of mapping models to solvers efficiently (e.g., linearisation).
This is important because writing good (i.e. efficiently solvable) models can otherwise be
a process of significant trial-and-error, as much an art form as a science. While there are
important strategies for good modelling [22], the “last mile” of good practice involves rules
of thumb, such as minimizing the number of integer variables in favour of floats, or avoiding
equalities if possible. MiniZinc takes care of these during compilation, allowing the modeller
to focus on semantic changes. Nevertheless, because of its high level nature, it is equally
well-suited to rapid prototyping of model changes. This is why for our industry partner’s
quantitative evaluation of the system, we were able to use MiniZinc to try to find model
improvements that reduce the total runtime. To do this we took a reference implementation
of the model and evaluated the runtime of several model changes. The progression of these
changes is shown as a box plot in Figure 3 and discussed below.

1. Split power equality. The power equality (21) involves variables eso
p,i,t that are directly

minimized in the objective. As such, it is tempting to remove the equality constraint by
replacing it with ≥, such that the model will always demand at least as much power as
needed to produce the hydrogen. However, this change allows overconsumption of power to
meet the PPA minimum requirement (24). Therefore, we split the power equality constraint
into a greater than and a conditionally applied less than part, which is only applied if the
source has a minimum usage requirement through a conditional constraint:
forall (i) if (min_use[i]) then

∑
so∈SO eso

p,i,t = ep,i,t else
∑

so∈SO eso
p,i,t ≥ ep,i,t endif;

2. Tighter constraints. Plant production boolean bk
p,i is tied to many floating point supply

indicator variables. Instead of defining them separately, we can define the state activity
indicator with a single constraint, which will be active if any demand is supplied, i.e.:∑

dj∈D xk
p,i,j ≤ |D| bk

p,i, ∀p, si, k



M. Klapperstueck et al. 21:9

159.7 163.5
152.6 153.1 151.1

141.8 1594.9 1601.6
1667.3

1580.9 1594.2

Gurobi HiGHS

Original 1 2 3 2+3 Scale Original 1 2 3 2+3

1500

2000

100

150

200

250

So
lv

e 
tim

e 
(s

)

Figure 3 Response of model solve time as a result of model changes; mean time annotated.

3. Direct objective formulation. In our reference implementation, the objective terms are
captured by intermediate variables for each of the sums that make up the objective. We can
rewrite the objective directly in terms of the base variables, allowing the compiler to group
terms together, and furthermore helping the MIP solver to prove optimality faster.

We evaluated the time-to-optimality with each model change over 10 runs with different
seeds for the solver, to average out effects of solver-internal randomized branching choices
and heuristics, and capture statistically meaningful averages on the total runtime. We used
a Linux machine with AMD Ryzen 9 3950X 16-Core Processor (3.5-4.7 GHz) and the input
data file A shown in Table 1, which has 9 supply locations, 100 demand locations, 3 skus
per hardware type, and an average period length of 642 tiers (min 365, max 1338). Figure 3
tracks the distributions of total runtime as the changes are implemented, for the Gurobi
9.5.1 and HiGHS 1.5.0 [8] solvers. We also evaluated the combination of 2 and 3 which
individually seemed to produce improvements. Nevertheless, the combination of compilation
and pre-solving means that most changes have no significant effect. The biggest improvement
comes from adjusting how Gurobi scales the objective terms, by changing the ScaleFlag
parameter. We believe this is due to the nature of the hydrogen facility location problem,
where many candidate integer assignments are inherently feasible: we can always redistribute
the supply network and adjust production rates. The optimisation is thus primarily guided
by the (large) objective. We hypothesise that a core-guided search [6], which always assumes
constraints can be satisfied and iteratively tightens the model upon detecting an infeasibility,
would be a better strategy to solve this kind of model. However, due to the prevalence of
floating point data, no core-guided solver available to us can be applied to this problem.

4 From modellers to users

To integrate our models into a useful decision system we extended them with functionality
that its users (engineers and business experts) could access via the system’s user interface
(see Section 5). This includes minor changes to allow many decisions to be set to true/false
by the user to explore different scenarios, as well as the more significant ones discussed here.

4.1 Run-time versus accuracy – approximations and warm-starts

The large number of variables involved in the hourly operational decisions, can make solving
our models to optimality too time consuming for the user. Further, approximate solutions
may be sufficient whenever users are interactively exploring what-if scenarios. Our system
gives users several ways to control the time versus optimality trade-off, by means of the
following two approximation options and warm-start strategy.
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Constraint approximation – annual constant production. This approximation (referred
to as App) allows each plant to run at a constant daily production rate sufficient to exactly
meet the daily demand that the plant supplies. This means no intra-day or seasonal storage
is required and plants can simply build the minimum storage capacity. As a result, in this
version of the model all the production and storage constraints (11–20) are removed, and the
electricity usage constraints are reformulated to operate on the total annual energy demand
under a constant production. As such, the (hourly) energy cost coefficients cso

p,i,t are rescaled
to the total annual cost for a given offtake rate in tonnes per day:

cso
p,i = (ee + ec + el)

∑
t∈Ti

(
cso

p,i,t · hi,t

24

)
Data approximation – price-tier grouping. In practice, many hours in a year often have
identical prices for electricity. Since the only driver for operational decisions is a reduction
in electricity price, we can group consecutive time steps with equal price. We use the utility
market to inform the grouping operation, as utility prices often stay constant for hours, e.g.
a daytime tariff and a cheaper night-time tariff from 11pm to 6am. For the other markets
in the same compressed time step, we take the median price as the constant price. This
approximation (referred to as Tie) reduces the cardinality τ of the set Ti, thereby significantly
reducing the total number of floating point variables in the instance (see Table 1).

Warm-starting strategy. Both App and Tie approximations are valid, i.e., if their solutions
are fed to the non-approximated model (referred to as Exa and Hou, respectively) they also
yield a solution: we can always set the production schedule at a finer time granularity to be
equal to the constant-production (rate) assumptions at the coarser level. In addition, they
can be combined to further speed up the search at the cost of accuracy. This observation
informs our three-stage warm-starting strategy:
1. Solve using an approximate version of the model (i.e., App-Hou or App-Tie) to optimality;
2. Assign the integer decisions of that solution to the equivalent variables using an exact

version of the model (i.e., Exa-Hou or Exa-Tie, resp) and resolve;
3. Warm-start that last used model with the solution from step 2 and resolve to optimality.
The final step arrives at the same objective as a traditional execution (referred to as cold-start)
using the same model; however, it will find a good quality initial solution much faster.

Table 1 Size, solving time and objective value of the instances obtained with four data files.

Input data size Instance size for Gurobi solver
File |S| |D| N M t/day Model Float Int Cons. Time(s) Ratio
a 9 100 9 18 [40] Exa-Hou 597.7 k 144 835.6 k 5114.85 1.000

Exa-Tie 96.6 k 144 65.3 k 34.96 1.020
App-Hou 2.0 k 144 3.4 k 0.22 1.055
App-Tie 2.0 k 144 3.4 k 0.19 1.068

b 7 100 9 14 [278] Exa-Hou 457.1 k 112 642.2 k 20982.06 1.000
Exa-Tie 74.7 k 112 56.5 k 38.06 1.008
App-Hou 1.6 k 112 2.7 k 0.19 1.017
App-Tie 1.6 k 112 2.7 k 0.17 1.016

c 9 100 9 18 [278] Exa-Hou 597.7 k 144 835.6 k 22605.64 1.000
Exa-Tie 96.6 k 144 65.3 k 84.38 1.009
App-Hou 2.0 k 144 3.4 k 0.31 1.017
App-Tie 2.0 k 144 3.4 k 0.31 1.018

d 9 709 9 18 [283, Exa-Hou 1217.4 k 360 1706.7 k — —
293] Exa-Tie 215.2 k 360 166.0 k 1309.47 > 1.016

App-Hou 26.1 k 360 42.2 k 7.81 > 1.027
App-Tie 26.1 k 360 42.2 k 5.37 > 1.027
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Figure 4 Quality of incumbent solution (ratio over optimum) as a function of log runtime obtained
by the warm- and cold-start strategies on each instance. Stage solutions are annotated with points.

Experimental snapshot. Table 1 shows a snapshot of the trade-offs obtained by the above
methods instantiated with four data files (A-D). For each file, it shows the number of
supply locations |S|; demand locations |D|; skus over all hardware types, N =

∑
h Nh;

markets M =
∑

i |SOi|, and total demand per period in tonnes/day. It then shows the
number (in thousands) of floating-point variables, integer variables, and constraints in the
instance resulting from compiling each data file with either an Exa-Hou, Exa-Tie, App-Hou
or App-Tie model for the Gurobi solver. The last two columns show the time (where –
indicates a timeout) to find an optimal solution and prove optimality when executing each
instance in cold-start mode using MiniZinc 2.7.6 and Gurobi 10.0.0.2, and the ratio between
the best objective value found using the most accurate Exa-Hou model and the others.

Figure 4 compares the improvement of feasible solutions over time obtained with a
cold-start run of the Exa-Hou model instantiated with the data files of Table 1, and with our
warm-start strategy, using MiniZinc 2.7.6 and Gurobi 10.0.0.2. Typically, by the time the
cold-start finds its first feasible solution (15+ minutes), the warm-start is in its third stage
and up to 5% gap to optimality.

4.2 Diversity of solutions
As is common in optimisation, every instance of our problem has many optimal (and even
more close-to-optimal) solutions. It is thus useful for decision-makers to obtain a number
of close-to-optimal alternative solutions that are meaningfully different in terms of the
components being optimised (e.g., transport vs electricity cost) or some major decisions
(e.g., plants locations or capacities). Ingmar et al. [11] proposed strategies to find N diverse
solutions of a model instance where the model includes the required user-defined diversity
measures. One of these strategies iterates at most N − 1 times from an optimal solution
looking for a new solution that is as close to optimality as desired by the user, and is
maximally diverse w.r.t. all previously found solutions.

This strategy is now implemented1 in MiniZinc and used in our system by simply
importing from our models a set of diversity measures our users can choose from. The
measure most used currently is the Manhattan distance between the vectors of the Boolean
variables bk

p,i indicating there is a plant at supply location i ∈ S in period p ∈ P . Figures 5
and 7(D) show the results of one of the implemented diversity metrics, i.e. maximum
diverse set of supply locations. To highlight the differences between diverse solutions our

1 It will be released as part of the MiniZinc Python package [3] before the end of the year.
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system allows users to compare solutions in terms of their supply/demand network, the
configuration of the plants they selected, their cost components, etc. Such comparisons have
already been useful in identifying, for example, supply locations that appear in all optimal
and close-to-optimal solutions due to their favourable cost coefficients (e.g. green location
in Figure 5) and are thus prime candidates for construction.

Figure 5 Three maximally diverse solutions within a maximum optimality gap of 0.02, using as
distance measure the Manhattan distance of the vector of supply locations built by each solution.

4.3 Robustness against plant shutdown
In practice, optimal solutions may lack robustness against uncertain events. There are many
sources of uncertainty in our problem, from changes to input data (e.g., costs, demand or
hardware technology) to loss of production due to plant shutdowns. Our system is not yet
required to deal with the former, as our users are still determining how to build reliable
future scenarios and/or probability distributions. It can however be used to find solutions
that, in the event of any plant failure, guarantee the supply of a user-defined minimum
percentage of the total demand of the network (denoted as new parameter gs ∈ [0..1], set to
0 as default). This allows users to compare optimal but non-robust solutions against robust
but non-optimal ones. We achieved this by adding constraint (27) to the models to ensure
that for every period p ∈ P, supply location si ∈ S, and product k ∈ K, the user-defined
percentage gs of the total demand

∑
dj∈D Dk

p,j for product k in period p is covered by the
sum of the peak production capacity of the plants in other supply locations si′ ∈ S \ {si}.

gs
∑

dj∈D

Dk
p,j ≤

∑
si′ ∈S\{si}

yh
p,i′ ∀p, si, k, h ∈ {elec, comp, liqf} (27)

5 User’s view

Our system (shown in Figure 6) connects two main components – optimisation and visualisa-
tion – via an application program interface (API). The optimisation calls MiniZinc with
the model, input data and configuration to find and return its solutions. The visualisation
calls the optimisation via the API and visualises the returned solutions on an interactive
web-based dashboard application, referred to as the User Interface (UI). It was implemented
using Plotly Dash [18], as requested by our industry partner.

Users experience our system mostly via its powerful UI, part of which appears in Figure 7.
The UI allows domain-experts and non-expert users (e.g., decision makers) to load different
input data, interactively turn some model constraints on/off, obtain solutions, compare
them and explore them in detail. This not only helps them make decisions but also gain
confidence and trust in the system’s output. In addition, domain-experts and external tools
can access the system’s functionality independently of the UI via the API and the command
line interface we implemented in Python. This allows them to automate the solving of
instances, i.e. explore many scenarios with different sets of parameters.
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Figure 6 The two components integrated by our system and connected by an API.

5.1 Configuring an execution run
As described above, our system supports a wide range of execution modes (e.g., warm-starts,
diversity, and robustness), which users can control via the UI. Fig.7(A) shows one of the
panes provided for this. In it, users can select a pre-configured scenario (list of supply and
demand locations, their demand, and electricity markets) or upload a new one; modify the
scenario by turning on/off the allowed markets (Utility, PPA, Wholesale); select a model
profile (e.g., Ori-Exa-Tie) from a list of available ones; determine whether to run in diversity,
robustness or traditional mode; and modify the default configuration values for each of those.
In addition, users can select one of the available solvers; set a timeout and number of threads;
and set various solver specific parameters. Once users finish configuring the run, solving can
be triggered by pressing a button. If solving time is expected to be long, users can leave
the dashboard and load the solution later using the session manager, which keeps track of
each execution and reports whether a solution was found, no solution was found due to
infeasibility, or the solver is still running.

5.2 Visualising and interacting with solutions
The UI displays solutions via the two tabs shown in Figures 7(B) and (C). Figure 7(B)
focuses on overview information and the supply/demand network, for which it combines
different sub-windows (or cards). Figure 7(C) focuses on the operational parts of one plant.

Overview and Network Tab. This tab (Figure 7(B)) comprises cards (frames) that contain
controller and visualisation elements. With the controller element a specific solution from a
set of multiple solutions (for example, solutions from diversity, robustness, or different set of
model parameters) and time period can be loaded and visualised. Below the controller a
stacked barchart summarises the $/kg cost (i.e. each cost component) for all active supply
locations for all periods. The map in the centre prominently shows the supply/demand
network, with markers representing supply locations and coloured circles for each demand
location, with the colour matching the supply location they are linked to. For each supply
location a radial chart with 4 segments (north, west, south east) shows the amount of
hydrogen delivery for each direction, and an area overlay highlights the covered area using
semi-transparent rectangles drawn between each linked supply/demand locations, indicating
compactness, spread or amount of overlap of supply areas. Supply locations can be selected
and its details viewed in a separate card. To the right of the map it shows details about the
delivery to each demand location; below it shows the plant configuration represented as a
flow diagram with details about installed hardware capacity and number of skus, including
a stacked bar-chart for each type of hardware showing utilisation to installed capacity. For a
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Figure 7 UI’s four main tabs: A) input tab, which allows detailed configuration of the model
and data before execution; B) supply network as an interactive map with details of selected supply
location; C) operational details of each supply location; and D) comparison view of multiple solutions.

selected supply location, interactive elements allow changes to maximum and minimum daily
production amount, disabling that particular supply location, or force a non-active location
to be active. A re-solve of an instance containing the new data can then be triggered.

Operation Tab. For a supply location selected from the map card, this tab (Figure 7(C))
shows further details with focus on the operation side. The two cards in the middle show for
each hour of the year (8760 hours) component usage and gas storage levels on the left, and
electricity source utilisation (Utility, PPA, Wholesale) on the right. Other cards show the
overall hydrolyser utilisation and waterfall charts of the investment costs. On the top left
the same controller card is shown to select specific solutions and time periods.

5.3 Comparing solutions

Fig 7(D) shows part of the solution comparison pane for three solutions (one per column).
For each solution, the pane shows a summary of the configuration of the run that created it, a
breakdown of its objective value, and many other useful information, including the two kinds
shown in the figure: a map of the plants it built and their hardware as a box-matrix plot
(one plant per row). Each box represents one sku of a particular type of hardware (identified
by its colour) and capacity (identified by its size). This enables easy visual comparison of
significant changes in plant locations and in their associated hardware. If a location appears
in all solutions it is highlighted with a light green colour. Users can use the loading manager
to compare any set of solutions obtained, for example, by selecting different model profiles,
available sources, and diversity definitions; by modifying the robustness parameter, or by
forcing a supply location to produce a given product.
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5.4 Detecting and resolving conflict
It is not uncommon for users to create infeasible instances while exploring solutions by,
for example, setting the minimum daily production for a plant to a higher value than its
maximum production. This is a significant roadblock for the usability of any optimisation
system. To address it, we use the conflict resolution method of [17], which allows users to
obtain a visual representation of the conflicts that is easy to understand, select which of the
conflicts to relax for a solution to be found, and obtain a solution to this relaxed instance
that quantifies the minimum changes needed to restore feasibility for the original instance.

To implement this method the model needs to be changed to a) provide information
about any constraint that can cause conflict, and b) soften these constraints to quantify the
minimum changes needed. Both can be achieved in MiniZinc: a) by adding an annotation
to each constraint that gives meaningful names to the constraint and its objects, and that
tracks its values; b) by adding a slack variable to each constraint that quantifies the minimum
changes (see [17] for details). The method also requires computing Minimum Unsatisfiable
Sets (MUSes), where a MUS is a set of infeasible constraints in the instance such that removal
of any one of the constraints makes the set feasible, and/or Minimum Correction Sets (MCS),
where an MCS is a minimum set of constraints that if eliminated from the infeasible instance
makes it feasible. Note that any minimum set that intersects all MUSes is an MCS. We
have currently implemented one of the pathways proposed in [17] which, upon failure, uses
FindMUS (a MUS enumerator available in MiniZinc) to obtain all MUSes, shows them
to the user in different formats, and allows them to manually select an MCS, thus ensuring
there is a solution if the constraints in the MCS are relaxed. Currently, users must directly
modify these constraints to obtain a feasible instance. We are in the process of implementing
the automatic relaxation and resolution process of [17].

Figure 8 shows two of the formats proposed in [17] to show MUSes, which we have
implemented. The pane on the left shows the MUS-graph, a compact way of showing the
conflicting constraints (left of graph), the MUSes they appear in (centre), and the objects
they involve (right). Each circle on the left of the graph represents one conflicting constraint,
whose colour connects it to the name shown in the legend on the top right of the graph. For
the example shown in the figure these include minimum production and maximum production.
Constraints in the same box appear in the same MUSes. The links connect each group
of constraints to the MUSes they appear in, and each MUS to the objects in any of its
constraints, which in this case are particular supply and demand locations. If users select a
constraint on the left of the graph, the constraint and all the MUSes in which it appears
are highlighted with a red frame. Users know they have selected an MCS if the selected
constraints highlight all MUSes. A geo-network view of the conflicts is given by showing them
on a map (Figure 8 right) of the supply/ demand locations. We overlay conflicts specific to a
location with a frame in the colour of the conflict (e.g., light blue to show that this location
is involved in a maximum production conflict), and with a coloured link for those involving
a supply and demand location. Conflict overlays disappear when any of its constraints is
selected in the MUS-graph, thus showing no conflict overlays once an MCS is selected.

6 Literature review

The problem of hydrogen production facility location and supply chain optimisation is widely
studied; see Riera, Lima and Knio [16] for a recent survey of the field, both in terms of
modelling the problem itself, and of optimisation strategies used. Our key takeaway from this
survey is that there are myriads of different contexts in which to study the problem, from the
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Figure 8 Two conflict visualisations: MUS-graph on the left, Geo-network on the right.

“micro” perspective of a single plant, to the “macro” decisions around the energy delivery
system for entire countries (including hydrogen as one of many types of renewable fuels).
As such, it is difficult to identify any two papers that study exactly the same mathematical
model (e.g., for optimisation benchmarking purposes).

Nevertheless, several papers stand out as closely related to the problem studied here:
Ingason, Ingolfsson and Jensson [10] study a electrolysis-based facility location problem for
Iceland, although they ignore the operational scheduling of the plant thanks to the assumption
of constant-rate renewable sources of electricity (hydro and geothermal). Likewise, Štádlerová
et al. [20] study a facility location problem in Norway including uncertainty in the demand
and operational considerations such as minimum turn-down rates, although not at an hourly
resolution. Demirhan et al. [4] study a multi-fuel, multi-chemical (hydrogen, methanol and
ammonia) facility location problem with hourly resolution on the operation of the production
plant to capture variability in renewable energy generation from wind and solar. Finally,
Kim and Kim [13] also study a joint facility location and hourly operation problem for green
hydrogen, although they consider only one time period for facility location without planning
the facility’s expansion pathway. All these papers, however, focus mostly on the modelling
expert’s view and ignore the domain expert’s one.

7 Conclusions and Future Work

This paper describes a Hydrogen Network Optimisation System (HyNetOS) designed to
support energy companies in solving the complex combinatorial optimisation problem of
producing and supplying hydrogen at minimum cost. HyNetOS integrates two supply network
and facility operation models implemented in the high-level constraint modelling language
MiniZinc, which natively supplies a range of tools to support the human decision-making
process, such as finding a diverse sets of near-optimal solutions to present possible alternatives,
and conflict resolution technology to explain infeasible instances. Further, HyNetOS supports
our industry partner’s decision-making process by means of a powerful and interactive user
interface that allows them to view, change, and compare solutions, and rapidly iterate
on “what-if” scenarios with efficiently solvable approximate versions of our models. To
increase confidence in the quality of the model, we applied a strategy of redundancy and
rapid prototyping of model changes to identify the most efficient formulation, and provide
robustness measures, to produce resilient solutions against hydrogen production failures.
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The HyNetOS system was quantitatively and qualitatively evaluated against an alternative
implementation using a direct modelling approach. It was selected as the preferred system
based mainly on its significantly higher scores in qualitative criteria such as maintainability,
extensibility, user interface, code quality and technology stack, as well as its additional
features (diversity and robustness).

While deployed, the system is in constant evolution with many avenues for future work.
One of the most pressing and complex is extending the system to produce robust solutions
against uncertainties in electricity prices and availability of resources using techniques
such as stochastic programming [19], sensitivity analysis [2] and Predict+Optimise [14].
Others include the integration of extra functionality, such as the production of ammonia
or the consideration of carbon intensity, the integration of a simulation system for detailed
operational modelling on a high resolution time scale, and the integration of a plant layout
optimisation system such as [1] to generate optimal hydrogen facility layouts.
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Abstract
A binary constraint tree (BCT, Wang and Yap 2022) is a normalized binary CSP whose constraint
graph is a tree. A BCT constraint is a constraint represented with a BCT where some of the variables
may be hidden (i.e. existentially quantified and used only for internal representation). Structured
decomposable negation normal forms (SDNNF) were introduced by Pipatsrisawat and Darwiche
(2008) as a restriction of decomposable negation normal forms (DNNF). Both DNNFs and SDNNFs
were studied in the area of knowledge compilation. In this paper we show that the BCT constraints
are polynomially equivalent to SDNNFs. In particular, a BCT constraint can be represented with
an SDNNF of polynomial size and, on the other hand, a constraint that can be represented with an
SDNNF, can be represented as a BCT constraint of polynomial size. This generalizes the result of
Wang and Yap (2022) that shows that a multivalued decision diagram (MDD) can be represented
with a BCT. Moreover, our result provides a full characterization of binary constraint trees using a
language that is well studied in the area of knowledge compilation. It was shown by Wang and Yap
(2023) that a CSP on n variables of domain sizes bounded by d that has treewidth k can be encoded
as a BCT on O(n) variables with domain sizes O(dk+1). We provide an alternative reduction for
the case of binary CSPs. This allows us to compile any binary CSP to an SDNNF of size that is
parameterized by d and k.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Constraint and logic programming

Keywords and phrases Binary CSP, Binary Constraint Tree, Structured Decomposability, Strucured
DNNF, Polynomial Equivalence

Digital Object Identifier 10.4230/LIPIcs.CP.2023.22

1 Introduction

Constraint satisfaction problems (CSPs) offer an expressive and natural way of formulating
problems. A CSP is a problem of checking satisfiablity of a conjunction of constraints on
variables with finite domains. Constraints can be represented in various ways, which include
tables (see e.g. [2, 17, 18]) or multivalued decision diagrams (MDD, see e.g. [1, 5, 6]).

The representation using binary constraint trees was introduced in [27]. A BCT constraint
is a constraint c defined on a set of variables x that is represented with a normalized binary
CSP P whose constraint graph is a tree. The CSP P itself is defined on a set of variables
z which may include some hidden variables in addition to all the original variables from x.
BCTs have a nice property that an arc consistency propagator can be used to check their
consistency [12]. Any CSP can be turned into a binary one with an encoding such as dual
encoding [11], hidden variable encoding [22], double encoding [24], or bipartite encoding [25].

Decomposable negation normal forms (DNNFs) were introduced in [7] as a tractable
language for knowledge representation. Structured DNNFs (SDNNF) were introduced in [20].
The definition of SDNNFs is based on the notion of a v-tree which is a rooted binary tree
whose leaves are in one-to-one correspondence with the constraint variables (both original and
hidden). The conjunction gates in an SDNNF are then required to respect a particular v-tree
(see definitions 5 and 6 in Section 2.3 for more details). The structural requirements imposed
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on SDNNFs allow for instance a polynomial time construction of an SDNNF representing the
conjunction of two SDNNFs that respect the same v-tree – something that is not possible
for DNNFs without any structural requirements. Although DNNFs were introduced as a
representation of functions on boolean variables, they were also considered as a representation
of constraints on variables with finite domains [1, 14].

Both BCT constraints and SDNNFs have a structure based on a tree. We use this
similarity to show the main result of this paper: BCT constraints and SDNNF constraints are
polynomially equivalent. In particular, we show a polynomial time transformation of a BCT
constraint into an SDNNF and also a polynomial time transformation of an SDNNF into a
BCT constraint. The polynomial equivalence of BCTs with SDNNFs offers a characterization
of BCTs by a language of SDNNFs which has been extensively studied in the area of knowledge
compilation [3, 20, 21, 23]. Our result also generalizes the previous construction of a BCT
constraint for an MDD described in [27]. It was shown in [26] that BCTs are strictly more
succinct than MDDs. This also follows from a combination of our result with the fact that
SDNNFs are strictly more succinct than MDDs by [20].

Recently, [28] studied BCTs from the perspective of knowledge compilation together with
several other languages that are being used to represent ad-hoc constraints. The authors
studied BCTs with respect to the queries and transformations considered in the knowledge
compilation map [10] and showed that BCTs allow answering consistency, clausal entailment
and model enumeration queries in polynomial time which is (unsurprisingly) the same as in
the case of structured DNNFs [20]. The authors of [28] also studied BCTs with respect to
transformations. If the input BCTs or SDNNFs are required to have the same tree structure,
then they allow polynomial-time bounded conjunction, unbounded disjunction, forgetting
any number of variables, and conditioning [20, 28]. Interestingly, [20] only considers the
case of combining SDNNFs that respect the same v-tree while [28] also considers the case of
combining BCTs that are not required to have the same tree structure. In this case BCTs do
not allow polynomial time bounded conjunction, they do not allow an unbounded disjunction,
and the case of bounded disjunction is unresolved in [28]. We believe that our result might
help to resolve the case of bounded disjunction for BCTs, because it might be easier to reason
about a disjunction of two SDNNFs than BCTs. It is also worth mentioning that according
to [20], AOMDDs introduced in [19] are strictly less succinct than SDNNFs and thus also
strictly less succinct than BCTs. This already answers one of the questions posed in [28].

Our transformation of a BCT constraint into an SDNNF leads to a smooth SDNNF. It
is thus possible to use a domain consistency propagator for smooth DNNFs described in [14]
as a domain consistency propagator for BCT constraints. An encoding of BCT constraints
with propagation complete CNF formulas was described in [26]. Various CNF encodings
of DNNF theories were considered in [1] and a propagation complete encoding of smooth
DNNFs was introduced in [16]. Our result thus offers an alternative way of reducing BCT
constraints to a CNF encoding.

If CNF φ has treewidth k, then it can be compiled to an SDNNF of size that is parame-
terized by k by the construction described in [21]. In particular, if φ has n variables and m

clauses, then an equivalent SDNNF can be constructed in time O(nm2k). We can obtain
a similar result also for binary CSPs, but we have to take into account also the domain
sizes. It was shown in [28] that if P is a CSP on n variables of domain size d that has
treewidth k, then it can be encoded as a BCT with O(n) variables with domain size dk+1.
The construction in [28] uses the encoding described in [11]. In addition, if P is a binary CSP,
its consistency can be checked in time O(ndk+1) by [13]. To have a complete compilation
procedure of a binary CSP into an SDNNF, we provide a direct reduction of a binary CSP
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to a BCT parameterized by the treewidth and the domain size. The bound we obtain is the
same as in [28], so our result is not really new in this sense, but we obtain a slightly better
bound on the size of an SDNNF constructed for the given binary CSP than if we would
simply combine the bound of [28] with our construction of an SDNNF.

The paper is organized as follows. We introduce the necessary notation in Section 2,
including the definitions of BCTs and structured DNNFs. In Section 3, we show that a BCT
constraint can be represented with an SDNNF. The transformation of an SDNNF to a BCT
is described in Section 4. A tranformation of a binary CSP with bounded treewidth into an
SDNNF is described in Section 5. Section 6 closes the paper with a few concluding remarks.

2 Definitions

In this section, we shall recall the necessary notation and notions used in the paper.

2.1 BCT Constraint
We use a notation adapted from [27] where binary constraint trees were introduced.

A CSP P is a pair (x, C) where x is a set of variables and C is a set of constraints.
Each variable x has a finite domain denoted dom(x). A literal on a variable x is a variable
value assignment (x, a). A tuple over a set of variables {xi1 , xi2 , . . . , xir } is a set of literals
{(xi1 , a1), (xi2 , a2), . . . , (xir

, ar)}. Each constraint cj has a constraint scope scp(cj) ⊆ x
and a relation rel(cj) defined by a set of tuples over scp(cj). A constraint c is a binary
constraint if |scp(c)| = 2 and it is a unary constraint if |scp(c)| = 1. A CSP P is called a
binary CSP if it consists of binary and unary constraints. A binary CSP is normalized if its
constraints have pairwise different scopes. Given any set of variables z and literals τ , we
use τ [z] = {(x, a) ∈ τ | x ∈ z} to denote a subset of τ , while T [z] = {τ [z] | τ ∈ T} is the
projection of a set of tuples T on z. A tuple τ over x is a solution of P if τ [scp(c)] ∈ rel(c)
for all constraints c ∈ C and a ∈ dom(x) for all (x, a) ∈ τ . We use sol(x, C) (or sol(P )) to
denote the set of all solutions of P . We also say that P is satisfied by its solution and that a
solution of P satisfies all constraints in C. A support of a value a ∈ dom(x) in a constraint c

is a tuple τ ∈ rel(c) such that (x, a) ∈ τ and b ∈ dom(y) for all (y, b) ∈ τ .

▶ Definition 1 ([27]). A Binary Constraint Tree (BCT) is a normalized binary CSP whose
constraint graph is a tree. A BCT constraint c is a pair (x, P ) such that P = (z, C) is a BCT,
scp(c) = x ⊆ z, and rel(c) = sol(z, C)[x]. A tree binary encoding (TBE) of a constraint
c∗ is a BCT P = (z, C) such that the BCT constraint (scp(c∗), P ) has the same constraint
relation as c∗ where the variables in scp(c∗) and z \ scp(c∗) are called the original and hidden
variables, respectively.

▶ Example 2. Let us consider a BCT constraint c∗ = (x, P ) on three variables x =
{x1, x2, x3} where P = (z, C) is a BCT described as follows. We have one hidden variable
y in P , i.e. z = {x1, x2, x3, y}, and three constraints C = {c1, c2, c3} with scp(ci) = {xi, y},
i = 1, 2, 3. The domain of all variables (original and hidden) is {1, 2, 3}. For i = 1, 2, 3, we
set rel(ci) = {((xi, a), (y, b)) | a ≠ b}. That is, ci enforces that y has a different value from
xi in any solution to c∗. Altogether, c∗ is equal to the negation of the alldifferent constraint
over the variables x1, x2, x3.

A general construction of a BCT representing the negation of the alldifferent constraint
over variables x1, . . . , xr with domains D = {1, . . . , r} was described in [27] where the authors
also noted that the size of the MDD representing the constraint is exponential in r.

CP 2023
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c2c1

(a) The binary constraint tree of P .

(z3, 0) (z3, 1) (z3, 2)

(z1, 0) (z1, 1) (z1, 2)

(b) Relation of constraint c1 (z1 ≤ z3).

(z3, 0) (z3, 1) (z3, 2)

(z2, 0) (z2, 1) (z2, 2)

(c) Relation of constraint c2 (z2 ≤ z3).

(z4, 0) (z4, 1) (z4, 2)

(z3, 0) (z3, 1) (z3, 2)

(d) Relation of constraint c3 (z3 < z4).

Figure 1 A binary constraint tree P = (z, C) from Example 3.

To demonstrate the techniques described in the paper, we shall consider a simple constraint
that is a bit less symmetrical than the negation of the alldifferent constraint on three variables.

▶ Example 3. Figure 1 shows a BCT P = (z, C) that is defined on variables z = (z1, z2, z3, z4)
with domains dom(zi) = {0, 1, 2} for all i = 1, . . . , 4. C consists of three constraints.
Constraints c1 and c2 represent inequalities z1 ≤ z3 and z2 ≤ z3 respectively and its relation
is shown in figures 1b and 1c. Constraint c3 represents inequality z3 < z4 and its relation is
shown in Figure 1d. Note that literals (z4, 0) and (z3, 2) do not have support in c3.

Let us now consider a constraint c∗ with scope scp(c∗) = {x1, x2, x3} where dom(xi) =
{0, 1, 2} for i = 1, 2, 3 and the set of tuples rel(c∗) represents inequality max(x1, x2) < x3. If
we identify variables z1, z2, and z4 with x1, x2, and x3 respectively, then P is a tree binary
encoding of c∗ in which z1, z2, and z4 are original variables and z3 is a hidden variable.

Note that the hidden variable z3 is not actually needed for the constraint representation.
We keep it to demonstrate how a hidden variable can be later forgotten in an SDNNF. We
may also observe that literals (z4, 0) and (z3, 2) do not have a support in constraint c3.
We shall see later how this situation is dealt with during the construction of an SDNNF
representing c∗.

2.2 DNNF
The notion of a DNNF was introduced in [7] as a restriction of NNF. We consider a
multivalued variant that was used for instance in [14, 16]. This form is suitable for using
DNNFs to represent constraints.

Consider a set of variables x = {x1, . . . , xn} with a finite domain dom(xi) for each xi ∈ x.
A sentence in negation normal form (NNF) D is a rooted DAG with vertices V , root ρ ∈ V ,
the set of edges E, and the set of leaves L ⊆ V . The inner vertices (also called gates) are
labeled with logical connectives ∧ or ∨. Each edge (v, u) in D connects an inner vertex v

labeled ∧ or ∨ with one of its inputs u. The edge is directed from v to u, so the inputs of a
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vertex are its successors (or child vertices). The leaves are labeled with literals of variables x,
i.e. each leaf is labeled with a literal (xi, a) on a variable xi ∈ x and a value a ∈ dom(xi).
We assume that each literal (xi, a) is used as a label of at most one leaf. Some of the literals
may be missing in D, however, we assume that for each i = 1, . . . , n at least one leaf of D

is labeled with a literal on variable xi. For technical reasons, we also allow to label leaves
with constants 0 or 1. If a NNF is nonempty, constants can always be propagated and these
constants are thus needed only on a NNF without any variables.

If all the constraint variables xi ∈ x are boolean (i.e. dom(xi) = {0, 1}) and we identify
literal (xi, 1) with the propositional literal xi and literal (xi, 0) with the propositional literal
¬xi, then we obtain the usual definition of a NNF for representing a boolean function.

Assume that c is a constraint with the scope scp(c) = x and that D is a NNF defined on
the variables x. We say that D represents constraint c if for every tuple τ over variables x
we have that τ ∈ rel(c) if and only if D evaluates to true on the tuple τ . Evaluating D on
τ is done in a straightforward manner, we simply set the leaves (xi, a) ∈ τ to true and the
remaining leaves to false, then we use the usual semantic of the circuit D to get the value on
this assignment.

Following [14], we define the decomposability and smoothness properties with respect
to constraint variables x1, . . . , xn. For a vertex v ∈ V , let us denote var(v) ⊆ x the set of
variables in the subcircuit of D rooted at v. More precisely, a variable xi ∈ x belongs to
var(v) if and only if there is a directed path from v to a leaf labeled with a literal (xi, a) for
a value a ∈ dom(xi). We have by assumption that var(ρ) = x.

▶ Definition 4. We define the following structural restrictions of NNFs.
We say that NNF D is decomposable (DNNF), if for every vertex v = v1 ∧ · · · ∧ vk the
sets of variables var(v1), . . . , var(vk) are pairwise disjoint.
We say that DNNF D is smooth if for every vertex v = v1 ∨ · · · ∨ vk we have var(v) =
var(v1) = · · · = var(vk).

Assume that D is a DNNF representing constraint c with scope scp(c) = z. Let x ⊆ z
and y = z \ x. By forgetting variables y in D we mean the construction of a DNNF D′

that represents the constraint c′ which is a projection of c on variables x. In particular,
scp(c′) = x and rel(c′) = rel(c)[x]. Forgetting can be done efficiently on a DNNF, we simply
replace every literal (y, a) with constant 1 for all y ∈ y and a ∈ dom(y) [8].

2.3 Structured DNNF
Structured DNNFs were introduced in [20]. Structured decomposability is based on the
notion of a v-tree defined as follows.

▶ Definition 5 ([20]). A v-tree for a set of variables x is a full, rooted binary tree whose
leaves are in one-to-one correspondence with the variables in x.

Given a node t of a v-tree T , we denote var(t) the set of variables associated with the
leaves in the subtree of T rooted at t. We also denote var(T ) = var(σ) where σ is the root of
T . For a non-leaf node t, we use tl (tr) to denote the left (right) child node of t. For the rest
of this paper, we will assume that each conjunction in a DNNF has exactly two non-constant
inputs, while a disjunction can have any number of inputs. This is a technical assumption
used in [20] mainly to simplify the definition of a SDNNF, since with this assumption, it is
enough to consider only binary v-trees. Note also that we can make this assumption without
loss of generality due to the associativity and commutativity of conjunction.
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(b) v-tree T .

Figure 2 An example of an SDNNF DP and the corresponding v-tree T . This particular SDNNF
is the result of our construction on the BCT P from Example 3. The labels of the nodes mark the
steps of our construction.

▶ Definition 6 ([20]). A DNNF D respects a v-tree T if for every conjunction v = v1 ∧ v2 in
D, there is a node t in T , such that var(v1) ⊆ var(tl) and var(v2) ⊆ var(tr).

Let v be a node in a DNNF D that respects a v-tree T . The decomposition node (d-node)
of v is defined as the deepest node d in T such that var(v) ⊆ var(d).

▶ Definition 7 ([20]). A DNNF that respects a given v-tree T is denoted as DNNFT . Moreover,
the language of structured DNNFs (SDNNF) consists of all DNNFT for any v-tree T .

Given a DNNFT D, we can construct an equivalent smooth DNNFT D′ in quadratic
time [23]. It means that we can always assume that the input DNNFT is smooth.

▶ Example 8. Figure 2 shows an example of a smooth DNNFT . In particular, DNNFT DP

on Figure 2a respects v-tree T on Figure 2b. DNNFT DP represents the BCT constraint
(z, P ) where P is the BCT from Example 3.

For the construction of an SDNNF representing a BCT constraint, we will need the
following operation for composing two v-trees. Assume T1 and T2 are two v-trees on disjoint
sets of variables, i.e. var(T1) ∩ var(T2) = ∅. Then T = T1 ◦ T2 denotes the v-tree with a
newly added root σ whose left child node σl is set to the root of T1 and the right child node
σr is set to the root of T2. It follows that var(T ) = var(T1) ∪ var(T2).
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3 Compiling a BCT Constraint into a Structured DNNF

We shall show in this section that we can construct an SDNNF representing a given BCT
constraint in polynomial time.

▶ Theorem 9. Let c∗ = (x, P ) be a BCT constraint where P = (z, C) is a BCT. Then there
is a smooth SDNNF D representing c∗ with O(md) nodes and O(md2) edges where m = |z|
and d = maxzi∈z |dom(zi)|.

We will describe the construction of D in the rest of this section, thus proving Theorem 9.
Assume that n = |x| and z = {z1, . . . , zm} where x ⊆ z and m ≥ n is the number of all
variables. We assume that |dom(zi)| ≤ d for every i = 1, . . . , m.

The construction proceeds in two steps. First, we describe a construction of a SDNNF
DP representing P . A SDNNF D that represents c∗ then originates from DP by forgetting
the hidden variables y = z \ x. This step can be done efficiently by [20].

Let G be the constraint graph of P . G is a tree with the set of nodes z, each edge
corresponds to a single constraint from C. Let G+ denote a directed tree that originates
from G by picking an arbitrary node as a root and directing all edges from the root towards
the leaves. Let us assume that the nodes z1, . . . , zm are ordered in a reverse topological order
with respect to G+. It means that zm is the root and if (zi, zj) is an edge in G+, then i > j.
See Figure 1a for an example.

For every i = 1, . . . , m, let us consider the subtree Gi of G+ rooted at zi. Let Ci ⊆ C

denote the set of constraints corresponding to the edges of Gi. Denote zi =
⋃

c∈Ci
scp(c). In

this way, we have defined BCT Pi = (zi, Ci). For every value a ∈ dom(zi), we also define
BCT Pi,a as a restriction of Pi to the solutions that contain literal (zi, a). This can be
best understood as adding a unary constraint with scope zi and a single relation (zi, a) to
Ci. Another way of looking at it is restricting the relation of every constraint c ∈ Ci with
zi ∈ scp(c) to the tuples containing (zi, a) and setting dom(zi) to {a}.

The algorithm proceeds for every i = 1, . . . m in order and constructs for every a ∈ dom(zi)
a SDNNF Di,a representing BCT constraint (zi, Pi,a) and a v-tree Ti that is respected by
Di,a using the following steps:

(A1) If zi is a leaf (no edges leave zi in G+), then Pi has no constraints and Pi,a has the
domain of zi restricted to the single value a. DNNF Di,a is a single node labeled with
literal (zi, a) and v-tree Ti is a single node labeled with variable zi.

(A2) Assume that zi is not a leaf and it has k outgoing edges (zi, zi1), . . . , (zi, zik
) associated

with constraints c1, . . . , ck ∈ C. For every p = 1, . . . , k we have that ip < i, because the
nodes are processed in a reverse topological order, and thus we have already constructed
Dip,b and Tip

for each b ∈ dom(zip
). Let us now construct Di,a for a ∈ dom(zi) in the

following two steps.

(A2a) For every p = 1, . . . , k, define E
ip

i,a as follows:

E
ip

i,a =
∨

{(zi,a),(zip ,b)}∈rel(cp)

Dip,b.

CP 2023
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(A2b) We construct Di,j as a conjunction of literal (zi, a) with all DNNFs E
ip

i,a for
p = 1, . . . , k. However, since we only allow conjunctions with two inputs, we
construct Di,a in k + 1 steps as follows.

D
(1)
i,a = Ei1

i,a (1)

D
(p)
i,a = D

(p−1)
i,a ∧ E

ip

i,a for p = 2, . . . , k (2)

Di,a = (zi, a) ∧ D
(k)
i,a (3)

In addition, we define Ti as follows:

T
(1)
i = Ti1 (4)

T
(p)
i = T

(p−1)
i ◦ Tip

for p = 2, . . . , k (5)

Ti = zi ◦ T
(k)
i (6)

Variable zi is identified with a tree consisting of a single leaf labeled with zi in
step (6).

Once we have constructed Dm,a for every a ∈ dom(zm), we compose them to obtain DP

that respects v-tree T = Tm as follows:

DP =
∨

a∈dom(zm)

Dm,a. (7)

Intuitively, E
ip

i,a represents the fact that (zi, a) has a support ((zi, a), (zip
, b)) in cp.

Moreover, the constraints below zip
in G+ can be satisfied with the value of zip

set to b.
SDNNF Di,a represents the models of all constraints that correspond to the edges in the
subtree of G+ rooted at zi and that contain literal (zi, a). If (zi, a) does not have a support in
cp for some p = 1, . . . , k, then the empty disjunction E

ip

i,a is equal to constant 0 and so is Di,a.
However, it is possible that E

ip

i,a is inconsistent even if (zi, a) has a support ((zi, a), (zip
, b))

in cp, but Dip,b is inconsistent for every such b.

▶ Example 10. Figure 2 shows the result of the construction when applied to the BCT P

from Example 3. Note that there is no leaf labeled with literal (z4, 0), because (z4, 0) has no
support in constraint c3. For the same reason, there is no leaf labeled with literal (z3, 2).
Consequently, there are no leaves labeled with literals (z1, 2) and (z2, 2). It is worth noting
that value 2 would be removed from the domains of variables z1, z2, and z3 and value 0 would
be removed from the domain of z4 when enforcing arc consistency. In this way, enforcing arc
consistency is part of the construction.

If variable z3 would be forgotten from DP , we would obtain a SDNNF representing the
constraint c∗ from Example 3. This would amount to replacing leaves labeled with literals
(z3, 0) and (z3, 1) with constant 1. In this case, it just means removing these leaves altogether.
Afterwards, we could simplify the SDNNF by removing the trivial gates with a single input,
the result of this simplification can be seen in Figure 3.

We will now show that DP is a smooth SDNNF of polynomial size that represents P . We
will start by showing that DP is a smooth SDNNF.

▶ Lemma 11. DP is a smooth SDNNF that respects v-tree Tm.

Proof. Let us first show that DP is an SDNNF that respects v-tree Tm. We will proceed by
induction on i = 1, . . . , m. If zi is a leaf of G+, then by step (A1), Di,a consists of a single
leaf node for every a ∈ dom(zi). It follows that Di,a respects Ti which also consists of a
single leaf node.
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Figure 3 Simplified SDNNF for the BCT constraint c∗ from Example 3 representing constraint
max(x1, x2) < x3. The SDNNF originated from the SDNNF in Figure 2a by forgetting z3, identifying
x1 = z1, x2 = z2, x3 = z4, and removing gates with a single input.

Let us now assume that zi is not a leaf, in particular i > 1. Let us assume that zi has k

outgoing edges to nodes zi1 to zik
. Assume a value a ∈ dom(zi). By induction hypothesis, for

every p = 1, . . . , k and every b ∈ dom(zip
) we have that Dip,b is a SDNNF respecting v-tree

Tip . It follows that E
ip

i,a constructed in step (A2a) is a SDNNF respecting Tip . We have
that var(Eip

i,a) = zip
. Since the subtrees rooted at nodes zi1 , . . . , zik

are pairwise disjoint, the
same is true for sets zi1 , . . . , zip

. Moreover, variable zi is not in any of these sets. Therefore,
Di,a constructed in step (A2b) is a DNNF. The construction of the tree Ti proceeds in a
way similar to the construction of Di,a, and thus Di,a respects Ti. In particular, the node of
Ti introduced in (5) is the d-node of the conjunction (2) for the same value of p, and the
node introduced in (6) is the d-node of the conjunction (3).

DP is constructed in step (7) as a disjunction of Dm,a, a ∈ dom(zm). As each of these
SDNNFs respects Tm, the same is true for DP .

Let us now show the smoothness. Assume that Di,a is nontrivial, i.e. it is not just a
single leaf labeled with 0. We show by induction that then Di,a is a SDNNF that depends
on all variables in zi. This is true for the leaves. If zi is not a leaf, Di,a is constructed
in step (A2b). By induction hypothesis used on each Dip,b we get that E

ip

i,a is a smooth
disjunction that depends on all variables in zip

. Thus also Di,a depends on all variables in
zi = {zi} ∪

⋃k
p=1 zip . It follows that also the disjunction introduced in the final step (7) is

smooth. ◀

Now, let us estimate the size of DP .

▶ Lemma 12. SDNNF DP has O(md) nodes and O(md + s) edges where s =
∑

c∈C |rel(c)|.

CP 2023



22:10 Binary Constraint Trees and Structured Decomposability

Proof. For every i = 1, . . . , m, we add one disjunction for each value a ∈ dom(zi) in
step (A2a) and k conjunctions in step (A2b) assuming zi is not a leaf. One more disjunction
gate is added in the final step (7). Altogether, we thus add O(md) gates to DP . Each
conjunction gate has at most two inputs, thus O(md) edges are leaving the conjunction
gates. For every constraint cp with scope {zi, zip

}, every tuple ((zi, a), (zip
, b)) adds one edge

leaving disjunction gate E
ip

i,a. The total number of edges leaving the disjunction gates added
in step (A2a) is thus at most s. The disjunction gate added in the final step has at most
|dom(zi)| ≤ d inputs. Altogether, we have O(md + s) edges in DP . ◀

It remains to show that DP represents P .

▶ Lemma 13. SDNNF DP represents P .

Proof. We shall first show by induction on i that Di,a represents Pi,a for every i = 1, . . . , m

and a ∈ dom(zi). This is true for leaves (and thus also for i = 1), because Pi,a does not have
any constraints, it depends only on zi, and the domain of zi is restricted to the value a. A
single node labeled with literal (zi, a) added in step (A1) is thus a correct representation of
Pi,a in this case.

Let us now consider a variable zi with outgoing edges (zi, zi1), . . . , (zi, zik
) associated

with constraints c1, . . . , ck ∈ C where k ≥ 1. Ci is thus a disjoint union of Cip
, p = 1, . . . , k

with {c1, . . . , ck}. Let us also consider a value a ∈ dom(zi). Let us assume by induction
hypothesis that each Dip,b represents Pip,b for every b ∈ dom(zip). Recall that the scope of
Pi,a is the set zi of variables in the subtree of G+ rooted at zi. Let τ be a tuple of variables
zi and let us fix some a ∈ dom(zi).

Let us first assume that τ ∈ sol(Pi,a). It follows that (zi, a) ∈ τ . We will show that τ

satisfies Di,a. Let us consider literals (zi1 , b1), . . . , (zik
, bk) ∈ τ . For every p = 1, . . . , k we

have that τ satisfies Pip
. It satisfies Pip,bp

as well since (zip
, bp) ∈ τ . By induction hypothesis,

circuit Dip,bp
represents Pip,bp

and thus it evaluates to true on τ . By definition of Pi,a,
τ satisfies Pi and thus also constraint cp. It follows that {(zip , bp), (zi, a)} ∈ rel(cp) and
thus, by step (A2a), also E

ip

i,a evaluates to true. Since this holds for every p = 1, . . . , k and
(zi, a) ∈ τ , we have by step (A2b) that Di,a evaluates to true on τ .

Let us now assume that Di,a evaluates to true on τ and let us show that τ ∈ sol(Pi,a).
We have (zi, a) ∈ τ by (3), it remains to show that τ ∈ sol(Pi). Let p ∈ {1, . . . , k} be
arbitrary. We have by (1) to (3) that E

ip

i,a evaluates to true. By (A2a), we have that Dip,bp

evaluates to true on τ for some {(zi, a), (zip
, bp)} ∈ rel(cp). Induction hypothesis implies

τ [zip
] ∈ sol(Pip,bp

) and thus also (zip
, bp) ∈ τ . Together with (zi, a) ∈ τ we obtain that cp is

satisfied by τ . In addition, all constraints in Pip
are satisfied by τ . Since this holds for every

p = 1, . . . , k, we get that all constraints of Pi are satisfied and thus τ ∈ sol(Pi).
Let us now show that DP represents P . If τ is a tuple satisfying P and (zm, a) ∈ τ , then

τ satisfies Pm,a. It follows that Dm,a evaluates to true and that DP evaluates to true as
well. If, on the other hand, DP evaluates to true on τ , then Dm,a evaluates to true for some
a ∈ dom(zm). Thus τ is a solution of both Pm,a and P = Pm. ◀

Theorem 9 now follows from the above propositions.

Proof of Theorem 9. The SDNNF D representing c∗ originates from DP by forgetting
variables y = z \ x. This step can be performed in polynomial time by [20] by replacing the
literals on variables from y with constants 1 and then propagating these constants. Note
that in DP , this is equivalent to removing the corresponding leaves which were added in (3).
In particular, this step preserves smoothness which is ensured for DP by Lemma 11. The
size bound on D follows from Lemma 12 using the fact that |C| ≤ m and |rel(c)| ≤ d2 for
every c ∈ C. ◀
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4 Compiling an SDNNF to a BCT Constraint

In this section, we shall show the following theorem.

▶ Theorem 14. Let c∗ be a constraint represented by a smooth SDNNF. Then there is a
tree binary encoding of c∗ of polynomial size.

It is useful to look at a DNNF in terms of certificates [4], also called minimal satisfying
subtrees in [16]. A certificate for a satisfying assignment is simply a minimal satisfied sub-
DNNF that contains the output gate. Due to decomposability, the certificates of a DNNF
are trees whose leaves are some of the leaves of the DNNF. In addition, no two leaves of a
certificate are labeled with a literal of the same variable. Assume D is a smooth DNNF on
variables x = (x1, . . . , xn) and S its certificate. We shall also assume that D has no leaves
labeled with constants 0 or 1 (as these can always be propagated). Then for each i = 1, . . . , n,
we have that S contains exactly one leaf associated with a literal of variable xi (see also [16]
for more details). The leaves of S thus determine a tuple τ on which D evaluates to true. We
say in this case that the leaves of S are associated with the literals in tuple τ . The certificates
are thus in one-to-one correspondence with the satisfying assignments of D.

Let us now fix a constraint c∗ with scp(c∗) = x. Let us assume that c∗ is represented by
a smooth SDNNF D that respects a v-tree T and let ρ denote the root of D. In particular,
var(T ) = var(ρ) = x. Then the certificates of D also respect T . In fact, we will show that
if S is a certificate of D, then the conjunction gates of S are in one-to-one correspondence
with the inner nodes of T . This property lies at the basis of our construction of a tree binary
encoding P = (z, C) of c∗. The idea is to introduce a hidden variable for each inner node t

of T with the domain being the ∧-gates whose d-node is t. The constraints make sure that
the models of P are in one-to-one correspondence with the certificates of D.

We will construct a BCT P = (z, C) satisfying x ⊆ z and rel(c∗) = sol(P )[x]. For each
inner node t of T , we introduce a hidden variable yt. The set of all these hidden variables
will be denoted as y. We then define z = x ∪ y. The domain of an original variable xi ∈ x is
dom(xi) as given by the constraint c∗. For a hidden variable yt ∈ y, we set dom(yt) = Λ(t)
where Λ(t) denotes the set of conjunction gates of D that have d-node t.

The constraints of C correspond to the edges of T . In particular, for each edge (t, t′) of
T where t′ is a child node of t, we add a constraint ct,t′ to C whose definition differs slightly
depending on whether t′ is a leaf or an inner node of T . A sequence of vertices v0, . . . , vk of
D is called an ∨-path if it is a path, nodes v1, . . . , vk−1 are ∨-gates, v0 is a conjunction gate
and vk is either a conjunction gate, or a leaf node.

(C1) Assume t′ is a leaf labeled with variable xi. Then scp(ct,t′) = {yt, xi} and rel(ct,t′) is
defined as a set of tuples {(yt, v), (xi, a)} such that D contains a ∨-path from v to the
leaf labeled with literal (xi, a).

(C2) Assume t′ is an inner node of T . Then scp(ct,t′) = {yt, yt′} and rel(ct,t′) is defined as
a set of tuples {(yt, v), (yt′ , v′)} such that D contains a ∨-path from v to v′.

▶ Example 15. Figure 4 shows the result of the application of the construction to the SDNNF
from Figure 2. Recall that the SDNNF itself was constructed as a representation of the BCT
P from Example 3. BCT in Figure 4 differs from P in that it has three hidden variables y1,
y2, and y3. Note that y1 and y2 are basically equivalent to z3 and y3 is equivalent to z4. The
auxiliary variables can thus be easily eliminated by which we obtain the constraints of P .

CP 2023
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Figure 4 Example of the construction of the tree binary encoding of a constraint represented by
the SDNNF D in Figure 2.

The size of P defined in this way is clearly polynomial in the size of D. The rest of this
section is devoted to showing the correctness of the construction. We will start with a few
technical propositions on the structure of the certificates of D.

▶ Lemma 16. Assume v is a node of D with d-node t in T . Then var(v) = var(t). Moreover,
1. if v = v1 ∧ v2, then tl is the d-node of v1 and tr is the d-node of v2, and
2. if v = v1 ∨ · · · ∨ vk, then t is the d-node of all input nodes v1, . . . , vk.

Proof. We will proceed by the induction on the structure of D. If v = ρ is the root of D,
then var(v) = x. It follows that its d-node t is the root of T and thus var(t) = x = var(v).

Let us assume that v = v1 ∧ v2 and that var(v) = var(t). Since D does not contain
leaves labeled with constants, we have that both var(v1) and var(v2) are nonempty and thus
var(vi) ⊊ var(v) for i = 1, 2 and var(v) = var(v1)∪var(v2). Let ti be the d-node of vi, i = 1, 2.
By the definition of structured DNNFs, both t1 and t2 are descendants of t in T and thus
var(ti) ⊆ var(t), i = 1, 2. By the definition of d-nodes, we also have that var(vi) ⊆ var(ti),
i = 1, 2. It follows that var(t) = var(v) = var(v1) ∪ var(v2) ⊆ var(t1) ∪ var(t2) ⊆ var(t)
and thus var(t) = var(t1) ∪ var(t2). The only possibility is that both t1 and t2 are the child
nodes of t and thus t1 = tl, t2 = tr, and var(vi) = var(ti), i = 1, 2.

Assume that v = v1 ∨ · · · ∨ vk and var(v) = var(t). By smoothness we get that
var(t) = var(v) = var(v1) = · · · = var(vk). It follows that t is the d-node of all input nodes
v1, . . . , vk.

We have shown that if var(v) = var(t) and v′ is a child node of v with d-node t′, then
var(v′) = var(t′) which also holds for the leaves. ◀

▶ Lemma 17. Assume that v0, . . . , vk is a ∨-path with k > 0. Assume that t is the d-node
of v0 and t′ is the d-node of vk. Then v1, . . . , vk−1 have d-node t′ and t′ is a child node of t.

Proof. By smoothness, var(v1) = var(v2) = · · · = var(vk) and thus all gates v1, . . . , vk−1
have the same d-node as vk. In particular, t′ is the d-node of v1 which is an input to the
conjunction gate v0. By Lemma 16 we have that t′ is a child node of t. ◀

Based on Lemma 17, we can show the following proposition.

▶ Lemma 18. Assume S is a certificate and t is an inner node of T . Then S contains
exactly one conjunction gate v from Λ(t).
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Proof. Consider a variable xi ∈ var(t) and the path v0, . . . , vk in S that leads from the root
v0 = ρ to the leaf vk of S labeled with a literal on xi. It follows that var(vj) ⊆ var(vj−1)
for every j = 1, . . . , k. Moreover var(v0) = x and var(vk) = {xi}. Let vi1 , . . . , vip

be the
subsequence of v0, . . . , vk formed only by conjunction nodes. Then by Lemma 17 we get that
ti1 , . . . , tip

, tk form a path in T from the root to the leaf labeled with xi. For some index ij

we thus have that tij = t and it follows that vij is a conjunction gate in S with d-node t.
Let us now assume that S contains two ∧-gates v1 and v2 with the same d-node t, thus

var(v1) = var(v2) = var(t) by Lemma 16. However, Lemma 16 also implies that there is no
path from v1 to v2 or from v2 to v1. If we take the paths from the root ρ to v1 and v2 in S,
they have to split in a ∧-gate v (by minimality of S), but then v is not decomposable.

It follows that vij
is the only conjunction gate in S that belongs to Λ(t). ◀

Note that each literal on a variable from z = x ∪ y is associated with a node of D. In
particular, for xi ∈ x, literal (xi, a) is associated with the leaf of D labeled with (xi, a). To
this end, we need to assume that every such literal has a leaf labeled with it. However, if
D does not contain any leaf associated with literal (xi, a), then this literal does not have a
support in c∗ and a can be removed from dom(xi). We may thus assume that no such value
is in dom(xi). For an inner node t of T , a literal (yt, v) is associated with the node v ∈ Λ(t).

▶ Lemma 19. Let τ ∈ sol(P ) be a tuple that is a solution to P . Then τ [x] ∈ rel(c∗).

Proof. Since D represents c∗, it is enough to show that there is a certificate S of D whose
leaves are associated with the literals in τ [x].

Tuple τ associates a node v of D with every node t of T . We proceed by induction on
the structure of T to describe a certificate St for the sub-DNNF of D rooted at v.

Assume first that t is a leaf of T labeled with variable xi. Consider the literal (xi, a) ∈ τ

and set the certificate St to a single node labeled with this literal.
Assume now that t is an inner node of T . Since t is an inner node of T , we have that

(yt, v) ∈ τ for some v ∈ Λ(t). Tuple τ also contains literals associated with tl and tr. These
literals associate a nodes vl and vr of D with tl and tr respectively. By induction hypothesis,
we have constructed certificate Sl and Sr for the sub-DNNFs rooted at vl and vr respectively.
Since τ satisfies constraints ct,tl and ct,tr , D contains a ∨-paths from v to vl and from v to
vr. Certificate St for the the sub-DNNF rooted at v is then constructed as a union of Sl, Sr,
node v and the ∨-paths from v to vl and vr.

Let σ be the root of T and let us assume that v is the node of D associated with σ by
τ . Let Sσ be the certificate of the sub-DNNF rooted at v. If v = ρ is the root of D, then
S = Sσ is a certificate of D. Otherwise, D contains a path from ρ to v that consists only of
∨-gates and we construct S by combining this path with Sσ. ◀

▶ Lemma 20. For every τ∗ ∈ rel(c∗), there is τ ∈ sol(P ) satisfying τ∗ = τ [x].

Proof. Since τ∗ ∈ rel(c∗), there is a certificate S of D whose leaves are associated with
the literals from τ∗. By Lemma 18, the certificate S contains exactly one conjunction gate
vt ∈ Λ(t) for each inner node t. We form τ by adding literals (yt, vt) to τ∗ for all internal
nodes t of T . Let us check that τ satisfies all constraints of P . Let ct,t′ be a constraint of
P where t′ is a child node of t in T . By Lemma 16, one of the child nodes of vt in D has
d-node t′, let us denote it v1. Since vt is a conjunction gate, v1 must belong to S. If v1 is a
disjunction, then by Lemma 16, its child nodes have d-node t′, too. If we follow the path in
S from v1 to a leaf or to the next conjunction gate, we get a ∨-path that ends in the node
vk whose d-node is still t′ and vk is either a leaf or a conjunction gate.
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If t′ is a leaf of T labeled with variable xi, we must have that vk is a leaf of S labeled with
a literal (xi, a) for some a ∈ dom(xi), it follows that (xi, a) ∈ τ∗ ⊆ τ and {(yt, vt), (xi, a)} ∈
rel(ct,t′), constraint ct,t′ is thus satisfied by τ .

If t′ is an inner node, then vk is a conjunction gate vt′ associated with t′ in S. It follows
that (yt′ , vt′) ∈ τ and {(yt, vt), (yt′ , vt′)} ∈ rel(ct,t′), constraint ct,t′ is thus satisfied by τ . ◀

Theorem 14 now follows by the above construction from the following proposition.

▶ Theorem 21. P = (z, C) is a tree binary encoding of c∗ of polynomial size.

Proof. C consists of O(n) constraints and the total size of the domains of variables in z is
bounded by the number of the nodes in D. Lemmas 19 and 20 imply that P is a TBE of
c∗. ◀

5 Binary Constraint Graphs With Bounded Treewidth

In this section, we shall extend the construction from Section 3 to BCG constraints that
naturally generalize BCT constraints.

▶ Definition 22. A BCG constraint c is a pair (x, P ) such that P = (z, C) is a normalized
binary CSP, scp(c) = x ⊆ z and rel(c) = sol(z, C)[x].

The construction we describe is parameterized by the treewidth of the underlying con-
straint graph and the domain size. The treewidth of a graph is defined using a tree
decomposition.

Given an undirected graph G = (V, E), its tree decomposition is defined as a pair (T, χ)
where T = (VT , ET ) is a tree and χ : VT → P(V ) is a function that assigns each vertex
t ∈ VT a subset of V called a bag that satisfies the following conditions:
(d1) V =

⋃
t∈VT

χ(t).
(d2) For each edge {u, v} ∈ E there is a node t ∈ VT such that {u, v} ⊆ χ(t).
(d3) If a node v is contained in two bags χ(t1) and χ(t2), then v ∈ χ(t) for every node t on

the path connecting t1 with t2.
The width of the tree decomposition is defined as maxt∈VT

|χ(t)| − 1. The treewidth tw(G)
of G is the minimum width among all possible tree decompositions of G. It should be noted
that any tree decomposition of a graph G on n vertices can be transformed into a tree
decomposition with the same width and O(n) nodes [15].

We are now ready to formulate the main result of this section.

▶ Theorem 23. Assume that c∗ = (x, P ) is a BCG constraint defined by a normalized
binary CSP P = (z, C). Denote G the constraint graph of P . Denote m = |z| and
d = maxzi∈z |dom(zi)|. Then there is an SDNNF D representing c∗ with O(mdtw(G)+1)
nodes and O(md2 tw(G)+1) edges.

The proof of Theorem 23 is based on the following proposition.

▶ Theorem 24. Assume that c∗ = (x, P ) is a BCG constraint defined by a normalized
binary CSP P = (z, C). Denote G the constraint graph of P . Denote m = |z| and
d = maxzi∈z |dom(zi)|. Then c∗ has a tree binary encoding P ′ = (z′, C ′) with |z′| = O(m)
and |dom(z′

i)| ≤ dtw(G)+1 for every z′
i ∈ z′.

Note that Theorem 24 actually follows from Proposition 4 in [28] which is based on the
encoding described in [11]. If we would simply combine the bound given by Theorem 24
with the bound given by Theorem 9, we would get an SDNNF D representing c∗ with
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(c) Tree binary encoding.

Figure 5 Example of the construction, see the description in Example 25.

O(mdtw(G)+1) nodes and O(md2(tw(G)+1)) edges. We provide a specific construction that
proves Theorem 24 and that can be combined with Lemma 12 to prove a slightly better
bound stated in Theorem 23. The construction we describe below is similar to the dual
encoding described in [11].

Let us fix a BCG constraint c∗ = (x, P ) where P = (z, C) is a normalized binary CSP
with constraint graph G. Let us assume that z = (z1, . . . , zm) and d = maxm

i=1 | dom(zi)|.
Let us also fix a tree decomposition (T, χ) of G. Let us assume that VT = (t1, . . . , tN ) for
some N = O(m). We shall describe a BCT P ′ = (z′, C ′) which is a TBE of c∗. First, let us
define the variables in z′. We associate a new variable vi with every ti, i = 1, . . . , N . Then
we set z′ = z ∪ v where v = (v1, . . . , vN ). The domains of variables in z are given by c∗. For
every vi, i = 1, . . . , N , we set the domain as follows. Let us consider the set of constraints
defined on variables from χ(ti) as Ci = {c ∈ C | scp(c) ⊆ χ(ti)}. Then the domain of vi is
defined as the set of solutions to CSP (χ(ti), Ci), i.e. dom(vi) = sol(χ(ti), Ci).

Let us now define the constraints in C ′.

(T1) For every edge {ti, tj} ∈ ET we add a constraint c′
i,j into C ′ with scp(c′

i,j) = {vi, vj}.
The constraint relation rel(c′

i,j) consists of pairs {(vi, τ1), (vj , τ2)} where τ1 ∈ dom(vi),
τ2 ∈ dom(vj), and τ1[χ(ti) ∩ χ(tj)] = τ2[χ(ti) ∩ χ(tj)].

(T2) For every zi, i = 1, . . . , m, we pick a representative node tri ∈ VT satisfying zi ∈ χ(tri).
We then add a constraint c′

i into C ′ with scp(c′
i) = {zi, tri

}. The set of tuples rel(c′
i)

consists of pairs {(zi, a), (vri , τ)} where a ∈ dom(zi), τ ∈ dom(vri), and (zi, a) ∈ τ .

▶ Example 25. Let us consider a binary CSP P = (z, C) with z = {z1, . . . , z5} whose
constraint graph G is depicted in Figure 5a. We shall use ci,j ∈ C to denote the constraint
with scope {zi, zj}. Figure 5b shows a tree decomposition T of the graph with the contents
of the bags inside the rectangles. The structure of the tree binary encoding P ′ of P is then
shown in Figure 5c. The domain of variable v1 consists of tuples τ on variables z1, z2, and
z3 satisfying constraints c1,2, c2,3, and c1,3. Assume a tuple σ′ ∈ sol(P ′). Constraint c′

2
makes sure that if (z2, a) ∈ σ′, then σ′ contains (v2, τ) satisfying (z2, a) ∈ τ . Similarly for
other variables. Constraints c′

1,2 and c′
2,3 extend this property also to nodes v2 and v3. The

tuples assigned to variables v1, v2, and v3 are thus consistent with each other and also with
constraints C. We thus have that σ′[z] ∈ sol(P ).
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The proof of the correctness of the above construction and thus also the proof of Theo-
rem 24 is moved to the appendix. Here, we will describe its application for proving the main
result of this section.

Proof of Theorem 23. Using Theorem 24, we obtain a TBE encoding P ′ = (z′, C ′) with
O(m) variables and the domain sizes bounded by dtw(G)+1. We can then apply Theorem 9
to obtain an SDNNF D that represents c∗. D has O(mdtw(G)+1) nodes. By Lemma 12, the
number of edges of D is bounded by O(mdtw(G)+1 + s) where s =

∑
c′∈C′ |rel(c′)|. Since

|C ′| = O(m), it is enough to show that |rel(c′)| ≤ d2 tw(G)+1 for every c′ ∈ C ′.
Assume first a constraint c′

i,j added in step (T1). We may assume that G is connected
(otherwise we process each connected component of G separately) and therefore χ(ti)∩χ(tj) ̸=
∅. The number of pairs of tuples τ1 and τ2 that satisfy τ1[χ(ti) ∩ χ(tj)] = τ2[χ(ti) ∩ χ(tj)] is
thus at most dtw(G)+1 · dtw(G) = d2 tw(G)+1. Therefore

∣∣rel(c′
i,j)

∣∣ ≤ d2 tw(G)+1.
Assume now a constraint c′

i added in step (T2). The number of tuples τ satisfying that
(zi, a) ∈ τ for one particular a ∈ dom(zi) is at most dtw(G) and thus

∣∣rel(c′
i,j)

∣∣ ≤ dtw(G)+1 ≤
d2 tw(G)+1. ◀

Note that the size estimate in Theorem 23 is only an upper bound and the real size of P ′

and the SDNNF D depends on the particular tree decomposition and, in particular, on how
much the bags intersect. Therefore, there is a space for optimization in a practical setting.

6 Conclusion

As the main result of our paper, we have shown that binary constraint trees are polynomially
equivalent to structured DNNF circuits. We would like to note that for a given BCT P

the construction in Section 3 leads to a deterministic SDNNF DP (thanks to rule 3 in
step (A2b)). This means that for every pair of distinct children v1 and v2 of a disjunction
node, the sub-NNFs rooted at v1 and v2 do not share any models (see [9, 20]). This property
allows for instance model counting on DP . However, forgetting the hidden variables from DP

does not preserve determinism in general [10] and thus the actual result of the construction
is not a deterministic SDNNF. Introducing hidden variables is thus an important part
of the construction described in Section 4 since SDNNFs are strictly more succinct than
deterministic SDNNFs [20].

Several rules for reducing the number of hidden variables in a BCT constraint were
described in [27], it would be interesting to investigate the effect of these rules on a SDNNF
that is compiled into a BCT constraint, reduction rules are applied to it and then it is
compiled back to a SDNNF. When compiling the BCT constraint back to a SDNNF, we
can pick an arbitrary node of the constraint tree as a root which allows us to change the
structure of the SDNNF to a different orientation of the v-tree. This, for instance, extends
the applicability of the conjoin operation described in [20] to conjoining two SDNNFs whose
v-trees differ, but their undirected versions are the same.
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A Proof of Theorem 24

In this section, we shall prove the correctness of the construction described in Section 5.
We shall also prove Theorem 24 that states the properties of the construction. We use the
same notation that was used in Section 5. In particular, we assume a fixed BCG constraint
c∗ = (x, P ) where P = (z, C) is a normalized binary CSP with constraint graph G. We
assume that that BCT P ′ = (z′, C ′) is the result of the construction from Section 5. We
shall show that P ′ is a TBE of c∗. The construction of C ′ implies the following property.

▶ Lemma 26. Let p ∈ {1, . . . , m} be arbitrary and let ti ∈ VT be such that zp ∈ χ(t). Assume
that σ′ ∈ sol(P ′) and assume that (zp, a), (vi, τ) ∈ σ′. Then (zp, a) ∈ τ .

Proof. Let trp be the representative node picked for zp in step (T2) and consider the path
trp

= tj1 , tj2 , . . . , tjk
= ti in T connecting trp

with ti. For every q = 1, . . . , k we have that
zp ∈ χ(trp

)∩χ(ti) and thus zp ∈ χ(tjq
) by condition (d3). Denote τq ∈ dom(vjq

) the tuple for
which (vjq

, τq) ∈ σ′. We shall show by induction on q that (zp, a) ∈ τq for every q = 1, . . . , k.
Since τk = τ , we then have that (zp, a) ∈ τ .
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Since t1 = trp , we have that (zp, a) ∈ τ1 by constraint c′
p added to C ′ in step (T2).

Assume now that q > 1 and consider constraint c′
jq−1,jq

added in step (T1). The induction
hypothesis implies that (zp, a) ∈ τq−1, and by definition of rel(c′

jq−1,jq
) we also have that

(zp, a) ∈ τq. ◀

We are now ready to prove the correctness of the construction.

▶ Lemma 27. (x, P ′) is a tree binary encoding of BCG constraint c∗ = (x, P ).

Proof. The constraint graph of P ′ is a tree that originates from T by adding leaves corre-
sponding to the constraints c′

i added in step (T2). We shall show that sol(P ′)[z] = sol(P ).
Then rel(c∗) = sol(z, C)[x] = sol(z′, C ′)[x] and the proposition follows.

Assume first that we have a solution σ′ ∈ sol(P ′). Denote σ = σ′[z] and let us show
that σ satisfies all constraints of P . Let c ∈ C be a constraint with scp(c) = {zp, zq}. We
have (zp, a) ∈ σ and (zq, b) ∈ σ for some a ∈ dom(zp) and b ∈ dom(zq). By condition (d2)
we have that scp(c) ⊆ χ(ti) for some ti ∈ VT . Consider literal (vi, τ) ∈ σ′. By Lemma 26,
we have that (zp, a) ∈ τ and (zq, b) ∈ τ . Since τ ∈ dom(vi), we have that {(zp, a), (zq, b)} =
τ [scp(c)] ∈ rel(c). Since this holds for every constraint c ∈ C, we get that σ ∈ sol(P ).

Assume now that we have a solution σ ∈ sol(P ). Let us now define a tuple σ′ =
σ ∪ {(vi, σ[χ(ti)]) | i = 1, . . . , N}. Since σ ∈ sol(P ), we have that σ[χ(ti)] ∈ rel(Ci) and thus
σ[χ(ti)] ∈ dom(vi). Tuple σ′ is thus correctly defined. It also satisfies all constraints (T1)
and (T2) and thus σ′ ∈ sol(P ′). ◀

Proof of Theorem 24. Assume that P ′ = (z′, C ′) is constructed as above. Then (x, P ′) is a
tree binary encoding of c∗ = (x, P ) by Lemma 27. We may assume by [15] that |VT | = O(m)
and thus |z′| = m + |VT | = O(m). For every variable zi ∈ z we have |dom(zi)| ≤ d by
assumption. For every variable vi ∈ z′ \ z we have that |χ(ti)| ≤ tw(G) + 1 and thus
|dom(vi)| ≤ dtw(G)+1 by the definition of dom(vi). ◀
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1 Introduction

In constraint programming (CP), large neighborhood search (LNS) [34] achieves strong per-
formance in solving combinatorial optimization problems such as routing [24] and scheduling
problems [27]. LNS is an algorithmic framework that removes a part of a solution and then
performs search in the induced partial search space (neighborhood) to find a better solution.
Typically, LNS uses tree search to find a better solution in a partial search space, where each
search node represents a partial assignment of decision variables, and a solution of a problem
corresponds to a leaf node, where all variables are assigned values.

Dynamic programming (DP) is a powerful method for multiple combinatorial optimization
problems [14, 15], and the hybridization of CP, decision diagrams, and DP is a topic of active
research [1, 22, 23, 5, 28, 19, 17]. Recently, domain-independent dynamic programming
(DIDP), a model-based paradigm for combinatorial optimization based on DP, has been
proposed [25]. In DIDP, a model of a problem is represented by a state transition system. A
solution corresponds to a path in a state space graph, where each vertex represents a state
and each edge represents a transition between two states. The current state-of-the-art DIDP
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solver is complete anytime beam search (CABS) [26], which is based on beam search, an
algorithm that searches for a path in a state space graph by maintaining a fixed number of
states at a time.

In this paper, we propose large neighborhood beam search (LNBS), a combination of
LNS and beam search in a state space graph. LNBS tries to improve a solution path by
removing a partial path between two states and then performing beam search to find a
better partial path. While LNBS has the freedom to select a neighborhood (i.e., a partial
path to remove), we propose a strategy that dynamically adjusts the size of a neighborhood
based on a multi-armed bandit problem. With our strategy, LNBS is complete, i.e., it finds
and proves an optimal solution given enough time, but, of course, it is aimed at problems
where its solution quality is more important than proved optimality. We implement LNBS
for DIDP and empirically evaluate its performance. The experimental results show that
LNBS outperforms CABS in five out of nine benchmark problem types in terms of solution
quality. In addition, LNBS performs better than a commercial CP solver, which uses LNS
[27], in seven problems while CABS is better than CP in six problems. Since LNBS performs
particularly well in routing and scheduling problems, we also investigate the reason for this
performance and gain insight from empirical analysis.

2 Background

We first introduce domain-independent dynamic programming and complete anytime beam
search. Then, we present large neighborhood search (LNS). We also describe LNS with
decision diagrams [18], a recently proposed method for combinatorial optimization that can
be considered a combination of LNS and state space search.

2.1 Domain-Independent Dynamic Programming
A combinatorial optimization problem is to find a set of discrete decisions, e.g., a permutation,
to minimize or maximize an objective function. In dynamic programming (DP), a problem is
recursively formulated by decomposing it into subproblems, represented by states, and the
optimal objective value of each subproblem is represented by the value function, which maps
a state to a real number.

Domain-independent dynamic programming (DIDP) is a model-based paradigm for
combinatorial optimization based on DP [25]. In DIDP, a DP formulation of a combinatorial
optimization problem is defined by a state-transition system in Dynamic Programming
Description Language (DyPDL). A DyPDL model is a seven-tuple ⟨V , S0,K, T ,B, C, h⟩
consisting of state variables V , the target state S0, constants K, transitions T , base cases B,
state constraints C, and the dual bound h.

A state variable v ∈ V has a type of set, element, or numeric. Each set and element
variable vi is associated with a set of objects Ni = {0, ..., ni − 1}. The domain of a set
variable vi is 2Ni , and the domain of an element variable vi is Ni. A numeric variable takes
a real value. A constant in K is a value independent of the state variables.

A state is a complete value assignment to the state variables, and the target state S0

is a state. We denote the value of a state variable vi in a state S by S[vi]. The value of a
state S is represented by the value function V (S), and the objective of a DyPDL model is
to compute the value of the target state, V (S0). We can define dominance between states
based on state variables. If a state S dominates another state S′, denoted by S′ ⪯ S, then
V (S) is equal or better (less/greater for minimization/maximization) than V (S′). For the
details of dominance in DyPDL, please refer to previous work [25].
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A transition τ ∈ T is a four-tuple ⟨effτ , costτ , preτ , forcedτ ⟩ defining how a state S is
transformed to a successor state (a subproblem) S[[τ ]], and how V (S) is computed based
on the value of V (S[[τ ]]). The set of effects effτ = {(vi, evi

) | vi ∈ V} defines how each
state variable vi is updated by an expression evi . The expression evi consists of predefined
operations on state variables and constants and returns S[[τ ]][vi] given S. For example, for a
set variable U , U \ {i} is an expression representing removing an element i from U , which
can be used as eU and results in S[[τ ]][U ] = S[U ] \ {i}. The cost expression costτ is an
expression that takes V (S[[τ ]]) in addition to S and returns a real number costτ (V (S[[τ ]]), S).
The preconditions preτ are conditions on the state variables, i.e., expressions returning a
binary value ⊤ or ⊥. The preconditions define when the transition is applicable. For example,
if preτ = {i ∈ U}, then τ is applicable in S iff i ∈ S[U ]. The flag forcedτ is a boolean value
indicating whether the transition is a forced transition. Let T (S) be the set of applicable
transitions in state S. If forced transitions are applicable, the first defined one τ is selected,
and all other forced and non-forced transitions are ignored, i.e., T (S) = {τ}. The value of
V (S) is computed by taking the best costτ (V (S[[τ ]]), S) over all τ ∈ T (S).

Base cases B are sets of conditions. For any B ∈ B, if a state S satisfies all conditions
in B, denoted by S |= B, then it is called a base state, and V (S) is defined non-recursively
by an expression eB(S). State constraints C are conditions that must be satisfied by all
states. If one of the state constraints c ∈ C is violated, denoted by S ̸|= C, then V (S) =∞
(V (S) = −∞) for minimization (maximization). The dual bound h(S) is a lower (upper)
bound on V (S) for minimization (maximization).

Overall, if the problem is minimization, the DP formulation is defined as follows.

compute V (S0) (1)

s.t. V (S) =


minτ∈T (S) costτ (V (S[[τ ]]), S) if S |= C ∧ ∀B ∈ B, S ̸|= B

eB(S) if S |= C ∧ ∃B ∈ B, S |= B

∞ if S ̸|= C
(2)

V (S) ≤ V (S′) if S′ ⪯ S (3)
V (S) ≥ h(S). (4)

The first line states that the optimal objective value is V (S0). Equation (2) recursively
defines the value function V . Inequalities (3) and (4) are bounds on the value function. For
maximization, we replace min with max in the first line of Equation (2) and swap ≤ and ≥
in Inequalities (3) and (4). A solution for the DP formulation is a sequence of transitions
that transforms the target state S0 into a base state. Concretely, for a sequence of transitions
x = ⟨x1, ..., xn⟩, let Si+1 = Si[[xi+1]] for i = 0, ..., n− 1. Then, x is a solution if xi+1 ∈ T (Si),
Si |= C, and ∀B ∈ B, Si ̸|= B for i = 0, ..., n− 1, Sn |= C, and ∃B ∈ B, Sn |= B. The solution
is an optimal solution if costτi

(V (Si+1), Si) = V (Si) for i = 0, ..., n− 1 in addition.

2.2 Complete Anytime Beam Search for DIDP
Previous research has shown that a subset of DyPDL models can be solved by cost-algebraic
heuristic search [11], a generalized version of the shortest path algorithm [25]. Multiple DIDP
solvers using cost-algebraic heuristic search algorithms have been proposed [25, 26]. These
solvers perform state space search, which finds a path from the target state to a base state in
a state space graph, a directed graph where each vertex is a state. In the state space graph,
an edge from state S to S[[τ ]] exists if τ ∈ T (S). Following the previous work, we assume
that costτ (V (S[[τ ]]), S) is expressed as wτ (S)× V (S[[τ ]]) where wτ is an expression returning
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Algorithm 1 Beam Search for DyPDL.

1: function BeamSearch(f , b)
2: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩.
3: O ← {S0}, x← NULL, complete← ⊤.
4: while O ̸= ∅ and x = NULL do
5: G← ∅. ▷ A set of states in the next layer.
6: for all S ∈ O do
7: if ∃B ∈ B such that S |= B then ▷ A base state.
8: if g(S)× eB(S) < f then ▷ A better solution.
9: f ← g(S)× eB(S), x← x(S).

10: else
11: for all τ ∈ T (S) : S[[τ ]] |= C do
12: if ∄S′ ∈ G such that S[[τ ]] ⪯ S′ and g(S)× wτ (S) ≥ g(S′) then
13: x(S[[τ ]])← ⟨x(S); τ⟩.
14: g(S[[τ ]])← g(S)× wτ (S), f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
15: if ∃S′ ∈ G such that S′ ⪯ S[[τ ]] and g(S[[τ ]]) ≤ g(S′) then
16: G← G \ {S′}. ▷ Remove a dominated state.
17: if f(S[[τ ]]) < f then ▷ Pruning by the primal bound.
18: G← G ∪ {S[[τ ]]}.
19: O ← {S ∈ G | f(S) < f}.
20: if |O| > b then
21: O ← the best b states in G minimizing f .
22: complete← ⊥.
23: if O ̸= ∅ then
24: complete← ⊥.
25: return x, complete.

a real value and × is a binary operator satisfying a cost-algebra. In particular, we focus on
nonnegative wτ and binary operators + or max, i.e., costτ (V (S[[τ ]]), S) = wτ (S) + V (S[[τ ]])
or costτ (V (S[[τ ]]), S) = max{wτ (S), V (S[[τ ]])}. The weight of the edge (S, S[[τ ]]) is defined
as wτ (S), and the cost of a path from the target state S0, which corresponds to a sequence
of the transitions x = ⟨x1, ..., xn⟩, is costx(S0) =×n−1

i=0 wxi+1(Si) where Si+1 = Si[[xi+1]]
for i = 0, ..., n − 1. As each edge weight is nonnegative, the cost of a path is nonnegative
and non-decreasing in length. In this paper, we focus on minimization while DyPDL and
cost-algebraic heuristic search can handle both minimization and maximization.

The state-of-the-art cost-algebraic heuristic search solver is complete anytime beam search
(CABS) [36, 26]. CABS performs beam search, which searches at most b states in the open
list O at each layer of the state space graph. We show the pseudo-code of beam search in
Algorithm 1. In addition to a DyPDL model and b, beam search takes the primal bound
f as an input, which is the best-known objective value and could be infinity. With each
state S, the best path x(S) from S0 and its cost g(S) = costx(S)(S0) (the g-value) are
maintained in lines 13 and 14. Starting from O = {S0}, beam search processes a state S in
O. If S is a base state, and the best path to S has a better cost than f in line 8, then f

and the solution x are updated. Otherwise, S[[τ ]] is added to the candidate set G for each
transition τ ∈ T (S), which is called the expansion of S, and we say that S is expanded
(lines 11– 18). When expanding S ∈ O, if there exists a state S′ ∈ G that dominates S[[τ ]]
and g(S′) ≤ g(S)× wτ (S), then S[[τ ]] is not added to G. In addition to g(S[[τ ]]), the priority
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f(S[[τ ]]) = g(S[[τ ]])× h(S[[τ ]]) (the f -value) is computed in line 14, which is a lower bound on
the optimal path cost from S0 to a base state via S[[τ ]]. If f(S[[τ ]]) ≥ f , the corresponding
path does not lead to an improved solution, so S[[τ ]] is not added to G in line 18. After
expanding all states, O is updated to the best b states in G according to f in lines 20-21.
This procedure is repeated until a solution whose cost is better than the given primal bound
is found, or no successor states are generated. The variable complete maintains whether the
search is complete. If states in G are pruned due to the beam width b (line 22), or O is not
empty when a solution is found (line 24), there may exist a better solution, so the search is
not complete. If complete = ⊤, then x is the optimal solution if it is not NULL, or the model
is infeasible if x = NULL. CABS performs a sequence of beam search with exponentially
increasing beam width b = 1, 2, 4, ... using the best objective value found so far as the primal
bound f until the optimality of the best solution or the infeasibility is proved.

2.3 Large Neighborhood Search
Large neighborhood search (LNS) iteratively removes a part of a solution and solves the
resulting subproblem (neighborhood) [34]. A solution for a CP problem is represented as a
complete value assignment to decision variables. Given a solution, LNS removes a subset of
the value assignments and solves the subproblem where the remaining variables are fixed to
the values assigned in the original solution. Typically, a tree search algorithm is used. In
a tree search algorithm, a search node is a partial value assignment to decision variables,
successor nodes are generated by assigning a value to an unassigned variable, and a solution
corresponds to a leaf node, where all variables are assigned values.

2.3.1 Large Neighborhood Search with Decision Diagrams
For combinatorial optimization, recent work proposed LNS with decision diagrams (DD-LNS)
[18]. Although DD-LNS was not explicitly framed as state space search, we interpret it as a
state space search algorithm. While DD-LNS is independent of DIDP, it also uses the DP
formulation of a problem as input while assuming that the solution has n transitions. Given
a sequence of transitions ⟨x1, ..., xn⟩, DD-LNS keeps the first d transitions, ⟨x1, ..., xd⟩, and
searches for the remaining n− d transitions. To find such a sequence, DD-LNS constructs
a decision diagram (DD), a directed graph where nodes are partitioned into layers. In the
constructed DD, each vertex corresponds to a state, and each edge corresponds to a transition,
so it is a state space graph. The first layer in the DD contains only the node corresponding to
Sd, where Si = Si−1[[xi]] for i = 1, ..., d. DD-LNS iteratively constructs a layer by applying
transitions to the states in the current layer until reaching layer n− d + 1.

Because constructing an exact DD is intractable, DD-LNS constructs a restricted DD,
which keeps a subset of states in the exact DD. In each layer, states satisfying certain
conditions are kept, some of which are selected randomly. Let the number of such states be
K. If K is smaller than a parameter W , from the remaining states, DD-LNS also keeps the
best W −K states that minimize a priority function, the rough lower bound (RLB). The
RLB of a state is a lower bound on the cost of a solution path via that state, which is the
same as the f -value. If the RLB of a state is larger than the best solution cost, the state is
removed from the DD as it does not lead to a better solution. Therefore, the procedure of
constructing a restricted DD can be considered beam search with randomization. Indeed,
the authors acknowledged that DD-LNS is a hybridization of LNS and beam search [18].
DD-LNS decreases d by 1 if a better solution is not found with d, starting from d = n−2 and
restarting from d = n− 2 if d = 0. When d = 0 and the restricted DD keeps all states except
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{1, 2, 3, 4}, 0

{2, 3, 4}, 1

{3, 4}, 2 {2, 4}, 3 {2, 3}, 4

{4}, 3 {3}, 4 {4}, 2 {2}, 4 {3}, 2 {2}, 3

∅, 4 ∅, 3 ∅, 2

1

2 3 4

3 4 2 4 2 3

4 4 3 3 2 2

Figure 1 Partial state space graph induced by the prefix ⟨1⟩ and the suffix ⟨4⟩ (highlighted in
red) in Example 1. The current partial path is highlighted in blue and an alternative partial path is
highlighted in green. Dashed transitions conflict with the suffix (explained in Section 3.2).

for those removed based on RLB, then it is the exact DD, so DD-LNS proves the optimality
of the solution. Since DD-LNS can be interpreted as a state space search algorithm and
is designed for combinatorial optimization, we implement it for DIDP and experimentally
compare it with our method.

3 Large Neighborhood Beam Search

We start with a simple idea of LNS for state space search: given a solution path, x =
⟨x1, ..., xn⟩ which connects states ⟨S0, ..., Sn⟩, we remove a partial path ⟨xi, ..., xi+d−1⟩
and search for a better partial path from Si−1 to Si+d−1. If we find a better solution
⟨x1, ..., xi−1, x′

i, ..., x′
i+d′−1, xi+d..., xn⟩, we repeat this procedure with the new solution. While

the overview of the algorithm is simple, there are design choices on how to select a partial
path to remove and how to search for a better partial path. The novelty of our method
compared to existing methods arises from such choices in addition to the fact that it is used
for DIDP. First, we describe the modifications of beam search for DyPDL to search for a
partial path from Si−1 to Si+d−1. Then, we propose strategies to select a partial path to
remove.

3.1 Beam Search for DyPDL in a Partial State Space Graph
We want to find a path from Si−1 to Si+d−1 instead of from S0 to a base state. We could
modify line 8 in Algorithm 1 so that it checks if S = Si+d−1 instead of ∃B ∈ B, S |= B.
However, in DyPDL, it may not be desirable as shown in the following example.

▶ Example 1. Consider the following DP formulation, where U ⊆ {0, 1, 2, 3, 4} is a set
variable, k ∈ {0, 1, 2, 3, 4} is an element variable, and clj for l, j ∈ {0, 1, 2, 3, 4} is a constant.

compute V ({1, 2, 3, 4}, 0)

V (U, k) =
{

minj∈U ckj + V (U \ {j}, j) if U ̸= ∅
0 if U = ∅.

Each transition in the DyPDL model has precondition j ∈ U and effect (U, U \ {j}) for
some j, and so we denote each transition by j. Each solution corresponds to a permutation
of the transitions 1, 2, 3, 4. A solution ⟨1, 2, 3, 4⟩ connects a sequence of states ⟨({1, 2, 3, 4}, 0),
({2, 3, 4}, 1), ({3, 4}, 2), ({4}, 3), (∅, 4)⟩. Consider removing ⟨2, 3⟩ from the solution. We
visualize the partial state space graph in Figure 1. An algorithm tries to find a path from
({2, 3, 4}, 1) to ({4}, 3). The original one, ⟨2, 3⟩, is only the path. However, a partial path
⟨3, 2⟩ from ({2, 3, 4}, 1) to ({4}, 2) also results in a valid solution ⟨1, 3, 2, 4⟩.
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Algorithm 2 Beam Search in a partial state space graph.

1: function BeamSearchForPartialPath(f , b, prefix, suffix)
2: Ŝ ← S0[[prefix]], g(Ŝ)← costprefix(S0), f(Ŝ)← g(Ŝ)× h(Ŝ), x(Ŝ)← prefix.
3: O ← {Ŝ}, x← NULL, complete← ⊤.
4: while O ̸= ∅ and x = NULL do
5: G← ∅. ▷ A set of states in the next layer.
6: for all S ∈ O do
7: S′ ← S, success← ⊥.
8: if ∃B ∈ B and S′ |= B then
9: success← ⊤. ▷ A base state, success.

10: else
11: for τ ← suffix1, ..., suffixn−i−d+1 do ▷ Rollout of the suffix.
12: if S′ ̸|= preτ then
13: break. ▷ Preconditions are not satisfied, fail.
14: S′ ← S′[[τ ]], g(S′)← g(S′)× wτ (S′), x(S′)← ⟨x(S′); τ⟩.
15: if S′ ̸|= C then
16: break. ▷ State constraints are not satisfied, fail.
17: if ∃B ∈ B such that S′ |= B then
18: success← ⊤. ▷ A base state, success.
19: break.
20: if success then
21: if g(S′)× eB(S′) < f then ▷ A better solution.
22: f ← g(S′)× eB(S′), x← x(S′).
23: else
24: for all τ ∈ T (S) : S[[τ ]] |= C do
25: if ∄S′ ∈ G such that S[[τ ]] ⪯ S′ and g(S)× wτ (S) ≥ g(S′) then
26: x(S[[τ ]])← ⟨x(S); τ⟩.
27: g(S[[τ ]])← g(S)× wτ (S), f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
28: if ∃S′ ∈ G, S′ ⪯ S[[τ ]] ∧ g(S[[τ ]]) ≤ g(S′) then
29: G← G \ {S′}. ▷ Remove a dominated state.
30: if f(S[[τ ]]) < f then ▷ Pruning by the primal bound.
31: G← G ∪ {S[[τ ]]}.
32: O ← {S ∈ G | f(S) < f}.
33: if |G| > b then
34: O ← the best b states in G minimizing f .
35: complete← ⊥.
36: if O ̸= ∅ then
37: complete← ⊥.
38: return x, complete.

Considering the above example, instead of focusing on a partial path to a state, we focus on
a partial path to a suffix of the solution path. Given a solution path ⟨x1, ..., xn⟩, if we remove
a partial path ⟨xi, ..., xi+d−1⟩, then ⟨x1, ..., xi−1⟩ is the prefix, and ⟨xi+d, ..., xn⟩ is the suffix.
For a partial path ⟨x′

i, ..., x′
i+d′−1⟩, we want to check if ⟨x1, ..., xi−1, x′

i, ..., x′
i+d′−1, xi+d, ..., xn⟩

is a valid solution. Therefore, for a state S found by a search algorithm, we perform a rollout
of the suffix from S and check if each of resulting states satisfies the state constraints and a
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Algorithm 3 Large Neighborhood Beam Search (LNBS).
Input: initial feasible solution x.
Output: solution x and if the optimality or infeasibility is proved.

1: while the time limit is not reached do
2: n← |x|, f ← costx(S0).
3: Select d such that 2 ≤ d ≤ n.
4: Select i such that 1 ≤ i ≤ n− d + 1.
5: Select beam width b.
6: prefix ← ⟨x1, ..., xi−1⟩, suffix ← ⟨xi+d, ..., xn⟩.
7: x, complete← BeamSearchForPartialPath(f , b, prefix, suffix)
8: if x ̸= NULL then
9: x← x.

10: if i = 0 ∧ d = n ∧ complete then
11: return x, ⊤.
12: return x, ⊥.

base case. We show the modified version of beam search in Algorithm 2. This algorithm
takes a prefix prefix and a suffix suffix as input. In line 2, we denote the state resulting from
applying the prefix to the target state by Ŝ = S0[[prefix]] and initialize the open list O with
Ŝ in line 3. In lines 8–22, the algorithm performs a rollout of the suffix from S and checks if
it results in a better solution. Other parts are the same as Algorithm 1.

We use this modified version of beam search in large neighborhood beam search (LNBS)
as shown in Algorithm 3. In line 2, |x| denotes the length of the current solution x. In
lines 3–5, LNBS selects parameters d, i, and b. In line 7, LNBS performs beam search in the
neighborhood. If an improving solution is found, LNBS updates the current solution x in
line 9. If the searched neighborhood is the original search space, i.e., i = 1 and d = n, and
beam search proves the optimality or infeasibility, LNBS terminates in line 11. Therefore, if
it is guaranteed to select i = 1 and d = n with sufficiently large b given enough time, LNBS
is guaranteed to find the optimal solution or prove the infeasibility, i.e., it is complete. CABS
can be considered a configuration of LNBS, where i = 1, d = n, and b increases exponentially.
DD-LNS can also be considered a configuration of LNBS, where i ranges from n− 2 to 1,
d is n− i + 1, and b is fixed to W while beam search is extended with the randomization
mechanism. We will describe the strategies that we use to select d, i, and b below.

3.2 Removing Conflicting Transitions
In Example 1, consider finding a partial path from a prefix ⟨1⟩, which results in state
Ŝ = ({2, 3, 4}, 1), to a suffix ⟨4⟩ using beam search. In Ŝ, three transitions 2, 3, and 4 are
applicable. However, applying transition 4 does not lead to a feasible solution because it
is already used in the suffix and cannot be applied twice: it requires 4 ∈ U and removes 4
from U , but no other transition adds 4 to U , so applying 4 makes the suffix inapplicable.
Generalizing this example, if we know that a transition τ makes a transition τ ′ in the suffix
inapplicable, then we can ignore τ when searching for a partial path. In particular, we focus
on the effects of τ that add/remove an element to/from a set variable and the preconditions
of τ ′ that require the element to be/not to be in that set variable.

▶ Proposition 2. Suppose that a DyPDL model ⟨V , S0,K, T ,B, C, h⟩ has a set variable U ∈ V
whose domain is 2N , where N is a set of objects. There does not exist a solution ⟨x1, ..., xn⟩
such that any pair of τ = xi and τ ′ = xj for 1 ≤ i < j ≤ n satisfy either of the following
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conditions:
1. There exists k ∈ N such that (U, U\{k}) ∈ effτ , (k ∈ U) ∈ preτ ′ , and each τ ′′ ∈ T \{xi, xj}

does not change U or (U, U \ {l}) ∈ effτ ′′ for some l ∈ N .
2. There exists k ∈ N such that (U, U ∪ {k}) ∈ effτ , (k ̸∈ U) ∈ preτ ′ , and each τ ′′ ∈
T \ {xi, xj} does not change U or (U, U ∪ {l}) ∈ effτ ′′ for some l ∈ N .

Proof. For the first case, xi removes k from U , and no other transition adds k to U . Since
xj requires k to be in U , once we apply xi, we cannot apply xj later. The other case is
proved similarly. ◀

Before starting beam search in a neighborhood, we remove a transition τ from the model
if there exists a transition τ ′ in the suffix such that τ and τ ′ satisfy one of the conditions in
Proposition 2. Detecting such a pair of transitions is done once at the beginning by checking
the expression trees representing the preconditions and effects of transitions.

3.3 Bandit-Based Depth Selection
Selecting the depth of a neighborhood, d, in line 3 of Algorithm 3 is non-trivial. If d

is too small, it is unlikely that an improving solution exists. However, if d is too large,
each neighborhood search takes a long time. We want to select d such that the total cost
improvement is maximized within the time limit.

We formulate the depth selection as the budgeted multi-armed bandit problem with
continuous random costs [35]. We have the set of depths D ⊆ {2, ..., n}. If we select a depth
d ∈ D and perform search in line 7 of Algorithm 3, we obtain a new solution x by spending
search time t. As t is assumed to take a value in [0, 1] in the budgeted multi-armed bandit
problem, we divide the actual time by the time limit T . If the cost costx(S0) is smaller than
the current best solution cost f , the reward is r = (f − costx(S0))/f . If no better solution is
found, the reward is r = 0. We call this process a round, and we repeat rounds until reaching
the time limit T . We do not know the reward r and time t before finishing a round, so we
use random variables rdk and tdk representing the reward and time if depth d is used at
round k. Let a be a strategy that selects a depth ak in the round k. The number of rounds
performed by a by the time limit, KaT , is also a random variable. The objective is to find a
strategy a that maximizes the total expected reward E[

∑KaT

k=1 rakk].
We use Budgeted-UCB [35]. At each round, if some depths in D have not been selected

before, Budgeted-UCB selects one of them. Otherwise, let mdk be the number of rounds
where the depth d is selected up to round k − 1, and let r̄dk and t̄dk be the average reward
and search time for d up to round k− 1. Budgeted-UCB selects the depth d that maximizes

r̄dk

t̄dk
+ ϵdk

t̄dk
+ ϵdk

t̄dk

min{r̄dk + ϵdk, 1}
max{t̄dk − ϵdk, λ}

(5)

where ϵdk =
√

2 log (k−1)
mdk

and λ is a positive lower bound of the search time of each round.
In practice, we initialize D = {2, 4, 8, ..., 2l, n}, where n is the length of the initial feasible

solution and l is the maximum integer such that 2l < n. If we get a solution whose length
n′ is different from n at round k, we replace n with n′ in D using mn′,k+1 = mn,k+1,
r̄n′,k+1 = r̄n,k+1, and t̄n′,k+1 = t̄n,k+1 and ignore depths greater than n′ in D. If multiple
depths have not been selected before or have the same value, we select the minimum depth
among them. For λ, we use the time of the first round divided by 10 while there is no
guarantee that it is a lower bound. Thus, the theoretical analysis of Budgeted-UCB studied
in the original paper [35] does not necessarily apply to our setting. In addition, while Xia et
al. [35] assumed that the pairs {(rdk, tdk)}∞

k=1 are i.i.d., we do not have such a guarantee.

CP 2023



23:10 Large Neighborhood Beam Search for Domain-Independent Dynamic Programming

3.4 Start Selection
Once LNBS determines the depth d to use, it selects a starting point i, which induces the
prefix and the suffix, in line 4 of Algorithm 3. We select i considering the cost change in a
neighborhood. Concretely, the cost change by partial path ⟨xi, ..., xi+d−1⟩ is defined as

δdi = cost⟨x1,...,xi+d−1⟩(S0)− cost⟨x1,...,xi−1⟩(S0). (6)

Since the path cost is non-decreasing, δdi ≥ 0. We ignore i with δdi = 01 and select one
uniformly at random from the remaining options.

Our second approach is to select i based on the probability biased by δdi. As we explain
in the next subsection, for each d and i, the beam width b is maintained. Since smaller bdi

leads to a shorter search time, we discount the probability of selecting i by bdi. Concretely,
given the depth d, we can select the starting point i with the probability

pdi = δdi/bdi∑n−d+1
j=1 δdj/bdj

. (7)

3.5 Beam Width Selection
Given the depth d and the starting point i, LNBS selects a beam width b in line 5 of
Algorithm 3. Here, we use a similar strategy to CABS: for each d and i, we initialize the
beam width bdi to be 1 and update it to 2bdi after each round with d and i. If we find
an improved solution in line 7, we reset bd′i′ = 1 only for d′ and i′ such that i′ > i or
i′ + d′ < i + d; if i′ ≤ i and i′ + d′ ≥ i + d, the prefix and the suffix for the neighborhood
induced by i′ and d′ do not change, and we know that a better partial path was not found
with beam widths smaller than bd′i′ .2 If the neighborhood is exhausted, i.e., complete = ⊤
in line 7, we ignore the combination of d and i in lines 3 and 4 until a new solution is found
and bdi is reset to 1. Since the number of neighborhoods is finite, LNBS eventually exhausts
all the neighborhoods and finds the optimal solution, which guarantees completeness.

4 Experimental Evaluation

We compare LNBS with CABS, DD-LNS, CP, and mixed-integer programming (MIP).

4.1 Experimental Settings
As benchmarks, we use the same problems and instances used by previous work [26]: the
traveling salesperson problem with time windows (TSPTW), the capacitated vehicle routing
problem (CVRP), the multi-commodity pickup and delivery traveling salesperson problem
(m-PDTSP), the single machine total weighted tardiness problem (1||

∑
wiTi), the talent

scheduling problem (Talent), the simple assembly line balancing problem to minimize the
number of stations (SALBP-1), the bin packing problem (BPP), and the graph-clear problem
(GCP). We use the same DP, CP, and MIP models as the previous work [26].3

1 Theoretically, a better solution may be found with such i if the suffix is not empty because a partial
path may change the state from which the suffix is applied, which may change the cost of the suffix.

2 Theoretically, a better solution may be found with beam width smaller than bd′i′ if the updated primal
bound changes the search behavior.

3 https://github.com/Kurorororo/didp-models

https://github.com/Kurorororo/didp-models
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LNBS, CABS, and DD-LNS are implemented in didp-rs v0.3.24 using Rust 1.65.0. In
LNBS and DD-LNS, CABS is run first to find a feasible solution, and then LNBS and DD-
LNS are run to improve the solution. For DD-LNS, we use W = 1000 and p = 0.1 following
the original paper [18]. As we described above, LNBS removes conflicting transitions from a
suffix, selects the depth using Budgeted-UCB, and geometrically increases the beam width for
each neighborhood. To select the starting point of a partial path, we consider two approaches,
uniform and biased sampling. While biased sampling achieves better solution quality in
CVRP and m-PDTSP, uniform sampling is better in TSPTW, 1||

∑
wiTi, SALBP-1, MOSP,

and GCP (see Appendix A). In what follows, we only show results from uniform sampling.
In Appendix A, we also evaluate the importance of removing conflicting transitions and
Budgeted-UCB. We confirm that these mechanisms significantly improve the solution quality.
A more comprehensive ablation study is left for future work.

We implemented the DP models using didppy, a Python interface for didp-rs. We use
IBM ILOG CP Optimizer 22.1.0 for the CP models and Gurobi Optimizer 9.5.0 for the
MIP models. CP Optimizer is known to use LNS [27]. The DP, CP, and MIP models are
implemented in Python 3.10.2. All experiments are run on an Intel Xeon Gold 6148 processor
with a single thread, an 8 GB memory limit, and a time limit of 1800 seconds. For LNBS
and DD-LNS, we take the median of 5 runs.

Following the previous work [26], we use the primal gap and the primal integral to measure
the performance [7]. If an algorithm finds a solution xt with the cost f(xt) at time t, and
the optimal or best-known solution cost is f∗, the primal gap at t for the algorithm is

p(t) =


1 if f(xt) · f∗ < 0
0 if f(xt) = f∗ = 0

|f(xt)−f∗|
max{|f(xt)|,|f∗|} otherwise.

(8)

If the algorithm does not find a solution at time t, then p(t) = 1. Let t1, ..., tl−1 be time
points where a better solution is found, t0 = 0, and tl = T where T is the time limit. Then,
the primal integral, P (T ) is defined as

P (T ) =
l∑

i=1
p(ti−1) · (ti − ti−1). (9)

We use the primal gap at the time limit, p(T ), and the primal integral, P (T ), as the measures.

4.2 Experimental Results
We show the number of instances where the optimality of a solution is proved, the average
primal gap at the time limit, and the average primal integral for each problem in Table 1.
We omit MIP in Table 1 because it is outperformed by CP in the primal gap and the primal
integral for all problem types (see Appendix A). In the number of optimally solved instances,
MIP is the best in CVRP (with 26 problems solved). As reported by previous work [26],
MIP is good at finding an optimal solution for small instances, while it fails to find a feasible
solution for larger instances, which results in poor performance in the primal gap and the
primal integral on average. In other problems, LNBS solves more instances optimally than
MIP except for BPP, where LNBS solves 1139 and MIP solves 1157.

4 https://didp.ai

CP 2023
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Table 1 Summary of the experimental result. “#” is the number of optimally solved instances,
“gap” is the average primal gap at the time limit, and “p.i.” is the average primal integral.

CP CABS DD-LNS LNBS
# gap p.i. # gap p.i. # gap p.i. # gap p.i.

TSPTW (340) 47 0.0259 49.0 257 0.0033 9.0 109 0.0100 23.7 241 0.0016 5.7
CVRP (207) 0 0.3174 601.1 6 0.1772 339.5 0 0.2504 461.6 6 0.1640 316.8
m-PDTSP (1178) 1049 0.0122 25.5 1030 0.0023 5.1 459 0.0102 21.7 1029 0.0022 5.0
1||

∑
wiTi (375) 150 0.0009 3.5 286 0.0346 74.4 100 0.0409 83.5 275 0.0051 13.0

Talent (1000) 0 0.0081 29.3 232 0.0173 38.2 0 0.0602 114.6 232 0.0041 11.1
SALBP-1 (2100) 1584 0.0046 28.4 1799 0.0003 2.2 1507 0.0067 13.5 1682 0.0022 7.3
BPP (1615) 1234 0.0014 7.7 1159 0.0017 6.1 775 0.0190 35.4 1139 0.0021 8.1
MOSP (570) 437 0.0044 13.0 526 0.0000 0.4 353 0.0203 37.5 523 0.0002 0.7
GCP (135) 1 0.0151 44.3 103 0.0000 0.6 3 0.0009 2.7 102 0.0001 0.6
Larger Instances
m-PDTSP (240) 77 0.1491 285.9 101 0.0694 153.2 79 0.1345 265.7 98 0.0652 146.6
MOSP (760) 0 0.0676 150.6 150 0.0002 4.4 0 0.0402 72.7 148 0.0025 10.4
GCP (50) 0 0.5289 1268.3 0 0.0013 10.8 0 0.0764 137.8 0 0.0038 19.5

Compared to CABS, LNBS achieves the better primal gap and the primal integral in
TSPTW, CVRP, m-PDTSP, 1||

∑
wiTi, and Talent. We show the distribution of the primal

gap in TSPTW, CVRP, 1||
∑

wiTi, and Talent in Figure 2. The primal integral has a similar
trend to the primal gap in these problems (see Appendix A). In contrast, CABS is better
than LNBS in SALBP-1, BPP, MOSP, and GCP. These results are consistent with the
observation that LNS is effective for routing and scheduling problems in CP [24, 27]. In the
routing problems (TSPTW, CVRP, and m-PDTSP), CABS is already better than CP, and
LNBS is even better than CABS. In 1||

∑
wiTi, while LNBS shows a significant improvement

from CABS (0.0051 from 0.0346) outperforming MIP (0.0188), CP is still the best. However,
in Talent, LNBS outperforms CP while CABS does not. Overall, LNBS is better than CP in
seven problems while CABS is better than CP in six problems.

In TSPTW, the difference in the primal gap between LNBS and CABS (0.0016 and
0.0033) seems small, but it is because they achieve almost the same primal gap in many
instances: they optimally solve all 135 instances in the Dumas set [10] and achieve almost the
same average primal gap in the AFG set [2], which has 50 instances, and GendreauDumas
Extended set [16], which has 130 instances. However, in the OhlmannThomas set [31], which
has 25 instances, no instance is optimally solved, and LNBS shows a significant improvement
in the primal gap (0.0184 from 0.0395).

In the number of optimally solved instances, CABS is equal to or better than LNBS in all
problems. While CABS always searches the entire state space graph, LNBS searches multiple
neighborhoods, and the entire state space graph is just one of them. Nevertheless, LNBS
proves the optimality of more than 93% of instances that are optimally solved by CABS.

DD-LNS performs worse than CABS and LNBS in all the problems. Previous work has
reported that DD-LNS is effective for TSPTW [18]. Note however that the DD-LNS and
LNBS results in Table 1 are not the results reported by Gillard and Schaus. To validate that
our implementation and experimental settings do not handicap DD-LNS, we compare the
results of DD-LNS with those of the original paper in TSPTW.5 Our DD-LNS implementation

5 https://github.com/xgillard/ijcai_22_DDLNS/blob/main/results/tsptw/ddlns/results_w1000_

https://github.com/xgillard/ijcai_22_DDLNS/blob/main/results/tsptw/ddlns/results_w1000_t600.txt
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(b) CVRP.
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(d) Talent.
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(e) Large instances in m-PDTSP.
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(f) Large instances in MOSP.

Figure 2 Distribution of the primal gap at the time limit. Higher and left is better.

finds a better solution than the original in all instances with the time limit of 600 seconds.
This difference is likely due to the difference between the DP models used by us (from
Kuroiwa and Beck [26]) and Gillard and Schaus. In TSPTW, a solution is a tour that starts
from a depot, visits each customer j within the time window [aj , bj ], and returns to the
depot, and an optimal solution minimizes the total travel time. In both DP models, state
variables are the set of unvisited customers U , the current customer i, and the current time
t, and each transition corresponds to visiting a customer or the depot. Each DP model has a
dual bound (called RLB by Gillard and Schaus), a lower bound on the optimal solution cost.
While Gillard and Schaus use a dual bound based on a minimum spanning tree, Kuroiwa and
Beck use a simpler one based on the minimum travel time between customers. In addition,
Kuroiwa and Beck use information that was not considered by Gillard and Schaus. First,
they use dominance between states based on the current time: a state S dominates another
state S′ if S[U ] = S′[U ], S[i] = S′[i], and S[t] ≤ S′[t]. Furthermore, since the time to visit
customer j is underestimated by t + c∗

ij , where c∗
ij is the shortest travel time from i to j, they

t600.txt
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define state constraints ∀j ∈ U, t + c∗
ij ≤ bj . The dominance and the state constraints are

useful to prune states, which potentially explains the performance gap. Another difference
is whether considering the time window constraints at the depot or not. In the benchmark
instances used above6 (and in Kuroiwa and Beck [26]), a time window [a0, b0] is defined for
the depot. Gillard and Schaus explicitly model a required return to the depot within [a0, b0]
while Kuroiwa and Beck do not. However, in the benchmark instances, b0 ≥ bj + cj0 holds
for all customers j, where cj0 is the travel time from j to the depot. Thus, if all customers
are visited within the time windows, the depot can be reached within the time window, and
explicit modeling of the depot return window is unnecessary.

4.3 Larger Instances
LNBS performs better than CABS in m-PDTSP and worse in MOSP and GCP, but the
difference in the average primal gap is small. To evaluate the difference more clearly, we use
larger instances for these problems.

In m-PDTSP, a vehicle visits all nodes in a graph, picks up some commodities at some
nodes, and delivers them to others. Each commodity has a weight and the total weight of
commodities that a vehicle can carry is limited by the capacity. In the benchmark set for
m-PDTSP, three types of instances are used: Class 1, Class 2, and Class 3 [21], and Class 1
instances are generated from instances of the sequential ordering problem (SOP) [3]. We
generate larger Class 1 instances by using 30 SOP instances in TSPLIB7 that were not used
by the previous work. The original instances have at most 47 nodes, and the new instances
have 42 to 378 nodes. We use the same methods as the previous work [21] with the maximum
weight q ∈ {1, 5} and the capacity Q ∈ {5q, 10q, 20q, 100q}, resulting in 240 instance in total.

In MOSP, an instance is represented by a matrix, and the original set uses at most
125× 125 matrices. We add instances using 150× 150 to 1000× 1000 matrices [8, 12].

In GCP, an instance is represented by a graph. The original instance set uses random and
random planar graphs with 20, 30, and 40 nodes. We generate 50 instances using random
graphs with 100 and 200 nodes following the method used by previous work [29].

As shown in Table 1, LNBS clearly outperforms CABS in m-PDTSP in the primal gap and
the primal integral, but CABS is better in MOSP and GCP. We also show the distribution
of the primal gap in m-PDTSP and MOSP in Figure 2. The primal integral has a similar
tendency to the primal gap, and the result for GCP is qualitatively similar to that of MOSP.

4.4 Analysis of Problem Characteristics
In routing problems, a solution is a route visiting all nodes in a graph, and its cost is the
length of the route. In the DP models for these problems, each transition corresponds to
visiting one node, and the cost of a partial path increases when a transition is applied. We
expect that different partial solutions tend to have different costs, and it is relatively easy to
find a better partial path; because the path costs are diverse, unless the current partial path
is optimal, better partial paths are included in a partial state space graph with high density.
In such a case, beam search is likely to find a better partial path although it searches in a
fraction of the partial state space graph restricted by the beam width.

In contrast, in SALBP-1 and BPP, the problem is to pack weighted items into capacitated
bins while minimizing the number of bins. In the DP models, each transition packs one item
into a bin, and the cost increases only when a new bin is opened. In the DP models for

6 https://lopez-ibanez.eu/tsptw-instances
7 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/

https://lopez-ibanez.eu/tsptw-instances
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/
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(a) Problem types where LNBS has lower mean gap: TSPTW, CVRP, m-PDTSP, 1||
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wiTi, and Talent.
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(b) Problem types where CABS has lower mean gap: SALBP-1, BPP, MOSP, and GCP.

Figure 3 Entropy of the cost distribution over partial paths vs. the solution length in each
problem instance. ‘LNBS better’ means LNBS finds a better solution, ‘TIE’ means that LNBS and
CABS achieve the same solution cost, and ‘CABS better’ means that CABS finds a better solution.

MOSP and GCP, the cost is computed by taking the maximum weights of edges in a path,
and it does not increase unless a new edge has a higher weight than the current maximum.
Therefore, we expect that many partial paths tend to have the same cost in these problems,
making it difficult to improve a solution by searching only a partial state space graph.

Based on these observations, we hypothesize that LNBS tends to perform better than
CABS when path costs in a partial state space graph are diverse. To test this hypothesis, we
evaluate the diversity of costs in a partial state space graph using entropy in information theory.
Given a solution for a DyPDL model x = ⟨x1, ..., xn⟩, let Ydi(x) be the set of solution paths
whose prefix is ⟨x1, ..., xi−1⟩ and the suffix is ⟨xi+d, ..., xn⟩. Let C = {costy(S0) | y ∈ Ydi(x)}
be the set of the path costs. Then, the entropy of the path costs is defined as follows:

H(Ydi(x)) = −
∑
c∈C

|{y ∈ Ydi(x) | costy(S0) = c}|
|Ydi(x)| log2

|{y ∈ Ydi(x) | costy(S0) = c}|
|Ydi(x)| . (10)

As this value gets larger, the cost distribution becomes more diverse, and we expect that
LNBS will perform better than CABS. However, even if the entropy is large, if the problem
itself is easy, both CABS and LNBS will find optimal or near-optimal solutions. To consider
such cases, we also evaluate the length of the initial solution found by CABS.

We evaluate entropy and the length of the initial solution found for each problem instance
used in Section 4.2. We first run CABS until it finds a feasible solution and record the length
of the solution. Then, we remove the first eight transitions from the solution and enumerate
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all feasible prefixes of the solution, i.e., we use d = 8 and i = 1. In Figure 3, we show a scatter
plot of entropy and the solution length divided into two plots to emphasize the differences
between the problem types where LNBS has a lower primal gap on average (Figure 3a) and
those where CABS is better (Figure 3b). With low entropy, CABS dominates. For higher
entropy, the solution length begins to play a factor: for short solutions, CABS and LNBS
perform equally but for longer solutions, LNBS tends to perform better. Indeed, for the
problems where CABS performs better on average (Figure 3b), the entropy is quite low (less
than 3.5). This result suggests that the entropy of the cost distribution over partial paths
is related to the performance of LNBS. Since this analysis is based on path costs, it is not
directly applicable to LNS with tree search, where a solution corresponds to a leaf node.
However, if we consider the factors of neighborhood size and cost distribution over leaf nodes,
we may be able to apply this analysis to LNS for CP and MIP.

5 Related Work

As we discussed, LNBS can be considered a generalization of DD-LNS [18], which combines
DDs and LNS. DP is closely related to DDs [23], and DDs have been actively used for
combinatorial optimization [9]. For example, DDs are used to obtain bounds on the optimal
objective value [4, 33], and heuristics based on DDs have been proposed [6]. Moreover, ddo, a
general-purpose DD solver for combinatorial optimization has been developed [5, 19]. In CP,
DDs are used for constraint propagation [1, 22]. Recently, HADDOCK, a modeling language
of a DD based on a state transition system, was proposed for CP [17].

In state space search, there exist several methods that improve a solution path by searching
in a partial state space graph, but they were not framed as LNS. In classical planning, plan
neighborhood graph search (PNGS) first constructs a partial state space graph by performing
local search from each state in a solution path and then finds the shortest path in the graph
[30]. In sliding tile puzzles, iterative tunneling search with A* (ITSA*) iteratively expands a
partial state space graph, which includes states close to a given path, and finds the shortest
path in that graph [13]. Unlike the above two algorithms, Joint and local path A* (LPA*)
[32] try to find a better partial path between two states in a given path using A* [20]. While
Joint and LPA* fix the length of a partial path to remove and deterministically select a
neighborhood, LNBS dynamically adjusts them and uses beam search instead of A*.

6 Conclusion

We proposed large neighborhood beam search (LNBS), a state space search algorithm based
on large neighborhood search (LNS) and beam search for domain-independent dynamic
programming (DIDP). Our configuration of LNBS exploits the multi-armed bandit problem
and random sampling to select a neighborhood. We proved that LNBS is complete. LNBS
finds better quality solutions on average than the state-of-the-art DIDP solver, complete
anytime beam search (CABS), in five out of the nine benchmark problems. In particular,
LNBS performs well in routing and scheduling problems, and our analysis suggests that this
performance is related to the diversity of the cost distribution over partial paths. A deeper
investigation of the characteristics of the problems that make LNS effective in state space
search and tree search is an interesting direction for future work. Based on such analysis,
developing better configurations for LNBS may also be possible.
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A Additional Experimental Results

Table 2 Comparison of CP, MIP, and two configurations of LNBS. “#” is the number of optimally
solved instances, “gap” is the average primal gap at the time limit, and “p.i.” is the average primal
integral.

CP MIP LNBS LNBS/bias
# gap p.i. # gap. p.i. # gap. p.i. # gap. p.i.

TSPTW (340) 46 0.0275 52.3 227 0.2268 484.1 241 0.0016 5.7 242 0.0019 6.2
CVRP (207) 0 0.3174 601.1 26 0.5845 1157.4 6 0.1640 316.8 6 0.1633 314.8
m-PDTSP (1178) 1050 0.0121 25.4 945 0.0858 180.0 1029 0.0022 5.0 1029 0.0021 4.7
1||

∑
wiTi (375) 150 0.0003 2.4 109 0.0188 75.6 275 0.0051 13.0 275 0.0056 14.5

Talent (1000) 7 0.0072 27.6 0 0.0573 152.6 232 0.0041 11.1 231 0.0042 11.1
SALBP-1 (2100) 1584 0.0046 28.4 1357 0.3447 634.6 1682 0.0022 7.3 1675 0.0022 7.5
BPP (1615) 1234 0.0014 7.7 1157 0.0385 85.9 1139 0.0021 8.1 1129 0.0021 9.0
MOSP (570) 437 0.0044 13.0 224 0.0394 100.4 523 0.0002 0.7 523 0.0002 0.7
GCP (135) 1 0.0151 44.3 23 0.1102 311.9 102 0.0001 0.6 102 0.0001 0.7
Larger Instances
m-PDTSP (240) 77 0.1481 284.1 47 0.5811 1096.8 98 0.0652 146.6 97 0.0647 147.0
MOSP (760) 0 0.0675 150.4 0 0.8806 1599.4 148 0.0025 10.4 148 0.0027 10.7
GCP (50) 0 0.5287 1268.1 0 0.5306 977.8 0 0.0038 19.5 0 0.0061 21.2

Table 3 Comparison of LNBS variants. “No removing conflicts” does not remove conflicting
transitions in the suffix. “No Budgeted-UCB” selects the depth uniformly at random instead of
using Budgeted-UCB. “#’ is the number of optimally solved instances, “gap” is the average primal
gap at the time limit, and “p.i.” is the average primal integral.

LNBS No removing conflicts No Budgeted-UCB
# gap. p.i. # gap. p.i. # gap. p.i.

TSPTW (340) 241 0.0016 5.7 234 0.0035 10.6 256 0.0034 9.4
CVRP (207) 6 0.1640 316.8 5 0.1682 322.5 6 0.1767 338.7
1||

∑
wiTi (375) 275 0.0051 13.0 268 0.0224 56.0 287 0.0340 74.1

We show the result of MIP in Table 2. MIP solves more instances than CP in TSPTW,
CVRP, and GCP, but CP is better in the primal gap and the primal integral.

In addition, we compare two configurations of LNBS in Table 2. One selects the starting
point of a partial path uniformly at random (LNBS), and another selects it according to the
probability distribution biased by partial path costs in Equation (7) (LNBS/bias). LNBS/bias
solves one more instance in TSPTW and outperforms LNBS in CVRP and m-PDTSP in the
primal gap.
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(b) SALBP-1.
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(e) GCP.
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(f) Large instances in GCP.

Figure 4 Distribution of the primal gap at the time limit. Higher and left is better.

We evaluate the importance of other components of LNBS using a subset of the problems:
TSPTW, CVRP, and 1||

∑
wiTi. In Table 3, we compare two variants of LNBS, where

conflicting transitions in a suffix are not removed (‘No removing conflicts’), and the depth
is selected uniformly at random instead of Budgeted-UCB (‘No Budgeted-UCB’). The two
variants perform worse in terms of the primal gap and the primal integral. While ‘No
Budgeted-UCB’ solves more instances to optimality, it is because the largest depth, which
makes LNBS the same as CABS, is more likely to be selected by uniform sampling. Indeed,
the primal gap and the primal integral of ‘No Budgeted-UCB’ are close to those of CABS.

In Figure 4, we present the distribution of the primal gap over instances in m-PDTSP,
SALBP-1, BPP, MOSP, Graph-Clear, and large instances in GCP. LNBS is slightly better in
m-PDTSP, and CABS is better in SALBP-1, BPP, and large instances in GCP. Figures 5
and 6 show the distribution of the primal integral. The tendency is similar to that of the
primal gap.
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(d) Large instances in m-PDTSP.
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(f) Talent.

Figure 5 Distribution of the primal integral at the time limit in the problems where LNBS is
better. Higher and left is better.
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(c) MOSP.
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(d) Large instances in MOSP.
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(e) GCP.
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(f) Large instances in GCP.

Figure 6 Distribution of the primal integral at the time limit in the problems where CABS is
better. Higher and left is better.
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Abstract
Multi-objective problems are frequent in the real world. In general they involve several incomparable
objectives and the goal is to find a set of Pareto optimal solutions, i.e. solutions that are incomparable
two by two. In order to better deal with these problems in CP the global constraint Pareto was
developed by Schaus and Hartert to handle the relations between the objective variables and the
current set of Pareto optimal solutions, called the archive. This constraint handles three operations:
adding a new solution to the archive, removing solutions from the archive that are dominated by a
new solution, and reducing the bounds of the objective variables. The complexity of these operations
depends on the size of the archive. In this paper, we propose to use a multi-valued Decision Diagram
(MDD) to represent the archive of Pareto optimal solutions. MDDs are a compressed representation
of solution sets, which allows us to obtain a compressed and therefore smaller archive. We introduce
several algorithms to implement the above operations on compressed archives with a complexity
depending on the size of the archive. We show experimentally on bin packing and multi-knapsack
problems the validity of our approach.
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1 Introduction

Multi-objective combinatorial optimization (MOCO) problems are present in many industrial
applications [13, 14]. They involve several incomparable objectives represented by objective
variables.

For the sake of clarity and without loss of generality, we will consider that we have to
solve a problem where all objective variables must be minimized.

A solution S1 of objective variables is dominated by another solution S2 if for each
objective variable obji the value of obji in S2 is better than or equal to the value of obji in
S1. For instance the solution (4, 6, 3, 1) is dominated by (4, 3, 2, 1) but it is not dominated by
(1, 1, 1, 3). The set of non dominated solutions defines the set of Pareto optimal solutions. In
MOCO, the goal is to compute that set of Pareto optimal solutions. Usually the set of non
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dominated solutions are saved in an archive that is maintained during the search for solutions.
Two operations are involved: insert that manages the addition of a new non dominated
solution and delete that removes the solutions that are dominated by the new solution.

In addition, solvers dealing with MOCO problems have to deal with another question: Is
a new solution dominated by an archive solution?

In Constraint Programming, we answer this question by avoiding the generation of
dominated solutions. To do this, we add a constraint to the problem that ensures that no
dominated solution can be computed. This added constraint is called Pareto constraint and
was proposed by Schaus and Hartert [11, 4]. It implements the ideas of Gavanelli [3]. This
constraint reduces the bounds of the objective variables such that dominated solutions cannot
be produced. This result is obtained by preventing a new solution from being dominated
by a solution from the archive. In order to understand this process, let us create a tuple
composed of the current minimum of all objective variables. This tuple will dominate all
solutions that can be constructed from the current objective variables. Thus, if there is a
solution in the archive that dominates this tuple then clearly it will dominate all future
solutions and so we can stop the search. Now, consider the objective variable obji. If we
replace in our tuple the value of obji by its maximum possible value and if we found S, a
solution of the archive, dominating this tuple, then obji must take a value less than or equal
to that of S otherwise the future solutions will be dominated by S. By applying this process
for each variable, Schaus and Hartert establish the bound consistency of the constraint. We
will denote by filter this process. The complexity of this operation is not detailed in their
paper. A simple implementation will require to traverse n (the number of objectives) times
the archive. It is not straightforward to reach a time complexity linear in the size of the
archive.

It may be tempting to use multi-valued decision diagrams (MDDs) for this constraint
because MDDs are a compressive data structure for representing solution sets. Perez [7]
defined the MDD representing the Pareto constraint, i.e. the set of tuples allowed by the
constraint that are the possible future non-dominated solutions. As mentioned by Perez,
this approach failed mainly because at the beginning the MDD compresses very strongly the
set of solutions since everything is almost possible, then it will decompress because we only
delete tuples and the chances of recompression are low.

In this article we propose to use MDDs to represent the archive, that are the current non
dominated solutions. Currently the archive is often represented as lists. We can also use
quad-trees but this is only efficient if we have few objectives [6], which is not our case of
study. With lists (or quad-trees for that matter), the complexity of the operations insert
and delete is linear with the size of the archive (i.e. the number of elements multiplied by
the number of objectives). Representing the archive by an MDD will allow parts of common
solutions to be merged. As with an MDD, all the solutions are treated globally, we can
therefore hope to save time thanks to these groupings.

The operation delete will therefore potentially save time. The operation insert may be
slower because MDDs are a heavier data structure than lists. However, this operation takes
much less time than delete or filter. For this last operation, we will benefit from the global
view of the MDD. We propose to improve the algorithm of Schaus and Hartet in two ways:
we define an algorithm to find the tightest solutions (i.e. the largest possible value of an
objective) faster and we introduce a variant of this algorithm that processes all objective
variables at once, and not successively.

Our algorithms are based on the following idea: Consider the objective variable obji. Let
us remove from the MDD that represents the archive all the values of the objective variables
different from obji that are less than or equal to the minimum of their variable. Then we
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perform a reduction of the MDD in order to obtain MDDD. If MDDD is not empty then it
means that there exist paths from root to tt in the MDD, that is solutions in the archive which
will dominate any new solution involving some values of obji. More precisely, there exist
solutions of the form (v1, v2, . . . , vi, . . . , vn) such that ∀j = 1 . . . n, j ̸= i : vj ≤ min(objj).
These solutions dominate (or are equal to) any future solution with obji ≥ vi. Hence, the
maximum possible value for obji is the smallest value of obji in MDDD. The obtained
algorithms have a linear time complexity in the size of the MDD, which improves the
algorithm of Schaus and Hartet.

The paper is organized as follows. First, we recall some concepts and definitions of
Constraint Programming, Multi-Objective Optimization Problems and Multi-valued Decision
Diagrams. Then, we introduce the representation of the archive by an MDD. We present
how the insert and delete operations are implemented. We detail two algorithms for the
operation filter that establishing the bound consistency of the Pareto Constraint associated
with an MDD. Next, we experiment with these methods on bin packing and multi-knapsack
problems. At last, we conclude.

2 Preliminaries

2.1 Constraint Programming
A finite constraint network N is defined as a set of n variables X = {x1, . . . , xn}, a set of
current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set of possible values
for variable xi, and a set C of constraints between variables. If x is a variable, then
xmin = min(D(x)) and xmax = max(D(x)). We introduce the particular notation D0 =
{D0(x1), . . . , D0(xn)} to represent the set of initial domains of N on which constraint
definitions were stated. An element of D0(x1)× · · · ×D0(xn) on the ordered set D is called
a tuple and is denoted τ . In a tuple τ , the assignment of the ith variable is denoted τi.
A solution of N is a tuple τ that satisfies all the constraints in C. A constraint C on the
ordered set of variables X(C) = (xi1 , . . . , xir

) is a subset T (C) of the Cartesian product
D0(xi1)× · · · ×D0(xir

) that specifies the allowed combinations of values for the variables
xi1 , . . . , xir

.

2.2 Multi-Objective Optimization
A multi-objective problem in combinatorial optimization is a problem where several objectives
have to be improved while satisfying constraints. For the sake of clarity and without loss of
generality, these objectives are represented by integer variables and have to be minimized.
We denote by O = (obj1, . . . , objm) the ordered set of the objective variables in X, the set of
variables of the whole problem. Then, this problem can be modeled as follows:

Minimize O

Subject to C
(1)

However, the minimization of several objectives simultaneously may seem ambiguous.
Indeed, there is no order of priority between the different objectives and improving one often
means degrading at least one of the others. This generally introduces the need to make
compromises during the solving process: the goal is not to find only one optimal solution
but a set of solutions that are considered Pareto optimal.

In the rest of the paper, we will focus only on the objective variables. As a consequence,
a tuple will always be understood only in relation to the set O, and the same applies to a
solution. Thus, for a tuple τ , the assignment of the ith objective variable is denoted by τi.

CP 2023
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The following definitions are taken from [11]:

▶ Definition 1 (Pareto dominance). Let τ and τ ′ be two solutions of a multi-objective problem
represented by a constraint network N .
We say that τ dominates τ ′, denoted τ ≺ τ ′, if and only if:

∀i ∈ [1 . . . m] : τi ≤ τ ′
i

∧ ∃i ∈ [1 . . . m] : τi < τ ′
i

(2)

We say that τ weakly-dominates τ ′, denoted τ ⪯ τ ′, if and only if ∀i ∈ [1 . . . m] : τi ≤ τ ′
i .

▶ Definition 2 (Pareto optimality). Let S be the set of all the feasible solutions of a multi-
objective problem represented by a constraint network N . A solution τ is Pareto optimal if
and only if there is no solution τ ′ in S that dominates τ :

∄τ ′ ∈ S : τ ′ ≺ τ (3)

▶ Definition 3 (Pareto set). Let N be the constraint network representing a multi-objective
problem and S be the set of all the feasible solutions of N . The Pareto set of N is the set of
all the Pareto optimal solutions in S:

{τ ∈ S|∄τ ′ ∈ S : τ ′ ≺ τ} (4)

The search for the exact Pareto set of a multi-objective problem can be impossible to
achieve in a reasonable time. This leads to search for an approximation of the Pareto set:
the archive.

▶ Definition 4 (Archive). An archive A is a set of solutions such that there is no solution τ ′

in the archive that dominates another solution τ in the archive. This property is known as
the domination-free property:

τ ∈ A, ∄τ ′ ∈ A : τ ′ ≺ τ (5)

A basic way to maintain an archive A is to verify if a solution τ found during the search
is dominated by a solution of the archive:

If τ is dominated by at least one solution, do not add it in A.
If τ is not dominated by any solution, add it and remove from A all the solutions
dominated by τ .

2.3 Pareto Constraint
We reformulate the definition introduced in [11] in order to avoid the notion of “next
discovered solution”.

▶ Definition 5 (Pareto Constraint). Let X be a set of objective variables and A be an archive
defined on O. A Pareto constraint is a constraint C associated with A defined by
Pareto(O,A) = {τ s.t. τ is a tuple on O and ∄τ ′ ∈ A with τ ′ ⪯ τ }.

When using this constraint during the search for solutions, newly found solutions must be
inserted in the archive. One could notice that this constraint prevents finding a solution τ

such that τ ′ ∈ A and τ = τ ′.



S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:5

D(obj1) = {2, 4}
D(obj2) = {1, 2, 5}
D(obj3) = {1, 3, 4, 5}
D(obj4) = {2, 5, 6}

∧ (3, 1, 3, 1)
(2, 1, 4, 2)

A

=⇒ obj3 < 4

Figure 1 Application of the propagator of the Pareto constraint.

We adapt the definition of ideal point of multi-objective problems to our purpose:

▶ Definition 6 (Ideal tuple). Let C =Pareto(O,A) be a Pareto constraint with
O = (obj1, . . . , objn).

The ideal tuple of C denoted by τ∗(O) is the tuple composed of the best objective values,
that is (objmin

1 , . . . , objmin
n ).

The ideal tuple for the value a of the variable obji denoted by τ∗(O, i, a) is the tuple
composed of obji = a and the best objective values for the other objective variables, that is
(objmin

1 , . . . , objmin
i−1 , a, objmin

i+1 , . . . , objmin
n ).

▶ Proposition 7. Let C =Pareto(O,A) be a Pareto constraint; the following two properties
are equivalent:

C is consistent;
τ∗(O) is not weakly-dominated by any tuple of A

Proof. By definition τ∗(O) weakly-dominates any tuple defined on O, thus if τ∗(O) is not
weakly-dominated then it is a possible solution and the constraint is consistent. Otherwise,
there is no solution and C is not consistent. ◀

We reformulate the filtering algorithm associated with the Pareto constraint given in [11].

▶ Proposition 8. Let C =Pareto(O,A) be a Pareto constraint. The value a of the objective
variable obji is not consistent with C if and only if ∃τ ∈ A such that τ ⪯ τ∗(O, i, a).

Proof. ⇒ If the value a of obji is not consistent with C then every tuple τ of C with τi = a

is weakly-dominated by a tuple of A. Therefore τ∗(O, i, a) is weakly-dominated by a tuple
of A.
⇐ The tuple τ∗(O, i, a) weakly-dominates all the possible tuples τ of C with τi = a. Thus
if this tuple is weakly-dominated then there is no tuple with τi = a consistent with the
constraint and the value a of obji is not consistent with C. ◀

From this proposition we can identify all values of all variables that are inconsistent with the
constraint and so we can establish the arc consistency of the constraint which is equivalent
in our case to the bound consistency. Figure 1 gives an example of domain reduction.

2.4 Multi-valued Decision Diagram
The decision diagrams considered in this paper are reduced ordered multi-valued decision
diagrams (MDD) [5, 12, 1], which are a generalization of binary decision diagrams [2].
They use a fixed variable ordering for canonical representation and shared sub-graphs for
compression obtained by means of a reduction operation. An MDD is a rooted directed acyclic
graph (DAG) used to represent some multi-valued functions f : {0 . . . d− 1}n → true, false.

CP 2023



24:6 MDD Archive for Boosting the Pareto Constraint

root

a b

tt

1
2 3

1
3 1

2

Figure 2 An MDD representing the tuple set {(1, 1), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

Given the n input variables, the DAG contains n+1 layers of nodes, such that each variable is
represented at a specific layer of the graph. Each node on a given layer has at most d outgoing
arcs to nodes in the next layer of the graph. Each arc is labeled by its corresponding integer.
The arc (u, a, v) is from node u to node v and labeled by a. Sometimes it is convenient
to say that v is a child of u. The set of outgoing arcs from node u is denoted by ω+(u).
All outgoing arcs of the layer n reach tt, the true terminal node (the false terminal node is
typically omitted). There is an equivalence between f(a1, . . . , an) = true and the existence
of a path from the root node to the tt whose arcs are labeled a1, . . . , an. Figure 2 shows an
example of MDD and the kind of compression it can offer.

The reduction of an MDD is one of the most important operations that may reduce the
MDD size by an exponential factor. It consists in removing nodes that have no successor and
merging equivalent nodes, i.e., nodes having the same set of neighbors associated with the
same labels. This means that only nodes of the same layer can be merged. Other operations
used in this paper are the addition and deletion of tuples of an MDD. They can be performed
with in-place operations provided by Perez and Régin [8].

The advantage of using MDDs instead of the usual data structures is their compression
capability which is useful for reducing memory consumption. Moreover, this compression
may also improve the time performance of algorithms computing on a set.

3 Pareto Constraint Using MDD

We propose to use MDDA, an MDD, to represent the solution archive. Consider τ a new
solution. Without loss of generality, we assume that τ is not weakly-dominated by any tuple
of the archive. As mentioned in the introduction we need to implement the operations insert
and delete:

insert: τ has to be added to MDDA.
delete: All the tuples dominated by τ must be removed from MDDA.

In addition we need to design algorithms for implementing the filter operation of the Pareto
constraint.

3.1 Insert and Delete Operations
Adding τ to MDDA can be done thanks to the in-place addition operation [8]. The deletion
from MDDA of all the tuples that are dominated by τ can be done by creating MDDdom(τ),
the MDD of all the tuples weakly-dominated by τ . MDDdom(τ) is really simple: each layer
contains only one node, and for each layer i ∈ [1 . . . (n− 1)] there are arcs labeled with all the
values that belong to the range [τi . . . max(D0(obji))] between the node of layer i and the
node of layer i + 1. Figure 3 shows an example of such an MDD. Then, the operation MDDA
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root

a

b

tt

2 3 4 5

5 6

1 2 3

Figure 3 An MDD representing all the tuples weakly-dominated by (2, 5, 1) with D0(obj1) =
[1 . . . 5], D0(obj2) = [1 . . . 6] and D0(obj3) = [1 . . . 3].

− MDDdom(τ) can be performed in-place thanks to the in-place difference operator [8]. It
should be noted that this operation also deletes the tuple τ from MDDA, so it is better to
perform first the delete operation and then the insert operation.

3.2 Filtering algorithm of the Pareto Constraint
Let C =Pareto(O, MDDA) be a Pareto constraint whose archive is represented by an MDD.
We present two methods that eliminate all values of the variables satisfying Proposition 8
(i.e., that are not consistent with C). That establishes the bound consistency of C. The first
one has to be executed for each objective variable, and the second one uses the concept of
the first method to filter all the objective variables at the same time.

3.2.1 Unidirectional Marking
This method operates only on one objective variable obji at a time. It must be repeated for
each objective variable to be complete.

MDDA is traversed using a Depth-First Search (DFS) procedure from root following two
rules:

For each layer j ̸= i it is possible to go only through arcs whose values are less than or
equal to objmin

j .
For the layer i, it is possible to go only through arcs whose values are less than or equal
to objmax

i .
Each time the node tt is reached, the value of the arc of the layer i belonging to the current
path is memorized if it is less than the previous memorized value. Then, objmax

i takes the
lower value between the current upper bound and the memorized value minus one. Figure
4 shows two examples based on the same archive with different states for the domains.
Algorithm 3.1 is a possible implementation of this filtering for all the objective variables.

▶ Proposition 9. The unidirectional marking method eliminates all the values of obji that
are not consistent (c.f. Proposition 8).

Proof. The unidirectional marking method finds paths corresponding to the tuples that
weakly-dominate τ∗(O, i, objmax

i ) and it eliminates all the values a such that τ∗(O, i, a) is
weakly-dominated, by setting the maximum of obji to minV − 1 where minV = min({a such
that τ∗(O, i, a) is weakly-dominated}). ◀

The time complexity of this method for one objective variable is linear in the size of the
MDD, because it traverses the MDD with a DFS. However, as it is repeated for each objective
variable and the size of the MDD depends on the number of objective variables, the overall
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root

ba c

ed f

hg

tt

3 1 9

3 4 3 2

3 4 3

3 4

(a)
D(obj1) = {2, 4}
D(obj2) = {2, 3, 4}
D(obj3) = {1, 2, 3, 4, 5}
D(obj4) = {3, 5, 6}

tt is never reached, so obj3 does not need to be
filtered.

root

ba c

ed f

hg

tt

3 1 9

3 4 3 2

3 4 3

3 4

(b)
D(obj1) = {4, 5, 8}
D(obj2) = {3, 7}
D(obj3) = {1, 2, 3, 4, 5}
D(obj4) = {5, 6}

tt is reached two times with the tuples (3, 3, 3, 3)
and (1, 3, 4, 4). The domain of the obj3 becomes
{1, 2}.

Figure 4 Application of the unidirectional marking in MDDA for the objective variable obj3.
MDDA contains the set of tuples {(3, 3, 3, 3), (1, 4, 3, 3), (1, 3, 4, 4), (9, 2, 3, 4)}. All the nodes
and arcs reached with the unidirectional marking method are represented with plain lines while
those not reached with dotted lines.

time complexity is then quadratic in the number of objectives. This method takes advantage
of the compression offered by MDDs. Nonetheless, we can notice that a large part of the
DFS is shared between the filtering of each objective variable, that is to say there are many
repetitions. We then propose an improvement of this method that will execute only two
DFSs.

3.2.2 Bidirectional Marking
The first step is to identify in MDDA, for all j ∈ (1 . . . n), all the beginning of tuple
τ(1...j) = (τ1, . . . , τj) such that τ(1...j) weakly-dominates (objmin

1 , . . . , objmin
j ). This can be

done by using a DFS from root to find the corresponding paths by following one rule: for the
layer j it is possible to go only through arcs whose values are less than or equal to objmin

j .
All the nodes reached with this method are considered as marked from root.

▶ Proposition 10. If tt is reached by the first step of the bidirectional marking method, then
the Pareto constraint C is not consistent.

Proof. If tt is reached by the first step of the bidirectional marking method it means that
there exists a path corresponding to a tuple that weakly-dominates τ∗(O). Then C is not
consistent according to Proposition 7. ◀
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Algorithm 3.1 unidirectional marking algorithm.

// min is passed by reference
recursiveDFS(MDDA, D, i, l, u, path[], current, min)

1 u.isV isited← true
2 path[l]← u

3 for each arc (u, a, v) do
4 if (l = i and a ≤ objmax

i ) or a ≤ objmin
l then

5 if l = i then current← a

6 if v = tt then
7 for each node ∈ path do node.reachT t← true
8 if current ≤ min then min← current

else
9 if v.reachT t and l ≥ i and current ≤ min then min← current

10 if not v.isV isited then
11 recursiveDFS(MDDA, D, i, l + 1, v, path, current, min)

oneWayMarkingFiltering(O, D, MDDA)
12 for each obji ∈ O do
13 for each node ∈ MDDA do
14 node.isV isited← false
15 node.reachT t← false
16 path[]← ∅ for each index
17 currentV alue← MAX_INTEGER
18 minV alue← MAX_INTEGER
19 recursiveDFS(MDDA, D, i, 1, root, path, currentValue, minValue)
20 objmax

i ← min(objmax
i , minV alue− 1)

The second step is similar to the first one. It consists of identifying in MDDA, for all
j ∈ (1 . . . n), all the end of tuple τ(j...n) = (τj , . . . , τn) such that τ(j...n) weakly-dominates
(objmin

j , . . . , objmin
n ). This time the DFS starts from tt, takes arcs only in reverse, and follows

the same rule as for the first step. All the nodes reached during this step are considered as
marked from tt.

The inconsistent edge can now be identified: these are the arcs (u, a, v) on the layer i,
such that u is marked from root and v is marked from tt. More formally we have:

▶ Proposition 11. Let Λi be the set of all the arcs (u, a, v) on the layer i, such that u is
marked from root and v is marked from tt. The value a of obji satisfies Proposition 8 if and
only if ∃(u, a, v) ∈ Λi

Proof. For all the arcs (u, l, v) in Λi there is at least one path going from root to u that
weakly-dominates (objmin

1 , . . . , objmin
i−1 ), and there is also at least one path going from v to

tt that weakly-dominates (objmin
i+1 , . . . , objmin

n ). It means that there is at least one tuple
τ such that τi = l and τ ⪯ τ∗(O, i, l). Conversely, if there exists one tuple τ such that
τi = l and τ ⪯ τ∗(O, i, l), then there is at least one path going from root to u that weakly-
dominates (objmin

1 , . . . , objmin
i−1 ), and there is also at least one path going from v to tt that

weakly-dominates (objmin
i+1 , . . . , objmin

n ). Therefore (u, l, v) belongs to Λi ◀
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root

ba c

ed f

hg

tt

7 2 3

1 6 1 5

1 4 2

5 3

(a)
D(obj1) = {4, 5, 8}
D(obj2) = {3, 4, 6, 8}
D(obj3) = {2, 3, 4, 7}
D(obj4) = {3, 6}

The nodes b, c and e are marked from root, and
the nodes f and h are marked from tt. D(obj2)
becomes {3, 4} and D(obj3) becomes {2, 3}.
obj1 and obj4 do not need to be filtered.

root

ba c

ed f

hg

tt

7 2 3

1 6 1 5

1 4 2

5 3

(b)
D(obj1) = {4, 6}
D(obj2) = {3, 4, 6, 8}
D(obj3) = {4, 9}
D(obj4) = {3, 5, 6}

tt is reached from root: the constraint is not
consistent.

Figure 5 Application of the bidirectional marking in MDDA. It represents the set of tuples {(7,
1, 1, 5), (2, 6, 1, 5), (2, 1, 4, 3), (3, 5, 2, 3)}. All the nodes and arcs reached with the bidirectional
marking method are represented with plain lines while those not reached with dotted lines.

We immediately have:

▶ Proposition 12. The bidirectional marking method finds and eliminates for each objective
variable obji all the value a such that τ∗(O, i, a) is weakly-dominated, by setting the maximum
of obji to minV − 1 where minV = min({a such that τ∗(O, i, a) is weakly-dominated}).

Algorithm 3.2 is a possible implementation of this method.
Figure 5 shows two examples based on the same archive with different states for the

domains. In Figure 5 (a), obj1 and obj4 are not filtered because for both cases there is no arc
between a node marked from root and a node marked from tt at their corresponding layer.
Concerning obj2 there is the arc (c, 5, f) that satisfies this condition so objmax

2 = min(8, 5 -
1) and the domain becomes {3, 4}. For obj3, the arc (e, 4, h) is the only one that satisfies
this condition so objmax

3 = min(7, 4 - 1) and the domain becomes {2, 3}. In Figure 5 (b), tt

is reached from root during the first step of the bidirectional marking. Therefore there is no
possible assignment with current domains.

The MDD is traversed two times with DFS and one time with the search of minimal
value for each objective variable, then the time complexity of this method is linear in the
size of the MDD.
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Algorithm 3.2 Bidirectional marking algorithm.

topDownMarking(MDDA, D, l, u, markedFromRoot)
1 markedFromRoot[l].add(u)
2 for each arc (u, a, v) do
3 if a ≤ objmin

l and v /∈ markedFromRoot[l + 1] then
4 topDownMarking(MDDA, D, l + 1, v, markedFromRoot)

bottomUpMarking(MDDA, D, l, v, markedFromTt)
5 markedFromTt[l + 1].add(v)
6 for each arc (u, a, v) do
7 if a ≤ objmin

l and u /∈ markedFromTt[l] then
8 bottomUpMarking(MDDA, D, l - 1, u, markedFromTt)

twoWaysMarkingFiltering(O, D, MDDA)
9 size← O.size

10 for i ∈ 1 . . . size + 1 do
11 markedFromRoot[i]← ∅
12 markedFromTt[i]← ∅
13 topDownMarking(MDDA, D, 1, root, markedFromRoot)

// If tt si reached, it means that there is no
// more possible assignment with current domains.

14 if tt ∈ markedFromRoot[size + 1] then
15 backtrack
16 else
17 bottomUpMarking(MDDA, D, size, tt, markedFromTt)
18 for i ∈ 1 . . . size do
19 minV alue← MAX_INTEGER
20 for each u ∈ markedFromRoot[i] do
21 for each arc (u, a, v) do
22 if v ∈ markedFromTt[i + 1] and a < minV alue then
23 minV alue← a

24 objmax
i ← min(objmax

i , minV alue− 1)

4 Experiments

The methods presented in this paper have been implemented in Java 17 using Choco-solver
version 4.10.10 [9]. All the experiments were run in sequential on a machine with an Intel(R)
Xeon(R) W-2175 CPU @ 2.50GHz using Ubuntu 20.04.6 LTS version 5.4.0-146-generic.

In these experiments, three implementations of the Pareto constraint are compared:
List: the Pareto constraint of Choco, using a list for representing the archive. When
a new solution is inserted, all the solutions in the list are compared with this solution
to determine if they must be removed from the list. Concerning the filtering, for each
objective variable obji the inconsistent values are found by comparing all the solutions in
the list with the dominated point DPi, defined in [11, 3].
M-U: the Pareto constraint associated with an MDD for representing the archive and
using the Unidirectional marking algorithm as filtering algorithm.
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Table 1 Time (s) comparison between the use of lists and MDDs for the Pareto constraint with
10 objectives. The search ends when all solutions are found or if 30000 solutions are found, or if it
exceeds 30 minutes (TO).

n Data # Solutions
found

#Solutions
in A

Total time Filtering time Deletion and
insertion time

List M-U M-B List M-U M-B List M-U M-B

12

b1 6770 1687 11 46 9 3 23 8 6 0.7 0.8
b2 7443 3004 36 61 11 7 26 6 25 0.8 0.9
b3 7351 2651 29 55 11 6 23 7 19 0.6 0.7
b4 7754 3187 40 61 13 7 32 8 29 0.8 0.9
b5 8502 3284 49 129 18 10 65 13 35 0.9 0.9

16

b6 30000 4894 420 781 103 87 360 70 309 4 4
b7 30000 5805 708 TO 239 170 TO 166 487 TO 5
b8 30000 5015 615 901 159 106 460 116 478 3 3
b9 30000 7763 1336 1171 178 236 467 128 1055 6 5

b10 30000 7144 1150 TO 312 215 TO 236 881 TO 5

20

b11 30000 2085 265 504 115 100 247 67 123 5 5
b12 30000 3812 386 938 142 131 508 86 207 6 6
b13 30000 1198 143 827 159 56 439 77 17 3 4
b14 30000 2647 246 1430 205 107 709 108 56 3 3
b15 30000 2707 713 TO 406 427 TO 216 108 TO 5

M-B: the Pareto constraint associated with an MDD for representing the archive and
using the Bidirectional marking algorithm as filtering algorithm.

The considered problems are the bin packing and the multi-criteria knapsack problems.

4.1 Bin Packing Problem

The bin packing problem is a problem where n items have to be placed into bins. Each
item has m types of weight, and each bin has a limit for each type of weight. For each type
of weight the objective is to minimize the maximum weight among all the bins, so there
are m objectives. These objectives encourage an equitable distribution of weights. The
datasets used involve items with weights randomly chosen between 1 and 40, and a limit of
120 for each type of weight for each bin. These items have to be distributed between 8 bins.
The problem is modeled using the matrix-based symmetry-breaking constraints proposed by
Salem and Kieffer [10].

In order to compare the different methods, we focused on the time taken to find at most
30000 solutions. Moreover, we measured the total time taken by the filtering of the Pareto
constraint throughout the search (Filtering time), and the total time taken to maintain the
domination-free property of the archive throughout the search (Deletion and Insertion time,
or D&I time). Table 1 shows the evolution of these times depending of the number of items
n while Table 2 shows this evolution depending of the number of objectives m.

The first thing that comes out of the results of Table 1 is that M-B generally performs
better than the list for this problem. These performances seem to depend on the size of the
archive: the larger it is, the more the compression of MDDs shows its advantage. When we
look at the time spent on the different operations, we can notice that this time saving is
mainly done during the D&I part. For example with data b9, which has the largest archive
with 7763 solutions, M-B is 7.5 times faster than the list and its D&I part is 200 times faster
than the D&I part of the list. Concerning the filtering part M-B is sometimes slower than
the list but when this is the case, it is not much slower. Moreover, when M-B is faster on
the filtering it can be up to almost 2 times faster as with data b15.

The experiments in Table 2 show another interesting phenomenon about the filtering
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Table 2 Time (s) comparison between the use of lists and MDDs for the Pareto constraint
with 16 items. The search ends when all solutions are found or if 30000 solutions are found, or if it
exceeds 30 minutes (TO).

m Data # Solutions
found

#Solutions
in A

Total time Filtering time Deletion and
insertion time

List M-U M-B List M-U M-B List M-U M-B

5

b16 4619 121 7 17 9 0.5 5 2 0.1 0.2 0.2
b17 5452 640 14 58 19 4 28 9 1 0.3 0.3
b18 5679 382 3 12 5 0.6 6 2 0.3 0.3 0.3
b19 8078 597 16 52 20 4 24 9 2 0.6 0.7
b20 4658 234 3 6 4 0.3 2 1 0.1 0.2 0.2

10

b6 30000 4894 420 781 103 87 360 70 309 4 4
b7 30000 5805 708 TO 239 170 TO 166 487 TO 5
b8 30000 5015 615 901 159 106 460 116 478 3 3
b9 30000 7763 1336 1171 178 236 467 128 1055 6 5

b10 30000 7144 1150 TO 312 215 TO 236 881 TO 5

15

b21 30000 2242 78 290 44 16 179 30 53 2 2
b22 30000 4651 583 1005 116 105 545 91 456 4 4
b23 30000 3442 271 363 68 70 180 39 178 3 4
b24 30000 3379 296 1180 97 54 614 63 223 5 4
b25 30000 8421 1359 1213 121 305 532 77 1014 10 9

20

b26 30000 7145 911 1098 77 185 568 47 706 6 5
b27 30000 6828 1059 TO 149 202 TO 108 828 TO 7
b28 30000 5327 684 889 87 140 529 61 521 5 5
b29 30000 5791 819 TO 247 243 TO 176 516 TO 6
b30 30000 7142 864 855 106 178 342 63 650 7 7

part: compared to the list, the more objectives there are, the faster the filtering with M-B.
For example with data b26 where there are 20 objectives, the filtering with M-B is almost 4
times faster than the filtering with the list. However, when there are few objectives the list
is globally better as shown by the results for m = 5.

The results with M-U are not as good as those with M-B, and are even worse than those
with the list. Indeed, even if M-U has an advantage on the D&I part compared to the list,
the filtering takes too much time which negates totally the advantage.

4.2 Multi-Criteria Knapsack Problem

This problem is a variant of the knapsack problem with n items: the goal is not to maximize
only one type of profit but m types of profit. Then, each item has m values and there
are m objectives to maximize. The data sets used represent items with weights and values
randomly chosen between 1 and 40. For each data set, the limit of the knapsack is equal to
(
∑n

i=1 wi)/2 with wi the weight of the i-th item.

We took the same types of measures as for the bin packing problem (i.e. the total time,
the filtering time and the D&I time) but we only ran the methods with the list and M-B.
Table 3 lists the results obtained.

The results between the methods are similar for this problem, the solving times are more
or less equivalent for each instance. However, we can observe a behavior that we have already
seen with the bin packing problem: M-B is generally better when the size of the archive is
large. The results show also that for this problem the list is generally more efficient for the
filtering while M-B is better for the D&I.
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Table 3 Time (s) comparison between the use of lists and MDDs for the Pareto constraint with
10 objectives. The search ends when all solutions are found or if 10000 solutions are found.

n Data # Solutions
found

#Solutions
in A

Total time Filtering time Deletion and
insertion time

List M-B List M-B List M-B

20
k1 1809 640 182 186 1 4 0.3 0.2
k2 3667 1750 309 317 6 13 4 0.9
k3 1661 1661 134 135 0.5 2 0.2 0.2

21
k4 10000 6714 786 672 52 97 175 6
k5 7806 3265 865 868 27 59 15 2
k6 4537 815 472 467 5 11 1 1

22
k7 3705 2750 1011 1050 20 35 8 1
k8 1895 601 450 446 2 6 0.3 0.3
k9 10000 5192 1123 1073 59 92 73 6

23
k10 10000 4561 1116 1101 54 99 66 6
k11 4634 1593 1360 1420 21 46 3 1
k12 5390 2816 1225 1193 22 40 11 2

24
k13 1791 823 848 873 4 12 0.5 0.3
k14 10000 5781 1402 1335 77 112 89 5
k15 10000 3528 1545 1570 54 92 45 5

5 Conclusion

In this paper we presented methods to use an MDD as an archive for the Pareto Constraint.
The insertion of a new solution into the MDD and the deletion from the MDD of the solutions
dominated by this new solution are made by applying classical operators. We presented two
methods for establishing the bound consistency of this constraint: the unidirectional marking
method and the bidirectional marking method. The second method is linear in the size of
the MDD.

We have shown that, depending on the problem, using an MDD as an archive with the
bidirectional marking method can be very effective compared to the classical list representation
of the archive. The use of MDDs is particularly well suited to maintaining the dominance-free
relation of the archive. It is also interesting for the filtering algorithm. These performances
are even more important as the number of objectives increases.
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Abstract
Constraint programming is known for being an efficient approach to solving combinatorial problems.
Important design choices in a solver are the branching heuristics, designed to lead the search to
the best solutions in a minimum amount of time. However, developing these heuristics is a time-
consuming process that requires problem-specific expertise. This observation has motivated many
efforts to use machine learning to automatically learn efficient heuristics without expert intervention.
Although several generic variable-selection heuristics are available in the literature, the options
for value-selection heuristics are more scarce. We propose to tackle this issue by introducing a
generic learning procedure that can be used to obtain a value-selection heuristic inside a constraint
programming solver. This has been achieved thanks to the combination of a deep Q-learning
algorithm, a tailored reward signal, and a heterogeneous graph neural network. Experiments on graph
coloring, maximum independent set, and maximum cut problems show that this framework competes
with the well-known impact-based and activity-based search heuristics and can find solutions close
to optimality without requiring a large number of backtracks.
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1 Introduction

Combinatorial optimization has countless industrial applications, such as scheduling, routing,
or finance. Unfortunately, most of these problems are NP-hard and, thereby, challenging
to solve efficiently. It is why finding good solutions has motivated intense research efforts
for many years. Traditional methods for tackling them are somehow based on a search
procedure: A clever enumeration of the solution space is performed to find a feasible and
possibly optimal solution. Among these methods, constraint programming (CP) is an exact
procedure. It constitutes a popular approach as it offers the possibility to find the optimal
solution or good feasible approximations by stopping the search early. An additional asset
is its declarative paradigm in modeling, which makes the technology easier for the end-
user to grasp. Introducing solver-agnostic modeling languages, such as MiniZinc [35] has
greatly facilitated this aspect. Aligned with this goal, the propagation engine inside a CP
solver is mostly hidden from the end-user. However, ensuring a generic search procedure
is trickier as non-trivial heuristics must be designed to make the solving process efficient
for an arbitrary problem. That being said, generic variable-selection and value-selection
heuristics have been successfully designed. Notable examples are impact-based search [37]
or activity-based search [31], but they require computationally intensive initialization and
yield poor performance at the beginning of the search. This makes these methods not always
appropriate for general use. As a concrete example, the current version of MiniZinc1 does not
propose generic value-selection heuristics, except in(out)domain or impact-based search. In
practice, heuristics are often designed thanks to problem-specific expert knowledge, which is
often out of reach for end-users that do not have a solid background in artificial intelligence.

In another context, machine learning (ML) has been recently considered for automating
the design of branching heuristics, both in constraint programming [11], mixed-integer
programming [16, 23], or SAT solving [41]. Specifically, reinforcement learning (RL) [45]
or imitation learning [22] approaches, often combined with deep learning [27], have gained
special attention. Although this idea seems appealing, this is not an easy task to achieve in
practice as several technical considerations must be taken into account in order to ensure both
the efficiency and the genericity of the approach. In constraint programming, we identified
three questions to resolve when learning a generic branching heuristic inside a solver. They
are as follows:
1. How to train the machine learning model? An intuitive way is to leverage an RL agent

that would explore the tree search by making branching decisions and rewarding it based
on the quality of the solution found on a terminal node. This would typically be done with
a depth-first search traversal of the tree for getting a certificate of optimality. However,
as pointed out by several authors [38, 42], the backtracking operations inside a solver
raise difficulties when formalizing the task as a Markov decision process and may require
redefining it. Besides, this training scheme intensifies the credit assignment problem [32],
ubiquitous in reinforcement learning.

2. How to evaluate the quality of a value selection? A core component of an RL environment
is the reward function, which gives a score to each decision performed. The end goal for
the agent is to perform a sequence of decisions leading to the best-accumulated sum of
rewards. In our case, an intuitive solution would be to reward the agent according to
the quality of the solution found. However, this information is only available at terminal
nodes, and only a zero reward is provided in branching nodes. This is related to the
sparse reward problematic, which is known to complicate the training process.

1 https://www.minizinc.org/doc-2.7.0/en

https://www.minizinc.org/doc-2.7.0/en
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3. How to learn from a CP model? This question relates to the type of architecture that
can obtain a value-selection heuristic from a search node (i.e., a partially solved CP
model). A promising direction has been proposed by Gasse et al. [16] for binary mixed-
integer programs. They introduced a bipartite graph linking variables and constraints
(i.e., the two types of nodes) when a variable is involved in a given constraint. The
subsequent architecture is a heterogeneous graph neural network. However, this encoding
is not directly applicable in constraint programming, as a CP model generally involves
non-binary variables and combinatorial constraints. This has been partially addressed
by Chalumeau et al. [12], who introduced a tripartite graph where variables, values, and
constraints are specific types of nodes. However, this approach lacks genericity as the
method requires retraining when the number of variables changes.

To our knowledge, answering such questions is still an open challenge in the research
community. This paper proposes to progress in this direction. It introduces a generic
learning procedure that can be used to obtain a value-selection heuristic from a constraint
programming model given as input. The approach has been designed to be generic in that it
can be used for any CP model given as input. In practice, a specific way to extract features
from a constraint should be designed for any available constraint, but this has to be done
only once per constraint type. In this proof of concept, we limit our experiments to three
combinatorial optimization problems, namely graph coloring, maximum independent set, and
maximum cut. Specifically, we propose three main contributions, each dedicated to addressing
one of the aforementioned difficulties. They are as follows: (1) a learning procedure, based
on restarts, for training a reinforcement learning agent directly inside a CP solver, (2) a
reward function able to assign non-zero intermediate rewards based on the propagation that
has been carried out on the node, and (3) a neural architecture based on a tripartite graph
representation and a heterogeneous graph neural network. Experimental results show that
combining these three ideas enables the search to find good solutions without requiring
many backtracks and competes with the well-known impact-based and activity-based search
heuristics.

The paper is structured as follows. The next section presents other approaches related to
our contribution. Then, Section 3 introduces succinctly technical background on reinforcement
learning and graph neural networks. The core contributions are then presented in Section 4.
Finally, Section 5 provides experimental results and closes with a discussion of the results.

2 Related Work

Bengio et al. [5] identified three ways to leverage machine learning for combinatorial opti-
mization. First, end-to-end learning aims to solve the problem only with a trained ML model.
This has been, for instance, considered for the traveling salesman problem [4, 25]. However,
such an approach does not guarantee the validity nor optimality of the solution obtained.
Second, learning to configure is dedicated to providing insights to a solver before its execution.
This can be, for instance, the decision to linearize the problem in the context of quadratic
programs [7] or to learn when a decomposition is appropriate [26]. This approach is also
referred to as parameter tuning [21]. We refer to the initial survey for extended information
about these two families of approaches. Third, learning within a search procedure uses
machine learning within the solver. Our contribution belongs to this last category of methods.
Although the idea of combining learning and searching for solving combinatorial optimization
problems was already discussed in the nineties [36], it has re-emerged recently with the rise
of deep learning. Most combinatorial optimization solvers are based on branch-and-bound

CP 2023



25:4 Learning a Generic Value-Selection Heuristic

and backtracking. In this context, ML is often used with branching rules to follow. Imitation
learning [22] has been for instance used to replicate the expensive strong branching strategy
for mixed-integer programming solvers [16, 23]. One limitation of imitation learning is that
the performances are bounded by the performance of the imitated strategy, which remains
heuristic and perfectible [43]. This opens the door for RL approaches that have the guarantee
to find the best branching strategy eventually [29]. A branching strategy can be split into
two challenging decisions, variable-selection and value-selection. Reinforcement learning
approaches have been considered for both of them.

Concerning the learning for selecting the next variable to branch on, Song et al. [42]
proposed to combine a double deep Q-network algorithm [49] with a graph neural network
for carrying out this task. The approach is trained to minimize the expected number of
nodes to reach a leaf node using the first-fail principle. Although this is a good proxy for
pruning a maximum of infeasible solutions for a constraint satisfaction problem, it does
not extend naturally to optimization variants, for which one should consider a trade-off
between the quality of the solution found and the number of nodes required to reach that
solution. Similarly, van Driel et al. [48] leveraged a graph neural network to initialize a
variable-selection heuristic for Chuffed, a hybrid CP-SAT solver. In an online setting, Doolard
and Yorke-Smith [15] also proposed to learn variable ordering heuristics where training time
is included in the total solving time. Bandit-based learning approaches were also considered
by Xia and Yap to automatically select search heuristics [50].

For the value-selection heuristic, Chu and Stuckey [13] introduced a scoring function which
gives a score indicating how good an assignation is, given the current domain. A training
phase is the carried out in a supervised manner to learn this scoring function. Cappart et
al. [11] proposed to train a model with reinforcement learning outside the CP solver and
to integrate the agent, once trained, subsequently in the solver. This has been achieved by
reaping the benefits of a dynamic programming formulation of a combinatorial problem. An
important limitation of this work is that no information related to the CP solver, such as
the propagation achieved on a node, can be used to drive the decision. Chalumeau et al. [12]
mitigated this issue by carrying out the learning inside the solver. The model is trained to
find the optimal solution and to prove it with the least number of explored search nodes.
However, this goal is disconnected from finding the best solution as quickly as possible and
is practically hard to achieve, even with a good heuristic. A more realistic goal is to find a
good solution quickly without closing the search. This is how the contribution of this paper
is positioned.

We want to point out that learning how to branch is not the only way to leverage ML
inside a combinatorial optimization solver. Related works have also been proposed on
learning tight optimization bounds [9] or for accelerating column generation approaches [34].
A recurrent design choice is an architecture based on graph neural networks. We refer to the
following survey for more information about combinatorial optimization with graph neural
networks [10].

3 Technical Background

This section introduces the required background on reinforcement learning and graph neural
network to grasp the technical aspects of the paper.
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3.1 Reinforcement Learning
Let ⟨S, A, T, R⟩ be a 4-tuple representing a Markov decision process where S is the set of
states in the environment, A is the set of actions that the agent can do, T : S × A → S is a
transition function leading the agent from one state to another, given the action taken, and
R : S × A → R is a reward function of taking an action from a specific state. The sequence
[s1, . . . , sT ] from the initial state (s1) of an agent towards a terminal state (sT ) is referred to
as an episode. The returned reward within a partial episode [st, . . . , sT ] can be formalized
as follows: Gt =

∑T
i=t R(si, ai). We intentionally omitted the discounting factor as we do

not want to discount the late rewards in our application. The agent is governed by a policy
π : S → A, which indicates the action that must be taken on a given state. The agent’s goal
is to find the policy that will lead it to maximize the accumulated reward until a terminal
state is reached. The core idea of reinforcement learning is to determine this policy by letting
the agent interact with the environment and increasing the probability of taking action if it
leads to high subsequent rewards. There are a plethora of reinforcement learning algorithms
dedicated to this task, such as trust region policy optimization [40] or soft actor-critic [18].
We refer to SpinningUp website for explanations of the main algorithms [1].

This section presents the core principles of deep Q-learning [33], which is the algorithm
used in this paper. The idea is to compute an action-value function Qπ(st, at) = Gt.
Intuitively, this function gives the accumulated reward that the agent will obtain when
performing the action a at state s while subsequently following a policy π. The output of
this function for a specific action is referred to as a Q-value. Provided that the action-value
function can be computed exactly, the optimal policy π⋆ turns to be simply the selection of the
action having the highest Q-value on a specific state: π∗ = argmaxπQπ(s, a), ∀(s, a) ∈ (S, A).
Although the exact computation of Q-values can theoretically be performed, a specific value
must be computed for each pair of states and actions, which is not tractable for realistic
situations. It is why a tremendous amount of work has been carried out to approximate
accurately and efficiently Q-values. Among them, deep Q-learning aims to provide a neural
estimator Q̂(s, a, θ) ≈ Q(s, a), where θ is a tensor of parameters that must be learned during
a training phase. This algorithm is commonly enriched with other mechanisms dedicated to
speed-up or stabilizing the training process, such as the double deep Q-network variant [49] or
prioritized experience replay [39]. Concerning the neural architecture, we opted for a graph
neural network, which is explained in the next section.

3.2 Graph Neural Network
Intuitively, the goal of a graph neural network (GNN) is to embed information contained in
a graph (e.g., the structure of the graph, spatial properties, features of the nodes, etc.) into
a d-dimensional tensor for each node u ∈ V of the graph. To do so, information on a node
is iteratively refined by aggregating information from neighboring nodes. Each iteration of
aggregation is referred to as a layer of the GNN and involves parameters that must be learned.
Let hk

u ∈ Rd×1 be the tensor representation of node u at layer k of the GNN, hk+1
u ∈ Rl×1

be the tensor representation of this node at the next layer (l being the dimension of a node
at the layer k + 1), and θ1 ∈ Rl×d and θ2 ∈ Rl×d be two matrices of parameters, respectively.
Each GNN layer carries out the following update:

hk+1
u = g

(
θ1hk

u ⋆ (
⊕

v∈N(u)

θ2hk
v)

)
∀u ∈ V (1)

Three operations are involved in this update: (1)
⊕

is an aggregation operator that is
dedicated to aggregating the information of neighbors (e.g., mean-pooling or sum-pooling), (2)
⋆ is a merging which enables to combine of the information of a node with the ones from the
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neighbors (e.g., a concatenation), and (3) g is an element-wise non-linear activation function,
such as the ones commonly used in fully-connected neural networks (e.g., ReLU [17]). Without
loss of generality, the bias term is not included in the equation. A concrete implementation
of a GNN defines these three functions adequately. The training is conducted in a fully-
connected neural network through back-propagation and an optimizer based on stochastic
gradient descent such as Adam [24].

4 Learning a Value-Selection Heuristic Inside a Solver

This section presents how a value-selection heuristic can be learned with reinforcement
learning in a CP solver from a model given as input. This is the core contribution of the
paper. Three mechanisms are introduced: (1) a training procedure based on restarts, (2) a
reward function leveraging propagation of domains, and (3) a heterogeneous graph neural
network architecture. They are described individually in the next subsections. They have been
implemented in the recently introduced SeaPearl.jl solver [12]. Inspired by the architecture
of MiniCP [30], the main specificity of SeaPearl is to natively integrate support for learning
inside the search procedure. This greatly facilitates the prototyping of new search algorithms
based on learning.

4.1 Restart-Based Training
Generally speaking, the performance of a reinforcement learning agent is tightly correlated
with the definition of an episode. This corresponds to the agent’s interactions with the CP
solver’s search procedure and is related to the goal desired for the agent. Two options are
discussed in this section, (1) an episode based on depth-first search, introduced by Chalumeau
et al. [12], and (2) an episode based on restarts, which is our first contribution.

Building branching heuristics for solving exact combinatorial optimization problems often
concurrently targets two objectives: finding quickly good solutions and proving the optimality
of a solution. The approach of Chalumeau et al. [12] relies heavily on the second objective
and aims to minimize the number of visited search nodes before proving optimality (e.g.,
closing the search). To do so, they defined a training episode as a complete solving process
carried out by the depth-first search of a solver and penalized through the reward function
the generation of each node. This is illustrated in the left picture of Figure 1. However,
this approach suffers from an important difficulty. An episode only terminates when the
search is completed, which is often intractable for realistic problems as it requires exploring
an exponentially large search tree. This is especially problematic during training, where
the heuristic is still mediocre. In addition, using a depth-first search algorithm in a Markov
Decision Process (MDP) framework required additional considerations not considered by
Chalumeau et al. [12]. For example, using a backtracking algorithm in a regular temporal
MDP renders their method prone to the credit assignment problem [32]. These considerations
have been pointed out by Scavuzzo et al. [38] for mixed-integer programming.

Unlike this approach, we propose to train the model to find high-quality solutions quickly.
To do so, we followed the approach proposed by Cappart et al. [11]: an episode is defined as
a single dive in the search tree. No backtrack is allowed; the episode stops when a complete
solution is found or a failure is generated. Once the episode is terminated, a restart from
the root node is performed, and a new episode is generated, hence the name of restart-based
episode. This is illustrated in the right picture of Figure 1. One limitation of Cappart et
al. [11] is that episodes are executed outside the CP solver during the training and cannot
use the information updated during propagation for the branching. Inspired by Song et
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Figure 1 The two training procedures (left: depth-first search [12], right: restart-based - ours).

al. [42] for variable-selection heuristics, we addressed this limitation by executing each episode
inside the solver during the training. Formally, this requires defining the dynamics of the
environment as a Markov Decision Process (i.e., a tuple ⟨S, A, T, R⟩, see Section 3.1). It is
defined as follows.

Set of states Let P = ⟨X, D(X), C, O⟩ be the expression of a combinatorial optimization
problem (COP), defined by its variables (X), the related domains (D), its constraints
(C), and an objective function (O). Each state st ∈ S is defined as the pair st = (Pt, xt),
where Pt is a partially solved COP (i.e., some variables may have been assigned), and
xt ∈ X is a variable selected for branching, at step t of the episode. The initial state
s1 ∈ S corresponds to the situation after the execution of the fix-point at the root node.
A terminal node is reached either if all the variables are assigned (∀x ∈ X : |Dt(x)| = 1),
or if a failure is detected (∃x ∈ X : |Dt(x)| = 0). The variable selected for branching is
obtained through a standard heuristic such as first-fail.

Set of actions Given a state st = (Pt, xt), an action at corresponds to the selection of a
value v ∈ D(xt) for branching at step t. Finding the most promising value to branch on
is the problem addressed in this paper.

Transition function Given a state st = (Pt, xt) and an action at = v, the transition function
executes three successive operations. First, it assigns the value v to the variable x

(i.e., D(xt+1) = v). Second, it executes the fix-point on Pt in order to prune the
domains (i.e., Pt+1 = fixPoint(Pt)). Third, it selects the next variable to branch on (i.e.,
xt+1 = nextVariable(Pt+1)). This results in a new state st+1 = (Pt+1, xt+1). Integrating
the propagation inside the transition is one important difference with Cappart et al. [11].

Reward function The function is defined separately in Section 4.2.

Concerning the training, we opted for a double deep Q-learning algorithm [49], known
to perform well for discrete action spaces. However, other RL algorithms could also be
used. We compared our restart-based training procedure using a simple terminal reward
based on the solution’s score with the backtracking-based approach of Chalumeau et al. [12]
using their reward at each step (penalty of 1 for each explored node). We selected the
maximum independent set problem for this comparison with instances with 50 nodes. Results
are presented using performance profiles [14] in Figure 2. A detailed explanation of the
experimental protocol is proposed in Section 5.

We evaluated both methods on two metrics matching the objective for which they were
specifically trained. We look at the value of the solution obtained after a single dive (Figure 2a)
in the tree search and the number of nodes visited to prove optimality using a depth-first
search (Figure 2b). As expected, we observe that the agent trained with the restart-based
learning strategy allows good results regarding the optimality gap for the first solution found
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after a single dive. Remarkably, our method yields a comparable ability to prove optimality
compared to Chalumeau et al. [12], whose primary aim was specifically to solve the problem
in the minimum number of nodes. This last result has to be mitigated as both RL-based
methods lie in the range of the random strategy (shaded blue area).

(a) Score of the first solution obtained. (b) Number of node visited until optimality.

Figure 2 Comparison of both training methods on maximum independent set (50 nodes). As
a non-learned baseline, we added the performances of an agent performing only random decisions.
Training is carried out on randomly generated Barabási-Albert graphs [2]; we selected this type of
distribution as the generated graphs are known to mimic human-made and natural organizations.
The evaluation is performed on 20 other graphs following the same distribution.

Finally, as shown in Figure 2a, it is important to notice that the optimality gap returned
by our method is still non-negligible at the first solution obtained. The complexity of a
combinatorial problem lies mainly in closing this gap, which is why backtracking is required.
Experiments with backtracking are proposed in Section 5.

4.2 Propagation-Based Reward
The definition of our reward must be aligned with our objective of finding quickly good
solutions for the combinatorial problem. Based on our training procedure, an intuitive
function is to reward the agent proportionally to the solution quality found at the end of an
episode. In case of an infeasible solution found, a penalty can be given. The main drawback
of this rewarding scheme is that this information is only available at terminal nodes, and no
reward is provided in branching nodes. This is related to the sparse reward problem, which
complicates the training process [47]. To address this challenge, one should find a way to
give informative intermediate rewards along the solving process. To this end, we propose
a new rewarding scheme based on the domain reduction of the objective variable (i.e., the
variable that must be minimized or maximized). This reduction happens either thanks to the
branching assignment or the application of the fix-point. There are two main components:
(1) an intermediate reward (rmid) collected at branching nodes, and (2) terminal reward (rend)
collected only at the end of an episode.

Assuming a minimization problem, the intermediate reward follows two principles: each
domain reduction of the largest values of the domain is rewarded, and each domain reduction
of the lowest values of the domain is penalized. It is important to note that following these
principles does not guarantee the discovery of a good solution at the end of the branch.
The rationale is to lead the agent to a situation where the minimum cost can be eventually
obtained while removing costly solutions. It is formalized in Equations (2) to (4), where rmid

t

is the reward obtained at step t, and is illustrated in Figure 3. As shown in Equation (5),
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the terminal reward is set to -1 if the leaf node corresponds to an infeasible solution and 0 if
it is feasible. Finally, the total reward (racc) accumulated during an episode of T steps is the
sum of all intermediate rewards with the final term, as proposed in Equation (6).

rub
t = #

{
v ∈ Dt(xobj)

∣∣∣ v /∈ Dt+1(xobj) ∧ v > max
(
Dt(xobj)

)}
(2)

rlb
t = #

{
v ∈ Dt(xobj)

∣∣∣ v /∈ Dt+1(xobj) ∧ v < min
(
Dt(xobj)

)}
(3)

rmid
t = rub

t − rlb
t∣∣D1(xobj)

∣∣ (4)

rend
t = −1 if unfeasible solution found (0 otherwise) (5)

racc =
( T −1∑

t=1
rmid

t

)
+ rend

T (6)

Figure 3 Intermediate reward when four values are pruned from the domain.

An experimental analysis of this new reward scheme (propagation-based reward) is carried
out for the graph coloring, maximum cut, and maximum independent set problems; we look
at the quality of the solution found after a single dive in the search tree. As a baseline, we
consider a reward (score reward) that only gives a value at terminal nodes (rend

T ) without
an intermediate reward. Besides, we also consider the solutions returned by a random
value-selection heuristic as a baseline. Figure 4 shows the evolution of the quality of the first
solution returned (y-axis, averaged on 20 instances of the validation step) with the training
time (number of episodes in the x-axis) using for training our restart-based search strategy
defined in Section 4.1. Instances are Barabási-Albert randomly generated graphs with 50
nodes. Except for the rewarding scheme, the other parts of the architecture are unchanged.
We observe that the propagation-based reward provides a more stable training (Figure 4a)
and can converge to a better model or, at least, to an equally good model as the terminal
score reward (Figures 4b and 4c).

It should be noted that depending on the problem, the reward signal may remain sparse
inside episodes even with our definition; this explains the discrepancy across the three class
problems. Indeed, constraint propagation might take several steps to reach the objective
variable, meaning that for related intermediate decisions, no value will be pruned from the
domain of the objective variable. The graph coloring problem is thus the problem for which
taking these intermediate rewards is the most beneficial. Indeed, any previously unused color
added will negatively impact the domain of the objective function, yielding an insightful
negative reward. Conversely, branching on the maximum independent set problem does
not consistently impact the objective function domain through the mechanism of constraint
propagation, particularly at the beginning of the search. Our method yields no worse result
than the usual reward signal in this setting. This worst-case scenario empirically validates
the robustness of this reward.
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(a) Graph coloring. (b) Maximum cut. (c) Maximum independent set.

Figure 4 Training curve for the two rewarding schemes, each validation step corresponds to
performing a single dive in the search tree, the score obtained refers to the quality of the solution
found on the leaf node.

4.3 Heterogeneous Graph Neural Network Architecture
An important part of the framework is the neural network architecture that we designed to
perform a prediction of the next value to branch on. A high-level representation is proposed
in Figure 5. Four steps are carried out: (1) a CP model encoder, (2) a graph neural network
encoder, (3) a neural network decoder, and (4) an action-selection policy. They are detailed
in the next subsections.

Figure 5 High-level overview of the neural architecture designed.

Step 1: CP Model Encoder
The core idea is to learn for any CP model given as input, unlike Cappart et al. [11], who
require a specific encoding for each combinatorial problem. This has been achieved for mixed-
integer programs thanks to a bipartite graph representation [16] and by Chalumeau et al. [12]
for CP models thanks to a tripartite graph. This last work does not leverage any feature
related to the variables, values, or constraints. We built upon this last approach by adding
such features. Specifically, let P = ⟨X, D(X), C, O⟩ be the combinatorial problem we want to
encode. The idea consists in building a simple undirected graph G(V1, V2, V3, f1, f2, f3, E1, E2)
encoding all the information of Pt from a state st = (Pt, xt). In this representation, V1, V2,
and V3 are three sets of vertices, f1, f2, and f3 are three sets of feature vectors, and E1 with
E2 are two distinct sets of edges. This yields a graph with three types of nodes decorated
with features. The first part of the encoding we propose is as follows: (1) each variable,
constraint, and value corresponds to a specific type of node (V1 = X, V2 = C, and V3 = D),
(2) each time a variable x ∈ V1 is involved in a constraint c ∈ V2, an edge (x, c) ∈ E1 is added
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between both nodes, (3) each time a value v ∈ V3 is in the domain of a variable x ∈ V1, an
edge (v, x) ∈ E2 is added between both nodes. This gives a tripartite graph representation
of a CP model generically. This is illustrated in Figure 6. The second part of the encoding is
to add features to each node. Intuitively, the features will provide meaningful information
and thus improve the quality of the model. The features we considered are proposed below.
We note that we can easily extend this encoding by integrating new features.

1. Features attached to variables (f1): the current domain size, the initial domain size, a
binary indication if the variable is already assigned, and a binary indication if the variable
corresponds to the objective.

2. Features attached to constraints (f2): the constraint type (one-hot encoding), and a binary
indication if the constraint propagation has reduced domains.

3. Features attached to values (f3): its numerical value.

Figure 6 Representation computed by the CP encoder on a simple example.

Step 2: Graph Neural Network Encoder

Once the CP model has been encoded as a graph, the next step is to embed this representation
as a latent vector of features for each node of the graph (see Section 3.2). We propose to
carry out this operation with a graph neural network. Unlike the standard prediction scheme
presented in Equation (1), our graph has three types of nodes. For this reason, we opted
for a heterogeneous architecture. Concretely, a specific convolution is carried out for each
node type. The architecture is detailed in Equations (7) to (9), where

⊕
is the sum-pooling

or mean-pooling aggregation, operator (.∥.) is a concatenation of vectors, Nx(n) is the set
of neighbouring nodes of n from V1 (variable), Nc(n) is the set of neighbouring nodes of n

from V2 (constraint), Nv(n) is the set of neighbouring nodes of n from V3 (value), θk
1,...,10

are weight matrices at layer k, and g is the leakyReLU activation function [28]. Another
difference with the canonical GNN equation is the integration of skip connections (h0

x, h0
c ,

and h0
c) allowing to keep at each layer information from the input features. This technique

is ubiquitous in deep convolutional networks such as in ResNet [20]. Finally, the initial
embedding are initialized as follows: h0

x = θ11f1, h0
c = θ12f2, and h0

v = θ13f3, where θ11,...,13
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are new weight matrices.

hk+1
x = g

(
θk

1 h0
x

∥∥ θk
2 hk

x

∥∥ (
⊕

c∈Nc(x)

θk
3 hk

c )
∥∥ (

⊕
v∈Nv(x)

θk
4 hk

v)
)

∀x ∈ V1 (7)

hk+1
c = g

(
θk

5 h0
c

∥∥ θk
6 hk

c

∥∥ (
⊕

x∈Nx(c)

θk
7 hk

x)
)

∀c ∈ V2 (8)

hk+1
v = g

(
θk

8 h0
v

∥∥ θk
9 hk

v

∥∥ (
⊕

x∈Nx(v)

θk
10hk

x)
)

∀v ∈ V3 (9)

Step 3: Neural Network Decoder
At this step, a d-dimensional tensor is obtained for each graph node. Let x ∈ V1 be the
node representing the current variable selected for branching, and Vx ⊆ V3 the subset of
nodes representing the values available for x (i.e., the values that are in the domain of the
variable). The goal of the decoder is to predict a Q-value (see Section 3.1) for each v ∈ Vx.
The computation is formalized in Equation (10), where hK

x and hK
v are the node embedding

of variable x and value v, respectively, after K iterations of the GNN architecture. The
functions φx : Rd → Rl, φv : Rd → Rl, φq : R2l → R are fully-connected neural networks.
Such a Q-value must be computed for each value v ∈ Vx. It is internally done thanks to
matrix operations, allowing a more efficient computation.

Q̂(hK
x , hK

v ) = φq

(
φx(hK

x )
∥∥ φv(hK

v )
)

∀v ∈ Vx (10)

Step 4: Action-Selection Policy
Once all the Q-values have been computed for the current variable, the policy is defined
by an explorer that can decide to exploit the approximated Q-values by greedily choosing
the best action as shown in Equation (11) or decide to select unpromising action associated
with a lower Q-value (for example, by selecting a random action with probability ϵ). This
behavior derives from the trade-off between exploitation and exploration, which is necessary
for early learning when the estimates of Q-values are poor, and when only a few states have
been visited. Once trained, the Q-values should represent the branching choice leading to
the best decision according to the reward of Equation (6).

π(v|x) = argmaxv∈Vx
Q̂(hK

x , hK
v ) (11)

Assembling all the pieces, this architecture gives a generic approach to obtaining a
data-driven value-selection heuristic inside a CP solver. Concerning the search strategy
used for evaluation (which is different from the restart-based one used for training), we
propose to embed our predictions inside an iterative limited discrepancy search (ILDS) [19].
This strategy is commonly used when we are confident in the quality of the heuristic. The
core idea is to restrict the number of branching choices deviating from the heuristic (i.e., a
discrepancy). By doing so, the search will explore a subset of solutions expected to be good
while giving a chance to reconsider the value-heuristic selection which is nevertheless prone
to errors. This mechanism is enriched with a procedure that iteratively increases the number
of discrepancies allowed once a level has been explored.

5 Experiments

The goal of this section is to evaluate the quality of the learned value-selection heuristic and
the efficiency of the approach. Three combinatorial optimization problems are considered:
graph coloring (COL), maximum independent set (MIS), and maximum cut (MAXCUT).
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5.1 Experimental Protocol
Three configurations for the distribution of the problems generated are proposed for each
problem: small (20 to 30 nodes), medium (40 to 50 nodes), and large (80 to 100 nodes)
instances, except for MAXCUT which was already challenging for the medium size. Training
is carried out on randomly generated Barabási-Albert graph [2] with a density factor varying
between 4 and 15 according to the size of the instances. A specific model is trained for each
configuration of each combinatorial problem. The training is done using randomly generated
instances. Evaluation is then performed on 20 new graphs following the same distributions.
The models are trained on an Nvidia Tesla V100 32Go GPU until convergence. It took up to
72 hours of training time for the most difficult cases (graph coloring with 80 nodes) and less
than 1 hour for the simplest cases (graph coloring with 20 nodes). Each operation of the
CP solver during training and evaluation is carried out on a CPU Intel Xeon Silver 4116
at 2.10GHz. The approach has been implemented in Julia and is integrated into the solver
Seapearl. The implementation is available on GitHub with BSD 3-Clause licence2.

We compared our approach (Learned, ILDS) with two other generic value selection
heuristics: impact-based search (Impact) [37] and activity-based search (Activity) [31]. The
standard minDomain heuristic is used for the variable selection. Comparisons with Chalumeau
et al. [12] have been provided in Section 4.1. As it has been highlighted that this approach is
not suited to find good solutions quickly, it is not included again in the next experiments.
Each approach is evaluated with a fixed node budget depending on the parameters of the
distribution used to generate the problems. For our approach, the performance obtained
after the first dive in the tree search is also monitored (Learned, 1st dive). As Impact and
Activity are online learning methods, they perform similarly to a random selection at the
beginning of the search. For this reason, the performance obtained after the first dive in the
tree search with such methods is omitted. Finally, we also included a comparison with a
random selection using DFS with the same node budget (Random). Finally, the optimal cost
(OPT) has been obtained with an exact approach without any restriction on the budget.

5.2 Quantitative Results
Table 1 summarizes the main results of our approach. As a general comment, our approach
can find solutions of superior quality given a node budget or find the optimal solution by
exploring fewer nodes than the baselines. Interestingly, our approach (Learned, ILDS) can
learn a branching strategy giving high-quality solutions, even without backtracking (1st

dive). For instance, a single dive for maximum cut with 50 nodes yields almost instantly a
solution with an optimality gap of 0.16, whereas a depth-first search with a random selection
(Random, DFS) required 19 seconds and roughly 53,000 nodes explored to find a solution
with the same gap. Within this same budget, (Learned, ILDS) significantly improves the
solution and achieves an optimality gap of 0.09. It is worth highlighting that (Learned, ILDS)
took 130 seconds to explore 38,744 nodes and has, thereby, an exploration rate slower than
the other methods. This significantly increased execution time is mainly because calling
the graph neural network architecture (Section 4.3) at each tree search node is much more
computationally expensive than calling a simple heuristic. This difficulty is further discussed
in Section 5.3.

Concerning Activity and Impact heuristics, they yield no improvement on graph coloring
compared to a random strategy. This can be explained by the fact that this class of problem
has many possible combinations of variables and values for branching. This requires a

2 https://github.com/corail-research/SeaPearl.jl
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Table 1 Results for the three problems given a fixed node budget. The average result (rounded)
on the 20 test instances is reported for each configuration. Gap indicates the optimality gap, Node
gives the number of nodes explored before finding the best solution within the budget, and Time
gives the time (seconds) before finding this solution.

Learned Activity-Based Impact-Based Random
1st dive ILDS DFS DFS DFS

Size OPT Gap Gap Node Time Gap Node Time Gap Node Time Gap Node Time Budget

COL
20 5.05 0.06 0 27 < 1 0 378 < 1 0 374 < 1 0 378 < 1 103

40 7.90 0.08 0 104 < 1 0 1,664 < 1 0 1732 < 1 0 1735 < 1 104

80 8.75 0.06 0 120 1 0 7,051 2 0 7,057 2 0 7,211 2 105

MIS
30 9.90 0.08 0 88 < 1 0 215 < 1 0 297 < 1 0 293 < 1 103

50 15.00 0.09 0 539 1 0 5,807 1 0 7,474 1 0 8,942 1 104

100 21.70 0.20 0.02 28,392 253 0.09 35,536 7 0.10 38,154 8 0.10 41,774 9 105

MAXCUT 20 46.70 0.15 0.03 3,714 5 0.04 4,635 1 0.03 5,959 2 0.04 4877 1 104

50 222.00 0.16 0.09 38,744 130 0.17 44,664 14 0.17 47,970 17 0.17 53,110 19 105

significantly larger number of explored nodes to initialize these two heuristics efficiently.
For the two other problems, characterized by a binary domain for the values to branch on,
Activity and Impact provide significantly better results than the random strategy, which is the
expected behavior. In all the tested situations, (Learned, ILDS) provides the best optimality
gap within the node budget. Additional results are proposed in Figure 7 using performance
profiles [14] for the two hardest situations (100 for maximum independent set, and 50 for
maximum cut) given a node budget of 100 or 1000 nodes.

(a) Maximum cut with 50 nodes. (b) Maximum independent set with 100 nodes.

Figure 7 Best solutions found within a restricted node budget on largest instances for the three
problems considered. We set a small budget to evaluate the ability of each approach to find quickly a
good solution, which is the objective aimed by this work. The performance profile ratio is computed
using the optimal solution as a reference. Within the same maximal number of nodes visited (1000),
we observe that (Learned, ILDS) dominate all the other methods. Besides, we still perform better
than the baselines when restricting ten times the budget for ILDS-Learned.

5.3 Discussions and Opportunities of Further Research

The previous experiments showcased the promise of this framework to quickly find good
solutions towards a generic value-selection heuristic inside a CP solver. There are nonetheless
open challenges that must be considered for practical use. Four of them are discussed.
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Challenge 1: Scalability of the Representation
Our approach faces a double penalty regarding its scaling capability: as the problem grows
larger, the tripartite representation increases significantly in size, which results in a longer
computation time required to make one branching decision. This impacts both training
and evaluation. Additionally, the number of nodes (and, therefore, decisions to be made) in
the search tree grows exponentially with the problem size, exacerbating the aforementioned
phenomenon. Consequently, our approach is penalized twice due to the exponential behavior
of combinatorial problems. As a concrete example, graph coloring instances with 80 nodes
require 72 hours of training on a GPU, while only 1 hour is required for the smallest instances.
An interesting research direction to mitigate this difficulty is to build a mechanism to compact
the representation, for instance, thanks to network pruning tools [51] or with transfer learning.
Another idea is to call the model only in a few nodes, in a similar fashion as Cappart et
al. [9] did for decision-diagram-based branch-and-bound [6]. On a lower level of computation,
standard constraint programming solvers perform sequential decisions and are therefore
optimized for CPU architecture. Concerning the training, it is carried out on a GPU. In the
current implementation, each branching decision requires loading the entire tripartite graph
on the Video RAM, which is inefficient. We believe much work could be done to optimize
this CPU/GPU architecture, for instance by delegating other operations on the GPUs, such
as the propagation of few constraints [8, 46].

Challenge 2: Tackling Highly Constrained Problems
The experiments proposed in the paper considered combinatorial problems where the difficulty
lay in finding the best solution. Still, it was easy to find a feasible solution, even of poor
quality. We empirically observed that the learning performance largely depends on the
abundance of feasible solutions in the search space. This is explained by the definition
of the reward, which is based on the propagation occurring on the objective variable (see
rmid

t in Section 4.2). However, when feasible solutions are not easily obtained, such as in
highly constrained problems, the reward signal becomes less informative. Addressing such
combinatorial problems remains an open challenge. We believe an extension of the reward
signal can address this in order to handle other situations.

Challenge 3: Learning a Combined Variable/Value Heuristic
Although this work proposes to learn a value-selection heuristic, learning how to branch on
variables has already been considered in the literature [42]. An interesting research direction
is to adapt this architecture to learn a variable-selection and a value-selection heuristic in a
unified way. A possible direction is to consider a model with a double-head decoder, the first
for selecting the variable and the second for selecting the value. On the training aspect, two
reinforcement learning agents could be trained, with an the incentive to cooperate with the
information sharing [44].

Challenge 4: Proving the Optimality of a Solution
The goal pursued in this paper is to find the best solution as quickly as possible. Another
direction is to guide the search to speed-up the optimality proof. It is what has been proposed
by Chalumeau et al. [12]. In practice, finding good solutions and proving optimality are
complementary aspects inside a constraint programming solver and should be both considered.
Possible directions to do so could be to redefine the reward function appropriately or to
revise the definition of an episode, as proposed by Scavuzzo et al. with TreeMDPs [38].
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6 Conclusion

The efficiency of constraint programming solvers is partially due to the branching heuristics
used to guide the search. In practice, value-selection heuristics are often designed thanks to
problem-specific expert knowledge, often out of reach for non-practitioners. In this paper,
we proposed a method based on reinforcement learning for obtaining such a heuristic, thanks
to historical data, characterized by problem instances following the same distribution of
the one that must be solved. This has been achieved thanks to a restart-based training
procedure, a non-sparse reward signal, and a heterogeneous graph neural network architecture.
Experiments on three combinatorial optimization problems show that the framework can
find better solutions close to optimality in fewer nodes visited than other generic baselines.
Several limitations and challenges (e.g., tractability for larger or real-world instances, transfer
learning, sparsity of the reward signal) have been identified, and addressing them is part
of future work. We also plan to consider other combinatorial problems, such as the ones
proposed in XCSP3 competitions [3].
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Abstract
Proof logging provides an auditable way of guaranteeing that a solver has produced a correct answer
using sound reasoning. This is standard practice for Boolean satisfiability solving, but for constraint
programming, a challenge is that every propagator must be able to justify all inferences it performs.
Here we demonstrate how to support proof logging for a wide range of previously uncertified global
constraints. We do this by showing how to justify every inference that could be performed by the
propagation algorithms for two families of generalised extensional constraint: “Smart Table” and
“Regular Language Membership”.
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1 Introduction

A proof log for a problem-solving algorithm provides a verifiable certificate that the result
is correct, and also an auditable record of the steps taken to obtain that result. In the
field of Boolean satisfiability (SAT), proof-logging has become an expected capability of
modern solvers, with a series of proof formats including DRAT [12, 13], LRAT [7], and FRAT
[2] widely accepted for independent verification. A similar standard practice has not yet
been adopted for Constraint Programming (CP) due to the difficulties of creating easily
verifiable proofs for the more expressive formulations and reasoning present in this paradigm.
However, recent work by Gocht et al. [10] has shown how the VeriPB proof system [3, 9]
can be used to certify the reasoning carried out for several important expressive global
constraints, offering a strong candidate for a complete, general CP proof logging method. In
this setting, every propagator for a global constraint must be able to do two things: describe
its semantics in a lower-level pseudo-Boolean format, and justify any reasoning it carries out
using either cutting planes [6] or reverse unit propagation (RUP) [11] reasoning. Describing
a constraint’s semantics is a well-understood problem, but justifying propagation is not.
Gocht et al. demonstrated proof logging for a range of global constraints and propagation
strengths, including bounds-consistent integer linear inequalities and domain-consistent table
constraints, but it remains an open question whether every global constraint propagation
algorithm can be justified in this manner.
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This paper shows that the reasoning carried out by domain-consistent propagators for
the SmartTable [16] and Regular [19] constraints can similarly be proof logged efficiently
inside the VeriPB proof system. As well as being useful in their own right, these two
constraints provide the necessary building blocks for implementing many others, since they
allow for efficient strong propagation for extensional constraints that cannot be expressed
efficiently as a conventional table. For example, SmartTable can be used to implement the
Lex, AtMostOne and NotAllEqual constraints [16], whilst Regular can be used to implement
Stretch, Geost and DiffN [15, 19]. Together, these two new constraints bring us a lot closer
to fully auditable combinatorial solving, particularly in areas such as workforce scheduling
where legal restrictions apply, and where algorithmic decisions can have a large effect upon
people’s livelihoods.

2 An Overview of How Proof Logging Works

The VeriPB proof system is built upon pseudo-Boolean (PB) problems. A PB model is a
restricted constraint satisfaction problem, where all variables xi have domain {0, 1} and all
constraints are integer linear inequalities of the format

∑
i ciℓi ≥ A where ci, A ∈ Z, and

each ℓi is a pseudo-Boolean literal: either a variable x or its negation x̄ = 1 − x. For clarity
and by convention we will always refer to CP variables with upper-case symbols and PB
variables with lower-case symbols. Additionally, to save space and make the meaning clearer
we will make use of reified PB constraint shorthands:

(ℓ1 ∧ · · · ∧ ℓm) =⇒
∑

i cixi ≥ A means
∑n

i=1 cixi + Jℓ̄1 + · · · + Jℓ̄m ≥ A where J is
chosen to be suitably large, e.g. J = A −

∑n
i=1 min(ci, 0).∑

i cixi ≥ A =⇒ (ℓ1 ∧ · · · ∧ ℓm) means
{∑n

i=1 −cixi + Kℓ̄t ≥ −A + 1 : 1 ≤ t ≤ m
}

where K is chosen to be suitably large, e.g. K = −A + 1 −
∑n

i=1 min(ci, 0).
(ℓ1 ∧ . . . ∧ ℓm) ⇐⇒

∑
i cixi ≥ A means both of the above together.

PB constraints can also be viewed as a superset of conjunctive-normal form (CNF) for
SAT problems, since a clause such as x1 ∨ x̄2 ∨ x3 is always equivalent to a PB constraint
such as x1 + x̄2 + x3 ≥ 1. This means that it is straightforward to generalise known SAT
encodings of CP constraints to PB. The concept of unit propagation from SAT can also
be generalised to a PB setting. We say a PB constraint propagates a literal ℓ if it cannot
possibly be satisfied unless ℓ = 1. For the “at least 1” constraints that can be viewed as
clauses, this is the same as SAT unit propagation, but in general it is enforcing integer
bounds consistency [5] on the PB inequalities. The (generalised) notion of unit propagation
for PB constraints is therefore repeatedly setting any literals that propagate until either a
contradiction or a fixed point is reached.

An auditable constraint solver following the proof-logging methodology of Gocht et al. [10]
must be able to produce a pseudo-Boolean representation of the problem being solved, and
then justify its backtracking and inference steps in a proof log by outputting further PB
constraints derivable by one of the proof rules allowed by the VeriPB proof checker. The
full proof system associated with VeriPB is described in detail by Bogaerts et al. [3], but
for the purposes of this paper the only rule that is needed is the reverse unit propagation
(RUP) rule, which says that a PB constraint D is derivable from a set of PB constraints F if
applying the pseudo-Boolean generalisation of unit propagation (repeated integer bounds
consistency) to F ∪ D̄ results in a contradiction. Intuitively, it is a constraint that “obviously”
follows once it is pointed out to the verifier.

This paper will omit discussion of how the variables and constraints of CP problem can
be represented as PB constraints and variables in general, focussing specifically on how
Regular and SmartTable can be represented. We will assume that we have access to a
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collection of properly defined PB variables xbneg, xb0, xb1, xb2 . . . representing bits in the
two’s-complement encoding of a CP variable X (with suitable constraints to enforce the
domain), but also that we can freely use flags of the form x=v, which are defined to equal 1
if and only if X = v. Explanation of how these encodings can be achieved is given by Gocht
et al. [10].

Similarly, we will omit detailed discussion of how complete proofs of solutions, unsatisfiab-
ility, optimality, or enumeration are achieved. We simply note that each proof is essentially
a description of the solver’s backtracking search tree. Any time the solver backtracks, a
RUP constraint that encodes the negated conjunction of the currently guessed assignments
is emitted. A new propagation algorithm can fit into this existing framework by ensuring
that the encoding of any specific filtering and failure inferences it makes are visible to the
verifier on reverse unit propagation of the backtrack constraint. So for example, if a solver
has guessed A = 2, B = 1; and a propagator is able to infer C ̸= 1 then the proof logging
methodology requires that the PB constraint

ā=2 + b̄=1 + c̄=1 ≥ 1 (1)

is somehow derived, which can be interpreted as

ā=2 ∨ b̄=1 ∨ c̄=1 i.e. A = 2 ∧ B = 1 =⇒ C ̸= 1. (2)

This is in many ways similar to how lazy clause generating solvers work [18], except that the
new constraints introduced must be justified, rather than asserted.

3 Proof Logging for Smart Table Constraints

A smart table constraint generalises the idea of a table constraint to allow wildcards and
comparisons, allowing for compact representations for a much larger set of relations, whilst
still retaining an efficient domain-consistent propagator [16, 20, 21]. There are several ways
to define SmartTable (also called HybridTable), depending on which restriction types are
allowed within tuples [4]. In this work we restrict our focus to unary comparisons, binary
comparisons, and set membership, and define SmartTable as follows.

▶ Definition 1. Smart Table Constraint
Let X be a sequence of finite-domain variables ⟨X1, . . . , Xn⟩. A smart entry constraint is a

unary or binary constraint in one of three possible forms:
1. <var> <op> a

2. <var> ∈ S or <var> /∈ S

3. <var> <op> <var>

where a is an integer constant, S is a set of integer constants, <op> denotes an operator
in the set {<, ≤, =, ̸=, ≥, >}, and <var> denotes a variable. A smart tuple is a set of these
smart entry constraints, and a smart table is a set of smart tuples. When a variable does not
appear in a given tuple, it is implicitly unrestricted (equivalent to a wildcard entry).

For a given smart table T , where the scope of every smart entry constraint is a subset of
X, a smart table constraint SmartTable(X, T ) requires that there is at least one smart tuple
in T where every smart entry constraint holds. It can hence be thought of as a special case of
a disjunction of conjunctions of simple constraints.
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3.1 PB Encodings for Smart Table Constraints
Recall that in order to support proof logging for a constraint, we must be able to describe its
semantics in a lower-level PB form. Let T be a smart table with smart tuples σ1, . . . , σk. We
can encode the SmartTable constraint by making use of some auxiliary PB variables. For
each smart tuple σi in the table we will have a selector PB variable si that controls whether
the tuple is active (i.e. not yet infeasible). Then for each smart entry Cj ∈ σ we will have a
PB variable eij that is set to 1 if and only the constraint Cj is satisfied, which we denote by
satisfied(Cj).

Since smart entries are themselves simple binary and unary constraints, with all of them
having PB encodings that already well understood, the process of encoding this satisfied
property is straightforward. Inequalities on one or two variables can be encoded by imposing
the inequality on the evaluation of the bit encodings. For example, for two CP variable A

and B both with domain {1, . . . 7}, and recalling that PB variables abi and bbi denote the ith
bits in the encoding of the variables A and B, we would have

satisfied(A < B) := −ab0 − 2ab1 − 4ab2 + bb0 + 2bb1 + 4bb2 ≥ 1. (3)

Other inequality constraints can be handled similarly, adding or subtracting constants
from the right-hand side as necessary. For ∈ and /∈ it is simply a case of imposing “at least
n” constraints on the flags representing the disallowed values, e.g.

satisfied(A ∈ {1, 3, 5}) := ā=2 + ā=4 + ā=6 + ā=7 ≥ 4, (4)
satisfied(B /∈ {1, 3, 5}) := b̄=1 + b̄=3 + b̄=5 ≥ 3. (5)

Finally, for = and ̸= we can make direct use of the x=v flag if the right-hand side is a
value. If the right-hand side is instead another variable we make use of further intermediate
flags to express the relation in terms of strict or non-strict inequalities, so:

satisfied(A = B) := fA≥B + fA≤B ≥ 2, (6)
satisfied(A ̸= B) := fA>B + fA<B ≥ 1, (7)

where the flags are enforced with two-way implication, e.g.

fA<B ⇐⇒ satisfied(A < B). (8)

Obviously, the negation of these encodings can be expressed by encoding the negation of
the constraint, e.g.

¬satisfied(A < B) := satisfied(A ≥ B), (9)
¬satisfied(A ̸= B) := satisfied(A = B). (10)

With the procedures for each of these smart entry constraint encodings in place, and
recalling that we know how to reify arbitrary PB constraints on a literal, the PB model for
smart table can then be created according to the following specification.

▶ Encoding 1. Smart Table PB Encoding

1: for all σi ∈ T

2: for all C ∈ σi

3: eC ⇐⇒ satisfied(C)
4: si ⇐⇒

∑
C∈σi

eC ≥ |σi|
5: s1 + s2 + · · · + s|T | ≥ 1
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3.2 Justifying Smart Table Propagation
The goal of the propagator for the smart table constraint, as with many global constraint
propagators, is to achieve domain consistency. As a running example, suppose we had a
smart table constraint on three variables, A, B, C, all with domains {1, 2, 3}, defined by the
following table T with two tuples:

T := {σ1, σ2}; σ1 = {(A < B), (A ∈ {1, 2}), (C = 3)}, (11)
σ2 = {(A = B), (A ̸= 1), (B ≥ C)}. (12)

By inspection, we can observe that the literal B = 1 does not have any support on this
constraint, as it would contradict A < B on the first tuple and A = B, A ̸= 1 together on
the second. Therefore, a propagation algorithm that achieves domain consistency should
immediately remove the value 1 from the domain of B.

The propagation algorithm described by Mairy et al. [16] uses a “Simple Tabular
Reduction” strategy to eliminate such unsupported values. Essentially it initialises a set sl
(for “supportless”) with every variable value/pair that is possible given the current domains
of variables, and then iterates through the tuples, removing any values that they in turn
support. The literals that are left in sl are not supported by any tuple and hence the ones
that should be eliminated. A key observation is that each smart tuple σ, as a conjunction
of simple constraints, can be thought of as a small CSP Pσ in its own right, and so the
supported values are just all the solutions for this problem. It is shown that as long as the
constraint graph of Pσ is acyclic it can be effectively filtered as a collection of tree CSPs via
a two pass filtering process. Due to the restricted structure of the smart tuples, the result
of this is a collection of copies of the domains where the only values present are those that
appear in some solution (global consistency for Pσ), and so this can be used to remove values
from sl in polynomial time.

For proof logging, the main concern is then how to justify the elimination of these
unsupported values. In particular, for a sequence of guesses G and newly derived unsupported
assignment X ̸= v, we would like to log the PB constraint

∧G =⇒ x̄=v ≥ 1. (13)

In some situations this might follow directly by reverse unit propagation, as is always
the case for proof-logging the classical table constraint as shown by Gocht et al. [10]. For
smart tables, however, we can show that more work is required in general. Going back to
the previous example and following Encoding 1, we note that if we try to derive b̄=1 ≥ 1 by
reverse unit propagation, we do not reach a contradiction after propagating its negation b=1.
This is despite B = 1 lacking support in the table. To see why this is the case, note that the
only way unit propagation of a non-auxiliary literal such as b=1 could falsify the whole model
would be for it to eventually result in all the selectors si being falsified. In turn, the only way
that could happen is for there to be at least one eiC falsified for every i ∈ {1, . . . , |T |}. We
can observe that this does not happen on propagation of b=1. The smart entry constraints
that are responsible for eliminating (B = 1)’s support are A < B in the first tuple and both
A = B, A ≠ 1 in the second. From Encoding 1, the first of these is present in the PB model
in the form of two constraints:

eA<B =⇒ bb0 + 2bb1 − ab0 − 2ab1 ≥ 1; (14)
ēA<B =⇒ −bb0 − 2bb1 + ab0 + 2ab1 ≥ 1. (15)
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Assuming the bit encodings are correctly defined, propagating b=1 should propagate bb0 and
b̄b1, meaning (14) is reduced to

eA<B =⇒ 1 − ab0 − 2ab1 ≥ 1. (16)

Now it might seem that ēA<B would then propagate, as we know ab0 + 2ab1 is at least 1 due
to the domain constraints of the variable A and so the right-hand side of the implication in
(16) must be false. However, because the falsity does not follow from a contradiction intrinsic
to the PB itself – in isolation it can be satisfied by having both bb0 and bb1 equal to 0 –
unit propagation alone is not strong enough to determine that ēA<B must follow. A similar
problem holds for the other tuple, where the contradiction arises due to two constraints being
incompatible rather than just one being falsified.

Fortunately, we can ensure that the desired constraints do follow by RUP by first explicitly
deriving some intermediate proof steps. For a sequence of guesses G and newly derived
unsupported assignment X ̸= v, instead of simply logging the PB constraint (13) as above,
we first log

∧G =⇒ x̄=v + s̄k ≥ 1 (17)

for each k ∈ {1, . . . , |T |}, i.e. first show by RUP that no tuple selector can be set to true
without contradiction, and then derive from these the desired constraint (13). So in our
running example, we would log

b̄=1 + s̄1 ≥ 1; b̄=1 + s̄2 ≥ 1; b̄=1 ≥ 1. (18)

This is now sufficient for most cases, however, it is still possible to construct examples where
even these constraints in the form of (17) do not follow by RUP. Suppose we have four
variables W, X, Y, Z, all with domain {−2, −1, 0}, and then a single smart tuple of the form

(W < X), (X < Y ), (Y < Z). (19)

Clearly this is unsatisfiable, and so in particular W = −2 should be unsupported by the
tuple. But the constraint

w̄=−2 + s̄1 ≥ 1 (20)

does not unit propagate to contradiction. This can be seen by considering the PB encoding
of the first smart entry constraint,

eW <X ⇐⇒ −2xbneg + xb0 + 2wbneg − wb0 ≥ 1. (21)

The negation of (20) will lead to eW <X , wbneg, and w̄b0 being propagated, which would
mean the two PB constraints encoding both implication directions in (21) are reduced to

−2xbneg + xb0 ≥ −1; and 2xbneg − xb0 ≥ −1. (22)

But then no further propagation results from these constraints, which can be seen either
by calculating the slack value (see Elffers et al. [8]), or simply by observing that the value
sets {0, 0}, {1, 1}, {0, 1} would each satisfy both constraints if assigned to {xbneg, xb0} and so
both 0 and 1 are both supported possibilities for each variable. None of the other constraints
contain bit variables for W and so it is clear that no propagation will result from these either,
and hence no contradiction will be reached.
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This weak propagation is not surprising given the context given by Gocht et al. [10],
where integer linear inequality constraints need to log all the inferences made when enforcing
domain consistency and cannot rely on the disallowed values being implicit. Fortunately for
us, these same inferences are being made in the solver as part of the smart table propagator
anyway, at the tree filtering stage, and so the desired constraints in the form of (17) and then
(13) can still be logged providing we have first logged the inferences for binary constraints
explicitly. The only difference in proof logging these and the proof logging of equality and
inequality constraints described by Gocht et al. [10] is that each inference will be conditional
on a tuple selector. For example, if a variable B has domain with maximum value l and the
filtering process for A < B updates the domain copy for A so that A < l, then we would log

∧G =⇒ s̄1 + a<l ≥ 1; (23)

where the flag a<l can be introduced via reification with corresponding constraints on the
bit variables.

We can now be confident we have a complete proof logging procedure. We can show by
an inductive argument on the binary representation that the PB constraints that encode
the filtering inferences made by simple binary constraints such as (23) will always be RUP,
providing they are logged in the same order as they are made by the solver. Then, any
unsupported value must be unsupported in every tuple, and hence removed in the filtering
process for some smart entry constraint. Given the negation of this removal, i.e. a variable
being equal to some unsupported value, if it was removed due to a binary constraint then we
have already logged a corresponding contradicting restriction and hence will unit propagate
to contradiction. Otherwise, if it was removed due to a unary constraint it will propagate to
contradiction immediately as the assignment will contradict a single PB constraint.

3.3 A Complete Worked Example for Smart Table Propagation
To demonstrate how this procedure works on a single round of the domain-consistent smart
table propagator we will now show all the steps required for the running example. Firstly, we
will have the PB constraints encoding that the of the domains of A, B, C are all {1, 2, 3}, i.e.

1 ≤ ab0 + 2ab1 + 4ab2 ≤ 3; 1 ≤ bb0 + 2bb1 + 4bb2 ≤ 3; 1 ≤ cb0 + 2cb1 + 4cb2 ≤ 3. (24)

Next we can follow Encoding 1 to encode the smart table constraint. First we have the
encodings of the four necessary auxiliary smart entry flags

eA<B ⇐⇒ bb0 + 2bb1 + 4bb2 − ab0 − 2ab1 − 4ab2 ≥ 1; (25a)

eA∈{1,2} =⇒ ā=3 ≥ 1; (25b)
ēA∈{1,2} =⇒ ā=1 + ā=2 ≥ 2; (25c)

fA>B ⇐⇒ ab0 + 2ab1 + 4ab2 − bb0 − 2bb1 − 4bb2 ≥ 1; (25d)
fA<B ⇐⇒ bb0 + 2bb1 + 4bb2 − ab0 − 2ab1 − 4ab2 ≥ 1; (25e)
eA=B ⇐⇒ f̄A>B + f̄A<B ≥ 2; (25f)

eB≥C ⇐⇒ bb0 + 2bb1 + 4bb2 − cb0 − 2cb1 − 4cb2 ≥ 0; (25g)

Then we can use these to encode the two tuples

s0 ⇐⇒ eA<B + eA∈{1,2} + c=3 ≥ 3; (25h)
s1 ⇐⇒ eA=B + ā=1 + eB≥C ≥ 3; (25i)
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B

CA

> ∈ {1, 2} = 3

(a) The graph for Pσ1 , which consists of two trees.

A C

B

=
≥

̸= 1

(b) The graph for Pσ2 , which consists of a single tree.

Figure 1 The constraint graphs for the two sub-CSPs Pσ1 and Pσ2 represented by the smart
tuples σ1 and σ2. Both graphs are acyclic and thus composed of trees.

And then finally we require

s0 + s1 ≥ 1. (25j)

Constraints that define the x=v flags are also included but are omitted here for brevity.
Now, for the domain-consistent propagator itself, we note that constraint networks of the

smart tuples do indeed form acyclic graphs and so the procedure is applicable. This can be
seen in Figure 1, where unary constraints are represented as edges to a dummy node. The
first tuple is clearly made up of two small trees, and the second consists of a single tree.

Initially all variables have {1, 2, 3} in their domains and the set of unsupported values sl

is set to:

sl = {A : 1, 2, 3; B : 1, 2, 3; C : 1, 2, 3} (26)

To find the set of values supported by Pσ1 we find the values supported by each tree
making it up. This involves two filtering passes over copies of the domain, working first from
the root outwards, and then back again.

Taking the left tree first, on the first pass 3 is removed from the domain copy for A and 1
from the domain of B due to A < B. So we would log

s̄0 + ā<3 ≥ 1; s̄0 + b̄>1 ≥ 1; (27)

as these inferences were made due to a binary constraint. No further inferences are made on
the second pass. This leaves the values

{A : 1, 2; B : 2, 3} (28)

supported by the first tree, and so these are removed from sl. Filtering the other tree simply
reduces the domain copy for C to {3}, and so C = 3 is removed from sl. No inferences need
to be logged here as this is a unary constraint. We now have

sl = {A : 3; B : 1; C : 1, 2} (29)

Moving on to the second tuple, no inference occurs on the first pass due to A = B nor
B ≥ C, but 1 is removed from the (fresh) domain copy for A due to the unary A ̸= 1 entry.
Then on the second pass, 1 is now removed from the domain copy for B due to A = B, and
so we log

s̄1 + b̄=1 ≥ 1; (30)

and then no further inference occurs. So the values occurring in some solution for this tree
are

{A : 2, 3; B : 2, 3; C : 1, 2, 3} (31)
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and so these can be removed from sl, leaving

sl = {B : 1}. (32)

Ultimately, B = 1 is the only assignment lacking support in the table after this initial
execution of the domain-consistent propagator and the only value to be removed from an
actual variable domain. We are then able to log the three constraints in (18) as discussed
above, and thus we have successfully maintained the required invariant for pseudo-Boolean
proof logging of this propagator.

4 Proof Logging for Regular Language Membership Constraints

A regular language provides another compact way of representing a constraint extension-
ally [19]. It is defined as follows.

▶ Definition 2. Regular Language Membership Constraint
Let X again be a sequence of finite-domain variables ⟨X1, . . . , Xn⟩ and let M = (Q, Σ, δ, q0, F )
denote a deterministic finite automaton (DFA), where

Q is a set of states;
q0 ∈ Q is the initial state and F ⊆ Q is the set of accepting states;
Σ is a set of symbols having the domain of every variable in X as a subset; and
δ : (Q × Σ) → Q is the transition function.

A regular language membership constraint Regular(X, M) requires that any sequence of
values taken by the variables of X must belong to the regular language recognised by M .

Throughout this section we will assume that the DFA is specified explicitly by a trusted
source. Verified compilation to create the constraint from a regular expression is left as
future work.

4.1 PB Encodings for Regular Language Membership Constraints
The Regular constraint is similarly easy to encode using auxiliary PB variables. If we let
M = (Q, Σ, δ, q0, F ) denote a deterministic finite automaton (DFA) and we impose a regular
constraint using this on n variables, we simply need to define flags rij that are set to true if
and only if the automaton is in the jth state at position before the (i + 1)th symbol of the
sequence is processed (including an additional set of flags rnj to denote the final state).

▶ Encoding 2. Regular Language Membership PB Encoding

1: for all i ∈ {0, . . . , n}
2: ri0 + · · · + ri|Q|−1 ≥ 1
3: −ri0 − · · · − ri|Q|−1 ≥ −1
4: for all i ∈ {0, · · · n − 1}, q ∈ Q, v ∈ Σ
5: if δ(q, v) is an allowed transition
6: riq ∧ xi=v =⇒ ri+1δ(q,v) ≥ 1
7: else
8: r̄iq + x̄i=v ≥ 1
9: r00 ≥ 1

10:
∑

f∈F r(n)f ≥ 1

This is a simpler version of the stronger SAT encoding for Regular given by Bacchus [1].
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4.2 Justifying Regular Propagation
As with SmartTable, the Regular propagator enforces domain consistency, and so our goal
once again is to log

∧G =⇒ x̄i=v ≥ 1 (33)

where G is the current sequences of guesses made by the solver, and Xi = v is an assignment
that is not supported by the regular language membership constraint. In particular, Xi = v is
not supported when there exists no sequence of symbols belonging to the language recognised
by M that has v as the ith symbol.

It is trivial to establish that this inference will not immediately follow by unit propagation,
which is unsurprising given the relative simplicity of the encoding. Just as we did for
SmartTable, we will have to log some additional facts during the execution of the propagation
algorithm.

We will consider here the original domain-consistent Regular propagator by Pesant [19],
on a constraint over a sequence of n variables X = ⟨X1 . . . , Xn⟩ and associated with a DFA
M = (Q, Σ, δ, q0, F ). This works by maintaining a layered, directed multigraph that has
n + 1 layers, with the ith layer having |Q| nodes qi

0, . . . qi
|Q|−1. The edges in this graph are

labelled with values in Σ, and are required to respect several properties that are satisfied
from the outset and then maintained through propagation. These are:
1. Edges can only appear between nodes in consecutive layers.
2. An edge labelled with the value v can only be included between nodes qi

k and nodes qi+1
l

if there exists a transition between the states numbered k and l in the DFA for a v, with
v currently in the domain of Xi.

3. Furthermore, every edge included must appear in a path from the node q0
0 (representing

the initial state) to a node representing a final state in the last layer.

The graph is constructed at the start of the solving process, and then updated increment-
ally during propagation to reflect changes in the variable domains and preserve the required
properties. It is clear then that once this is achieved, an assignment Xi = v loses support on
the regular constraint exactly when there are no edges labelled with v between nodes in the
ith and (i + 1)th layers.

The strategy for proof logging is then as follows. Every time an edge (qi
k, qi+1

l ) labelled
with the symbol v is removed by the propagation algorithm (or excluded when the graph is
first built), we log the PB constraint

∧G =⇒ r̄ik + x̄i=v ≥ 1, (34)

which can be interpreted as saying: “given these guesses, we can’t both be in state k after
we’ve processed the first i − 1 symbols, and have the ith symbol be v”. If we do this, then
when an assignment Xi = v loses support we will have logged a constraint in the form of (34)
for all riq where δ(q, v) is an allowed transition. Thus, the negation of (33) will result in r̄iq

being propagated for all q ∈ Q, and then this will contradict one of the constraints specified
by the second line of Encoding 2, which says that at least one riq must be set to 1. So with
these constraints in place we would be able to log our desired constraint (33) by RUP.

The problem is therefore reduced to that of deriving the constraints in the form of (34). It
turns out that these will either follow immediately by RUP, or require additional justification
depending on how the corresponding edge elimination is inferred by the propagation.

Edges are removed by the Regular propagator in one of three ways. Firstly, when
an assignment Xi = v has already been removed, either because another value has been
guessed or because it has been eliminated by a propagator for another CP constraint, all the



M. J. McIlree and C. McCreesh 26:11

edges extending from the ith layer labelled with value v are also removed. In this case the
corresponding constraints in (34) can be logged by RUP, as xi=v will immediately contradict
the guesses or previous inferences.

Secondly, when a particular node loses all of its outgoing edges, none of its incoming
edges can be part of a valid path and so should be removed. These removals occur recursively
in a backward pass (Algorithm 3 from Pesant [19]), so if a removed incoming edge was the
last outgoing edge of a node in a previous layer then the incoming edges of that previous
node are also removed, and so on. In this case too, the constraints in the form of (34) follow
by RUP. This can be shown inductively. Suppose all of the outgoing edges for a node qi

l

have been removed and the corresponding constraints in the form of (34) have already been
logged. Then for a given incoming edge (qi−1

k , qi
l) labelled with the value v, the negation of

the corresponding constraint in the form of (34) will entail rik, and since δ(qk, v) must be ql,
ril will then unit propagate by one of the constraint specified by line 6 of Encoding 2. Then,
since we have already eliminated all possible outgoing edges, we will propagate x̄i=v′ for all
v′ ∈ Σ, which will contradict the encoding of the variable Xi, as it must take at least one
value.

Finally, in the other direction, when a particular node loses all of its incoming edges,
similarly none of its outgoing edges can be part of a valid path and so should be removed.
These removals also occur recursively, this time in a forward pass (Algorithm 4 from
Pesant[19]). In contrast to the previous two cases, this inference requires more justification
as the desired constraint will not always follow by RUP, as is the case for (45) in the worked
example below. So when a state qi

l loses all of its incoming edges we first need to log the
constraints

∧G =⇒ r̄i−1k + r̄il ≥ 1 (35)

for each k ∈ {1, . . . , k}, which intuitively say that no previous state could lead to this state,
before logging constraints in the form of (34) for each outgoing edge. These constraints in
the form of (35) will all follow by RUP, since for every v ∈ Σ we either have a constraint

∧G =⇒ r̄i−1k + x̄i−1=v ≥ 1; (36)

from those in the form of (34) logged at the previous stage of the recursion; or there is a
constraint

∧G =⇒ x̄i−1=v ≥ 1; (37)

logged during earlier search/propagation (when this node was the first layer of the recursion);
or else there is a constraint

r̄i−1k + xi−1=v ≥ 1; (38)

present in the PB model. In all cases, the negation of (35) will result in x̄i−1=v for every
v ∈ Σ, giving a contradiction.

Once all the constraints in the form of (35) have been derived, the desired constraint in
the form of (34) will definitely follow by RUP, as its negation would then propagate r̄i−1k

for each k ∈ Q, contradicting one of the constraints on the second line of Encoding 2.
Putting all of this together, we can emit full justification using RUP for every edge

elimination performed by Regular, and thus we are able to derive the constraint in the form
of (33) required by the proof logging invariant.
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It should be noted that the same justifications apply when building the graph for the first
time, as it can be conceptually viewed as eliminating edges from the complete layered graph
with n + 1 layers and |Q| nodes in each layer. The deletion occurs in two passes. Firstly
it eliminates all outgoing edges from every node in layer 0 that does not correspond to the
initial state, recursing for each subsequent layer. Then secondly, it eliminates all incoming
edges from every node in layer n + 1 that does not correspond to a final state, similarly
recursing for each previous layer.

Note finally that stronger encodings of the Regular constraint are possible, and these
would not require as much proof logging during search. However, these encodings are not so
obviously correct, which is a drawback since the constraint encoding process is not (currently)
verified. It is not even clear that such encodings would give more efficient proof verification,
since they would involve having a larger set of active PB constraints for the entire verification
process.

4.3 A Complete Worked Example for Regular Propagation
Once again, to demonstrate how the proof logging procedure works more concretely, we
will now show a worked example, including the initial building of the graph and a round
of domain-consistent propagation. We will take the simple Example 1 from Pesant [19], of
a regular language membership constraint on five variables X1, . . . , X5 each with domain
{0, 1, 2}, and using the DFA M as shown in Figure 2a.

For the PB encoding, we will omit the constraints encoding the domains and equals flags
and focus on the constraints present in Encoding 2. We can see that we have five states
numbered 0 . . . 4, and five variables in the sequence, so the model would first define:

r00 + · · · + r04 ≥ 1; . . . r50 + · · · + r54 ≥ 1; (39)
−r00 − · · · − r04 ≥ −1; . . . −r50 − · · · − r54 ≥ −1; (40)

saying that we have to have exactly one of the state-position flags set for each position. Next
for each position i we would define eight PB constraints corresponding to the eight valid
transitions:

r̄i0 + x̄i=0 + ri+11 ≥ 1; r̄i0 + x̄i=2 + ri+14 ≥ 1; r̄i1 + x̄i=0 + ri+11 ≥ 1;
r̄i1 + x̄i=1 + ri+12 ≥ 1; r̄i2 + x̄i=0 + ri+13 ≥ 1; r̄i2 + x̄i=1 + ri+12 ≥ 1;
r̄i3 + x̄i=0 + ri+13 ≥ 1; r̄i4 + x̄i=2 + ri+14 ≥ 1;

(41)

along with constraints of the form

r̄iq + x̄i=v ≥ 1; (42)

for the remaining seventeen invalid transitions. Finally, we would have constraints saying
that we have to start in an initial state and end in a final state:

r00 ≥ 1; r53 + r54 ≥ 1. (43)

Propagation depends on us having first built a valid graph, with nodes as shown in
Figure 2b. As mentioned, this occurs in two passes, with the forward pass collecting nodes
that can be reached from the initial state. This corresponds to removing outgoing edges only
reachable from nodes other than the initial state.

So to begin with, we traverse the two edges incident to node q0
0 , reaching nodes q1

1 and q1
4

and thereby eliminating all other edges. These are the two edges shown in Figure 2b. Since
we are eliminating outgoing edges we are effectively in the third case of the proof logging
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(a) A DFA M recognising the regular expression
00*11*00*+2*. Double circles indicate accepting
states.
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(b) The first traversal in the forward pass for build-
ing the layered multigraph used in propagation of
Regular(X1, . . . , X5, M).
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(c) The same multigraph after the forward pass is
complete.
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(d) The same multigraph after the backwards pass
is complete.
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(e) After inferring that X3 ̸= 1, the multigraph is
in an invalid state.
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(f) The same multigraph after its consistency prop-
erties have been re-established.

Figure 2 Propagation of the regular expression 00*11*00*+2* on the variables X1, . . . , X5,
showing the initial state, and then the effect of propagating X3 ̸= 1.
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procedure from the previous section, however, as there are no previous states to eliminate we
simply need to log constraints in the form of (34) for each of the six eliminated edges:

r̄01 + x̄0=0 ≥ 1; r̄01 + x̄0=1 ≥ 1; r̄02 + x̄0=0 ≥ 1;
r̄02 + x̄0=1 ≥ 1; r̄03 + x̄0=0 ≥ 1; r̄04 + x̄0=2 ≥ 1;

(44)

and these will all follow by RUP because we have r00 ≥ 1 in the PB model. Continuing,
we recursively collect edges reachable from the initial node, consequently eliminating all
outgoing edges for any node that is not reached. The result of this is shown in Figure 2c.

At each layer, we can follow this same proof logging procedure for eliminating outgoing
edges. For example, we do not collect (q2

3 , q3
3) at layer 2, since q2

3 is not reached as part of
the forward pass. So we would like to log

r̄23 + x̄2=0 ≥ 1; (45)

for this eliminated edge, but this does not follow by RUP. Despite us having logged constraints
in the form of (34) for each eliminated incoming edge to q3

2 , none of these constraints contain
either r23 or x2=0, as they concern the previous layer, and so no further propagation takes
place from the negation of (45). Hence, as discussed, we first log

r̄10 + r̄23 ≥ 1; r̄11 + r̄23 ≥ 1; r̄12 + r̄23 ≥ 1; r̄13 + r̄23 ≥ 1; r̄14 + r̄23 ≥ 1; (46)

which all do follow by RUP, and then our constraint (45) can be logged.
After this process is complete, the backwards pass takes place, first eliminating incoming

edges from any nodes in the last layer corresponding to non-final states, and then recursively
eliminating all incoming edges from any node that lost all of its outgoing edges. The complete,
correctly initialised state of the graph after this backwards pass is shown in Figure 2d.

Following the proof logging procedure for eliminating incoming edges, in this direction
we simply need to log a constraint in the form of (34) for each, and these will follow by RUP,
as discussed.

At this point, some basic inferences about variable value pairs can already be made, such
as X0 ̸= 1 and X4 ̸= 1. Due to all the constraints that have already been logged, eliminating
all possible corresponding edges from consideration, the required proof logging invariant
constraint for each will follow by RUP. This concludes the graph initialisation for the Regular
propagator, and from this point onwards the structure can be updated incrementally and
restored upon backtrack, as described in detail by Pesant [19].

We will now demonstrate one such incremental update, corresponding to an execution of
domain-consistent propagation for Regular. Suppose through the course of the computation,
the assignment X3 = 1 loses support. This means the edges (q3

1 , q4
2) and (q3

2 , q4
2) are

immediately removed from the graph, and we log the RUP constraints:

r̄13 + x̄3=1 ≥ 1; r̄23 + x̄3=1 ≥ 1. (47)

At this point the state of the graph is as shown in Figure 2e, with the two highlighted
nodes having lost all of their outgoing and incoming edges respectively.

The recursive incremental update is then executed for each of these, further removing
the edge (q2

1 , q3
1) in a backwards pass, and so logging the RUP constraint

∧G =⇒ r̄31 + x̄2=0. (48)
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The edge (q4
2 , q5

3) is also removed, but because this is removed in a forward pass, we first
log

∧G =⇒ r̄30 + r̄42 ≥ 1; ∧G =⇒ r̄31 + r̄42 ≥ 1; . . . ∧G =⇒ r̄34 + r̄42 ≥ 1; (49)

before logging the required

∧G =⇒ r̄42 + x̄2=0. (50)

No further nodes lose their last incoming or outgoing edge as a result of this, and so the
required properties (and hence domain consistency) have been re-established on the graph.
The final consistent state is shown in Figure 2f.

5 Implementation and Validation

We have implemented both of these proof logging propagation algorithms inside the open-
source Glasgow Constraint Solver [17]. Our implementation adds two new constraints
Regular and SmartTable, with specific functionality to produce the required encodings
and justifying propagators. They can therefore be used in conjunction with the rest of the
constraint types already available in the solver.

We validated the implementations by first modelling some key examples. For SmartTable,
these included the representation of lexicographic ordering problems, and problems where
at most one variable takes a value, as given by Mairy et al. [16], as well as the illustrative
examples from Section 3. For Regular, we implemented both examples 1 and 2 from
Pesant [19].

We carried out further experimental validation by generating random (acyclic) smart
tables, and random DFAs on sequences of up to five variables and solving the corresponding
single-constraint problems. In all tests and examples, the solver produced an OPB model
and proof files, and we checked these using the VeriPB proof checker. We also found that
although proof logging incurs an obvious performance cost, the observed overheads were not
unreasonable, giving a slowdown factor of between 2 and 10. As proofs are written currently
written directly to disk, this can be very hardware dependent, and also dependent on how
optimised the propagator implementation is. We decided to leave further engineering and
optimisation of proof writing to future work.

During development some very subtle bugs in both propagator implementations that
had eluded conventional testing were caught immediately by proof logging. For example, in
an incremental version of the Regular propagator, an unsound inference was being made
due to mixing up variable names, but in such a way that a situation where this unsound
inference would actually lead to an incorrect solution was extremely rare (only in specially
constructed instances, created once we were made aware of the bug due to proof logging).
After correcting bugs such as these, all proofs were certified by VeriPB as being correct.

6 Conclusion

We have shown that we can efficiently justify all the reasoning that could possibly be carried
out for two families of smart extensional constraints. An interesting observation is that
justifying this reasoning required only the RUP rule, and this rule was only to provide hints
of algorithmic steps that were already being carried out by the propagators. In effect, we
are logging a sequence of “lookahead to see immediate contradiction” steps. We did not
require any explicit cutting planes derivations, and although we relied upon pseudo-Boolean
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constraints to make it simple to express reifications and negations, in principle everything we
did should also be possible in a weaker proof encoding and proof system such as CNF and
DRAT. The only caveat is that we do rely upon strong propagation properties for encoded
integer variables, which would limit approaches based upon Boolean satisfiability to integer
variables with very small domains. This is in contrast to constraints like AllDifferent and
Linear, which cannot be logged efficiently in resolution-based approaches [8, 10].

We expect that other global constraints, even those with complex propagation algorithms
will be similarly feasible to proof log using this technique. Richer smart tables, such as those
with offset or ternary restrictions [4], also fit into the framework given in Section 3.2, although
the justification of the filtering inferences for each restriction may require additional cutting
planes steps. Furthermore, the propagation of “Multi-Valued Decision Diagram”-based
constraints [14] can be viewed as a generalisation of the techniques used for the regular
language membership constraint, and so it seems very plausible that a similar proof logging
methodology as demonstrated in this paper could work here. This bodes well for being
able to provide auditable solving for most global constraints that might occur in a modern
constraint solver.
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Abstract
Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to
mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear
inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted
class of clausal constraint. This is in contrast to how conflict analysis is performed in so-called
pseudo-Boolean solving, where solvers can reason directly with 0–1 integer linear inequalities rather
than with clausal constraints extracted from such inequalities.

In this work, we investigate how pseudo-Boolean conflict analysis can be integrated in MIP solving,
focusing on 0–1 integer linear programs (0–1 ILPs). Phrased in MIP terminology, conflict analysis
can be understood as a sequence of linear combinations and cuts. We leverage this perspective
to design a new conflict analysis algorithm based on mixed integer rounding (MIR) cuts, which
theoretically dominates the state-of-the-art division-based method in pseudo-Boolean solving.

We also report results from a first proof-of-concept implementation of different pseudo-Boolean
conflict analysis methods in the open-source MIP solver SCIP. When evaluated on a large and diverse
set of 0–1 ILP instances from MIPLIB 2017, our new MIR-based conflict analysis outperforms both
previous pseudo-Boolean methods and the clause-based method used in MIP. Our conclusion is that
pseudo-Boolean conflict analysis in MIP is a promising research direction that merits further study,
and that it might also make sense to investigate the use of such conflict analysis to generate stronger
no-goods in constraint programming.
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1 Introduction

The area of Boolean satisfiability (SAT) solving has witnessed dramatic performance improve-
ments over the last couple of decades, and several techniques from SAT have also inspired
developments for other combinatorial optimization paradigms such as SAT-based and (linear)
pseudo-Boolean optimization, constraint programming, and mixed integer programming. In
particular, conflict analysis as introduced in the works on conflict-driven clause learning
(CDCL) [3, 38, 40] ushering in the modern SAT solving revolution has been picked up and
generalized in different ways to these more general settings. Interestingly, precursors of this
version of conflict analysis and nonchronological backtracking can be traced back all the
way to early work in the AI community [47], and related ideas have been used in constraint
programming for decades [24, 31]. Our focus in this paper is on conflict analysis in mixed
integer programming and pseudo-Boolean optimization, which we proceed to discuss next.

1.1 Mixed Integer Programming and Conflict Analysis
The core method of mixed integer programming (MIP) is that a linear programming (LP)
relaxation of the problem is fed to an LP solver. If the LP solver finds a solution that assigns
real values to integral variables, then either additional cut constraints can be generated
that eliminate such solutions, or the problem can be split into subproblems by branching
on integer variables, generating new nodes in the search tree. During the solving process
infeasible nodes in the search tree are pruned. Unlike in SAT, there can be different reasons
for backtracking due to infeasibility of the LP relaxation, node presolving (propagation),
or to the current objective value of the relaxed problem being worse than the best solution
found so far (branch-and-bound). MIP solvers employ a multitude of further techniques such
as symmetry detection, disjoint subtree detection, restarts, et cetera. For a comprehensive
description of MIP solving we refer the reader to, e.g., [2].

The use of SAT techniques in MIP solvers has been a fruitful direction of research over
the last decades. Specifically, CDCL conflict analysis has proven to be a useful tool to
enhance the performance of MIP solvers by learning constraints from infeasibilities detected
by propagation or from the LP relaxation [1, 44, 48]. However, SAT and MIP solvers differ
fundamentally in how they explore the search space, in that SAT solvers search depth-first,
maintaining only the current state of the search, whereas in MIP the search tree is generated
in a “best-first” manner based on careful analysis on search statistics such as dual bounds
and integrality of LP solutions to subproblems. These differences make it harder for MIP
solvers to profit from conflict analysis, and so in contrast to SAT solving, for which this
technique is absolutely crucial, in MIP solving it plays more of a supplemental if still highly
valuable role.

Although the setting is different, the graph-based conflict analysis [1] used to learn from
infeasibilities in MIP is very similar to the classic SAT approach. First, a partial assignment
is extracted that consists of branching decisions and implications that led to the infeasibility.
If the LP relaxation is infeasible, the information which bound changes led to infeasibility is
gathered from the non-zero duals of the LP. Next, a directed acyclic graph is constructed
that encodes information about the conflict, in that source nodes correspond to branching
decisions, non-source nodes encode implications, and the sink node represents the infeasibility.
Each cut in this graph that separates the source nodes from the sink is a valid constraint. It is
important to note that all implications correspond to clausal constraints, and so this conflict
analysis operates not on the linear constraints of the problem but on clauses extracted from
these linear constraints. (There are also methods that can learn general linear constraints
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from infeasibilities, one notable example being dual-proof analysis [48], but this technique is
limited to conflicts arising from infeasibility of the LP relaxation and does not analyze or
strengthen the partial assignment that led to infeasibility.)

1.2 Pseudo-Boolean Solving and Conflict Analysis
Pseudo-Boolean (PB) solving is another approach specific to integer linear programs with
only binary variables, or 0–1 ILPs, which are referred to as (linear) pseudo-Boolean formulas
in the PB solving literature. While MIP solvers find real-valued solutions and try to push such
solutions closer and closer to integrality, PB solvers follow the SAT approach of considering
only Boolean assignments and trying to extend partial assignments to more and more
variables without violating any constraints. Just as in SAT, this search is performed in a
depth-first manner.

Some PB solvers stick very closely to SAT in that they immediately translate the 0–1 ILP
into conjunctive normal form (CNF) using auxiliary variables and then run a standard CDCL
SAT solver [21, 39, 43]. Another approach, which is what is of interest in the context of this
work, is to extend the solvers to reason natively with 0-1 linear inequalities [12, 46, 34, 23].
Such conflict-driven pseudo-Boolean solvers have the potential to run exponentially faster
than CDCL-based solvers, since their conflict analysis method is exponentially stronger than
that used in CDCL SAT solvers.

Since it is crucial for our work to understand the differences between conflict analysis in
MIP and PB solvers, let us try to provide a somewhat simplified exposition of PB solving
in a language that is meant to convey a MIP perspective (and where what follows below is
heavily indebted to [19]). During the search phase, the pseudo-Boolean solver always first
tries to extend the current partial solution with any variable assignments that are propagated
by some linear inequality. When no further propagations are possible, the solver chooses
some unassigned variable and makes a decision to assign this variable 0 or 1, after which it
again turns to propagation. This cycle of decisions and propagations repeats until either a
satisfying assignment is found or some 0–1 linear inequality C is violated. In the latter case,
the solver switches to the conflict analysis phase, which works as follows:
1. The linear inequality R responsible for propagating the last variable x in C to the “wrong

value” from the point of view of C is identified; this inequality R is referred to as the
reason constraint for x.

2. A division or saturation rule is applied to R to generate a modified inequality R∗ that
propagates x tightly to its assigned value even when considered over the reals.

3. A new linear constraint D is computed as the smallest integer linear combination of R∗

and C for which the variable x cancels and is eliminated. It is not too hard to show that
it follows from the description above that this constraint D is violated by the current
partial assignment of the solver with the value of x removed, and we can set C := D and
go to step 1 again.

This continues until a termination criterion analogous to the unique implication point (UIP)
notion used in SAT solving leads to D being declared as the learned constraint. At this
point, the solver undoes further assignments in reverse chronological order until D is no
longer violated, and then switches back to the search phase. We refer the reader to the
chapter [11] for a more detailed description of conflict-driven pseudo-Boolean solving (and to
the handbook [8] for an in-depth treatment of SAT and related topics in general).

In contrast to MIP conflict analysis, the algorithm described above is not phrased in
terms of the conflict graph, but focuses on the syntactic resolution method [9, 17, 16, 42]
employed in CDCL conflict analysis and harnesses the observation by Hooker [29, 30] that
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resolution can be understood as a cut rule and extended to 0–1 integer linear inequalities.
The conflict-graph-based analysis in MIP does not operate on the reason constraints R as
described above, but instead on disjunctive clauses extracted from these constraints. It is
not hard to prove formally (appealing to [4, 14, 28]) that this incurs an exponential loss in
reasoning power compared to performing derivations on the linear constraints themselves.

In practice, however, it seems fair to say that current pseudo-Boolean solvers do not
quite deliver on this promise of exponential gains in performance. Although there are
specific problem domains where PB solvers outperform even commercial MIP solvers [35, 45],
evaluations over larger sets of benchmarks [5, 19, 20] have demonstrated that the open-source
MIP solver SCIP [7] tends to be clearly more effective in solving pseudo-Boolean optimization
problems, and is also quite competitive for decision problems. This is especially so for some
decision problems that are in some sense close to LP-infeasibility – such problems are almost
trivial for MIP solvers, but can be extremely challenging for pseudo-Boolean solvers [22].

1.3 Questions Studied in This Work and Our Contributions
Since mixed integer programming solvers and pseudo-Boolean solvers approach 0–1 integer
linear problems from quite different angles, and seem to have complementary performance
profiles, it is natural to ask whether techniques from one of the paradigms can be used to
improve solvers based on the other paradigm.

Some MIP-inspired approaches have been integrated with success in SAT and PB solvers,
perhaps most recently in [19], where the PB solver RoundingSAT [23] makes careful use
of the LP solver SoPlex [7] to detect infeasibility of LP relaxations and generate cut
constraints (though this paper also raises many questions that would seem to merit further
study). However, in the other direction we are not aware of any work trying to harness
state-of-the-art techniques from pseudo-Boolean solving to improve the performance of MIP
solvers.

In this work, we consider how the clausal conflict analysis in MIP solvers can be replaced
by pseudo-Boolean reasoning, focusing on 0–1 integer linear programs. A key difference
between the clausal and pseudo-Boolean conflict analysis methods is that in the latter
algorithm the linear reason constraint R propagating a variable assignment might need
to be modified, or reduced, to another constraint R∗ that propagates tightly also over the
reals (which is already guaranteed to hold if R is a clausal constraint). Viewed from a MIP
perspective, this reduction step deriving R∗ from R can be seen to be an application of one of
two specific cut rules, where saturation-based reduction as in [34] corresponds to coefficient
tightening and division-based reduction as in [23] uses Chvátal-Gomory cuts.

This observation raises the question of whether more general cuts could also used to
obtain other, and potentially more powerful, reduction methods for pseudo-Boolean conflict
analysis. The answer turns out to be yes, and, in particular, we introduce a new reduction
algorithm utilizing mixed integer rounding (MIR) cuts [27, 37]. A theoretical comparison of
the MIR-based reduction rule with the reduction methods currently used in PB solvers show
that MIR-based reduction dominates the division-based method that is considered to be
state of the art in pseudo-Boolean solving, while saturation-based reduction and MIR-based
reduction appear to be incomparable.

We implement pseudo-Boolean conflict analysis for 0–1 ILPs in the MIP solver SCIP,
including all three reduction methods discussed above, and compare these different flavours
of PB conflict analysis with each other as well as with clausal MIP conflict analysis on a large
benchmark set consisting of pure 0–1 ILP instances from MIPLIB 2017. We find that the
MIR-based pseudo-Boolean conflict analysis has the best performance, beating not only the
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conflict analysis methods in the PB literature but also the standard clausal conflict analysis
in SCIP. Interestingly, the new method is better measured not only in terms of number of
nodes in the search tree, but also in terms of the number of instances solved, even though
we only provide a proof-of-concept implementation lacking many of the optimizations that
would be included in a full integration of this method into the SCIP codebase. Although
our experimental data cannot provide conclusive evidence as to what causes this improved
performance, we observe that the constraints learned from pseudo-Boolean conflict analysis
seem more useful in that they take part more actively in propagations than constraints
obtained by clausal conflict analysis.

1.4 Organization of This Paper
After reviewing preliminaries in Section 2, we give a detailed description of clausal and
pseudo-Boolean conflict analysis for 0–1 integer linear programs in Section 3, including a
discussion of the reduction methods found in the PB literature and our new version using
mixed integer rounding cuts, and study how the different reduction rules compare in theory.
In Section 4 we present our experimental results. We conclude the paper in Section 5 by
summarizing our work and discussing direction for future research.

2 Preliminaries and Notation

Let n ∈ Z>0, and N := [1, . . . , n]. We let xi denote Boolean (i.e., {0, 1}-valued) variables
and ℓi denote literals, which can be either xi or its negation xi = 1− xi. A pseudo-Boolean
constraint is a 0–1 integer linear inequality∑

i∈N
aiℓi ≥ b , (1)

where we can assume without loss of generality that ai ∈ Z≥0 for all i ∈ N and b ∈
Z≥0 (so-called normalized form). We can convert “≤”-constraints with 0–1 variables to
“≥”-constraints by multiplying the constraint by −1 and normalizing, i.e., replacing the
variables by literals. Moreover, equalities “=” can be viewed as syntactic sugar for two
opposing inequalities, which can also be transformed into normalized pseudo-Boolean format.
In particular, every pure 0–1 integer linear program can be transformed to a normalized
pseudo-Boolean representation. Note that in Section 3 we develop our theory and algorithms
using normalized PB constraints for simplicity of exposition. However, in our actual imple-
mentation and experiments (described in Section 4), we directly operate on general linear
constraints.

A (partial) assignment ρ is a (partial) map from variables to {0, 1}, which is extended
to literals by respecting the meaning of negation. We call a literal ℓi falsified or false if
ρ(ℓi) = 0 and satisfied or true if ρ(ℓi) = 1. If ρ is undefined for a literal, we call the literal
unassigned or free. A constraint is satisfied under some partial assignment ρ if the respective
inequality holds, independently of which values the unassigned literals take, and is falsified if
no assignment to the unassigned literals can make the inequality true.

The slack of a PB constraint C :
∑

i∈N aiℓi ≥ b under a partial assignment ρ is defined
as slack(C, ρ) :=

∑
{i∈N :ρ(i)̸=0} ai − b. With this definition, C is falsified under ρ if and only

if slack(C, ρ) < 0. For example the constraint C : 2x1 + 2x2 + 3x3 ≥ 4 is falsified under
the partial assignment ρ = {x1 = 1, x2 = 0} since slack(C, ρ) = −1 < 0. For a non-falsified
constraint C and an unassigned literal ℓi with coefficient ai, the constraint propagates ℓi

if and only if slack(C, ρ) < ai. For instance, the same constraint C : 2x1 + 2x2 + 3x3 ≥ 4
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propagates both variables x2 and x3 to 1 under the partial assignment ρ = {x1 = 1} since
slack(C, ρ) = 1 is strictly smaller than the coefficients of each of the variables. A constraint
propagates the assignment of a free variable tightly if the slack under the current partial
assignment is 0. For any two pseudo-Boolean constraints C and C ′ and partial assignment ρ

it holds that the slack is subadditive, i.e., slack(C + C ′, ρ) ≤ slack(C, ρ) + slack(C ′, ρ). The
decision level of a literal ℓi under a partial assignment ρ is the number of decisions prior to
the fixing of ℓi. Note that the first fixing in every decision level is a decision literal.

3 Conflict Analysis Algorithms

For simplicity, in this section we present all algorithms in a pseudo-Boolean framework, where
all coefficients and constants are integral, and the proofs of correctness that we provide also
make crucial use of this fact. It is important to note that this is not the case in the actual
implementation in SCIP, which operates with real-valued coefficients and constants. In fact,
one of the challenges in implementing pseudo-Boolean conflict analysis in a MIP framework is
that careful thought is required to rephrase the algorithms in such a way that they can deal
with real-valued data but are still correct. Next, we describe the details of conflict analysis
algorithms used in PB solvers and the different techniques that we consider in this paper.

3.1 Clausal Conflict Analysis
To explain the idea of conflict analysis, we first consider the case where all constraints are
clauses. Conflict analysis begins at the stage where a conflict clause Cconfl is falsified by
the current partial assignment ρ. Let ℓr be the literal in Cconfl that was last propagated to
false, and let Creason be the reason clause in chronological order that is responsible for the
propagation, i.e., we have Cconfl = C ′ ∨ ℓr and Creason = C ′′ ∨ ℓ̄r. Using the resolution rule,
we can derive the so-called resolvent C ′ ∨ C ′′ as a new learned clause Clearn.

Note that, even after removing ℓr from the partial assignment ρ, both C ′ and C ′′ remain
falsified: C ′ because Cconfl = C ′ ∨ ℓr and ℓr were false, and C ′′ because Creason = C ′′ ∨ ℓ̄r

propagated. This is the key invariant of the algorithm: At any point during the algorithm
the resolvent is falsified by the remaining partial assignment ρ.

Hence, we can replace the conflict clause by the resolvent and continue this process. At
each step either a propagating literal is removed from ρ or the learned clause is empty (at
which point unsatisfiability is proven) or the last fixed literal is a decision literal. In the third
case, we have reached a first unique implication point (FUIP) and conflict analysis terminates,
with the final resolvent being the learned clause Clearn. With Clearn added, propagation on
the previous decision level will prevent the last infeasible decisions to happen as the search
continues.

It is straightforward to apply this algorithm to problems with 0–1 linear constraints. Sup-
pose

∑
i∈N aiℓi ≥ b is the initial conflict constraint falsified under ρ, then

∨
i:ai>0∧ρ(ℓi)=0 ℓj

can be used as initial conflict clause. Analogously, we can extract at each step a reason clause
from the linear constraint that propagated the last literal and perform resolution. After
terminating at an FUIP, the learned clause can be added as linear constraint to the solver.

3.2 PB Conflict Analysis
As in the clausal version, the main idea of PB conflict analysis is also to find a new constraint
that explains the infeasibility of the current subproblem under a falsifying partial assignment.
Algorithm 1 shows the base algorithm for all variants of PB conflict analysis considered in this



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:7

paper, using the first unique implication point (FUIP) learning scheme. It is initialized with
a falsifying partial assignment ρ and a conflicting constraint Cconfl under ρ. First, the learned
conflict constraint Clearn is set equal to the conflict constraint Cconfl. In each iteration, we
extract the latest literal ℓr from ρ. If the literal assignment was due to propagation of a
constraint and the negated literal ℓ̄r occurs in Cconfl, then we extract the reason constraint
Creason that propagated ℓr. In line 6 we “reduce” the reason constraint such that the resolvent
of Clearn and the reduced reason Creason (Line 7) that cancel the last literal ℓr is still falsified
under the remaining partial assignment ρ. The conflict constraint is set to the resolvent
and we continue until we reach an FUIP (Clearn is asserting) or we prove Clearn makes the
problem infeasible. We have reached an FUIP if Clearn would propagate some literal after
removing at least all literal assignments in the current decision level from ρ. We have shown
that the problem is infeasible if Clearn is falsified under an empty partial assignment ρ. At
this point, the learned constraint can be added to the constraint database of our problem to
prevent the solver from exploring the same search space again.

Algorithm 1 Pseudo-Boolean Conflict Analysis Algorithm.

Input : conflict constraint Cconfl, falsifying partial assignment ρ

Output : learned conflict constraint Clearn
1 Clearn ← Cconfl
2 while Clearn not asserting and Clearn ̸=⊥ do
3 ℓr ← literal last assigned on ρ

4 if ℓr propagated and ℓ̄r occurs in Clearn then
5 Creason ← reason(ℓr, ρ)
6 Creason ← reduce(Creason, Clearn, ℓr, ρ)
7 Clearn ← resolve(Clearn, Creason, ℓr)
8 ρ← ρ \ {ℓr}
9 return Clearn

The key invariant of Algorithm 1 is that in each iteration the resolvent Clearn remains
falsified. In the clausal version this holds even without the reduction step in line 6. However,
for general linear constraints this is not the case, as shown by the next example.

▶ Example 1. Consider the two PB constraints Creason = x1 + x2 + 2x3 ≥ 2 and Cconfl =
x1 + 2x3 + x4 + x5 ≥ 3 and the partial assignment ρ = {x1 = 0, x3 = 1} where x1 = 0 is
a decision, and x3 = 1 is propagated by Creason. Under ρ the constraint Cconfl is falsified.
Applying generalized resolution to cancel x3 yields the constraint 2x1 + x2 + x4 + x5 ≥ 3
which is not falsified under ρ.

In the following sections, we present three different reduction techniques for Algorithm 1
that operate directly on PB constraints. The main idea is to apply valid operations on the
reason constraint to reduce the slack and ensure that the resolvent will have negative slack.
The two main ingredients of the reduction techniques are weakening and cutting planes and
are applied to the reason constraint until the invariant is fulfilled.

Weakening a literal in a PB constraint simply sets it to 1. For example, weakening a
constraint C : x1 + x2 + 2x3 ≥ 2 on x1 yields x2 + 2x3 ≥ 1. Weakening is a valid operation
since it simply adds a multiple of the valid bound constraint x1 ≥ 0 to C. Note that
weakening entails a loss of information. However, as we will see, it is a necessary operation
to reduce the slack of the reason constraint. Note that whenever weakening is applied on
non-falsified literal, it does not change the slack of the constraint. See Section 3.7 for more
details on weakening.
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Our main focus in this paper, however, is the second necessary ingredient of the reduction
algorithm: cutting planes (cuts). Cuts are applied to the “weakened” version of the reason
constraint in order to reduce its slack. We first present two well-documented cuts from
existing literature, namely Saturation (Section 3.3) and Division (Section 3.4). Both ensure
the reduction of the slack of the reason constraint to 0 at least after weakening all non-falsified
literals in the original reason constraint. In Section 3.5, we introduce a new cut based on
the Mixed Integer Rounding (MIR) procedure and prove that it has the same property. In
Section 3.6 we show that the reduction algorithm using MIR always returns an equally strong
or stronger reason constraint than the reduction using Division.

3.3 Saturation-based Reduction

First, we present the Saturation cut. Then, we provide details about the Saturation-based
Reduction algorithm and demonstrate how the reduction ensures that the key invariant of
conflict analysis holds.

▶ Definition 2 (Saturation Cut). Let C :
∑

i∈N aiℓi ≥ b. The Saturation Cut of C is given
by the constraint∑

i∈N
min{ai, b}ℓi ≥ b.

Saturation is a valid cut known as coefficient tightening cut in the MIP literature [10] and
does not entail a loss of information. Algorithm 2 is used to reduce the reason constraint
Creason before applying generalized resolution. Similar to the implementation in [12], in each
iteration, the algorithm picks a non-falsified literal in the reason constraint different from the
literal we are resolving on and weakens it. Then it applies the Saturation cut to the resulting
constraint. The algorithm terminates when the slack of the resolvent becomes negative.

Algorithm 2 Saturation-based Reduction Algorithm.

Input : conflict constraint Cconfl, reason constraint Creason,
literal to resolve ℓr, partial assignment ρ

Output : reduced reason Creason
1 while slack((resolve(Creason, Cconfl, ℓr)), ρ) ≥ 0 do
2 ℓj ← non falsified literal in Creason\{ℓr}
3 Creason ← weaken(Creason, ℓj)
4 Creason ← saturate(Creason)
5 return Creason

For completeness, we prove the following well-known fact that demonstrates that the
slack of the reason constraint will be reduced to 0 at the latest after weakening the last
non-falsified literal and applying the Saturation cut. Since the slack is subadditive, the
resolvent’s slack becomes negative and the resolvent is thus falsified.

▶ Lemma 3. Let ρ be a partial assignment, and Creason :
∑

i∈N aiℓi ≥ b a constraint
propagating a literal ℓr to 1. Further, assume that slack(Creason, ρ) > 0. Then, after
weakening all non-falsified literals in Creason (except for ℓr) and applying Saturation on
Creason, the slack of the reduced reason constraint is 0.
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Proof. First, we rewrite the constraint Creason as∑
j:ρ(j)=0

ajℓj +
∑

i̸=r:ρ(i)̸=0

aiℓi + arℓr ≥ b.

Since slack(Creason, ρ) :=
∑

i̸=r:ρ(i) ̸=0
ai + ar − b > 0, it holds that

ar > b−
∑

i̸=r:ρ(i)̸=0

ai. (2)

After weakening all literals from {i ̸= r : ρ(i) ̸= 0} the constraint Creason becomes∑
j:ρ(j)=0

ajℓj + arℓr ≥ b̃ := b−
∑

i̸=r:ρ(i)̸=0

ai. (3)

Applying Saturation on (3) sets ar to b̃ because of (2). Therefore the slack of the reduced
reason constraint becomes b̃− b̃ = 0. ◀

3.4 Division-based Reduction
A very competitive alternative to Saturation in the reduction algorithm is based on Division
cuts. Division is also a valid cut known as Chvátal-Gomory cut in the MIP literature [13].

▶ Definition 4 (Division Cut). Let C :
∑

i∈N aiℓi ≥ b. The Division Cut of C with divisor
d ∈ Z>0 is given by the constraint∑

i∈N

⌈ai

d

⌉
ℓi ≥

⌈
b

d

⌉
.

To see why this procedure is valid, we can think of it as three steps: dividing by d maintains
the validity of the constraint; rounding up coefficients on the left-hand side relaxes the
constraint and is hence valid; the validity of rounding up the right-hand side follows from
the integrality of the left-hand side coefficients and literals.

In the Division-based reduction algorithm, the divisor d used is the coefficient of the
literal ℓr we are resolving on. As proven in [23], it suffices to weaken non-falsified variables
with a coefficient that is not a multiple of ar, i.e., from the index set W := {i ∈ N : ρ(i) ̸=
0 and ai ∤ ar}. After weakening all literals in W and applying Division on Creason, the slack
of the reduced reason constraint is 0, which for completeness we include in Lemma 6 below.

3.5 MIR-based Reduction
Next, we define a new cut for the reduction algorithm based on the Mixed Integer Rounding
formula [37], which is a generalization of Gomory’s mixed integer cuts [27].

▶ Definition 5 (Mixed Integer Rounding Cut). Let C :
∑

i∈N aiℓi ≥ b. The Mixed Integer
Rounding (MIR) Cut of C with divisor d ∈ Z>0 is given by the constraint∑

i∈I1

⌈ai

d

⌉
ℓi +

∑
i∈I2

(⌊ai

d

⌋
+ f(ai/d)

f(b/d)

)
ℓi ≥

⌈
b

d

⌉
, (4)

where

I1 = {i ∈ N : f(ai/d) ≥ f(b/d) or f(ai/d) ∈ Z},
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I2 = {i′ ∈ N : f(ai′/d) < f(b/d) and f(ai′/d) /∈ Z},

and f(·) = · − ⌊·⌋. To obtain a normalized version of the MIR cut, we multiply both sides of
the constraint by (b mod d).

The proof that applying MIR to a constraint is a valid procedure can be found in [37]. Similar
to the Division-based reduction, it suffices to weaken non-falsified variables with a coefficient
that is not a multiple of ar before applying MIR in order to reduce the slack of the reason
constraint to at most 0. This is shown in the following lemma.

▶ Lemma 6. Let ρ be a partial assignment and Creason :
∑

i∈N aiℓi ≥ b a constraint
propagating a literal ℓr to 1. Then, after weakening all non-falsified literal in W := {i ∈ N :
ρ(i) ̸= 0 and ar ∤ ai} and applying Division or MIR on Creason with d = ar, the slack of the
reduced reason is at most 0.

Proof. After weakening all literals in W , the constraint Creason becomes

arℓr +
∑

j∈N \W

ajℓj ≥ b̃ := b−
∑
i∈W

ai. (5)

Its slack is

slack(Creason, ρ) = ar +
∑

j∈N \W :
ρ(j)̸=0

aj − b̃ = ar +
∑

j∈N :
ρ(j) ̸=0,ar|aj

aj − b̃.

Since weakening does not affect the slack, we have slack(Creason, ρ) < ar.
1. After applying the Division cut to (5) with d = ar, the slack becomes

slack(Creason, ρ) = 1 +
∑

j∈N :
ρ(j) ̸=0,ar|aj

⌈
aj

ar

⌉
−
⌈

b̃

ar

⌉
≤ 1 +

∑
j∈N :

ρ(j) ̸=0,ar|aj

aj

ar
− b̃

ar
<

ar

ar
= 1. (6)

Because Creason contains only integer coefficients after applying the division rule, its slack is
integer; hence, it must be at most 0.

2. Applying the MIR cut to (5) with d = ar results in the same slack as in (6). This is
because all left-hand side coefficients in the slack computation are divisible by d, hence they
fall into the index set I1 and are transformed the same way as by the Division cut. ◀

3.6 Dominance Relationships
In this section, we would like to discuss briefly known dominance relationships between the
different reduction techniques. The ultimate goal is to find a reduction technique that yields
the strongest possible reason constraint to use in the resolution step of conflict analysis. The
following lemma states the well-known fact that constraints from Saturation-based reduction
are always at least as strong as the resolvents created during clausal conflict analysis as
described in Section 3.1.

▶ Lemma 7. Let ρ be a partial assignment and Creason :
∑

i∈N aiℓi ≥ b be a PB constraint
which propagates literal ℓr to 1. Let C ′

reason and C ′′
reason be the constraints obtained by clausal

and Saturation-based reduction, respectively. Then C ′′
reason implies C ′

reason.

Proof. Under the current partial assignment ρ, the disjunctive clause reason is given by
ℓr

∨
j:ρ(ℓj)=0 ℓj , which can be linearized as

C ′
reason : ℓr +

∑
j : ρ(ℓj)=0

ℓj ≥ 1.



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:11

Now let W be the set of all non-falsified literals, except ℓr. After weakening all literals in W

and applying Saturation, we obtain the constraint

C ′′
reason : min{ar, b−

∑
i∈W

ai}ℓr +
∑

j:ρ(lj)=0

min{aj , b−
∑
i∈W

ai}ℓj ≥ b−
∑
i∈W

ai.

As in the proof of Lemma 3, it holds that min{ar, b−
∑

i∈W ai} = b−
∑

i∈W ai. Now, after
scaling C ′

reason by b−
∑

i∈W ai we see that C ′′
reason has the same right-hand side as C ′

reason,
but smaller or equal coefficients on the left-hand side. ◀

In [26] the authors show that using Division instead of Saturation can be exponentially
stronger, and that a single Saturation step can be simulated by an exponential number of
Division steps.

The dominance of MIR cuts over Chvátal-Gomory cuts is a well-known fact in the MIP
literature. The following lemma shows essentially the same result as in [15], but in the
context of conflict analysis for pseudo-Boolean problems.

▶ Lemma 8. Let ρ, Creason, ℓr be given as in Lemma 7. Let C ′
reason and C ′′

reason be the
constraints obtained by Division-based and MIR-based reduction, respectively. Then C ′′

reason
implies C ′

reason.

Proof. Let C ′
reason, C ′′

reason be constraints as in Definition 4 and 5, respectively, with divisor
d = ar. The constraints have the same right-hand side and the same coefficients for all
literals ℓi with i ∈ I1. For i ∈ I2 the coefficient of literal ℓi in C ′

reason is given by
⌈

ai

ar

⌉
and

in C ′′
reason by

⌊
ai

ar

⌋
+ f(ai/ar)

f(b/ar) . The coefficients of the literals ℓi in C ′
reason are always greater

than or equal to the coefficients in C ′′
reason, since by definition of the set I2 it holds that

f(ai/ar)/f(b/ar) < 1. Therefore C ′′
reason implies C ′

reason. ◀

As an example, consider the partial assignment ρ = {x1 = 0, x2 = 0, x3 = 1} and the
constraint Creason : 2x1 + 6x2 + 10x3 ≥ 8 which propagates variable x3 to 1. Then the
Division cut with divisor 10 is x1 + x2 + x3 ≥ 1. The MIR cut with the same divisior is
0.2
0.8 x1 + 0.6

0.8 x2 + x3 ≥ 1. Multiplying with 8 mod 10 = 8 gives the normalized MIR cut
2x1 + 6x2 + 8x3 ≥ 8. The normalized MIR cut is stronger than the Division cut, which can
be easily seen after scaling the Division cut by 8.

3.7 Practical Aspects of Weakening
While the evaluation of different weakening strategies is not the focus of this paper, we would
like to discuss briefly some practical aspects of weakening literals. In our implementation
we consider the following iterative weakening strategy: weaken free literals first followed by
implied literals. We stop as soon as the resolvent is falsified under the remaining partial
assignment. Intuitively, this order is motivated by the fact that free literals are not relevant
for the propagation of literals in the reason constraint and do not affect the falsification of
the conflict constraint.

However, the optimal order in which to weaken literals is not yet fully understood, and
remains an open research question. Possible approaches include weakening literals in order
of increasing or decreasing coefficient size. In [33] the authors conducted experiments with
various weakening techniques, including partial weakening of literals and applying weakening
on the conflict constraint, but the results did not yield a conclusive “best” weakening strategy.

A simple alternative is to weaken literals in a single sweep. For all three reduction
algorithms, we can weaken the entire candidate set of literals as stated in Lemma 3 and
Lemma 6 at once. Weakening literals all at once leads to a faster reduction algorithm
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since repeated slack computations are avoided and only one cut is applied in each iteration.
However, this may result in the constraint being less informative due to unnecessary weakening
of literals.

4 Experiments

It is well known in the SAT and PB communities that efficient conflict-driven search requires
substantial amounts of very careful engineering. In this first work, our focus has been on
importing and adapting the pseudo-Boolean conflict analysis to a MIP setting – which is a
nontrivial task in its own right – leaving further optimizations as future work.

All techniques from Section 3 have been implemented in the open source MIP solver
SCIP 8.0.3 [7] and we conducted extensive experiments to compare the different reduction
techniques in isolation. Obtaining accurate performance results for MIP solvers requires a
carefully designed experimental setup since even small changes to algorithms or the input
data can have a large impact on the behavior and the performance of the solver. This is
a well-known fact in the MIP literature known as performance variability [36]. To lessen
the effects of performance variability and obtain a fair comparison of the different reduction
techniques in the context of MIP solving, we use a fairly large and diverse testset of instances
and different permutations of each instance, see, e.g., [25]. Our experiments were carried out
on all pure 0–1 models from the MIPLIB 2017 collection [25]. After removing numerically
unstable models (with the tag “numerics”) our testset consists of 195 instances permuted by
5 different random seeds, giving a total of 975 measurements per run. For the remainder of
this paper, we will refer to the combination of a model and a permutation as an instance.
All experiments are conducted on a cluster with Intel Xeon Gold 6338 CPUs with a limit of
16GB of RAM.

It’s worth noting that SCIP, along with its underlying LP solver, is based on floating-point
arithmetic. Implementing a Pseudo-Boolean Optimization solver using a limited-precision LP-
based branch-and-cut framework comes with some technical challenges which are discussed,
e.g., in [5, 6]. From a theoretical standpoint, switching between reals and integers (rather
than between limited and arbitrary precision) is straightforward:

All the algorithms presented in Section 3 can be naturally extended to the case of 0–1
constraints with coefficients that are real numbers instead of nonnegative integers. The
Chvátal-Gomory procedure, MIR cutting, and coefficient tightening algorithm were originally
designed for MIP with real coefficients.

However, in practice, floating-point arithmetic may cause numerical issues due to imprecise
representations of real numbers and cancellation effects. To mitigate the risk of numeric
instability, many components of SCIP, such as MIR-cut generation, utilize double-double
precision arithmetic [18], which could be also employed in conflict analysis. Currently, for
constraints generated in conflict analysis, we use the following standard techniques:

We terminate conflict analysis if the coefficients of the constraints span too many orders
of magnitude. Specifically, if the quotient of the largest to smallest coefficient is large (in
our implementation, 106), we stop conflict analysis.

We remove variables from the conflict constraint if their coefficients are too small (in our
implementation, 10−9), thereby relaxing the constraint slightly.

The latter threshold is a common default value for the zero tolerance in MIP solvers, and
the former is a common modeling recommendation for MIP.
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Table 1 Average percentage of true or unassigned literals that should be weakened to preserve
the conflict analysis invariant. This experiment is conducted on the test set with 3 random seeds.

Setting avg(%) literals weakened

Division 98.0
Saturation 99.7
MIR 97.3

4.1 Pre-Experiment: Weaken-All-At-Once vs. Weaken-Iteratively
As noted earlier, the weakening rule can be applied iteratively or in a single sweep. In
preliminary experiments, we noticed that in almost all cases, most unassigned or true literals
must be weakened to achieve the conflict analysis invariant that the resolved constraint
has a negative slack. Table 1 summarizes this finding for different reduction techniques:
Over all instances and all conflict analysis calls, an average between 97.3% (MIR) and
99.7% (Saturation) of all literals had to be weakened. Furthermore, for most instances both
weakening variants did not lead to different execution paths.

In this case, weakening all literals at once avoids the overhead of iterative use of cuts
and expensive slack computations. Consequently, we decided to always weaken all literals
at once and apply the cut rule on the reason side only once for the remaining experiments
presented in this paper.

4.2 Main Experiments: Comparing Different Reasoning Techniques
In the following, we compare all different reduction techniques from Section 3 to SCIP
without any conflict analysis.

In our comparisons, we report for each technique the number of optimally solved instances,
as well as the shifted geometric means of the number of processed nodes and the CPU time
in seconds. The shifted geometric mean, a standard performance aggregator in the MIP
literature, of the values t1, . . . , tn is defined as(

n∏
i=1

(ti + s)
)1/n

− s, (7)

for some s > 0. We set the shift s to 1 second for the CPU time and to 100 nodes for the
number of nodes. Our base of comparison is SCIP without conflict analysis (“No Conflicts”).
We report absolute values for the shifted means, and also quotients comparing them to our
base setting. A factor below 1 means that a setting was faster (or needed less nodes), and a
factor greater than 1 means that it was detrimental.

In Table 2 we report the results of our experiments. The table is split in four parts. We
show results for “all” instances, as well as for three subsets of instances: (i) instances that
are “affected” by conflict analysis, hence where the execution path of at least one setting
differs from the others, (ii) “ [100, limit] ” instances, which take at least 100 seconds to solve
to optimality or hit the time limit and (iii) “all-optimal”, which are instances solved by all
settings. Note that the number of nodes can only be fairly compared on the “all-optimal”
subset, since the number of nodes when hitting a time limit is hard to interpret and hard to
aggregate with the same statistics on instances that are solved to optimality.

The variant of SCIP with clausal conflict analysis is referred to as “Clausal-CA”. For
a fair comparison of the different strategies, we disabled the upgrading of constraints to
specialized types, i.e., all generated conflicts are treated as linear constraints, and further
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Table 2 Main results.

Setting solved time(s) # nodes time quot nodes quot

all(975) No Conflicts 394 656.75 784 1.0 1.0
Clausal-CA 405 603.55 682 0.92 0.87
Division 419 601.4 683 0.92 0.87
MIR 420 599.37 677 0.91 0.86
Saturation 418 599.76 692 0.91 0.88

affected(295) No Conflicts 259 160.46 1096 1.0 1.0
Clausal-CA 270 122.64 776 0.76 0.71
Division 284 119.24 707 0.74 0.65
MIR 285 118.29 700 0.74 0.64
Saturation 283 118.09 735 0.74 0.67

[100, limit](218) No Conflicts 182 667.14 2056 1.0 1.0
Clausal-CA 193 486.45 1466 0.73 0.71
Division 207 486.23 1345 0.73 0.65
MIR 208 485.26 1336 0.73 0.65
Saturation 206 491.98 1428 0.74 0.69

all-optimal(374) No Conflicts 374 46.16 320 1.0 1.0
Clausal-CA 374 40.58 259 0.88 0.81
Division 374 40.75 244 0.88 0.77
MIR 374 40.40 241 0.88 0.75
Saturation 374 40.24 246 0.87 0.77

only generated one conflict per call. Conversely, we accept PB reasoning conflicts only if the
number of nonzeros is less than 15% of the original problem variables, as in the default clausal
implementation in SCIP. Our preliminary experiments confirmed that in our implementation,
it is indeed detrimental to accept too-long conflicts. We did, however, add a fallback strategy,
of applying weakening on the conflict constraint if the constraints are too long. This happens
for about 9% of the instances.

We observe that all conflict analysis variants solved more instances than SCIP without
conflict analysis, needed significantly less nodes on the all-optimal set, and less time on all
four instance sets. Note that on average, the time spent in conflict analysis is only about
0.1% of the total run time. The three PB conflict analysis variants could solve more instances
than the clausal variant, and needed significantly less nodes. The difference in time was less
pronounced.

The performance of the PB conflict analysis variants is quite similar in all three cases.
Nevertheless, MIR-based reduction could solve the most instances and needed the least nodes
on the all-optimal set. When looking at the seemingly identical time-wise performance in
more detail, it turns out that MIR also slightly improves on the other settings in this measure.
There are 104 instances for which the path differs between Saturation-based resolution and
MIR-based resolution and MIR was on average 1.1% faster on those. There are 86 instances
for which the path differs between Division-based resolution and MIR-based resolution and
MIR was on average 3.6% faster on those. Consequently, we decided to concentrate on
MIR-based resolution for our next statistic.

Ultimately, the purpose of conflict constraints is to restrict the future search space by
propagating literal assignments and pruning the search tree. Hence we analyzed how many
conflicts each of the methods generates in shifted geometric mean, how large these conflicts
are on average, and how many of them lead to propagations down the road. Table 3 shows
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Table 3 Shifted geometric mean of number of conflicts, average percentage of conflict constraints
that propagate at least once and average length of learned conflicts.

Setting mean # conflicts avg % prop. conflicts avg # literals

Clausal-CA 290.77 34.54 82.45
MIR 169.61 58.54 80.20

the results on the set of all instances that have a search tree of at least 100 nodes (to get a
decent chance of conflict generation and propagation) and for which at least one conflict was
generated with one of the methods. We consider only instances where the two settings have
the same execution path. We observe that our MIR-based conflict analysis generated about
a third less conflicts, but at the same time, they are much more likely to propagate: for the
classic clausal conflict analysis of SCIP, about a third of the generated conflicts are used for
propagation later on, while for our MIR-based variant, slightly more than half (58.54%) of
all conflicts propagate at least once. At the same time, MIR-based conflicts are about the
same size as clausal conflicts.

At first glance, this might appear as a contradiction, given that, as a rule of thumb,
shorter conflicts tend to propagate more often and one might expect similar-sized conflicts
to be similarly likely to propagate. Note, however, that the conflicts are of a quite different
nature in the two cases. On the one hand, clausal conflicts are always logic clauses that only
propagate when all but one literal are assigned. On the other hand, MIR-based conflicts are
general pseudo-Boolean constraints, which might propagate some assignments (of literals
with large coefficients) even when a majority of literals are still unassigned. This goes nicely
together with the above observation that the reduction in the number of nodes is more
pronounced than the reduction in runtime. As a final remark, integrating PB conflict analysis
in a production-grade MIP solver would require substantially more work, but should also be
expected to provide substantial further improvements measured in wallclock time.

5 Conclusion

In this work, we study how to integrate pseudo-Boolean conflict analysis for 0–1 integer
linear programs into a MIP solving framework. In contrast to standard MIP conflict analysis,
the pseudo-Boolean method operates directly on the linear constraints, rather than on
clauses extracted from these constraints, and this makes it exponentially stronger in terms of
reasoning power. Viewing PB conflict analysis from a MIP perspective is also helpful since it
provides a view of the algorithm as a sequence of linear combinations and cuts, and we use
this to strengthen the pseudo-Boolean conflict analysis further by developing a new conflict
analysis method using the powerful mixed integer rounding (MIR) cuts.

We have made a first proof-of-concept implementation of our new pseudo-Boolean conflict
analysis method, as well as methods from the PB literature based on saturation [34] and
division [23], in the open-source MIP solver SCIP, and have run experiments on 0–1 ILP
instances from MIPLIB 2017 comparing the different methods with each other and with
standard clause-based MIP conflict analysis. We find that solving 0–1 ILPs with MIR-based
pseudo-Boolean conflict analysis performs better than other methods, not only in the sense
that it reduces the size of the search tree, but also in that our implementation can beat the
highly optimized MIP conflict analysis currently used in SCIP in terms of actual running
time. In our opinion, this demonstrates convincingly that pseudo-Boolean conflict analysis
in MIP is a research direction that should be worth pursuing further, and that similar
proof-of-concept studies could also be relevant to investigate for other combinatorial solving
paradigms such as constraint programming.

CP 2023
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As already noted above, an obvious direction of future work is to provide a more carefully
engineered version of pseudo-Boolean conflict analysis that could deliver more fully on the
potential for improved performance identified by our experiments. In addition to optimizing
the existing code, however, it would be valuable to develop a better understanding of how
and why the conflict analysis works and of ways in which the reasoning could be improved.

Pseudo-Boolean conflict analysis alternates between weakening constraints (to eliminate
seemingly less relevant variables) and strenghtening them by applying cut rules (to get tighter
propagation on the variables that remain). The interplay between these two operations is
quite poorly understood even for pseudo-Boolean solvers, and so both PB solvers and MIP
solvers could gain from a careful study of how to strike the right balance. Since PB conflict
analysis can be performed with several different reduction methods, and since different
reduction methods can be employed independently in consecutive steps in one and the same
conflict analysis, it would also be good to be able to assess the quality of constraints derived
during conflict analysis, so as to select the most promising candidate at each step to pass on
to the next step in the conflict analysis.

Arguably the most interesting research question, though, is whether pseudo-Boolean
conflict analysis could be extended beyond 0–1 ILPs to 0–1 mixed linear problems, and/or
to general integer linear programs. It is worth noting that the latter has been attempted
in [32, 41], but so far with quite limited success. It is clear that the algorithms presented
in this paper cannot work for 0–1 mixed LPs or general ILPs if generalized in the obvious,
naive way, and so additional, new ideas will be needed.
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Abstract
The Benzenoid Generation Problem (BGP) aims at generating all benzenoid molecules that satisfy
some given properties. This problem has important applications in chemistry, and Carissan et al
(2021) have shown us that Constraint Programming (CP) is well suited for modelling this problem
because properties defined by chemists are easy to express by means of constraints. Benzenoids are
described by hexagon graphs and a key point for an efficient enumeration of these graphs is to be
invariant to rotations and symmetries. In this paper, we introduce canonical codes that uniquely
characterise hexagon graphs while being invariant to rotations and symmetries. We show that these
codes may be defined by means of constraints. We also introduce a global constraint for ensuring
that codes are canonical, and a global constraint for ensuring that a pattern is included in a code.
We experimentally compare our new CP model with the CP-based approach of Carissan et al (2021),
and we show that it has better scale-up properties.
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1 Introduction

Benzenoids are hydrocarbon molecules whose carbon atoms are forming cycles of size 6,
i.e., hexagons. An important chemistry problem concerns the generation of all benzenoids
that satisfy some given properties [5]. This problem is called the Benzenoid Generation
Problem (BGP) in [2]. As benzenoids are regular tillings with hexagonal faces, they may be
represented by hexagon graphs such that a vertex is associated with every hexagonal face and
an edge with every pair of vertices corresponding to adjacent faces [1, 2]. For example, we
display in Figure 1 a benzenoid composed of five hexagonal faces and its associated hexagon
graph. These hexagon graphs are always connected.

Different benzenoids may be represented with isomorphic hexagon graphs. For example,
let us consider the hexagon graph displayed in Figure 1. The subgraph induced by c, d, and
e is isomorphic to the subgraph induced by a, c, and d whereas their associated molecules
are different because hexagons c, d, and e are not aligned whereas hexagons a, c, and d are
aligned. To overcome this problem, we take into account edge directions, considering the
six directions defined in Figure 1. In this case, the subgraph induced by c, d, and e is no
longer isomorphic to the subgraph induced by a, c, and d because edges (c, d) and (d, e) have
different directions (0 and 1), whereas edges (a, c) and (c, d) have the same direction (0).
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Figure 1 Example of benzenoid B and its associated hexagon graph G, and symmetrical graph
G. Right: Edge directions from a vertex v to each of its 6 possible neighbours.

To solve the BGP, we have to enumerate hexagon graphs that satisfy some given properties
and these properties are usually easily expressed by means of constraints (such as, for example,
the absence of cliques of order three, or the inclusion of some patterns). Two main approaches
may be used:

The dedicated approach of [1] uses canonical codes to represent hexagon graphs. These
codes are invariant to rotations and symmetries and they are used to decide whether
two graphs are isomorphic or not in linear time. However, these codes cannot represent
benzenoids with holes (called coronoids). Furthermore, this approach is not declarative
and it does not allow one to easily add constraints on the graphs to be enumerated.
The Constraint Programming (CP)-based approach of [2, 3] basically searches for all
connected subgraphs within an initial hexagon graph, and it is implemented in Choco [11]
using graph variables. Using CP allows one to easily add constraints and this approach is
able to generate all kinds of benzenoids, including coronoids. However, it is less efficient
than the dedicated approach.

In this paper, we introduce an approach which is both efficient and declarative: like [1], it
is based on canonical codes but these canonical codes can represent all benzenoids (including
coronoids); like [2, 3], it is based on CP so that one may easily add constraints to specify
structural properties. In Section 2, we introduce our new canonical code and study some of
its properties that are used to efficiently generate canonical codes with CP. In Section 3, we
extend canonical codes to the case where benzenoids are constrained to contain some given
patterns. In Section 4, we introduce CP models for solving BGPs. In Section 5, we report
experimental results and compare our approach with the CP-based approach of [2, 3].

Notations

Given two integer values i and j, we note [i, j] the set of all integer values ranging from i to j.
Given a hexagon graph G, we note G the symmetrical graph obtained by mirroring G with
respect to the x-axis, as displayed in Figure 1. Given a hexagon graph G = (V, E) and a subset
of vertices S ⊆ V , we note G↓S the subgraph of G induced by S, i.e., G↓S = (S, E ∩ S × S).

2 Representation of Hexagon Graphs with Canonical Codes

A key point for an efficient enumeration of hexagon graphs is to be invariant to rotations and
symmetries. For example, the graph displayed in Figure 1 is isomorphic to any other graph
obtained by rotating it of k ∗ 60◦ with k ∈ N and/or mirroring it with respect to the x-axis.
In [3], constraints are added to break these symmetries and avoid generating several times
the same graph. In this paper, we propose to use another approach based on canonical codes,
i.e., integer sequences that uniquely characterise graphs and that are invariant to rotations
and symmetries. We introduce our canonical code in Section 2.1. We study its properties in
Section 2.2. We compare it with related work in Section 2.3.
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Algorithm 1 BFSG(v0, v1).

Input: A hexagon graph G and an initial edge (v0, v1) of G

Output: The code associated with a BFS of G started from (v0, v1)
1 rotate G so that the direction of edge (v0, v1) is equal to 0
2 for each vertex vi of G do initialise num[vi] to −1;
3 set num[v0] to 0 and initialise a counter c to 1
4 let q be an empty FIFO queue; add v0 in q

5 initialise code to an empty sequence
6 while q is not empty do
7 remove from q its oldest vertex vi

8 for each edge (vi, vj) of G taken by order of increasing direction do
9 if num[vj ] < 0 then

10 add vj in q

11 set num[vj ] to c and increment c

12 add num[vi] and the direction of edge (vi, vj) at the end of code

13 return code

a:0 c:1

b:2

d:3

e:4

0

1

0

1

c:0 a:1d:2

b:3e:4

0

5
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4

e:4

d:3

c:0 b:1

a:2

0

1

4

5

e:0 d:1

c:2

b:3 a:4

0

5

4 5

Ex1: (v0, v1) = (a, c) Ex2: (v0, v1) = (c, a) Ex3: (v0, v1) = (c, b) Ex4: (v0, v1) = (e, d)

code = 00 01 10 31 code = 00 03 05 24 code = 00 01 04 35 code = 00 15 24 25

Figure 2 Examples of runs of BFSG(v0, v1) when G is the graph of Figure 1 and (v0, v1) is equal
to (a, c) for Ex1, (c, a) for Ex2, (c, b) for Ex3, and (e, d) for Ex4. For each vertex vi ∈ {a, b, c, d, e},
we display vi : num[vi] in circles. Each edge (vi, vj) used lines 10-12 is displayed in bold and its
direction is displayed on top of it (the initial edge (v0, v1) is displayed in green).

2.1 Definition of Canonical Codes
Given a hexagon graph G with n + 1 vertices, a code is a sequence of n couples of integer
values which is associated with a Breadth First Search (BFS) of G starting from a given
initial edge (v0, v1), as described in Algorithm 1. The initial edge is used to define the
orientation of the graph (line 1): we always consider the orientation such that v1 is on the
right of v0. This allows us to be invariant to rotations.

▶ Example 1. We display in Figure 2 different runs of BFS on the hexagon graph of Figure 1,
starting from different edges. In Ex1, we start from edge (a, c) which already has direction 0
so that we do not have to rotate the graph. When starting from edge (c, a) (resp. (c, b) and
(e, d)), we have to rotate the graph of 180◦ (resp. 240◦ and 60◦).

BFS assigns a different number num[vi] to each vertex vi corresponding to the order
vertices are discovered: v0 is numbered with 0 (line 3) and when a vertex vj is reached for
the first time it is numbered with the next non-assigned value c (line 11). Each time the
search discovers a new vertex vj using an edge (vi, vj), num[vi] and d(vi, vj) are added at
the end of the code, where d(vi, vj) is the direction of edge (vi, vj) (line 12).
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c:0 a:1d:3

b:2e:4

0

1

3

2

code = 00 01 03 32

Figure 3 Run of BFSG(c, a) where G is the graph symmetrical to the graph G of Figure 1.

▶ Example 2. In Figure 2 (Ex1), we illustrate a run of BFSG(a, c) when G is the graph of
Figure 1. In this case, the code is 00 01 10 31: the first couple is 00 because vertex 1 (c) has
been reached from vertex 0 (a) and d(a, c) = 0; the second couple is 01 because vertex 2 (b)
has been reached from vertex 0 (a) and d(a, b) = 1; the third couple is 10 because vertex 3
(d) has been reached from vertex 1 (c) and d(c, d) = 1; the fourth couple is 31 because vertex
4 (e) has been reached from vertex 3 (d) and d(d, e) = 1.

Note that the loop lines 8-12 considers edges outgoing from vi by order of increasing
directions. This ensures that we always compute the same code provided that the direction
of the first edge (v0, v1) is fixed to 0.

Given a code p1d1 p2d2 . . . pndn computed from a graph with n + 1 vertices, we can
draw this graph, starting from vertex number 0: for each i ∈ [1, n], pi gives the number of
the predecessor of vertex number i and di gives the direction of the edge (pi, i). Once all
vertices have been drawn, missing edges can be added as every vertex is connected to all its
neighbours. For example, in Ex1, we add an edge between vertices 1 and 2 because they
have neighbour positions.

There exist different possible codes for a given graph. Each code corresponds to a different
BFS starting from a different initial edge (v0, v1). We define a total order on the set of all
possible codes that may be associated with a given graph by considering a lexicographic
order. Among all the possible codes for a graph, the smallest one according to this order is
called the canonical code of this graph and it is unique.

So far, our canonical code is invariant to rotations but not to symmetries. To become
invariant to symmetries, we must also compute all codes starting from all possible edges
while considering the symmetrical graph G. This leads us to the following definition.

▶ Definition 3 (Canonical code cc(G)). The canonical code of a hexagon graph G = (V, E)
is: cc(G) = min{BFSG(v0, v1), BFSG(v0, v1) : (v0, v1) ∈ E} when considering a lexicographic
order to compare codes.

▶ Example 4. The smallest code that may be computed for the graph G of Figure 1
is BFSG(c, b), displayed in Figure 2. However, if we consider the symmetrical graph G,
BFSG(c, a) is smaller than BFSG(c, b) (see Figure 3). This code is the smallest one for both
G and G, i.e., cc(G) = 00 01 03 32.

2.2 Properties of Canonical Codes
The next two theorems are used to efficiently enumerate canonical codes with CP in Section 4.

▶ Theorem 5. Given a code p1d1 p2d2 . . . pndn, we have:
Property a: ∀i ∈ [1, n− 1], pi ≤ pi+1;
Property b: ∀i ∈ [1, n− 1], (pi = pi+1)⇒ (di < di+1).

Proof. Property a is a consequence of the fact that (i) q is a FIFO queue, (ii) vertices are
added in q by order of increasing number, and (iii) when a vertex vi is removed from q we
add to code all couples pidi such that pi = num[vi] and the vertex at direction di from vi is
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not yet numbered. Hence, all couples added to code during one iteration of the loop lines
6-12 have the same value for pi. Property b is a straightforward consequence of the fact that
the loop lines 8-12 considers edges by order of increasing directions. ◀

▶ Theorem 6. Let c = p1d1 p2d2 . . . pndn be a canonical code. For each i ∈ [1, n− 1], the
prefix ci = p1d1 p2d2 . . . pidi of c is also a canonical code.

Proof. Let G and Gi be the graphs associated with c and ci, where each vertex is numbered
with num[vi]. As ci is a prefix of c, Gi is the subgraph of G induced by the vertices
numbered from 0 to i. Let us assume that ci is not canonical, i.e., there exists another code
c′

i = p′
1d′

1 p′
2d′

2 . . . p′
id

′
i that is smaller than ci while representing the same subgraph Gi. Let

(v0, v1) be the edge of Gi such that c′
i = BFSGi

(v0, v1) (resp. c′
i = BFSGi

(v0, v1) if c′
i is

computed in the symmetrical graph). Let c′ = BFSG(v0, v1) (resp. c′ = BFSG(v0, v1)) be
the code obtained by performing a search of G (resp. G) that starts from the same initial
edge as the one used to obtain c′

i. Let j be the smallest vertex number for which c′ and c′
i

have different values, i.e., ∀k < j, vertex number k has the same edges in both G and Gi,
whereas vertex number j has more edges in G than in Gi. More precisely, let S (resp. Si) be
the set of edges outgoing from j in G (resp. Gi). We have Si ⊂ S as Gi is a subgraph of G.
We have to distinguish two different cases.

Case 1: the largest edge direction in Si is equal to the largest edge direction in S. In this
case, c′ is smaller than c′

i because the sequence of couples associated with the successors
of j in c′ is necessarily smaller than the sequence of couples associated with the successors
of j in c′

i (e.g., if edge directions in Si are {1, 5} whereas edge directions in S are {1, 2, 5},
then j1 j2 j5 < j1 j5).

Case 2: the largest edge direction in Si is smaller than the largest edge direction in S. In
this case, either c′

i is a prefix of c′ (if j is the greatest vertex with an outgoing edge), or
c′ is smaller than c′

i (e.g., if edge directions in Si are {1, 2} whereas edge directions in S

are {1, 2, 5}, j1 j2 j5 < j1 j2 k because k > j, as stated in Property a).
In both cases, this implies that c′ < c which contradicts the fact that c is canonical. ◀

Computational complexity. The canonical code of a graph with n vertices is computed in
O(n2): BFS is run twice for each edge and the number of edges is in O(n) as a vertex cannot
have more than six neighbours; the time complexity of BFS is O(n) as the loop lines 6-12 is
iterated n times and the loop lines 8-12 is iterated at most six times.

We may speed-up the computation by avoiding some calls to BFS. To this aim, we
display in Figure 4 the 13 different possible patterns for the neighbourhood of a vertex v

(up to rotations). For each pattern Pi such that v has ki successors, every code computed
by BFS with v0 = v starts with a prefix 0d1 0d2 . . . 0dki

, and we give below the smallest
possible prefix composed of 2ki integers, denoted πi, the set S of edges (v, vk) of G such that
BFSG(v, vk) starts with πi, and the set S of edges (v, vk) of G such that BFSG(v, vk) starts
with πi (these edges are highlighted in Figure 4).

π6 = 00 01 02 03 04 05 S = {(v, vi) : i ∈ [1, 6]} S = {(v, vi) : i ∈ [1, 6]}
π5 = 00 01 02 03 04 S = {(v, v1)} S = {(v, v5)}
π4 = 00 01 02 03 S = {(v, v1)} S = {(v, v4)}
π3+1 = 00 01 02 04 S = {(v, v1)} S = {(v, v3)}
π2+2 = 00 01 03 04 S = {(v, v1), (v, v3)} S = {(v, v2), (v, v4)}
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Figure 4 Different neighbourhood patterns for a vertex v. We highlight in blue (resp. green
and red) every edge (v, vk) such that BFSG(v, vk) (resp. BFSG(v, vk) and both BFSG(v, vk) and
BFSG(v, vk)) starts with the smallest possible prefix.

π3 = 00 01 02 S = {(v, v1)} S = {(v, v3)}
π2+1a = 00 01 03 S = {(v, v1)} S = ∅
π2+1b = 00 01 03 S = ∅ S = {(v, v2)}
π1+1+1 = 00 03 05 S = {(v, v1), (v, v2), (v, v3)} S = {(v, v1), (v, v2), (v, v3)}
π2 = 00 01 S = {(v, v1)} S = {(v, v2)}
π1+1a = 00 02 S = {(v, v1)} S = {(v, v2)}
π1+1b = 00 03 S = {(v, v1), (v, v2)} S = {(v, v1), (v, v2)}
π1 = 00 S = {(v, v1)} S = {(v, v1)}

▶ Example 7. Let us consider the graph G of Figure 1. The pattern of vertex a in G is
P2 (with a = v, c = v1, and b = v2). Therefore, the smallest possible code computed with
v0 = a starts with the prefix π2 = 00 01, and the two codes that start with this prefix are
BFSG(a, c) and BFSG(a, b). Also, the pattern of vertex c in G is P2+1b (with c = v, a = v2,
b = v1, and d = v3). Therefore, the smallest possible code computed with v0 = c starts with
the prefix π2+1a = 00 01 03, and the only code that starts with this prefix is BFSG(c, a).

To further reduce the number of searches, we define a total order among patterns.

▶ Definition 8 (Order between patterns). Let Pi and Pj be two patterns (as listed in Figure 4),
and let πi1 and πj1 be the sequences obtained by adding “1” at the end of πi and πj,
respectively. We define Pi < Pj (resp. Pi = Pj) if πi1 is lexicographically smaller than (resp.
equal to) πj1. We obtain the following order:

P6 < P5 < P4 < P3+1 < P3 < P2+2 < P2+1a = P2+1b < P2 < P1+1+1 < P1+1a < P1+1b < P1

Given two vertices vi and vj , if the pattern of vi is smaller than the pattern of vj , then
we know that every code computed from vi is smaller than every code computed from vj .
Hence, to compute the canonical code of a hexagon graph G, we first search for the smallest
pattern Pk in G. Then, for each vertex vi such that the pattern of vi in G is equal to Pk, we
compute all codes from the starting edges highlighted in Figure 4. Finally, we return the
smallest computed code.

▶ Example 9. Let us consider the graph G of Figure 1. The pattern of vertex a (resp. b, c,
d, and e) is P2 (resp. P2, P2+1b, P1+1a, and P1). The smallest pattern is P2+1b. Therefore,
the canonical code is obtained by running BFSG(c, a), and it is useless to run BFSG or BFSG

from any other edge.
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Note that this does not change the time complexity as in the worst case we may have
O(n) vertices with a smallest pattern. For example, when we have an horizontal chain of
vertices, all vertices have pattern P1+1b, except the two endpoints which have pattern P1. In
this case, we must run BFSG and BFSG for every edge outgoing from vertices with pattern
P1+1b (i.e., all vertices but the two endpoints).

2.3 Comparison with other canonical codes
In the general case, building the canonical code of a graph is a problem which is not known
to be in P nor to be NP-complete (it is isomorphic-complete). There exist rather efficient
algorithms such as Nauty [9], but these algorithms have an exponential time complexity in
the worst case. Canonical codes are widely used in graph mining tools such as gSpan [12] or
Gaston [10]. When graphs are embedded in a 2D space, canonical codes may be computed
in polynomial time [8]. These canonical codes may be simplified when considering grid
graphs such that all faces are squares [6]. Canonical codes defined in [12, 10, 6] share some
similarities with our canonical codes as they are computed by performing graph traversals
and assigning numbers to vertices according to the order of discovery. However, in [12, 10, 6],
traversals are Depth First Searches (DFSs). Performing BFSs instead of DFSs allows us to
avoid some calls to BFS (as explained in Section 2.2). It also allows us to exploit properties
a and b to define codes by means of constraints (see Section 4).

In [1], canonical codes are introduced for benzenoid structures. These codes only describe
boundary cycles and assume that there is no hole within these cycles, thus preventing the
representation of coronoids. Our codes fully describe hexagon graphs, including vertices
inside the boundary cycle and, therefore, we can represent coronoids.

3 Canonical Codes in Case of Required Patterns

Many BGPs involve enumerating hexagon graphs that contain some given patterns, where
patterns both specify mandatory and forbidden vertices [3]. More precisely, a pattern
is defined by a couple (P, F ) such that P is a hexagon graph that specifies mandatory
vertices, and F is a set of couples that specify forbidden vertex positions, i.e., for each couple
(pi, di) ∈ F , vertex pi must not have an outgoing edge in direction di.

▶ Example 10. The pattern (P, F ) displayed in Figure 5 has four mandatory vertices in grey
and one forbidden vertex in red. (P, F ) occurs twice in G as P is isomorphic to G↓{d,a,b,c}
(resp. G↓{g,d,a,f}) and a has no outgoing edge in direction 1 (resp. a has no outgoing edge in
direction 1 when rotating G so that G↓{g,d,a,f} has the same orientation as P ).

To efficiently generate graphs that contain a pattern, the idea is to constrain canonical
codes to start with this pattern so that all generated graphs contain it by construction. We
introduce this new canonical code in Section 3.1, and we study its properties in Section 3.2.

3.1 Definition of P-canonical codes
To ensure that codes start with the canonical code of a given pattern (P, F ), we perform
BFSs of G and G from a given P-sequence that corresponds to an occurrence of (P, F ) in G

or G. More precisely, this P-sequence is defined as follows.

▶ Definition 11 (P-sequence of (G, P, F )). Let G be a hexagon graph with n vertices, and
(P, F ) be a pattern with 1 < k < n mandatory vertices. A P-sequence of (G, P, F ) is a
sequence s = ⟨v0, v1, . . . , vk−1⟩ of k vertices of G such that
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Figure 5 Left: Example of hexagon graph G and pattern (P, F ). Right: To compute ccP,F (G),
we run P-BFSG (resp. P-BFSG) with the P-sequences ⟨a, b, d, c⟩ and ⟨a, d, f, g⟩ (resp. ⟨b, a, c, d⟩ and
⟨d, a, g, f⟩). The P-canonical code of G is ccP,F (G) = 00 02 11 03 04 56.

(i) the subgraph of G induced by {v0, . . . , vk−1}, i.e., G↓s, is isomorphic to P ;
(ii) ∀(pi, di) ∈ F , G↓s has no outgoing edge from the vertex corresponding to pi in direction

di when rotating G so that G↓s and P have the same orientation;
(iii) the code returned by BFSG↓s

(v0, v1) is canonical;
(iv) for each i ∈ [0, k − 1] the number assigned by BFSG↓s

(v0, v1) to vi is equal to i, i.e.,
num[vi] = i at line 13 of Algorithm 1.

Each P-sequence corresponds to an occurrence of (P, F ) in G, and (P, F ) may occur more
than once in G. To compute all P-sequences of (G, P, F ), we iterate on each edge of G and
try to build a P-sequence that starts with this edge using Algorithm 2: given the canonical
code c of P , an edge (v0, v1) of G, and a set F of forbidden positions, seq(G, v0, v1, c, F )
returns the P-sequence of (G, P, F ) that starts with ⟨v0, v1⟩ if it exists, and it returns null
otherwise. To build the P-sequence, it uses the canonical code c to associate vertices of G to
vertex numbers used in the canonical code: for each vertex number i ∈ [0, k − 1], vertex[i]
is the vertex of G that corresponds to i, and for each couple pidi in the canonical code, we
ensure that vertex i in P corresponds to the vertex of G that is at direction di from vertex [pi],
if it exists (line 5); if it does not exist, then there is no P-sequence that starts from (v0, v1)
and we return null (line 4). When a P-sequence is completed, we check that there are no
vertices at forbidden positions (line 6).

To be invariant to symmetries, we must also compute all P-sequences of (G, P, F ) by
running seq(G, v0, v1, c, F ) for each edge (v0, v1) of G.

▶ Example 12. Let us consider the graph G and the pattern (P, F ) of Figure 5. The canonical
code of P is 00 02 11, and it may be computed either by BFSP (0, 1) or by BFSP (1, 0) because
P is symmetrical. Also, this pattern is isomorphic to two subgraphs of G. Hence, the four
runs of seq that return a P-sequence corresponding to an occurrence of (P, F ) are:
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Algorithm 2 seq(G, v0, v1, c, F ).

Input: A hexagon graph G, an edge (v0, v1) of G, the canonical code
c = p1d1 . . . pk−1dk−1 of a pattern P , and the set
F = {(p′

1, d′
1), . . . , (p′

f , d′
f )} of forbidden vertices

Output: A P-sequence of (G, P, F ) starting with ⟨v0, v1⟩, or null if such a
P-sequence does not exist

1 rotate G so that the direction of edge (v0, v1) is equal to 0
2 vertex [0]← v0; vertex [1]← v1
3 for i ∈ [2, k − 1] do
4 if vertex [pi] does not have an outgoing edge in direction di then return null;
5 vertex [i]← vertex at direction di from vertex [pi]
6 if ∃(p′

i, d′
i) ∈ F s.t. vertex [p′

i] has an outgoing edge in direction d′
i then return null;

7 return ⟨vertex [0], vertex [1], . . . , vertex [k − 1]⟩

seq(G, a, b, 00 02 11, {(0, 1)}) = ⟨a, b, d, c⟩ corresponding to 0 = a, 1 = b, 2 = d, 3 = c;
seq(G, b, a, 00 02 11, {(0, 1)}) = ⟨b, a, c, d⟩ corresponding to 0 = b, 1 = a, 2 = c, 3 = c;
seq(G, a, d, 00 02 11, {(0, 1)}) = ⟨a, d, f, g⟩ corresponding to 0 = a, 1 = d, 2 = f, 3 = g;
seq(G, d, a, 00 02 11, {(0, 1)}) = ⟨d, a, g, f⟩ corresponding to 0 = d, 1 = a, 2 = g, 3 = f .

All other runs of seq return null.
In Figure 6, the graph G has only one P-sequence for pattern P (i.e.,

seq(G, 0, 1, cc(P ), F ) = ⟨0, 1, 2, 3⟩). seq(G, 2, 4, cc(P ), F ) = null because G already has
a vertex at direction 4 from 2 when rotating G so that the direction of edge (2, 4) is equal to
0.

Given a hexagon graph G and a P-sequence s = ⟨v0, v1, . . . , vk−1⟩, we define an algorithm,
called P-BFSG(s), which performs a BFS of G that starts from s, and which is obtained
from Algorithm 1 by replacing lines 3 and 4 by the following lines:

display the canonical code of G↓s

let q be an empty FIFO queue
for i ∈ [0, k − 1] do set num[vi] to i, and add vi in q

initialise the counter c to k

These lines ensure that the code returned by P-BFS starts with the canonical code
of the pattern associated with s so that this pattern is included in the returned code by
construction. The numbers assigned to the vertices of s correspond to those assigned by
BFS when computing the canonical code of the pattern and we add the vertices of s in q to
ensure that these vertices are treated first.

The P-canonical code of (G, P, F ) is the smallest code obtained from any P-sequence.

▶ Definition 13 (P-canonical code (ccP,F (G)). The P-canonical code of G = (V, E) with
respect to a pattern (P, F ) is ccP,F (G) = min {P-BFSG(s) : s ∈ S} ∪ {P-BFSG(s) : s ∈ S}
where

S = {seq(G, v0, v1, cc(P ), F ) : (v0, v1) ∈ E ∧ seq(G, v0, v1, c, F ) ̸= null},
S = {seq(G, v0, v1, cc(P ), F ) : (v0, v1) ∈ E ∧ seq(G, v0, v1, c, F ) ̸= null}.

▶ Example 14. Let us consider the graph G and the pattern (P, F ) of Figure 5. As seen in
Example 12, there are four different candidate P-sequences s from which we may compute a
code. We display in Figure 5 the runs of P-BFS from these four P-sequences.

CP 2023



28:10 Using Canonical Codes to Efficiently Solve the BGP with CP

F = {(0, 4)}
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cc(P ) = 00 01 03 ccP,F (G) = 00 01 03 21 22 ccP,F (G↓{0,1,2,3,4}) = 00 01 03 15

Figure 6 Example of P-canonical code with a non P-canonical prefix. Left: Pattern (P, F ).
Middle: Graph G. Right: G↓{0,1,2,3,4}. The prefix 00 01 03 21 of ccP,F (G) corresponds to G↓{0,1,2,3,4}
and it is not P-canonical as ccP,F (G↓{0,1,2,3,4}) is smaller.

3.2 Properties of P-canonical codes

The time complexity for computing ccP,F (G) when G has n vertices, P has k vertices (with
k < n), and F has f couples is O(n(n + f)):

the canonical code of P is computed in O(k2);
Algorithm 2 is in O(k + f), and it is called O(n) times to build all P-sequences;
P-BFS is in O(n) and it is called once per P-sequence, i.e., O(n) times.

Properties of Theorem 5 are no longer valid as illustrated in Figure 5: the code returned
by P-BFSG(⟨a, d, f, g⟩) does not satisfy Property a as p3 = 1 and p4 = 0; the code returned
by P-BFSG(⟨d, a, g, f⟩) does not satisfy Property b as p3 = p4 = 1 whereas d3 = 1 and
d4 = 0. This comes from the fact that the canonical code of P is inserted at the beginning of
the sequence, before starting the search. If a vertex of G corresponding to a pattern vertex
has some extra edges outgoing from it in G but not in P , then the integer couple associated
with this edge is added after cc(P ) and it may violate Properties a or b. However, we can
easily show that these properties are satisfied in the second part of the code, corresponding
to the vertices that do not correspond to pattern vertices, i.e., given a code p1d1 . . . pndn

returned by P-BFSG(⟨v0, . . . , vk−1⟩), we have:
Property a’: ∀i ∈ [k, n− 1], pi ≤ pi+1;
Property b’: ∀i ∈ [k, n− 1], (pi = pi+1)⇒ (di < di+1).

When there are no forbidden vertices (i.e., F = ∅), Theorem 6 is still valid, i.e., every
prefix of a canonical code is also canonical (the proof is similar to the proof of Theorem 6
and it is omitted due to space limits).

However, this theorem is no longer valid whenever F ≠ ∅, i.e., the prefix of a P-canonical
code may not be P-canonical, as shown in the following example.

▶ Example 15. In Figure 6, the occurrence of (P, F ) in G corresponds to G↓{0,1,2,3}. The
prefix 00 01 03 21 of ccP,F (G) is not P-canonical: this prefix corresponds to G↓{0,1,2,3,4} and
(P, F ) occurs twice in it (once in G↓{0,1,2,3} with the forbidden vertex displayed in brown,
and once in G↓{0,1,2,4} with the forbidden vertex displayed in red). If we extend G↓{0,1,2,3,4}
by adding a vertex on the brown position, we obtain the graph G that contains only one
occurrence of (P, F ) and whose P-canonical code starts with a prefix greater than 00 01 03
15. If we extend G↓{0,1,2,3,4} by adding a vertex on the red position, we obtain another graph
(not isomorphic to G) that also contains only one occurrence of (P, F ).
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This example shows us that a non P-canonical code may be extended to a P-canonical
code. This comes from the fact that a pattern may have more occurrences in the graph
associated with a prefix of a code c than in the graph associated with c, due to forbidden
vertices. However, when the pattern is symmetrical (including its forbidden vertices), we
may discard some non P-canonical codes. More precisely, we define below the dominated
codes that may be discarded because they cannot be extended to P-canonical codes.

▶ Definition 16. (Dominated code) Let (P, F ) be a symmetrical pattern, G = (V, E) be
a hexagon graph that contains at least one occurrence of (P, F ), and W ⊂ V be a subset
of vertices such that G↓W is isomorphic to P . Let C be the set of codes computed from
a P-sequence s = ⟨v0, v1, . . . , vk⟩ such that (v0, v1) is an edge of G↓W . A code c ∈ C is
dominated if there exists another code c′ ∈ C such that c′ < c.

▶ Theorem 17. For each P-canonical code c and each prefix c′ of c, c′ is not dominated.

Proof. This is a straightforward consequence of the fact that all P-sequences that start
from an edge (v0, v1) of G↓W correspond to different automorphisms of (P, F ) and are
interchangeable. ◀

▶ Example 18. In Figure 5, (P, F ) is symmetrical. The dominated codes are P-BFSG(⟨b, a,

c, d⟩) (when W = {a, b, c, d}) and P-BFSG(⟨d, a, g, f⟩) (when W = {a, d, f, g}. However, we
cannot discard P-BFSG(⟨a, b, d, c⟩) (though it is larger than P-BFSG(⟨a, d, f, g⟩) as it may
lead to a P-canonical code if a vertex is added on the forbidden position for W = {a, d, f, g}.

4 CP Models for Enumerating Hexagon Graphs

As hexagon graphs may be uniquely represented with canonical codes, we solve BGPs by
enumerating canonical codes, and we propose to use CP to achieve this enumeration as this
allows us to easily add constraints on the structures. In Section 4.1, we introduce a first CP
model for enumerating consistent codes. In Section 4.2, we introduce a global constraint for
ensuring that codes are canonical. In Section 4.3, we introduce a CP model for enumerating
all structures that contain some given patterns.

4.1 CP Model for Enumerating Consistent Codes
We say that a code is consistent if there exist a hexagon graph G and an edge (v0, v1) of G

such that BFSG(v0, v1) or BFSG(v0, v1) return this code. Obviously, the code must satisfy
Properties a and b listed in Theorem 5. However, this is not enough because we must also
ensure that all vertices have different positions in the plane. To this aim, we associate 2D
coordinates with vertices. We assume that all edges have a length equal to two and that
vertex 0 has coordinates (0, 0). For every other vertex i, its coordinates depend on the
coordinates of its predecessor pi and the direction di of edge (pi, i): if the coordinates of pi

are (x, y) and di = 0 (resp. 1, 2, 3, 4, and 5), then vertex i is at coordinates (x + 2, y) (resp.
(x + 1, y +

√
3), (x− 1, y +

√
3), (x− 2, y), (x− 1, y −

√
3), and (x + 1, y −

√
3)).

▶ Example 19. Let us consider the code 00 02 24. Vertex 1 is at coordinates (2, 0) (because
the edge that reaches 1 from 0 has direction 0), vertex 2 is at coordinates (1,

√
3) (because the

edge that reaches 2 from 0 has direction 1), and vertex 3 is at coordinates (0, 0) (because the
edge that reaches 3 from 2 has direction 4). As vertices 0 and 3 have the same coordinates,
this code is not consistent.
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For each vertex i ∈ [1, n], our CP model uses four integer variables xi, yi, pi, di:
xi is the abscissa of i, and its domain is D(xi) = [−2n, 2n];
yi is the ordinate of i divided by

√
3, and its domain is D(yi) = [−n, n];

pi is the vertex which has discovered i, and its domain is D(pi) = [0, i− 1] (pi < i because i

cannot be discovered by a vertex j which has not yet been discovered);
di is the direction of edge (pi, i), and its domain is D(di) = [0, 5].
For vertex 0, we define x0 = 0, y0 = 0, p0 = −1, and d0 = −1. The code associated with
these variables is p1d1 . . . pndn

To ensure the consistency of the generated codes, we post the following constraints:
C1: all vertices have different coordinates, i.e., ∀i, j ∈ [0, n], i ̸= j ⇒ xi ̸= xj ∨ yi ̸= yj ;
C2: Properties a and b (defined in Theorem 5) are satisfied, i.e.,
∀i ∈ [1, n− 1], pi ≤ pi+1 ∧ pi = pi+1 ⇒ di < di+1;

C3: For each edge (pi, i), coordinates of i and pi are consistent with direction di, i.e.,
∀i ∈ [1, n], (di, xi, xpi

, yi, ypi
) ∈ T where T is the table defined as follows:

T = {(0, x + 2, x, y, y) : x ∈ [−2n, 2n− 2], y ∈ [−n, n]}
∪ {(1, x + 1, x, y + 1, y) : x ∈ [−2n, 2n− 1], y ∈ [−n, n− 1]}
∪ {(2, x− 1, x, y + 1, y) : x ∈ [−2n + 1, 2n], y ∈ [−n, n− 1]}
∪ {(3, x− 2, x, y, y) : x ∈ [−2n + 1, 2n], y ∈ [−n, n]}
∪ {(4, x− 1, x, y − 1, y) : x ∈ [−2n + 1, 2n], y ∈ [−n + 1, n]}
∪ {(5, x + 1, x, y − 1, y) : x ∈ [−2n, 2n− 1], y ∈ [−n + 1, n]}.

4.2 Global Constraint for Ensuring Canonicity
We must ensure that codes are canonical to become invariant to rotations and symmetries.
To this aim, we introduce a new global constraint defined below.

▶ Definition 20. Given an integer value n ≥ 1 and a tuple of four integer variables
(pi, di, xi, yi) for each i ∈ [1, n], the constraint canonical({(pi, di, xi, yi) : i ∈ [1, n]}) is
satisfied if the code p1d1 . . . pndn is canonical.

To propagate this constraint, we maintain a vector pat such that, for each vertex i, pat[i]
is equal to the current pattern of i (with respect to the edges that have been added so far).
We also maintain a matrix M such that for each vertex i and each direction d ∈ [0, 5], M [i][d]
is either equal to the vertex at direction d from i, if such a vertex exists, or to -1 otherwise.
pat and M are updated each time a new couple (pi, di) is instantiated. This may be done in
constant time by exploiting vertex coordinates.

We trigger a failure whenever there is a vertex i > 0 such that pat[i] < pat[0], as we have
seen in Section 2.2 that the pattern of i cannot be smaller than the pattern of 0 (according
to the order of Definition 8).

Also, we trigger a failure whenever assigned variables define a code prefix which is not
canonical, because Theorem 6 tells us that a non-canonical prefix cannot be extended to a
canonical code. More precisely, when all variables that occur in a code prefix p1d1 . . . pkdk

with k ≤ n are assigned, we check that this prefix is canonical and, if it is not the case, we
trigger a failure. To check whether a prefix is canonical or not, we try to build smaller codes
by running BFS from other edges than (0, 1). We limit the number of BFSs to be performed
by exploiting patterns, as explained in Section 2.2.
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Finally, we ensure that the degree of every vertex is upper bounded by a value g which
depends on pat[0]: g = 5 when pat[0] = P5; g = 4 when pat[0] ∈ {P4, P3+1, P3, P2+2};
g = 3 when pat[0] ∈ {P2+1a, P2+1b, P2, P1+1+1}; g = 2 when pat[0] = P1+1; and g = 1 when
pat[0] = P1. When the degree of a vertex i reaches g, we remove i from the domain of every
non-assigned variable pk in order to prevent i from having more outgoing edges than g.

4.3 CP Model for Enumerating Graphs with a Given Pattern
Given a pattern (P, F ) with m mandatory vertices, the CP model for enumerating all graphs
with n + 1 > m vertices that contain (P, F ) uses four integer variables xi, yi, pi, and di for
each vertex i ∈ [0, n], like in Section 4.1. However, for each pattern vertex i ∈ [0, m− 1], we
assign the variables xi, yi, pi, and di according to the canonical code cc(P ).

▶ Example 21. For the pattern P displayed in Figure 6, we set x0 = y0 = 0, p1 = p2 = p3 =
0, d1 = 0, d2 = 1, d3 = 3, x1 = 2, y1 = 0, x2 = 1, y2 = 1, x3 = −2, and y3 = 0.

Like in Section 4.1, we post constraint C1 to ensure that all vertices have different
coordinates. We modify constraint C2 as Properties of Theorem 5 are satisfied only for
vertices that are not in the pattern, i.e., ∀i ∈ [m, n− 1], pi ≤ pi+1 ∧ pi = pi+1 ⇒ di < di+1.
We post constraint C3 but with a modified table T ′ to ensure that no vertex is at a forbidden
position. More precisely, we compute the set XF of coordinates of forbidden positions in F

and define T ′ from table T as follows: T ′ = {(d, x, x′, y, y′) ∈ T : (x, y) ̸∈ XF ∧ (x′, y′) ̸∈ XF }.
Finally, we post a global constraint to ensure that the generated codes are P-canonical.

This constraint is defined as follows.

▶ Definition 22. Given the canonical code cc(P ) of a pattern P with m vertices, an integer
value n > m and a tuple of four integer variables (pi, di, xi, yi) for each i ∈ [1, n], the
constraint P-canonicalcc(P )({(pi, di, xi, yi) : i ∈ [1, n]}) is satisfied if the code p1d1 . . . pndn

is P-canonical.

To propagate this constraint, we cannot trigger a failure whenever assigned variables
define a code prefix which is not P-canonical as we have seen in Section 3.2 that Theorem 6
is no longer valid. However, we exploit Theorem 17 to trigger a failure whenever the current
prefix is dominated. Also when all pi and di variables are assigned, we check that the code is
P-canonical and trigger a failure whenever this is not the case.

Some BGPs involve enumerating graphs that contain two given patterns (P, F ) and
(P ′, F ′). Without loss of generality, we assume that #P ≥ #P ′ where #G denotes the
number of vertices of a graph G. In this case, we post the constraint P-canonicalcc(P ) to
ensure that all generated codes contain pattern (P, F ) by construction. To ensure that the
graph G associated with the generated code also contains pattern (P ′, F ′), we post a global
constraint that ensures that G↓[k,#G] contains an occurrence of (P ′, F ′), where k = #P

whenever the two patterns must be disjoint, whereas k = 0 otherwise. This constraint is
defined below.

▶ Definition 23. Given a pattern (P, F ), two integer values k and n such that k+#P ≤ n, and
a tuple of two integer variables (pi, di) for each i ∈ [0, n], the constraint subgraphP,k({(pi , di) :
i ∈ [0 , n]}) is satisfied if there exists S ⊆ [k, n] such that G↓S is isomorphic to P and there
is no vertex at a forbidden position.

We have implemented a very basic propagator for this constraint: it is not propagated dur-
ing the search, and we only check that it is entailed when all variables have been assigned. This
is done by searching for an edge (v0, v1) of G↓[k,n] such that seq(G↓[k,n], v0, v1, cc(P ′), F ′) ̸=
null. If we do not find such an edge, then the constraint is not satisfied; otherwise we have
found an occurrence of (P ′, F ′) in G↓[k,n].
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Table 1 Results of BenzAI and CCode for BGP1 and BGP2. For each n ∈ [2, 10] and each
problem, we report the number of solutions (#sol) and the time in seconds of BenzAi and CCode.

BGP1 BGP2
#sol BenzAI CCode #sol BenzAI CCode

n = 2 1 0.00 0.01 1 0.01 0.01
n = 3 3 0.00 0.01 2 0.01 0.01
n = 4 7 0.05 0.03 5 0.01 0.02
n = 5 22 0.05 0.11 12 0.01 0.07
n = 6 81 0.14 0.22 36 0.07 0.15
n = 7 331 0.67 0.30 118 0.20 0.28
n = 8 1436 19.58 1.08 412 3.88 0.40
n = 9 6510 392.24 4.66 1492 19.78 2.21
n = 10 30129 22874.00 25.16 5587 732.75 7.90

5 Experimental Evaluation

In this section, we experimentally evaluate our approach on four different BGPs (see [2, 3, 4]
for more details):
BGP1 enumerates hexagon graphs without single vertex holes (where a single vertex hole is

a position without vertex which is surrounded by a cycle of 6 vertices);
BGP2 enumerates catacondensed graphs, i.e., hexagon graphs without single vertex holes

and without cliques of order 3;
BGP3 enumerates hexagon graphs without single vertex holes and that contain a given

pattern (taken in the list of eight patterns used in [3] and recalled in Appendix A);
BGP4 enumerates hexagon graphs without single vertex holes and that contain two given

patterns (taken in the list of eight patterns used in [3] and recalled in Appendix A) so
that the two patterns are not overlapping. (In [3], a variant is considered where patterns
may share vertices; we do not display results for this variant as the conclusions are very
similar.)

For each problem, the number n of vertices is given, and we report results for n ∈ [2, 10].
We consider the CP models described in Section 4, implemented in Choco [11], and

available at https://gitlab.inria.fr/xipeng/bgp. To forbid single vertex holes, we
exploit pat and M data structures. To forbid cliques of order 3, we ensure that, for each
vertex i, pat[i] ∈ {P1+1+1, P1+1a, P1+1b, P1} as all other patterns contain a clique of order 3.

Our approach, denoted CCode, is compared with the CP-based approach of [3], de-
noted BenzAI, and we used the Choco implementation available at https://github.com/
benzAI-team/BenzAI. We do not compare our approach with the dedicated approach of [1]
as it cannot enumerate hexagon graphs with holes (for BGP1, this approach finds less
solutions than our approach), and it is not possible to add extra constraints in a declarative
way so that it cannot be used to solve BGP2, BGP3, or BGP4 without modifying the code,
or performing a post-processing to remove solutions that do not satisfy the extra constraints.

All experiments are carried out on an Intel Core Xeon E5-2623v3 of 3.0GHz×16 with
32GB of RAM.

In Table 1, we report CPU times of BenzAI and CCode on BGP1 and BGP2. For
BGP1, BenzAI is faster when n ≤ 3, but CCode is faster when n ≥ 4 and when n = 10 it
is 824 times as fast. For BGP2, BenzAI is faster when n ≤ 7, but CCode is faster when
n ≥ 8 and when n = 10 it is 93 times as fast. In Table 2, we report CPU times of BenzAI

https://gitlab.inria.fr/xipeng/bgp
https://github.com/benzAI-team/BenzAI
https://github.com/benzAI-team/BenzAI
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Table 2 Results of BenzAi and CCode for BGP3 and BGP4. For each n ∈ [2, 10] and each
problem, we report the number of instances (#i) and the average, maximum and minimum time in
seconds over these instances for BenzAI and CCode. We report ’-’ when all runs exceed 3600s.

BGP3 BGP4
n #i BenzAI CCode #i BenzAI CCode

avg max min avg max min avg max min avg max min
2 2 0.02 0.02 0.02 0.01 0.01 0.00 0 — — — — — —
3 6 0.02 0.03 0.01 0.00 0.01 0.00 0 — — — — — —
4 7 0.03 0.04 0.02 0.00 0.02 0.00 3 0.07 0.16 0.02 0.01 0.03 0.00
5 8 0.05 0.07 0.01 0.01 0.07 0.00 11 0.06 0.20 0.04 0.01 0.06 0.00
6 8 0.38 0.43 0.23 0.03 0.15 0.00 23 1.41 2.51 0.93 0.02 0.16 0.01
7 8 0.95 1.06 0.79 0.13 0.35 0.01 29 3.78 5.42 2.30 0.10 0.50 0.01
8 8 20.33 23.84 13.94 0.73 1.61 0.04 34 65.06 83.21 50.28 0.49 1.69 0.03
9 8 306.30 399.25 75.05 3.94 10.52 0.23 35 400.51 574.15 226.87 2.94 10.85 0.20
10 8 - - - 34.60 69.75 2.20 36 - - - 24.19 71.03 1.61

and CCode on BGP3 and BGP4. CCode is always faster. When n = 9, it is 78 (resp. 136)
times as fast as BenzAI for BGP3 (resp. BGP4). When n = 10, BenzAI is not able to solve
any of the 8 (resp. 36) instances of BGP3 (resp. BGP4) within one hour whereas CCode
never exceeds 71s.

6 Conclusion

We have introduced a new canonical code for representing hexagon graphs while being
invariant to rotations and symmetries. This canonical code is the smallest code associated
with a BFS of the graph, and we have shown how to define codes by means of constraints,
thus allowing us to generate all consistent codes with CP. We have shown that every prefix
of a canonical code is canonical and this property allows us to trigger a failure whenever the
current code prefix is not canonical.

We have also shown how to efficiently enumerate all codes that start with a given prefix,
thus ensuring that a given pattern is included in the generated graphs. However, in this case
it may happen that the prefix of a canonical code is no longer canonical, due to the fact that
patterns may specify forbidden vertices. In this case, we exhibit a weaker property which
allows us to filter some codes that cannot be extended to a canonical code.

We have experimentally compared our approach with the CP-based approach of [3], and
we have shown that it scales much better, especially when there are a lot of solutions to
enumerate.

As our approach is based on CP, new properties that must be satisfied by the generated
graphs are defined in a declarative way by means of constraints. To this aim, the user
has access to four variables for each vertex i, i.e., pi, di, xi, and yi. In some cases, it
may be convenient to be able to add constraints on vertex patterns. This is the case, for
example, for forbidding cliques of order 3 (in BGP2). In our first implementation, which is a
proof of concept, the pattern of a vertex is maintained with a backtrackable data structure
(using IStateInt Choco objects). As future work, we plan to introduce integer variables that
represent patterns in order to allow the user to easily define new constraints on patterns.

We also plan to improve the propagation of the global constraint subgraph in order to
detect some inconsistencies earlier: we could adapt Algorithm 2 (seq) in order to search
for the largest sequence in polynomial time, and trigger a failure whenever the size of this
sequence plus the number of non assigned vertices is smaller than n.
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Finally, we would like to extend our approach to other kinds of graphs such as grid graphs
(where vertices are associated with square faces instead of hexagonal faces), for example. We
hope this will pave the way for new applications of CP such as, for example, applications
that search for patterns in cellular automata as in [7].
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A Patterns used in BGP3 and BGP4

The eight patterns used in BGP3 and BGP4 are displayed below (mandatory and forbidden
vertices are displayed in black and red, respectively).
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Abstract
Stochastic Constraint Programming introduces stochastic variables following a probability distribu-
tion to model uncertainty. In the classical setting, probability distributions are given and constant.
We propose a framework in which random variables are given a set of possible distributions and
only one should be selected. A solution is obtained when all variable distributions are assigned, and
all decision variables are assigned too. In such a setting, a constraint on random variables limits
the possible distributions its random variables may take. We generalize the notion of chance as
the probability of satisfaction of a constraint, called probabilization, given variable distributions.
Probabilization can be seen as a generalization of reification in a random setting whose result is a
random variable. We define minimal arithmetic to work with stochastic variables having a variable
distribution. Using the introduced representation, our framework can in theory save an exponential
number of decisions, and represents problems that were previously not representable with finite
integer domains. Finally, we model and solve two industrial problems that require this extension –
virtual network configuration and assignment of chemical delivery – and show improvement in terms
of quality of solution and speed.
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1 Introduction

Stochastic optimization and chance-constrained programming [6, 41] are classes of problems
in which uncertainty is present. In such a setting, both decision variables and random
variables are present. Usually the probability distributions of the random variables are known
and constant. The goal is to optimize a given objective function on these variable sets and to
satisfy a set of constraints with sufficient probability. Optimal production planning, optimal
power flow, textile manufacturing, vehicle sharing, and parcel delivery services are just a few
of the many industrial areas where stochastic optimization is required [28, 29, 34, 55, 21].

Learning probabilistic distributions, or distribution learning, is a machine learning
framework that consists of learning the probability distribution that could generate a given
set of samples [22, 24]. In the usual settings, the input is a set of samples drawn from an
unknown distribution and the goal is to uncover this unknown distribution. Since, many
methods have been proposed, for example using assumptions on the class of probability
distribution to be a mixture of Gaussian or a Poisson law etc. [10, 9], or directly using neural
networks [1].
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Consider the virtual network functions design problem [12, 13, 16, 48]. The main part of
this problem consists of selecting the settings of different nodes of a network function, such
that the global computation latency is robust. Robustness here implies that the total latency
(i.e. the sum of the latency of each node) is smaller than a given value, with a probability of
at least γ. Locally, for each node the latency distribution is a given by a random variable
whose distribution is conditioned by the settings of the node. Different settings will lead to
different probability distributions for the nodes.

In this paper, we propose to work on probability distribution optimization. In this setting,
the input is a stochastic constraint optimization problem, and the goal is to find both the
assignment of the decision variables and the distribution of the random variables. This can
be seen as a generalization of distribution learning in the sense that it is not restricted to
the fitting constraints.

Constraint Programming (CP) is an expressive optimization framework often used to solve
combinatorial problems such as scheduling. In CP, optimization under chance, confidence,
probability, or statistical constraints is a prolific research area [32, 40, 38, 37, 19, 27]. The early
and impacting works on stochastic constraint programming defined the basics [14, 53]. Then,
optimization methods for chance constraints, Markov, or sampling probability distribution
constraints etc. have been proposed [49, 18, 46, 39, 30]. These works have focused either on
the multi-stage framework or on one global constraint to extend the optimization process to
a stochastic context. But they all consider random variables with fixed distributions.

In this paper, the stochastic CP framework is extended to handle distribution optimization.
It is another set of stochastic problems where random variables are given a domain of possible
distributions, from which only one should be selected. The abstract object probability
distribution variable is introduced for modeling purposes. It represents the variability of
its sample space and its probability. A random variable is assigned when its associated
probability distribution is known and fixed. Distribution variables are now one of the many
variables of the problem to solve. A solution is found when all the decision variables are
assigned, and when the distribution of all the random variables is fixed. In addition, we
propose the definition of distribution constraints, which are constraints involving distribution
variables. In the hard case, a distribution constraint restricts the possible distributions of
the random variables it involves. Using the introduced representation, our framework can
in theory save an exponential number of decisions, and represents problems that previously
could not be represented with a finite integer domain.

Then, we propose to focus on a particular case of constraints namely relational constraints.
These constraints represent the usual CP constraints, as they are defined by the set of allowed
tuples. For these constraints, we propose two new consistency levels, namely P consistency,
for probability consistency, and Ω consistency, which is a probability distribution encoding
of the usual arc consistency. A direct implication is that most existing stochastic constraints
(confidence, sampling, PMF, etc.) that consider the distribution as data of the problem,
can be upgraded to deal with variable distributions. That is why in this paper we extend
the Confidence/Chance of relational constraints [49, 30, 36]. Furthermore, the notion of
probabilization of a constraint is proposed. It is a generalization of the chance concept [49],
closely related to the reification of constraint, but for probability purpose. The probabilization
returns a Boolean random variable associated to a distribution variable representing the
probability of satisfaction of the constraint.

Distribution variables are abstract objects that can be implemented in diverse ways. We
propose an implementation of distribution variables using a direct encoding as a probability
mass function. For each possible value of a random variable, we define its probability as a
continuous variable. Then, we propose filtering rules defining the minimal arithmetic allowing
to model distribution optimization problems.
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Finally, we exploit this implementation to solve two distribution optimization problems
in the experimental section. The first problem is the stochastic design of virtual network
functions, where a simple, yet efficient, model allows to find optimal designs. The second
problem we model is a chemical delivery application. It shows how using variable distributions
allows to have smaller search trees and higher quality solutions.

2 Related Work

Chance constrained optimization [6, 31, 33] is a prolific research area. They are classes of
problems in which uncertainty is present. In such setting, both decision variables and random
variables are present. Usually the probability distributions of the random variables are known
and constant. The first definition was given for discrete distributions and piece-wise linear
functions with linear inequalities involving random variables. These inequalities had to be
maintained at a given level of probability. In these problems, the random variables can be
defined using a joint probability distribution, making them conditional on each other [8],
which usually makes the problem harder to solve. This framework has been used for the case
where the distribution of random variables was conditioned on storage levels or stream flows
[20]. Moreover, joint chance constrained optimization problem are problems that contain
multiple uncertain constraints on multivariate random variables. They are jointly required to
be satisfied with probability exceeding a threshold [54]. However, it is uncommon to have the
probability distribution defined as conditioned by the decision variables, or even constrained.
The work proposed in this paper is part of chance constrained optimization and aims to use
a constraint programming solver as a modeling and solving framework for problems where
finding a distribution that satisfies constraints is also part of the problem.

The probabilistic graphical model community proposed Bayesian networks and influence
diagram framework [35, 26] to represent the interactions between decision variables (agents)
and the probability distributions of random variables. Such influence diagrams, while
they tend to grow exponentially, could be powerful tools to represent the constrained
distribution during the optimization process. Several methods have been defined to solve
chance constrained optimization. In general, non-linear programming solvers are used [28]
and dedicated models are defined. For example, dynamic programming coupled with influence
diagram has been used to optimize agent decisions to maximize utility functions [50], in
a similar way as reinforcement learning. Furthermore, it is not unusual to use sampling
methods to approximate chance optimization [3, 33].

In CP, the chance constraint is defined as a policy under uncertainty, guaranteeing
robustness of the assignment [53, 49]. More precisely, consider a problem where first a set X1
of decision variables are assigned. Next, some random variables Y1 reveal their value, then
values are selected for the set of variables X2 and so on for as many iterations as it is required.
The solution of such problem is a tree, and no longer a tuple, for which the specified fraction
of the scenarios is satisfied. Since then, this work has been extended multiple times, [17, 18]
proposed generic algorithms reusing existing filtering for the global chance constraint. More
recently, [30] proposed to restrict the chance constraint to 2 stages optimization, as it is a
widely used approach. They proposed a filtering for the conjunction of binary inequalities.
Finally, [36] proposed to use MDDs as a new generic filtering for the confidence constraint.
All of these are different from the work proposed in this paper. On the one hand, policies
are not considered, the proposed framework is restricted to 2-stages similarly to [30, 36]. On
the other hand, the proposed framework is the first introducing variable distribution inside
of constraint programming. Note that it is one of the possible extensions to stochastic CP
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as mentioned in the Extensions section of [53]. Finally, a recent trend called randomness
optimization [23, 2, 15]. is used to optimize the randomness of the solution of a decision
problem. For example randomness of solution is important for the design of systems to
prevent reverse engineering. Random solution as a constraint is already part of the constraint
programming framework [42].

3 Distribution Optimization

3.1 Preliminaries
A sample space Ω is a set representing all the possible outcomes of an experiment. In the
general case, the probability of an outcome v ∈ Ω is noted Pr[v]. An event is a set of
outcomes from the sample space and an event space F is a set of events. Events are often
useful for characterising particular subsets of outcomes. For example, the latency of a process
might be a real number, but the probability will be usually defined by segments of time
(i.e. intervals). Finally, P is a probability function that maps each element e of F to a
probability P (e) ∈ [0, 1]. These three elements form a probability space, denoted by the
triplet ψ = (Ω,F , P ). A random variable y follows a probability space ψ if its distribution
is defined by the probability space ψ. This will be noted y ∼ ψ. When Ω is discrete or
countable, a probability mass function (PMF) pmf : Ω → R assigns a probability Pr[v] to
each value v ∈ Ω. Let Y = (y1, ..., yr) be a vector of r independent random variables. By
definition, the probability of a sample of independent variables (i.e. a tuple) is given by the
product of the probabilities of the selected values. More precisely, the probability of a tuple
t = (a1, ..., ar) is defined by: Pr[Y = t] =

∏r
i=1Pr[yi = ai]. When a subset Y is composed

of variables that are not independent, it is possible to replace them by a single random
variable Y ∗ representing their aggregation [7]. The domain of outcomes of this variable is
the Cartesian product of the outcomes of the variables of Y . So we can assume in this paper
that all random variables are independent.

In the rest of this paper, X = {x1, . . . , xr} denotes a set of variables (usually integer).
Y = {y1, . . . , yk} denotes a set of random variables. Given a constraint C, TC(v1, . . . , vn) = 1
(resp. = 0) implies that constraint C is satisfied by the tuple (v1, . . . , vn) (resp. unsatisfied).
D(x) denotes the current domain of variable x. We denote by D(x) (resp. D(x)) the upper
bound (resp. lower bound) of variable x. we denote by v ∈ D(x) the fact that a value v
belongs to the domain of a variable x. In a similar way, let ∀t ∈ D×(X) =

∏n
i=1 D(Xi)

denotes all the tuples in the Cartesian product of the current domain of variables in X.

3.2 Distribution Variables
In this section, we extend the CP framework with the definition of probability distribution
variables.

▶ Definition 1. A probability distribution variable r is a variable defining a probability space.
The domain D(r) of a distribution variable r is a set of probability spaces.

Recall that a probability space defines its sample space Ω, its event space F and the
probability P of each event in it. Distribution variables are now one of the many variables
of the problem, similar to any other decision variable. A probability distribution variable
is assigned when the probability of each value in its event space is known and fixed. Let
r be a random distribution variable. ψ ∈ D(r) denotes the membership of a probability
space ψ to the current domain of the distribution variable r. We denote by y ∼ r the
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fact that the random variable y will be drawn following the distribution variable r, and
by y ∼ ψ that random variable y follows the distribution defined by the probability space
ψ (a constant). Let y1 and y2 be two random variables such that y1 ∼ r, y2 ∼ r. Such
notation implies that they are independent and identically distributed (IID). We denote D(y)
or D(r) the domain of the probability distribution variable of random variable y ∼ r. Let
∀Ψ ∈ D×(Y ) denotes all the tuples of probability spaces in the Cartesian product of the
current domain of distribution variables of Y . Let Ωy be the set of all the outcomes such
that there exists a probability space in D(y) where the outcome has a non-zero probability.
Let ∀tY ∈ D×

Ω (Y ) denote all the tuples of outcomes (i.e. value) in the Cartesian product
of the current sample space Ωy of random variables in y ∈ Y . We note by Pr[Y = t] (resp.
Pr[Y = t]) the upper bound (resp. lower bound) probability of tuple t to be drawn by
random variables in Y . We have Pr[Y = t] = max{Pr[Y ∼ Ψ = t] | Ψ ∈ D×(Y )} and
Pr[Y = t] = min{Pr[Y ∼ Ψ = t] | Ψ ∈ D×(Y )}. All along the paper, Ψ represents a vector
of probability spaces, ψ a probability space, and Ψ[{y}] the probability space associated to
variable y in Ψ. Finally, P is the space of all the possible probability spaces (i.e. ∀ψ ∈ P).

It is interesting to note that integer variables can be represented by the proposed
distribution variables.

▶ Proposition 2. A integer variable always has an equivalent distribution variable.

Proof. Let x be an integer variable with domain D(x). Let r be a distribution variable such
that D(r) = {({v}, {∅, {v}},Pr[v]=1)|∀v ∈ D(x)}. In other words, for each value v in the
domain of x, there is a probability space whose sample space Ω = {v} is restricted to value
v. There is a one-to-one correspondence between the values in the domains of r and x, hence
x and r are equivalent. Note that the converse is not true as the number of probability
spaces in a distribution variable may not be countable. In the rest of this paper, without
loss of generality, we assume that all the integer variables have been replaced by equivalent
distribution variables for simplicity of notation. ◀

3.3 Distribution Constraints
A random distribution variable being a modeling object of CP, it can be constrained. In this
section, we propose a basic definition of distribution constraints. We use this definition to
derive a generalization of arc consistency to distribution variables. Finally, we propose to
focus on a sub-part of the constraint space, namely relational constraints, that generalizes
usual CP constraints.

Distribution constraints are all the constraints involving random variables with variable
distribution. A distribution constraint defines the possible probability spaces of the random
variables it involves. Integer constraints can always be defined by the set of satisfying tuples.
This basic notion is extended to distribution constraints:

▶ Definition 3. Let C be a constraint defined on random variables Y . C is defined by a set
of tuples TR such that ∀Ψ ∈ TR, Ψ is a tuple of valid probability spaces for the probability
distribution of random variables in Y .

▶ Example 4. Table of PMFs The following table represents a constraint on two variables:
integer variable x and random variable y ∼ r.

Pr[x = 0] Pr[x = 1] Pr[y = 1] Pr[y = 2] Pr[y = 3] Pr[y = 4] Pr[y = 5] Pr[y = 6]

1 0 1
6

1
6

1
6

1
6

1
6

1
6

0 1 1
3

1
3

1
12

1
12

1
12

1
12
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Such a table restricts the distribution variables of x and y to two probability spaces, defined
by probability mass functions. x is a integer variable encoded as a probability distribution.
The possible probabilities are either 0 or 1. y is a true random variable. Depending on the
assigned value of x, random variable y will behave differently. Note that PMFs are not the
only way to encode probability spaces.

The notion of consistency is of utmost important in constraint programming [45]. We
propose to directly map the generalized arc consistency to distribution variables. The
principal difference is that the domain of a distribution variable is a set of probability spaces,
and not a set of integers as for integer variables for example. Let C be a constraint defined
on random variables Y defined by a set of tuples of probability spaces TR. The consistency
properties are defined by:

A probability space ψ ∈ D(y) of y ∈ Y is consistent with C if it exists a support Ψ ∈ TR
such that Ψ[{y}] = ψ and Ψ ∈ D×(Y ).
A distribution variable of y ∈ Y is consistent if each probability space in its domain is
consistent.
A constraint C is generalized arc consistent if all its variables are consistent.

3.4 Relational Constraints
Relational constraints are a subset of distribution constraints. They consider the sampled
values of the random variables for the satisfiability check of the constraint. In other words,
the constraint can always be defined by the possible assignments for the integer variables
and for the random variables. They are composed of all the usual constraints of the CP
framework but generalized to variable distributions.

▶ Definition 5. Let C be a relational constraint defined on random variables Y . C is defined
by a table of tuples TC , such that ∀t ∈ TC is a valid sample that can be drawn for random
variables in Y .

Note that, for each table TC , an infinite number of probability spaces are valid. Indeed,
consider the binary constraint defined by the tuples [(0, 0), (0, 2)] on variables x and y. This
constraint restricts the sampled value of x to be 0, and restricts the probability distribution
of y to any distribution such that Pr[y = 0]+Pr[y = 2] = 1. This implies that such a
definition can be highly compressing, as an infinite number of distributions satisfy this
equality. On the other hand, such a definition is not expressive enough to restrict to all
subsets of probability spaces. For example, it is impossible to define E(y) = 3 (expectation),
or simply the constraint defined by the table from the example in section 3.3. That is the
reason why relational constraints are a subset of distribution constraints.

▶ Definition 6 (Relational Constraint). Let TC(t) = 1 if t ∈ TC and 0 otherwise be a predicate
function for constraint C. We propose to use the following definition for the relational
constraint:∫

t∈D×
Ω (Y )

Pr[Y = t]TC(t) = 1 ;
∫
t∈D×

Ω (Y )
Pr[Y = t]¬TC(t) = 0 (1)

The most intuitive description of such constraint is that it does not imply that all valid
tuples must be reached, but that all reachable tuples must be valid.

The notion of consistency of a probability space in the case of a relational constraint can
be redefined using its definition. Given a relational constraint C defined on random variables
Y by the relational table TC .
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▶ Definition 7. A probability space ψ ∈ D(y) of y ∈ Y is consistent with C if and only if:

∃Ψ ∈ D×(Y ),Ψ[{y}] = ψ ∧ ∀tY ∈ D×
Ω (Y ),Pr[Y ∼ Ψ = tY ] ≤ TC(t) (2)

It is a direct rewriting of the consistency of distribution constraints using the relational
definition (equation (1)). Then, the domain of probability variable y ∈ Y is consistent with
constraint C if all the probability spaces in it are consistent with C. Finally, a constraint C
is consistent if all the variables in it are consistent.

Let ψ be a probability space and Y ψy be a random distribution variable vector where vari-
able y is restricted to probability space ψ. A weaker consistency can be defined for relational
constraints and distribution variables. This consistency is close to bound-consistency. It
considers the bounds of the probability of events given the current domain of a distribution
variable.

▶ Definition 8. A probability space ψ ∈ D(y) of y ∈ Y is P-bound consistent with C if:

∀t ∈ D×
Ω (Y ψy ),Pr[Y ψy = t] ≤ TC(t) (3)

Then, the domain of probability variable y ∈ Y is P-bound consistent with constraint C if all
the probability spaces in it are P-bound consistent with C. Finally, a constraint C is P-bound
consistent if all the variables in it are P-bound consistent: ∀t ∈ D×

Ω (Y ),Pr[Y = t] ≤ TC(t).
Now that the P-bound consistency is defined, we propose to focus on the case TC(t) = 0 as
it is the only one able to invalidate probability spaces. Let Y\{y} be the vector of variables
Y without variable y. Let t\{y} be the tuple t without the value at the position of variable
y. Propagating the following logical implication is enough to enforce P-bound consistency
constraint C:

∀y ∈ Y, ∀t ∈ D×
Ω (Y ),Pr[Y\{y} = t\{y}] > TC(t) =⇒ Pr[y = ty] = 0 (4)

This pruning rule implies that all the probability spaces that could lead to an invalid tuple
should be removed. It will later be derived to extract filtering rules for the implementation
of this framework.

▶ Definition 9. Given a relational constraint C defined on random variables Y by the
relational table TC . A probability space ψ ∈ D(y) of y ∈ Y is Ω-consistent with C if:

∃t ∈ D×
Ω (Y ψy ),TC(t) (5)

Ω-consistency ensures that it exists at least one tuple with non-zero probability to satisfy the
predicate given the other domains. Ω-consistency, when all the variables are integer variables
encoded as distribution variables, is equivalent to global arc consistency as it finds a support
for each value in the domain of each variable.

Consider a total order on the outcomes of Ωy. Let Ωy (resp. Ωy) be the largest (resp.
smallest) element of Ωy with respect to the total order. Let D×

Ω
(Y ) denote the Cartesian

product of the intervals [Ωy,Ωy], ∀y ∈ Y .

▶ Definition 10. A probability space ψ ∈ D(y) of y ∈ Y is Ω-bound-consistent with C if:

∃t ∈ D×
Ω

(Y ψy ),TC(t) (6)

When all the variables are integer variables encoded as distribution variables and the total
order is defined by the operator <, Ω-bound-consistency is equivalent to bound-consistency.

Consider the Confidence constraint that restricts the decision variables to values such
that the probability of satisfaction is greater than a given threshold [49, 30, 36]. We propose
to generalize it by considering variable distributions for random variables.
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▶ Definition 11. Given a relational constraint C(Y ), with Y a vector of random variables
with variable distributions. Given a confidence threshold γ. The generalized confidence is:∫

t∈D×
Ω (Y )

Pr[Y = t]TC(t) > γ (7)

Previously, propagation of chance constraint was only removing values from integer variables
that could not lead to a robust enough solution. The new propagation of this constraint
will impact both the integer variables (here encoded as distributions) and the distribution
variables as probability spaces that are not robust enough will be removed too.

3.5 Views on Random Variables
We propose to make a clear distinction between the three equality operators: “y1 = y2”,
“y1 ≃ y2”, and “y1 ≡ y2 + y3”. First, y1 = y2 is the classic equality constraint, it implies that
the value of the random variables must be equal, but they are considered different random
variables. Second, the constraint y1 ≃ y2 ensures that y1 ∼ r1 and y2 ∼ r2 are equal in
law. More precisely it ensures that r1 = r2. This implies that their random assignment
might be different, but the constraint is satisfied if they follow the same distribution. From a
probability point of view, they are independent. Finally, y1 ≡ y2 + y3, where y1 is the actual
summation of the two random variables y2 and y3. From a probability point of view, they
are dependent.

Views are a useful abstraction in constraint programming [47, 51]. They prevent the
creation of intermediate variables representing some function on a variable (x′ = f(x)).
Views can be adapted to random variables directly. Consider for example the affine view
y1 ≡ ay+ b. Iterating on the values of y1 is done by iterating on the values of y and applying
the affine transformation. In addition, Pr[y = i]=Pr[y1 = ai+ b]. In the rest of this paper,
notations such as −y represent a view on random variable y.

3.6 Probability Valuation of Constraints
In constraint programming, the reification of a constraint is very useful while modeling a
problem. The reification variable is usually a Boolean variable denoting the satisfiability of
the related constraints. Other valuations of constraints have been proposed, such as soft
constraints [52, 25] and cost-version of constraints [44]. In this paper, we introduce the
probability valuation of a constraint. It is a generalization of the chance from [18] for the
case of variable distributions as the result is a Boolean random variable.

▶ Definition 12. Let C be a relational constraint defined on the random variables Y . Let pC
be a Boolean random variable. The probability valuation pC ≡ C(Y ) is defined by:

Pr[pC = 1] =
∫
t∈D×

Ω (Y )
Pr[Y = t]TC(t) (8)

Note that in the general case processing the probability of satisfaction of a constraint C is
hard because the table TC of the constraint may be untractable.

▶ Proposition 13. The probabilization of a constraint is a generalization of the reification.

Proof. Let C be a relational constraint defined on the random variables Y . Let pC ∈ [0, 1]
be a Boolean random variable such that Pr(pC = 1) = Pr[C(Y )]. The two possible values for
the reification of a constraint are satisfied and unsatisfied. If Pr(pC = 1) = 1 the constraint
is always satisfied, if Pr(pC = 1) = 0, the constraint is always unsatisfied. For all the other
values, pC represents the probability of satisfaction of the constraint. ◀
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Note that the probabilization can be seen as a random variable representing the projection
of the distribution of the random variables on the constraint. This implies that pC and the
random variables in C are dependents. In the rest of this paper, pC will be used to denote
Pr[pC = 1] when no ambiguity is present.

3.7 Multiple Stochastic Relational Constraints
In chance-constrained optimization, applications can be made of several independent parts
[54], and the joint probability must be satisfied. Those are problems for which constraints of
the problem can be split into independent ones. Let 1 be the vector of ones. More formally,
these problems can be reformulated as:

arg min
Y ∈D

F (Y ) (9)

subject to p1 ≡ C1(Y1) (10)
. . . (11)
pn ≡ Cn(Yn) (12)
Pr[(p1, . . . , pn) = 1] ≥ γ (13)

Where Yi
⋂
Yj = ∅, ∀i, j, and

⋂
being the set intersection operator. Using the probability

valuation of constraints (10-12), the global chance or confidence constraint is (13). This
implies that the hard part of the chance constraining will be located into the probability
valuation of the constraints.

4 Implementation

4.1 Distribution Implementation
In the rest of this paper, a possible implementation for the discrete random variables is
proposed. Then, propagation algorithms are proposed using the proposed implementation.
Implementing a variable distribution random variable inside a solver might be challenging,
as probability distributions can be expressed in very diverse ways [26]. Indeed, as for set or
sequence variables [11], the choice of implementation will impact the design of propagation
algorithms, and the capability of representation. For known probabilistic distributions, a
straightforward implementation would be the parameters that describe it. For example,
it would be sufficient to have two continuous variables µ and σ for a normal distribution.
Indeed, with such a definition, the propagation could use the closed form of the cumulative
distribution function and probability density functions. In this paper, for the implementation
of the distribution, we assume that random variables are independent and discrete. We
propose to represent distribution variables using probability mass function variables pmf.

▶ Definition 14. Let y be a discrete independent random variable with sample space Ωy =
{v1, . . . , vd}. The pmf variable of y is represented as a vector dy = (dyv)v∈Ωy

of continuous
variables where D(dyv) ⊆ [0, 1] represents the probability Pr[y = v] and

∑
i d
y
i = 1.

Note that using continuous or floating point variables inside of CP solver is a known topic
[5, 43]. They are usually represented by intervals. For evident reasons, integer variables are
considered encoded as usual.

▶ Example 15. Consider a Constraint Satisfaction Problem (CSP) with one decision variable
x ∈ {0, 1} and one random variable y ∈ [1, 6]. The CSP contains two constraints: one
distribution constraint and one relational constraint. The first one defines the possible
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distributions of y and is defined by the table from the example in section 3.3. The second
constraint is the constraint Pr[y > 2] ≥ γ with γ = 0.6. A solution of such a CSP is an
assignment of both x and the dyi variables that satisfies both constraints.

Consider the propagation of the y > 2 constraint. For each of the variables dy3 to dy6 , the
lower bound is set to γ − 3 1

6 = 0.1. Indeed, for each of the possible values, the cumulative
probability must be at least equal to γ. Once the propagation of constraint y > 2 is done,
the distribution constraint can filter out value 1 from x as the associated distribution is no
longer valid (dy4 = 0.1 > 1

12 ). Values of dy are assigned to the tuple ( 1
6 , ...,

1
6 ), and a solution

is found.

▶ Example 16 (Probability valuation). Consider again the problem of the previous example.
Once y is assigned, the probability valuation of constraint y > 2 is py>2 =

∑6
i=3 d

y
i = 4

6 .

4.2 Filtering Algorithms for Relational Constraints on Random variables
It is stated in [28] that the major challenge towards solving chance constrained optimization
problems lies in the computation of the probability and its derivatives of satisfying inequality
constraints. In this section, probability filtering is provided for several constraints. Assump-
tions made by these filtering algorithms are that all random variables are independent and
implemented using the distribution variables proposed in this paper. Given pC ≡ C(X,Y )
the probability valuation of a constraint, the filtering algorithm should filter inconsistent
values from X, from the distributions of Y and pC .

Let C be a relational constraint defined on the random variables Y . We propose here a
few filtering rules deriving from equations (4) and (8).

▶ Example 17 (Unary Equal). Let py=c ≡ (y = c) be the probability valuation of the equal
constraint. In such settings, Pr[py=c = 1]= dyc . In addition for all the other values, another
filtering can be defined by ∀v ̸= c, dyv ≤ 1−Pr[py=c = 1]. Note that this filtering should be
directly done by the domain definition of the probability distribution.

▶ Example 18 (Unary Greater Than). Let py>c ≡ (y > c) be the probability valuation of the
unary greater-than constraint. We propose to decompose equation (8) into two equations
on the bounds of the random variable: py>c ≥

∑Ω(y)
vi=c+1 d

y
vi

; py>c ≤
∑Ω(y)
vi=c+1 d

y
vi

. This
rewriting is usual in CP, and linear propagation can be applied. Moreover, analogously to
the reification, filtering can also be defined for values lower than, or equal to c. Indeed, as
py>c is the probability of satisfaction of the constraint, py≤c = 1 − py>c is the probability of
violating the constraint. This implies that the two filtering rules above should be used to
propagate dyv, ∀v ≤ c.

▶ Example 19 (Binary Equal). Let py1=y2 = Pr[y1 = y2] be the probability valuation of the
equal constraint between two random variables. A filtering can be extracted from equation:
py1=y2 =

∑
i d
y1
i d

y2
i .

▶ Example 20 (Constraints y ≃ y1 op y2). y ≃ y1 + y2 is the definition of the distribution of
variable y from the distributions of variables y1 and y2. It is a probability-based constraint.
In the general case, the probability distribution of the sum of two independent variables is
given by the convolution: Pr[y = k] =

∑∞
i=−∞ Pr[y1 = k − i]Pr[y2 = i]. This convolution

can be used to extract propagation rules for the ternary constraint. For each value vk of
the possible values of y, a constraint of the form of dyvk

=
∑
i d
y1
vk−i

dy2
vi

is posted. Note that
the same equation can be defined for the multiplication, subtraction, division, and modulo
constraints.
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▶ Example 21 (Constraints y = y1 op y2). For example, y = y1 + y2 is the test of equality
between the sampled values of y and the sum of the sampled values of y1 and y2. This
constraint can be expressed using the two constraints above. First, let y1+2 ≡ y1 + y2 be the
distribution of the addition of y1 and y2. Second, let py=y1+y2 be the probability valuation
of y = y1+2. Finally, py=y1+y2 = Pr[y = y1+2].

4.3 Filtering Relational Constraints on Integer and Random Variables
Consider a relational constraint C on decision variables X and on random variables Y .

▶ Proposition 22. Set the variable dyi
vi

from yi ∈ Y for constraint C to 0 if:

∀tX ∈ D×(X), ∃tY ∈ D×
Ω (Y ), tYi

= vi ∧
∏

∀vj∈tY\{vi}

dyj
vj
> TC(tX , tY ) (14)

This proposition is a direct rewriting of equation equations (4) and (8). In addition to the
classical filtering of values in the decision variables if they do not have a valid tuple, another
filtering should be defined.

▶ Proposition 23. Filter value vi from the domain of xi ∈ X for constraint C if:

∃tY ∈ D×
Ω (Y ), ∀tX = (. . . , vi, . . . ) ∈ D×(X),

∏
∀vj∈tY

dyj
vj
> TC(tX , tY ) (15)

Let pC(X,Y ) ≡ C(X,Y ) be the probability valuation of the constraint. A direct simple
filtering can be extracted from equation (8). In addition, the filtering should be propagated
back to the decision variables, for example:

▶ Proposition 24. Filter value vi from the domain of xi ∈ X for constraint C if:

∀tx = (. . . , vi, . . . ) ∈ D×(X),Pr[C(tx, Y )] ̸= pC (16)

Here, equation (8) is applied to each tuple containing the value vi. If none of them satisfies
the probability valuation, then the value can be safely removed. Recall that pC represents
Pr[pC = 1]. Moreover, in general, the ̸= will be checked for > and < to filter the bounds of
the variables. The exact rule depends on the expression of the satisfaction of the constraint
in terms of distribution variables, as shown in the following examples.

▶ Example 25 (Lower Than). Let px<y ≡ (x < y) be the probability valuation of the
lower-than constraint. This constraint is one of the most used in chance optimization as
it can be used to model the deviation of scheduled amounts [8]. Analogously to the equal
constraint, the pruning of variable x can be defined by the following rule: x < max{vj ∈
x |

∑Ω(y)
vi=vj

D(dyvi) > D(px<y)} First, the opposite rule can also be defined by using D(px<y).
Then, note that this pruning rule, when both the dyv and px<y are fixed, is equivalent to the
pruning of [30]. In addition, as the authors proposed, a closed formula may be used to directly
extract the bounds of x. Now that x is propagated, the probability distribution and valuation
should be filtered. This can be done by using the following sum: px<y =

∑Ω(y)
vi=x+1 d

y
vi

.

▶ Example 26 (Equal). Let px=y ≡ (x = y) be the probability valuation of the equal
constraint. First the pruning of variable x can be defined using the following rule:

∀v ∈ Ω(y), D(dyv) < D(px=y) ∨D(dyv) < D(px=y) =⇒ x ̸= v (17)
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Then, the pruning of the probability valuation px=y can be defined using:

px=y ≥ min({D(dyv)|∀v ∈ x}); px=y ≤ max({D(dyv)|∀v ∈ x}) (18)

Finally, the pruning of the distribution of y is an adaptation of the usual propagation:

x = v =⇒ dyv = px=y (19)

4.4 Rewriting of constraints

In the previous sections, several constraints and propagation algorithms have been proposed.
In this section, it is shown how to combine these constraints to model most use cases. Consider
the not equal constraint. Even though no dedicated algorithm has been defined, propagation
can be based on other ones. Let px ̸=y ≡ (x ̸= y) be the probability valuation of the not-equal
constraint, px ̸=y = 1 − px=y. This is analogous to the reification, indeed, (x1 = x2) =
¬(x1 ̸= x2). Several more constraints can be reformulated, for example the greater-less-than
relationship: px≤y = px−1<y; px>y = p−x<−y (alternatively, px≥y = p−x−1<−y). The in-not
in relationship: py ̸∈X = 1−py∈X . And the many logical relationships such as pc1∧c2 = pc1pc2 ;
pc1∨c2 = 1−(1−pc1)(1−pc2); and pc1⊕c2 = pc1(1−pc2)+(1−pc1)pc2 . With ⊕ the xor logical
operator. Note that some of these reformulations are direct encodings of the probability
rules, such as for the and and or constraints.

5 Application: Virtual Network Design

In virtual network functions design, the main performance criterion is the total latency of
the virtual network [12, 13, 16, 48]. In such a graph, each node is either a machine or a
virtual machine, and has to process blocks of data. The processing time of a data block by
a node is following a random distribution, which is conditioned by its configuration (both
hardware and software). The global latency is the sum of the processing times of the nodes
of the network. The goal of the virtual network design problem is to set the configurations
for all the nodes such that the global latency is below L milliseconds with probability γ,
while the cost is minimized and other configuration constraints are satisfied.

Figure 1 Example of virtual network graph.

Consider the network from Figure 1. This network contains 4 nodes (c1, ..., c4). In this
graph, when a data block needs to be sent, it will go through c1, then c2, then c3 and
finally c4. Note that in practice, the depth of the graph is often shallow. In our industrial
application the number of nodes was 3. Moreover, each node contains several settings (cpu
redundancy, queue maximum read times, queue batch pkt num, dpe, etc.) The latency of a
node is influenced by all these settings. In addition, each node serves a particular role, and
some operations must be done in at least one node. All of these requirements are contained
in the constraints on the settings variables. The influence of the setting variables on the
random variables’ distribution is encoded as a table Ts for each node.
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5.1 Model
Let N = (n1, ..., nk) be the nodes to configure. Let yi ∼ Dyi be the random variable
representing the latency of node ni. Let S = (S1, ...Sk) with Si = si1, ..., s

i
m being the

settings variables associated to each node. Let L be the maximum latency and γ the minimal
probability. Let acci ∈ (acc2, ..., acck) be the accumulated sum of the i first random variables.
Let ci be the cost associated with node ni.

arg min
S∈Z,Y ∈P

∑k
i=1 ci (20)

such that Table(Si, ci, yi, Ts), ∀i ∈ [1, k] (21)
acc1 ≃ y1 (22)

acci ≃ acci−1 + yi, ∀i ∈ [2, k] (23)
Pr[acck < L] ≥ γ (24)
ValidSettings(S) (25)

5.2 Data
A large number of configurations have been heavily sampled to extract the distribution of
probability. Once those were built, they have been used to extrapolate to unknown configur-
ations. The latency is given in micro-seconds, with values in the set (50, 100, ..., 1450, 1500).
Each node may be defined by around 100 configurations (valid assignment of the settings).
The number of nodes varies between 2 to 5. Two algorithms are compared. First, Variable
is the work proposed by this paper, where distribution variables are used. The second one
is Fixed, it is an adaptation of the algorithm from [30, 36]. In Fixed, the distributions are
considered unknown until all the setting variables used to define them are instantiated. It can
be seen as a form of generate and test. The search strategy is the same for both algorithms.
It starts by assigning the possible settings. Note that this is the only fair comparison with
Fixed as the setting variables are the one influencing the possible distributions. In the general
case, better strategies could be defined for Variable. Time out is set to 30 minutes. The
integer CP solver used for all the experiments of this paper is our internal solver. The
continuous part is solved by call to IBEX [4], analogously to CHOCO-solver [43].

5.3 Results
First, consider the results from Table 1. As we can see, finding a solution for the fixed model
is not too hard, but as the size increases, it is not able to find the optimal one, or to prove it.
In contrast, for the variable model, the optimal solution is always found and proved. The
main reason is that invalid distributions are removed by the latency constraint before any
decision leading to them is taken.

Table 1 For each instance set, the values are #SAT (#OPT). The last row is the mean time in
seconds for proving optimality.

# Nodes 2 3 4 5
Fixed (baseline) 30 (30) 30 (22) 30 (0) 30 (0)
Variable 30 (30) 30 (30) 30 (30) 30 (30)
Variable avg time 0.57 s 10.2 s 125.4 s 752.3 s
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Moreover, consider the plots from Figure 2. Instances are sorted by size. On the middle,
the comparison on the objective value is made. As we can see, the objective value of the
fixed method is optimal for small instances, even if no proof can be reached. Then, for larger
instances, it is often quite far from the optimal (objective ∈ [0, 3]). In addition, on the left
and right plots, it is seen that most of the time, the fixed method reaches the timeout. Note
that the time increases exponentially with the number of nodes for both methods, but not
the number of decisions for the variable method.
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Figure 2 Instances are ordered w.r.t. size. (left) Number of decision (log base 10). (middle) Best
objective value comparison. (right) Running time (log base 10).

In conclusion, this experiment shows that the variable method proposed in this paper
is better both in terms of quality of solution and in terms of time. In practice, solving the
industrial instances of size 3 takes 17.75 seconds on average for the optimal solution.

6 Application: Chemical Deliveries

The following problem is part of a pipeline of chemicals processing and is composed of
two assignment problems. First, chemicals are received by the factory every day. Once
received, they must be stored into containers. These containers are restricted to some type of
products. Each container already contains a known amount of products and has a maximum
storage capacity. In addition, for some chemicals the total amount delivered is larger than
the remaining storage capacity of the containers, given their currently stored quantities.
In practice, this is not an issue as the chemicals are also processed, hence emptying the
containers. The second problem concerns product assignment. Indeed, the chemicals are
used to manufacture bio-sourced bases for perfumes. Those are later used by home-perfume
makers to create reeds, candles, etc. A dozen of teams are spread over 4 buildings. Each
building/team is specialized in a set of types of product, yet there are overlaps. Every day,
in addition to the incoming deliveries, the factory must produce a given amount of several
products. Selecting which team should work on which product is part of the problem to
solve. The probability of emptying a container depends on the products associated to the
teams in the building. A solution is an assignment of products to teams and deliveries to
containers such that the stored quantity in each container minus the quantity that will be
used does not exceed the maximum capacity with a high confidence.

More formally, this is an assignment problem. Each product p ∈ P must be produced by
a team t ∈ T . Each team t ∈ T has a work capacity Wt, and work in a building bt ∈ B. Each
product w requires an given amount of work wp, and is compatible to a subset of the teams
Tp ∈ T . Each delivery j ∈ D stores a quantity qj in a container ci ∈ C. Each container ci
has a maximum capacity Ci. Each container ci will be emptied in parallel of a quantity yi
unknown in advance. The exact quantity yi is unknown, but its distribution is influenced by
the products processed in its building.
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6.1 Data
The dataset contains 40 instances, with |P | ∈ [15, 25], |C| ∈ [4, 10], T = 12,B = 4,|D| ∈
[20, 50]. Maximum running time is set to 30 minutes. The dataset is based on past data for
the generation of probabilistic distributions. Figure 3 (left) shows an example of a set of
distribution for one container. As we can see, the more the building has to make products,
the higher the chance to consume.

6.2 Model
For each product p, variables pp,t∀t ∈ T indicates if the product is made by the team t. For
each delivery d, variable dd,c∀c ∈ C indicates if the delivery is stored in container c. For
each container c, yc is the emptying random variable. For each building b, qb is the quantity
of product produced in the building. Let q = (q1, . . . , q|B|) be a vector of all qb variables.
Let xc∀c ∈ C be the additional capacity required by container c such that it is no longer
overflowing.

arg max
x∈Z,Y ∈P

γ (26)

Such that
∑|T |
t=1 pi,t = 1, ∀i ∈ P (27)∑|P |

i=1 pi,twi ≤ Wt, ∀t ∈ T (28)

qb =
∑|P |
i=1

∑
t∈{ti|bti

=b} pi,t, ∀b ∈ B (29)∑|D|
i=1 di,cqi ≤ Cc + xc, ∀c ∈ C (30)∑|C|

c=1 di,c = 1, ∀i ∈ D (31)
Table(q, yc), ∀c ∈ C (32)

pxc≤yc
≡ xc ≤ yc, ∀c ∈ C (33)

Pr[(px1≤y1 , . . . , px|C|≤y|C|) = 1] ≥ γ (34)

6.3 Results
Figure 3 shows the results of the fixed and variable (this paper) methods. First, it is
interesting to see that for some instances a confidence of 1 can be found. For these instances,
no consumption was required to find a solution. In contrast, we can also see that for some
instances, is is hard to find solutions with more than 2 percent confidence. Those instances
are hard instances, where the delivered amount is too large. Then in the middle of the plot,
it is shown that the confidence of solutions found by the variable method is higher in general
than the fixed method. In addition, the variable method makes one order of magnitude less
decisions to find better or equivalent solutions. When profiled, the reason why less decisions
are made is the repetitive call to the continuous integrated solver. An actual hybrid CP
solver would be drastically more efficient. Nevertheless, even with this drawback, in both
experiments, the variable showed significant improvements in term both of quality of solution
and time.

7 Conclusion and Future works

This paper proposed to extend the CP framework to distribution optimization. First, random
variables have been extended to the case of distribution variables, then the CP constraints
have been extended to deal with this extension. We proposed a generalization of integer
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Figure 3 Instances are ordered w.r.t. size. (left) Range of probability distributions for a random
variable having 9 possible values. The gradient of color indicate the increase of q. (middle) Best
confidence comparison. (right) Number of decisions (log base 10).

variables and new consistencies for probability distributions. In addition, generic filtering
algorithms have been proposed, pruning invalid distributions. We defined an implementation
based on a probability mass function decomposition and the minimal arithmetic to model
most problems, together with the associated filtering algorithms. Finally, as shown in the
experimental section, we used the proposed framework to solve two optimization problems
where the distributions of probability are not fixed at the beginning of the problem.

The main future direction is to no longer restrict the search to a finite set of distributions
using a table as done in our experiments, but to be able to search directly into the distribution
space, which is closer to known methods in machine learning. Doing this would bring CP
as one of the main frameworks to do constrained distribution learning, and will require
hybridization of CP solvers. Other future directions include the design of specialized global
constraints filtering, the generalization of the reuse of existing filtering algorithms [18], and
the implementation of different types of encoding of the probability distribution variables.
Another important direction is the encoding of dependent random variables. In this paper,
we purposely introduced the event space of probability space to encode the dependency
between random variables. In future works, constraints on the event spaces will lead to
efficient dependency implementation. Finally, this paper is restricted to 2-stage policy, it
will be important in the future to extend it to multi-stages.
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Abstract
In the (maxmin) p-dispersion problem we seek to locate a set of facilities in an area so that the
minimum distance between any pair of facilities is maximized. We study a variant of this problem
where there exist constraints specifying the minimum allowed distances between the facilities. This
type of problem, which we call PDDP, has not received much attention within the literature on
location and dispersion problems, despite its relevance to real scenarios. We propose both ILP and
CP methods to solve the PDDP. Regarding ILP, we give two formulations derived from a classic
and a state-of-the-art model for p-dispersion, respectively. Regarding CP, we first give a generic
model that can be implemented within any standard CP solver, and we then propose a specialized
heuristic Branch&Bound method. Experiments demonstrate that the ILP formulations are more
efficient than the CP model, as the latter is unable to prove optimality in reasonable time, except for
small problems, and is usually slower in finding solutions of the same quality than the ILP models.
However, although the ILP approach displays good performance on small to medium size problems,
it cannot efficiently handle larger ones. The heuristic CP-based method can be very efficient on
larger problems and is able to quickly discover solutions to problems that are very hard for an ILP
solver.
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1 Introduction

Maximum diversity problems arise in many practical settings from facility location to
telecommunications and social network analysis [28]. Arguably, the most famous such
problem is the (maxmin) p-dispersion problem (PDP) [29]. In the PDP we are given a set
of candidate locations P = {1, 2, . . . , n} for p facilities and an n× n matrix (D[i, j]), i, j ∈
P with distances between candidate locations i and j. The goal is to select p items from
P to locate the facilities such that the minimum distance between any pair of facilities is
maximized.

In practice, the PDP occurs whenever a close proximity of facilities is dangerous or for
other reasons undesirable. A standard application is concerned with the location of power
plants, where we wish to minimize the risk of losing multiple plants in the event of an accident
or an enemy attack. To achieve this, locations for the plants are desired so that interplant
distances are as large as possible. Similar applications arise in the military sector, as it
is common to scatter military installations in order to make it difficult for the enemy to
disarm all of them. In a more peaceful context, we may wish to disperse branches of the
same franchise, so that mutual competition between similar shops is minimized, or public
facilities which have overlapping areas of service, e.g., schools, hospitals, electoral districts,
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etc. [25, 16, 28]. In telecommunications, we may wish to disperse radio transceivers to service
cellular phones so as to minimize interference. Another, more recent, area of application
for the PDP, is if distances are not interpreted physically but as a measure of the diversity
between members of a group [33].

Another dispersion problem that has been deeply studied is the maxsum p-dispersion
problem, called p-defence problem in [29], where we seek to locate p facilities so that the
sum of distances between the facilities is maximized [25]. Although the maxsum variant also
has many applications, it is recognized that the PDP is better suited to model situations
where the close proximity of facilities must be definitely avoided (e.g. for safety reasons).
This is because maximizing the sum of distances does not guarantee that no two facilities
will be placed close to each other [25].

In this paper we are concerned with a variant of the PDP where hard constraints specifying
minimum allowed distances exist between facilities. We call this problem p-dispersion
with distance constraints (PDDP). Although this problem was put forward by Moon and
Chaudhry who fist systematically studied location problems with distance constraints and
coined the term p-dispersion [29], it has been rather ignored since, despite its relevance to
real applications. Distance constraints in dispersion problems can stem from operational
needs and regulations, such as clearance distances for safe chemical storage [1], separation
distances between packages containing radioactive materials [40], or between portable fire
extinguishers in an area [41]. Motivated by such applications, a recent study by Dai et
al. considers p-dispersion with distance constraints in the context of circle placement in
non-convex polygons [10].

To further motivate our study of the PDDP, consider a scenario where p identical power
plants need to be located in an area. Assume that due to safety reasons, any two plants
must be more than x km away from one another. If this problem is modeled and solved as a
PDP then either of the following two results will hold: 1) The optimal solution places the
two closest facilities y ≤ x km apart. Then the original problem is infeasible, as the safety
requirements cannot be satisfied for all pairs of facilities, 2) The optimal solution places the
two closest facilities y > x km apart. Then, as y is the minimum distance between any two
plants, all the safety requirements are satisfied and the original problem has been solved.
But what if all power plants to be located are not identical? What if there are differences in
the plants’ sizes, the volume of power generated, the waste produced, etc.?

In such cases, the safety requirements regarding the minimum allowed distances between
plants may not be the same for all pairs of plants. For instance, the allowed distance between
smaller and less dangerous plants will probably be smaller than between larger ones. Hence,
the PDP does no longer suffice to model the problem. This is because an optimal solution
that places the closest plants y km apart does not guarantee that the safety distances will
be satisfied for all pairs of plants. The case of non-identical (heterogeneous) facilities has
not received much attention in the p-dispersion literature, as the predominant explicit or
implicit assumption is that the facilities to be located are indistinguishable (homogeneous).
But in practice, not all power plants will be identical, and the same holds for the branches of
a franchise, for public facilities, and almost any type of facilities that we want to disperse.

We start our study of the PDDP by giving two ILP formulations. The first one is based
on the classic formulation for p-dispersion by Kuby [25], while the second is based on a
state-of-the-art model proposed by Sayah and Irnich [34]. Both these formulations are
extended to deal with heterogeneous facilities and to include distance constraints.

Then, we describe a generic CP model for the PDDP that can be implemented within
any standard CP solver. For the purposes of this study, we have implemented this model
in OR-Tools and Choco. Experimental results demonstrate that the ILP formulations,
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implemented in Gurobi, are more efficient than the CP solvers, as the latter find it very hard
to prove optimality, even for small problems, and are usually slower in locating solutions of
the same quality as the ILP solver.

We further explore the applicability of CP technology by introducing a specialized heuristic
method based on CP. Specifically, using a simpler model of the problem, with fewer variables
and constraints, we have devised a specialized Branch&Bound mechanism, which has been
implemented in a custom CP solver. This method tries to prune the search tree early by
estimating the best cost that can be achieved if the sub-tree rooted at the currently visited
node is explored. If the estimated cost does not improve the cost of the best solution found
so far then the current branch is abandoned. The estimation is carried out through a simple
greedy assignment of the remaining variables. This reasoning achieves significant search tree
pruning, albeit by sacrificing completeness.

In our experimental analysis we first compare the ILP formulations to the CP approaches
on randomly generated problems with 5-30 facilities and at most 80 potential location points.
Results show that the CP model implemented in the standard CP solvers OR-Tools and
Choco cannot compete with the ILP formulations implemented in Gurobi, as the latter solver
is quite efficient in all but the largest class that contains 30 facilities and 80 location points.
The heuristic CP approach very quickly finds solutions, often optimal ones, on all instances,
including those of the hardest class. We then consider harder problems that are generated
using the p-dispersion MDPLIB benchmark library as basis [28]. Results demonstrate that
the ILP formulations are efficient on problems with 10 facilities and 100 potential locations,
but fail to efficiently handle larger problems. On the other hand, the heuristic CP approach
can trivially find solutions of good quality on smaller instances, while it can also handle larger
instances that are very hard for the ILP solver, finding solutions of much better quality.

2 Related Work

The maxmin p-dispersion problem, which is NP-hard on general networks for an arbitrary
p [18], was originally mentioned by Shier, as far back as 1977 [36]. However, the term
p-dispersion first appeared in the analysis of location problems with distance constraints
by Moon and Chaudhry [29]. The first ILP solution was proposed by Kuby [25] while the
first specialized algorithm was given by Erkut [15]. Kincaid proposed simulated annealing
and tabu search methods [24], Ghosh proposed a multi-start heuristic [18] and Resende et
al. applied the GRASP methodology to the maxmin problem [32]. More recently, Sayyady
& Fathi [35] and Sayah & Irnich [34] proposed ILP approaches to the maxmin problem,
which are able to solve large size problems, and as argued in the comprehensive review on
OR methods for dispersion problems given in [28], they tend to make heuristic approaches
obsolete, as they can handle problems of similar size.

Regarding distance constraints, Moon and Chaudhry were the first to systematically study
location problems with distance constraints [29]. The p-dispersion problem with distance
constraints was mentioned by them as a problem that can arise in real-life scenarios, but no
approaches towards solving it were proposed. Recently, Dai et al. revisited this problem as
part of a study on circle (i.e. facility) dispersion in non-convex polygons [10]. A heuristic
method, inspired by the mechanics of the n-body problem in physics, was proposed for the
plain p-dispersion problem in non-convex polygons, and this method was also adapted to the
case where distance constraints exist between pairs of circles.

Distance constraints have also been considered in the context of other location problems.
Some early works considered maximum distance constraints between the demand nodes and
the facility locations [7, 8, 23, 38]. Tansel et al. studied the distance constrained p-center
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problem for the case where the network is a tree [38]. Chaudhry et al. proposed heuristics
for selecting a maximum-weight set of locations such that no two are closer than a given
distance from each other [6]. Moon and Papayanopoulos considered the problem of locating
two facilities so as to minimize the maximum of combined Euclidean distances to unweighted
existing points when the facilities must be separated by at least a specified distance [30].
Comley studied the problem of locating a small number of heterogeneous semi-obnoxious
facilities that interact with each other as well as with other existing facilities [9].

Berman and Huang studied the problem of locating homogeneous obnoxious facilities on
a network so as to minimize the total demand covered, subject to the condition that no two
facilities are allowed to be closer than a pre-specified distance [2]. Drezner et al. proposed
the Weber obnoxious facility location problem where we seek to locate one facility so that
the weighted sum of distances between the facility and demand points is minimized, with
the additional requirement that the facility location is at least a given distance from demand
points because it is obnoxious to them [13]. Drezner et al. considered a continuous multiple
obnoxious facility location problem where a given number of facilities must be located in a
convex polygon with the objective of maximizing the minimum distance between facilities
and a given set of communities subject to distance constraints between facilities [14]. Welch
and Salhi studied the location of obnoxious facilities with interactions between them [39].
Location problems with distance constraints that restrict the placement of facilities near
certain demand points have also been studied, e.g. [31, 4, 27].

There are very few CP-related methods for facility location problems [17, 5, 37] and none
of them concerns p-dispersion problems, with or without distance constraints. Regarding our
heuristic CP-based method, there are works that follow a similar approach, i.e. sacrificing
the completeness of a CP solver to solve optimization problems faster [22, 26, 19]. However,
these works typically do this through a more local reasoning, e.g. by adding extra constraints.

Finally, the p-median problem with distance constraints, originally put forward in [29], is
being studied in a paper that is currently under review (details are suppressed to preserve
anonymity). In such a problem, there exist both facilities and clients that are serviced by
the facilities. The goal is to locate p facilities so that the sum of the distances between the
clients and their closest facility is minimized. As here, ILP and CP models for this problem
are proposed and compared. Results demonstrate that the ILP approach is by far the most
efficient on problems with homogeneous facilities, but it is outperformed by a heuristic CP
approach on some classes of problems with heterogeneous facilities.

3 Background

In a p-dispersion with distance constraints problem (PDDP), p facilities in a set of facilities
F are to be placed in an area. We assume that the set P of potential location points for the
facilities is known. We also assume that the distance between each pair of potential locations
(i, j) is given in a matrix D. Between each pair of facilities fi and fj there is a distance
constraint dis(fi, fj) > dij specifying that the distance dis(fi, fj) between the points where
the facilities fi and fj are located must be greater than dij , where dij is a constant. To
summarize, in a PDDP we have:

P : the set of candidate facility locations.
F : the set of facilities to be located.
p: the number of facilities to be located.
D[i, j]: the distance between any two candidate facility locations.
dij : the lower bound in the allowed distance between each pair of facilities (i, j), where
i, j ∈ F .
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The distance between two points i and j can be given by the straight-line (Euclidean)
distance, e.g. for the location of hazardous facilities, or by the shortest path in a street
network, e.g. for the location of franchises, or by any other suitable metric. The methods
we propose do not depend on any particular distance measure because, as is common in
the literature, we assume that the pairwise distances between all possible location points
are given in a 2-d distance matrix D. However, if necessary, instead of precomputing the
distances and storing them in a distance matrix, they could be computed “on the fly”, under
the condition that this operation takes constant time. This holds for Euclidean or Manhattan
distances given the coordinates of the points, but it does not hold for the shortest path in a
network.

A common assumption in the literature on location problems with distance constraints is
that the lower distance bound dij is fixed to a specific value for all the constraints between
facilities. This is a reasonable assumption in the case where the facilities are homogeneous,
and therefore in essence indistinguishable, but it is not always realistic, especially when
the facilities have different properties, as for example in [1, 40]. In case the facilities are
heterogeneous, the distance bound may vary from constraint to constraint.

The goal in a PDDP is to locate each facility to a node so that the minimum distance
between any two facilities is maximized subject to the satisfaction of all the distance
constraints.

4 ILP models

We first give an ILP model for the PDDP, based on the classic formulation of Kuby for
p-dispersion [25] and then we give a model based on the state-of-the-art model of Sayah
& Irnich [34]. Both formulations are extended to deal with heterogeneous facilities and to
include distance constraints between facilities.

4.1 Kuby based model

We make use of the following additional notation:
C = {(i, j, f1, f2) | i, j ∈ P, f1, f2 ∈ F, D[i, j] ≤ df1f2} , ∀i ∈ P, ∀j ∈ P , and for each pair
of facilities (f1, f2): the set of quadruples (i, j, f1, f2) s.t. facilities f1 and f2 cannot be
placed in facility sites i and j, respectively, because i and j are not in a safe distance
between each other with respect to the allowed distance between f1 and f2.
xij = 1 if a facility j ∈ F is located at a facility site i ∈ P and 0 otherwise.
yi = 1 if any facility is located at a facility site i ∈ P and 0 otherwise.
b is the minimum distance between the facilities that we aim to maximize.

For any i ∈ P , variable yi shows whether or not facility site i will host any facility. These
are the variables that are present in Kuby’s formulation for p-dispersion. Given that facilities
are considered identical in the p-dispersion literature, in Kuby’s model we only need to know
whether a site will host a facility or not. But in the case of the PDDP, where facilities can be
different and distance constraints exist between them, we also need to know which particular
facility will be hosted by a site. Hence, we introduce |P | × |F | variables, i.e. one variable
xij , ∀(i, j), i ∈ P, j ∈ F , in order to know whether or not a specific facility j ∈ F is located
at a facility site i ∈ P .
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The extension of Kuby’s model to capture the PDDP can be expressed as:

max b (1)
s.t.

∑
i∈P

yi = p (2)

b ≤M (2− yi − yj) + D[i, j] ∀i, j ∈ P, j > i (3)∑
j∈F

xij = yi ∀i ∈ P (4)∑
j∈F

xij ≤ 1 ∀i ∈ P (5)∑
i∈P

xij = 1 ∀j ∈ F (6)

xif1 + xjf2 ≤ 1 ∀ (i, j, f1, f2) ∈ C (7)
xij ∈ {0, 1} ∀i ∈ P, ∀j ∈ F (8)
yi ∈ {0, 1} ∀i ∈ P (9)

b ≥ 0 (10)

The objective function 1 aims at maximizing the shortest distance b between located
facilities. Constraint 2 specifies that p facilities are to be located. Constraint 3 guarantees
that b ≤ D[i, j] whenever both locations i and j are chosen via yi = yj = 1 for the location
of facilities, where M represents a Big M constant. Variables b and yi, i ∈ P , the objective
function 1 and Constraints 2, 3, 9 and 10 form the original formulation of Kuby for the
p-dispersion problem.

As we explained, in the case of the PDDP, we add variables xij , ∀(i, j), i ∈ P, j ∈ F , in
order to know whether or not a specific facility j ∈ F is located at a facility site i ∈ P .
These variables are linked to the yi variables via Constraint 4, which specifies that if any
facility j is located at a facility site i, then variable yi equals 1 and 0 otherwise. To ensure
that no two variables xij and xij′ are set to 1 (i.e. each facility site must host at most one
facility), we add Constraint 5. To ensure that no two variables xij and xi′j are set to 1
(i.e. each facility must be hosted at exactly one facility site), we add Constraint 6. Finally,
Constraint 7 models the distance constraints between facilities. It ensures that each facility
is at a safe distance from all other facilities by not allowing two facilities f1 and f2 to be
established at sites that are at a distance closer than the allowed distance between f1 and f2.
These pairwise constraints are a special case of clique constraints and are an efficient option
to model distance constraints in ILP, as demonstrated in [2].

The original Kuby model for the p-dispersion problem has |P |+1 variables and
∑|P |−1

i=1 i+1
constraints, while our extended Kuby based model for the PDDP has |P | × |F | + |P | + 1
variables and 2×|P |+ |F |+

∑|P |−1
i=1 i + 1 constraints, without considering Constraint 7 which

can give (|P | × |F |)2 constraints.

4.2 Sayah and Irnich based model
We now present a model for the PDDP based on the PDP model proposed by Sayah and
Irnich, which utilizes the fact that the optimal distance is equal to at least one of the entries
of the distance matrix [34]. Let us introduce some additional notation for this model:

E = {(i, j) ∈ P × P : i < j}: the set of edges between any two candidate facility locations.
E (l) = {(i, j) ∈ E : D[i, j] < l}: a subset of edges given any distance l.
L0 < L1 < · · · < Lkmax : the different nonzero values in D[i, j]. The associate index sets
are K = {1, 2, · · · , kmax} and K0 = {0} ∪ K. By definition, ∅ = E

(
L0)

⊊ E
(
L1)

⊊
· · · ⊊ E

(
Lkmax

)
⊊ E holds.

zk = 1 if the location decisions satisfy a minimum distance of at least Lk, k ∈ K and 0
otherwise.
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Similar to the Kuby model, variable yi, for any i ∈ P , shows whether or not facility site i

will host any facility. In addition, variable zk, for any k ∈ K, indicates whether the location
decisions satisfy a minimum distance of at least Lk. These are the variables that are present
in the formulation of Sayah and Irnich for p-dispersion. As we explained in Kuby’s model,
we also need to introduce |P | × |F | variables, i.e. one variable xij , ∀(i, j), i ∈ P, j ∈ F , in
order to know whether or not a specific facility j ∈ F is located at a facility site i ∈ P .

The model for the PDDP using Sayah and Irnich’s model as basis can be expressed as:

max D0 +
∑

k∈K

(
Lk − Lk−1)

zk (11)

s.t.
∑
i∈P

yi = p (12)

zk ≤ zk−1 ∀k ∈ K, k > 1 (13)
yi + yj + zk ≤ 2 ∀k ∈ K, (i, j) ∈ E

(
Lk

)
\ E

(
Lk−1)

(14)∑
j∈F

xij = yi ∀i ∈ P (15)∑
j∈F

xij ≤ 1 ∀i ∈ P (16)∑
i∈P

xij = 1 ∀j ∈ F (17)

xif1 + xjf2 ≤ 1 ∀ (i, j, f1, f2) ∈ C (18)
xij ∈ {0, 1} ∀i ∈ P, ∀j ∈ F (19)
yi ∈ {0, 1} ∀i ∈ P (20)
zk ∈ {0, 1} ∀k ∈ K (21)

The objective function 11 aims at maximizing the shortest distance between located
facilities. Constraints 12, 15, 16, 17, 18, 19 and 20 are also present in the Kuby based
formulation, while Constraints 13, 14 and 21 replace Constraints 3 and 10. Constraint 13
models the consistency between the zk variables in the sense that the zk variables are
non-increasing in k, while Constraint 14 ensures that no pair (i, j) of locations with distance
D[i, j] < LK is chosen simultaneously. The consistency Constraint 13 specifies that any
feasible solution fulfills that there exists a unique k ∈ K0 with z1 = z2 = · · · = zk = 1 and
zk+1 = zk+2 = · · · = zkmax

= 0. Variables yi, i ∈ P , and zk, k ∈ K, the objective function 11
and Constraints 12, 13, 14, 20 and 21 form the original formulation of Sayah and Irnich for
the p-dispersion problem.

The addition of variables xij , ∀(i, j), i ∈ P, j ∈ F , in the revised Sayah and Irnich model
for the PDPP yields Constraints 15, 16, 17, and 19, as already explained in Kuby’s model.
In addition, Constraint 18 models the distance constraints between facilities.

The original model of Sayah and Irnich for the p-dispersion problem has |P |+ kmax − 1
variables and kmax + (kmax − 1)×

∑|P |−1
i=1 i− 1 constraints, while our extended Sayah and

Irnich based model for the PDDP has |P | × |F | + |P | + kmax − 1 variables and 2 × |P | +
|F |+ kmax + (kmax − 1)×

∑|P |−1
i=1 i− 1 without considering Constraint 18 which can give

(|P | × |F |)2 constraints.

5 CP approaches to the PDDP

We first give a generic CP model of the PDDP and we then we describe the mechanics
of a specialized heuristic CP solver. The PDDP is modeled as a Constraint Optimization
Problem (COP) (X, Dom, C, O), where X is the set of decision variables, Dom is the set
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of finite domains, C is the set of hard constraints and O is the optimization function. The
model is as follows:
1. For each facility i ∈ F there is a finite domain variable xi. These p variables are the

decision variables in the problem, meaning that |X| = |F | = p. The domain of each
variable xi ∈ X, denoted by Dom(xi), includes as values all the points where a facility
can be located, i.e. ∀xi ∈ X : Dom(xi) = P .

2. Y is a set of auxiliary variables, s.t. for each pair of variables (xi, xj) ∈ X ×X | i < j,
there is a variable yij ∈ Y and a constraint yij = D[xi, xj ]. Hence, each yij ∈ Y models
the distance between xi and xj . In CP solvers, this is implemented using the Element
global constraint, i.e. yij = Element(D, [xi, xj ]).

3. For each variable yij , there is a distance constraint yij > dij .
4. There is a variable z, s.t. z = min(Y ).
5. The objective function is O =maximize(z).

This model contains p + p× (p− 1)/2 + 1 variables, with p being decision variables and
the rest auxiliary, and p× (p− 1) + 1 constraints.

We also considered the use of an AllDifferent constraint, to speed up propagation.
However, the distance constraints already propagate the fact that facilities should be placed
at different locations, as they all have bound greater than 0. Experiments with and without
the AllDifferent constraint showed no noticeable difference in run times.

5.1 A heuristic CP-based method
We now propose a heuristic technique that tries to prune early the parts of the search tree
that do not seem promising, i.e. it is unlikely that exploring them will improve the value
of the optimization function. At each node of the search tree this method tries to estimate
the best value of the optimization function that can be achieved if we explore the sub-tree
rooted at that node. If this value is not better than the cost of the best solution found so far
then the current branch is not further explored.

The proposed method can be embedded in a standard CP solver. However, this cannot
be done at the modeling level by just specifying variables and posting constraints, because it
requires writing specialized code within the solver and possibly a intervention in how the
search process works. Naturally, the estimation of the bound at each node cannot always be
precise (otherwise we would be able to trivially solve the PDDP), and therefore, a solver
that employs this method will not be exact.

To demonstrate our heuristic method, we describe a simple CP solver, specialized for
the PDDP, that applies it. This solver uses a simpler model of the problem, dropping the
auxiliary variables and relevant constraints. Hence, we now have a model with only the
p decision variables and p × (p − 1)/2 distance constraints. The optimization function is
handled within the solver in the following way: Whenever a new solution is found, its cost
is computed so as to determine if this cost is better than the current best cost. If so, then
the best cost found so far is updated. If such an update occurs, it will be propagated to the
decision variables, as described below.

The heuristic pruning technique works as follows: The cost of the first feasible solution
found is used as the initial lower bound denoting the cost of the best solution found so far.
Thereafter, at each node of the search tree, an upper bound for the best possible solution
under the current assignment is computed. This upper bound gives an estimation of the
best possible cost that can be achieved if the sub-tree rooted at the specific node is explored.
If this is not higher than the current best cost then the current branch of the search tree
is abandoned and the search moves on. Each time a solution with a higher cost than the
current lower bound is found, the lower bound is updated.
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The computation of the upper bound estimation at each node is performed in a greedy
fashion. Specifically, assuming that xi is the current variable, (x1 ← v1), . . . , (xi−1 ← vi−1)
is the assignment to past variables and vi is the value under consideration for xi, we greedily
compute the cost of the “best” assignment for the future variables xi+1, . . . , xp. That is, we
visit these variables one by one, starting with xi+1, and for each variable xj , i + 1 ≤ j ≤ p,
and each value vj ∈ Dom(xj), we find the minimum distance between vj and any assignment
(location) among variables (facilities) x1, . . . , xj−1. The value that maximizes this distance
is then (temporarily) assigned to xj . This is repeated until all variables have been assigned.
We then compute the cost of this complete assignment, which gives the upper bound, but
in fact, this may be an underestimation of the real cost. If the computed cost is equal to
or lower than the current lower bound then the assignment of vi to xi is undone and the
current branch of the search tree is abandoned, albeit risking to prune the branch leading to
the optimal solution. This process is depicted by Algorithm 2.

Algorithm PDDP_CP_Solver (Algorithm 1) gives a high level description of the entire
solving process.

Algorithm 1 PDDP_CP_Solver(X, Dom, C, O).

if Propagate(X, Dom, C) = FALSE
return NULL;

depth ← 1;
best_found← 0;
select an unassigned variable xi;
while depth ≥ 1

if all values in Dom(xi) have been tried
depth ← depth-1;

else
select a value a ∈ Dom(xi) that has not been tried;
if depth = n

cur_cost ← Compute_Solution_Cost(X, Dom, C)
if cur_cost > best_found

best_found← cur_cost;
else if Propagate(X, Dom, C, xi ← a) = TRUE

if best_found ̸= 0 AND Bound(X, Dom, C, xi ← a, best_found) = TRUE
depth ← depth+1;
select an unassigned variable xi;

if best_found = 0 return NULL;
return best_found;

Given a PDDP (X, DOM, C, O), where O is the optimization function of the PDDP,
the algorithm starts by propagating the hard constraints in C, as a typical CP solver does.
Function Propagate enforces arc consistency on the distance constraints. If no failure (empty
domain) is detected then the algorithm initializes the depth to 1 and the best cost found
(best_found) to 0 and commences the search by selecting a variable using a variable ordering
heuristic. While the depth of search is greater than 0, denoting that the search space has
not been exhaustively searched, a branching decision is made, i.e. a value is selected and
assigned to the currently selected variable. If all the variables have been assigned (depth = n),
meaning that a feasible solution has been found, the cost of this solution is computed and if
this cost is higher than the best cost found so far then the latter is updated.

If not all variables have been assigned yet then Function Propagate is called to propagate
the value assignment just made. If no failure occurs, the heuristic bounding mechanism
described above is triggered by calling Function Bound (Algorithm 2), provided that at least
one feasible solution has already been found. If this function succeeds, meaning that the
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estimated cost is better than the best bound found so far then the algorithm moves forward
by increasing the depth of search and selecting a new unassigned variable. On the other hand,
if either propagation fails or the estimated bound is not better than the value of best_found

then the current branch is abandoned and a new value for the current variable is selected.

Algorithm 2 Bound(X, Dom, C, xi ← vi, best_found).

for each xj , i + 1 ≤ j ≤ p
val ← dis ← -1;
for each vj ∈ Dom(xj)

temp ← shortest distance between vj and any assigned variable x1 . . . xj−1;
if temp > dis

dis ← temp;
val ← vj ;

xj ← val;
bound ← Compute_Solution_Cost(X, Dom, C);
if bound > best_found return TRUE;
return FALSE;

If the value best_found remains 0 upon termination then the algorithm has proved
that the problem is infeasible and the solver returns NULL. Otherwise, the best cost found
is returned. In the former case, the heuristic part of the algorithm (i.e. the bounding
mechanism) will never be triggered, as no feasible solution will have been found. Hence, the
search space will be systematically explored in a typical CP solver fashion until a backtrack
to depth -1 occurs, proving that the problem is infeasible.

Function Propagate applies arc consistency on the distance constraints, taking into
consideration the value of best_found, i.e. the best cost found so far, to perform extra
pruning, if possible. This is done in typical CP fashion for binary constraints, i.e. using a
queue to insert and then process variables that have their domain filtered. Specifically, if
a variable xi is removed from the queue then for each variable xj constrained with xi, and
each value vj ∈ Dom(xj), we check if there exists a value vi in Dom(xi) s.t. the two values
satisfy the distance constraint between xj and xi and the distance between the two values is
greater than best_found. In other words, for each possible location vj of xj we search for a
location vi for xi s.t. by placing the two facilities at these locations, not only the relevant
distance constraint is satisfied, but we can also improve the cost of the optimization function.
If no such vi exists then by placing xj at vj there is no way to locate xi so that we can
satisfy the distance constraint and improve the cost. Hence, vj can be deleted from D(xj),
i.e. it can be removed from consideration as a potential location point for xj . If such a value
deletion occurs then variable xj is inserted in the queue to propagate the deletion.

Finally, note that the pruning that can be achieved by taking into consideration the
current best cost can also be achieved by a standard CP solver that employs the model
described further above. Such a solver will typically add a constraint z > best_found once a
new solution with better cost than the previously found solutions is located. The propagation
of this constraint may result in the filtering of the yij variables’ domains, which in turn will
be carried over to the decision variables through the distance constraints yij = D[xi, xj ].

6 Experimental Results

We experimented with PDDP instances generated in two different ways. The first is a simple
method that randomly generates a PDDP with a desired number of facilities and location
points. The second uses the p-dispersion benchmark library MDPLIB 2.0 [28] as a basis to
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generate PDDPs. Computations were performed on an Intel i7 CPU 8700 with 16 GB of
main memory, a clock of 3.2 GHz, an L1 cache of 348 KB, an L2 cache of 2 MB, and an L3
cache of 12 MB, running under CentOS 8.4.

The ILP models were solved using Gurobi 9.0.3 [21]. The exact CP model was written
in the CPMpy modeling tool [20] and compiled into OR-Tools [12]. An implementation in
Choco [11] was also tried. The heuristic CP method was implemented in a custom solver
programmed in C. This solver essentially implements the CP_Solve algorithm (Algorithm 1)
described above. Choco and the heuristic solver use the dom/wdeg heuristic for variable
ordering [3] and lexicographic value ordering, while OR-Tools uses its default options. A
time out of 3, 600 seconds was set for each instance. We used only one thread on all solvers,
to get a fair comparison.

The ILP models are stored in compressed sparse column format since the constraint
matrix can sometimes be too large to be stored as a full array in memory. For example, the
largest instance considered in the computational study has a constraint matrix of 5, 425, 061
rows, 105, 038 columns and 11, 212, 542 nonzeros. Its compressed size is only 12MB, while
its size as a full matrix is 530GB.

6.1 Random problems
For an initial evaluation of the proposed approaches to the PDDP, we ran experiments
on problems where we try to locate p ∈ {5, 10, 20, 30} facilities in a 10×10 grid, with
|P | ∈ {30, 80} potential location points selected randomly among the 100 total points. The
distances between the points are computed using the Manhattan distance metric. For
each distance constraint dis(fi, fj) > dij between facilities fi and fj , dij was set to a
random integer in the interval [1, max]/2, where max is the maximum Manhattan distance
between any two potential location points. Ten instances were generated and solved for each
combination of parameter values.

Table 1 compares the following: Our two ILP formulations implemented in Gurobi, with
Gurobik denoting our first model, based on that of Kuby, and Gurobis denoting our second
model, based on that of Sayah & Irnich, and the CP solvers OR-tools and Choco. For each
class, in column

∑
cpu we give the total cpu time taken by the corresponding solver over

all 10 instances, and in brackets we give the number of instances on which the solver timed
out. If the solver timed out on at least one instance then

∑
cpu gives a lower bound on the

actual run time. Column cpuo gives the mean time taken by the solver to locate the optimal
solution. A zero means that less than 0.1 seconds were taken on average. In brackets, we
give the number of instances for which the solver found the optimal solution. Note that the
optimal solutions are known for all instances because at least one solver terminated within
the time limit. When a solver managed to find the optimal solution on at least 8 out of the
10 instances, we compute cpuo, excluding the instances where it timed out. Otherwise, cpuo

is left blank (-), meaning that the solver failed to find the optimal solution on too many
instances for this metric to be meaningful.

From Table 1 it is clear that the ILP approach is more efficient than the CP one in this
type of instances. Gurobik (resp. Gurobis) times out on 1 (resp. 2) out of the 70 instances,
whereas OR-Tools (resp. Choco) timed out on 40 (resp. 42) instances. With respect to the
cases when the optimal solution was located within the time limit, even without proving
optimality, Gurobik (resp. Gurobis) found the optimal solution on 69 (resp. 68 instances),
whereas OR-Tools (resp. Choco) on 59 (resp. 45) instances. This indicates that the CP
solvers find the proof of optimality especially difficult. Regarding the time required to find
the optimal solution (when found), all solvers are quite fast on smaller problems (with 5-10
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Table 1 Comparing exact solvers on random PDDPs. Cpu times are given in seconds.

Class Gurobik Gurobis OR-Tools Choco
(p,|P |)

∑
cpu cpuo

∑
cpu cpuo

∑
cpu cpuo

∑
cpu cpuo

(5,30) 0.7 (0) 0 (10) 1.6 (0) 0 (10) 3 (0) 0 (10) 3.5 (0) 0 (10)
(10,30) 2 (0) 0 (10) 6 (0) 0 (10) 998 (0) 1.7 (10) >11,517 (2) 50 (10)
(20,30) 87 (0) 7 (10) 51 (0) 4 (10) >10h (10) 69 (9) >10h (10) - (4)
(5,80) 7 (0) 0 (10) 20 (0) 0 (10) 13 (0) 0 (10) 3 (0) 0 (10)
(10,80) 12 (0) 0 (10) 78 (0) 0 (10) >10h (10) 0.3 (10) >10h (10) 0 (10)
(20,80) 727 (0) 69 (10) 725 (0) 28 (10) >10h (10) - (4) >10h (10) - (1)
(30,80) >22,207 (1) 2,065 (9) >10,519 (2) 414 (8) >10h (10) - (6) >10h (10) - (1)

facilities). Problems with 20 facilities and 30 potential locations are also easily manageable
by the ILP models, whereas OR-Tools takes more than one minute on average to discover the
optimal solution, and even fails to discover it on one instance. Choco fairs even worse, failing
to find the optimal solution on 6 instances, and failing to find any solution on one instance.

As the size of the problem grows, the ILP models, and even more so the CP solvers, find
it harder to solve the instances. On problems with 30 facilities and 80 location points, the
ILP models start giving time outs and take a long time to find the optimal solution, when
they manage to do so, whereas the CP solvers, and especially Choco, fail to find the optimal
on many instances from the (20,80) and (30,80) classes.

Table 2 compares the exact solvers to the heuristic CP solver (denoted CPh). For this
solver, we report the total cpu time taken over the 10 instances of each class (

∑
cpu) and

the mean cpu time taken to find the best solution it found within the time limit (cpub). We
also report (in brackets) the number of instances in which the solver managed to find the
optimal solution. Then, in the following columns, we give the mean cpu times taken by the
exact solvers to find a solution that at least matches the cost of the best solution found by
the heuristic solver. In this way, we can evaluate the worth of the heuristic CP method as a
heuristic for the PDDP. If the exact solvers manage to quickly match the best solution found
by the heuristic one then there is not much point in using the heuristic solver. Whereas, if
the heuristic solver quickly discovers a solution that the exact ones take very long to match
then it is worth considering this approach for the PDDP. If an exact solver only managed to
find a solution as good as that found by the heuristic solver in some instances, we give in
brackets the number of times that this occurred, and we consider only these instances for
the computation of the mean cpu time.

Table 2 Comparing solvers on random PDDPs. Cpu times are given in seconds.

Class CPh Gurobik Gurobis OR-Tools Choco
(p,|P |)

∑
cpu cpub

(5,30) 0 0 (9) 0 0 0 0
(10,30) 0 0 (10) 0 0 1.7 50
(20,30) 2 0.2 (9) 5 1.7 65 160 (4)
(5,80) 0.1 0 (10) 0 0 0 0
(10,80) 1 0.1 (10) 0 0 0.3 0
(20,80) 2 0.2 (0) 3.5 3 6 0
(30,80) 36 3 (10) 2,218 (9) 1,051 (8) 1,760 (6) 3,453 (1)

As the results in Table 2 demonstrate, CPh is very fast as it managed to complete all 10
instances of each class in at most 2 seconds, except for the (30,80) class, on which it only
took 36 seconds. Importantly, it also discovered the optimal solution in 58 out of the 70
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instances, including all instances of the hard class (30,80) class. On the other hand, it did
not manage to discover the optimal in any instance of the (20,80) class. Comparing the run
times (cpub) of CPh to the exact solvers, results from all but the last class show that Gurobi
manages to quickly match the best solution found by CPh, even if the latter is faster on
average. This does not always hold for OR-Tools which takes more than 1 minute on average
in the (20,30) class. Choco takes 50 seconds on average in the (10,30) class and it manages
to match the best solution of CPh in only 4 instances of the (20,30) class. The benefits
of the heuristic method in hard problems are demonstrated by the (30,80) class where it
takes 3 secs on average to locate the optimal solution, whereas Gurobik and Gurobis require
2,218 and 1,051 secs respectively. OR-Tools found the optimal solution in only 6 out of the
10 instances of this class, taking 1,760 secs on average, while Choco managed to find the
optimal in only one instance in 3,453 secs.

Finally, Table 3 takes a closer look at the performance of CPh, with respect to the effect
of the heuristic pruning method. To investigate this, we report the results obtained by the
solver when the heuristic is deactivated (i.e. Function Bound is not called). In this case,
the solver, denoted as CP−h, operates as a typical CP solver. As in Table 1, we give the
total cpu time taken, and in brackets the number of time outs, and the mean time taken to
locate the optimal solution (the number of instances where the optimal solution was found
is given in brackets). In the following column (cpuh) we give the mean cpu time taken by
CP−h to find a solution that at least matches the cost of the best solution found by CPh,
and in brackets, the number of times that it managed to do so. The next two columns give
the mean numbers of visited search tree nodes for CP−h and CPh (the entry is left blank if
there were time-outs). The last two columns give the average number of calls to Function
Bound in CPh and the percentage of fails caused by this function (i.e. the percentage of
branches pruned by the heuristic).

Table 3 A closer look at the performance of the custom solver, with and without the heuristic.

(p,|P |) CP−h

∑
cpu CP−h cpuo CP−h cpuh CP−h nodes CPh nodes calls %fails

(5,30) 0.2 (0) 0 (10) 0 (10) 1,726 156 140 94
(10,30) 466 (0) 5 (10) 5 (10) 12.5M 229 218 95
(20,30) >21,827 (3) 1 (10) 1 (10) - 4,917 781 80
(5,80) 6 (0) 0.6 (10) 0.6 (10) 7,624 501 477 97
(10,80) >10h (10) - (5) 520 (5) - 877 868 98
(20,80) >10h (10) - (0) - (0) - 835 816 98
(30,80) >10h (10) - (7) 1,044 (7) - 17,207 12,995 81

Table 3 demonstrates the pruning power of our proposed heuristic. Without its use, the
solver is able to handle the easier classes of problems, but not the harder ones, in accordance
with standard CP solvers (Table 1). The solver is very successful compared to OR-Tools and
Choco on the (20,30) class, as it times out in only 3 instances and finds the optimal solution
in 1 sec on average. However, the solver fares badly on the (20,80) class where it is unable to
find the optimal in any instance and actually finds worse solutions that CPh in all instances.
As for the (30,80) class, CP−h finds the optimal solution in 7 instances, which is better than
OR-Tools and Choco, but needs 1,044 secs on average to match the solution found by CPh.
Regarding the pruning achieved by the heuristic when it is activated, it is impressive that in
most of the classes, there is a very high percentage of pruned branches over the total calls to
the heuristic (up to 98%), which explains its success in speeding up search.
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6.2 MDPLIB

The MDPLIB collects a large number of dispersion benchmarks (for both maxmin and
maxsum p-dispersion) divided into various classes [28]. In the GKD, MDG, and SOM
classes, the distances between the potential facility locations are given by Euclidean distances,
random real numbers, and random integers, respectively. We took instances from these
classes, having 100-250 potential facility points and 10-20 facilities, and we generated 10
PDDPs for each instance by randomly adding distance constraints between the facilities.
For each distance constraint dis(fi, fj) > dij between facilities fi and fj , dij was set to a
random number in the interval [1, max]/2, where max is the maximum distance between
any two potential location points, as specified in the base MDPLIB instance.

Table 4 compares the exact solvers on the MDPLIB-based problems. We exclude Choco
as it is clearly inferior to OR-Tools. For each class we give the number of the MDPLIB
instance on which it is based, and in brackets the numbers of potential locations and facilities
to be located, e.g. a1(100,10) for MDG. For each solver, we report the total cpu time taken
over the 10 instances (

∑
cpu columns), the number of times when the optimal solution

was found (#opt) columns, and the mean of the optimization function’s value for the best
solution found within the time limit. In the

∑
cpu columns we give in brackets the number

of instances in which the solvers timed out. In the #opt columns we give in brackets the
number of times when optimality was proved. Finally, in some cases, a solver did not manage
to find any solution within the time limit. In such cases there is a subscript in the value of
cost, giving the number of instances in which at least one solution was found. In such a case,
the value of cost is computed over these instances only. In GKD classes with 250 points and
20 facilities, OR-Tools suffered memory exhaustion and crashed. This is denoted with MEM
in the

∑
cpu column.

The data in Table 4 demonstrates that the PDDPs generated using MDPLIB instances as
basis can be very hard for both the ILP and CP approaches. None of the solvers terminates
within the time limit on any instance with 20 facilities, while problems with 15 and 10
facilities are also quite hard. In addition, there are some instances of the larger classes (e.g.
GKDd1(250,20)) where the solvers are unable to discover any solution within 1 hour of
cpu time, let alone the optimal one. Comparing ILP to CP, Gurobi, with any of the two
formulations, is in general more efficient than OR-Tools. Gurobik (resp. Gurobis) found the
optimal solution in 77 (resp. 74) out of the 220 instances, and proved optimality in 73 (resp.
70) instances, whereas OR-Tools did not prove optimality in any instance (as it timed out on
all of them) and found the optimal in 10 instances only. However, OR-Tools often managed
to find better solutions than Gurobi in hard classes with 20 facilities, as the cost columns
indicate, for instance in classes MDGa2(100,20) and MDGb2(100,20). Comparing Gurobik
to Gurobis, there is no clear winner in terms of run times, but the latter managed to find
solutions of better quality than the former in most of the classes. However, Gurobis proved
optimality or found the optimal solution in slightly fewer instances than Gurobik.

Table 5 compares CPh to the exact solvers. For CPh, we report the total cpu time it
takes over the 10 instances of each class (and the number of time-outs in brackets), the mean
time it takes to find its best solution (cpub), and the mean of the optimization function’s
value for the best solution it finds. For the exact solvers, we report the mean times taken
to match the value of the best solution found by CPh (cpuh) columns, and the number of
instances on which the solvers managed to find a solution that matches or improves the best
solution found by CPh (in brackets). If this number is 0 or close to 0 then the entry in the
cpuh column is left blank (-), as it is impossible or meaningless to compute the value of cpuh.
If a value in the cpub column is blank (-), e.g. GKDd1(100,20), then most of the 10 instances
in this class were infeasible (in brackets we give the number of infeasible instances).
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Table 4 Comparing exact solvers on MDPLIB-generated PDDPs. Cpu times are given in seconds.
The best mean value of the optimization function for each class is denoted in bold.

Class Gurobik Gurobis OR-Tools
(p,|P |)

∑
cpu #opt cost

∑
cpu #opt cost

∑
cpu #opt cost

MDG
a1(100,10) >25,745 (3) 9 (7) 4.67 11,208 (0) 10 (10) 4.68 >10h (10) 7 (0) 4.59
a1(100,20) >10h (10) 0 (0) 0.808 >10h (10) 0 (0) 1.16 >10h (10) 0 (0) 1.17
a2(100,10) 15,327 (0) 10 (9) 4.74 11,412 (0) 10 (10) 4.74 >10h (10) 1 (0) 4.36
a2(100,20) >10h (10) 0 (0) 0.788 >10h (10) 0 (0) 0.839 >10h (10) 0 (0) 1.40
b1(100,10) 11,852 (0) 10 (10) 460.11 >29,171 (2) 10 (8) 460.11 >10h (10) 0 (0) 430.25
b1(100,20) >10h (10) 0 (0) 102.42 >10h (10) 0 (0) 109.35 >10h (10) 0 (0) 77.33
b2(100,10) 10,305 (2) 8 (8) 459.65 27,894 (2) 8 (8) 459.99 >10h (10) 1 (0) 413.85
b2(100,20) >10h (10) 0 (0) 106.779 >10h (10) 0 (0) 81.09 >10h (10) 0 (0) 113.33
GKD
d1(100,10) 4,743 (0) 10 (10) 34.06 5,415 (0) 10 (10) 34.06 >10h (10) 0 (0) 33.04
d1(100,20) >10h (10) 0 (0) - >10h (10) 0 (0) - >10h (10) 0 (0) -
d1(250,10) >15,448 (4) 6 (6) 35.98 34,753 (9) 3 (1) 35.27 >10h (10) 0 (0) -
d1(250,20) >10h (10) 0 (0) 9.954 >10h (10) 0 (0) 10.552 MEM 0 (0) -
d2(100,10) >5,998 (1) 9 (9) 34.34 2,602 10 (10) 34.82 >10h (10) 0 (0) 31.18
d2(100,20) >10h (10) 0 (0) - >10h (10) 0 (0) - >10h (10) 0 (0) -
d2(250,10) >22,334 (6) 4 (4) 35,94 >33,595 (8) 2 (2) 36.31 >10h (10) 0 (0) -
d2(250,20) >10h (10) 0 (0) - >10h (10) 0 (0) - MEM 0 (0) -
SOM
a21(100,10) >20,260 (1) 10 (9) 5 9,585 (0) 10 (10) 5 >10h (10) 1 (0) 4.1
a21(100,15) >34,887 (9) 1 (1) 2.2 >35,371 1 (1) 2.2 >10h (10) 0 (0) 2
a21(100,20) >10h (10) 0 (0) 16 >10h (10) 0 (0) 16 >10h (10) 0 (0) 19

a41(150,15) >10h (10) 0 (0) 2.6 >10h (10) 0 (0) 2.6 >10h (10) 0 (0) 3
a41(150,20) >10h (10) 0 (0) 19 >10h (10) 0 (0) 1.119 >10h (10) 0 (0) 1
b5(200,20) >10h (10) 0 (0) 1.4 >10h (10) 0 (0) 2 >10h (10) 0 (0) -

Results from Table 5 demonstrate the efficiency of the heuristic CP approach. Regarding
run times, CPh times out in only 7 instances and terminates quickly in all instances of
all classes, except for the hard GKDd1(250,20) and GKDd2(250,20). CPh proved the
infeasibility of the 16 infeasible instances of classes GKDd1(100,20) and GKDd2(100,20) and
found solutions in the other 4, whereas none of the other solvers managed to do so in any
instance. Of course, the fast proof of infeasibility is not due to the bounding mechanism of
CPh, as this is not invoked, but most likely due to the lightweight model and mechanics of
the custom-written solver.

Regarding the quality of the solutions, as a downside, CPh finds the optimal in only 2
out of the 80 instances of smaller size, for which the optimal is known (excluding infeasible
ones). However, in these classes, the exact solvers (and especially OR-Tools) can be orders of
magnitude slower than CPh in discovering solutions of the same quality as CPh, which reaches
its best solution in less than 0.1 secs in most cases. This is evident in class SOMa41(150,15)
where CPh found its best solution in less than 0.1 secs on average, while the exact solvers took
more than 1,000 secs to match the solution quality of CPh, on instances where they managed
to do this. However, the best solution discovered by these solvers (including OR-Tools) is
typically better than the best solution discovered by CPh.
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Table 5 Comparing solvers on MDPLIB-generated PDDPs. We denote with bold the mean cost
of CPh on classes where it was better than the mean cost of all the other solvers.

Class CPh Gurobik Gurobis OR-Tools
(p,|P |)

∑
cpu cpub cost cpuh cpuh cpuh

MDG
a1 (100,10) 0.5 (0) 0 4.35 243 (10) 55 (10) 592 (10)
a1 (100,20) 81 (0) 8 1.69 - (0) - (1) - (0)
a2 (100,10) 0.6 (0) 0 4.24 137 (10) 22 (10) 873 (7)
a2 (100,20) 137 (0) 12 1.64 - (0) - (0) - (0)
b1 (100,10) 0.4 (0) 0 428.18 10 (10) 345 (10) 187 (10)
b1 (100,20) 54 (0) 4.5 181.20 - (0) - (0) - (1)
b2 (100,10) 0.7 (0) 0 428.17 27 (10) 41 (10) 723 (3)
b2 (100,20) 92 (0) 8 159.93 - (0) - (0) - (1)
GKD
d1 (100,10) 1.8 (0) 0.1 33.27 94 (10) 224 (10) 717 (5)
d1 (100,20) 405 (0) - (9) - - (0) - (0) - (0)
d1 (250,10) 10 (0) 0.6 34.24 800 (8) 2,074 (6) - (0)
d1 (250,20) >18,689 (3) 1,140 16.949 - (0) - (0) - (0)
d2 (100,10) 1.6 (0) 0 31.29 91 (9) 179 (10) 1,277 (6)
d2 (100,20) 962 (0) - (7) - - (0) - (0) - (0)
d2 (250,10) 8 (0) 0.5 35.06 121 (6) 997 (8) - (0)
d2 (250,20) >23,767 (4) 1,597 13.289 - (0) - (0) - (0)
SOM
a21 (100,10) 0 (0) 0 4 7 (10) 3 (10) 106 (10)
a21 (100,15) 0 (0) 0 2 39 (10) 45 (10) 206 (10)
a21 (100,20) 11 (0) 1 1 41 (6) 49 (6) 522 (9)
a41 (150,15) 2 (0) 0 3 1,170 (6) 1,741 (6) 1,465 (10)
a41 (150,20) 12 (0) 1 1.9 - (0) - (1) - (1)
b5 (200,20) 10 (0) 0.3 2 - (4) 1,272 (10) - (0)

But the power of CPh as a heuristic method for PDDP is truly evident on the larger
classes with 20 facilities where it discovers solutions of (much) better quality than the exact
solvers, and excluding the two hard GKD classes with 250 location points and 20 facilities,
it does this very fast. Also, CPh finds solutions in all 20 instances of the two hard GKD
classes, while Gurobik (resp. Gurobis) in only 4 (resp. 2), and OR-Tools in none.

7 Conclusion

We have studied a variant of the p-dispersion problem where distance constraints exist
between the facilities to be dispersed. We proposed ILP formulations and a CP model for this
problem. We also devised a heuristic CP-based method built around a bounding technique
that prunes the search tree by reasoning about the best possible value of the optimization
function at each node. Experimental results demonstrated that although the ILP formulations
are more efficient than the CP model, they fail to efficiently handle problems with more than
10 facilities, whereas on such problems the heuristic CP method manages to find solutions of
better quality than the ILP and CP models in orders of magnitude shorter run times.
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impacts the performance and progress of such businesses. This type of problems have
been widely studied in academia from long, as well as the more general yet less compact
multi-mode model involving non renewable resources [36]. Also, preemption in scheduling
is found in many works due to the flexibility it brings to improve the performance of a
practical application. However, the scheduling literature including both multi skill and task
preemption, all the more grounded in a real business application, is rather sparse [1, 34].

The presence of multiple skilled resources adds more complexity to the problem, and
new types of goals aside the usual makespan and cost optimization, like assignment score
and worker performance [35]. Task preemption adds another layer of complexity, and in
real scenarios usually is tied to resource availability, with special focus in worker shifts and
calendars. Also, it is important to note that whilst a task can be preempted, pausing its
progress, maybe only part of the resources can be freed to make them available for other tasks,
with others being locked in place. This has been already referred to as partial preemption
[25]. Finally, practical problems also contain generalized precedence constraints and resource
calendars, which have been well known from long ago. These constraints extend simple tasks
precedence to detail concrete temporal conditions between tasks. Calendars on the other
hand, define resource unavailability periods, hence both features make the problem harder to
solve [17].

In this paper, we present a method oriented towards a real assembly line use case,
requiring to include all these five features: multi skilled resources, multiple modes, (partially)
preemptive tasks, calendars and generalized precedence constraints. Hence, we call our model
the partially preemptive- multi-skill/mode resource-constrained project scheduling problem
with generalized precedence relations and resource calendars (PP-MS-MM-RCPSP/max-cal).
Our solution is aimed for industrial domains, but can solve generic problems in the scope of
the model as well. We propose an extended version of the large neighborhood search (LNS)
method [21, 11], softening constraints initially to find a base solution that will be improved
on each iteration. We observed this approach to be faster than other more direct constraint
programming approaches. We evaluated our method against different benchmarks, including
one using real data from aerospace manufacturing plants, real instances from an hazardous
material examination facility [25] and standard multi-skill scheduling instances [38].

The rest of the paper is structured as follows: in Section 2, literature about multi skill
scheduling and preemption in scheduling is discussed, along with previous scheduling works
oriented towards industrial applications. Section 3 describes the domain of our problem
and contains the formulation of our model, including a new CP formulation tailored to
preemption. In Section 4 we detail our approach explaining the algorithm we developed
to solve PP-MS-RCPSP/max-cal. Following this, Section 5 contains the experiments and
benchmarks conducted to evaluate the performance of our solution. Lastly, our conclusions
can be seen in Section 6.

2 Multi-skill/mode, preemption, calendars and generalized precedence
in the literature

The multi-mode RCPSP (MM-RCPSP) allows reaching a compromise between resource usage
and task duration as it frequently occurs in practice. It also includes non renewable resources
to model budget constraints that may prevent from using the fastest modes for all tasks.
Many solution methods have been proposed over the years from local search, to sat-based
methods using hyperheuristics. [6, 9, 15, 37]. CP approaches are currently highly popular
and efficient tools to solve RCPSP variants [18] and in particular the MM-RCPSP [36].
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MS-RCPSPs are a particular MM-RCPSP based on the concept of skills enabling the
compact representation of a possibly large set of modes corresponding to combination of
resources managing a set of skills required by a task. There is a variety in the methods and
models to solve the problem: tree search [29], genetic algorithms [20], mixed-integer linear
programming [3, 10, 19, 31]. On the standard MS-RCPSP, we will compare our method with
two state-of-the-art methods: the CP approach using no-good learning proposed in [38] and
the greedy randomized adaptive search procedure (GRASP) presented in [25].

Preemption can be defined as the capability of stopping the execution of a task in the
generated schedule, releasing the resources it was using in order to allow for the execution
of a different one, and being able to be continued later. In some cases preemption makes
the problem easier to solve when an NP-hard non preemptive scheduling problem has a
polynomial preemptive counterpart [5] but in the case of job-shop or resource-constrained
project scheduling the problem may become harder to solve due to a much larger search space
[7, 22]. Only a handful of studies have combined multi-skilled resources and preemption
in the same work. We can cite [12, 24, 25, 26], where mixed-integer linear programming,
constraint programming and metaheuristics methods were proposed. Prominent preemption
can cause trouble to CP approaches: in [25] an experiment revealed that MILP obtained
better results on a set of highly preemptive MS-RCPSP than the default search of IBM
CP Optimizer. For preemptive MS-RCPSP, we will compare our method with the hybrid
GRASP-LNS heuristics proposed in [26]. For their application, the authors also considered
partially preemptive tasks, where only part of the resources are released during preemption.
Due to industrial relevance, we also include partial preemption in our model.

Resource calendars are often unavoidable characteristics in industrial contexts. They
can be linked to a basic form of preemption in the sense that an on-going task has to be
preempted when one of its resource becomes unavailable due to an off-time in the calendar.
In [13], calendars were used in a MS-RCPSP context without including task preemption.
Our model considers both situations and tasks can be preempted or not by calendars as
frequently observed [17].

Generalized precedence constraints, also considered in our model specify more complex
temporal relations between tasks than standard precedence constraints. They make the
problem more complex in all RCPSP variants as even finding a feasible solution becomes
NP-hard in the presence of generalized precedence constraints. Many works have considered
such constraints in the standard RCPSP [4, 32] and also for multi-mode preemptive RCPSP
[27]. The RCPSP/max-cal problem involving both generalized precedence and calendar
constraints was again successfully solved by CP in [17].

A difference between the performance of generic solvers on academic RCPSP models and
on their adaptation to domain problems with very specific requirements is observed in other
works and we also could experience it in our benchmark experiments: usually the more special
characteristics the problem has, the worse is the performance of generic solvers. Our model
falls into this category as it includes all the above-mentioned complicating characteristics.
The LNS approach appears as a technique of choice to find the right compromise between
genericity and performance.

3 PP-MS-MM-RCPSP/max-cal: definition and formulation

The PP-MS-MM-RCPSP/max-cal generalizes the partially preemptive MS-RCPSP introduced
in [26]. An additional feature is the possibility to execute the task in different modes, in the
same way it is done in multi-mode RCPSP [15]. Generalized precedence constraints and
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calendars are also added. Formally a PP-MS-MM-RCPSP/max-cal is defined by:
1. A a set of activities to schedule, A = {1, ..., n}, two special activities are created by

convention: the source task 1 (predecessor of all other tasks) and sink task n (successor
of all other tasks);

2. Each activity i ∈ A can be performed in mi different modes, mi ∈Mi = {1, ..., |Mi|}; (as
defined in [28])

3. Rρ a set of renewable resource types, Rρ = {Rρ
1, ..., Rρ

mρ}. ∀k ∈ Rρ, t ∈ N, Bkt is the
discrete amount of available resource k at discrete time t (available between time t and
t + 1);

4. Rν a set of non-renewable resource types, Rν = {Rν
1 , ..., Rν

mν} ; ∀k ∈ Rν , Bk is the total
capacity of the non-renewable resource;

5. O the set of disjunctive resources representing individual skilled workers (from now on,
we will refer to them as Operators);

6. L = {1, ..., L} the set of skills;
7. ∀o ∈ O, t ∈ N, Aot ∈ {0, 1} indicates if the Operator o is present or not at time t (hence

we treat the temporal availability of Operators as fixed from the problem definition);
8. ∀o ∈ O, l ∈ L, yol ∈ {0, 1} indicates if Operator o masters skill l;
9. ∀i ∈ A, ri is the release time of task i;

10. ∀i ∈ A, di is the deadline time of task i;
11. ∀i ∈ A, pi,mi is the processing time under mode mi ∈Mi;
12. ∀i ∈ A, k ∈ Rρ ∪ Rν , bi,mi,k is a natural number representing the resource demand of

activity i for resource k, under mode mi;
13. ∀i ∈ A, l ∈ L, si,mi,l is a natural number representing the skill requirement of activity i

under mode mi;
14. P is the set of precedence constraints A ×A specifying which activity should precede

another one;
15. Psync−start is the set of activity pairs that must start at the same time;
16. Pstartlag is the set of ordered pairs (i, j) specifying ∆s(i,j), the minimum time lag between

start of i and start of j;
17. Psync−end is the set of activity pairs that must end at the same time;
18. Pendlag is the set of ordered pairs (i, j) specifying ∆e(i,j), the minimum time lag between

end of i and start of j;
19. The set A is split in three different subsets :

A = AP ∪ ANP ∪ AP P ;
AP is the set of fully preemptive activities (activities can be preempted and all the
resources are released);
ANP is the set of non-preemptive activities;
AP P is the set of partially preemptive activities (where at least one resource is not
releasable);

20. ∀i ∈ A, mi ∈Mi, k ∈ Rρ, ρi,mi,k ∈ {0, 1} indicates if resource k is releasable for activity i

under mode mi.

3.1 Known variants in the literature
Our generic formulation encompasses more classical scheduling problems, that can be therefore
solved using the proposed solution, such as:

the classical RCPSP (L = ∅, Rν = ∅, ∀k ∈ Rρ, ∀t, t′ ∈ N, Bkt = Bkt′ , O = ∅, AP = ∅,
AP P = ∅, ∀i ∈ A, Mi = {1});
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the classical multi-mode RCPSP (L = ∅, ∀k ∈ Rρ, ∀t, t′ ∈ N, Bkt = Bkt′ , O = ∅, AP = ∅,
AP P = ∅, ∀i ∈ A, Mi = {1, ...|Mi|});
the classical multi-skill RCPSP (L = {1, ..., L}, O ̸= ∅, AP = ∅, AP P = ∅, ∀i ∈ A, Mi =
{1, ...|Mi|}).

3.2 Constraint Programming formulation
We developed a combinatorial optimisation library containing the CP model for PP-MS-
MM-RCPSP/max-cal. It can be found as part of an open source framework to solve discrete
optimization problems 1.

A big focus of the library is on the RCPSP’s class of problems described in this paper.
All solver approaches, from Local search, rule based heuristics, CP, LP and LNS methods
are either coded using the discrete-optimisation library or wrapped into it, allowing the user
to easily benchmark methods and hybridize different approaches.

The following sections detail the decision variables and constraints of our formulation for
PP-MS-MM-RCPSP/max-cal.

3.2.1 Decision variables
We assume that each task can be preempted at regular discretized time points, resulting
in a sequence of small non-preemptive chunks for each activity. A subpart of an activity is
thus defined as a subset of adjacent chunks of this activity. Let’s define maxpreemption as an
arbitrary input of our problem which represents an upper bound on the number of preemption
breaking times allowed for all our activities. We will note J = {1, .., maxpreemption} the set
of preemption breaking time indexes and J− = {2, .., maxpreemption}
1. Starting time decision : starts is a |A| × maxpreemption matrix, which contains the

starting time of subparts of all the tasks in increasing order.
2. Duration decision : durations is a |A|×maxpreemption matrix, which contains the duration

of subparts of all the tasks.
3. Mode decision : modes is a |A| vector specifying in which mode a task is executed.
∀i ∈ A, modes[i] ∈Mi.

4. Resource allocation : allocation is a |O| × |A| ×maxpreemption 3D binary matrix which
indicates which worker o is allocated to each subpart of an activity.

3.2.2 Constraints
We will use the notation [:] in matrix indexing to ease the readability of constraints. For
e.g starts[i, :] is the vector of starting times for the task i and allocations[o, :, :] is the
|A| ×maxpreemption matrix allocation of resource o to all activity subparts.
1. Resource consumption constraint :

∀k ∈ Rρ, cumulative(starts, durations, bmodes,k, Bk:)
where bmodes,k is an array of dimension |A| ×maxpreemption defined by:
∀i ∈ A, j ∈ J , bmodes,k[i, j] = bi,modes[i],k, being bmodes,k[i, j] the resource demand of
activity i on the j-th subpart of its execution, which doesn’t depend on j in our problem.
We use the global cumulative constraint implemented in most CP language to model the
cumulative resource consumption in RCPSPs [30].

1 https://github.com/airbus/discrete-optimization
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To take into account variable resource availability, we use a discrete stepped function
maxt(Bkt)−Bktstep

at each tstep that includes an artificial fixed task consuming it. This
way, whenever availability changes, that task removes the resources from the pool during
a period defined by the step function. In our domain, variable resource availability
translates into worker’s shifts and calendars, also indirectly defining points where a task
needs to be preempted. For simplicity we didn’t include it in the description of the
constraint.

2. Non-renewable resources:
∀k ∈ Rν ,

∑
i∈A bi,modes[i],k ≤ Bk. This non-renewable resource constraint is only mean-

ingful when there are several possible modes. In multi-mode settings, some modes value
wouldn’t satisfy the constraint.

3. Skills requirement:
∀i ∈ A, j ∈ J , l ∈ L,

durations[i, j] > 0→
∑

o∈O allocation[o, i, j] · yol ≥ si,modes[i],l
Contrary to other multi-skill variants, we consider that Operators assigned to a task
contribute to the task skill requirements with all of their skills, similar to what it is seen
in [26].

4. Operator availability:
∀o ∈ O, cumulative(starts, durations, allocation[o, :, :], Ao:)

Variable availability of an Operator is dealt with in the same way as Constraint 1 above.
5. Precedence relation: ∀(i, j) ∈ P ,

starts[j, 1] ≥ starts[i, maxpreemption] + durations[i, maxpreemption]
6. Psync−start relations:
∀(i, j) ∈ P, starts[i, 1] = starts[j, 1]

7. Pstartlag relations:
∀(i, j) ∈ Pstartlag, starts[j, 1] ≥ starts[i, 1] + ∆s(i,j)

8. Psync−end relations: ∀(i, j) ∈ Psync−end,
starts[j, 1] = starts[i, maxpreemption] + durations[i, maxpreemption]

9. Pendlag relations:
∀(i, j) ∈ Pendlag,

starts[j, 1] ≥ starts[i, maxpreemption] + durations[i, maxpreemption] + ∆e(i,j)
10. Tasks duration :

a. ∀i ∈ ANP , durations[i, 1] = pi,modes[i] ∧ (∀j ∈ [2, maxpreemption], durations[i, j] = 0)
b. ∀i ∈ A \ ANP ,

∑
j∈J durations[i, j] = pi,modes[i]

11. Release time:
∀i ∈ A, starts[i, 1] ≥ ri

12. Deadline time:
∀i ∈ A, starts[i, maxpreemption] + durations[i, maxpreemption] ≤ di

13. Conventions constraints for starts and durations:
The following constraints are modeling choices aiming to help the solver to explore the
search space.
a. ∀i ∈ A, j ∈ J−, starts[i, j] ≥ starts[i, j − 1] + durations[i, j] : precedence constraints

between each subparts of the task.
b. ∀i ∈ A, j ∈ [1, maxpreemption − 1], durations[i, j] = 0 → durations[i, j + 1] = 0: As

soon as there is a 0 duration subtask, all the following ones are 0 too.
c. ∀i ∈ A, j ∈ [1, maxpreemption], durations[i, j] = 0 → starts[i, j] = starts[i, j − 1] +

durations[i, j − 1]: Whenever there is a 0 duration, the remaining starts values are
uniquely determined by previous values, pruning redundant solutions.
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14. Partially preemptive and non releasable resources :
We introduce variable blockedduration[i, j, k], ∀i ∈ A, j ∈ J , k ∈ Rρ as the usage
duration of resource k for task i and activity subpart j. It is regulated by the following
constraint: ∀j ∈ J ,
ρi,modes[i],k = 1→ blockedduration[i, j, k] = durations[i, j]
This means if the resource is releasable then the duration of the usage is the same as the
duration of the subtask.
On the other hand, to describe the consumption of a resource over the total span of the
activity for not releasable resources, we have:
ρi,modes[i],k = 0 → (blockedduration[i, 1, k] = starts[i, maxpreemption] − starts[i, 1])∧
(blockedduration[i, j, k] = 0, ∀j ∈ J −)
This will set blockedduration[i, 1, k] to the total span of the activity, including preempted
time, and ignore the other subparts.
Then, when indicating the cumulative constraint, instead of the normal duration, this
resource uses blockedduration:

∀k ∈ Rρ, cumulative(starts, blockeduration, bmodes,k, Bk:)

We note that Constraint (13) implementing preemption won’t always lead to a feasible
solution without backtracking even if there are no time windows or maximum time lags when
using CP-Optimizer solver.

Let us take a simple example of a single preemptive activity A1 of duration 5 task
decomposed in 3 subtasks A1,1, A1,2 and A1,3. Suppose the solver sets the start time of A1,1
to 0 and the end time of A1,1 to 3 (and consequently its duration to 3). Suppose now that
the solver sets the start time and the end time of A1,2 to 3 (duration 0). Then according to
constraint (13b) the duration of A1,3 is set to 0 and a failure occurs due to the impossibility
to satisfy constraint (10b).

To deal with this issue, we took advantage of the expressiveness of CP-Optimizer to
add an alternative variant in our model: using the concept of interval instead of using
variables starts and durations. An interval is defined as follows: ∀i ∈ A, interval[i] is a
|maxpreemption| array of optional intervals variable. Each interval has the attributes present

(boolean), duration, start, end (all integers). We also create one unique interval for each
task, called spantask. New constraints are applied to this interval variable :

15. ∀i ∈ A, s.t pi,modes[i] >= 1, ∀j ∈ J , interval[i, j].duration ≥ 1 : We don’t consider 0
duration for task intervals, which avoids the above-presented issue. This could also help
the solver to remove unnecessary solutions in its search space since otherwise there could
be multiple equivalent solutions.

16. ∀i ∈ A, j ∈ J−, interval[i, j].start ≥ interval[i, j − 1].end: precedence constraints
between sub-intervals of the same task.

17. ∀i ∈ A, j ∈ [1, maxpreemption − 1], interval[i, j].present = False → interval[i, j +
1].present = False: When one sub-interval is not present, the remaining ones are
not present either. This is equivalent to 13b constraint.

18. ∀i ∈ A,
∑

j∈J (interval[i, j].duration ∗ interval[i, j].present) = pi,modes[i] The sum of
duration of present intervals should sum to the duration of the task.

19. ∀i ∈ A, span(spantask[i], interval[i, :]): We use the native constraint span of CPOptim-
izer so that the spantask[i] spans over all present intervals in interval[i], ignoring the
non-present.

The precedence constraints are written using the spantask interval. We call this new model
specific to CPOptimizer, Model CP-SmartPreemption while Model (1–14) is called CP-Base.
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3.2.3 Objective function

We will focus exclusively on the makespan, which in terms of our formulation is equal to the
ending time of the sink task n. Hence the goal is to minimize

makespan = starts[n, maxpreemption] + durations[n, maxpreemption]
However as detailed in section 4.3, due to the difficulty to obtain feasible solution, in

our solution approach we opt in a first phase for a relaxation of a set of constraints and a
penalization of their violation in the objective function. Thus the actual objective in this
phase is a lexicographic optimization of the violation penalty and the makespan (see section
4.3).

3.3 A small PP-MS-MM-RCPSP/max-cal instance and its optimal
solution

We provide an example PP-MS-MM-RCPSP/max-cal instance to illustrate its output from a
simple problem definition contained in Table 1. It contains 6 activities to schedule (including
source and sink tasks); it also includes multi-mode tasks, variable operator availability, release
and deadlines, complete and partial preemption and finally one synchronisation constraint.
This instance can be found in the toy model folder of our open source model’s repository 2.
The optimal solution is depicted in Figure 1. We can observe that the tasks A1 and A3 are
partially preemptive activities : the resource R1 is therefore still used even though the task
is paused. The calendar constraint of Operator 1 is visible in the corresponding Gantt chart
where we see no operations assigned to it during its break time. The mode allocation is the
following : modeA0 = 1, modeA1 = 2, modeA2 = 1, modeA3 = 2, modeA4 = 2, modeA5 = 1.

Table 1 An instance of PP-MS-MM-RCPSP/max-cal.

Activity Mode Duration Skills Resource Deadline Release Preemption Successors

A0 1 0 - - - - - A1, A2, A3, A4, A5

A1 1 5 l1 R1 - - AP P A5

2 3 l1 R1 5 - AP P A5

A2 1 1 l3, l4 (R1, 1) - 2 ANP A3, A5

2 2 l3 (R1, 1) - 2 ANP A5

A3 1 3 l2 (R1, 1) - - AP P A5

2 2 l3, l2 (R1, 1) - - AP P A5

A4 1 2 l3 - - 5 AP A5

2 3 - (R1, 1) - 5 AP A5

A5 1 0 - - - - - -

Operator Skills Calendar

O1 l1, l3 [1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0]

O2 l1, l2, l4 [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1]

Resource Capacity

R1 2

Psync−start [(A3, A4)]

2 https://github.com/g-poveda/do_experiments

https://github.com/g-poveda/do_experiments
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Figure 1 Operator and resource oriented Gantt chart for the example instance.

4 Algorithms

4.1 Generic large neighborhood search algorithm
Our approach to solve the PP-MS-MM-RCPSP/max-cal is to use a generalisation of Large
Neighborhood Search (LNS) for scheduling problems [21]. In LNS, We iteratively improve
the solution quality of a Master Problem MP by solving at each step a Reduced Master
Problem RMP , based on theMP and previously found solutions. The way RMP are built
are the core of LNS methods. The generic LNS algorithm is described in Algorithm 1, where
Xiter denotes the solution at iteration iter and Y iter its objective value.

Algorithm 1 Generic Large Neighborhood Search Algorithm.

Begin
1: Y ∗ =∞, X∗ = None

2: (X0, Y 0) = (X∗, Y ∗) = initialsolution(P )
3: iter = 0
4: repeat
5: RMP = buildsubproblem(MP , Xiter)
6: Xiter+1, Y iter+1 = solve(RMP)
7: if Y iter+1 ≤ Y ∗ then
8: X∗ ← Xiter+1

9: Y ∗ ← Y iter+1

10: iter ← iter + 1
11: until stop criterion is met
12: return X∗, Y ∗

4.2 Application to the PP-MS-MM-RCPSP/max-cal

4.2.1 Initial solution provider
We rely on a generalisation of the serial schedule generation scheme (SGS) procedure [16] to
produce an initial solution for PP-MS-MM-RCPSP/max-cal (Algorithm 1, line 2). A similar
generalisation was implemented in [26] being the closest one we found in the literature since
it includes multi-skill, preemption and partially releasable resources.

Our SGS implementation takes as input a priority ordering of activities order_act, given
as a permutation of A and, for each activity i ∈ A, another priority ordering order_resi ∈
S|O| of the workers o ∈ O to be assigned to the activity and the mode id modesi chosen to
run the activity, as defined for the CP model.

CP 2023
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Activities are scheduled incrementally based on their priority as in classic serial SGS,
at their earliest possible start date considering resource availability. Worker allocation is
also done greedily using the order_res array. The preemptivity feature of our problem
allows us to schedule subpart of some activities. Our open source library includes an
implementation module handling all the features of PP-MS-MM-RCPSP/max-cal except
for the Psync−start/end constraints, release and deadline constraints. The greedy procedure
doesn’t ensure that the constraints are feasible for these hard constraints.

Using the SGS procedure makes possible to run simple local search algorithms to
get one initial solution of the problem. Such solver explores the vectored state space
order_act, order_res, modes, and evaluate its fitness using SGS. The output evaluation of
SGS is the same than the LNS or CP ones : makespan + potential penalty when deadlines
and other constraints are not fulfilled (see details in Section 4.3). The state space being a
permutation one, we are using moves chosen randomly from a portfolio of potential moves :
partial and total shuffling, swap 2 random activities, 2-opt moves. Only one specific mutation
has been also implemented to correct potential deadlines constraints (that put first the late
task). In this paper we are using simulated annealing (SA) [14] as a local search solver. SA
was parameterized with an initial temperature of T = 3 and exponential cooling schedule of
factor α = 0.999. A restart strategy also ensures to roll back to the current best solution
when we haven’t improved the quality after N = 300 iterations.

4.2.2 Subproblem building
To build the reduced master problem, we rely on the constraint programming formulation
and include additional constraints, which makes it simpler to solve. We decompose the
subproblem building procedure (Algorithm 1, line 5) in two main methods. The first one,
activityselector will split the set of activities A into 2 disjunctive subsets Asub and Asub .
Different methods have been implemented and tested to select Asub and Asub as described
below:
1. Random selection : given f ∈ R, 0 ≤ f ≤ 1,
Asub = sample(A, ⌊f · |A|⌋), and Asub = A \ Asub

2. Random selection and neighbors : consist in the previous selection, then add the prede-
cessors of each task in Asub. Formally, given f ∈ R, 0 ≤ f ≤ 1:
Asub,1 = sample(A, ⌊f · |A|⌋), and
Asub = Asub,1 ∪ {j ∈ A s.t ∃(x, y) ∈ P, x = j ∧ y ∈ Asub,1}

3. Cut in equal parts : given c ∈ N, we sort the activities by increasing order of starting
times in the current best solution X∗, then cut this ordered list in c equal pieces. When
called, the function returns one of these c parts. A good strategy we observed consists in
returning them in increasing order.

4. Generalized precedence adapted selection : when considering the constraints of deadlines,
release dates, and the generalized precedence constraints (Psync−start, Pstartlag, Psync−end,
Pendlag) , we can reach a solution X∗ violating some of the constraints. Therefore we add
in priority the tasks responsible for constraints violation in Asub and their predecessors
in the precedence graph.

5. Mixing methods : given a pool containing the previous four methods, it will return Asub

and Asub of one of the pool members (either randomly at each iteration, or based greedily
on the effectiveness of the selected method based on previous iterations).

Once we have the activityselector function, its output (Asub and Asub) can be used in the
constraintbuilder function to add constraints to the CP model as described in Algorithm 2.
Instead of totally locking the variables corresponding to Asub and keeping free for optimisation
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the variables of Asub, we consider different ϵ values to constrain start and duration variables.
We typically assign high values to parameters ϵsub,∗ and small values to ϵsub,∗.

Algorithm 2 Constraint builder procedure.

1: constraintbuilder(Asub,Asub, X, modelcp, paramsconstraints) :
2: ϵsub,+, ϵsub,−, ϵsub,+, ϵsub,−,

ϵdursub,+, ϵdursub,−, ϵdursub,+, ϵdursub,−, = paramsconstraints

3: for all i ∈ A do
4: for all j ∈ [1, maxpreemption] do
5: if X.durations[i, j] > 0 then
6: if i ∈ Asub then
7: (ϵ−, ϵ+)← (ϵsub,−, ϵsub,+)
8: (ϵdur−, ϵdur+)← (ϵdursub,−, ϵdursub,+)
9: else if i ∈ Asub then

10: (ϵ−, ϵ+)← (ϵsub,−, ϵsub,+)
11: (ϵdur−, ϵdur+)← (ϵdursub,−, ϵdursub,+)

12: modelcp ← X.starts[i, j]− ϵ− ≤ modelcp.starts[i, j] ≤ X.starts[i, j] + ϵ+
13: modelcp ← max(0, X.durations[i, j] − ϵdur−) ≤ modelcp.durations[i, j] ≤

X.durations[i, j] + ϵdur+

4.2.3 Subproblem solving
To solve the subproblem we use the open source lazy clause generation solver Chuffed3 or
alternatively IBM’s CP-Optimizer4 backend. Both rely on a CP formulation done in Minizinc
language, and worked well in our experiments. At each iteration of the solver, we set an upper
time computation h. In case we want to optimize The objective function can be the final
activity n’s end or the end of the subset of activities Asub we consider the most important in
the RMP . Both strategies impact slightly the convergence of the overall algorithm but we
didn’t assessed the details in our current experiments.

After retrieving the solution of the RMP from the solver, it is post-processed by a left
shifting procedure that compresses the full schedule. It is particularly useful in the case where
the constraints introduced in constraintbuilder create idle times in the resulting schedule.

4.3 Relaxing constraints
The current SGS implementation does not return a feasible solution when certain constraints
of PP-MS-MM-RCPSP/max-cal are present. Namely, those are the deadline and generalized
precedence constraints Psync−start, Psync−end, Pstartlag, Pendlag. By relaxing constraints (6),
(7), (8), (9), (12) from Subsection 3.2.2 we include a violation penalty into the objective
function. This violation penalty for Psync−end is illustrated in Figure 2. The objective
function that LNS and underlying CP solver minimizes is makespan + M · penalty where M

is a large number.
This means that in practice, there will be 2 phases of optimisation :
Feasibility phase : In this phase the violation penalty decreases, converging to 0.
Optimisation phase : the algorithm optimises the original objective function (makespan)

3 https://github.com/chuffed/chuffed
4 https://www.ibm.com/analytics/cplex-cp-optimizer

CP 2023

https://github.com/chuffed/chuffed
https://www.ibm.com/analytics/cplex-cp-optimizer


31:12 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

A1
A2

∆t

time

Figure 2 ∆t is added to the objective function whenever (A1, A2) ∈ Psync−end.

5 Experimental results

5.1 Manufacturing domain instances
We ran a series of experiments in order to evaluate our LNS method for PP-MS-MM-
RCPSP/max-cal. All experiments have been done in a MacBook Pro with 2,7 GHz Quad-
Core Intel Core i7. In the first experiment, our goal is to assess the performance of our
method in a practical situation, so we extracted data samples from a real manufacturing use
case. The experiment relies on two scheduling problem base instances (A and B) obtained
from one of the assembly plants at Airbus, and are described in Table 2. Using these 2 base
instances, we built 32 different instances, using all the possible combinations of the following
features :

Calendar: we can use our definition for resource consumption (Constraint 1 in section
3.2) or consider complete resource availability at any moment, hence making vectors
Bk : ∀k ∈ Rρ always constant and Ao : ∀o ∈ O always 1.
Temporal Constraints: we include or not the deadline times, release times (described in
Section 3.2 as the constraints number 11 and 12) and generalized precedence constraints
(constraints number 6 to 9)
Preemptive : tasks can be preempted if needed or preemption is forbidden; in the non
preemptive use case, ANP = A
Multiskill : skilled workers are present or not; in the non multiskill use case, workers
belong to R and O = ∅

Table 2 Base instance description of the manufacturing use case.

Instance |A| |R| |L| |O| |P | |Pss| |Pse| |Psl| |Pel|

A 291 8 23 27 842 3 70 0 4
B 199 3 6 6 676 1 34 6 4

We ran our LNS algorithm with a time limit of 1800 seconds for all of the instances. As
a comparison, we also ran the simulated annealing algorithm (SA) and a direct CP solving
of Model CP-Base using Minizinc and the CP-Optimizer backend, the Chuffed backend and
the CP-SmartPreemption model for the same amount of time.

The results for each instance are detailed in Table 3. Four of those instances (number 8
to 11) are infeasible by design, because they include the calendar constraints but not the
preemption ones, so we left out those and will focus on the remaining 28 instances for our
experiments. For the sake of clarity, we only show CP-SmartPreemption results (CP-S in the
table) as it it consistenly better than the CP-Base model whether the latter is solved by
Chuffed or CP-Optimizer. A comparison between CP-SmartPreemption and CP-Base can
be found in Appendix A.1.
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Table 3 Makespan results obtained for the 28 testing instances (splitted in two tables) using
the three solvers: LNS, CP-SmartPreemption (abreviated as CP-S) and SA. For SA penalty values
are included when the solution is not satisfying all the constraints (solutions for LNS and CP-
SmartPreemption got no penalty). The table also includes each instance base problem (A or B) and
its features: M for Multi skill, G for Generalized precedence constraints, P for (partial) Preemption
and C for resource Calendars. In bold best results among the three algorithms.

ID Features LNS CP-S SA p-SA

0 A 1080 1080 1080 0
1 A M 1080 1080 1080 0
2 A G 6534 6534 6817 128
3 A G M 6553 6534 6543 104
4 A P 1080 1080 1080 0
5 A M P 1080 2495 1080 0
6 A G P 6534 6534 6534 0
7 A G M P 6553 6612 6537 0
12 A C P 7154 - 7154 0
13 A C M 7154 - 7154 0
14 A C G P 7866 - 7777 0
15 A C G M P 7777 - 7805 0
16 B 2340 2339 2373 0
17 B M 2350 2346 2375 0

ID Features LNS CP-S SA p-SA

18 B G 3053 3053 3275 2171
19 B G M 3109 3109 3530 2590
20 B P 2340 2340 2339 0
21 B M P 2340 2390 2340 0
22 B G P 3053 3044 3148 750
23 B G M P 3117 3180 3456 714
24 B C 3202 3196 3250 0
25 B C M 3289 3208 3263 0
26 B C G 4949 4949 5096 4727
27 B C G M 5096 4949 5096 4359
28 B C P 3205 3195 3192 0
29 B C M P 3193 3208 3192 0
30 B C G P 4580 4383 4436 1167
31 B C G M P 5010 - 4840 1132

As we can see, LNS reaches the best results on 15 out of the 28 instances, CP-
SmartPreemption on 16 and SA on 13. By comparing the different instances where each
method excels, we observe that instances with high complexity in the type of constraints, i.e a
combination of having generalized precedence constraints, calendar, multiskill or preemptive
tasks are the ones for which we would rely the most on LNS: instance 15 and 31 are indeed
the ones including all the available features. For those instances, CP-SmartPreemption is
not returning any result in the allowed time whereas SA fails to find feasible solutions.

On the other hand, SA is generally competitive as long as there is no generalized precedence
constraint involved. But if those are present it finds difficulty in yielding a solution, which was
expected since the SGS does not fulfill all the generalized precedence constraints. However,
in some of the instances SA got better results with some of those features present, thus we
theorize that the solution space heavily impacts in this method, helping to overcome the
presence of complex constraints and obtaining nonetheless an optimal solution: if we do not
take into account instances where no feasible solution was found, SA achieves best results in
13 of 20 instances.

Figures 3a and 3b show makespan and violation penalty from the solutions found using
our method for the most complex two variants (containing all the possible features). We
can confirm that our strategy of relaxing certain constraints at the cost of adding a penalty
is useful to get an initial solution that will be improved from that point, as described in
Subsection 4.3.

5.2 Experiments on instances with multiskill and partial preemption
We conducted a second experiment using instances of partial preemptive multi-skill problems
based on the schedule of operations of a nuclear facility [26]. The benchmark is divided in 4
different sets, each having different distribution combinations of AP ,ANP and AP P .

CP 2023
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(b) Instance n°31.

Figure 3 Evolution of solutions found for LNS algorithm in two of the instances. Makespan
shows in green at the left Y axis and penalty in red at the right Y axis for both of the instances.

Table 4 Average gap to lower bound for different algorithms and by set of instances. Best results
for each set are bold and second best are underlined.

Algorithm Set A Set B Set C Set D

GRASP + LNS [26] 1.56% 1.79% 6.68% 2.06%
SA (300 seconds) 1.59% 1.82% 5.65% 2.33%

SA (240 s) 1.82% 1.83% 6.57% 2.17%
SA (240 s)+LNS (60 s) 1.82% 1.83% 6.49% 2.12%

The multi-skill variant of this benchmark can be directly mapped into our formalisation,
except for the minimum number of operators required by activity constraints. To adapt our
model we introduced in the problem instances a dummy skill sall mastered by all operators.
We then set skill requirement of skill sall for each activity, to the minimum number of
operators required.

The comparison results, detailed in Table 4, are based on the average gap to lower bound,
like it was done in the original paper. We compared three of our solving methods to the
one tested previously. The first one is obtained by running simulated annealing for 300
seconds, working on the permutation of tasks and the SGS algorithm. In the second we ran
simulated annealing alone for 240 seconds as second baseline, and finally we ran LNS during
60 seconds. The SGS method combined with SA is competitive with the best dedicated
algorithm GRASP+LNS [26]. LNS only improves slightly SA results as it can be seen
when comparing SA (240 s) and SA (240 s) + LNS (60 s), which may be explained by the
performance of SA itself, which is close or even better than the baseline.

5.3 Experimental results of LNS on standard multi-skill instances from
the literature

Additionally, we did another benchmark comparison using the instances contained in [38].
The goal of running this second experiment is to have again comparative results to the work
of [26], which our method can be related with, since it also aims at handling multi-skill and
partial preemption in scheduling problems. The mentioned instances are divided in five sets,
but we decided only to tests in one of them, set 1B, since it is the set with the lowest solution
rates (only 12.5% solved) using the reference solvers.
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Set 1B was proposed by [2] and it contains instances with 42 activities, 4 skills and
between 20 to 60 resources. For these experiments, we relied on the CP model used in [38] 5,
which models classical multi-skill where operator perform at most 1 skill on a task. We used
this CP model in our generic Large Neighborhood Search algorithm to evaluate how well the
approach generalizes to different scheduling problem variants. Baseline solutions we compare
with are the ones found by running Chuffed solver with the best search strategy. They can
also be found in the repository.

The current implementation of SGS prevents us to test simulated annealing as a solver
or initial solution provider, because of the constraint stating that an allocated worker can at
most perform 1 skill on a task. Therefore, the initial solution used in LNS is computed by
using the Chuffed solver directly on the minizinc model from [38] for 30 seconds. Then, if the
solution is not optimal, the large neighborhood search is used with the mixing neighborhood
strategy for a maximum time of 500 s. Worker allocation is fixed only in 10% of the tasks,
which empirically showed good performance in terms of improvement rate during the LNS

algorithm. We are improving 151 out of 216 of the Set 1B instances (69.9% of the total)
whereas Young et al. results [38] are still better on 29 instances (13.4%), and equal on 36
instances (17.7%). On the 151 improved instances, the average improvement of our solution
over the baseline is 4.61%. On the 29 that Young et al. CP method [38] was better, the
makespan was worsen in average by 3.46%. In total average, our method gave a 2.76%
improvement on the makespan.

Finally, we conducted some preliminary experiments on the new MSLIB [34] benchmark.
The authors provided us some baseline best known solutions found by a genetic algorithm
(GA) approach [33] on the hardest set of instances MSLIB4. Precisely we ran experiments on
the first 404 instances of MSLIB4 using CP-Chuffed 30 seconds as initial solution followed
by LNS for 100s. Our computation time is an order of magnitude higher than the GA that
has a CPU time of around 15s.

The results indicate a strong impact of the SS (skill strength) parameter of the instances.
This ratio roughly gives the scarceness of the skills in the sense that SS = 0 means that
the number of resources that master a skill is equal to the maximum demand in operators
mastering this skills over the activities, i.e. the minimal value that ensure feasibility. LNS
systematically outperforms GA when SS > 0 (90 instances) with an a average improvement
of 2.9% but when SS = 0 (164 instances), LNS is largely outperformed by GA with an
average 19.2% gap. Additional material on these results are presented in Appendix A.3.

5.4 Implementation
We provide an open repository containing scripts to rerun the benchmarks presented in
Sections 5.2 and 5.3 to ease replication for further research6. Every multiskill variant
presented in the paper is using the same python object placeholder with different attribute
values. About the algorithm most of it is reused by all variants :
1. The SGS procedure is the same whatever for all benchmark and therefore the metaheur-

istics methods that only rely on the SGS procedure are reused identically
2. LNS algorithm 1 is the same for all benchmarks
3. Activity selectors mixing method described in 4.2 are used on all benchmarks. Experiments

that justify the choice of the mixing method are presented in Appendix A.2.

5 https://github.com/youngkd/MSPSP-InstLib/blob/master/models/mspsp.mzn
6 https://github.com/g-poveda/do_experiments
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4. Specific : We are using 2 different minizinc modeling in our benchmark, one containing
the most property of PP-MS-MM-RCPSP/max-cal that is used in benchmark 5.1 and 5.2
and one another model for classical MSRCPSP for benchmark 5.3.

6 Conclusions

In this paper we have presented a large neighborhood search (LNS) method to solve par-
tially preemptive multi-skill/mode resource-constrained project scheduling problem with
generalized precedence relations and resource calendars (PP-MS-MM-RCPSP/ max-cal).
Solvers including all of those features are scarce, but are usually needed to approach real
manufacturing or assembly environments.

In order to validate our method, we performed three experiments to benchmark it against
constraint programming and simulated annealing. In the first experiment we used data from
an Airbus use case, containing a real world scenario with 32 different variations. To make a
fair comparison, we designed the CP-SmartPreemption model that handles preemption in
a clever way significantly outperforming the our baseline CP model CP-Base. Despite its
good performances, CP-SmartPreemption is unable to find a feasible solution in 6 industrial
instances, while the LNS method finds a solution on all instances. From the observations of
the samples, we conjecture that our method works better when (almost) all complex features
are present in the problem definition (i.e.: calendar, generalized precedence constraints,
multiskill and preemption). Then, we tested our method using a benchmark from research
work on partially preemptive multi-skill scheduling [26] to evaluate its performance in another
real scenario. In this experiment, the simulated annealing methods appears competitive,
slightly improved by LNS. Our method was the second best among the tested ones given
the benchmark conditions, still being competitive enough to be close to the best one of that
benchmark. In the last experiment on standard MS-RCPSP instances, we used our method
as a mean of improvement for the solutions given by the CP based method. On the instances
from [38] we improved the best known solutions in 69,9% of the instances. On the instances
from [34] the performance of our approach is highly correlated with skill scarceness, which
open a path for future research.

In conclusion, we found our LNS based method, available in a new discrete optimization
open-source library, appropriate to solve scheduling problems containing combinations of
complex features like the ones found in industrial instances, and is still reliable to be used
for more academic problems.

An interesting perspective is to be able to reuse the subproblem solving information
from one iteration the other to save computational time. Current Minizinc implementation
has a limitation w.r.t. incrementality. Nevertheless, it would be worth to investigate how
solution-based phase saving approaches [8] use nogoods and see if it is applicable in our LNS
framework for future work. Adapting propagation guided LNS[23] to our framework is also a
promising research direction.
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A Appendix

A.1 CP modeling comparisons

We ran new experiments in comparing the two different CP modeling we propose : the
default one presented in section 3.2.2 and its upgrade that we called CP-SmartPreemption.
Computation time are still 1800 s each like in experiments of section 5.1. Results are shown
in 4. We interestingly note that CP-SmartPreemption is both faster and more efficient than

Table 5 Best solution and time to best solution for CP-Base and CP-SmartPreemption.

ID Features CP-B CP-B (s) CPSmart CPSmart (s)

0 A 1080 1.09 1080 0.78
1 A M - - 1080 8.20
2 A G 6534 0.99 6534 0.23
3 A G M - - 6534 3.90
4 A P 1104 2.21 1080 64.9
5 A M P - - 2495 24.4
6 A G P 6534 2.40 6534 62.3
7 A G M P - - 6612 141
12 A C P - - - -
13 A C M - - - -
14 A C G P - - - -
15 A C G M P - - - -
16 B 2339 106 2339 22.9
17 B M 2359 193 2346 158

ID Features CP-B CP-B (s) CPSmart CPSmart (s)

18 B G 3053 0.59 3053 0.20
19 B G M 3109 81 3109 3.20
20 B P 2342 133 2340 178
21 B M P - - 2390 196
22 B G P 3063 106 3044 30.0
23 B G M P - - 3180 198
24 B C 3196 154 3196 170
25 B C M 3272 127 3208 88
26 B C G 4949 0.52 4949 0.17
27 B C G M 4949 2.2 4949 0.80
28 B C P 3252 1.32 3195 217
29 B C M P - - 3208 203
30 B C G P 4949 1.35 4383 59.0
31 B C G M P - - - -

the default version. Notably, it manages to find feasible solution to 7 additional instances
compared to basic CP formulation. It also succeeds in solving instance ID 30 way more
efficiently than CP-Base or even the LNS that was presented in Table 3. As of today, the
current modeling of CP-SmartPreemption still fails at the most complicated instances on the
instance A that have the most operators/workers and number of task.

A.2 Subproblem methods benchmark

We give more hindsight on the general choice done in the paper to use the mixing methods
described in section 4.2.2. Naturally we expect that such a portfolio approach that picks a
method from a pool of N neighborhood methods can be better in average than using only
one method. To confirm this intuition, we run LNS methods using different parameters:

1. “Random selection” methods with parameter f taking values in [0.1, 0.2, 0.3, 0.4]

2. “Cut in equal parts” methods with parameter c taking values in [2, 3, 4, 5, 6]

3. “Mixing method” : portfolio of the previous 9 methods, chosen randomly at each iteration
of LNS.

As a starting experiment, we are testing this methods on 5 classical RCPSP instances with
120 tasks, and run the solver 10 times per neighborhood methods and instances to get a
better statistical confidence. We limited to 100 the number of iteration of LNS. Detailed
results are in Table 6. It shows empirical confidence in using a mixing method, that achieved
best performance. We also ran the same experiment on the instances ID=16,17 in Table 7
and got similar behaviour. Deeper hyper-parameters optimisation could be done for the
more complex problems as PP-MS-MM-RCPSP/max-cal in a further research.
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Table 6 Neighborhood methods performance on a few instances.

Method j1201_1 j1201_2 j1201_3 j1201_4 j1201_5

RS(0.1) 116.6 131.3 138.6 106.5 131.3
RS(0.2) 112.2 129.8 136.8 106.0 128.3
RS(0.3) 110.4 128.4 134.3 105.4 120.4
RS(0.4) 108.9 118.0 132.6 103.3 116.7
Cut(2) 105 118.0 130 102.0 113.0
Cut(3) 107 118.0 135 101.0 118.0
Cut(4) 108 126.0 131 106.0 132.0
Cut(5) 111 128.0 136 106.0 130.0
Cut(6) 111 129.0 137 106.0 130.0
Mixing 106.5 115.0 128.3 102.0 113.0

Table 7 Neighborhood methods performance on an industrial use case (ID=16).

Method ID 16 (B) ID 17 (BM)

RS(0.1) 2698.0 2745.0
RS(0.2) 2659.0 2675.0
RS(0.3) 2534.0 2635.0
RS(0.4) 2489.0 2662.0
Cut(2) 2344.0 2628.0
Cut(3) 2343.0 2436.0
Cut(4) 2346.0 2480.0
Cut(5) 2346.0 2486.0
Cut(6) 2349.0 2776.0
Mixing 2342 2460.0

A.3 MSLIB Experiments
To better understand the results we plot the overcost of the LNS method as a function
of different parameters used to generate MSLIB4 instances in Figure 4. We theorize that
increasing #R (number of resources) has a negative impact on LNS performance. It also
highlights that LNS is underperforming only on instances where SS = 0 and SSα = 0,
defined as skill strength and skill strength variability. As future work we want to continue
testing on MSLIB benchmark to possibly improve the LNS method. Detailed results
comparing the GA and LNS approach over the tested instances are depicted in Tables 8
and 9.

Table 8 Best results over subset of MSLIB4 instances (404 instance).

Algorithms LNS (ours) GA 2021 Equal
#Best Results 90 164 150
Mean Improvement when better solution than GA 2.9% - -
Mean Degradation when worse solution than GA 19.2% - -
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Figure 4 Relative overcost to GA of LNS method, function on different features of MSLIB4
instances.

Table 9 Detailed results comparing GA (from [33]) and our methods, function on instance
parameters. The GA, Equal, LNS columns counts the number of instance of some given parameters
where each of the algorithms got the best results. (LNS-GA)/GA column store the average overcost
of LNS method oven the subset of instances described by SP, SS, RA.

SP SS RA NbRun GA Equal LNS Mean (LNS-GA)/GA (%)

0.1 0.0 0.0 79 41 34 4 12.4
- - 0.2 40 5 17 18 1.89
- - 0.3 33 33 0 0 18.6
- - 0.4 25 9 9 7 5.59
- - 0.5 66 44 11 11 12.4
- - 0.6 15 5 7 3 2.86
- - 0.7 18 11 5 2 9.21
- - 0.8 22 13 7 2 8.04
- - 0.9 3 3 0 0 6.78
- - 1.0 28 0 18 10 -1.01
- 0.1 0.0 24 0 14 10 -1.06
- - 0.2 6 0 2 4 -2.71
- - 0.3 3 0 1 2 -3.60
- - 0.4 1 0 0 1 -4.88
- - 0.5 1 0 0 1 -1.67
- - 0.6 1 0 1 0 0.0
- - 0.7 2 0 1 1 -0.76
- 0.2 0.0 18 0 12 6 -1.00
- - 0.2 6 0 2 4 -2.67
- - 0.3 1 0 1 0 0.0
- - 0.4 2 0 1 1 -2.38
- 0.3 0.0 5 0 3 2 -1.61
- - 0.2 1 0 0 1 -2.63
- 0.4 0.0 2 0 2 0 0.0
- 0.5 - 2 0 2 0 0.0
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Abstract
In the aeronautics industry, each aircraft family has a dedicated manufacturing system. This system
is classically designed once the aircraft design is completely finished, which might lead to poor
performance. To mitigate this issue, a strategy is to take into account the production system as early
as possible in the aircraft design process. In this work, we define the Assembly Line Preliminary
Design Problem, which consists in defining, for a given aircraft design, the best assembly line
layout and the type and number of machines equipping each workstation. We propose a Constraint
Programming encoding for that problem, along with an algorithm based on epsilon constraint for
exploring the set of Pareto solutions. We present experiments run on a set of real industrial data.
The results show that the approach is promising and offers support to experts in order to compare
aircraft designs with each other.
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1 Introduction

The aeronautics industry is highly specialized. It requires significant investments in research
to design and manufacture a new aircraft. Each new aircraft family, consisting of several
models within a given size range, requires the development of a dedicated industrial system.
The latter includes the manufacturing and assembly processes, supply chain, tooling and
facilities necessary to produce an aircraft at scale. The design of such a system typically
involves several steps of high-level objectives refinements, which can take several years and
requires collaboration between various stakeholders (aircraft manufacturers, suppliers, and
regulatory agencies, etc.). Once established, the system can be used for the entire aircraft
family lifecycle, which can last several decades. While aircraft manufacturers can generally
leverage existing resources such as buildings and infrastructure, they have to develop new
manufacturing and assembly lines to meet the specific requirements of each aircraft family.

An industrial system has its own set of requirements and is designed so as to optimize
several criteria. For instance, assembly lines must comply to organizational constraints
and ergonomics recommendations while minimizing the overall investment cost. As the
manufacturing system depends highly on the aircraft choices (e.g. the aircraft material such
as carbon fibers, metal, etc.), the manufacturing system design is generally thought after the
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aircraft design. This might result in a low performance of the latter or even the impossibility
to meet some requirements. For instance, choosing carbon fibers on the aircraft side requires
buying autoclaves on the industrial system side, with an associated cost that exceeds a given
investment budget.

Therefore, a nowadays trend in aeronautics is to take into account the industrial system
design as early as possible in the aircraft design process ([18, 22]). A way to do so, and the
approach we follow in this paper, is to design the best preliminary industrial system for an
aircraft design that is not validated yet and assess its performance. This allows to estimate
whether expected industrial objectives can be met for a given aircraft. Moreover, if several
aircraft designs are candidates, this also allows comparison between them with respect to
their industrial suitability. Finally, such an approach offers support for making trade-offs
between the aircraft and the manufacturing. More precisely, a modification of the aircraft
that downgrades its performance might allow to decrease significantly the cost associated to
the production system. For instance, a change in the aircraft shape might increase a little
bit its fuel consumption but reduce significantly the time required to build it because the
new shape allows to use robots for making junctions.

This work presents contributions produced in the context of an industrial project with
an aircraft manufacturer for supporting trade-offs between an aircraft and its industrial
system. The objective of this project was to focus on one element of the industrial system,
namely the assembly line. An aircraft assembly line is responsible for bringing together all
of the components of the aircraft, including the fuselage, wings, engines and interiors, into
a complete and fully functional aircraft. The assembly lines we consider are pulsed and
composed of several workstations that are equipped with specific machines. Assembly lines
must be designed to be flexible enough to accommodate changes in the manufacturing process
as the aircraft family evolves over time. Moreover, because of the international context,
production rates can vary a lot within the aircraft lifecycle. It is therefore essential to choose
an aircraft design and an assembly line design that are compatible with such evolution. Other
elements of the industrial system, e.g. the supply chain, depend also highly from the aircraft
design but they were out of scope of our project. Nevertheless, the assembly line by itself
represents a quite expensive part of the industrial system. In fact, when an aircraft design
allows to have one workstation (or one machine) less than another one, it can correspond to
costs of several million euros.

In the preliminary stages of designing an assembly line, aircraft manufacturers can use
the PERT (Program Evaluation and Review Technique). PERT is a network diagram that
shows the sequence of tasks and their dependencies. It allows to identify critical paths and
potential bottlenecks. However, PERT is a very optimistic view of the building process. In
fact, because it does not take resources into account, it assumes that all tasks that are not
dependent can be performed in parallel. In order to have a more realistic assessment on
the assembly line, industrial architects design workstations and equip them, assign tasks to
workstations and then compute a fine-grain line balancing that takes into account workers
and their profiles. However, such an iterative process can be quite heavy to put in place for
each aircraft design candidate.

In this paper, we present an aid-decision tool that we have developed in the context of
the previously mentioned project. For a given aircraft, the tool returns the best preliminary
assembly line designs with respect to several criteria. These criteria deal with the assembly
line layout (workstations and associated equipment), its cost and also with the production
duration. We call this problem the Assembly Line Preliminary Design Problem, which can
be seen as a Resource-Constrained Project Scheduling Problem (RCPSP) with additional
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constraints ([9]). The tool relies on a Constraint Programming encoding of the problem.
In fact, Constraint Programming is particularly suited for handling resource and temporal
constraints inherent in the assembly line design problem ([16]). In order to explore the Pareto
solutions set, we define an epsilon constraint based algorithm ([4]). It basically consists in
computing bounds for each criteria, choosing an exploration order and a number of points in
the front, and next running a mono-criterion algorithm to generate Pareto solutions.

Our contribution can be summarized as follows:
we present a new problem, namely the Assembly Line Preliminary Design Problem, and
formalize associated constraints and criteria;
we define a Constraint Programming encoding for this problem;
we develop an epsilon constraint based algorithmic approach for exploring the Pareto
front;
we present experiments on a set of real data coming from an aircraft manufacturer;
we make those data available for the community.

The paper is structured as follows. In Section 2, we describe related works. Section 3
is dedicated to an informal description of the problem and some prior work for eliciting
constraints and criteria in the case of a preliminary design. In Section 4, we formally
model the Assembly Line Preliminary Design Problem and propose an associated Constraint
Programming encoding. We detail the algorithmic approach for exploring the Pareto solutions
set in Section 5. In Section 6, we describe the real world benchmarks we have used and
discuss the results obtained with the paper’s approach. Finally, we conclude on future works
in Section 7.

2 Related Works

A vast body of literature exists on the production and line balancing problems research topic
([5, 8]). The Simple Assembly Line Balancing Problem (SALBP) consists in assigning tasks
to workstations on a single straight line with respect to some precedence constraint and to
a fixed workstation capacity. Such a problem can be seen as a bin packing problem with
additional constraints due to precedence. Depending on the objective function, there are
two classical extensions: SALBP-1 in which the number of workstations is minimized for a
given production rate and SALBP-2 in which the production rate is maximized for a given
number of stations.

Assembly Line Design and Constraint Programming. When considering the design of
assembly lines, additional features are generally taken into account, in particular resources
required for the task execution ([24]). Resources are generally used to model machines
or equipment that have to be positioned on the assembly line but also to model workers
performing assembly operations. Constraint Programming (CP) models have been developed
for solving various assembly line problems, and specifically problems in which resources are
involved. In [11], the authors present encodings for solving SALBP-1, SALBP-2 and the Task
Assignment and Equipment Selection Problem (TAESP). In the latter, one type of equipment
has to be assigned to each station and the objective is to minimize the total associated cost.
In [2], the authors use CP for solving the Resource-Constrained Assembly Line Balancing
Problem (RCALBP) in which there can be several resources candidates for performing each
task. The objective is the cycle time minimization, i.e. the time spent in each workstation of
the line. This work has been extended in [1] into the Generalized RCALBP, in which several
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modes with different resources consumption are considered for each task. These modes are
expressed through conjunction normal form formulas that are handled directly by the CP
solver through the use of AND and OR operators.

Multi-criteria Line Design. As described in [24], the assembly design problem often comes
to the optimization of several criteria. In [29], the authors consider the minimization of
the number of workstations, the minimization of cycle time and maximization of workload
smoothness and of work relatedness. Each criterion is studied independently, except for the
last two. The authors of [13] consider the problem of equipping workstations with respect
to some exclusion and compatibility constraints between pieces of equipment. They study
several criteria: minimization of the investment cost, maximization of the line throughput
rate, minimize the occupied space and minimize the workstations complexity. In [19], the
assembly line considered is mixed-model, meaning that similar models of a product are
produced on the same line. Their objective is to minimize the idle time of each model on the
line and minimize the total equipment cost. More recently, in [20], the authors optimize the
idle time and the unit product costs. All those works mainly use evolutionary algorithms for
computing a set of non-dominated solutions. An extensive comparison between 34 algorithms
is provided in [20]. In [15], the authors address the two-sided assembly line balancing problem
with multi-operator workstations with respect to several criteria: minimization of the number
of mated workstation, minimization of the number of workstation and minimization of the
number of workers. Those criteria are optimized sequentially. A CP and an ILP (Integer
Linear Programming) approaches, that both consider the time at which tasks start and end,
are proposed.

Line Balancing in the Aeronautical Industry. In the context of assembly line balancing
for the aeronautical industry, literature is less extensive. The authors of [14] consider the
efficiency of labor utilization, specifically for tasks that consist in preparing the aircraft for
assembly, for instance when it arrives on a workstation. In a generic context of producing
in low-volume, which applies for the aircraft industry, the article [6] assigns workers to
station and start times to each task so as to minimize the costs of total labor and inventory
costs. The authors of [10] consider the local order scheduling for mixed-model assembly lines.
In [7] and more recently in [26], exact (Mixed Integer Linear Programming and CP) and
heuristic methods are studied for solving a mixed-model assembly line problem in which tasks
have been assigned to workstations and the objective is to minimize the overall number of
operators. In [3], the authors compare CP and ILP approaches for assigning workers to tasks
so as to minimize the overall makespan and while ensuring that some ergonomics constraints
are satisfied. Both approaches consider not only the assignment of worker to station but also
the precise scheduling of all activities. In [23], a scheduling tool is developed for bridging the
gap between aircraft design and aircraft manufacturing. Such a tool relies on a local search
approach and is compared with a CP encoding. The problem consists in minimizing the
makespan. As done in the present paper, it considers aircraft zones that limit the number of
workers that can work simultaneously. However, it does not take into account machines on
the assembly line or zone neutralization and does not allow to optimize the takt-time.

Finally, [12] is a previous work in which we present results we have obtained on the same
industrial project. In that work, we focus on the elicitation part and present a Goal-Oriented
Requirements Engineering methodology that allowed us to obtain constraints and criteria
associated with an assembly line performance. We indicate that an operations research
approach was used to explore the set of assembly line solutions but this approach is not
formally described and only returns a few assembly line designs solutions.
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RCPSP and Multi-Objective Optimization. As explained in [26], the assembly line bal-
ancing problems in the aeronautical industry can be modeled into RCPSPs with some
additional constraints, such as temporal constraints or incompatibility constraints. Con-
straint Programming provides a expressive language for such constraints, along with efficient
solvers [16].

Some works of the literature address the Multi-Objective Constrained Optimization
Problems (MO-COP). In [25], the authors propose a multi-objective lower bound set that
allows to detect inconsistency of a multi-objective problem. The authors of [21] define
an interactive algorithm for MO-COP, that gradually refines a set of Pareto solutions by
exploring regions chosen by the user in which a Pareto front might exist. The specific case of
Multi-Objective in RCPSP has also received attention, as shown in [4].

3 Preliminary Assembly Line Design Description

In this section, we describe the assembly lines we have considered, namely pulse assembly
lines. Then, we briefly present the work that we have done prior to optimization for eliciting
constraints and criteria relevant for a preliminary assembly line design stage.

3.1 Pulse Assembly Line
The assembly line we consider in this work is a pulse line composed of several workstations.
In aeronautics, pulse assembly lines are common solutions when it comes to high production
rates.

The layout of pulse assembly lines we consider is a basic straight line. Each workstation
in the line is responsible for performing a specific set of tasks in the assembly process, and
the product being assembled moves from one workstation to the next until it is complete.
When an aircraft enters the line, it goes to the first workstation. After a duration called
takt-time2, the aircraft goes to the second workstation and a new aircraft enters the first
workstation. The aircraft that was on the last workstation is done and leaves the assembly
line. Tasks cannot be performed when the aircraft is moving. This implies that all tasks
must be assigned to one unique workstation.

The total time that the aircraft remains on the assembly line is called leadtime. The
leadtime is equal to the multiplication of the takt-time by the number of workstations. Note
that the range of values for the takt-time of a given assembly line can be quite large. In fact,
when a new line is opened, the production can start with a few aircraft per month, which
corresponds to large takt-times. Depending on business considerations, the production rate
can reach several dozen aircraft per month (takt-time equal to a few hours).

The set of operations performed on each workstation is always the same and they are
performed in the same order for all aircraft instances. Moreover, each workstation is equipped
with a set of jigs and tools, or more generally machines, that are dedicated to it. Such
machines can be heavy installations, such as scaffolds for supporting the aircraft, dedicated
robots or some smaller tools, such as dedicated drilling devices.

Assembly lines we consider in this paper are single-model lines as there is one product to
manufacture. In practice, there can be small variants between all the aircraft present on an
assembly line but such differences are not taken into account in the preliminary stage design.

2 Takt-time is generally called cycle time in the literature. However, cycle time sometimes refer to another
duration in the aircraft industry.
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3.2 Constraints and Criteria Elicitation

Prior to the tool implementation, a major part of the project we are involved in has been
dedicated to the elicitation of preliminary assembly line performance constraints and criteria.
To do so, we have followed a goal-oriented requirements engineering based that is described
in details in [12].

As expected, one of the criteria for the assembly line design is to minimize the associated
investment cost. The costs of designing an aircraft assembly line can vary significantly
depending on a variety of factors, including the size and complexity of the aircraft family, the
level of automation and technology required, and the specific requirements of the production
process. In the case of the preliminary assembly line design, we focus on two types of cost.

Minimize the number of workstations. We first consider the workstations cost. In fact,
each workstation occupies a floor area in factories and has therefore an associated cost. In
reality, the latter depends on the size of machines equipping the workstation and on the
volume of the aircraft parts manipulated. In the assembly lines we consider in this work, it
is reasonable to consider that the parts manipulated are comparable and therefore that the
workstations cost is uniform. Therefore, we try to minimize the number of workstations in
the assembly line.

Minimize the number of machines. The second type of cost is the machines and tools cost.
In fact, to build an assembly line, specialized tooling and equipment must be designed and
installed. This may include robots, fixtures and specialized machinery, which can be very
costly. As we are in a preliminary design stage, we only consider the sizing machines and
tools of the line. Cost range of such machines can be quite large as it depends on the machine
features. In this paper, we focus only on highly expensive machines. As each machine is
really specific, there is almost one criterion for each type of machine. In this project, we did
not have any cost information nor ranking between the machines. In fact, costs can be quite
complex to compute (because it implies not only buying the machine but also maintaining
it). We have therefore decided to simplify the machines cost and consider only the total
number of machines minimization. However, the number of machines of each type should be
carefully examined when looking into details solutions in the front.

Machines assignment and incompatibility. Machines and tools we consider can be assigned
to exactly one workstation. As they can be voluminous, there exists incompatibility between
some machines types. Therefore, we have an exclusion relationship between machine.

Minimize the leadtime. Leadtime reduction is a critical goal for any manufacturing process.
In fact, manufacturers can reduce the amount of cash that is tied up in work-in-progress
inventory, which can improve cash flow and financial performance.

Minimize the takt-time. As expected, the higher the production rate, the more efficient
the assembly line. This corresponds to the takt-time minimization. On that point, we can
note that a target takt-time is generally fixed when designing a new aircraft. Nevertheless, it
is essential to assess the best takt-time that is compatible with a given aircraft design, in
order to prepare future production rate increase.
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Aircraft zones capacity. The space available for workers inside the aircraft is a major
constraint. Workers may need to operate in tight spaces or confined areas to access parts
of the aircraft being assembled, which can increase the errors or accidents risk. This is
particularly the case for tasks that require precision and accuracy, such as drilling, fastening
or installing electrical components. To model that, we consider that the aircraft is divided
into zones, and that each zone has a capacity representing the maximum number of workers
that can perform assembly tasks simultaneously.

Zone neutralization. Because of safety constraints or some assembly task nature, some
assembly task can neutralize aircraft zones, meaning that it prevents any other task to be
performed in those neutralized zones simultaneously. For instance, if a task requires the
removal of a temporary floor during its execution, it prevents access to the associated zone.

Task features.
There is one alternative for each task. Each alternative is characterized by types of
machine used, zones occupied and neutralized.
Duration of tasks is fixed.
It is not possible to interrupt tasks during their execution (no preemption). However, as
we are in preliminary design, tasks we consider are in fact macro ones. Therefore, it is
possible for tasks that do not consume any machine to overlap on several workstations.

4 Assembly Line Preliminary Design Problem Definition

In this section, we formally define the Assembly Line Preliminary Design Problem (ALPDP)
and present a Constraint Programming encoding for it.

4.1 Problem Definition
Assembly Line Preliminary Design Problem. An Assembly Line Preliminary Design
Problem (ALPDP) is formally defined by a tuple ⟨Z,S, E , T ,P⟩ where:
Z is the set of zones of the aircraft in which workers perform assembly activities. Each
zone z ∈ Z has a capacity, denoted capaz , that represents the number of workers that
can work simultaneously in zone z;
S is the set of machine skills that are required by assembly activities. Each skill s ∈ S
represents a type of jig and tool (i.e. a type of machine) used for the aircraft assembly;
E is a symmetric relation included in S2 that represents skills of machines that are
incompatible and cannot belong to the same workstation. Note that for a given skill
s ∈ S, it is possible to have (s, s) ∈ E : this indicates that two machines with the same
skill s cannot be assigned to the same workstation;
T is the set of assembly activities that must be performed. T can be partitioned into two
subsets: a set of atomic activities denoted A and a set of composite activities denoted
C. Intuitively, composite activities are a group of atomic activities that allow to write
precedence between activities in a compact way. They do not have a fixed duration and
do not consume any resource (zone or machine);
for each composite activity c ∈ C, Ac is a subset of A that represent all the atomic tasks
that are part of composite task c.
Assumption. An atomic task is the child of at most one composite activity. Formally, for
c1 and c2 in C2 such that c1 ̸= c2, we have Ac1 ∩ Ac2 = ∅;
for each atomic activity a ∈ A, we consider the following features:
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dura ∈ N+ is the duration of a;
Sa ⊆ S is the set of skills required by a. Note that, for a given skill s, an activity
requires at most one machine with that skill;
for each zone z ∈ Z, occa,z ∈ N+ is the number of places in z required by activity a;
Zneutr

a ⊆ Z is the set of zones that are neutralized by a. If zone z′ belongs to Zneutr
a ,

then for all activity a′ that occupies z′ (i.e. such that occa′,z′ > 0), a and a′ cannot
temporally overlap.
Assumption. For a given activity, the set of zones it occupies and the set of zones it
neutralizes have an empty intersection;

P is a relation in T 2 that represents precedence requirements between activities. More
precisely, (t, t′) ∈ P if t must be finished before t′ can start.
Assumption 1. There does not exist precedence between composite activities and their
children, i.e. for all c ∈ C and a ∈ Ac, (a, c) /∈ P and (c, a) /∈ P .
Assumption 2. The directed graph induced by relation P is acyclic. To formally build
such a graph, the first step is to create a node na for each atomic activity a and two
nodes sc and ec for each composite activity c ∈ C that respectively represent the start
and end of c. Then, arcs are added as follows. For each precedence (a1, a2) ∈ A2, an
arc is added between na1 and na2 . For each precedence (c1, c2) ∈ C2, an arc is added
between ec1 and sc2 . For each precedence (a, c) ∈ A× C (resp. (c, a) ∈ C ×A), an arc is
added between na and sc (resp. between ec and na). Note that this graph construction
is similar to the one proposed in [23].

Alternative. An alternative for a ALPDP ⟨Z,S, E , T ,P⟩ is described through the following
elements:

a set of workstations W and for each workstation w ∈ W , a start date and an end date;
a takt-time, denoted takt, that represents the duration the aircraft stays on each work-
station;
for each skill s and for each workstation w, a number of machines with skill s on
workstation w;
for each activity t ∈ T , a start date and an end date.

The leadtime of a solution, denoted Tmax, is the total time the aircraft spends on workstations.
Formally, Tmax = |W| · takt.

Solution. A solution for an ALPDP ⟨Z,S, E , T ,P⟩ is an alternative in which the following
constraints are satisfied. Note that we only give an informal definition of constraints here, as
the formal definition is detailed through the Constraint Programming encoding later in the
paper.

Start dates and end dates of workstations must represent a consistent assembly line (no
temporal hole and no overlap between successive workstations) and consistent with the
takt value (duration of a workstation is equal to takt);
start dates and end dates of activities are consistent with duration (for atomic activit-
ies), with children start and end dates (for composite activities) and with precedence
relationship;
capacity of zones is never exceeded and zone neutralization is respected;
the number of machines of each skill in each workstation allows the associated activities
to be performed;
skills exclusion is respected;
atomic activities that consume at least one machine cannot overlap on successive work-
stations.
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Z (cap.) S
T dur z1(1) z2(2) s1 s2 s3

a1 2 1 ✓ ✓
a2 1 X 1 ✓
a3 1 1 ✓
a4 1 X 1 ✓
a5 2 1 1 ✓

exclusion E

(a) Activities description.

a1

a3 a4

a2

a5

c1

(b) Graph induced by precedence relation P.

Figure 1 Toy example illustration.

Criteria. According to the criteria elicitation phase, we consider the following criteria:
minimize the takt-time, minimize the leadtime value, minimize the total number of machines
on the assembly line and minimize the number of workstations. As described earlier, we do
not have any insight on how to aggregate this criteria together.

▶ Example 1. Figure 1 illustrates an ALPDP toy example. In this example, the set of zones
Z is composed of two zones z1 and z2 that respectively have a capacity equal to 1 and 2.
The set of skills S contains three skills, s1, s2 and s3, and we consider that s1 and s3 exclude
each other, and so do skills s2 and s3 (i.e. E = {(s1, s3), (s3, s1), (s2, s3), (s3, s2)}). The set
of activities T contains one composite activity c1 and five atomic activities ai with i ∈ [1..5].
Composite activity c1 encompasses activities a3 and a4.
Table 1a describes atomic activities features. The X symbol indicates that an activity
neutralizes a zone. The ✓symbol indicates that an activity requires a skill. For instance, the
second line of the table indicates that activity a2: has a duration equal to 1, neutralizes zone
z1, occupies one place in zone z2, and requires skill s2.
Precedence relation is P = {(a1, a2), (a2, a5), (c1, a5), (a3, a4)}, as illustrated on Figure 1b3.
Figure 2a illustrates a solution, denoted sol3machines for this ALPDP. In this solution, there
are two workstations, w1 and w2. The first workstation contains machine m1 with skill s1
and machine m2 with skill s2. Workstation w2 contains machine m3 with skill s3. Start
dates of activities are respectively 0, 2, 2, 3, 4 for a1, . . . , a5. Composite activity c1 starts
with its earliest child (here a3 at time 2) and ends with its latest (here a4 at time 4). In this
solution, the takt is equal to 4 and the leadtime equal to 8.
A second solution, sol4machines, is illustrated on Figure 2b. In this solution, there are two
machines with skill s1 in the first workstation. Note that for this solution, composite activity
c1 is not continuous in the sense that there is a temporal hole between its children activities.
This solution allows to reach a takt equal to 3 and a leadtime equal to 6.
We can notice that sol3machines is better than sol4machines with respect to the total number
of machines criteria. Both solutions are equivalent for the number of stations. However,
sol4machines is better than sol3machines with respect to the takt and to the leadtime. Thus,
no solution dominates the other on all criteria.

3 Note that we do not represent explicitly start and end activities associated with c1.

CP 2023



32:10 Assembly Line Preliminary Design Optimization for an Aircraft

0 1 2 3 4 5 6 7 8 time

a1 a3 a4

a1 a2

a5

a1

a3

a2 a4

a5

a5

W w1 w2

S
s1

s2

s3

M
m1

m2

m3

Z
z1

z2

takt = 4 takt = 4 Tmax = 8

(a) Solution sol3machines, with one machine for each skill,
a takt-time equal to 4 and a leadtime equal to 8.

0 1 2 3 4 5 6 time

a1

a3

a4

a1 a2

a5

a1

a3 a2

a4

a5

a5

W w1 w2

S
s1

s1

s2

s3

M
m1

m′
1

m2

m3

Z
z1

z2

takt = 3 takt = 3 Tmax = 6

(b) Solution sol4machines, with two machines
for skill s1, a takt-time equal to 4 and a
leadtime equal to 8.

Figure 2 Two solution examples that each has two workstations.

4.2 Constraint Programming Encoding
We present here a Constraint Programming encoding for the ALPDP problem. For this
encoding, we suppose that we are given two additional input parameters: an upper bound
for the number of workstations in the assembly line, denoted nW , and an upper bound H
for the leadtime.

We base our CP encoding on data structures and functions that are available in the
Optimization Programming Language (OPL - [28]). In particular, we use interval variables
and state functions. An interval variable encompasses a start date variable and a duration
variable. It can be optional, i.e. it might not be present in the schedule, and it can be
temporally bounded. State functions allow to express values that a function should take over
given temporal intervals.

We consider the following decision variables:
for each activity t ∈ T , itvt is an interval variable in [0, H ] that represented the execution
of activity a. For atomic activities a ∈ A, the duration of the interval is fixed to dura;
for each atomic activity a ∈ A, for each workstation w ∈ [1..nW ], itva,w is an optional
interval variable in [0, H] with a duration fixed to dura. The interval itva,w is present if
and only if a starts being performed in workstation w;
for each workstation w ∈ [1..nW ], itvw is an optional interval variable in [0, H]. itvw is
present if and only if w is a used workstation, i.e. a workstation in which some activities
are performed;
takt is an integer variable in [1, H];
for each skill s ∈ S, for each workstation w ∈ [1..nW ], skUseds,w is a boolean variable
that indicates whether at least one machine with skill s is assigned to workstation w

and nMachiness,w is a integer variable that represents the number of machines with
skill s that are assigned to w. An upper bound for that variable is the number of atomic
activities.
for each zone z ∈ Z, stateOccz is a state function that represents the occupation state of
zone z. Such a state is 1 when z is occupied by an activity being performed and is equal
to 0 if z is neutralized by an activity.

With those decision variables, the ALPDP constraints can be encoded as follows.



S. Roussel, T. Polacsek, and A. Chan 32:11

Assembly Line Consistency Constraints.

∀w ∈ [1..nW ], sizeOf (itvw, 0) ≤ takt (1)
∀w ∈ [1..nW ], sizeOf (itvw, H) ≥ takt (2)

startOf (itv1, 0) = 0 (3)
∀w ∈ [2..nW ], endAtStart(itvw−1, itvw) (4)
∀w ∈ [2..nW ], presenceOf (itvw−1) ≥ presenceOf (itvw) (5)

Constraints (1) and (2) together ensure that the duration of a used workstation is equal
to the takt-time. The second parameter in the sizeOf function defines the value of an
interval variable that is not present in the final schedule. Through Constraint (3), the first
workstation starts at time 0. Constraint (4) prevents temporal holes between successive
workstations. Finally, Constraint (5) ensures that no unused workstation is placed in between
used workstations.

Activities and Workstation Constraints.

∀c ∈ C, span(itvc, {itva|a ∈ Ac}) (6)
∀(t, t′) ∈ P, endBeforeStart(itvt, itvt′) (7)
∀a ∈ T , alternative(itva, {itva,w|w ∈ [1..nW ]}) (8)

∀a ∈ A, ∀w ∈ [1..nW ], startBeforeStart(itvw, itva,w) (9)
∀a ∈ A s.t. Sa ̸= ∅, ∀w ∈ [1..nW ], endBeforeEnd(itva,w, itvw) (10)

∀a ∈ T , ∀w ∈ [1..nW ], presenceOf (itva,w) ≤ presenceOf (itvw) (11)

∀w ∈ [1..nW ], presenceOf (itvw) ≤
∑
a∈A

presenceOf (itva,w) (12)

∀a ∈ A, endOf (itva) ≤ max
w∈[1..nW ]

endOf (itvw, 0) (13)

Constraint (6) makes interval variables associated to composite activities span over
interval variables of their children. Constraint (7) enforces precedence constraints associated
with precedence relation P. Constraint (8) uses the alternative constraint in CP Optimizer
and guarantees that there exists exactly one workstation w such that itva,w coincides with
interval itva (only for atomic activities). Constraint (9) ensures the consistency between start
dates of workstation w and of activity a if the latter starts in workstation w. Constraint (10)
ensures a similar consistency for end dates but only for activities that require machines.
Constraints (11) and (12) guarantees the consistency between presence of activities on
workstations intervals and presence of workstation intervals. Constraint (13) ensures that
workstations on which atomic activities finish are used.
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Machines Constraints.

∀s ∈ S, ∀w ∈ [1..nW ],
∑

a∈A,s∈Sa
pulse(itva,w, 1) ≤ nMachiness,w (14)

∀s ∈ S, ∀w ∈ [1..nW ], nMachiness,w ≥ skUseds,w (15)
∀s ∈ S, ∀w ∈ [1..nW ], nMachiness,w ≤ |A| · skUseds,w (16)

∀(s, s′) ∈ E s.t. s ̸= s′, ∀w ∈ [1..nW ], skUseds,w + skUseds′,w ≤ 1 (17)
∀s ∈ S s.t. (s, s) ∈ E , ∀w ∈ [1..nW ], nMachiness,w ≤ 1 (18)
∀s ∈ S s.t. ∃a ∈ A with s ∈ Sa,

∑nW
w=1 skUseds,w ≥ 1 (19)∑nW

w=1
∑

s∈S nMachiness,w ≥MUB (20)
with MUB = |{s ∈ S|∃a ∈ A, s ∈ Sa}|

Through Constraint (14), we build the consumption profile of machines with skill s

by using the pulse primitive and we ensure that this consumption does not exceed the
number of machines with skill s in the workstation. Constraints (15) and (16) express the
relationship between nMachines and skUsed variables: skUseds,w is equal to 0 if and only if
the number of machines is equal to 0. Constraint (17) forbids to use excluded skills in the
same workstation. Constraint (18) handles the specific case in which exclusion targets the
same skill. Constraints (19) and (20) give an upper bound for the total number of machines.

Zones Constraints.

∀z ∈ Z s.t. capaz = 1, noOverlap({itva|occa,z > 0}) (21)

∀z ∈ Z s.t. capaz > 1,
∑
a∈A

occa,z>0

pulse(itva, occa,z) ≤ capaz (22)

∀a ∈ A, ∀z ∈ Z s.t. occa,z > 0, alwaysEqual(stateOccz, itva, 1) (23)
∀a ∈ A, ∀z ∈ Zneutr

a , alwaysEqual(stateOccz, itva, 0) (24)

Constraints (21) and (22) express that the capacity of zones is never exceeded (con-
straints (21) considers the specific case when zone have a capacity equal to 1). Finally,
Constraints (23) and (24) enforce the state functions to be equal to 0 or 1 depending of
occupation and neutralization of activities. As state function have one value for each instant,
this prevents activities occupying a zone and activities neutralizing it to overlap.

We consider the following four criteria:

minimize takt (25)
minimize max

w∈[1..nW ]
endOf (itvw, 0) (26)

minimize
∑

w∈[1..nW ]

presenceOf (itvw) (27)

minimize
∑

w∈[1..nW ]

∑
s∈S

nMachiness,w (28)

Criterion (25), (26), (27) and (28) respectively encode the minimization of the rate, the
leadtime, the number of workstations in the assemby line and the total number of machines
used. Note that, because of the equation takt · |W| = Tmax, if the takt-time and the leadtime
are fixed, so is the number of workstations. This means that one of the three first criteria is
redundant. Therefore, in the following, we only consider the takt-time, the leadtime and the
number of machines minimization.
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5 Algorithmic approach

In this section, we describe how we have used the previously defined Constraint Programming
encoding to explore the Pareto solutions set.

The algorithm follows an epsilon-constraint based strategy ([4]), which requires bounds
for each criteria. In our problem, there are three criteria and we therefore have to find in
which order we explore them, how to fix the bounds and the number of steps on each part
of the front. As the resulting procedure is not trivial, we present it in this section. We
believe that this exploration algorithm could be a starting point for other problems with
three or more criteria. In fact, to the best of our knowledge, the literature mostly contains
epsilon-constraint based strategies for problems with two criteria.

In order to compute bounds for the criteria values, we use a lexicographic objective
function. Then, for a given number of machines in the assembly line, we compute a takt-time
step that allows to explore solutions. From the set of all computed solutions, we extract the
Pareto ones.

The algorithm is formally described in Listing 1. In the pseudo-code, a run of the
Constraint Programming encoding is represented through the function cpSolve that requires
two parameters. The first one is the set of constraints to satisfy and the second one is the
objective function to optimize. Such an objective function can be simple (one criterion) or a
lexicographic order over several criteria (denoted lex(. . .)). In the pseudo-code, we consider
that we have a data structure for storing solution. If sol is a solution, then sol.machines,
sol.takt and sol.Tmax respectively return the number of machines, the takt-time and the
leadtime values associated with sol.

The algorithm’s inputs are all constraints ((1) to (24)) of an ALPDP instance (denoted P )
and a maximum number of points in the Pareto front for each number of machines. We start
by computing three solutions solM , solT and solL that respectively minimize the number
of machines, the takt and the leadtime values (lines 2-4). Solution solM provides a lower
bound for the number of machines. The three solutions are added to the set of solutions
through the function updateFront that maintains the set of Pareto solutions (line 5). While
minimizing the takt and the leadtime, we also minimize the number of machines as the last
criterion of a lexicographic objective function, which allows to compute an upper bound of
the number of machines (line 6).

Next, we go through each value of the total number of machines, starting from the
upper-bound. For each value, we consider the associated constraint cMACHINES that limits
the number of machines in the assembly line (line 8). Then, we compute a lower bound and
an upper bound for the takt-time, respectively through sol1 and sol2 (lines 9-10), that are
stored in variables takt1 and takt2. If there is a Pareto front to explore (difference between
both takt-times strictly greater than 1), we compute a step, denoted δ, for decreasing the
considered Stakt-time according to the number of points in input (line 14). Starting from
the takt upper-bound, we consider a constraint cTAKT that fixes the takt-time and look for
a solution satisfying that constraint (line 18). If it exists, the takt-value is decreased from
δ (line 22) and this step is iterated until reaching the lower bound. Otherwise, there is no
solution with a smaller takt value for that number of machines and the loop is stopped. The
algorithm finally returns the Pareto front.

Note that the number of workstations criteria is never used in the algorithm. In fact, if
two of the three criteria takt, nWorkstations and Tmax are fixed, so is the third. As presented
in the Experiments Section, results tend to show that cpSolve is less efficient when it comes
to minimize the number of workstations. Therefore, we use the two other criteria.

CP 2023



32:14 Assembly Line Preliminary Design Optimization for an Aircraft

Algorithm 1 Epsilon approach for ALPDP.

1: function epsilonParetoALPDP(P, nMaxPointsPerMachine)
2: solM ← cpSolve(P, MACHINES)
3: solT ← cpSolve(P, lex(TAKT , LEADTIME , MACHINES))
4: solL ← cpSolve(P, lex(LEADTIME , TAKT , MACHINES))
5: front ← updateFront({}, {solM , solR, solT })
6: m← max(solL.machines, solT .machines)
7: while m ≥ solM .machines do
8: cMACHINES ← Constraint(

∑
w∈[1..nW ]

∑
s∈S nMachiness,w ≤ m)

9: sol1 ← cpSolve(P ∪ {cMACHINES}, lex(TAKT , LEADTIME))
10: sol2 ← cpSolve(P ∪ {cMACHINES}, lex(LEADTIME , TAKT ))
11: front ← updateFront(front, {sol1, sol2})
12: takt1 ← sol1.takt; takt2 ← sol2.takt
13: if takt2 − takt1 > 1 then
14: δ = ⌊ takt2−takt1

nMaxPointsPerMachine ⌋
15: t← takt2 − δ

16: sol ← sol1
17: while t > takt1 ∧ sol ̸= nil do
18: cTAKT ← Constraint(takt = t)
19: sol ← cpSolve(P ∪ {cMACHINES , cTAKT}, LEADTIME)
20: if sol ̸= nil then
21: front ← updateFront(front, {sol})
22: t← t− δ

23: m← m− 1
24: return front

Functions updateFront and dominates are quite straightforward and therefore not detailed
in the paper. Note that the Pareto front does not take into account the number of workstations.

6 Experiments

This section is dedicated to the experiments presentation. We first describe the benchmarks
that we have used. We present two sets of experiments. First, we have solved the CP
encoding with each criteria alone. This allows us to customize the cpSolve procedure in
terms of heuristics and time out. Then, we present and analyze results associated with the
Pareto solutions computation.

6.1 Benchmark Description

We have worked on a real industrial use-case dealing with the airframe assembly line of an
aircraft. The airframe is the physical structure that supports all the other components of
the aircraft, including avionics, passenger and cargo compartments. The materials used in
its construction can include aluminium alloys, composites, titanium and other high-strength
materials. The materials are cut and shaped into the various components using tools such as
saws and drills. The assembly process for the airframe components typically involves careful
alignment and attachment using specialised tools and techniques.
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We were given three aircraft designs candidates, denoted Design 1, Design 2 and Design 3.
Features of instances are detailed in Table 1. Designs 1 and 2 have the same granularity level in
terms of macro-tasks and have to be compared with each other. Design 3 is a detailed version
of Design 1 with more fine-grain tasks that allows to study the scalability of the approach.
These benchmarks are available at https://github.com/stephroussel/assemblyLine.

Table 1 Instances features: number of zones, skills, incompatible skills, tasks and atomic tasks,
precedence, maximum number of workstations and time horizon.

Instance |Z| |S| |E| |T | |A| |P| nW H

Design 1 48 5 6 176 153 186 20 40000
Design 2 48 5 6 187 187 279 20 40000
Design 3 48 5 6 628 461 417 20 40000

In this use case, the number of skills is the same in each instance. In fact, all the designs
require the same types of machines but these machines are not used the same way.

6.2 Single Objective Experiments
Experiments setup. We use IBM CP Optimizer 22.1.1 through the Java API with a timeout
equal to 5 minutes. Experiments were all run on a 20-core Intel(R) Xeon(R) CPU E5-2660
v3 @ 2.60GHz, 62GB RAM.

In order to test the CP encoding, we have first experimented it on the instances by
considering one unique criterion for every run. The objective was to improve the solver setup
and specifically the search strategy.

In CP Optimizer, the default search strategy is generally efficient. However, in our
problem, we noticed a real performance improvement when asking the solver to instantiate
first the takt variable. In fact, it allows to fix the duration of workstations, which is a
key element for the remaining variables. Once this variable is fixed, we have tried other
strategies such as deciding the presence of workstations or the number of machines in each
workstation but it globally downgraded the performance compared to the solver default
strategy. Therefore, we only present in this paper results associated with the takt variable
instantiation strategy.

Results for the mono-objective solving are presented in Table 2 for each design and each
criteria. The solver finds the optimal solution in several cases, even for the largest instance.
The optimal solution is either found in less than a minute or reached the time out. Note that
the solver was unable to establish the optimality of the solution with respect to the number
of workstations. On that point, it would be possible to compute a lower bound using the
skill exclusion relationships. We could, for instance, find the size of the largest clique in the
exclusion skills graph.

Table 2 Mono-criteria CP solving with search phase customization on the takt variable. For
each criteria, value and time (in seconds) are given. The symbol ∗ denotes that the solution found is
optimal.

takt nMachines Tmax nWorkstations❳❳❳❳❳❳❳❳❳
Instance Criterion

Value Time Value Time Value Time Value Time
Design 1 550∗ 25 5∗ 69 3606∗ 59 2 300
Design 2 550∗ 32 5∗ 28 3536 300 2 300
Design 3 340∗ 35 8 300 3456 300 2 300
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6.3 Multi Objective Results
Experiments setup. We did not give a global timeout to the whole algorithm but instead
a 1 minute timeout to each call to cpSolve. Note that we have let CP Optimizer handle
directly the lexicographic criteria. In fact, preliminary experiments showed that there was
no real performance improvement when decomposing the resolution into optimizing the first
criterion and fix it, then optimizing the next one and so on.

(a) Design 1 - Pareto solutions. (b) Design 2 - Pareto solutions.

Figure 3 Pareto solutions obtained for Designs 1 and 2.

Figures 3a and 3b show the Pareto front obtained respectively for Designs 1 and 2. The
leadtime is on the horizontal axis, the takt-time on the vertical axis, the number of machines
is represented through colors and the number of stations are the lines on each figure. Each
small cross corresponds a to dominated solution. Note that for Design 2, we have not
represented a Pareto solution that had 18 stations and a smaller takt-time.

As expected, for each design, the more machines on the assembly line, the better takt-time
and leadtime values it is possible to get. Each figure shows the possible trade-offs that have
to be made for each design. For instance, in Design 1, with 2 workstations, the best takt-time
is equal to 18 hours. When adding 1 more workstation, such a value falls to 12 hours but
requires many more machines in order to maintain the leadtime value. With one additional
workstation and the same leadtime, the takt-time is less than 10 hours. We also observe that
it is not worth considering more than 8 workstations for that design. Similar remarks can be
made for Design 2.

Figure 4a presents Pareto solutions for Designs 1 and 2 when the assembly line is equipped
with 5 machines. It shows that Design 1 (in blue on the Figure) allows to reach lower takt-
time values. If one more machine is available (Figure 4b), then solutions associated with
Design 2 dominate solutions of Design 1.

(a) Pareto solutions set for 5 machines. (b) Pareto solutions set for 6 machines.

Figure 4 Comparison of Design 1 and 2 with 5 and 6 machines.
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These results have been presented to industrial partners. They have appreciated the
possibility to visualize the Pareto front, which allows them to foresee the trade offs that could
be made not only within the assembly line (number of workstations, number of machines,
etc) but also between the aircraft design and the associated assembly line. Following results
presented on Figure 4, they were surprised that Design 2 seems more promising than Design 1
only in the presence of an additional machine. Indeed, before this study, they had the false
intuition than Design 2 would dominate Design 1 even with 5 machines. Such a positive
feedback from end-users experts shows the added value of computing and exploring the
Pareto front in this project.

7 Conclusion

In this paper, we have proposed a Constraint Programming based approach for supporting
manufacturer in the early assembly design phase. We have formally defined the associated
problem and have developed an algorithm for exploring the Pareto front. Each solution
in this front is a trade off between the takt-time, the leadtime, the number of machines
equipping the assembly line and the number of workstations. Such tools allow the aircraft
manufacturer not only to assess the performance of aircraft candidates with respect to the
assembly line performances but also to compare candidates with each other.

There are several directions for future works. First, the CP encoding could be improved
by computing some lower and upper bounds for the targeted criteria. In fact, the addition of
redundant constraints for boosting the solving might change the way the Pareto exploration
should be performed and should be studied more deeply. Then, the Pareto front exploration
could benefit from some recent works on computing representative Pareto solutions, such
as [27]. It could also be possible to compare the CP approach and the Pareto exploration
with evolutionary algorithms in terms of quality of results. We would also like to port the
model to other CP solvers in order to test them. While most of the constraints could easily
be written in a more classical language such as PyCSP3 ([17]), the neutralization constraints
modeled by a state function in OPL might be a little trickier to encode in order to stay
compact.

The instances we have used here come from a real assembly line. In order to test the
approach more broadly, it would be possible to modify these instances by adding random
resources or changing the precedence between tasks. Similarly, we could also adapt existing
instances of the literature.

Finally, a last perspective is to consider uncertainty in the tasks duration. To do so, it
might be worth considering coupling CP solvers with learning approaches that are particularly
suited for managing uncertainty.
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Abstract
Decision trees are a popular classification model in machine learning due to their interpretability and
performance. However, the number of splits in decision trees grow exponentially with their depth
which can incur a higher computational cost, increase data fragmentation, hinder interpretability,
and restrict their applicability to memory-constrained hardware. In constrast, binary decision
diagrams (BDD) utilize the same split across each level, leading to a linear number of splits in total.
Recent work has considered optimal binary decision diagrams (BDD) as compact and accurate
classification models, but has only focused on binary datasets and has not explicitly optimized
the compactness of the resulting diagrams. In this work, we present a SAT-based encoding for a
multi-terminal variant of BDDs (MTBDDs) that incorporates a state-of-the-art direct encoding of
numerical features. We then develop and evaluate different approaches to explicitly optimize the
compactness of the diagrams. In one family of approaches, we learn a tree BDD first and model the
size of the diagram the tree will be reduced to as a secondary objective, in a one-stage or two-stage
optimization scheme. Alternatively, we directly learn diagrams that support multi-dimensional splits
for improved expressiveness. Our experiments show that direct encoding of numerical features leads
to better performance. Furthermore, we show that exact optimization of size leads to more compact
solutions while maintaining higher accuracy. Finally, our experiments show that multi-dimensional
splits are a viable approach to achieving higher expressiveness with a lower computational cost.
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1 Introduction

Classifiers are complete functions for assigning labels to datapoints, learned from a limited
set of supervised training data. A classifier is trained to focus on informative aspects of
the input and extract patterns from the data to make decisions. In complex black-box
classifiers such as deep and convoluted neural networks, it is often challenging to understand
the influential features of the data and the inner-workings of the decision-making [36, 38]. In
contrast, interpretable classifiers such as decision trees [1, 26, 33, 34] and diagrams [16, 24] are
concise and easy to understand [10]. The simplicity in interpretable solutions makes them the

© Pouya Shati, Eldan Cohen, and Sheila McIlraith;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pouya@cs.toronto.edu
mailto:ecohen@mie.utoronto.ca
mailto:sheila@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.CP.2023.33
https://github.com/PouyaShati/BDD
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

perfect candidates for when we need to formally analyze or explain the classifier’s behavior
[27, 19, 20]. Surprisingly, the benefit of interpretability does not come with significant cost
to accuracy in many applications [31, 25].

Binary decision diagrams (BDD) are graph representations of functions with binary inputs
and are widely used in logical synthesis and formal verification methods [8, 2, 28, 23]. While
equivalent to truth tables in purpose, BDDs are more compact since redundant sub-tables
can be eliminated and merged [23]. A multi-terminal BDD (MTBDD) is a BDD variant that
supports multiple outputs [11].

Decision trees are the most common form of interpretable classifiers (e.g., [7, 29, 30, 3,
37, 18, 5, 33, 34]). However, the number of splits double at each level of a decision tree,
making it challenging to interpret the solution as depth increases [15]. The large number
of splits in decision trees can hinder the learning performance given that the search space
grows exponentially with each level. Further, deep splits that only affect a small number of
datapoints can cause data fragmentation and overfitting [35, 21, 14]. Lastly, the exponential
number of splits in decision trees restricts their applicability to memory-constrained hardware
[35]. The sequential nature of decision-making in BDDs resembles that of decision trees, but
unlike decision trees, the same split is used across a level, leading to a linear number of splits.

In this paper, we choose BDDs as our interpretable classifiers in order to emphasize
compactness to an even greater degree compared to popular interpretable approaches, e.g.
ones based on decision trees. Alongside the primary objective of accuracy, the size of a BDD
classifier is also encoded and optimized. Our encoding for learning BDDs is inspired by
the encoding of numerical branchings in Shati et al. [33, 34], which allows us to directly
learn splits over numeric features without explicitly binarizing them. We then expand the
notion of learning splits to multiple dimensions in order to learn solutions from a limited but
distinctively interpretable family of diagrams.

The main contributions of this paper are as follows:
1. We present a novel SAT encoding of maximum accuracy BDD classifiers for numerical

datasets. Our model represents a non-reduced BDD which can be reduced according to
its sequence of terminals.

2. We extend our encoding by modelling the size of the final reduced BDD. The size encoding
can be used as a secondary weighted objective, or it can be optimized in a second stage.

3. We present a variant of our encoding which supports direct learning of diagrams through
multi-dimensional splits. Multi-dimensional BDDs enable learning more efficiently as
they provide more expressive solutions within the same number of splits.

4. We run extensive experiments which demonstrate that our base encoding outperforms the
state of the art in runtime and accuracy. Additionally, we show that explicitly optimizing
size leads to significantly more compact solutions while maintaining high accuracy. Finally,
we show that multi-dimensional BDDs scale better than BDDs due to their expressiveness
and the size of their encoding.

2 Related Work

Decision tree classifiers are traditionally constructed via local search and heuristics [7, 29, 30].
Recent advances in tools and techniques for exact optimization have enabled approaches for
finding optimal decision trees via branch-and-bound search [1], SAT-based encodings [33, 18,
3], Constraint Programming [37], or Mixed Integer Programming [5]. Exact optimization
produces solutions that are optimal in accuracy, size, or both [33]. The size of a decision tree is
often measured by its depth or number of nodes, which does not take into account the amount
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of redundancy between nodes. Decision diagrams address redundancy directly by merging
equivalent nodes. Approaches to learn optimal decision diagrams via exact optimization
usually require a pre-determined skeleton as input. For example, Florio et al. [14] requires
user-provided width for each level, limiting solutions but guaranteeing compactness and
improving performance. Oblivious decision diagrams encourage compactness even further by
requiring all splits of the same level to be the same, leading to only a linear number of splits
instead of exponential as in ordinary decision trees.

Binary Decision Diagrams (BDD) are oblivious decision diagrams that can be reduced
and ordered, making them ideal candidates to represent boolean functions. While BDDs
are commonly used for hardware synthesis [8, 2, 28, 23], there has been a recent focus on
utilizing BDD classifiers as interpretable solutions [16, 9]. For example, Hu et al. [16] uses
MaxSAT to learn a maximum accuracy tree BDD which will then be reduced into a diagram.
On the other hand, Cabodi et al. [9] considers a SAT-based approach for learning BDDs of
minimum size that correctly classify all the training data.

3 Background

3.1 Binary Decision Diagrams
In this section, we first define standard Binary Decision Diagrams which can be used for
binary classification. To support multi-class classification, we extend the BDD definition to
its multi-terminal variant.

▶ Definition 1 (Binary Decision Diagram). Given a boolean function operating on boolean
input, a Binary Decision Diagram (BDD) is a graph representation of the function. A BDD
is a rooted, directed, and acyclic graph with sink nodes as terminals (NT ) and the rest as
decision nodes (ND). Each decision node is labelled with a split and has two outgoing edges,
corresponding to the two (1/0) possible values of the boolean input. The terminal nodes are
assigned output values 0 or 1. The size of a BDD is the number of its decision nodes.

▶ Definition 2 (Multi-Terminal Binary Decision Diagram). Given a function operating on binary
features with constant range [1..k], a Multi-Terminal Binary Decision Diagram (MTBDD) is
a graph representation of the function. An MTBDD is a BDD with its terminals supporting
k output values instead of 2.

Throughout the paper, we will simply refer to MTBDDs as BDDs to be more concise. We
adopt standard BDD terminology with minor exceptions. As a concise way of addressing the
nodes, we borrow from the decision tree literature to view the outgoing edges as parent-child
relationships. Specifically, we address the node connected via the 1 (0) outgoing edge as the
left (right) child. Moreover, we refer to the boolean inputs assigned to decision nodes as
splits rather than features or variables, to avoid confusion with the features of our data and
the variables of our encoding. Finally, considering that the features in our data are numerical
rather than binary, we overload the definition of splits to represent pairs of numerical features
and a valid threshold.

▶ Definition 3 (Split). Given a finite set of numerical features F , a split is a binarization of
a numerical feature through pairing with a threshold value (f, α) ∈ F × R. A split assigns a
value of 1 to each point x that comes before the threshold (x[f ] ≤ α). Similarly, it assigns a
value of 0 to each point x that comes after the threshold (x[f ] > α).

CP 2023
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(a) Ordered and reduced. (b) Non-ordered and non-reduced.

Figure 1 Two BDDs representing the same boolean function. Solid (dotted) lines correspond to
value 1 (0).

In order to calculate the value of a function for a given input using its BDD representation,
we start from the root, move to the left (right) child if the input has value 1 (0) for the
current split, and assign an output when a terminal is reached. A node is said to contain an
input if the node is on the input’s path from the root to a terminal.

The same function with binary splits can be represented with multiple BDDs. In order
to uniquely represent a function, we define the BDD properties of being ordered and reduced.
The ordered property enforces the same sequence of splits along each path, making BDDs
practically equivalent to Oblivious Read-Once Decision Graphs (OODGs). The reduced
property requires all equivalent parts of the BDD to be merged and all of the redundant
parts to be removed. Given a function and an ordering of splits, there only exists one ordered
and reduced BDD representing the function.

▶ Definition 4 (Ordered BDD and Split Sequence). A BDD is said to be ordered if the splits
observed along every path from the root to a terminal respect a singular total ordering, called
its split sequence.

▶ Definition 5 (Node Equivalency and Redundancy). Given a binary decision diagram T and
two of its nodes t1, t2 ∈ N , t1 and t2 are equivalent if they are both decision nodes with the
same split and the sub-graph of t1 and its descendants is isomorphic to the sub-graph of t2
and its descendants, or if they are both terminal nodes with the same label. Furthermore, a
decision node t ∈ ND is redundant if its left and right children are equivalent.

▶ Definition 6 (Reduced BDD). A BDD is said to be reduced if all of its equivalent nodes
are merged and all of its redundant nodes are replaced with their children.

We assume a BDD to be ordered and reduced unless noted otherwise. Figure 1 depicts
two BDDs representing the same boolean function, one ordered and reduced and the other
one not. It has been shown in the literature that independent of the merging and elimination
process, the final result of reducing a BDD is always the same. We formally state the
uniqueness of reduced BDDs in Proposition 7 and refer the reader to the BDD literature for
more details [23].1

▶ Proposition 7. Every function operating on splits and a given split sequence is represented
by exactly one ordered and reduced BDD up to renaming.

1 Note that when employing standard BDD terminology, redundant and equivalent nodes are defined
through binary sequences called beads. Beads correspond to nodes of the uniquely reduced BDD
described in Proposition 7.
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3.2 Weighted Partial MaxSAT

In this section, we describe the MaxSAT paradigm which we use to learn binary decision
diagrams. A SAT formula is a conjunction of clauses, where each clause is a disjunction of
literals, and each literal is either a Boolean variable or its negation. In a weighted partial
MaxSAT instance, clauses are categorized into hard and weighted soft clauses. The goal
is then to find a truth assignment to variables which satisfies all of the hard clauses and
maximizes the total weight of the satisfied soft clauses.

4 MaxSAT Encoding of BDD Classifiers

In this section, we propose a MaxSAT encoding to find a BDD classifier with maximum
accuracy. The inputs to our problem are: a training dataset X over a set of numerical
features F and labels K, a ground-truth label yi for each point xi ∈ X, and a maximum
number of splits smax. The outputs are smax splits θ ∈ {F × R}smax with terminal labelling
γ : {0, 1}smax 7→ K. Similar to previous work of Hu et al. [16], we learn an ordered yet
non-reduced (tree) BDD first. We then focus on merging and replacing nodes towards a
reduced BDD. Inspired by the numerical branching in Shati et al. [33, 34], we encode splits
(Definition 3) without the need for prior binarization of data which was shown to lead to
significant performance degradation in decision trees. We instead directly encode how each
split directs each point, while making sure the order of values is respected given a selected
feature.

4.1 Variables

The following set of binary variables represents different aspects of modeling splits, labels,
and accuracy in our BDD encoding.

as,j : The feature chosen at split s is or comes before j.
ds,i: Point xi is directed to the left child at split s.
ct,l: Output label l is assigned to terminal node t.
oi: Point xi is classified correctly.

4.2 Clauses

We propose the following sets of Conjunctive Normal Form (CNF) clauses for modelling a
non-reduced ordered BDD. The clauses in Eqs. (1-2) guarantee that one feature is selected
at each split by enforcing the ordered encoding of as,j variables. The clauses in Eqs. (3-5)
guarantee that for each split and chosen feature, the points directed to the left (resp. right)
have a lesser (resp. greater) value compared to a threshold. The clauses in Eqs. (6-7)
guarantee that one output label is chosen for each terminal node. The clauses in Eq. (8)
guarantee that a point can only be considered classified if it ends up in a terminal node with
the same label as its ground truth. We use Oj(X) to denote the set of all consecutive pairs
when the members of X are sorted based on their j values, O=

j (X) to denote the subset of
pairs with equal j values, i.e., Oj(X) ∩ {(i1, i2) | xi1 [j] = xi2 [j]}, and #1

j to denote the index
of the point with the smallest j value. Furthermore, we set as,|F | to the false constant and
define AR(t) (AL(t)) as the set of right (left) ancestors of terminal t.
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(as,j , ¬as,j+1) s < smax, j ∈ F (1)
(as,0) s < smax (2)
(¬as,j , as,j+1, ds,i1 , ¬ds,i2) s < smax, j ∈ F, (i1, i2) ∈ Oj(X) (3)
(¬as,j , as,j+1, ¬ds,i1 , ds,i2) s < smax, j ∈ F, (i1, i2) ∈ O=

j (X) (4)
(¬as,j , as,j+1, ds,#1

j
) s < smax, j ∈ F (5)

(¬ct,l1 , ¬ct,l2) t ∈ NT , l1, l2 ∈ K (6)

(
∨
l∈L

ct,l) t ∈ NT (7)

(
∨

s∈AL(t)

¬ds,i,
∨

s∈AR(t)

ds,i, ct,yi
, ¬oi) t ∈ NT , xi ∈ X (8)

In order to model the objective, we include the soft clauses in Eq. (9) with unit weights,
which represent correctly classifying as many training points as possible.

(oi) xi ∈ X (9)

4.3 Decoding

An assignment to the variables in Section 4.1 which is satisfying with regard to the hard
clauses in Section 4.2 is decoded into a reduced BDD in two steps. First, the assignment
is decoded into a non-reduced BDD. Specifically, the labels of terminals are decoded from
the selected labels (ct,l) and the sequence of splits are decoded from the pairings of selected
features (as,j values) and thresholds (ds,i values). Second, the resulting BDD is reduced by
merging equivalent nodes and eliminating redundant nodes.

5 Size Optimization

In the encoding presented in Section 4, not all terminals are guaranteed to contain training
points. Thus, we may end up with empty terminals, which we can relabel without affecting
the training accuracy. However, the labels of such terminals can affect the prediction on
unseen datapoints as well as the size of the final reduced BDD. In Hu et al. [16], the labels
of empty terminals are decided arbitrarily by the solver and they investigate the impact of
two post-processing relabelling heuristics on the testing accuracy (i.e., accuracy on unseen
data). The first heuristic assigns the majority label of the terminal’s first non-empty ancestor.
The second heuristic finds and merges equivalent nodes in a greedy top-down search. Hu et
al.’s experiments showed that the heuristics do not have significant impact on the testing
accuracy. However, as we demonstrate in Figure 2a and Figure 2b, such heuristic approaches
can increase the size of the final reduced BDDs.

In this section, we propose to use exact optimization for solving the same problem as
in Section 4, with additional compactness considerations via deciding the labels of empty
terminals. Specifically, we aim to model the size of the BDD after the merging of its equivalent
nodes and the removal of its redundant nodes. The variables and clauses introduced in this
section can either be added to the encoding in Section 4 as a secondary objective (i.e. 1-stage
approach), or they can be used as a separate post-processing stage alongside variables ct,l and
the clauses in Eqs. (6-7) with the labels of non-empty terminals fixed (i.e. 2-stage approach).
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(a) Parent Majority. (b) Greedy Subgraph Merge.

Figure 2 Examples for heuristics of assigning labels to empty terminals where size is increased.
Black labels represent non-empty terminals, red labels are chosen by the heuristics, and green labels
are the original labels which lead to a more compact solution.

5.1 Variables
The following set of binary variables represents uniqueness and repetition aspects of terminal
labels, required for modelling the size of the ultimately reduced BDD.

σt1,t2 : Terminals t1 and t2 have been assigned different output labels.
bt,∆: The sequence of ∆ labels starting from terminal node t (inclusive) cannot be divided
into two equal sub-sequences.
rt1,t2,∆: The sequence of ∆ labels starting from terminal node t1 is equal to the sequence
of ∆ labels starting from terminal node t2 (both inclusive).

Note that the terminal order which is referred to in the variable definitions, is the order
of appearance in the depth-first search of the tree with the left outgoing edges prioritized.
We say a sequence of terminals correspond to a decision node, if they are the sequence of
terminals in the decision node’s sub-graph. Moreover, we say a single terminal coincides with
a decision node if it marks the beginning the node’s sequence of terminals.

Note that variables σt1,t2 , bt,∆, and rt1,t2,∆ are not defined for all possible index combin-
ations. Specifically, ∆ always refers to the length of a sequence of terminals corresponding
to a decision node (a power of 2), and can uniquely determine the node, if paired with a
coinciding terminal. Consequently, bt,∆ is only used to represent that the decision node at
level smax − log2(∆) + 1 coinciding with t is not redundant. Moreover, rt1,t2,∆ is only used
to represent that the two decision nodes at level smax − log2(∆) + 1 coinciding with t1 and
t2 are equivalent. Lastly, σt1,t2 is only used when it affects the equivalency of two decision
nodes.

5.2 Clauses
We first define two sets to help with the clause construction. The set P (smax) contains all
possible lengths of terminal sequences corresponding to decision nodes except for the root (i.e.,
all 2p′ where p′ < smax). The set G(smax) contains all triples (t1, t2, ∆) where comparing
the labels of terminals t1 and t2 has impact on a decision node at level smax − log2(∆) + 1
being redundant.

G(1) = {(0, 1, 2)}
G(p) = G(p − 1) ∪ {(t1 + 2p−1, t2 + 2p−1, ∆)|(t1, t2, ∆) ∈ G(p − 1)}

∪ {(t, t + 2p−1, 2p)|0 ≤ t < 2p−1}

We propose the following sets of CNF clauses for modelling the size of a reduced BDD
given its terminal labels. The clauses in Eqs. (10-12) guarantee that σt1,t2 variables correctly
represent the difference in labels. The clauses in Eq. (13) guarantee that each decision node
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can only be redundant if all of the corresponding terminal pairs have the same label. The
clauses in Eqs. (14-15) guarantee that a pair of decision nodes can only be equivalent if their
corresponding sequence terminals have the same labels.

(¬ct1,l, ¬ct2,l, ¬σt1,t2) (t1, t2, ∆) ∈ G(smax), l ∈ K (10)
(¬ct1,l, ct2,l, σt1,t2) (t1, t2, ∆) ∈ G(smax), l ∈ K (11)
(ct1,l, ¬ct2,l, σt1,t2) (t1, t2, ∆) ∈ G(smax), l ∈ K (12)
(b∆⌊t1/∆⌋,∆, ¬σt1,t2) (t1, t2, ∆) ∈ G(smax) (13)
(¬rt1∆,t2∆,∆, ¬ct1∆+δ,l, ct2∆+δ,l) ∆ ∈ P (smax), t1 < t2 < 2smax/∆, δ < ∆, l ∈ K (14)
(¬rt1∆,t2∆,∆, ct1∆+δ,l, ¬ct2∆+δ,l) ∆ ∈ P (smax), t1 < t2 < 2smax/∆, δ < ∆, l ∈ K (15)

To model our objective, we include the soft clauses in Eq. (16) which represent each
decision node to be either redundant or equivalent to a previous one. Maximizing the number
of redundant of equivalent decision nodes will consequently minimize the size of our reduced
BDD. Note that if size is being considered as a secondary objective to accuracy, the clauses
in Eq. (16) can be weighted against the clauses in Eq. (9) proportionately. Otherwise, if size
is our second-stage objective, we can use the clauses in Eq. (16) with unit weights.

(
∨

0≤t2<t

rt2∆,t∆,∆, ¬bt∆,∆) ∆ ∈ P (smax), t < 2smax/∆ (16)

5.3 Decoding
We first show the soundness of the size encoding.

▶ Proposition 8. Given a sequence of terminal labels ct,l, the encoding in Sections (5.1,5.2)
has an optimal objective value equal to the reduced size of an ordered tree BDD with the given
terminals.

Proof Sketch. Given the alternative interpretation of variables described in Section 5.2, we
can conclude that the objective clauses in Eq. (16) aim to minimize the number of decision
nodes that are not redundant and not equivalent to any of the nodes that come before them
in the same level. Considering that equivalent decision node pairs can only appear in the
same level, we can restate the objective as minimizing the number of decision nodes that
remain when all of equivalent ones are merged and redundant ones are eliminated. According
to Proposition 7, this objective will lead to a unique reduced BDD in its most compact form,
proving that our encoding correctly models and minimizes the size of our solution. ◀

To decode the solution, we simply need to do as we did in Section 4.3, since the additional
variables for size encoding are not involved in structuring the BDD. Once we decode and
reduce the solution as before, we will end up with one decision node for every unsatisfied
soft clause in Eq. (16).

6 MaxSAT Encoding of Multi-Dimensional BDDs

In Section 4 and Section 5, we consider learning BDDs by finding trees and reducing them
to diagrams. However, the clauses in Eq.(8) are exponential in the number of splits and
multiplied by the size of the dataset. Learning diagrams directly can help us consider more
expressive solutions without increasing the number of splits, resulting in smaller encodings.
In this section, we look at a family of diagrams that contain splits over multiple features at
each level, i.e., multi-dimensional splits which themselves are BDDs with two labels.
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▶ Definition 9 (Directional Inner BDD). Given a finite set of numerical features F and a
dimension D, a directional inner BDD T ↔ is a BDD operating on D splits θ↔ ∈ {F × R}D

with 0 and 1 as labels.

A multi-dimensional BDD operates on multi-dimensional splits. A multi-dimensional
split uses a directional inner BDD to direct points towards left (label 1) and right (label 0),
rather than using a single split.

▶ Problem 10 (Multi-dimensional BDD Learning Problem). Given a finite set of numerical
features F , a finite set of labels K, a set of training points xi ∈ X with corresponding
labels yi ∈ K, a sequence of dimensions D = {D0, D1, Dsmax−1}, and a number of multi-
dimensional splits smax, the goal is to find a sequence of directional inner BDDs θM =
{T ↔

0 , T ↔
1 , ..., T ↔

smax−1} of respective dimensions D0, D1, ..., Dsmax−1 with terminal labelling
γM : {0, 1}smax 7→ K to construct a BDD with the directional inner BDDs as splits. The
objective for learning Multi-dimensional BDDs is high accuracy.

A multi-dimensional split is a generalization of an ordinary split, which makes a multi-
dimensional BDD more expressive compared to an ordinary BDD with the same number of
splits. Previous works have considered other representations that are designed to be more
expressive than BDDs, such as sentential decision diagrams [12] or read-k-times branching
programs [6, 22]. Next, we formally compare the expressiveness of BDDs against their
multi-dimensional variants in the other direction.

▶ Theorem 11. Consider a multi-dimensional BDD T M operating on smax directional inner
BDDs T ↔

s with split sequences θ↔
s and terminal labellings γ↔

s , which itself has a terminal
labelling γM . The binary function that T M represents is the same as the binary function
represented by a BDD T with split sequence θ(#(s, h)) = θ↔

s (h) and terminal labelling
γ(t) = γM (γ↔

0 (t0)γ↔
1 (t1)...γ↔

smax−1(tsmax−1)) where #(s, h) produces a complete ordering
of SH by concatenating the split sequences of each directional inner BDD, and t0, t1, ...,
tsmax−1 are sub-sequences of t divided based on the sequence of dimensions.

Proof Sketch. The BDD using multi-dimensional splits can be transformed into a tree BDD
with ordinary splits. In the transformation, every split of dimension D will correspond to D

levels where nodes are expanded 2D-fold. With each expansion, we add annotations to the
nodes specifying the label which they were assigned to by the corresponding directional inner
BDD. Once all multi-dimensional splits are added, the final level of nodes are considered
as terminals and are labelled according to how γM labels their annotations. Note that the
resulting tree can be turned into a diagram by merging all of the nodes that have equal
annotations and replacing all of redundant nodes with their children. ◀

We can conclude from Theorem 11, that multi-dimensional BDDs operating on dimensions
{D0, D1, ..., Dsmax−1} with Dtotal =

∑
i<smax

Di are less expressive than BDDs operating
on Dtotal splits. Combining with the aforementioned fact that multi-dimensional BDDs
operating on {D0, D1, ..., Dsmax−1} dimensions are trivially more expressive than BDDs
operating on smax splits, we have shown a lower and upper bound number of BDD splits
when discussing the expressiveness of a multi-dimensional BDD.

Figure 3 shows how a multi-dimensional BDD can operate on two directional inner BDDs
and how it can be unfolded to operate on ordinary splits.
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(a) T ↔
2 . (b) T M . (c) T ↔

1 . (d) Unfolded T M .

Figure 3 Multi-dimensional BDD T M operating on directional inner BDDs T ↔
1 and T ↔

2 and its
unfolded version.

6.1 Variables
In order to encode a multi-dimensional BDD, we use the same set of variables as Section 4.1
but remove as,j variables since multi-dimensional splits require more features to be selected
at each split. Furthermore, we add the following variables to encode the inner-workings of
each directional inner BDD.

â(s,h),j : The feature chosen at split h of directional inner BDD s is or comes before j.
d̂(s,h),i: Point xi is directed to left at split h of directional inner BDD s.
ĉs,t: Terminal t of directional inner BDD s is assigned the label 1.

6.2 Clauses
We discard clauses Eqs. (1-6) from the original encoding since splits are learned differently
than before. We keep the clauses Eqs. (6-9) however, since we still need the labels and the
appearance of points at terminals to be modelled correctly. Lastly, we add CNF clauses for
modelling multi-dimensional splits, in order to complete our encoding of a multi-dimensional
BDD.

The clauses in Eqs. (17-18) guarantee that one feature is selected at each split of each
directional inner BDD by enforcing the ordered encoding of â(s,h),j variables. The clauses in
Eqs. (19-21) guarantee that each split of each directional inner BDD conforms to a pairing of
selected feature and threshold. The clauses in Eqs. (22-23) guarantee that the direction of a
point in a multi-dimensional split matches the label of its containing leaf in the corresponding
directional inner BDD. The clauses in Eq. (24) guarantee the leftmost leaf in each directional
inner BDD to be assigned the 0 label (analogous to Eq. (5), see Shati et al. [33, 34] for further
discussion). The set SH contains all pairs of directional inner BDDs and their corresponding
splits SH = {(s, h) | s < smax, h < Ds}, N s

T contains the terminals of directional inner BDD
s, AR(s, t) (AL(s, t)) contains the right (left) ancestors of terminal t within directional inner
BDD s, and â(s,h),|F | is set to the false constant.

(â(s,h),j , ¬â(s,h),j+1) (s, h) ∈ SH , j ∈ F (17)
(â(s,h),0) (s, h) ∈ SH (18)

(¬â(s,h),j , â(s,h),j+1, d̂(s,h),i1 , ¬d̂(s,h),i2) (s, h) ∈ SH , j ∈ F, (i1, i2) ∈ Oj(X) (19)

(¬â(s,h),j , â(s,h),j+1, ¬d̂(s,h),i1 , d̂(s,h),i2) (s, h) ∈ SH , j ∈ F, (i1, i2) ∈ O=
j (X) (20)

(¬â(s,h),j , â(s,h),j+1, d̂(s,h),#1
j
) (s, h) ∈ SH , j ∈ F (21)

(
∨

h∈AR(s,t)

d̂(s,h),i,
∨

h∈AL(s,t)

¬d̂(s,h),i, ds,i, ¬ĉs,t) s ∈ S, xi ∈ X, t ∈ N s
T (22)
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(
∨

h∈AR(s,t)

d̂(s,h),i,
∨

h∈AL(s,t)

¬d̂(s,h),i, ¬ds,i, ĉs,t) s ∈ S, xi ∈ X, t ∈ N s
T (23)

(ĉs,0) s ∈ S (24)

6.3 Decoding
A satisfying assignment to the variables in Section 6.1 with regard to the clauses in Section 6.2,
can be decoded into a tree BDD operating on multi-dimensional splits. In order to further
transform the results into a BDD operating on 1-dimensional splits, we unfold the multi-
dimensional splits and multiply the terminals according to the proof sketch for Theorem 11.
Note that the number of splits in the resulting BDD is equal to the sum of dimensions from
the multi-dimensional BDD.

The size optimization presented in Section 5 can also be utilized as a second stage
after the solution is decoded. Specifically, we consider the multiplied sequence of terminal
labels as input and treat empty terminals as before. In order to respect the structure
of a multi-dimensional BDD, we also need to have additional clauses guaranteeing that
multiplied instances of the same original terminal have the same label. Note that the size
encoding cannot be employed in a 1-stage approach since the structure of the BDD is not
yet determined at first.

7 Experiments

In this section, we perform studies to experimentally analyze the performance of our tree
(Section 4), size (Section 5), and multi-dimensional (Section 6) encodings for learning BDDs.
We compare the performance of our approach against state-of-the-art BDD learning baseline
and investigate the trade-off between size, accuracy, and performance in 1-stage, 2-stage, and
multi-dimensional approaches to learning compact diagrams. Throughout the experiments,
we seek to find out whether compactness can be achieved without significant compromise,
and investigate its impact on testing accuracy. Furthermore, we aim to understand if the
added expressiveness of multi-dimensional BDDs allows us to achieve high quality solutions
with lower number of splits.

7.1 Setup
We use the Java programming language to produce encodings and the Loandra MaxSAT
solver [4] to solve each instance. We set the solver timeout limit to 15 minutes and use the
best found solution in case of a timeout. Our experiments are run on an AMD EPYC 7502
32-core processor and 256GB of RAM.

7.2 Baseline
We compare our approach against the recent work on SAT-based learning of BDDs. Hu et al.
[16] aims to find BDD classifiers similar to our approach. However, unlike our approach, they
only support binary classification and require pre-processing of each numeric feature into
a set of binary features. Furthermore, they do not explicitly model the size of the reduced
BDD.

Note that Hu et al. [16, 17] have compared optimal BDDs against optimal decision trees
and heuristic decision trees and found that BDDs are competitive in terms of testing accuracy
and have smaller size. Our approach aims to improve the performance of Hu et al. and
learn more compact BDD classifiers with comparable accuracy. We therefore compare our
approach to Hu et al. in terms of runtime, accuracy, and size of BDDs.
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7.3 Datasets
We run our experiments over a range of datasets from the UCI repository [13] covering
different number of labels, both numerical and binary features, and different dataset sizes.

7.4 Results
Results on Comparing Our Base Encoding Against Hu et al. [16]

In our first set of results, we compare the performance of our approach in terms of runtime
and solution quality against Hu et al. for different numbers of splits. Note that while our
approach learns multi-terminal BDDs, Hu et al.’s approach learns standard BDDs and is
unable to support datasets with more than two labels. Furthermore, since the objective
in Hu et al. does not include compactness considerations, we use our base encoding that
only optimizes accuracy as well (Section 4). As both approaches explore the same space of
(feasible and) optimal BDD solutions, we focus our comparison on optimization performance
(i.e., training accuracy and runtime). In contrast, in the next two sets of experiments, we
will also evaluate the testing accuracy over 5-fold cross-validation.

Based on the results presented in Table 1, we see that our approach is able to achieve a
higher than or equal to Hu et al. [16] accuracy in all but one case. Furthermore, the runtimes
of non-timeout cases show that our approach can also prove optimality much faster. As we
expected given our direct encoding of non-binary values, the improvement is most noticeable
in datasets with highly numerical features, namely Banknote and Ionosphere.

Results on 1-Stage and 2-Stage Size Optimization

Next, we evaluate the encoding presented in Section 5 to minimize the size of our learned
BDDs. We perform size optimization in 1-stage and 2-stage approaches. In the 1-stage
approach, we use different values for the weight of the size objective against the accuracy
objective. Given a weight β and smax splits, the combined size and accuracy objective aims
to find a solution f with maximum β(acc(f)) − (2smax − 1)|N f

D|, where N f
D is the set of

decision nodes in the reduced version of f . We use β = ∞2 to denote the 2-stage approach,
β = ∞1 to denote that accuracy is completely prioritized over size in the 1-stage approach,
and Def. to denote the approach without any size optimization. Note that even in the 1-stage
approach, running the second stage can further optimize the size if the first stage have yielded
a sub-optimal solution (timeout). However, we opt against mixing the two approaches for
the sake of clarity in comparison between the two. We use 5-fold cross validation and report
the average value across folds to understand the effects of compactness on generalization and
testing accuracy.

The results are presented in Figure 4. As expected, we see increase in training accuracy
and size as we shift the priority to accuracy by changing the β value from 1 to ∞2. However,
the improvement in accuracy stagnates while the size continues to grow, indicating that a
large enough β value can act as complete prioritization of accuracy. Interestingly, testing
accuracy stagnates sooner and suffers from a larger variability as β increases, demonstrating
a limited but positive effect of compactness on testing accuracy and generalization.

The solutions for lower β values in the 1-stage approaches are significantly smaller than
the β = ∞2 case, highlighting the importance of adding size considerations while the solution
is being learned. However, optimizing size as a second stage still provides a significant size
reduction compared to the case with no size optimization. For a detailed report of the results
per dataset, we refer the reader to Table 2 in Appendix A.1.
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Table 1 Results for learning max-accuracy BDDs.

Dataset Splits Accuracy (%) Time (s)
Ours Hu et al. [16] Ours Hu et al. [16]

Banknote 4 96.8 96.8 843.01 TO
|X| |F | |K| 5 97.6 90.4 TO TO
1372 4 2 6 98.5 91.8 TO TO

Breast 4 89.7 89.7 TO TO
|X| |F | |K| 5 92.2 91.4 TO TO
116 9 2 6 94.8 94.8 TO TO

Cryotherapy 4 97.8 97.8 1.23 2.43
|X| |F | |K| 5 98.9 98.9 3.97 9.41
90 6 2 6 100 100 0.44 1.64

Immunotherapy 4 95.6 95.6 8.18 26.65
|X| |F | |K| 5 96.7 96.7 74.08 290.99
90 7 2 6 97.8 97.8 433.35 TO

Ionosphere 4 94.9 90.6 TO TO
|X| |F | |K| 5 95.2 85.8 TO TO
351 34 2 6 96.6 90.6 TO TO

Iris 4 98.7 - 0.67 -
|X| |F | |K| 5 99.3 - 0.62 -
150 4 3 6 100 - 0.43 -

User 4 94.2 - 54.57 -
|X| |F | |K| 5 95.7 - 828.34 -
258 5 4 6 97.7 - TO -

Vertebral 4 88.1 87.7 TO TO
|X| |F | |K| 5 89.7 90 TO TO
310 6 2 6 91 90.3 TO TO

Wine 4 99.4 - 29.29 -
|X| |F | |K| 5 100 - 2.07 -
178 13 3 6 100 - 1.14 -

Car 4 92.5 92.5 316.88 TO
|X| |F | |K| 5 92.9 92.9 TO TO
1728 6 2 6 95.4 95.4 TO TO

Monk2 4 74.6 74.6 85.49 473.43
|X| |F | |K| 5 84.6 84.6 185.3 416.37
169 6 2 6 100 100 0.35 1.09

Results on Learning Multi-Dimensional BDDs

In our next set of experiments, we evaluate our approach for directly learning multi-
dimensional BDDs. Our goal is to understand whether the added expressiveness of multi-
dimensional BDDs allows us to find high quality solutions with a lower number of splits.
Furthermore, we aim to study the effects of dimension division for multi-dimensional BDDs
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Figure 4 Distributional result of size, training accuracy, and testing accuracy across datasets for
different β values.

by considering one balanced diagram with three multi-dimensional splits (2-2-2) and one
unbalanced diagram with one 3-dimensional split followed by three 1-dimensional splits
(3-1-1-1). Finally, we have used the size encoding in Section 5 to optimally decide the
labels of empty terminals towards compactness in a second stage. Note that the size of a
multi-dimensional BDD is considered to be its number of decision nodes (|N f

D|) after it is
unfolded and reduced.

Figure 5 Distributional result of size, accuracy, number of clauses, and average clause length for
BDDs of two number of splits and Multi-dimensional BDDs of two dimensions.

The results of the third set of experiments presented in Figure 5 show the two multi-
dimensional approaches achieve training accuracy that is higher than a one-dimensional
diagram with 5 splits and lower than a one-dimensional diagram with 6 splits. Since the
sum of dimensions equal 6 both case, the upper bound is expected according to Theorem 11.
However, the comparison against 5 splits, shows that the multi-dimensional approaches
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perform better than the theoretical lower bound (resp. 3 and 4 splits) in practice. The same
comparison is observed in testing accuracy and size. However, the 3-1-1-1 approach is able
to achieve smaller variability in testing accuracy while still being close to the best approach
in size. Finally, we see a lower number of clauses and a significantly shorter average clause
length for our multi-dimensional approaches against ordinary BDDs of similar expressiveness.
We refer the reader to Table 3 in Appendix A.1 for the complete results of this experiment
with a larger set of dimension sequences considered.

Next, we run experiments for a significantly larger dataset, namely the Adult dataset
(|X| = 32561, |F | = 105, |K| = 2), to investigate the difference in encoding size and
performance between one-dimensional and multi-dimensional approaches on large datasets.
Given the scale of the tasks, we increase the timeout limit to 60 minutes. We compare,
one-dimensional BDDs against ones with 2, 3, and 4-dimensional splits according to their
total number of dimensions in Figure 6 and Figure 7. Figure 7 depicts the exponential
growth of encoding size for the one-dimensional approach. The training accuracy presented in
Figure 6 shows that the exponential size causes the ordinary approach to decrease in quality
and finally cease to produce any solutions due to memory overflow. We observe that by using
two dimensional splits, we maintain a higher accuracy over a significantly larger number of
dimensions. Three-dimensional and four-dimensional splits prove to be more challenging
compared to two-dimensional splits. However, we are still able to find solutions for higher
total number of dimensions compared to the one-dimensional splits. In this experiment, we
avoid 5-fold cross-validation as we focus on the optimization performance of the two methods.
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Figure 6 Training accuracy for the Adult
dataset for different dimensions and number
of total splits.
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Figure 7 Number and average length of clauses
of the encoding for the Adult dataset for different
dimensions and number of total splits.

8 Conclusion

In this paper, we present a novel MaxSAT encoding for learning Binary Decision Diagrams.
Our BDD encoding represents a tree which can be reduced to an equivalent diagram. We
extend our encoding with optimization for the size of the reduced diagram. The size objective
can be balanced against accuracy in a 1-stage approach or optimized as a second stage.
Furthermore, we present a variant of our encoding using multi-dimensional splits, which are
inner BDDs themselves. Our experiments show that we outperform the state-of-the-art SAT-
based BDD learning baseline due to our direct encoding of numerical splits. We further show
that our 1-stage and 2-stage size optimization approaches lead to significantly more compact
solutions while maintaining testing accuracy. Finally, we show that the expressiveness of our
multi-dimensional BDDs allows us to produce high quality solutions in smaller number of
splits, mitigating the exponential growth in the size of the encoding.
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Our work, can be extended in a number of ways. Our size encoding for the 2-stage
optimization can be extended by allowing more than empty terminal labels to be changed,
e.g., feature ordering or splits. Moreover, nested directional BDDs can be added to our
multi-dimensional BDD encoding to improve expressiveness and avoid exponentiation even
further. Other interesting directions for future work involve investigating different strategies
for balancing the two objectives, e.g., producing Pareto optimal solutions, or a more com-
prehensive analysis of parameters including but not limited to the dimension sequences.
Finally, investigating the impact of more expressive BDDs such as free BDDs, which are not
constrained to be ordered [32], is also an interesting direction for future research.
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A Appendix

A.1 Additional Experimental Results

Table 2 Average 5-fold results for learning BDDs with the combined objective of accuracy and
compactness.

D.S. Splits Size Training Acc. (%) Testing Acc. (%)

β 1 3 10 ∞1 ∞2 1 3 10 ∞1 ∞2 1 3 10 ∞1 ∞2

B
an

kn
ot

e 4 1 3.6 4 4 4.4 85.3 95.8 96.8 96.8 96.8 85.2 95 96.6 96.6 96.4
5 3 4 5 11 6 94 96.8 97.6 97.5 97.6 93.7 96.4 96.9 96.8 96.7
6 4 6 5.8 19.8 6.4 96.8 98.6 98.4 98.6 98.6 96.5 97.4 97.4 97.2 97.2

B
re

as
t 4 1 4 5.2 6.4 6.8 72.4 88.8 90.7 90.7 90.7 71.5 75.9 75.9 78.4 77.6

5 3.8 5.4 11.4 11.8 11 88.8 91.8 94 94 94 74.1 70.7 74.1 72.4 72.5
6 5.6 9.4 22.2 22.4 16 92.9 96.1 97 97.2 97.2 75 71.6 63 71.6 65.5

C
ry

o.

4 1 3 4.8 4.8 6 86.1 94.7 97.8 97.8 97.8 75.6 88.9 92.2 92.2 94.4
5 2.4 5.2 5.8 5.8 8 93.1 99.2 99.4 99.4 99.4 83.3 94.4 91.1 91.1 90
6 4.6 5.8 5.8 5.8 10.4 98.3 100 100 100 100 95.6 87.8 90 90 82.2

Im
m

un
o. 4 1 2.2 5.4 5.4 6.8 87.2 91.4 95.6 95.6 95.6 82.2 83.3 83.3 83.3 85.6

5 1.6 4.4 5.4 5.4 8.4 89.7 95.3 96.7 96.7 96.7 81.1 81.1 78.9 81.1 73.3
6 3.8 7.2 10 10 14 94.7 98.3 99.2 99.2 99.2 80 76.7 73.3 72.2 75.6

Io
no

. 4 1.8 2.4 4 5.6 4 90 92 95.2 94.9 95.2 87.2 90.9 90.9 90.3 92.3
5 2 3.6 5.2 10.2 8.4 91.2 94.4 95.9 95.7 95.9 89.7 91.7 89.5 85.8 89.2
6 2.4 6 7 17.2 12.8 92 96.3 96.9 97.2 97.1 90.9 88.6 88 86.9 86.3

Ir
is

4 2 2.4 3.8 3.8 4.2 96.3 97.3 98.8 98.8 98.8 94 94 94.7 94.7 94
5 2 2.8 5.2 5.2 6 96.3 98 99.5 99.5 99.5 94 95.3 96.7 96 96
6 2.8 5.4 5.8 5.8 7 98 99.8 100 100 100 95.3 95.3 94.7 96 94.7

U
se

r 4 2.2 4.4 6 6 6 82.8 91.5 94.3 94.3 94.3 79.8 87.6 93.4 93.4 93.4
5 4 6 6.2 9.2 7 90.5 95.9 96 96 96 86 93 91.9 93.8 92.2
6 6 7 8 31.6 9.2 96.2 97.2 97.8 97.8 97.8 93 93 95.7 95.7 95.4

Ve
rt

eb
ra

l 4 1.2 2.4 4 5.4 4.6 81.8 86.8 89.8 89.8 89.8 76.8 76.5 79 78.1 77.7
5 2.2 4.2 5.2 10.6 8.6 86.1 89.4 89.8 90.8 91 74.8 81.6 81.9 79.7 76.1
6 3.4 6.2 10.2 20.6 15 88.5 91.6 92.4 92.8 92.7 80.3 80.3 79 76.8 78.7

W
in

e 4 2.2 3 4 5 6.4 93.8 98.5 99.6 99.9 99.9 87.7 96.6 93.3 93.3 93.9
5 3 3.6 4.6 4.6 9.4 98.5 99.3 100 100 100 95 95 96.7 95.5 92.7
6 3 4.6 4.6 4.6 10 98.5 100 100 100 100 95 93.3 92.2 93.3 93.3

C
ar

4 2 4 4 4 5.4 85.5 92.5 92.5 92.5 92.5 85.5 92.5 92.5 92.5 92.5
5 3.2 4 4.6 6.8 7.4 90 92.5 92.9 93.1 93.1 88.6 92.5 91.7 92.1 92.1
6 4 6.6 6.8 12.2 9.6 89 95 95 95.4 95.4 87.6 93.8 93.9 94.7 94.7

M
on

k2 4 0 3.4 5.4 5.4 6.6 62.1 71.7 75.4 75.4 75.4 62.1 63.3 64.5 65.6 63.9
5 0.6 7.8 9 9 13 64.6 84.3 84.9 84.9 84.9 59.7 79.3 76.4 77.6 74.6
6 7.6 11.8 11.8 11.8 13.4 86.2 100 100 100 100 81.7 98.2 98.8 98.2 99.4
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Table 3 Results for learning max-accuracy multi-dimensional BDDs.

Dataset Dimensions Accuracy (%) Size Time (s)Training Testing Stage 1 Stage 2

Banknote 2-2-2 98.6 97.5 7.4 6.6 TO
3-3 98.4 97.5 6.6 6.6 TO

1-2-3 98.6 96.9 8.2 6.8 TO
3-1-1-1 98.6 97.7 8.8 6.8 TO

Breast 2-2-2 94.6 74.1 8.6 8.6 TO
3-3 92.9 64.6 8.8 8.8 TO

1-2-3 94.2 68.1 9.6 9.6 TO
3-1-1-1 94.2 72.4 11 9.8 TO

Cryotherapy 2-2-2 99.7 86.7 10.6 10.2 6.18
3-3 99.4 92.2 10.6 10 25.29

1-2-3 99.7 90 10.6 9.8 13.66
3-1-1-1 100 86.7 10 9.4 6.45

Immunotherapy 2-2-2 97.2 75.6 9.2 8.6 515.83
3-3 96.9 76.7 10.2 10.2 750.07

1-2-3 97.2 76.7 11.6 11.2 767.69
3-1-1-1 98.1 84.4 9.8 9.6 489.51

Ionosphere 2-2-2 96.9 90 6.6 6.6 TO
3-3 95.4 88.3 8.8 8.8 TO

1-2-3 97 90.3 7.4 7.4 TO
3-1-1-1 96.7 91.5 8.2 8.2 TO

Iris 2-2-2 99.5 95.3 10.4 8.4 1.17
3-3 99.5 94.7 11.2 11.2 0.67

1-2-3 99.8 94 14.6 8 1.2
3-1-1-1 100 93.3 12.4 8.8 0.44

User 2-2-2 95.6 91.1 12 11.6 TO
3-3 93 88.7 12.2 12.2 143.96

1-2-3 97.7 96.1 18.2 18.2 494.02
3-1-1-1 97.7 95.4 13.6 9.8 783.39

Vertebral 2-2-2 91.3 79.4 7.6 7.2 TO
3-3 91.8 80 7.4 7.4 TO

1-2-3 91.1 79.4 9.4 8.2 TO
3-1-1-1 90.9 77.4 10.6 8.6 TO

Wine 2-2-2 100 93.9 9 8.8 3.43
3-3 100 90.5 9.6 9.6 1.03

1-2-3 100 93.3 14.2 11.6 5.29
3-1-1-1 100 95 9 7.6 9.03

Car 2-2-2 94 92.5 6.4 6.4 TO
3-3 93 92.3 6.4 6.4 TO

1-2-3 92.8 92.6 6.2 5.8 TO
3-1-1-1 94.1 93.2 6.8 6.8 TO

Monk2 2-2-2 87.9 79.3 12.2 12.2 TO
3-3 89.6 80.5 10.6 10.6 TO

1-2-3 90.1 74.6 13 13 TO
3-1-1-1 92.9 85.8 11.8 11.8 695.58
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Abstract
The allocation of software functions to processors under compute capacity and network links
constraints is an important optimization problem in the field of embedded distributed systems.
We present a hybrid approach to solve the allocation problem combining a constraint solver and a
worst-case traversal time (WCTT) analysis that verifies the network timing constraints. The WCTT
analysis is implemented as an industrial black-box program, which makes a tight integration with
constraint solving challenging. We contribute to a new multi-objective constraint solving algorithm
for integrating external under-approximating functions, such as the WCTT analysis, with constraint
solving, and prove its correctness. We apply this new algorithm to the allocation problem in the
context of automotive service-oriented architectures based on Ethernet networks, and provide a new
dataset of realistic instances to evaluate our approach.
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1 Introduction

The hardware architecture of automobiles consists of dozens of interconnected electronic
control units (ECUs). An important optimization problem in the field of distributed embedded
system, called the deployment problem, is to allocate software functions to the ECUs without
overloading their compute capacity and overloading the network communication links. Worst-
case traversal time analysis (WCTT) is critical to ensure the communications among software
functions meet hard deadlines. In most works on the deployment problem, the network
considered is a controller area network (CAN), whose operating principles are relatively
simple and for which an exact WCTT analysis is available [7, 39]. Therefore, the constraint
model can specify both the allocation problem and the WCTT analysis. However, the newest
automotive electrical-electronic (E/E) architectures rely on high-speed switched Ethernet
networks. WCTT analysis already exists for Ethernet networks but is much harder to model
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as a constraint problem, especially considering the wealth of complicated quality-of-service
mechanisms available in the time-sensitive networking standards (TSN, see [22]) that are
used on top of standard Ethernet.

Constraint programming is a declarative paradigm for solving combinatorial problems.
In general, the solvers are designed to work with a closed-world assumption, that is, they do
not interact with external entities during solving. However, in practice, there are often parts
of the model that are difficult to express as constraints, and are already programmed in
another language. This is the case of the WCTT analysis. Industrial constraint solvers such
as IBM ILOG CP Optimizer1 and Local Solver2 both propose black-box expressions to
plug external functions in the model. However, these extensions are “last resort solutions” as
they do not come with a semantics, and there is no guarantee on when the function is called,
and how it is used within the solver. We contribute to a rigorous approach to this problem
when the external function is under-approximating, i.e., it only produces valid solutions but
not necessarily all.

In this work, we integrate a constraint solver for the allocation problem and a WCTT
analyser for the timing constraints. We propose a general framework, based on abstract inter-
pretation [6], for integrating external under-approximating functions (here, the WCTT ana-
lyser) in a constraint solving algorithm, and prove its correctness. The under-approximating
external function validates each solution produced by the constraint solver. Moreover, when
the external function can explain its failure, we dynamically add a new constraint to the
constraint model, approximating the reason of the failure of the external function, to improve
the quality of the subsequent solutions. In the following, we call these constraints conflicts3.
Because the WCTT analysis is a black-box function, deriving useful over-approximating
conflicts – which do not remove solutions from the problem, but might accept non-solutions –
can be difficult, or even impossible depending on the information provided by the analyser.
Our main contribution is to propose cusolve_mo a multi-objective constraint solving al-
gorithm that is over-approximating even if the generated conflicts are not over-approximating.
This algorithm extends the well-known multi-objective constraint programming algorithm of
Gavanelli [13] which has been frequently used in constraint optimization [19, 31, 14]. Further,
our framework can be used on top of any constraint solvers. Finally, we contribute to a new
set of benchmarks for the deployment problem and evaluate our solving algorithms on them.

2 Service Deployment Problem

For the sake of conciseness, we present the service deployment problem in mathematical
notation. In Appendix A, we give the constraint model in the MiniZinc constraint modelling
language [25]. The MiniZinc model is very close from the mathematical definition given
here and does not contain any particular modelling trick.

Let ⟨H, L, hc, lc⟩ be a weighted graph where H is a set of hardware units connected by
communication links L ⊆ H ×H. Moreover, each unit h ∈ H has a compute capacity hc(h)
and each link ℓ ∈ L has a link capacity lc(ℓ). This graph represents a network of connected
heterogeneous hardware units such as processors and switches.

1 https://www.ibm.com/docs/en/icos/20.1.0?topic=2010-cp-optimizer-black-box-expressions
2 https://www.localsolver.com/docs/last/modelingfeatures/externalfunctions.html
3 We avoid using the terminology of nogood because as we will see later, these conflicting constraints

might not always preserve all solutions of the problem (over-approximating).
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Let ⟨S, Com, sc, cc⟩ be a weighted graph where S is a set of software functions that we call
services and Com ⊆ S × S is the set of communications between the services. Each service
s ∈ S consumes a certain amount of computational power sc(s) and for any communication
c ∈ Com, cc(c) represents the network utilization due to this communication.

The core of the service deployment problem is to find a deployment function d : S → H

allocating each service on a processor. We illustrate this problem in Figure 1 where the
software graph (Figure 1b) must be deployed on the hardware graph (Figure 1a) while
satisfying a number of constraints – several solutions to this particular instance are shown
on Figure 4. The first constraint is on the compute capacity of each processor:

∀h ∈ H,
∑

s∈d−1(h)

sc(s) ≤ hc(h)

It guarantees that the sum of the computational power required by all services allocated on
processor h does not exceed the compute capacity of h.

The second constraint is on the communication network:

∀ℓ ∈ L,
∑

c∈Com
com(c, ℓ) ≤ lc(ℓ)

where the function com(c, ℓ) returns the cost on the link ℓ of communication c, and is defined
by:

com(c, ℓ) =
{

cc(c) iff ℓ ∈ path(d(x), d(y)), c = (x, y)
0 otherwise

This constraint guarantees that the maximal capacity of a network link ℓ is never exceeded
by all communications c ∈ Com deployed on processors communicating through this link ℓ.
The function path(h1, h2) returns a path in the hardware graph between two hardware units
h1 and h2. In our implementation, this function represents the routing table and is given
by the user as a parameter of the model. Shortest path is the standard routing strategy
in automotive networks, that we use in our experiments. Follow-up work may consider the
routing table as a decision variable of the model.

Finally, we note that additional constraints may be considered in similar deployment
problems [15, 11]. For instance, a service might need to be allocated on a specific processor
(locality constraint) or on the same processor than another service (co-location constraint).
For brevity and because these constraints can be taken into account in standard ways, we
choose to focus on the core problem presented above.

2.1 Multi-Objective Optimization
In automotive applications, we usually want to find a deployment function d optimizing
various objectives such as reliability [21], extensibility and cost reduction [11, 17]. We focus
on two new extensibility objectives and a well-known cost reduction objective. Typically,
once the services are deployed on the processors, they cannot be moved to other processors.
This poses challenges when updating the system with new services. Therefore, an important
goal is that the deployment function favours extensibility, that is the ability to add further
services over the lifetime of the vehicle. This requirement is captured by two extensibility
objectives as follows:

min max
h∈H

∑
s∈d−1(h)

sc(s)

CP 2023
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Switch1ECU1 ECU3

ECU2

(a) Hardware graph with 3 ECUs and 1 switch.
The values of hc are displayed in white and those
of lc in blue.

(b) Software graph with 5 services and 5 com-
munications. The values of sc are displayed in
red and those of cc in blue.

Figure 1 An example of the software deployment problem.

which minimizes the maximum utilization rate of a processor, and

min max
ℓ∈L

(
∑

c∈Com
com(c, ℓ))/lc(ℓ)

which minimizes the maximum utilization rate of a network link. The maximum value is
considered as the corresponding hardware resource will be the bottleneck of the system.
Indeed, we want to avoid a processor to be fully occupied in case a new service requires to
be placed on this processor in a system update, e.g., due to the proximity of a sensor.

At the same time, we want to minimize the number of processors in order to reduce the
costs:

min |d(S)|

Of course, this objective directly conflicts with the first one. The tradeoffs between extensib-
ility and cost of the architecture are exposed to the system expert through a Pareto front of
solutions. The final decision will involve many factors that are external to the model, such
as re-use of existing processors and safety concerns.

3 Constraint Programming with External Function

3.1 Constraint Programming
A constraint satisfaction problem (CSP) is a tuple (X, D, C) where X is a set of variables,
D = D1 × . . .×Dn the sets of values taken by each variable xi ∈ X, and C a set of relations
over variables, called constraints. An assignment is a function asn(xi) = vi from variable
xi ∈ X to values where vi ∈ Di. Let asn be an assignment and c ∈ C a constraint defined
on the variables x1, . . . , xn. Then the constraint c is satisfied when c(asn(x1), . . . , asn(xn))
holds, or for short c(asn). An assignment asn is a solution when each constraint is satisfied.
We write asn the set of all assignments. We call the concrete domain the powerset lattice
D♭ = ⟨P(asn),⊇⟩ where the least element is the set of all assignments asn and the greatest
element is the empty set (no solution). The set of solutions of a CSP P = (X, D, C) is an
element of D♭ computed by the following function:

sol(P ) := {asn ∈ asn | ∀c ∈ C, c(asn)}
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A multi-objective constraint optimization problem M = (X, D, C,⪯) extends the previous
definition with a partial order relation ⪯: asn|obj × asn|obj where asn|obj is the restriction
of the assignments4 to a set of objective variables obj ⊆ X. In contrast to a single-objective
optimization problem, there can be several solutions such that none is better than the others,
which is why we need a partial order. Let a, b ∈ asn|obj. In the case of maximization over
integer variables, we can define a ⪯ b⇔ ∀x ∈ obj, a(x) ≤ b(x), that is, all the objectives of
b are greater or equal to the ones of a. We say that b dominates a when a ⪯ b. We write
a ≻ b for a ̸= b ∧ a ⪰ b and we have a ⪰ b ⇔ b ⪯ a and a ≻ b ⇔ b ≺ a. Importantly, due
to the partial order, the fact that a does not dominate b (a ̸⪰ b) does not imply that a is
dominated by b (a ≺ b).

For the sake of clarity, we overload ⪯ to work on arbitrary assignments. For any
a, b ∈ asn, we have a ⪯ b ⇔ a|obj ⪯ b|obj, and similarly for ≺, ⪰ and ≻. In that case, ⪯
is a preorder since two assignments with the same objective values might not be equal: ⪯
lacks antisymmetry. This is not an issue since antisymmetry can be recovered by considering
classes of equivalent assignments, but we do not need this construction here. The solution
function for a multi-objective constraint optimization problem is then defined as:

sol(X, D, C,⪯) := {a ∈ sol(X, D, C) | ∀b ∈ sol(X, D, C), b ̸≻ a}

Multi-objective optimization in the context of constraint programming is described in greater
length in, e.g., [13, 31, 14].

In the following, we will also need to merge and generate constraints from the Pareto front.
The type of a Pareto front is a set of assignments PF := P(ASN). We define the operator
⊔ : PF×PF→ PF merging two Pareto fronts as A⊔B := {c ∈ A∪B | ∀d ∈ A ∪B, d ̸≻ c}.
An equivalent definition of the solutions set is possible using ⊔:

sol(X, D, C,⪯) :=
⊔
{{a} | a ∈ sol(X, D, C)}

where
⊔
{s1, . . . , sn} := s1 ⊔ . . . ⊔ sn.

Finally, we define the function opt : asn→ C which returns a constraint ensuring that
for all solutions a ∈ sol(X, D, C), no solution in b ∈ sol(X, D, C ∧ opt(a)) is dominated by a,
i.e. a ̸⪰ b. This function is defined by:

opt(a) :=
∨

x∈obj
x < a(x)

It generates a constraint requiring at least one of the objective variables to be strictly better
than the one obtained in a. This approach to multi-objective optimization was pioneered by
Gavanelli [13].

3.2 Abstract Constraint Programming
In general, the set sol(P ) might not be efficiently computed on the concrete domain. In
constraint reasoning by abstract interpretation [10, 27, 33, 35], they design an abstract solving
function sol♯

o(P ) which over-approximates the solution set, i.e., sol♯
o(P ) ⊇ sol(P ). Dually,

we can also design an under-approximating solving function such that sol♯
u(P ) ⊆ sol(P ).

Over-approximation contains all solutions but might contains non-solution assignments as
well, while under-approximation only contains solutions but not necessarily all solutions. For

4 Formally, asn|obj := {asn|obj | asn ∈ asn} where asn|obj(x) = asn(x) for all x ∈ obj.

CP 2023



34:6 Constraint Programming with External Worst-Case Traversal Time Analysis

instance, discrete constraint programming solvers are both under- and over-approximating [10,
35], and continuous constraint programming solvers are over-approximating [27]. Incomplete
discrete solvers, such as those based on local search, can be viewed as under-approximating
solving functions.

3.3 Abstract Constraint Model
We can also use the abstraction framework at the level of the constraint model. In industry,
some elements of a constraint model might already be available and tested, and it is usually
not practical to spend time redeveloping those parts as a constraint problem. Sometimes, the
problem is just too difficult to be expressed as a constraint model in a reasonable amount of
time; this is the case of the WCTT analysis for instance. In these cases, the problem P is never
explicitly written as a constraint model. Instead, we can rely on an over-approximating model
O of P , such that sol(O) ⊇ sol(P ). We often have an idea of some constraints that must be
satisfied in any solution of the model but we do not necessarily know them all. This model O

can be solved by an over-approximating function sol♯
o(O) ⊇ sol(O) – although O simplifies

P , it might still not be efficiently computable. If O is unsatisfiable (sol♯
o(O) = {}), then the

problem P is unsatisfiable as well since only sol(P ) = {} satisfies sol♯
o(O) ⊇ sol(P ). In the

following, we denote osolve(O) ∈ sol♯
o(O), the solving algorithm computing a single solution

of O and returning {} if O is unsatisfiable. Its definition in terms of abstract interpretation
can be found in [1, 10, 27]. Dually, we can also propose an under-approximating model U of P

and its solving function sol♯
u(U) such that sol♯

u(U) ⊆ sol(U) ⊆ sol(P ). If U is satisfiable, then
the problem P is satisfiable as well. An under-approximation makes additional assumptions
about the reality, and therefore might discard solutions of P . Therefore, the real problem P

is framed between an over-approximating model O and an under-approximating model U ,
which is summarized by sol♯

o(O) ⊇ sol(O) ⊇ sol(P ) ⊇ sol(U) ⊇ sol♯
u(U).

3.4 Under-Approximating External Function
We must go one step further for our abstract framework to be useful in practice. If we
cannot explicitly list the constraints of the concrete problem P , it seems unlikely that we
could list more constraints in an under-approximating model U . Nevertheless, when given
a solution to O, it can often be validated by existing code developed by domain experts.
For instance, worst-case analysis such as WCTT and feasibility tests fall in this category.
They conservatively analyse the network architecture, and discard some solutions that would
be valid but could not be proven valid by the analysis. In practice, worst-case analysis are
not directly working with constraints and domains, and thus do not explicitly define an
under-approximating constraint model U , but they work on assignments.

We formally define the analysis as an under-approximating function uf : asn→ C. The
function uf returns a conflict constraint when the assignment generated by osolve is not in
sol(U), or true if it is in sol(U). Actually, we define the solutions of the under-approximating
model U as the set of all solutions accepted by uf :

sol(U) := uf −1(true) = {asn ∈ asn | uf (asn) = true}

A general conflict automatically available to all functions uf , is the logical negation of the
assignment (NA): ¬asn := ¬(x1 = asn(x1)∧ . . .∧xn = asn(xn))⇔ x1 ̸= asn(x1)∨ . . .∨xn ≠
asn(xn). However, it is a weak conflict since it only prevents osolve from returning to this
assignment, without providing additional pruning. A conflict is over-approximating if it
does not remove valid solutions: for all assignments asn, we have sol(U) ⊆ sol(O ∧ uf (asn)).
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function usolve(O, ufo)
S ← {}
asn ← osolve(O)
while asn ̸= {} do

if ufo(asn) = true then
S ← S ∪ {asn}
O ← O ∧ ¬asn

else
O ← O ∧ ufo(asn)

end if
asn ← osolve(O)

end while
return S

end function
(a) Find all satisfiable solutions.

function usolve_mo(O, ufo, ⊔, opt)
F ← {}
asn ← osolve(O)
while asn ̸= {} do

if ufo(asn) = true then
F ← F ⊔ {asn}
O ← O ∧ opt(asn)

else
O ← O ∧ ufo(asn)

end if
asn ← osolve(O)

end while
return F

end function
(b) Multi-objective version of usolve.

Figure 2 Constraint solving with external under-approximating function producing over-
approximating conflicts.

We say that a conflict c is sound if it implies NA; in other terms, it excludes the current
assignment: asn ̸∈ sol(c). NA is a sound over-approximating conflict. We denote by ufo an
under-approximating external function returning sound over-approximating conflicts.

Let O be an over-approximating model and ufo a sound under-approximating external
function. The function usolve presented in Algorithm 2a constructs the solutions set S

of the under-approximating model U . Constraint programming helps us navigating in the
under-approximated solution space of the external function more efficiently. Without it,
we would need to call ufo on many more unsatisfiable assignments, since those would not
be removed by a constraint solver. The next proposition shows that usolve computes an
under-approximation of P .

▶ Proposition 1. usolve is a sound under-approximating function, that is, usolve(O, ufo) =
ufo−1(true) ⊆ sol(P ).

Proof. Let Oi and Si be the variables O and S at the ith iteration of the loop where O0 = O

and S0 = {}. We must show that at the final iteration n, we have ufo−1(true) = Sn. We
proceed inductively by defining Oi+1 and Si+1 as follows:
1. If asn is a solution to ufo: Oi+1 = Oi ∧¬asn and Si+1 = S ∪{asn}. In that case we have

sol(Oi) ∪ Si = sol(Oi+1) ∪ Si+1.
2. If asn is not a solution to ufo: Oi+1 = Oi ∧ ufo(asn) and Si+1 = S. In that case we

have sol(Oi) ∪ Si ⊇ sol(Oi+1) ∪ Si+1. Since the conflict must be over-approximating, no
assignment removed from Oi is in ufo−1(true) and therefore ufo−1(true) ⊆ sol(Oi+1) ∪
Si+1.

The final iteration is necessarily with On = {}, hence we must have ufo−1(true) ⊆ Sn.
Since we only add in Sn the assignments asn such that ufo(asn) = true, we also have
ufo−1(true) ⊇ Sn. ◀

The extension to multi-objective optimization is a small modification of usolve. The set
F represents the Pareto front of the problem. To compute the Pareto front, we introduce the
algorithm usolve_mo in Figure 2b, and we highlight the differences with usolve in green.
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▶ Proposition 2. usolve_mo is a sound under-approximating function. Moreover, we have:
1. usolve_mo(O, ufo,⊔, opt) = sol(U,⪯),
2. usolve_mo(O, ufo,⊔, opt) ⊆ usolve(O, ufo), and
3. usolve_mo(O, ufo,⊔, opt) = {} ⇔ usolve(O, ufo) = {}.

Proof. We prove each statement in turn:
1. Each time we reach a solution asn, we add the constraint opt(asn) to O. By definition,

all solutions removed by this constraint are dominated by asn, and therefore it cannot
remove solutions from sol(U,⪯).

2. Notice that opt(asn)⇒ ¬asn, and therefore it can only prune more solutions in comparison
to usolve.

3. Before reaching the first solution, the algorithm behaves in the same way than usolve. ◀

The risk when navigating in an under-approximating solution space is to find no solution
at all. Therefore, it is useful to notice that the multi-objective algorithm returns an empty
set of solution only if usolve does as well (by Proposition 2(3)).

4 Worst-Case Traversal Time Analysis

We focus on the worst-case traversal time (WCTT) analysis, which verifies if the network com-
munications among the deployed services meet timing constraints, i.e., deadline constraints
in this work. In an automotive network, we must ensure the deadlines of network packets
are met, which is crucial for safety reasons (e.g., a message sent to an airbag arrives on
time) and other non-functional requirements (e.g., the speakers must be synchronized when
playing music). WCTT analysis is a formal method which provides upper bounds on the
worst-case delay of every packet sent in the network. It is therefore an under-approximating
external function because all deployments passing this analysis will also fulfill the real-time
constraints in reality. But some deployments, that in fact meets all timing constraints, will
not pass the WCTT analysis because it only gives an upper-bound on the delay: it is a
sufficient but not necessary condition.

The WCTT analysis for Ethernet networks, based on network calculus [18], is mathemat-
ically complicated (see for instance [28]). We think it would take tremendous efforts to model
WCTT analysis as a constraint problem if the goal is to develop an implementation that is
sufficiently accurate to be used on real-world problems, given the complexity of the WCTT
analysis after 30 years of research. As an illustration, the network calculus engine from
the company RTaW we use in the paper has been developed for 15 years and implements
state-of-the-art techniques such as [34, 3]. We take a more pragmatic approach where we reuse
an existing WCTT analyser, and integrate it in our framework as an under-approximating
external function.

Let us first describe the output of a WCTT analysis. For each communication (x, y) ∈
Com, the WCTT analysis outputs the worst-case end-to-end delay of a packet traversing the
network from d(x) to d(y). A negative delay means the deadline for that communication
cannot be met and thus the deployment d is unsatisfiable from the point of view of the
analysis. From an unsatisfiable assignment, we can think of various conflicts such as forcing
the network load of the problematic link to be smaller, or forbidding to allocate the services
x or y on their current processors. Unfortunately, conflicts that are intuitive are often not
over-approximating. To complicate the finding of over-approximating conflicts, the WCTT
analysis is non-monotonic w.r.t. the network load. Indeed, it can happen that increasing the
load of an unsatisfiable network turns it into a satisfiable network according to the WCTT
analysis. This is a well-known phenomenon referred to as timing anomaly (see, e.g., [23]),
that may occur with non-preemptive scheduling as in communication networks.
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function cusolve_mo(F , O, C, uf , ⊔, opt)
asn ← osolve(O ∧ C)
if asn ̸= {} then

co ← uf (asn)
if co = true then

F ← F ⊔ {asn}
O ← O ∧ opt(asn)
cusolve_mo(F , O, C, uf , ⊔, opt)

else
cusolve_mo(F , O, C ∧ co, uf , ⊔, opt)
cusolve_mo(F , O, C ∧ ¬co ∧ ¬asn, uf , ⊔, opt)

end if
end if
return F

end function

Figure 3 Multi-objective constraint solving with under-approximating external function returning
conflicts that are not over-approximating.

Although the conflicts mentioned above are not over-approximating, they can nevertheless
be useful as heuristics to find a solution faster. In Figure 3, we extend usolve_mo in the case
where uf is returning sound conflicts that are not over-approximating. The intuition is that
the conflict is viewed as a branching decision, and thus backtracked when the sub-problem
has been fully explored. Doing so, we do not lose the completeness of our solving algorithm.
We provide an example unrolling this algorithm in Section 4.2.

We note that if the conflict co is over-approximating, then O ∧ ¬co is necessarily
unsatisfiable. In that case, cusolve_mo remains correct but the second recursive call
cusolve_mo(F, O, C ∧ ¬co, uf ,⊔, opt) is unnecessary.

▶ Proposition 3. cusolve_mo({}, O, {}, uf ,⊔, opt) = sol(U,⪯)

Proof. The difference with Proposition 2, is that uf does not necessarily produce over-
approximating conflicts. However, given any constraint problem O and any constraint co,
we always have sol(O ∧ co) ∪ sol(O ∧ ¬co) = sol(O). Therefore, the same solution space is
eventually explored, and the same Pareto front is found. However, the conflicting assignment
asn might be reexplored in the right branch. Indeed, sol(¬co) = asn \ sol(co) and therefore
asn ∈ sol(¬co). By forbiding revisiting this assignment in both the left and right branches,
we guarantee progress and thus termination of the algorithm. ◀

4.1 Conflicts for WCTT
Let asn be the current assignment for which WCTT detected that the communication
(x, y) ∈ Com does not meet its deadline. Among the possible conflicts, we experiment with
the following ones in the next section:

Forbid the source service x to be allocated on its current hardware unit or the one of y:

d(x) ̸∈ {asn(x), asn(y)} (FS)

Forbid the target service y to be allocated on its current hardware unit or the one of x:

d(y) ̸∈ {asn(x), asn(y)} (FT)
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Decrease the number of hops in the network between x and y:

|path(d(x), d(y))| < |path(asn(x), asn(y))| (DH)

We also test two conflicts that are global to the network, thus do not consider a specific
communication. It is based on the observation that a communication can fail to meet its
deadline because of other communications. We let the variable loadℓ =

∑
c∈Com com(c, ℓ) to

be the network load of the link ℓ in the current assignment asn.
Decrease the load of at least one network link:∨

ℓ∈L

∑
c∈Com

com(c, ℓ) ≤ loadℓ (D1L)

Decrease the load of the most occupied network link, with m = maxargℓ∈L(loadℓ/lc(ℓ)):∑
c∈Com

com(c, m) ≤ loadm (DML)

Taking the conjunction of any two conflicts will further prune the search tree, while taking
their disjunction will create a weaker conflict. In the experiments, we test the conjunction
of FS and FT that we name FST. In our investigations, we found that, in general, the
disjunction of conflicts did not help to reach a (better) solution faster.

4.2 An Example of the Algorithm cusolve_mo
We unroll the algorithm cusolve_mo with the DH conflict strategy on the software
deployment problem given in Figure 1. Initially, the Pareto front F and the set of conflicts
C are empty. The first call to osolve returns a solution to the problem as depicted in the
orange box labelled A. Because one of the network link is used at 100% capacity, we suppose
the communication between S1 and S4 fails to meet its deadline, hence the WCTT analysis
fails on this solution. The conflict |path(d(S1), d(S4))| < 1, reducing the number of hops
between S1 and S4, is added to the conflicts set C. In this case, this conflict forces both
services to be allocated on the same processor.

The model is solved again with this new conflict and osolve returns a solution as depicted
in the box B. This time the WCTT analysis succeeds, and the solution is added to the Pareto
front F . The objectives are (100, 80, 2) where 100 is the maximum utilization rate among all
processors, 80 is the maximum utilization among all network links and 2 is the number of
cores used.

As long as the WCTT analysis succeeds, the osolve procedure is iteratively called with
the updated Pareto front. In the box C, we have a solution (90, 90, 3) incomparable to
(100, 80, 2), hence the Pareto front now contains both. In the box D, we find the solution
(90, 80, 3) which dominates the previous one. Afterwards, the osolve procedure finds the
problem unsatisfiable, which means there is no solution better than the ones found previously.
However, we have previously added a conflict which was not over-approximating, and therefore
we might have missed solutions of the problem. Therefore, we need to backtrack and explore
the problem with the negation of the conflict. In box E, the model is solved again with the
latest Pareto front, and a new non-dominated solution (80, 90, 3) is found. This is repeated
and a better solution (70, 90, 3) is found in box F. As long as the WCTT analysis succeeds,
the solving procedure continues, and when it fails we branch as we did in the first node.

This example demonstrates that conflicts are heuristics which are used in a way that
do not prevent to find all solutions. This is also why the non-monotonicity of the WCTT
analysis is not an issue: the entire solution space is eventually explored.
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Figure 4 An example unrolling cusolve_mo on a small network. The orange boxes represent
the solutions found by osolve. F is the current Pareto front and is automatically added to the
model before solving; note that the Pareto front is preserved on backtracking.
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5 Implementation and Experiments

The code of the MiniZinc model, the data of the instances and the implementation of the al-
gorithms used can be found online at https://github.com/ptal/automotive-network-cp/
tree/cp2023.

5.1 Experimental Setting
We run all the experiments on an AMD Epyc ROME 7H12 processor (64 cores, 280W).
The constraint programming solver implementing the osolve solving function is Gecode
6.3.0 [32] in parallel mode with 8 cores and 16 threads. We use a first-fail variable selection
strategy (the variable with the smallest domain is chosen first) and a random value selection,
as it shows better performance than the free search strategy of Gecode. We also tried
Chuffed 0.10.4 [26], a hybrid solver between SAT and constraint programming, but it did
not outperform Gecode on our problem. Due to the lack of open-source alternative, the
WCTT analysis is performed by the proprietary software RTaW-Pegase-4.3.7 [29], which
implements state-of-the-art network calculus algorithms [18, 2, 4]. The WCTT analysis takes
on average 1.5 seconds to run, and this time remains stable across instances. The algorithms
presented in this paper – usolve, usolve_mo and cusolve_mo – are implemented in
Python using MiniZinc Python 0.9.0 [9]. In addition we provide osolve_mo which
implements the multi-objective optimization solving procedure of [13] – it is the same
than usolve_mo but without the external function filtering. Although multi-objective
optimization is very important in practice, it is not natively available in every constraint
programming solver (for instance in Gecode, Chuffed or ortools). Similarly to [14],
our approach does not require to modify the constraint solver, but the solver state is lost
between two calls to osolve which might be less efficient – although the issue is mitigated
since we use a random search strategy. It can be seen as a restart strategy triggered on every
solution. It is also similar to what is done in MiniSearch [30] to design search strategies
generically across solvers.

5.2 Dataset Description
The instances are derived from a realistic automotive Ethernet network, shown in Figure 5,
consisting of 19 network devices (14 ECUs and 5 switches) provided by the company RealTime-
at-Work5. The experiments consider 5 problem instances of 50 services, 5 instances of 75
services and 8 instances of 100 services. The numbers of communications vary among the
instances, but are between 125% and 135% of the number of services. An information missing
in the network description is the CPU usage for each service. For each of the 18 instances,
we generated 10 versions where the sum of all computational requirements is 20%, 40%, 60%,
80% and 90% of the total computational capacity of all ECUs with a uniform distribution
among services. To summarize, an instance named I5_75-14-u60 has 75 services allocated
on 14 processors and using 60% of the total computational power, and I5 denotes the fifth
instance with 75 services. In total, we have a new dataset of 90 MiniZinc instances for the
deployment problem. In the following, we present experimental results for a subset of these
instances (I{1,2,5}_{50,75,100}-14-u{20,40,60,80,90}), totalizing 45 instances. We
set a timeout on the constraint solver of 30 minutes for each instance, and unlimited time
for the WCTT analysis.

5 https://www.realtimeatwork.com/

https://github.com/ptal/automotive-network-cp/tree/cp2023
https://github.com/ptal/automotive-network-cp/tree/cp2023
https://www.realtimeatwork.com/
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Figure 5 Realistic automotive Ethernet network used in the experiments.
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Figure 6 Cumulated hypervolume score for each experiment over all instances.

5.3 Evaluation of cusolve_mo
We evaluate the algorithm cusolve_mo on NA and the seven strategies presented in
Section 4.1. For a single assignment, it is possible that several communications cannot meet
their deadlines, and thus several conflicts are generated. We write FS∨ when these conflicts
are combined disjunctively and FS∧ when they are combined conjunctively. It only impacts
the conflicts that are local to a communication (FS, FT, DH and FST), thus we have 11
conflicts in total.

Our main comparison metrics is the hypervolume of the Pareto front which is standard in
multi-objective optimization. For all 45 instances, none of the algorithms tested could find
the optimum within the time limit. We give a general picture of the situation in Figures 6
and 7. Overall, the decreasing hops strategy is the best, and finds the best hypervolumes on
19 of the 45 instances. We also witness a smaller number of conflicts, which means that DH
is effective to search the state-space of sol(U). When considering the score, forbidding the
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Figure 7 Number of times each experiment computed the best hypervolume.

source and target services on a particular ECU are usually not better than simply using the
NA conflict. These strategies are still superior regarding the number of times they find the
best hypervolume.

In addition, we evaluate cusolve_mo against a more straightforward two-steps algorithm
osolve_mo_then_uf (denoted by MO_UF) where the Pareto front is first fully generated,
and then filtered by the uf function. To improve this method, we keep all intermediate
solutions when building the Pareto front in a set S. During the filtering step, if a solution a

is discarded by the function uf , we remove a from the Pareto front and reconstruct it with⊔
{{b} | b ∈ S \ {a}}. It does not make this algorithm over-approximating as it can still

discard assignments accepted by uf , but it improves the filtered Pareto front.
As shown in Figure 6, MO_UF ranks fourth, and therefore is a good approach to solve

the deployment problem when we do not seek (or cannot find) the true optimal solution.
Interestingly, for 18 instances over the 45, the hypervolume before and after filtering is
the same, which means that all solutions of the Pareto front were valid w.r.t. uf . This is
particularly true with 50 services where 14/15 instances have the same hypervolume before
and after filtering. This result is explained by noticing that adding more services has a higher
impact on the network load, and thus the WCTT analysis fails more often. Over the 30
instances with 75 and 100 services, there are 24 instances that have a filtered hypervolume
within 3% of the unfiltered hypervolume. It is not always the case as for the instances
I1_100-14-u60 and I1_100-14-u80, the filtered hypervolume is respectively 57% and 73%
of the unfiltered hypervolume. An advantage of the offline filtering proposed by MO_UF is
to call uf an order of magnitude less than with DH. Over all instances, MO_UF calls uf
1180 times while DH calls uf 12245 times. Therefore, depending on the time taken by the
external function and the number of conflicts, MO_UF can be better – especially for low
number of conflicts and long evaluation time.

From an implementation perspective, using MiniZinc Python allowed us to implement
an algorithm generic across solvers, but it incurs a cost. Besides losing the state of the
solver between calls, we must call the MiniZinc (source of the model) to FlatZinc (simpler
format supported by solvers) translator, and it takes on average around 40% of the total
solving time. An improvement to MiniZinc Python would be to directly add FlatZinc
constraints to avoid recompiling the MiniZinc model each time.
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6 Related Work

6.1 CAN Networks
The deployment problem has been extensively studied due to its importance in distributed
real-time embedded systems. It was pioneered in [38] for tasks allocation on controller area
network (CAN). In CAN network, the hardware units are all connected on a broadcast bus,
and therefore the hardware network is fully connected. The main difference with our work
is that we consider a more general switch-based network. In the context of real-time and
critical systems, such as those found in the automotive industry, it is crucial to ensure the
network will not be overloaded by communication, and when required, that the network
packet deadlines are met. The WCTT analysis on switch-based networks is more complicated
and under-approximating (it does not give an exact upper bound), while it is an exact
analysis for CAN network [37, 7, 39].

Due to its simpler nature, schedulability analysis, such as WCTT, over CAN networks has
been directly incorporated in the constraint model before. The work of Hladik et al. [15] is
the first to model the deployment problem over CAN network using constraint programming.
They model the schedulability analysis as a global constraint. Alternatively, they also
use a method inspired by logic-based Benders decomposition (LBBD) [16] to separate the
allocation problem solved using constraint programming and the schedulability analysis
solved by an ad-hoc algorithm. It differs from our approach mainly because there is no notion
of approximation, and the conjunction of both parts models the problem exactly. Moreover,
they consider only the satisfiability of the problem, and they do not seek to optimize one or
more objectives.

Other techniques were proposed to solve the deployment over CAN networks with
multi-objective optimization, for instance, evolutionary optimization [21], ant colony system
with constraint propagation and without searching [36], mixed integer linear programming
(MIP) [24] and satisfiability modulo theories (SMT) [11]. These methods are either incomplete
(no proof of optimality or unsatisfiability) and thus under-approximating, or they are complete
(MIP and SMT) which is only possible because they model a simpler problem (CAN network).

6.2 Switched Networks
To the best of our knowledge, Kugele et al. [17] are the first to configure and analyse an
application distributed over a switched network using a SMT solver. Similarly to osolve_mo,
they generate a Pareto front and then verify the produced solutions. However, the verification
is performed using simulation, which does not give a formal worst-case guarantee. Therefore,
their solving method is over-approximating and the obtained solutions are not guaranteed to
be valid. Besides, they do not provide the constraint model and only tested their algorithm
on a small network of 3 ECUs and 25 services.

6.3 Other Applications
Campeanu et al. [5] study the deployment problem in heterogeneous architectures (CPU,
GPU and FGPA), but with communication still happening over a CAN network. Satisfiability
Modulo Discrete Event Simulation [20] combines a SAT solver with discrete event simulation
(DES) for a railway construction planning problem. The combination of both techniques
share similarities with cusolve_mo since the DES simulator is encapsulated as a theory
and provide conflict to the SAT solver – but, like us, only on full assignments. However,
simulation is an over-approximating technique and therefore the global method remains
over-approximating. Moreover, the algorithms are specialized to the railway construction
problem and no general algorithm or correctness proof is given.
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6.4 Online and Dynamic Constraint Programming

Our work is related to online constraint programming [12] – also called dynamic constraint
programming [8] – as in both approaches the model is incrementally refined. A difference
is that online constraint programming is primarily designed when the solutions generated
are used in real-time, and variables impacting the past decisions cannot be modified in the
subsequent solving steps. We do not have such real-time requirements since the new data are
obtained from an offline analysis. Moreover, in [12], they propose to internalize the dynamic
part of the problem inside the model. Here, we purposely delegated a part of the model to
an external function, which would have been prohibitively complicated to model otherwise.

7 Conclusion

We study the deployment problem, an important problem in the field of distributed real-time
embedded systems, and more specifically in the automotive industry. This problem has a
task allocation part, which is efficiently solved by constraint programming, and a scheduling
network analysis part, which is efficiently solved by a WCTT analysis. The integration
of both techniques is difficult since both parts are black-box functions. We propose the
algorithm cusolve_mo which combines both parts in a loosely coupled manner, thus
making our framework reusable on other similar problems. Our approach is based on abstract
interpretation, a formal method allowing us to prove properties of our algorithms. Finally,
we evaluated our approach on a new dataset for the deployment problem – since none existed
before – and conclude that the cooperation scheme proposed by cusolve_mo works better
than solving each part in sequence.
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% I. The hardware graph ⟨H, L, hc, lc⟩.
int: locations ;
set of int: LOCATIONS = 1.. locations ; % H
int: num_links ;
set of int: NUM_LINKS = 1.. num_links ; % L
array [ LOCATIONS ] of int: cpu_capacity ; % hc
array [ NUM_LINKS ] of int: capacity ; % lc

% II. The software graph ⟨S, Com, sc, cc⟩.
% Com is implicitly represented by the adjacency matrix coms where

coms[si][sj ] = 0 if the services si and sj do not communicate .
int: services ;
set of int: SERVICES = 1.. services ; % S
array [ SERVICES ] of int: services_cpu_usage ; % sc
array [SERVICES , SERVICES ] of int: coms; % cc

% III. The path function
% shortest_path[hi, hj ] contains all the edges belonging to the shortest path

between hi and hj .
% Interestingly , we do not need to know the order of the edges on the

shortest path , thus we can use a set.
array [LOCATIONS , LOCATIONS ] of set of NUM_LINKS : shortest_path ;

% IV. Not part of the mathematical specification : this is to display the
solutions with locations and services names instead of indexes .

array [ LOCATIONS ] of string : locations2names ;
array [ SERVICES ] of string : services2names ;

The decision variable is the function d : S → H which is modelled as a MiniZinc array:

array [ SERVICES ] of var LOCATIONS : services2locs ; % d : S → H

The constraints are defined using intermediate arrays of variables to simplify their definitions.

% I. CPU load constraint .
% ∀h ∈ H,

∑
s∈d−1(h) sc(s) ≤ hc(h)

array [ LOCATIONS ] of var int: cpu_usage ;
constraint forall (l in LOCATIONS )

( cpu_usage [l] =
sum(s in SERVICES )

( services_cpu_usage [s] * ( services2locs [s] == l)))
;

constraint forall (l in LOCATIONS )( cpu_usage [l] >= 0 /\ cpu_usage [l] <=
cpu_capacity [l]);

% II. Network load constraint .
% ∀ℓ ∈ L,

∑
c∈Com com(c, ℓ) ≤ lc(ℓ)

array [ NUM_LINKS ] of var int: slack;
constraint forall (link in NUM_LINKS )(

slack[link] = capacity [link] -
sum(s1 ,s2 in SERVICES )(

coms[s1 ,s2] * (link in shortest_path [ services2locs [s1],
services2locs [s2 ]])

));
% Then we ensure the slack is always greater or equal to 0.
constraint forall (link in NUM_LINKS )(slack[link] >= 0 /\ slack [link] <=

capacity [link ]);
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The multi-objective aspect of the problem is not treated within the MiniZinc model itself,
but by the MiniZinc Python interface. To communicate which objectives we seek to minimize,
we use a special array variable objs describing all three objectives described in Section 2.1.
array [1..3] of var int: objs;

% min maxh∈H

∑
s∈d−1(h) sc(s)

constraint objs [1] = max(l in LOCATIONS )( cpu_usage [l]);

% min maxℓ∈L(
∑

c∈Com com(c, ℓ))/lc(ℓ)
% We use an intermediate array charge and channeling constraint to

represent the charge of a link in percentage .
array [ NUM_LINKS ] of var 0..100: charge ;
constraint forall (link in NUM_LINKS )( charge [link] == ( capacity [link] -

slack[link ]) div ( capacity [link] div 100));
constraint objs [2] = max(link in NUM_LINKS )( charge [link ]);

% min |d(S)|
constraint objs [3] = sum(l in LOCATIONS )( cpu_usage [l] > 0);
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Abstract
Boolean Networks (BNs) are an efficient modeling formalism with applications in various research
fields such as mathematics, computer science, and more recently systems biology. One crucial
problem in the BN research is to enumerate all fixed points, which has been proven crucial in the
analysis and control of biological systems. Indeed, in that field, BNs originated from the pioneering
work of R. Thomas on gene regulation and from the start were characterized by their asymptotic
behavior: complex attractors and fixed points. The former being notably more difficult to compute
exactly, and specific to certain biological systems, the computation of stable states (fixed points) has
been the standard way to analyze those BNs for years. However, with the increase in model size and
complexity of Boolean update functions, the existing methods for this problem show their limitations.
To our knowledge, the most efficient state-of-the-art methods for the fixed point enumeration problem
rely on Answer Set Programming (ASP). Motivated by these facts, in this work we propose two
new efficient ASP-based methods to solve this problem. We evaluate them on both real-world and
pseudo-random models, showing that they vastly outperform four state-of-the-art methods as well
as can handle very large and complex models.
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1 Introduction

In molecular biology, the regulation of the transcription of a gene is the process by which a
cell modulates the conversion of its DNA into RNA. Transcription is a vital process in all
living organisms and leads to orchestrating the whole gene activity. Its regulation can take
many different forms, mostly affecting the binding of the RNA polymerase on the DNA.

The lack of precise quantitative information about transcriptional regulation and the
sigmoid nature of its kinetics led, about fifty years ago, to the idea to represent models of
gene regulation as discrete event systems. Those gene regulation networks use thresholds or
equivalently logical functions to represent the different regulations [22, 39, 41, 40]. Over the
years, Boolean Network (BN) modelling has proven that it can bring powerful analyses and

1 Corresponding authors

© Van-Giang Trinh, Belaid Benhamou, and Sylvain Soliman;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:trinh.van-giang@lis-lab.fr
https://orcid.org/0000-0001-6581-998X
mailto:belaid.benhamou@lis-lab.fr
mailto:Sylvain.Soliman@inria.fr
https://orcid.org/0000-0001-5525-7418
https://doi.org/10.4230/LIPIcs.CP.2023.35
https://github.com/giang-trinh/fASP
https://archive.softwareheritage.org/swh:1:dir:86a458f51d92dda88a71499b7e6bea7178377da0;origin=https://github.com/giang-trinh/fASP;visit=swh:1:snp:614807584f3edb33d11b8b100908dc7ad8820a02;anchor=swh:1:rev:99b75a1169a2b8779f35a553d75461516b92335f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Efficient Enumeration of Fixed Points in Complex Boolean Networks

corresponding insight to the many cases where enough quantitative biological data is not
available [48], even for modelling post-transcriptional mechanisms. This is even more true
for very large models where such data is frequently missing and led to a constant increase
in size of logical models à la Thomas [2] and more and more complex logical formulae to
describe the dynamics of those models.

Besides simulation, the analysis of such models is mostly based on attractor computation,
since those correspond roughly to observable biological phenotypes [48]. An attractor of
a BN is a minimal set of states from which the dynamics of this BN cannot escape once
entered [39, 48]. An attractor of size one is called a stable state or fixed point. Otherwise, it is
called a cyclic attractor or complex attractor. To date, the analysis of the set of fixed points
of a BN remains a very useful tool in understanding the behavior of those complex biological
models. This is not only due to the fact that in some cases the full computation of complex
attractors remains intractable, but also because for many biological systems, the expected
long-term behavior is not cyclic (as in the Cell Cycle, or Circadian rhythms for instance) but
rather a stabilization to an observable phenotype (cell differentiation, apoptosis, proliferation,
signal transduction, protein transcription, etc.). See for instance [33, 15, 13, 43] for some
recent publications using stable states as main validation. It is also worth noting that the
fixed point computation is the crucial starting point for several state-of-the-art methods for
computing complex attractors of BNs [21, 42].

Answer Set Programming (ASP) [19] has been widely applied in the field of computa-
tional systems biology [46] because of its declarative characteristics as well as strong tools’
support [18]. Very early, ASP has been used to model biological networks [14, 37]. Since BNs
have become a popular modeling formalism in systems biology, it is naturally that ASP has
been quickly applied to modeling and analysis of BNs. One of the first connections between
ASP and BNs is the theoretical work by [26], but nowadays we can find in the literature many
references showing the successful application of ASP to model and reason over biological
systems modeled as BNs. The notable use of ASP in the analysis of BNs ranges from
enumerating fixed points [28, 1, 34], enumerating or approximating attractors [30, 28, 1, 34],
and inferring BNs from biological data [35, 46, 47, 12], to controlling BNs [27, 47].

There is a rich history of research on enumerating fixed points of BNs since this modeling
formalism was proposed [22, 39]. The fixed point enumeration problem has attracted
researchers from various communities and many methods have been proposed [29]. We can
classify the existing methods into the following main approaches: algorithmic [29], structure-
based [10, 45, 25, 7], Boolean resolution-based [24, 32, 31], integer linear programming-
based [5], and ASP-based [28, 1, 34]. A more detailed summary of the existing methods shall
be given in Section 3. Note however that with the increase in model size and complexity of
Boolean update functions, the existing methods for this problem show their limitations [29].
One reason is that they require an intermediate representation of the original BN that
may be computationally expensive or even intractable to obtain, e.g., prime implicants [28],
transition-based representations [1], disjunctive normal forms [34].

Inspired by the above elements along with the fact that the most recent and most efficient
fixed point enumeration methods all rely on ASP, in this work we propose two new ASP-based
methods for efficiently enumerating all fixed points of a BN. The first method is based on
conjunctive ASP, and the second method is a modification of the first one to handle the case
of a large number of source nodes. If a BN has many source nodes, its number of fixed points
may be extremely large, leading to both long running time and high memory consumption.
The main advantage of the two proposed methods is that they rely on negative normal forms
of Boolean functions whose computation is more efficient than that of other intermediate
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representations used by the previous methods. After some preliminaries on BNs and the
problem of enumerating their fixed points, we present the two new ASP-based methods and
benchmark them against four other state-of-the-art tools. The experimental results on both
real-world and pseudo-random models show that they vastly outperform the state-of-the-art
and can handle very large and complex models.

2 Preliminaries

We start by recalling some classical definitions.

2.1 Boolean networks
▶ Definition 1 (Boolean network). A Boolean Network (BN) [40] is a pair N = (V, F ) where:

V = {v1, . . . , vn} is the set of nodes. We use vi to denote both the node vi and its
associated Boolean variable.
F = {f1, . . . , fn} is the set of Boolean update functions. Each function fi is associated
with node vi and satisfies fi : B|IN(vi)| 7→ B where B = {0, 1} and IN (vi) denotes the set
of input nodes of vi. If vj ∈ IN (vi), we say that there is a regulation between vj and vi,
and vj is a regulator of vi. Note that a node vi ∈ V is called a source node if and only if
fi is an identity function on Boolean variable vi (i.e., fi = vi).

▶ Example 2. We give a BN N = (V, F ), where V = {v1, v2} and F = {f1, f2} with
f1 = (v1 ∧ v2) ∨ (¬v1 ∧ ¬v2), f2 = (v1 ∧ v2) ∨ (¬v1 ∧ ¬v2).

▶ Definition 3 (local monotonicity). A Boolean function is locally-monotonic if it can be
represented by a formula in Disjunctive Normal Form (DNF) in which all occurrences of any
given literal are either negated or non-negated [34].

A BN is said to be locally-monotonic if all its update functions are locally-monotonic.
Otherwise, this model is said to be non-locally-monotonic.

The BN of Example 2 is non-locally-monotonic.

2.2 Fixed points
A state x ∈ Bn is as a mapping x : V 7→ B that assigns either 0 (inactive) or 1 (active) to
each node. We also write xi to denote x(vi) for short and for simplicity we write fi(x) even
when IN (vi) ⊊ V , i.e., IN (vi) does not contain some nodes of V .

▶ Definition 4 (fixed point). A fixed point of N is a state s such that si = fi(s) for every
vi ∈ V .

The state space of the BN of Example 2 includes four states: 00, 01, 10, and 11. However,
this BN has only one fixed point: 11.

Complexity

Note that the fixed points do not depend on the choice of update scheme of the BN, they
are the same for synchronous, asynchronous or even generalized updates [20]. These update
schemes are what precisely defines a transition relation on states from the update functions.
In general they allow one (asynchronous), all (synchronous) or any number (generalized) of
nodes to change their value vi to their update value specified by fi. However, if running a
simulation in the synchronous update is a feasible way to find the only reachable fixed point
starting from a completely known initial state, this does not scale up to big networks with
many source nodes with unknown values, or to other update schemes.
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From a theoretical view point, the problems of detecting a fixed point and enumerating
all fixed points of a general BN have been shown to be respectively NP-hard and #P-hard [3].
In fact, for general BNs, there is no existing method that works faster than k × 2n for any
k ≥ 1 [29].

3 Related work

The recent review of Mori and Akutsu [29] shows quite well that because of the above
complexity result, a certain amount of work has been done on restricted versions of the
problem, limiting the type of BN to simpler regulations like [6, 23], or simpler Boolean
formulae like for instance nested canalizing functions [4]. However, when working with
real-world models, built by biologists, such restrictions are often impossible to enforce.

Hence, various methods exploiting the structure of a BN have been proposed, using
feedback vertex sets [3, 7], subspaces [10], graph-reductions for low connectivity [45], network
decomposition [8, 25], etc. Unfortunately, these still do not scale to the size of the most
recent BNs (above 1000 nodes) with average connectivity and complex logical formulae.

Other methods with broader generality are also common, using classical Boolean resolution
techniques, like BDD or SAT. That is the case for instance of the BioLQM library [31] that
is at the core of the GINsim Boolean modelling tool [24] and of the CoLoMoTo Docker
images [32]. Since integer linear programming is another useful method to efficiently solve
Boolean constraints, it has been applied to addressing the fixed point enumeration [5]. The
evaluation in [5] shows that this method can handle well models of up to 200 nodes with
small average connectivity.

However, the most recent and most efficient fixed point enumeration methods all rely
on ASP [19]. This is probably due to the fact that it links the efficiency of SAT for the
Boolean constraint solving, having adapted and implemented some techniques like lazy clause
generation to the point of winning certain categories of the SAT competition, and the ease
of enumeration of all solutions, which is crucial here, in a declarative language.

More precisely, while there is indeed a direct encoding of the fixed-point problem into
SAT [29], it creates two issues. First a SAT solver needs to convert the original Boolean
formula into a CNF. It is of course possible to use a polynomial transformation like our
conjunctive ASP encoding (see Section 4) or Tseitin’s transformation, but this introduces
auxiliary variables. This in turn leads to enumerating models that encode no fixed points or
other redundant models that encode the same fixed points. A step to eliminate spurious and
redundant SAT models is therefore necessary to guarantee the correctness and this would
add complexity to the SAT/CP approach. In contrast, the ASP approach can avoid the
above issue because of the stable model semantics, i.e., only searching for minimal Herbrand
models, since the set of Herbrand models one-to-one corresponds to the set of SAT/CP
models, whereas the set of minimal ones one-to-one corresponds directly to the set of fixed
points.

One of the first connections between ASP and BNs is the theoretical work by [26], but
nowadays ASP is used for many different BN analyses, from computing fixed point as we
will show, to trap-spaces [28] which are an approximation of complex attractors, and even
for representing sets of BNs [12].

By constraining the number of ground atoms in a stable model, the trap-space computation
method [28] was adapted to compute fixed points. Note however that this method still
requires to compute prime implicants of a Boolean function, and the number of prime
implicants may be exponential in the number of inputs of this function. Moreover, the
computation of prime implicants of a Boolean function is also a computationally demanding
task, and gets intractable when the number of source nodes exceeds 10.
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It is worth noting that Paulevé et al. [34] have proposed a new method for computing
minimal trap spaces/fixed points that can avoid computing prime implicants. This method
has been implemented in the tool mpbn2 demonstrated in [34] for handling medium-sized
models from the literature and very large synthetic models (up to 100,000 nodes) with
respect to minimal trap spaces. Although there is no benchmark designed for the fixed point
computation in [34], mpbn should handle well very large models with respect to fixed points.
However, there are two drawbacks limiting the applicability of mpbn. First, it requires that
the original BN is locally-monotonic. The class of locally-monotonic BNs is too small as
compared to the class of all possible BNs, since a BN is non-locally-monotonic if just one of
its Boolean functions is non-locally-monotonic (see Definition 3). Moreover, we also found
many non-locally-monotonic Boolean models in the literature (see Section 5 for some of
them). Second, it requires a DNF of a Boolean function. Note that obtaining a single DNF
may be exponential in the size of the Boolean function (i.e., the number of inputs |IN | of
this Boolean function).

Not using the concept of trap spaces, the method by [1] characterizes fixed points of
a Boolean network as dead configurations (or deadlocks) of its corresponding Automata
Network (AN). ANs are formal models similar to Petri nets with transitions representing
the updates of the whole system. A transition includes the current configuration, the next
configuration, and the condition for enabling this transition. A configuration is said to
be dead if and only if there is no transition whose enabling condition is satisfied by this
configuration. Then the above characterization is encoded as an ASP. This method has
been reported to be able to handle well large-scale models [1]. However, its bottleneck lies in
the construction of the corresponding AN, which in general requires to obtain two DNFs for
each Boolean variable, one for the update function fi and one for its negation ¬fi.

4 Answer set programming-based methods

We will now describe the two new ASP-based encodings that we propose for the fixed point
enumeration problem.

4.1 Conjunctive encoding
Let N = (V, F ) be a BN. We intend to build an ASP encoding for N such that a stable
model of the encoded ASP (say L) is equivalent to a fixed point of N . First, for each node
vi, we introduce two atoms pi and ni. The translation from a stable model A of L to a state
x of N is that for every vi ∈ V , xi = 1 if and only if pi ∈ A, and xi = 0 if and only if ni ∈ A.
The below ASP rules ensure that a stable model of L corresponds to a state of N :

: - pi, ni. (1)

meaning false ⇐ pi ∧ ni, and

pi, ni. (2)

meaning pi∨ni ⇐ true, for every vi ∈ V . Recall that state x is a fixed point of N if and only
if the relation xi = fi(x) holds for all vi ∈ V . This relation can be seen as the conjunction
of xi ← fi(x) and ¬xi ← ¬fi(x), which can be characterized by vi ← fi and ¬vi ← ¬fi,
respectively. Hereafter, we show how to encode the two parts for every vi ∈ V as conjunctive
ASP rules.

2 https://github.com/bnediction/mpbn
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For the former part, to avoid the presence of negation, we convert fi into its Negative
Normal Form (NNF). The NNF is obtained by recursively applying De Morgan laws until all
negations that remain are on literals. We now associate ASP rules to fi as follows:

γ(vi) : - γ(NNF(fi)).

where we define function γ as

γ(vi) = pi

γ(¬vi) = ni

γ(
∧

1≤j≤J

αj) = γ(α1), . . . , γ(αJ )

γ(
∨

1≤j≤J

αj) = auxk where auxk is a new atom and for each j add the rule auxk : - γ(αj).

Note that k is here a global counter starting from 1 and will be increased by 1 after a new
atom is created. For the latter part, we similarly apply the above process with ¬vi and ¬fi

instead of respectively vi and fi. Note that it also requires to convert ¬fi into an NNF first.
Listing 1 shows the encoded ASP of the BN shown in Example 2 following the above

encoding. Atoms p1 and n1 (resp. p2 and n2) correspond to node v1 (resp. v2). Lines 1 and
2 represent the rules shown in Equation (1) and Equation (2), respectively. The rules for the
part v1 ← f1 (resp. ¬v1 ← ¬f1) are presented in Lines 4–5 (resp. Lines 6–8). Similarly, Lines
10–14 represent the rules for node v2. Line 16 indicates that we omit auxiliary atoms in the
resulting stable models. This ASP has only one stable model: {p1, p2}, which corresponds to
the sole fixed point (i.e., 11) of N .

Listing 1 Conjunctive ASP encoding for the BN shown in Example 2.
1:- p1 , n1. :- p2 , n2.
2p1 , n1. p2 , n2.
3
4p1 :- aux1.
5aux1 :- p1 , p2. aux1 :- n1 , n2.
6n1 :- aux2 , aux3.
7aux2 :- n1. aux2 :- n2.
8aux3 :- p1. aux3 :- p2.
9
10p2 :- aux4.
11aux4 :- p1 , p2. aux4 :- n1 , n2.
12n2 :- aux5 , aux6.
13aux5 :- n1. aux5 :- n2.
14aux6 :- p1. aux6 :- p2.
15
16#show p1 /0. #show n1 /0. #show p2 /0. #show n2 /0.

We here discuss the advantages of the above ASP encoding. First, the ASP L has no
negation besides Equation (1) that may hinder the efficiency of ASP solvers. Note also that
obtaining the NNF of a Boolean function is linear in its size and thus quite efficient. Second,
except the rules of Equation (2), all the rules in L are conjunctive. This is the reason we
name the above encoding as the conjunctive encoding.

The next result shows that our ASP encoding is sound and complete with respect to the
fixed points of a BN.
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▶ Proposition 5. The set of stable models of L one-to-one corresponds to the set of fixed
points of N .

Proof. Note that the only negations in the conjunctive encoding come from the state
constraints of Equation (1), i.e., : - pi, ni. Since this equation is coupled with Equation (2),
all stable models will contain exactly one of pi or ni, i.e., they will correspond with the state
x where xi is true or false depending on the atom in the stable model.

The remainder of the ASP has no negation, no disjunction in heads and is logically
equivalent to ∀vi ∈ V, xi = fi(x) via the introduction of some existentially quantified auxj .
Hence there is for each state x at most a single stable model, equal to the smallest Herbrand
model containing the pi or ni corresponding to x, the necessary auxj , and that satisfies
x = f(x) by construction.

All stable models of L will therefore correspond one to one with states x described by
the pi or ni that are true, and such that ∀vi ∈ V, xi = fi(x), hence they correspond one to
one with fixed points of N . ◀

4.2 Source encoding
Recall that the number of fixed points of a BN may be extremely large if it has many source
nodes (see Definition 1). Specifically, that number may be exponential in the number of source
nodes. In the conjunctive encoding as well as those of the state-of-the-art methods [28, 1, 34],
a resulting stable model always corresponds to a single fixed point. Hence, having many
source nodes is actually a bottleneck for these methods. To overcome this issue, we propose
a new encoding based on the conjunctive encoding of Section 4.1.

Let Lc be the encoded ASP of the BN following the conjunctive encoding. Let V s be the
set of source nodes of the BN. Our main idea is to group two stable models A1 and A2 of Lc

into a stable model A if they only differ in the atoms corresponding to a source node. More
specifically, if there is a source node vi such that pi ∈ A1, ni ∈ A2, and A1 \ {pi} = A2 \ {ni},
then we can group A1 and A2 into a stable model A such that A = A1 ∪ {ni} = A2 ∪ {pi}.
For example, let A1 and A2 be the stable models respectively corresponding to fixed points 01
and 11 of the BN shown in Example 7. Herein, A1 = {n1, p2} and A2 = {p1, p2}. They can
be grouped into stable model A = {p1, n1, p2}. Now, we add A to the set of stable models of
Lc, and then repeat the grouping process until there is no new stable model. Note that this
process introduces more stable models than before, e.g., we need to consider all A, A1, and
A2. However, the new stable model covers all the fixed points represented by the two stable
models constituting it. Hence, we just need to consider the maximal set-inclusion stable
models. We adjust the conjunctive encoding to make the above approach fully automated in
the ASP solver. Since the new encoding aims to handle the case of many source nodes, we
name it the source encoding.

Similar to the conjunctive encoding, for each node vi ∈ V , we introduce two atoms pi

and ni. For each node in V , we associate to this node the ASP rules identical to whose of
the conjunctive encoding. For each vi ∈ V s, we remove from the encoded ASP (say Ls) the
rule of Equation (1), i.e., : - pi, ni. By releasing this condition, Ls can have Herbrand models
that contain both pi and ni, vi ∈ V s. To make such Herbrand models to be stable models
of Ls, we add to Ls the choice rules {pi}. and {ni}. for all vi ∈ V s. A choice rule {pi}. is
equivalent to the rule pi : - not not pi. where not denotes the default negation. Finally, we
add to Ls the rules #show pi/0 and #show ni/0 for all vi ∈ V , which indicate that we omit
auxiliary atoms in the resulting stable models.
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Note that a stable model of Ls may correspond to multiple fixed points of the BN. Given
a stable model A of Ls, the set F of fixed points represented by A is specified as follows. For
each node vi ∈ V s, it can receive value 0 if ni ∈ A and pi ̸∈ A, value 1 if pi ∈ A and ni ̸∈ A,
both if ni ∈ A and pi ∈ A. For each node vi ∈ V \ V s, it can receive value 0 if ni ∈ A and
value 1 if pi ∈ A. Then, F is equivalent to the set of all possible value combinations of all
nodes.

The next result shows that our ASP encoding is correct.

▶ Proposition 6. The set of maximal set-inclusion stable models of Ls with respect to the
shown atoms exactly covers all fixed points of the BN.

Proof. First, we see that Ls still contains all Herbrand models of Lc. However, by releasing
the condition of Equation (1) for all source nodes, pi and ni can both appear in a Herbrand
model of Ls if vi ∈ V s. Assume that A1 and A2 are two stable models of Ls such that
pi ∈ A1, ni ∈ A2, and A1 \ {pi} = A2 \ {ni} = B for a node vi ∈ V s. The ASP rules
corresponding to node vi are tautology. In all the remaining rules, pi and ni never appear in
the left hand side. Hence, A = B ∪ {pi, ni} is also a Herbrand model of Ls. By introducing
the choice rules for all source nodes, such Herbrand models will be stable models of Ls.
Hence, the set of all stable models of Ls is equivalent to the set of stable models obtained
by the grouping approach on the set of stable models of Lc. All fixed points represented
by a stable model of Ls are also covered by a maximal set-inclusion stable model of Ls

with respect to the shown atoms (corresponding to nodes in the BN). Hence, the set of all
maximal set-inclusion stable models of Ls exactly covers all fixed points of the BN. ◀

For illustration, consider the BN shown in Example 7. Listing 2 shows the encoded ASP of
this BN following the above encoding. Atoms p1 and n1 (resp. p2 and n2) correspond to node
v1 (resp. node v2). Line 1 represents the rule of Equation (2). Note that the rule : - p1, n1 is
removed because v1 is a source node. Instead, two choice rules {p1}. and {n1}. are added
in Line 2. Line 3 represents the rules shown in Equation (1) and Equation (2) of node v2.
The rules for the parts v1 ← f1 and ¬v1 ← ¬f1 are presented in Line 5. Similarly, Lines 7–9
represent the rules for node v2. Line 11 indicates that we omit auxiliary atoms in the resulting
stable models. The encoded ASP has four stable models including: {n1, n2} (corresponding
to fixed point 00), {n1, p2} (corresponding to fixed point 01), {p1, p2} (corresponding to fixed
point 11), and {p1, n1, p2} (corresponding to fixed points 01 and 11). From these results, we
can see that the encoded ASP has two maximal set-inclusion stable models ({n1, n2} and
{p1, n1, p2}), which cover all the fixed points of the BN.

▶ Example 7. We give a BN N = (V, F ), where V = {v1, v2} and F = {f1, f2} with
f1 = v1, f2 = v1 ∨ v2. v1 is a source node of N . N has three fixed points: 00, 01, 11.

Listing 2 Source ASP encoding for the BN shown in Example 7.
1p1 , n1.
2{p1}. {n1}.
3:- p2 , n2. p2 , n2.
4
5p1 :- p1. n1 :- n1.
6
7p2 :- aux1.
8aux1 :- p1. aux1 :- p2.
9n2 :- n1 , n2.
10
11#show p1 /0. #show n1 /0. #show p2 /0. #show n2 /0.
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4.3 Post-processing
The set of maximal set-inclusion stable models of the encoded ASP Ls with respect to the
shown atoms can be seen as a meta result from which we can easily retrieve the fixed points.
Note that a stable model can be group-able with multiple ones, and thus the sets of fixed
points of two maximal set-inclusion stable models of Ls can intersect. In other words, a fixed
point of the BN may be included in two different maximal set-inclusion stable models of Ls.
Hence, it is not straightforward to obtain the number of fixed points, which by itself is a
common difficult problem related to #SAT (model-counting, see [44]). Moreover, many more
precise analysis questions can be answered, but not directly from the above meta result. For
example, given a state xn on V \ V s, return the set of states xs on V s such that (xn, xs) is a
fixed point of the BN. With this motivation, we propose a post-processing step as follows.

We maintain a hash table (denoted by H) with as key a state xn on V \ V s and as
associated value the set of states xs on V s such that (xn, xs) is a fixed point of the BN. For
each stable model A of the meta result, we extract xn from it by simply checking either pi

or ni belongs to A for all vi ∈ V \ V s. For each vi ∈ V s, xi can receive value 0 if ni ∈ A and
value 1 if pi ∈ A. Then we get the set of states on V s (denoted by Ss) as the combinations
of all possible values of all vi ∈ V s. If xn is not a key of H, we just add the pair (xn, Ss) to
H. Otherwise, we replace the current associated value of xn in H by the union of it and Ss

because the current associated value and Ss may intersect. When there are many nodes in
V s, Ss may contain a large number of states, even exponential in the number of nodes in
V s. Binary Decision Diagrams (BDDs) [11] are an efficient data structure for representing a
set of states as well as performing set operations. Hence, we store Ss as a BDD where each
node vi ∈ V s corresponds to a BDD variable.

Now, let us show how to answer some analysis questions from the hash table H. First,
for the example analysis question mentioned in the beginning of Subsection 4.3, if xn is not
a key of H, we return the empty set. Otherwise, the set of all states on V s can be easily
retrieved from the BDD as the value of xn in H . Specifically, we list all satisfying valuations
of this BDD. Analogously, by traversing all items in H, we can also answer the question,
given a combination of values on source nodes, to return the set of fixed points of the BN
restricted by this combination.

Second, we can efficiently compute the number of fixed points in the BN based on H . For
a given BDD, we can efficiently compute its number of satisfying valuations. Such procedure
is linear in the number of nodes in this BDD [11]. Since any two keys in H are distinct, the
sets of fixed points on V corresponding to them are also distinct. Hence, the number of fixed
points of the BN is equivalent to the sum of all numbers of satisfying valuations for all BDDs
in H. This is in contrast with most model-counting problems, where approximate methods
are usually necessary to minimize the number of calls to a SAT solver.

Note that an alternative approach might be to represent the hash table as a sole BDD
where every node of the BN corresponds to a BDD variable. As such, the new BDD will
have |V | variables, whereas each BDD in H has |V s| variables. Recall that the size of a BDD
may be exponential in its number of variables [11]. Hence, splitting a BDD into multiple
BDDs with smaller numbers of variables is a good strategy in most cases, especially when
|V | is much larger than |V s|. Indeed, in our experiments shown in Section 5, we observed
that the alternative approach using a sole BDD gave poorer performance than the approach
using a hash table in most cases.

To conclude this section, we discuss the advantages of the source encoding. First, it
inherits all the advantages of the conjunctive encoding, which can be seen as its core part.
Second, the number of maximal set-inclusion stable models of the encoded ASP may be much
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smaller than the number of fixed points. Hence, the proposed method can have memory
benefits as compared to other ASP-based methods. Third, with a much smaller number of
stable models, the solving time can be much smaller. Although the proposed method needs
to spend time for the post-processing, it can have running-time benefits as compared to
other ASP-based methods. The second and third points shall be analyzed in our experiments
shown in Section 5. Note that even if some of the extreme examples of Section 5 do not
correspond to plausible biological processes, finding common patterns among them could give
biological insights. Since the source method can provide a compact representation of the set
of fixed points, it can be used to find such common patterns. For example, we can know that
a key-value of the hash table corresponds to a set of fixed points that only differ in values of
source nodes. This is a very useful result since different source nodes values usually represent
different (environmental) states of a biological system. Some analyses made possible by this
encoding are: listing all fixed points, counting the number of fixed points, listing/counting all
fixed points under a specific value combination of source nodes, listing the core fixed points
projected on only normal nodes (this is exactly the list of key values of the hash table).

5 Experimental results

We implemented the newly proposed methods as a Python package named fASP3. For
convenience, we name the method based the conjunctive encoding presented in Section 4.1 as
fASP-conj and the method based on the source encoding for the case of source nodes presented
in Section 4.2 as fASP-src. To evaluate their performance, we compared them with the
four state-of-the-art methods for fixed point enumeration in BNs, including PyBoolNet [28],
mpbn [34], AN-ASP [1], and FPCollector [7].

We benchmarked all the compared methods on the BBM repository4, a collection of
real-world Boolean models from various sources used in systems biology. BBM consists of
211 models, peaking at 321 variables, 1100 regulations, and 133 source nodes, respectively.
Furthermore, we also included a selection of 13 real-world models that are not covered by the
BBM repository. The BNs of this selection peak at 3158 variables, 43642 regulations, and 237
source nodes, respectively. To our knowledge, the BBM repository along with this selected
set is a highly representative sample of Boolean models currently available in the literature.

To solve the ASP problems, we used the same ASP solver Clingo [18] and the same con-
figuration as that used in PyBoolNet, mpbn, and AN-ASP. Specifically for computing maximal
set-inclusion stable models, we used the configuration -heuristic=Domain
-enum-mod=domRec -dom-mod=3 (subset maximality, equivalent to the deprecated
–dom-pref=32 –heuristic=domain –dom-mod=7 used by PyBoolNet). We ran all the bench-
marks on a machine whose environment is CPU: Intel® Core™ i9-11950H 2.60GHz × 16, 16
GB DDR4 RAM, Ubuntu 20.04.5 LTS. Note that for the methods PyBoolNet, mpbn, AN-ASP,
and fASP-conj, we can control the maximum number of fixed points returned because a
resulting stable model corresponds to a single fixed point. In contrast, FPCollector requires
to compute all fixed points, and fASP-src allows its user to set the maximum number of
resulting stable models but not of resulting fixed points. Since a model can have a huge
number of fixed points due to many source nodes, which might not be biologically plausible,
obtaining a sample of those can prove to be very useful to invalidate the model and lead
to further refinement. Hence, to obtain a relevant, reliable and fair comparison, in our

3 The source code and benchmarks are freely accessible at https://github.com/giang-trinh/fASP.
4 https://github.com/sybila/biodivine-boolean-models
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benchmarks, we searched for both all the fixed points and the first 1000 fixed points for each
model. In addition, existing analysis shown in the literature usually revolves then around
fixing some source nodes to plausible values and reducing the model accordingly. Although
this approach biologically makes sense, it relies on potentially arbitrary decisions, and hides
away critical modelling choices that were actually not part of the original BN. Hence, we did
not fix specific values for source nodes in all the considered models. Finally, we set a time
limit of two minutes (resp. ten minutes) for each model with respect to enumerating the first
1000 fixed points (resp. all the fixed points).

5.1 BBM repository
With regards to enumerating the first 1000 fixed points, the number of BBM models solved
within two minutes of each method is: PyBoolNet (198), mpbn (185), AN-ASP (210), and
fASP-conj (211). Note that there are 24 non-locally-monotonic models that mpbn cannot
handle. Figure 1 shows the cumulative numbers of models solved by the four compared
methods with respect to enumerating the first 1000 fixed points. As it can be observed, the
AN-ASP and fASP-conj methods are comparable and they vastly outperform the PyBoolNet
and mpbn methods. For every time limit, their numbers of solved models are always greater
than those of PyBoolNet and mpbn, especially the difference is large for the time limit of
0.5s. In particular, AN-ASP could handle all but one model and fASP-conj could handle all
models within 10s.
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Figure 1 Cumulative numbers of BBM models solved by the four compared methods with respect
to enumerating the first 1000 fixed points.

With regards to enumerating all the fixed points, the number of BBM models solved within
ten minutes of each method is: FPCollector (172), PyBoolNet (170), mpbn (162), AN-ASP
(179), fASP-conj (181), and fASP-src (195). We can see that fASP-src solved more models
than all the other methods. One can note that the models for which fASP-src was the only
successful method, have extremely large numbers of fixed points, each time because of many
source nodes. This confirms our expectation when proposing fASP-src to deal with the case
of many source nodes. Upon closer inspection, Figure 2 depicts the cumulative numbers of
models solved by the six studied methods with respect to enumerating all the fixed points.
As it can be observed, the AN-ASP and fASP-conj methods are still comparable and they
outperform the FPCollector, PyBoolNet, and mpbn methods. Furthermore, for every time
limit, the number of solved models using fASP-src is always the highest.

It is worth noting that, most models in the BBM repository have moderate numbers of nodes
(n < 200) and quite simple Boolean functions. Hence, the difference in performance among
the three best methods in terms of BBM models (i.e., AN-ASP, fASP-conj, and fASP-src) is
not much exhibited. We shall test more in the following subsections.
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Figure 2 Cumulative numbers of BBM models solved by the six compared methods with respect
to enumerating all the fixed points.

5.2 Selected real-world models

Table 1 shows the running time of the four compared methods on the 13 selected BNs with
respect to enumerating the first 1000 fixed points. Columns n, s, and |A| denote the number
of nodes, the number of source nodes, and the number of fixed points, respectively. “DNF”
means that the method did not finish the computation within the time limit of two minutes.
“NM” indicates a non-locally-monotonic model. We can easily see that fASP-conj is the
best method in all models as it is much faster than all the other methods on every model.
In particular, it only took 35.24s to enumerate the first 1000 fixed points of the hardest
model (i.e., the Cell-Cycle-Control model), whereas none of the other methods could finish
the computation. Upon closer inspection, AN-ASP is the second best method with running
time less than 1s in most models. However, it ran quite slowly on the Insulin model, could
not handle the Yeast-Pheromone model, and even got an Out of Memory (OOM) error on
the Cell-Cycle-Control model before finishing the automata network construction. We note
that the above problems all come from the bottleneck of AN-ASP, i.e., the high number of
transitions of the corresponding AN. Finally, consistent with the observations reported in
the previous subsection, PyBoolNet and mpbn still performed much slower than the AN-ASP
and fASP-conj methods, and there are four non-locally-monotonic models (out of the 13)
that mpbn cannot handle.

Table 2 shows the running time of the six benchmarked methods on the selected BNs with
respect to enumerating all the fixed points. Column |A| denotes the number of fixed points,
and a “?” denotes the case where none of the competing methods returned the result. We
can first see that for 6 of the 13 models, none of the competing methods returned all the fixed
points. This is clearly because the numbers of fixed points of these models are extremely
large. FPCollector only succeeded for two models, with each less than 100 nodes. Of course,
it is difficult to handle models of larger size. PyBoolNet and mpbn only succeeded for three
models each. All these models are easy for the other methods. Hereafter, we shall present
closer inspection on the three most efficient methods: AN-ASP, fASP-conj, and fASP-src.

First, fASP-conj is still much faster than AN-ASP for all the models where they both
succeeded. Second, fASP-src is the sole method that could return all the fixed points of the
T-Cell-Co-Receptor model within the time limit. Note that the number of fixed points of this
model is huge, and it is apparent that none of the other methods can handle it. Moreover,
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Table 1 Timing comparisons (in seconds) among PyBoolNet (PBN), mpbn, AN-ASP, and fASP-conj
(f-conj) on the selected models from the literature for enumerating the first 1000 fixed points.

model n s |A| PBN mpbn AN-ASP f-conj

1 Cell-Cycle-Control [36] 3158 61 1000+ DNF DNF OOM 35.24
2 EMT-Mechan [38] 136 4 82 6.02 0.17 0.22 0.05
3 EMT-Mechan-TGFbeta [38] 150 6 478 7.12 0.39 0.27 0.08
4 Alzheimer [2] 762 237 1000+ DNF NM 0.55 0.31
5 MAPK [2] 181 37 1000+ 8.81 0.91 0.23 0.09
6 Mast-Cell-Activation [2] 73 19 1000+ 0.07 0.30 0.14 0.03
7 Cholocystokinin [2] 383 74 1000+ 0.60 1.47 0.29 0.13
8 HOG [36] 43 5 1000+ 11.08 NM 0.17 0.07
9 Insulin [36] 82 7 1000+ DNF DNF 13.65 0.21

10 Leishmania [17] 342 81 1000+ DNF 1.33 0.37 0.14
11 Pluripotency [49] 36 7 412 DNF NM 0.22 0.02
12 T-Cell-Co-Receptor [16] 206 39 1000+ DNF 0.79 0.28 0.09
13 Yeast-Pheromone [36] 246 17 1000+ DNF NM DNF 1.01

Table 2 Timing comparisons (in seconds) among FPCollector (FP), PyBoolNet (PBN), mpbn,
AN-ASP, fASP-conj (f-conj), and fASP-src (f-src) on the selected models from the literature with
respect to enumerating all the fixed points.

model |A| FP PBN mpbn AN-ASP f-conj f-src

1 Cell-Cycle-Control ? DNF DNF DNF OOM DNF DNF
2 EMT-Mechan 82 DNF 5.82 0.15 0.30 0.05 0.08
3 EMT-Mechan-TGFbeta 478 DNF 7.05 0.38 0.26 0.08 0.09
4 Alzheimer ? DNF DNF NM OOM OOM DNF
5 MAPK ? DNF DNF DNF OOM OOM DNF
6 Mast-Cell-Activation 524288 5.45 DNF 145.87 11.84 8.96 6.34
7 Cholocystokinin ? DNF OOM DNF OOM OOM DNF
8 HOG 25632 149.20 17.77 NM 0.54 0.79 1.81
9 Insulin 563200 DNF DNF DNF 81.93 36.73 107.60

10 Leishmania ? DNF DNF DNF OOM OOM DNF
11 Pluripotency 412 1.30 DNF NM 0.27 0.05 0.02
12 T-Cell-Co-Receptor 441039454208 DNF DNF DNF OOM OOM 349.15
13 Yeast-Pheromone ? DNF DNF NM DNF DNF DNF

both AN-ASP and fASP-conj met the OOM error, which confirms the memory advantage of
fASP-src. For the six other models where it succeeded, fASP-src is comparable to AN-ASP
and fASP-conj, with a bit slower running time on average. It is apparent because fASP-src
suffers from the overhead of its post-processing based on BDDs. Indeed, we confirmed that in
most of these models (also of other models considered in our experiments), the ASP solving
time of fASP-src is negligible and most of its running time was spent for the post-processing.
Note that the running time of this BDD-based post-processing depends on several factors,
such as, the number of resulting stable models, the number of source nodes (the number of
BDD variables), and the BDD variable ordering.

We also note that for the six failed models, the difference among the three best methods
(i.e., AN-ASP, fASP-conj, and fASP-src) is not clear because they all did not finish or met
the OOM error. Hence, we conduct new analysis on these failed models by restricting the
maximum number of stable models for fASP-src. We then use the number of fixed points
obtained by fASP-src as the maximum number of fixed points for the case of AN-ASP or
fASP-conj. The experimental settings are the same as those used for the case of enumerating
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all fixed points. Table 3 shows the results of this analysis. For fASP-src, we consider
two maximum numbers: 100 and 200. For each case, Column |A| denotes the number of
fixed points obtained by fASP-src, and the other columns denotes the running time of the
corresponding methods to obtain that number of fixed points. We can see that for the four
models (Cell-Cycle-Control, Alzheimer, Cholocystokinin, and Leishmania), both AN-ASP and
fASP-conj met the OOM error, whereas fASP-src can handle them in reasonable time. For
the MAPK and Yeast-Pheromone models, fASP-src is much faster than both fASP-conj and
AN-ASP. This is also true for the Mast-Cell-Activation and Pluripotency models in the case
of enumerating all fixed points (see Table 2). The above observations confirm an advantage
in both memory and run-time of using fASP-src in the case of many source nodes.

Table 3 Timing comparisons (in seconds) among AN-ASP, fASP-conj (f-conj), and fASP-src
(f-src) on the six failed models.

100 200

model |A| f-src AN-ASP f-conj |A| f-src AN-ASP f-conj

1 Cell-Cycle-Control 159744 21.98 OOM OOM 323584 23.73 OOM OOM
2 Alzheimer > 1032 10.89 OOM OOM > 1032 29.93 OOM OOM
3 MAPK 31744 0.19 1.74 1.37 52480 0.42 2.77 2.11
4 Cholocystokinin > 1013 0.28 OOM OOM > 1013 0.55 OOM OOM
5 Leishmania > 1013 0.46 OOM OOM > 1013 0.79 OOM OOM
6 Yeast-Pheromone 1552 0.91 DNF 1.14 3152 0.91 DNF 1.45

5.3 Pseudo-random models
The results on the 224 real-world models reported in the two previous subsections draw
a quite clear picture about the performance of the six compared methods. However, we
observed that there is only one model with more than 1000 nodes (i.e., the Cell-Cycle-Control
model). Moreover, in most of them, the Boolean functions are quite simple, even sometimes
just simple conjunctions/disjunctions of literals. The reason for these facts may be that the
modelers were restricted by the limited performance of the tools supported at the time they
created the models. This is not the case of the Cell-Cycle-Control model, since its authors
only conducted simulations instead of formal analysis [36]. Since in the present work we
target large and complex BNs, we set out to test the performance of our proposed methods
on larger and more complicated models than the ones available in the literature to date.
Specifically, we wanted to test models with 1000 or more nodes and Boolean functions in
complicated forms. Such a model is arguably not possible to achieve yet with hand-made
modeling, even with a fully or semi-automated inference technique [2], but might be in the
near future.

To create a benchmark set of larger and more complex models, we decided to generate
pseudo-random models following the generation approach proposed by the research group who
created and is maintaining the BBM repository. This generation approach is described in detail
in [9] and its implementation is provided at https://github.com/daemontus/artifact_
cav2021. In general, it generates Boolean models structurally similar to the real-world
models in the BBM repository. To ensure this structural similarity, the generator uses a
node-degree distribution sampled from the BBM repository, as opposed to other theoretical
random network models. Once the regulators of a node are specified, its Boolean function is
generated by randomly choosing between ∧ and ∨ when connecting the positive/negative

https://github.com/daemontus/artifact_cav2021
https://github.com/daemontus/artifact_cav2021
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literals of the regulators. Note that this option does not cover the full spectrum of possible
Boolean functions, but it can make the generated Boolean functions complicated enough for
evaluation.

In the end, we created 400 pseudo-random models ranging from 1000 to 5000 variables,
4145 to 63507 regulations, and 127 to 1171 source nodes, respectively. We then tested all the
competing methods on these models. We first reported that all the competing methods failed
to obtain all the fixed points as they quickly met the OOM error. The reason is that the
number of all fixed points is actually too large due to a lot of source nodes (> 100). Hence,
we here only searched for the first 1000 fixed points, which might also be more biologically
relevant. The time limit for each model was set to two minutes. The other settings are the
same as those used in the two previous subsections.
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Figure 3 Cumulative numbers of pseudo-random models solved by the competing methods with
respect to enumerating the first 1000 fixed points.

With regards to enumerating the first 1000 fixed points, the number of pseudo-random
models solved within two minutes of each competing method is: PyBoolNet (0), mpbn (338),
AN-ASP (13), and fASP-conj (400). PyBoolNet could not handle any model, and it failed
at the phase of computing prime implicants in most cases. This is not surprising since the
models are large in size and the formulae quite complex. Interestingly, mpbn could handle far
more models than AN-ASP. This can be explained by the fact that the number of transitions
in the corresponding AN is very large in most models, whereas the size of the DNF for each
Boolean function is still moderate. Moreover, the models are all locally-monotonic, which is
an assumption of the generator [9]. Upon closer inspection, Figure 3 depicts the cumulative
numbers of pseudo-random models solved by the four competing methods with respect to
enumerating the first 1000 fixed points. We can see that fASP-conj is the best method as
it vastly outperforms the three other methods for every time limit except the time limit of
0.5s where all the methods could handle no model. In particular, it could handle all the 400
pseudo-random models within 50s.

6 Conclusion and future work

In this work we have proposed two new ASP-based methods called fASP-conj and fASP-src
for efficiently enumerating fixed points of Boolean networks, which are crucial in modeling
and analysis of biological systems. fASP-conj is based on conjunctive ASP and fASP-src
is a modification of fASP-conj to handle the case of a large number of source nodes. The
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main advantage of these methods is that they only rely on NNFs of Boolean functions, which
are much more efficient to obtain than other representations used by previous methods (e.g.,
prime-implicants, disjunctive normal forms, automata networks). The main advantage of
fASP-src is that it provides a more compact representation of the results based on BDDs,
which can give both memory and run-time benefits. We have also formally proved the
correctness of the above new methods.

We have then benchmarked their performance against the four other state-of-the-art tools:
FPCollector, PyBoolNet, mpbn, and AN-ASP. The experimental results on both real-world
and pseudo-random models show that the new methods vastly outperform the state-of-the-art
as they can robustly handle various types of large and complex models, whereas the other
methods cannot. In particular, they can handle models of up to 5000 nodes with very
complicated Boolean update functions. In terms of enumerating the first 1000 fixed points
(resp. all fixed points), the experimental results show that fASP-conj is the best (resp. second
best) method. fASP-src, which is based on fASP-conj, shows its superiority to all the other
methods in enumerating all the fixed points of models with many source nodes.

Boolean network models of biological systems usually contain many source nodes, which
might be hard to avoid in the modeling process [2]. Currently, there are many such models
that fASP-src cannot handle. Hence, improving fASP-src is necessary. Note that, in some
cases, the number of auxiliary atoms in the core encoding of fASP-conj and fASP-src can
be reduced. Such optimization will be looked into in the future. Furthermore, we also plan
to extend the methods proposed in this present paper to those for computing trap spaces of
Boolean networks, which are more general than fixed points and useful approximations for
complex attractors in Boolean networks. It is crucial because the state-of-the-art methods
for the trap space computation are all unable to robustly handle large and complex models,
for instance, the models used in our experiments here.
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Abstract
Constraint Acquisition (CA) systems can be used to assist in the modeling of constraint satisfaction
problems. In (inter)active CA, the system is given a set of candidate constraints and posts queries
to the user with the goal of finding the right constraints among the candidates. Current interactive
CA algorithms suffer from at least two major bottlenecks. First, in order to converge, they require a
large number of queries to be asked to the user. Second, they cannot handle large sets of candidate
constraints, since these lead to large waiting times for the user. For this reason, the user must
have fairly precise knowledge about what constraints the system should consider. In this paper,
we alleviate these bottlenecks by presenting two novel methods that improve the efficiency of CA.
First, we introduce a bottom-up approach named GrowAcq that reduces the maximum waiting
time for the user and allows the system to handle much larger sets of candidate constraints. It
also reduces the total number of queries for problems in which the target constraint network is
not sparse. Second, we propose a probability-based method to guide query generation and show
that it can significantly reduce the number of queries required to converge. We also propose a
new technique that allows the use of openly accessible CP solvers in query generation, removing
the dependency of existing methods on less well-maintained custom solvers that are not publicly
available. Experimental results show that our proposed methods outperform state-of-the-art CA
methods, reducing the number of queries by up to 60%. Our methods work well even in cases where
the set of candidate constraints is 50 times larger than the ones commonly used in the literature.
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1 Introduction and related work

Constraint programming (CP) is considered one of the main paradigms for solving com-
binatorial problems, with many successful applications in a variety of domains. However,
there are still challenges to be faced in order for CP technology to become even more widely
used. One of the most important challenges is to ease the modeling process. The current
assumption in CP is that the user first models the problem and that a solver is then used to
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solve it. However, modeling is a non-trivial task. Expressing a combinatorial problem as
a set of constraints over decision variables is not straightforward and requires substantial
expertise [12]. As a result, modeling is considered a major bottleneck for the widespread
adoption of CP [12, 13, 14].

This obstacle has led to research into a very different approach to modeling: that of
learning the constraint problem from data, as opposed to manually constructing it. This is the
focus of the research area of constraint acquisition (CA), in which CP meets machine learning.
In CA, the model of a constraint problem is acquired (i.e., learned) (semi-)automatically from
a set of examples of solutions, and possibly non-solutions. CA methods can be categorized
as active or passive on the basis of whether a user provides feedback during learning or not.

In passive acquisition, a dataset of examples of solutions and non-solutions is provided by
the user upfront. Based on these examples, the system learns a set of constraints modeling
the problem [4, 5, 7, 9, 11, 17, 18, 19, 21]. Approaches vary in the types of constraints they
are able to learn and the methodologies they employ: Conacq.1 is a version space algorithm
for learning fixed-arity constraints [7, 9, 11], ModelSeeker learns global constraints that are
taken from a predefined constraint catalog [4], and COUNT-CP is a generate-and-aggregate
approach that can learn expressive first-order constraints [18]. None of these approaches are
robust to errors in the labeled data. To this end, SeqAcq and BayesAcq were introduced,
being robust to noise in the training set. In SeqAcq, a statistical approach based on
sequential analysis is used [22], while in BayesAcq, a naive Bayes classifier is trained, from
which a constraint network is then derived [23].

In contrast to passive learning, active or interactive acquisition systems learn the con-
straints through interaction with the user, by asking queries. The main type of query used is
the membership query, which asks the user to classify a given example (i.e., an assignment
to the variables of the problem) as a solution or a non-solution. An early work in active
CA is the Matchmaker agent [15], where users, when they answer a membership query
negatively, also have to provide a violated constraint. In order to lower the expertise level
required from the user, Bessiere et al. later proposed Conacq.2 [10, 11] – an active version
of Conacq.1 that uses membership queries and does not require the user to provide any
violated constraints. In [24], Conacq.2 was in turn extended to also accept arguments
regarding why examples should be rejected or accepted.

As the number of membership queries needed can be exponentially large for these
methods [11], a new family of interactive algorithms was proposed that use partial queries
instead [3, 8, 20, 25, 26, 27, 28, 29]. A partial query asks the user to classify a partial
assignment to the variables. Using partial queries, CA systems are able to converge faster.
QuAcq was the first system to use partial queries [6, 8], and was later extended into
MultiAcq [3]. MQuAcq was later introduced to reduce the number of queries needed per
learned constraint [25, 29], and MQuAcq-2 further improved the performance by exploiting
the structure of the constraints already learned [27].

Despite these advancements in active CA, there are still significant obstacles for the
technology to become usable in practice. One of the main limitations is that it typically still
requires asking a large number of queries to the user in order to find all constraints. In addition,
existing systems cannot handle large sets of candidate constraints in reasonable run times, and
thus require significant expertise from the user in limiting the constraints the system should
consider (and thus the size of the candidate set) upfront. Finally, query generation – a highly
important part of the CA process – currently requires the use of customized solvers that are
not publicly available and are not as well-maintained as conventional solvers. Without the
use of such customized solvers, current active CA algorithms can lead to very high query
generation times or are sometimes unable to converge to the correct set of constraints when
time limits are imposed [1, 25].
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We focus on the above limitations, and contribute the following improvements:
We present a novel query generation method named PQ-Gen that allows conventional
constraint solvers to be used by CA algorithms while also ensuring convergence, removing
the dependency on customized solvers.
We propose a bottom-up learning approach named GrowAcq that uses any other CA
algorithm to learn the constraints of an increasingly large problem. It starts learning
with only a subset of variables and an associated subset of candidate constraints, and
incrementally grows this set of variables and constraints. This allows it to handle
significantly larger sets of candidate constraints and reduces the maximum waiting time
for the user.
Finally, we introduce a better way to guide the query generation process, with the goal
of generating queries that learn the set of constraints faster. We propose an objective
function for query generation that uses probabilistic estimates of whether constraints are
likely to hold or not. We demonstrate the potential of this method by using a simple
counting-based approach as probabilistic estimator.

The rest of the paper is structured as follows. Some background on CA is given in
Section 2. Sections 3–5 present our proposed methods. An experimental evaluation is given
in Section 6. Finally, Section 7 concludes the paper.

2 Background

We now introduce some basic notions regarding constraint satisfaction problems and inter-
active constraint acquisition.

2.1 Constraint satisfaction problems

A constraint satisfaction problem (CSP) is a triple P = (X, D, C), consisting of:
a set of n variables X = {x1, x2, ..., xn}, representing the entities of the problem,
a set of n domains D = {D1, D2, ..., Dn}, where Di ⊂ Z is the finite set of values for xi,
a constraint set (also called constraint network) C = {c1, c2, ..., ct}.

A constraint c is a pair (rel(c), var(c)), where var(c) ⊆ X is the scope of the constraint
and rel(c) is a relation over the domains of the variables in var(c) that specifies (implicitly
or explicitly) what assignments are allowed. |var(c)| is called the arity of the constraint.
The constraint set C[Y ], where Y ⊆ X, denotes the set of constraints from C whose scope is
a subset of Y . The set of solutions of a constraint set C is denoted by sol(C). A redundant
or implied constraint c ∈ C is a constraint in C such that sol(C) = sol(C \ {c}).

A (partial) assignment eY is an assignment over a set of variables Y ⊆ X. eY is rejected
by a constraint c iff var(c) ⊆ Y and the projection evar(c) of eY on the variables in the scope
var(c), is not in rel(c), that is, is not allowed by the constraint. κC(eY ) represents the subset
of constraints from C[Y ] that reject eY , i.e., κC(eY ) = {c | c ∈ C[Y ] ∧ evar(c) /∈ rel(c) }.

A complete assignment e that is accepted by all the constraints in C is a solution to C,
i.e., e ∈ sol(C). A partial assignment eY is called a partial solution to C iff it is accepted by
all the constraints in C[Y ]. Note that a partial solution to C may not be extendable to a
complete one, due to constraints not in C[Y ].

CP 2023
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Algorithm 1 Constraint Acquisition through partial queries.

Input: X, D, B, Cin (X: the set of variables, D: the set of domains, B: the bias, Cin: an
optional set of known constraints)

Output: CL : a learned constraint network
1: CL ← Cin

2: while True do
3: Generate an e accepted by CL and rejected by B

4: if e = nil then return CL ▷ Stopping condition
5: if ASK(e) = Yes then ▷ Ask (partial) membership query e

6: Remove the constraints rejecting e, namely κB(e), from B

7: else
8: Find one (or more) minimal scopes S in e for which |κB(eS)| ≥ 1 and ASK(eS) =

No
9: Find all {c ∈ CT | var(c) = S} through partial queries; add to CL, remove from

B

2.2 Active constraint acquisition with partial membership queries
In CA, the pair (X, D) is called the vocabulary of the problem at hand and is common
knowledge shared by the user and the system. Besides the vocabulary, the learner is also
given a language Γ consisting of fixed-arity constraint relations. Using the vocabulary (X, D)
and the constraint language Γ, the system generates the constraint bias B, which is the set
of all possible candidate constraints for the problem.

Let CT , the target constraint network, be an unknown set of constraints such that for
every assignment e over X it holds that e ∈ sol(CT ) iff e is a solution to the problem the
user has in mind. The goal of CA is to learn a constraint set CL ⊆ B that is equivalent
to CT . Like other works, we assume that the bias B can represent CT , i.e., there exists a
C ⊆ B s.t. sol(C) = sol(CT ).

In active CA, the system interacts with the user while learning the constraints. A
membership query [2] in this setting is a question ASK(eX), asking the user whether a
complete assignment eX is a solution to the problem that the user has in mind. A partial
query ASK(eY ), with Y ⊂ X, asks the user to determine if eY , which is an assignment in
DY , is a partial solution with respect to CT [Y ]. We use the notation c ∈ CT iff ∀ e ∈ DY

with var(c) ⊆ Y ⊆ X, ASK(eY ) = True =⇒ evar(c) ∈ sol(c).
While in passive acquisition there are methods that can handle noisy answers [22, 23], this

is not the case for active acquisition. For this reason, in this work, we follow the assumption
that the user answers all queries correctly.

A query ASK(eY ) is called irredundant iff the answer is not implied by any information
already available to the system. That is, the query is irredundant iff eY is rejected by at
least one constraint from the bias B and is not rejected by the network CL learned thus far.
The first condition captures that κB(eY ) cannot be empty, since if κB(eY ) would be empty,
the answer to the query ASK(eY ) would have to be “yes”, based on the assumption that
CT is representable by the constraints in B. The second condition captures that eY should
not be rejected by any constraint in the learned network CL, since otherwise the user would
certainly answer “no” to the query.

Algorithm 1 presents the generic process followed by active CA methods with partial
queries. The learned set CL is first initialized either to the empty set or to a set of constraints
given by the user that is known to be part of CT (i.e., Cin ⊂ CT ) (line 1). Then the main
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loop of the acquisition process begins, where, in every iteration, the system first generates an
irredundant query (line 3) and posts it to the user (line 5). If the query is answered positively,
then the candidate constraints from B that violate it are removed (line 6). Otherwise, the
system has to find one or more constraints from CT that violate the query. This is done in
two steps. First, queries are asked to find the scope of a constraint in κCT

(e) (line 8). Then,
queries are asked to find all constraints c ∈ CT with that scope (line 9).

The acquisition process has converged on the learned network CL ⊆ B iff CL agrees with
the set of all labeled examples E, and for every other network C ⊆ B that agrees with E,
it holds that sol(C) = sol(CL). This is proved if no query could be generated at line 3, as
in this case, all remaining constraints in B (if any) are redundant. If the first condition is
true but the second condition has not been proved when the acquisition process finishes,
premature convergence has occurred. This can happen when the query generation at line 3
returns e = nil, but without having proved that an irredundant query does not exist (e.g.,
because of a time limit).

Existing algorithms like QuAcq [6, 8], MQuAcq [25, 29] and MQuAcq-2 [27] follow
this template, but differ mainly in how they implement lines 3, 8 and 9, and hence how many
constraints they are able to learn in each iteration. Examples of functions used to locate the
scope of a constraint (line 8) are FindScope [6, 8] or the more efficient FindScope-2 [25]. To
learn the constraints in the scope found (line 9), the FindC function is typically used [6, 8].

3 Using conventional solvers for query generation

Query generation (line 3 of Algorithm 1) is one of the most important parts of the CA
process. It aims to find an irredudant membership query (i.e., a (partial) assignment that
does not violate CL but violates at least one c ∈ B) that will be asked to the user. Thus, it
can be formalized as follows:

find eY s.t. eY ∈ sol(CL[Y ] ∧
∨

ci∈B[Y ]

¬ci),

which can be formulated as a CSP with variables Y and constraints CL[Y ] ∧
∨

ci∈B[Y ] ¬ci.

3.1 Problems when using conventional solvers
In principle, this CSP could be solved using any conventional CP solver. However, this can
lead to issues for the following two reasons.

A large bias. At the start of the acquisition process, the set of candidate constraints B can
be very large. This makes the propagation of the constraint

∨
ci∈B[Y ] ¬ci time-consuming,

and severely slows down the query-generation process.

Indirectly implied constraints. At the end of the acquisition process, only constraints that
are implied by CL remain in B, if any. In this case, it will be impossible to generate a query
that does not violate CL and violates at least one constraint from B. However, propagation is
often unable to prove such implications when they are indirect and involve multiple variables
and constraints. For this reason, solvers internally end up enumerating all possible variable
assignments satisfying CL and checking if the constraint

∨
ci∈B[Y ] ¬ci can be satisfied. This

can be very time-consuming, and a time limit is usually imposed on query generation, leading
to premature convergence.

CP 2023
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Algorithm 2 PQ-Gen: Projection-based Query Generation.

Input: CL, B, l, t (B: the set of candidate constraints (bias), CL: set of known constraints,
l: size limit, t: time limit)

Output: e: the query generated
1: timer.start()
2: Y ←

⋃
c∈B var(c)

3: if |B| > l then
4: e← solve(CL[Y ])
5: if ∃c ∈ B : e /∈ sol(c) then
6: return e

7: e← solve(CL[Y ] ∧
∨

ci∈B[Y ] ¬ci)
8: if timer.end() < t then
9: e′ ← solve(CL[Y ] ∧

∨
ci∈B[Y ] ¬ci, maximize: obj, time limit:t− timer.end())

10: if e′ ̸= nil then
11: return e′

12: return e

In order to limit the large runtimes in a more advanced way than by simply imposing a
time bound t, Addi et al. proposed a method using conventional solvers named TQ-Gen [1].
It iteratively tries to solve the query generation problem, by gradually reducing the number
of variables taken into account by a proportion α ∈ ]0, 1[, until a query can be generated
within a small time limit τ . This is repeated until either an irredundant query is generated,
or a global time bound t is reached, leading to premature convergence. However, choosing
the right hyperparameters for t and τ is problem-specific [1] and requires tuning, and thus
more interaction with the user.

3.2 Customized solvers
To avoid premature convergence, a CP solver can be customized to store partial assignments
that satisfy every c ∈ CL[Y ] and violate at least one c ∈ B[Y ] during the search. Given an
objective function, such as maximizing the number of assigned variables, in every non-failing
node of the search tree it will check the above property and, if fulfilled, store the best-scoring
partial assignment.

As these customized solvers are guaranteed to find valid partial solutions, their use will
never lead to premature convergence. In addition, finding a partial query to return is not
time-consuming (especially when combined with specialized search heuristics [25]), even
when the bias is large. However, such custom solvers are not publicly available and are
typically not based on the latest version of state-of-the-art solvers. This also means that the
corresponding active CA methods are heavily tied to those particular customized solvers.

3.3 Projection-based Query Generation
We now introduce a method named Projection-based Query Generation (PQ-Gen) that
makes it possible to use state-of-the-art conventional solvers for query generation, without
premature convergence. Our proposed method is shown in Algorithm 2.

Avoiding indirectly implied constraints. A key observation we make is that when generating
a query on line 3, it might be that

⋃
c∈B var(c) ⊂ X, that is, some variables have no more

candidate constraints in B. These have become irrelevant, as both lines 6 and 8 are only
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concerned with κB(e), which will not include these variables. So, to generate an irredundant
query, it is sufficient to consider only the variables in B. This is not only faster, but also
avoids indirectly implied constraints, as these are indirect through variables not used in B.

Thus, our proposed query generator projects the variables down to Y ⊆ X, with Y =⋃
c∈B var(c), thereby simplifying the problem to finding an assignment over Y ⊆ X. This

will inherently result in a partial assignment when Y is a strict subset of X, without requiring
a custom solver. Thus, we first compute the set of variables Y relevant to the query (line 2),
and project CL down to those variables (on lines 4 and 7). The solver then has to prove that
there exists a query that satisfies CL[Y ] and violates at least one constraint from B.

Dealing with large biases. As mentioned above, having a large bias B can severely slow
down the solver during query generation because propagating the

∨
ci∈B[Y ] ¬ci constraint

takes a long time. However, we observe that when B contains many constraints, the property
that a query e violates at least one of these is usually satisfied without needing to enforce
this. Hence, we propose not using this constraint when the bias is larger than some threshold
(lines 3 to 6 in Algorithm 2). If in a post-hoc check, it turns out that the generated query
violates at least one c ∈ B, it is directly returned (line 6). Otherwise, we again generated a
query, this time with the constraint enforcing that there must exist a constraint in B that is
violated (line 7).

Optimizing the query. The above ensures that we will always find a valid query. However,
much better queries – according to some objective function – can often be found. This would
take additional time, but is safe because, since a valid query has already been found, the
optimization can always safely be interrupted. Given a time limit, we can hence call an
optimization solver for the remaining time after a first valid query has been found (lines
8-11).

As expressed in Proposition 1, Algorithm 2 is correct.

▶ Proposition 1. Given a bias B, with an unknown target network CT being representable
by B, and a learned constraint set CL, if nil is returned by Algorithm 2, then the system has
converged on CT [X].

Proof. When nil is returned by Algorithm 2, it means that ∄e ∈ sol(CL[Y ] ∧
∨

ci∈B[Y ] ¬ci),
with Y =

⋃
c∈B var(c), i.e., ∄e ∈ sol(CL[Y ] ∧

∨
ci∈B[Y ] ¬ci). In order to prove convergence

over all of X, we must have ∄e ∈ sol(CL[X] ∧
∨

ci∈B[X] ¬ci). We will now show that when
Y =

⋃
c∈B var(c), it means that

∄e ∈ sol(CL[Y ] ∧
∨

ci∈B[Y ] ¬ci) =⇒ ∄e ∈ sol(CL[X] ∧
∨

ci∈B[X] ¬ci)

Assume that Algorithm 2 returns nil, i.e., that no assignment exists in a Y ⊂ X that is
accepted by CL[Y ] and rejected by B[Y ]. This means that all the constraints in B[Y ] are
proved to be implied by the constraints in CL[Y ]. Thus, the remaining constraints in B,
that are not proved to be redundant, are the constraints c ∈ B \B[Y ]. When we know that
Y =

⋃
c∈B var(c) it means that B[Y ] = B, so B \B[Y ] = ∅. As a result, in this case, all the

constraints in B are proved to be implied. Hence, no assignment that is accepted by CL and
rejected by B exists in X. ◀

4 Bottom-up Constraint Acquisition

We start by observing that all current active CA algorithms always consider either the full
set of variables X, or a large subset Y ⊆ X, in their top-level loop (lines 2-9 in Algorithm 1).
This generally leads to complete or almost-complete queries getting generated (line 3 of
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Algorithm 3 Growing Acquisition.

Input: Γ, X, D, Cin (Γ: the language, X: the set of variables, D: the set of domains, Cin:
an optional set of known constraints)

Output: CL : a constraint network
1: CL ← ∅
2: Y ← ∅
3: while |Y | ≤ |X| do
4: x← x ∈ (X \ Y )
5: Y ← Y ∪ {x}
6: B ← {c | rel(c) ∈ Γ ∧ var(c) ⊆ Y ∧ x ∈ var(c)}
7: CL ← Acq(Y , DY , B, CL ∪ Cin[Y ])
8: return CL

Algorithm 1). However, larger queries are generally harder to answer than smaller queries [25].
Also, a large initial query leads to many additional queries getting posed in the scope-finding
method on line 8. That is because the worst-case complexity of the best scope-finding
methods, in terms of the number of queries required, is Θ(log(|Y |)), where Y ⊆ X is the set
of variables considered [25].

Additionally, by directly considering the whole set of variables, the CA algorithm has to
represent and operate on the entire set of candidate constraints (i.e., the bias B) at once.
The bias is used in many parts of the acquisition process. Hence, the memory requirements
and the run time of the acquisition process increase significantly as the bias grows, either
because the problems contain more variables or because the language Γ given to the system
includes a larger number of relations. This means that, in practice, state-of-the-art active
CA methods are only applicable to problems with not too many variables or problems for
which the user already has relatively precise knowledge about what constraints the system
should consider (which corresponds to the bias being small).

To improve on this, we propose a novel meta-algorithm named GrowAcq (Algorithm 3).
The key idea is to call a CA algorithm on an increasingly large subset of the variables Y ⊆ X,
each time using only a relevant unexplored subset of the bias. GrowAcq begins with
Y = ∅ (line 2) and gradually incorporates more variables (lines 3-5). Once a new variable
xi ∈ X has been added to Y , the new problem becomes to find the new CT [Y ]. However, as
CT [Y \ {xi}] was already found in the previous iterations, the set of constraints to seek is
actually CT [Y ]\CT [Y \{xi}]. To find CT [Y ]\CT [Y \{xi}], any existing active CA algorithm
can be used. We represent this with the function Acq (line 7). In every iteration, only a
part of the bias B is needed, namely B[Y ] \B[Y \ {xi}], and as shown in Lemma 1, the bias
constructed at line 6 is equivalent to B[Y ] \B[Y \ {xi}].

▶ Lemma 1. Let Yi be the set of variables Y in iteration i after line 5 of Algorithm 3 and
Bi = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi ∧ xi ∈ var(c)} be the bias B constructed at line 6 in
iteration i. It holds that Bi = B[Yi] \B[Yi−1].

Proof. At line 6 of Algorithm 3, the bias B is constructed. For each iteration i, it is
constructed as Bi = {c | rel(c) ∈ Γ∧ var(c) ⊆ Yi∧xi ∈ var(c)}. For a set of variables Yi, the
full bias, which includes all candidate constraints, is B[Yi] = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi}.
For the previous iteration, as Yi−1 = Yi \ {xi}, we know that B[Yi−1] = {c | rel(c) ∈
Γ∧ var(c) ⊆ Yi \ {xi}}. Thus, the additional constraints that are in B[Yi] and not in B[Yi−1]
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are the ones with a scope var(c) ⊆ Yi for which xi ∈ var(c):

B[Yi] \B[Yi−1] = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi} \ {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi \ {xi}}
= {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi ∧ xi ∈ var(c)} = Bi

Hence, it holds that Bi = B[Yi] \ B[Yi−1] for Bi = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi ∧ xi ∈
var(c)}. ◀

This bottom-up approach alleviates the problems described above, i.e., starting from
large initial queries and having to represent the whole bias from the beginning, in two ways.
First, it naturally leads to partial queries of increasing size in the first step of the “inner” CA
system (Algorithm 1 line 5). This is valuable since smaller queries are generally easier for
the user to answer [25], and also a smaller initial query leads to a lower worst-case number of
additional queries to locate scopes. Second, since the algorithm only stores and uses a small
part of the bias at a time (line 6 of Algorithm 3), it is able to handle significantly larger
biases than the state-of-the-art. Not representing the whole bias in every iteration does not
affect the algorithm’s correctness, as we state in Proposition 2.

▶ Proposition 2. Given a bias B built from a language Γ, with bounded arity constraints, and
a target network CT representable by B, GrowAcq is correct (i.e., will learn a constraint set
CL that is equivalent to CT ), as long as a correct (i.e., sound and complete) CA algorithm is
used in line 7.

Proof. (Sketch)
Let us now prove that if any correct algorithm is used in line 7 of Algorithm 3 – like QuAcq,

MQuAcq or MQuAcq-2 – GrowAcq remains correct. We will subscript sets with the
number of the iteration that they occur in to distinguish between the iterations. Even though
the full bias B is never constructed and never kept in memory all at once in GrowAcq, we
will still refer to it in this proof and denote it with B, i.e., B = {c | rel(c) ∈ Γ∧ var(c) ⊆ X}.
When we instead write Bi, we refer to the part of the bias that is constructed and used in
iteration i (line 6 of Algorithm 3), which is B[Yi] \B[Yi−1] (Lemma 1).

Soundness. GrowAcq adds constraints to CL only at line 7 of Algorithm 3. At that line,
only constraints returned from the inner interactive CA algorithm are added to CL. Since
the assumption is that a sound algorithm is used in the Acq function, GrowAcq is sound.

Completeness. We prove that GrowAcq is complete by proving by induction that, after
each iteration i, CL is equivalent to CT [Yi], meaning that after the last iteration, CL is
equivalent to CT [X]. GrowAcq starts with Y1 = ∅, so both CT [Y1] and B1 are empty. The
first iteration where the algorithm has to actually learn any constraints will be the one where
Y grows large enough so that CT [Y ] ̸= ∅. Assume that this happens at iteration k. In this
case, CT [Yk] will be representable by Bk, because Bk = B[Yk] \B[Yk−1] and we know that
CT [Yk−1] = ∅. Since CT [Yk] is representable by Bk, it will be successfully learned in line 7,
as long as a complete interactive CA algorithm is used.

Assuming now that CL = CT [Yn] holds at the end of the n-th iteration, let us now prove
that CL = CT [Yn+1] will hold at the end of the n+1-th iteration. From the assumption
that CL = CT [Yn], it follows that (B[Yn] \ CL) ∩ CT = ∅. As a result, Bn+1, being equal to
B[Yn+1] \B[Yn] does not exclude any constraint from CT [Yn+1] that has not already been
learned. From this, it follows that (CT [Yn+1] \ CL) ⊆ Bn+1, and thus this set of constraints
will be learned in line 7 as long as a complete interactive CA algorithm is used. Hence,
GrowAcq is complete. ◀
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5 Guided query generation

We now turn our attention to the objective function used at line 9 of Algorithm 2. Since
when GrowAcq is used, the size of B used in every iteration is reduced, query generation is
now often fast, leaving sufficient room for using optimization to find a good query.

The objective function used in existing query generation systems [6, 25] tries to maximize
the number of constraints from B that are violated by the generated query e. The motivation
is that this can potentially help shrink the bias faster. The objective function is

e = arg max
e

∑
c∈B

Je ̸∈ sol({c})K

where J·K is the Iverson bracket which converts True/False into 1/0.
However, looking only at the number of violated constraints in B does not fully capture

what a good query is:
We want queries that lead to a positive answer to violate many constraints from the bias
B, as these can then all be removed from B, shrinking it faster.
On the other hand, we want queries that lead to a negative answer to violate a small
number of constraints from B, as it allows the CA system to find the conflicting constraint
faster.

Based on this, in order to generate good queries regardless of the user’s answer, we want
query generation to minimize the violation of constraints that are in the unknown target
set CT , seeking a query to which the user’s answer will be “yes”. At the same time, we
want to maximize the violation of constraints in B that are not in CT , so that positive
answers can shrink the bias faster (the first bullet point above). Note that we also have
the constraint ensuring that at least one constraint from B has to be violated. This means
that when B \ CT = ∅, we want a minimum number of constraints in CT that we have not
already learned to be violated. This leads to negative queries that violate a small number of
constraints in B (the second bullet point above).

Assume we have access to an oracle O that tells us whether a constraint c belongs to the
unknown target set or not: O(c) = (c ∈ CT ). Using this oracle we can formulate an objective
function for query generation, using the reasoning above, as follows:∑

c∈B

Je ̸∈ sol({c})K · (1− |Γ| · JO(c)K),

On the one hand, every time that the oracle returns False for a constraint from the
bias that is violated by e, the objective function is increased by 1, thereby maximizing the
violation of these constraints. Conversely, for constraints where O returns True, we aim
to minimize the violations, which requires a reduction in the objective value for each such
violated constraint. However, it is possible that violating a set of constraints C (where
∀ci ∈ C | O(ci) = False) may imply the violation of a constraint cj with O(cj) = True. In
such cases, if the reduction in the objective value for violating cj is not large enough, the
system will violate both C and cj , maximizing the objective. To address this issue, we
introduce a “penalty” of |Γ|, which is equal to the upper bound of the number of constraints
in each scope. This ensures that the system prioritizes satisfying a constraint with O(cj) =
True, over violating other constraints from B.

Modeling the oracle. Observe how the current objective of maximizing violations corres-
ponds to using a model of the oracle M that always answers False, i.e., that assumes that
none of the candidate constraints belong to CT . On the other hand, if we used an oracle M
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that always answers True, then the query generation would try to violate as few constraints
as possible. However, the

∨
ci∈B[Y ] ¬ci constraint would still need to be satisfied, in the

extreme case leading every query to violate exactly one constraint from B. Based on this
observation, we propose to model the oracle using the following model M , which tries to
determine for every constraint c whether violating or satisfying c would lead to the least
amount of queries later on in the algorithm.

M(c) =
( 1

P [c ∈ CT ] ≤ log(|Y |)
)

On the one hand, in the extreme case, the constraints for which M(c) answers True will
be violated one by one in the later queries (once most of the constraints for which M(c)
answers False have been dealt with). Let P [c ∈ CT ] be a probabilistic estimate of whether c is
part of CT . Then, if the generated queries would violate the constraints with that probability
one by one, we would in expectation need 1/P [c ∈ CT ] queries to find a constraint from CT .
For example, for a set of constraints that each has a probability of 25%, 1 in every 4 queries
is expected to lead to a c ∈ CT being learned.

On the other hand, for each constraint c ∈ CT for which M(c) answers False, a scope-
finding procedure is needed to locate the violated constraint. The most efficient functions
commonly used to do it (i.e., FindScope [6] or FindScope-2 [25]) have been shown to require
Θ(log(|Y |)) queries to find a violated constraint c ∈ CT in the worst case, where Y is the
number of variables considered in query generation. As a result, we estimate the number of
queries needed in this case as k · log(|Y |), with k a constant. We found k = 1 to work well in
practice.

Probability estimation. To compute the probability P (c ∈ CT ) of a constraint c ∈ B, we use
a simple approach, considering only information from the relations rel(c) of the constraints.
More specifically, to compute P (c ∈ CT ), we count the number of times a constraint with
relation rel(c) has been added to CL, and divide it by the total number of times that such a
constraint has been removed from B. Much more advanced estimation techniques, including
machine learning methods, can be used for more accurate estimation. We leave this for
future work.

6 Experimental evaluation

In this section, we empirically answer the following research questions:
(Q1) Does using PQ-Gen with conventional solvers avoid premature convergence, and how

do CA systems perform when they use it?
(Q2) Does GrowAcq (using MQuAcq-2) perform better than using MQuAcq-2 directly?
(Q3) How does our probability-guided query generation objective function perform compared

to the one used in current CA systems?
(Q4) How does the combination of our methods perform?
(Q5) How do our methods perform on problems with a huge bias B?

6.1 Benchmarks
We used the following benchmarks:
Jigsaw Sudoku. The Jigsaw Sudoku is a variant of Sudoku in which the 3 × 3 boxes are

replaced by irregular shapes. It consists of 81 variables with domains of size 9. The target
network consists of 811 binary ̸= constraints, on rows, columns, and shapes. The bias B

was constructed using the language Γ = {≥,≤, <, >, ̸=, =} and contains 19 440 binary
constraints.
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Murder. The Murder puzzle problem consists of 20 variables with domains of size 5. The
target network contains 4 cliques of 10 ̸= constraints and 12 additional binary constraints.
The bias was initialized with 760 constraints based on the language Γ = {≥,≤, <, >, ̸=, =}.

Random. We used a problem with 100 variables and domains of size 5. We generated a
random target network with 495 ̸= constraints. The bias was initialized with 19 800
constraints, using the language Γ = {≥,≤, <, >, ̸=, =}.

Golomb rulers. The problem is to find a ruler where the distance between any two marks
is different from that between any other two marks. We built a simplified version of
a Golomb ruler with 8 marks, with the target network consisting only of quaternary
constraints.1 The bias, consisting of 238 binary and quaternary constraints, was created
with the language Γ = {≥,≤, <, >, ̸=, =, |xi − xj | ̸= |xk − xl|}.

Job-shop scheduling. The job-shop scheduling problem involves scheduling a number of
jobs, consisting of several tasks, across a number of machines, over a certain time horizon.
The decision variables are the start and end times of each task. There is a total order over
each job’s tasks, expressed by binary precedence constraints. There are also constraints
capturing the duration of the tasks and that tasks should not overlap on the same machine.
The language Γ = {≥,≤, <, >, ̸=, =, xi + c = xk} was used, with c being a constant from
0 up to the maximal duration of the jobs. We used a problem instance containing 10 jobs,
3 machines (i.e., |X| = 60) and a time horizon of 15 steps, leading to a bias containing
14 160 constraints.

6.2 Experimental setup
Let us now give some details about the experimental settings:

All the experiments were conducted on a system carrying an Intel(R) Core(TM) i9-11900H,
2.50 GHz clock speed, with 16 GB of RAM.
We measure the total number of queries #q, the average time of the query generation
process T̄gen (line 3 of Algorithm 1), the average waiting time T̄ per query for the user,
and the total time needed (to converge) Ttotal. All times are presented in seconds. The
difference between T̄gen and T̄ is that the latter takes into account also the queries posed
on lines 8-9 of Algorithm 1, which are very fast to compute.
We evaluate our methods in comparison with the state-of-the-art method MQuAcq-2 [27].
All methods and benchmarks were implemented in Python 2 using the CPMpy constraint
programming and modeling library [16], except for the experiments using custom solvers.3
The results presented in each benchmark, for each algorithm, are the means of 10 runs.

We now discuss the results of our experimental evaluation, based on the questions we
posed at the beginning of the section.

6.3 [Q1] Performance of PQ-Gen
Both PQ-Gen, our projection-based query generation approach, and TQ-Gen [1] (discussed
in Section 3.1) involve hyperparameters that affect their performance. Thus, we first
performed a hyperparameter sensitivity analysis to assess their performance under different

1 The ternary constraints derived when i = k or j = l in |xi − xj | ̸= |xk − xl| were excluded, as also done
in the literature [25, 27]

2 Our code is available online in: https://github.com/Dimosts/ActiveConLearn
3 For the custom solver based query generators from [6, 25], we obtained the implementations (in C++)

through personal communication with the authors.

https://github.com/Dimosts/ActiveConLearn
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configurations. In tandem with TQ-Gen, we also used the adjust function described in [1]. We
used the JSudoku benchmark for this comparison. For TQ-Gen, we fixed the hyperparameter
α to 0.8 as recommended in [1], and used τ = {0.05, 0.1, 0.2, 0.3} and t = {0.5, 1, 1.5, 2}. For
PQ-Gen hyperparameters, we used l = {3000, 5000, 7500, 10000} and t = {0.5, 1, 1.5, 2}.
Thus, we examined 16 different configurations for each. A summary of the results are shown
in Table 1.4

Table 1 A summary of the performance of TQ-Gen and PQ-Gen with different configurations.

Problem Conv #q Tmax Ttotal

MQuAcq-2 with TQ-Gen [1] 32% 7 555 20.66 2 371.40
MQuAcq-2 with PQ-Gen (ours) 100% 6 551 4.42 728.25

Confirming our analysis, with our PQ-Gen there is never a case of premature convergence,
no matter what hyperparameters are used. On the other hand, when TQ-Gen is used, the
system fails to converge in the majority of cases, and specific hyperparameter values have to
be chosen to ensure convergence. In addition, our PQ-Gen shows much better performance
both in terms of the number of queries needed and, especially, in terms of runtime.

In more detail, we compared our projection-based query generation (PQ-Gen) with
a baseline where we run a conventional CP solver to directly solve the query generation
problem, using a one-hour time limit, as well as with query generation methods from the
literature, i.e., TQ-Gen and the custom solver based query generators from [6, 27]. For
PQ-Gen and TQ-Gen we used the best configuration found in the previous experiment.
That is, we run PQ-Gen with l = 5000 and t = 1 and TQ-Gen with τ = 0.2 and t = 2. We
used benchmarks that are similar to the ones used in [6, 27]. For consistency, we used the
same state-of-the-art query generation objective function across all methods that accept one,
i.e., our PQ-Gen and the custom solvers, which tries to maximize the number of violated
constraints from B. The results are shown in Table 2.

We can observe that convergence was reached in all cases, except for the baseline in which
a conventional solver was used directly using a time limit. Our method, PQ-Gen, and the
baseline show similar performance in terms of the number of queries needed. while being
much better than TQ-Gen in JSudoku and Random, where B is larger, especially when
considering time performance.

On the other hand, when custom solvers are used, we can see that the time performance
has improved and the number of queries has decreased. This happens because the custom
solver can return a partial assignment of any size, trying only to maximize the value of the
objective function used, and utilizing heuristics from the literature, while when our PQ-Gen
is used, the query generated has to be a solution in a specific (sub)set of variables, which
takes more time to compute. As a result, we observed that custom solvers often return
queries that violate more constraints from B, which helps MQuAcq-2 shrink the bias faster
in terms of the number of queries needed.

6.4 [Q2 - Q4] Evaluating GrowAcq and guided query generation
Hereafter, we continue our experiments using PQ-Gen, as the motivation was to investigate
techniques that work with any solver. As using PQ-Gen allows us to use conventional solvers,
able to run on any given benchmark, in contrast to the custom solvers from [6, 27], where
specific constraint relations are implemented, from now on we will use all of the benchmarks
mentioned in Section 6.1.

4 More details regarding this experiment can be found in Appendix A.
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Table 2 Comparing PQ-Gen with state-of-the-art query generators.

Method Problem #q T̄gen T̄ Tmax Ttotal Convergence

Using conventional solvers
JSudoku 6 337 2.05 0.21 11.67 - 0%
Murder 347 0.09 0.01 0.31 4.69 100%MQuAcq-2 baseline

Random 5 694 2.90 0.05 20.78 294.94 100%
JSudoku 7 153 0.26 0.13 8.46 919.34 100%
Murder 394 0.04 0.01 0.32 5.22 100%MQuAcq-2 TQ-Gen [1]

Random 5787 5.26 1.23 17.61 7100.44 100%

JSudoku 6 458 0.77 0.10 3.19 666.91 100%
Murder 370 0.66 0.03 1.10 12.28 100%MQuAcq-2 PQ-Gen (ours)

Random 5 708 0.60 0.04 2.22 233.62 100%
Using custom solvers

JSudoku 5 321 0.99 0.06 2.04 336.42 100%
Murder 421 0.76 0.13 1.02 53.21 100%MQuAcq-2 GenerateQuery.cutoff [6]

Random 5 349 0.94 0.04 3.24 198.65 100%
JSudoku 5 042 1.00 0.06 2.34 277.36 100%
Murder 325 0.86 0.04 1.01 12.90 100%MQuAcq-2 maxB [25]

Random 5 012 0.94 0.02 1.52 95.21 100%

[Q2] Using GrowAcq within MQuAcq-2. We now evaluate the performance of GrowAcq,
our proposed bottom-up CA approach. To evaluate it, we used MQuAcq-2, as the inner CA
algorithm within GrowAcq (line 7 of Algorithm 3) and compared this to using MQuAcq-2,
directly on the full-sized problem. Table 3, top two blocks, presents the results.

We can observe that the usage of GrowAcq results in a reduction of the number of
queries in JSudoku, Murder, and Random, while a slight increase can be seen in Golomb. In
Job-shop, the increase in the number of queries is somewhat larger (25%). This is the case
because the target constraint network in this benchmark is sparse, with most of the iterations
of GrowAcq in a Y ⊂ X not learning any constraint from CT and only shrinking the bias.
So, when the full-sized problem is looked at directly when MQuAcq-2 is used, the bias B

can shrink with fewer queries. On the other hand, when the target network is not sparse,
there is a decrease in the number of queries of up to 19%, due to the fact that the system
can locate the scopes of the constraints faster, starting from a Y ⊂ X every time. Based on
the above observations, we can see that using GrowAcq leads to learning constraints in a
lower amount of queries, but on the other hand, needs more queries to shrink the bias.

Finally, although the total time is almost the same in most problems, and slightly increased
in JSudoku and Golomb, the average time per query has not noticeably increased, while the
maximum time the user has to wait between two queries has decreased significantly (up to
88% in the Job-shop benchmark), due to the overall reduction in the time needed in query
generation in almost all problems (as indicated by the T̄qgen column). As the (maximum)
waiting time for the user is of paramount importance for interactive settings, we can see that
GrowAcq improves this aspect of time performance of interactive CA systems.

[Q3] Guided query generation. In order to evaluate the performance of our proposed
objective function for guiding query generation, we compare it with the use of the most
popular objective function used in state-of-the-art CA systems, i.e., maximizing violations of
constraints from B. The objective functions are utilized in line 9 of Algorithm 2. For this
comparison, GrowAcq is used, again with MQuAcq-2 as the inner acquisition algorithm at
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Table 3 Evaluation of GrowAcq and the proposed approach for guiding query generation.

Problem #q T̄gen T̄ Tmax Ttotal

MQuAcq-2
JSudoku 6 458 0.77 0.10 3.19 666.91
Murder 370 0.66 0.03 1.10 12.28
Random 5 708 0.60 0.04 2.22 233.62
Golomb 233 0.96 0.22 1.22 50.89
Job-shop 590 1.03 0.10 5.36 56.23

GrowAcq + MQuAcq-2
Sudoku 5 863 0.15 0.12 1.98 721.15
Murder 357 0.04 0.02 0.11 7.97
Random 4 804 0.14 0.05 1.30 230.36
Golomb 270 0.80 0.29 1.30 78.47
Job-shop 786 0.13 0.06 0.66 48.18

GrowAcq + MQuAcq-2 guided

JSudoku 3 963 0.15 0.24 1.96 963.42
Murder 250 0.04 0.04 0.27 9.07
Random 4 820 0.14 0.05 1.19 229.47
Golomb 100 0.16 0.27 0.95 27.44
Job-shop 776 0.13 0.06 0.64 47.53

line 7 of Algorithm 3. The results using the guided query generation can be seen in Table 3,
bottom-two blocks, comparing GrowAcq + MQuAcq-2 against GrowAcq + MQuAcq-2
guided.

We can see that, when using our probability-based guidance for query generation, the
number of queries has significantly decreased in JSudoku, Murder, and Golomb, while it
has remained nearly the same in Random and Job-Shop. In the latter cases, the number
of queries has not decreased because these are under-constrained problems, and thus the
probability derived from the constraints’ relations was small. This led to maximizing the
violations of all constraints in B (i.e., the same behavior as with the existing objective). On
the other hand, in the problems that do not have a sparse constraint network, where using
the simple counting method to compute the probabilities of the constraints could effectively
guide the acquisition system, the decrease observed in the number of queries is substantial
(32% in JSudoku, 30% in Murder, and 64% in Golomb). However, as violating constraints
one-by-one leads to more queries generated at line 3 of Algorithm 1, yet fewer queries at lines
8-9, which are very fast to compute, there is a small increase in the total time on JSudoku.

[Q4] Combination of our methods. Comparing the combination of our methods (i.e.,
GrowAcq + MQuAcq-2 guided) with MQuAcq-2 (Table 3), we can see that combining
our bottom-up approach with guiding the query generation greatly outperforms MQuAcq-2
in terms of the number of queries needed to achieve convergence on most of the benchmarks.
The number of queries has decreased on all benchmarks except Job-shop, where, because of
its sparse target network, we need 23% more queries, as GrowAcq increases the number of
queries to converge in underconstrained problems, due to the reasons described in section
6.4, while guiding the query generation does not improve it, as the probabilities estimated
are always low. In the rest of the problems, we observe a total decrease of 16% in Random,
39% in JSudoku, 32% in Murder, and up to 60% in Golomb.
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These results demonstrate the effectiveness of the proposed methods in reducing the
number of queries needed for CA algorithms, which is crucial in interactive scenarios.

6.5 [Q5] Dealing with larger biases
To answer this question, we evaluated GrowAcq and the combination of our methods on
larger instances of the Job-shop benchmark, using the same language as before. We used
two instances: one with 15 jobs, 11 machines, and 40 steps (denoted as JS-15-11), which
resulted in a bias consisting of 542 850 constraints, and one with 19 jobs, 12 machines, and
again 40 steps (denoted as JS-19-12), resulting in a bias of 1 037 400 constraints. The results
are presented in Table 4.

On the one hand, GrowAcq needs more queries to converge (like on the smaller Job-Shop
instance) because the constraint network of this problem is sparse. Yet the total time needed
to converge is one order of magnitude lower than in MQuAcq-2, being 24.4 times faster in
the instance with a bias size of 0.5 million constraints and 25.6 times faster in the instance
with |B| > 1M . In addition, the maximum waiting time has drastically decreased by using
GrowAcq (and the combination GrowAcq and guiding query generation), from 5 499
seconds to only 3 (resp. 8) seconds in JS-15-11 and from more than 20 371 seconds to only 7
(resp. 6) seconds in JS-19-12. Importantly, the average waiting time is more than 30 times
lower when using GrowAcq. Note that, as in the smaller job-shop instance, guiding does
not lead to improvement in terms of the number of queries. However, it does not noticeably
worsen the time performance of the system.

Hence, the experiments confirm that the proposed methodology can efficiently handle
significantly larger sets of candidate constraints than the state of the art, up to 50 times
larger than the ones commonly used in the literature [6, 8, 27, 29].

Table 4 Experimental results on instances with a large bias.

Problem |B| #q T̄qgen T̄ Tmax Ttotal

MQuAcq-2
JS-15-11 ≈ 0.5M 5 456 66.12 6.25 5 499.76 34 085.73
JS-19-12 ≈ 1M 8 012 80.99 9.75 20 371.74 78 124.41

GrowAcq + MQuAcq-2
JS-15-11 ≈ 0.5M 7 015 0.44 0.20 2.84 1 422.93
JS-19-12 ≈ 1M 10 309 0.62 0.29 6.92 2 984.77

GrowAcq + MQuAcq-2guided

JS-15-11 ≈ 0.5M 7 062 0.44 0.20 7.88 1 399.63
JS-19-12 ≈ 1M 10 219 0.64 0.30 6.19 3 054.68

7 Conclusions

Some of the most important limitations of interactive CA methods are the large number
of queries needed to converge, as well as the size of the candidate constraint set that they
can handle efficiently. In this work, we presented novel methods to alleviate these issues,
improving the efficiency of CA systems. We proposed a bottom-up approach, which allows
the system to handle significantly larger biases, reducing the maximum waiting time for
the user, and also reducing the total number of queries needed when the target constraint
network is not sparse. We also introduced a probabilistic method to guide query generation,
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further reducing the number of posted queries when our simple counting method could guide
the acquisition system to learn constraints more efficiently. In addition, we presented a
new query generation technique, named PQ-Gen, that allows the use of conventional CP
solvers, removing the dependency of existing methods on customized solvers to converge.
Our experimental evaluation showed that our proposed methods outperform state-of-the-art
systems in terms of the number of queries in problems with non-sparse constraint networks,
reducing this number up to 60%. In addition, the experiments show that GrowAcq can
handle up to 50 times larger biases than the ones commonly used in the literature, allowing
CA to tackle increasingly large and complex problems. The biggest avenue for future work is
to further investigate additional ways to reduce the number of queries needed, e.g., by using
guidance in all parts of the acquisition process (not just the query generation), and with
more advanced probabilistic models. Another important avenue is to consider the setting in
which user answers can be noisy as has been investigated for passive systems.
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A Hyperparameter evaluation for PQ-Gen and TQ-Gen

(a) (b)

Figure 1 Performance of PQ-Gen with different hyperparameters values, in terms of: a) the
number of queries posted and b) the time (s) needed (in brackets we show the maximum waiting
time for the user).

(a) (b)

Figure 2 Performance of TQ-Gen with different parameters, in terms of: a) the convergence rate
(in brackets we show the number of queries posted when it converged) and b) the time (s) needed
(in brackets we show the maximum waiting time for the user).

Both PQ-Gen, our projection-based query generation approach, and TQ-Gen [1] (dis-
cussed in Section 3.1) involve hyperparameters that affect their performance. As mentioned
in Section 6.3, we performed a sensitivity analysis of the performance with respect to the
hyperparameter configuration used of PQ-Gen and TQ-Gen [1]. In this comparison, both
query generation methods were used within the state-of-the-art active CA method MQuAcq-
2. We used the JSudoku benchmark for this comparison, as from the benchmarks considered
in this paper, this is shown to be the hardest one to reach convergence on (see Table 2).

In more detail, we varied the hyperparameters of both PQ-Gen and TQ-Gen to assess
their performance under different configurations. While we fixed the hyperparameter α

of [1] to 0.8 as recommended in [1], we had to try different values for the time-related
hyperparameters, τ and t. We did not use the values proposed by the authors in [1] because
we use a different solver and system, and this can affect significantly the time performance.
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In our evaluation we used τ = [0.05s, 0.1s, 0.2s, 0.3s] and t = [0.5s, 1s, 1.5s, 2s] for TQ-
Gen. We also used the adjust function described in [1], as it has been shown to improve
its performance. For PQ-Gen hyperparameters, we used l = {3000, 5000, 7500, 10000} and
t = {0.5, 1, 1.5, 2}. Thus, we examined 16 different configurations for each. The results of
our experiments are presented in Figures 1 and 2, respectively, for PQ-Gen and TQ-Gen.

Focusing on Figure 1, we can see that the performance of PQ-Gen is stable across
all configurations, both in terms of the number of queries and time performance, having
also converged in all cases. Let us now shift our focus to Figure 2 and the performance of
TQ-Gen. The first observation is that in the majority of the cases, MQuAcq-2 failed to
converge when using TQ-Gen as the query generator. Only when the time limit was set
to 2s, we see at least one run achieving convergence for all values of τ . In addition, the
performance of MQuAcq-2 using TQ-Gen is highly sensitive to changes in hyperparameter
values, particularly with respect to time.

Overall, comparing the results of PQ-Gen and TQ-Gen, we observe that PQ-Gen
exhibits superior performance in terms of convergence rate, fully overcoming the issue of
premature convergence. PQ-Gen also requires a lower number of queries to reach convergence
and offers improved time performance, resulting in reduced waiting times for the user.
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Abstract
Optimisation models are concise mathematical representations of real-world problems, usually
developed by modelling experts in consultation with domain experts. Typically, domain experts are
only indirectly involved in the problem modelling process, providing information and feedback, and
thus perceive the deployed model as a black box. Unfortunately, real-world problems “drift“ over
time, where changes in the input data parameters and/or requirements cause the developed model
to fail. This requires modelling experts to revisit and update deployed models. This paper identifies
the issue of problem drift in optimisation problems using as case study a model we developed for the
United Nations High Commissioner for Refugees (UNHCR) to help them allocate funds to different
crises. We describe the initial model and the challenges due to problem drift that occurred over the
following years. We then use this case study to explore techniques for mitigating problem drift by
including domain experts in the modelling process via techniques such as domain specific languages.
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1 Introduction

Most software engineering projects suffer from one or several forms of drift, where a change
in requirements during the lifetime of the project causes an existing, deployed software to
degrade, to fail, or in the worst case, to produce incorrect solutions. Software projects that
include optimisation components are no exception. In this paper, we present a real-world
problem as a case study in problem drift, and discuss how we can mitigate its effects by
enabling the problem owners to become part of the modelling and maintenance workflow.

Our case study is the United Nations High Commissioner for Refugees (UNHCR) fund
allocation. UNHCR works in 135 countries and territories to provide crucial assistance to the
millions of people forced to flee as a result of conflicts, crises, persecution or natural disasters;
recently estimated as 112.6 million [19]. To achieve this, every year UNHCR proposes an
annual budget for each of the many projects it wants to tackle and releases a Global Appeal
requesting donations to cover it. For 2023 alone the Global Appeal was more than US$10
billion [18]. The large amount of donations, or funding, received as a result need to be
distributed among the budgeted projects according to different priorities, while ensuring the
allocation respects any constraints set by the donors. For example, it is common for funding
to be “earmarked“ for a specific crisis, or a geographical area such as a region or a country.
These allocation constraints often make it difficult for the funds to be optimally allocated.
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As a result, excess funds would be carried forward from one year to the next rather than
being directed to UNHCR’s activities such as life-saving assistance. The aim of UNHCR is
to maximise the funds available for activities.

This fund allocation problem can be represented as a combinatorial optimisation problem.
As such, it can be modelled in a high-level constraint modelling language (e.g., [5, 7, 14, 22])
and solved with state-of-the-art optimisation solving technology (e.g., [1, 17, 23]). In 2016,
we developed a model for this problem that would have been able to provide US$400 million
more in allocations than their previous method, leaving only US$100 million in unallocated
funds. As it is common when developing such models, UNHCR experts were only indirectly
involved in the modelling process: they provided information and feedback but did not fully
understand the implemented model as they lacked the required expertise. This is unfortunate
since, as it often happens with real-world problems, the problem requirements drifted over
time, experiencing changes in the format and kind of the input data, as well as in the rules
for allocating funds. After a while, the drift grew to the point where the developed model
became unusable. In addition, personnel changes led to a loss of organisational memory,
severing the contact between the organisation and us, the developers. As a result, UNHCR
never implemented a full system using the model and continued to use their original greedy
allocation algorithm, which they were able to maintain and update using in-house expertise.

This paper makes three contributions. The first is identifying the issue of problem
drift in optimisation models and highlighting its importance to the community as an area
worth investigating. The second contribution is our modelling of the UNHCR fund allocation
problem: an initial model developed in the first phase of our work in 2016, and a new model
developed in a second phase to incorporate the changes that caused the problem to drift. Our
third and final contribution results from an analysis of this problem drift, and a subsequent
exploration of techniques to mitigate this issue. We present an approach to include domain
experts in the modelling process by adapting known software engineering techniques such
as domain specific languages. This phase of our work is, so far, exploratory. However, we
believe our approach can increase the domain experts’ trust in the developed solution, by
making them an integral part of the development process, and can also enable the domain
experts to adapt the model over time to keep up with problem drift.

2 Background

Combinatorial optimisation problems require finding a combination of choices (i.e., a solution)
that satisfies a set of requirements and optimises the quality of the solutions. Modern
approaches for solving these problems first specify a model of the problem that formally
describes its choices, in terms of variables representing the decisions and their domains
representing the choices available; its requirements, in terms of constraints defined over
the variables; and the quality of the solutions in terms of an objective function also
defined over the variables. Models are often specified using parameters so that input data
can be provided independently of the model. This allows models to be used to solve any
instance of the problem by instantiating the model parameters with the concrete input data
and translating these instances into input for a solver, which then produces solutions to
the problem. At a high level, this modelling and solving approach can be depicted as the
step-wise process shown in Figure 1.

Step 1 formalises the real world problem via a model. This is currently a manual
process where modelling experts communicate with domain experts to capture all relevant
requirements, often requiring several iterations to progressively improve the formalisation
(refinement process). The result is a model of the problem requirements written in a
high-level modelling language such as MiniZinc [14], Essence [7], OPL [22] or AMPL [5].
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Figure 1 Step-wise illustration of the combinatorial problem modelling and solving process.

Step 2 takes the model along with concrete input data formatted according to the model’s
parameters and representing an instance of the problem, and compiles this instance into
a format suitable for the solver selected by the modeller. Each of the modelling languages
mentioned in Step 1 has its own compilation methods and lower level languages such as
FlatZinc for MiniZinc [14] and Essence’ for Essence [7].
Step 3 solves the compiled instance using the selected solver. Solvers use state-of-the-art
algorithms and heuristics that are efficient in tackling the unique challenges inherent
in the kind of constraints they support. There are many different solving technology
paradigms including MIP [23] (for Mixed Integer Programming), CP [17] (for Constraint
Programming), and SAT [1] (for Boolean Satisfiability Problems).

Steps 2 and 3 are extensively automated thanks to many years of research on modelling
language and solver design. However, Step 1 is a manual process and, in practice, considerably
more complex than depicted in Figure 1, involving multiple refinement and feedback loops.

3 Phase 1: The 2016 UNHCR Fund Allocation Problem and Model

3.1 Problem Description
In 2016 we worked with UNHCR on an optimisation model for their fund allocation. According
to the rules at the time, part of or all of the donations pledged by an organisation (a fund)
could be either earmarked or not, indicating whether the donor put some restrictions on the
kind of projects the fund could cover or not, respectively. The kind of restrictions supported
by the algorithm used at the time by UNHCR were based on the following fund and project
attributes:

Level: can take one of three values: Region, Sub-region, or Country, indicating the
geographic scale of a project, e.g., a continent such as Europe, a part of a given continent
such as Eastern Europe, or a country such as Ukraine. For a fund, the level is used to
restrict its allocation, and can have an additional value Global to indicate that the fund
is not restricted to a geographical area.
Region: the region of the world where the project is located or to which the fund is
allocated. Only relevant when the level is Region; disregarded otherwise.
Sub-region: the sub-region of the world where the project is located or to which the fund
is allocated. Only relevant when the level is Sub-region; disregarded otherwise.

CP 2023
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Area of Budgetary Control (ABC): the name of the UNHCR office which could be
responsible either for a single country or a collection of countries each with fewer activities.
Pillar: the broad target area of support. Pillar 1 stands for refugees, Pillar 2 for
stateless people, Pillar 3 for reintegration, and Pillar 4 for internally displaced people.
Pillars can be combined, e.g., Pillars 1-2. A fund that can be spent in any pillar is
given the value All Pillars.
Situation: the particular issue a project is tackling or a fund can be spent on, e.g.,
South Sudan Situation. A fund that can be spent on any situation is given the value
Country/Regular Program.

The input data is given by an Excel sheet where each row is referred to as an item. The
first six columns correspond to an item’s pillar, situation, level, region, sub-region, and ABC.
The next two columns contain the budget and income. An item with an empty budget column
is a fund, and with a non-empty budget column is a project. Note that the budget of some
projects can already be partially covered by money from other sources (e.g., bank interest).
In such cases both the budget and income columns will have non-zero amounts.

The objective is to move money from fund items to project items to minimise the total
amount of money left unspent in the funds, while ensuring the allocation constraints are
satisfied. This means, ensuring money does not move from item A to item B if they have:
1. Different pillars, unless the pillar of item A is the generic All Pillars.
2. Different regions if the level of item A is Region.
3. Different sub-regions if the level of item A is Sub-region.
4. Different ABCs if the level of item A is Country.
5. Different situations, unless the situation of item A is Country/Regular Programme, its level

is Country, its pillar is All Pillars and item A is in surplus for its country.
The first four preclude a fund earmarked for a non-generic pillar, region, sub-region, or
country to be spent on a different one. The last one ensures that funds for generic country
situations are spent first on their country. There are also common-sense rules ensuring, for
example, that funds are not overspent and projects do not get more income than budgeted.

3.2 Model
Modelling this problem in MiniZinc was easy. We will not reproduce the full model here, but
we will give enough details for later discussions.

Parameters. The Excel input was fed into 9 MiniZinc parameters: integer n representing the
number of rows and used to build set ITEM of 1..n, and eight one-dimensional arrays indexed
by ITEM representing the values of the eight columns for each ITEM, i.e., its pillar, situation,
level, region, sub-region, ABC, budget and income. The following MiniZinc code shows the
definition of some of these parameters together with two enumerated data types (enums)
whose definitions (strings from the input data) are the values for REGION and SUBREGION,
an auxiliary parameter maxinc set to the maximum income, and an array excess, where
excess[i] is the initial amount of money either available in fund i, or needed by project i:
set of int: ITEM = 1..n;
enum REGION ;
enum SUBREGION ;
array [ITEM] of REGION : region ;
array [ITEM] of SUBREGION : subregion ;
array [ITEM] of int: income ;
array [ITEM] of int: budget ;
int: maxinc = max( income );
array [ITEM] of int: excess = [ income [i] - budget [i] | i in ITEM ];

While enums were not used in the model, they are more intuitive and used here for brevity.
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Variables. The decision variables are stored in a two-dimensional array movement, where
movement[i,j] represents the amount of money moved from item i to item j, and is constrained
to be between 0 and maxinc. Note that if i is a project, the value of movement[i,j] will be
later set to 0. This array is defined as follows:

array [ITEM ,ITEM] of var 0.. maxinc : movement ;

In addition, several auxiliary variables are defined based on movement. For example,
out[i] and iin[i] represent, respectively, the amount of money moved out of item i or into
it. They are defined as follows:

array [ITEM] of var 0.. maxinc : out =
[ sum(j in ITEM)( movement [i,j]) | i in ITEM ];

array [ITEM] of var 0.. maxinc : inn =
[ sum(j in ITEM)( movement [j,i]) | i in ITEM ];

Constraints. Are quite simple and modelled using the above parameters and variables. For
example, the common-sense constraint ensuring funds are not overspent is modelled as:

constraint forall (i in ITEM where excess [i] > 0)(out[i] <= excess [i]);
constraint forall (i in ITEM where excess [i] <= 0)

( forall (j in ITEM)( movement [i,j] = 0);

ensuring that if item i is a fund (excess[i]>0), the amount of money that moves out of i is
not higher than its excess, and otherwise no money moves out of i. Similarly, constraint 2
which correctly earmarks funds based on region is modelled as follows:

constraint forall (i,j in ITEM
where region [i] != region [j] /\ level [i] = Region )

( movement [i,j] = 0);

ensuring no money moves from i to j if level of i is Region and their regions do not match.
Note that constraints 3 and 4 follow exactly the same structure.

Our last example is constraint 5; the most complex. First we define auxiliary paramet-
ers surplus_to_country_regular_situation[i] as either a surplus if i is a generic country fund
(i.e., one whose pillar is all_pillars, level Country and situation country_regular_program)
or 0, otherwise. The surplus is defined as the fund’s income minus the money needed by that
country. We also define Boolean parameter has_surplus_to_country_regular_situation[i]
to true iff the associated surplus parameter is positive.

array [ITEM] of -maxinc .. maxinc : surplus_to_country_regular_situation =
[ if situation [i] != country_regular_programme

\/ level [i] != Country
\/ pillar [i] != all_pillars

then 0
else income [i] -

sum(j in ITEM where abc[i] = abc[j] /\
situation [j] = country_regular_programme )

( budget [j] - income [j])
endif

| i in ITEM ];
array [ITEM] of bool: has_surplus_to_country_regular_situation =

[ surplus_to_country_regular_situation [i] > 0 | i in ITEM ];

These auxiliary parameters are then used to model part of constraint 5 as follows:
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constraint forall (i in ITEM
where situation [i] = country_regular_programme
/\ level[i] = Country
/\ pillar [i] = all_pillars
/\ has_surplus_to_country_regular_situation [i])

(sum(j in ITEM where situation [i] != situation [j]) ( movement [i,j])
<= surplus_to_country_regular_situation [i]);

If there is no surplus, the other part (not shown) sets movement[i,j]=0 for every j in the
same country but different situation.

Objective. Minimises the excess of funds and deficit of projects after allocation by means
of the intermediate variable difference, which captures the excess for fund items (positive
number) and the deficit for projects (negative number). The sum obj of the absolute value
absdiff of these values is then computed and minimised as follows.
array [ITEM] of var -maxinc .. maxinc : difference =

[ excess [i] - out[i] + inn[i] | i in ITEM ];
array [ITEM] of var 0.. maxinc : absdiff ;

constraint forall (i in ITEM)( absdiff [i] >= difference [i] /\
absdiff [i] >= -difference [i]);

var int: obj = sum(i in ITEM)( absdiff [i]);
solve minimize obj;

This model solves the above fund allocation problem in less than 10s for the sample data
we were given. With the 2016 sample data, the model was able to allocate US$400 million
more than the UNHCR greedy algorithm used at the time. UNHCR domain experts saw
great value in the results produced by the optimisation model, and used it occasionally to
provide supplementary input into their decision making process.

4 Phase 2: The 2022 UNHCR Fund Allocation Problem and Model

4.1 Problem Changes
When we contacted UNHCR again several years later, we learned that problem drift had
made our model obsolete. After a number of discussions that spanned several months, we
identified the following main changes to the problem.

Data format. Instead of the data being provided as a table where each row was an item
representing both funds and projects, it is now provided as two separate tables (that we will
refer to as entities), one for funds and one for projects.

Attributes. Some attributes changed names (e.g., fund income was now called Balance),
others disappeared (e.g., funds no longer had budget as attribute, since they were always
empty), and new ones appeared. The complete list of attributes for funds is: Unique ID,
Level, Domain, Region, Sub-Region, Country, Cost Center, Pillar, Situation, Account Status,
Account Type, Balance. Projects have the same attributes except that instead of Balance,
they have a Requirement attribute that is equivalent to previously subtracting income from
budget. Also, while previously the smallest geographical operational area provided in the
sample data was the value of attribute ABC, countries are now further divided into smaller
geographical areas defined by the attribute Cost Centres. More importantly, funds and
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projects are now given priority levels via two different attributes. One is Account Type, which
can take values OL (operational level) and AOL (above operational level), the latter having
lesser priority [20]. The other is Domain which can take several values such as, in decreasing
priority order, Headquarters (for leadership, management, policy guidance, etc), Global (for
global programmes undertaken at the headquarters but of direct benefit to field operations),
and Field (for field operations, which still takes 88% of the funding according to the 2022
Global Report [19]).

Constraints. Are now defined in terms of these new attributes. In particular, the constraints
for Cost Centre and Domain are similar to those for other attributes.

Objective. While the main objective remained unchanged, it now also prioritised the
allocation of funds based on their Account Type and Domain, as well as funds carried over
from previous years and those with the highest number of constraints.

4.2 Model Changes
Parameters. Changes to the parameters of the model were mainly caused by UNHCR’s
decision to split ITEM into two entities, FUNDS and PROJECTS, and change their associated
attributes. We modelled this similarly to before but using a different set of indexed arrays
per entity, as follows:

set of int: PROJECTS = 1.. numProjects ;
set of int: FUNDS = 1.. numFunds ;

array [ PROJECTS ] of LEVEL: p_level ;
array [ PROJECTS ] of DOMAIN : p_domain ;
array [ PROJECTS ] of REGION : p_region ;
array [ PROJECTS ] of ACCOUNT_TYPE : p_account_type ;
array [ PROJECTS ] of int: p_requirement ;

array [ FUNDS ] of LEVEL: f_level ;
array [ FUNDS ] of DOMAIN : f_domain ;
array [ FUNDS ] of REGION : f_region ;
array [ FUNDS ] of ACCOUNT_TYPE : f_account_type ;
array [ FUNDS ] of int: f_balance ;

Variables. The main decision variables are almost identical to those in the first model,
except for the index sets now being known to be funds for the first dimension and projects
for the second, and the maximum value being represented by fund parameter f_balance.

array [FUNDS , PROJECTS ] of var 0.. max( f_balance ) : movement ;

Most auxiliary variables also undergo very superficial changes, such as out[i] and iin[i]:

array [ FUNDS ] of var int : out =
[ sum(p in PROJECTS )( movement [f,p]) | f in FUNDS ];

array [ PROJECTS ] of int : iin =
[ sum(f in FUNDS)( movement [f,p]) | p in PROJECTS ];

Constraints. Some constraints encoding the same rules only require relatively superficial
changes. For example, the constraint that earmarks funds based on region looks very similar:
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constraint forall (f in FUNDS , p in PROJECTS
where f_region [f] != p_region [p] /\ f_level [f] == L3)

( movement [f,p] = 0);

if one knows L3 is equivalent to the old Region. Others change more, e.g., ensuring funds are
not overspent is much simpler now that funds and projects are clearly separated:

constraint forall (f in FUNDS)(out[f] <= f_balance [f]);

In addition, we need new constraints to correctly earmark funds based on new attributes,
such as cost centre, which look very similar to those implemented for Phase 1 attributes:

constraint forall (f in FUNDS , p in PROJECTS
where f_cost_centre [f] != p_cost_centre [p] /\ f_level [f] == L6)

( movement [f,p] = 0);

Objective. As described above, the old objective maximising the overall fund allocation
was now extended to prioritise carry-over funds from the previous round, tightly earmarked
funds (funds with the tightest restrictions), and funds allocated according to their Domain
and Account Type. The new objective function was implemented as a weighted sum of these
different aspects in order to achieve the required prioritisation.

4.3 Implementation and Adoption
We implemented the changes to the model as described above over the course of several months,
in consultation with the UNHCR domain expert. Compared to the in-house algorithm, the
new model is faster (it solves the sample data in under 3 minutes) and more effective in
terms of total allocation and priority order. We were also able to experiment with extensions
of the model, such as achieving fairness and balance in the allocation, which is easier to do
using optimisation technology compared to greedy algorithms.

Unfortunately, the new model was not adopted by UNHCR. However, as a result of
our work with them, they proposed the use of optimisation techniques with the new re-
implementation of their enterprise resource planning (ERP) system. The viability of this is
currently under investigation.

5 Phase 3: Addressing Problem Drift via Interactive Modelling DSLs

The transition from Phase 1 to Phase 2 of the UNHCR project encountered the usual
challenges that exist for optimisation models even after they are successfully integrated
into real-world workflows, which is an already challenging task. First, the problem had
drifted between the two phases and the end users, i.e., the domain experts, did not have
sufficient in-house expertise to adjust the implementation to tackle the drift. As a result,
they continued to use their original method which was less effective but much more familiar.
And second, due to subsequent personnel changes in UNHCR, Phase 2 required not just
updating the implemented model, but on-boarding a new domain expert who had no reason
to be invested in a new method other than our promises of a better future. While we were
lucky enough for our new domain expert to trust us and become invested in developing a
better approach, it is easier for organisations to simply continue using their old systems and
move on.
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In this section, we will present our initial exploration of how domain experts could
be integrated better into the modelling process. Our proposal is based on our experience
with Phases 1 and 2 of the UNHCR problem. Our goal is to develop a new framework for
integrating domain experts into the modelling process in such a way they can (a) understand
and verify how their user requirements have been mapped to the model, thus increasing the
model’s transparency; and (b) modify the model to cope with some level of problem drift,
thus increasing the model’s flexibility. Additionally, such an approach may help organisations
obtain a better optimisation model, achieve higher levels of trust in the model, and develop
more in-house expertise to manage the life cycle of the model. The rest of this section
discusses this framework.

5.1 Related Work

The field of Interactive Optimisation has a long tradition of introducing domain experts into
the development process early on. Meignan et al. [12] present a comprehensive overview of
interactive optimisation approaches from operations research studies where domain experts
are involved via a User Interface (UI) to guide the solving process. It also presents the high
level components of an interactive optimisation system that includes a preference model, that
is, an intermediate model between the UI and the optimisation model that captures user
preferences when guiding the solver towards the preferred solution. This approach can be
useful for users to find their preferred solutions, particularly for multi-objective optimisation
problems with a large set of solutions. However, it can be achieved without domain experts
understanding much about the model or being able to modify anything except its search
and/or objective function.

Liu et al. [10] introduce a theoretical framework for interactive optimisation problem
solving, called the Problem Solving Loop (left of Figure 2) and based on the Sense Making
Loop [16] from the field of Visual Analytics [9]. The Problem Solving Loop aims at directly
engaging the domain experts in the optimisation process. In doing this, it captures the
high-level user goals and tasks in two major sub-loops: the model-defining loop and the
optimisation loop, which correspond to the modelling design phase and the decision making
phase, respectively.

Figure 2 Problem solving loop presented by Liu et al. [10] and updated Model Defining Loop.
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However, Liu et al. focus mostly on the latter, which covers the utilisation of the model
by the domain experts from the moment they execute a Problem Instance of the General
Optimisation Model, to the moment they make a final decision based on a List of Ranked
Solutions (see left of Figure 2). Their model-defining loop does capture the fact that, in
practice, problems are not converted to models in a singular step; rather, this involves
multiple iterations of discussion among different stakeholders. However, they mostly ignore
this sub-loop because they argue that its tasks, which lead to the creation of the General
Optimisation Model and its Problem Instance, are usually done by modelling experts. While
this is certainly the case currently, it does not mean it is appropriate, as we discuss below.

5.2 An Updated Model-Defining Loop

Our experience in several real-world projects indicates that to increase the model’s trans-
parency and flexibility, we must deeply involve domain experts in the model-defining loop.
Further, we need to do so by giving them a formal role and a formal language with which
to communicate not only with the modelling experts but with the model itself. This will
enable domain experts to verify the modelling experts’ perception of the problem, as well as
to directly refine and modify the model, both as part of its initial definition and its ongoing
maintenance. Thus, it should help address problem drift. To this end, we focus on extending
this loop with the addition of a Requirements Model as depicted on the right of Figure 2.
The Requirements Model captures user requirements in a high-level, expressive intermediate
formal language at the early stages of the project. This language will have to be different
for each application area, in order to allow both the modelling experts and the domain
experts to express the parts of the model they are responsible for. Thus, we propose for the
Requirements Model to be expressed in a Domain Specific Language (DSL) [13, 21, 8]. DSLs
offer powerful expressivity while being tailored to a specific application domain, and have
proven successful in many different application areas [6].

We call the DSLs that are used for the Requirements Model Modelling DSLs, or MDSLs.
Our proposal is for the Requirements Model, expressed in an application-specific MDSL, to
be compiled into a General Optimisation Model, which can then be instantiated and solved
in the usual way. It is the responsibility of the MDSL designers to develop a compiler (often
referred to as a generator in the DSL literature [15]) that generates efficient and correct code
for the General Optimisation Model.

An important design decision is the level of abstraction and complexity required of an
MDSL. On the one hand, we could make it as expressive as a General Purpose Modelling
Language (GPML) such as MiniZinc, but this would defeat the purpose of simplicity and
easy communication with the domain experts. On the other hand, significantly restricting
its expressivity could severely limit its usefulness. For this reason, we propose to split
the General Optimisation Model into two parts. A fixed part, which is implemented by
the modelling expert; and a flexible part, which is generated (compiled) from an MDSL
specification.

In the following, we will discuss which parts of an optimisation model such an MDSL
should be able to express, and at what level of abstraction the MDSL should be designed.
We will then see a concrete example of an MDSL for the UNHCR fund allocation problem.
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5.3 MDSL expressivity
When designing an MDSL, it is important to select an appropriate level of expressivity,
striking a balance between ease of use (especially for non-experts) and usefulness. While
there are guidelines for general DSL design [8, 21, 13], we will focus here on the specific
aspects related to Modelling DSLs. Let us look at the basic parts of an optimisation model
and discuss how those parts are amenable to being expressed within MDSLs.

5.3.1 Variables
The choice of variables for an optimisation problem is one of the fundamental modelling
decisions. It has a profound impact on the way the constraints are modelled and on the
performance of solving algorithms – a fact that domain experts would usually not be aware
of. Therefore, while it is important to define variables in a way that is easy to understand
by the domain experts, we argue that the choice itself should not be left to domain experts.
The modelling experts should define the variables, which are then made available to domain
experts to be used (but not modified) via the MDSL.

This results in an architecture where the General Optimisation Model in our updated
model-defining loop is split into two parts: a fixed part and a flexible one. The modelling
experts design the former, which includes the choice of decision variables and is expressed in
a General Purpose Modelling Language. This fixed part of the model cannot be modified
through the MDSL, and any updates require input from a modelling expert. In addition,
the modelling and domain experts collaborate on the flexible model part, which captures the
Requirements Model and is defined using an MDSL. The two parts together are compiled
into the General Optimisation Model, which can then be instantiated with data and solved.

Figure 3 shows a more detailed view of the new model-defining loop that includes this
split into a fixed core and a flexible MDSL model.

5.3.2 Parameters
Parameters capture the core objects and data that the model is concerned with. We can
split parameters into two kinds: entities and attributes. Entities define the main objects in a
problem. For example, in Phase 1 of the UNHCR model, the main entity was an ITEM, while
Phase 2 had two entities, PROJECT and FUND. Attributes define the properties of the entities.
For example, in our Phase 1 model the ITEM entity had attributes such as income and budget,
while in Phase 2 we saw requirement for PROJECT and balance for FUND.

Entities and their attributes commonly appear in the definitions of the constraints and/or
the objective function in the model. For example, the balance of a fund will appear in the
rules that govern how that fund can be used. The transition from Phase 1 to Phase 2 in the
UNHCR problem saw the addition of new attributes (such as cost centre) and the removal
of others (such as budget), which required changes to the corresponding funding rules. An
MDSL can accommodate attribute changes by adding support for defining attributes and then
using them consistently in the constraints and objective function. To do this we can build on
the numerous DSLs commonly used in practice for this purpose, such as UML diagramming
languages [2], class diagrams used in the object oriented paradigm and entity-relationship
diagramming languages [3] used in database design. Note that this part of the MDSL is not
application specific and can be used across many domains.

Accommodating changes in entities is more complex, as user decisions often relate to
entities. For example, in the UNHCR problem we had to decide how much funding to move
from each fund to each project. Thus, entity changes often require changes in the variables.
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Based on our rationale above for leaving the choice of variables to the modelling experts, we
do not propose yet to add support into MDSLs for defining new entities. However, a more
abstract version of entity might be needed to avoid simple changes in input format.

5.3.3 Constraints
Supporting a close collaboration between modelling and domain experts during the definition
and refinement of constraints is key for ensuring transparency. Supporting domain experts
in modifying them is key for flexibility. As a result, any MDSL will need to be designed
such that constraints can be specified and modified in a way that is natural for the domain
experts. The Requirements Model, expressed in the MDSL, will serve as a means of
communication and documentation between the modelling and domain experts. Therefore,
the main challenge when applying our approach is designing an application-specific MDSL
with sufficient expressivity to capture current and likely future constraints, yet sufficient
simplicity to be understandable by domain experts. A prototype MDSL for the UNHCR
problem is presented in Section 5.4.

5.3.4 Objective function
Changes to the objective function are also common, both during the modelling process and
during the life cycle of a model [11]. To support this, MDSLs can provide basic arithmetic
expressions involving all model variables and parameters that can then be used to define
and/or modify the objective. This however is not enough for defining extra variables that
may be needed to modify the objective. Since we do not want domain experts to introduce
new variables using the MDSL, modelling experts will have to foresee and pre-define any
auxiliary variables that may be exposed via the MDSL. For example, if the auxiliary
variables for total_allocation and minimum_allocation are pre-modelled, domain experts
will subsequently be able to formulate new objective functions using them.

The combination of basic arithmetic expressions and pre-defined variables also allows
MDSLs to support domain experts in experimenting with multi-objective solving by combining
different objectives in a weighted sum. These weights can then be changed by domain experts
(including setting them to 0 to remove certain terms from the objective). Domain experts
can even add new terms into the objective if required.

5.3.5 Proposed framework
Given the above discussion, we designed our framework to expand the functionality of the
updated model-defining loop suggested in Section 5.2 with a new workflow depicted in
Figure 3. As discussed earlier, the Requirements Model is used to extract and simplify the
change requests and to capture them using an MDSL. Domain experts use it to understand
how constraints are mapped to the model and to build trust in the model. The Requirements
Model is then compiled to generate GPML code to be added to the General Optimisation
Model. An interesting extension would be to support bidirectional compilation, where GPML
code can be reflected back into the Requirements Model. This would in turn allow the model
to be explained in terms of the MDSL in the Requirements Model.

5.3.6 Natural vs Formal Languages for MDSLs
The main function of the MDSL is to serve as the interface between the domain expert
and the optimisation model. Therefore, it has to strike a balance between being easy to
understand by the domain expert, easy to implement, and easy to compile into a general
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optimisation model. Being easy to understand suggests designing a language closer to the
natural language a domain expert would use to describe the problem in a conversation; being
easy to implement and to compile suggests one closer to the mathematical model that is
going to be the result of the compilation process. Unfortunately, the vague and ambiguous
nature of natural language can be problematic for an optimisation model, as its aim is to
capture a problem specification precisely and unambiguously.

Let us illustrate this with an example from our UNHCR model. The following are
statements from our domain experts, communicating to us their rules for transferring money:
1. Can transfer money from a fund to a project if the pillar of the fund is “all pillars“ or the

pillars of the fund and the projects match
2. Can transfer money from a fund to a project if the situation of the fund is “regular

situation“ or the situation of the fund and the projects match
3. Can transfer money from a fund to a project if the level of fund is equal to 2 and the

domains of the fund and project match
4. Can transfer money from a fund to a project if the level of the fund is equal to 3 and the

regions of the fund and project match

These statements have several issues. First, while they are expressed as Can transfer,
expressing “possibility“ in an optimisation model is not easy. For example, our model’s
movement[i,j] variable represents whether there is a transfer (movement[i,j] > 0) or not
(movement[i,j]=0). We can represent this rule as If movement[i,j] > 0, then the pillar of the
fund must be “all pillars“, or the pillars of the fund and the projects must match. While this
captures the correct meaning, it may not be immediately intuitive for the domain expert (or
anyone else). An alternative would be to state the contrapositive: If the pillar of the fund is
not “all pillars“ and the pillars of the fund and the projects do not match, then we must not
transfer funds, so movement[i,j]=0. This may be more intuitive, but it requires negating all
conditions in the rules, which might be difficult to implement.

The second issue is the ambiguity regarding whether the statements are logically connected
by “and“ or by “or“, or if they are supposed to be mutually exclusive. This is where the
statements in contra-positive form have an advantage, as each of them stands on its own and
it is clearer they should be connected by an “and“. However, even then we still have a third
source of ambiguity, as we do not know whether the statements are exhaustive or not. In

Figure 3 Further detailed model-defining loop incorporating MDSLs.
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other words: if none of the rules holds, should we set movement[i,j] = 0 or not? While it
turns out the answer is “no“, the opposite could have been true, which is more difficult to
achieve in an optimisation model.

A final point to note is that rules 3 and 4, when interpreted as mentioned above, in fact
contradict each other: Rule 3 would mean that if the level is not 2, or the domains do not
match, no movement is possible, while rule 4 states the same for level 3 and the regions.
Clearly, the intended interpretation here is that if movement[i,j] > 0 and the level is 2, then
the domains must match.

These examples make it clear that, while a language closer to natural language seems
convenient for domain experts, it is not precise enough to capture a unique logical meaning.
As capturing the constraints in a mathematically precise format is crucial for optimisation
modelling, care must be taken for the MDSLs to strike the right balance between being easy
to understand and mathematically precise. Given the narrow scope of the language, domain
experts will require some training to use an MDSL. However, we anticipate this to be only a
minor hurdle when compared to learning a complete modelling language such as MiniZinc.

With the current fast advance of AI-based large-language-model discourse systems, it
would be interesting to explore how this technology could be used to bridge the gap between
precise mathematical MDSL and natural language. However, it is unclear how the inherent
ambiguity in natural language formulations could be avoided.

5.4 An MDSL for UNHCR fund allocation problem
Our design goal for the MDSL grammar of the new UNHCR problem was to support domain
experts in formalising any new required changes to the model in terms of the given set of
parameters and variables. Compared to the full MiniZinc language, the MDSL grammar
should be significantly simpler, covering only a small sub-set of MiniZinc’s capabilities specific
to this problem domain. Most of the constraints in the UNHCR problem are expressed
in the form of ad-hoc rules that consist of conditions and consequences in the form of
if -then-else statements. This level of modelling is close to the actual constraints, while still
being relatively easy to understand even for someone without any programming experience.

We first define the abstract syntax for the MDSL in the form of the following grammar:

<rule> ::= <logical-expr> | <iteration> | <if-then-else>
<logical-expr> ::= <expr> <compare-op> <expr>

| "not" <logical-expr>
| <logical-expr> "and" <logical-expr>
| <logical-expr> "or" <logical-expr>

<iteration> ::= "forall" (<identifier>, ...) <logical-expr>
<if-then-else> ::= "if" <logical-expr> "then" <logical-expr> ("else" <logical-expr>)
<compare-op> ::= "=" | "!=" | "<" | "<=" | ">" | ">="
<expr> ::= <named-expr> | <number> | <expr> <arithmetic-op> <expr>
<named-expr> ::= <identifier> | <identifier> "of" (<identifier>, ...)

| <identifier> "from" <identifier> "to" <identifier>
<arithmetic-op> ::= "+" | "-" | "*" | "/"

The resulting abstract grammar is much simpler than that of MiniZinc. In particular,
if-then-else expressions can only have Boolean type and cannot be nested; the grammar only
supports one kind of iteration (forall); and it restricts the way variables and parameters
are addressed. These restrictions were identified as sufficient for UNHCR problem.
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While the grammar defines the kind of constraints that can be expressed in the MDSL, it
does not define the concrete representation of the constraints the domain experts would use.
Thus, the grammar can be implemented in several different ways. We now show a concrete
text-based language as well as a simple graphical interface below to illustrate the possibilities.
However, we do not claim that those are the most intuitive or best suited for this purpose.

A concrete text-based representation of the above abstract MDSL grammar could use
syntax that is close to a more natural way of stating constraints, while still being concise and
unambiguous. The following example shows a rule as defined in MiniZinc and in a concrete
version of the abstract MDSL grammar:
MiniZinc constraint

constraint forall (f in FUNDS , p in PROJECTS where
f_level [f] == L4 /\ f_subregion [f] != p_subregion [p])
( movement [f,p] = 0);

Constraint represented using a concrete version of the abstract MDSL grammar

For Every FUND , PROJECT :
IF [(( level OF FUND )== (L4)) and

(( subregion OF FUND )!= ( subregion OF PROJECT ))]
THEN

[( movement FROM FUND TO PROJECT )== (0)]

Note how the concrete MDSL grammar simplifies the access to entity attributes, by
using notation such as level OF FUND instead of having to introduce a new identifier f
and corresponding expressions f_level[f], as it is done in the MiniZinc model. For two-
dimensional arrays like movement, it defines an explicit syntax movement FROM FUND TO PROJECT
that avoids the ambiguity of the direction of movement present in the MiniZinc model. Many
other concrete versions of the abstract MSDSL grammar are also possible. For example,
it would be easy to make the concrete grammar more verbose by writing the iteration as
For Every FUND and PROJECT. Importantly, the MDSL grammar does not have hard-wired

Figure 4 User Interface for forming intermediate formalisation.
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attribute names. If the set of attributes of an entity is later extended, the MDSL can easily
be extend accordingly. Another important choice is that of operator precedences. We opted
for full explicit bracketing, in order to avoid ambiguity. However, there are many other
approaches, such as indentation-based grouping of expressions that belong together. It is
beyond the scope of this paper to explore the advantages and disadvantages of different
choices in concrete syntax.

In addition to the text-based representation, a graphical representation of the MDSL
specifications could be used. Figure 4 shows a prototype browser-based interface that is still
quite close to the text version. It has two main sections: The Rule Base section displays
the already defined rules, and allows users to turn them on and off as needed. The Rule
Constructor section allows users to define new rules using drop down list boxes containing
various components of the language grammar, such as parameters (entity attributes) and
variables. A graphical representation like this (or an integration of the text-based language
into a graphical development environment) may have several advantages over pure text-
based languages. For instance, precedence between different expressions can be indicated
graphically, which may help avoid mistakes in the specification. Furthermore, the graphical
interface can restrict the choices to those that are valid in a particular situation.

6 Conclusion and Future Work

Many organisations need to solve optimisation problems as part of their core operation, but
they still perceive the introduction of technologies like model-based optimisation in their
decision support systems as a significant risk. They may appreciate that this technology
can solve difficult problems, that it can produce better outcomes than simple algorithms or
manual solutions, and that it can incorporate additional factors such as uncertainty, fairness
or diversity of solutions. However, the lack of in-house expertise for implementation and
maintenance and the perceived black-box nature of the technology are often hurdles that are
difficult to overcome. The change of input data formats or requirements after an optimisation
solution has been deployed, which we refer to as problem drift, adds further risks to this
process.

This paper presents the UNHCR fund allocation problem, a combinatorial optimisation
problem that deals with the distribution of donated funds to humanitarian projects according
to ad-hoc rules set by the donors and operational requirements of UNHCR. While the initial
model we implemented in 2016 worked well for the sample data, the problem drift that
occurred over the next few years prevented the organisation from fully adopting it, instead
continuing to use their in-house algorithm. Phase 2 of our project focused on adapting the
initial optimisation model to the changed requirements.

Based on this experience, this paper identifies problem drift in optimisation models
and highlights its importance to the community as an area worth investigating. It then
proposes to tackle it via an extended framework for model development that incorporates a
Requirements Model into the Model Defining Loop defined by Liu et al. [10]. The requirements
model is based on an application specific Modelling Domain Specific Language (MDSL). We
have explored guidelines for the trade-off between general expressivity and ease of use of
MDSLs. Our recommendations include that certain parts of a model such as the choice of
decision variables need to be left to the optimisation expert, while other parts, such as entity
attributes, constraints and objective function, can be exposed in the MDSL. We believe
that the introduction of a Requirements Model and MDSL into the modelling process can
facilitate collaboration between modelling and domain experts, achieve higher levels of trust
with the end users of optimisation technology, as well as equip them with the skills and
tools to address certain forms of problem drift in-house. sp An important area for future
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work is to evaluate the feasibility, suitability and effectiveness of our proposed framework for
addressing problem drift in real-world applications. We acknowledge that the development
of an application-specific MDSL together with a model may seem prohibitively expensive.
Future work will therefore include exploring the use of template MDSLs for larger problem
classes to enable code reuse across applications. Furthermore, we will investigate how to
speed up and streamline the MDSL development process using tools such as Language
Workbenches [6, 4]. We will also study graphical and hybrid text/graphical MDSLs, which
can draw on techniques from research areas such as interactive optimisation and visual
analytics. Finally, it would be interesting to explore the use of AI-based dialogue systems
such as large language models as a user-facing representation of an MDSL, where the potential
ambiguity of natural language becomes a challenging research topic.
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Abstract
The rapid rise of Artificial Intelligence (AI) and Machine Learning (ML) has invoked the need for

explainable AI (XAI). One of the most prominent approaches to XAI is to train rule-based ML models,
e.g. decision trees, lists and sets, that are deemed interpretable due to their transparent nature.
Recent years have witnessed a large body of work in the area of constraints- and reasoning-based
approaches to the inference of interpretable models, in particular decision sets (DSes). Despite being
shown to outperform heuristic approaches in terms of accuracy, most of them suffer from scalability
issues and often fail to handle large training data, in which case no solution is offered. Motivated by
this limitation and the success of gradient boosted trees, we propose a novel anytime approach to
producing DSes that are both accurate and interpretable. The approach makes use of the concept
of a generalized formal explanation and builds on the recent advances in formal explainability of
gradient boosted trees. Experimental results obtained on a wide range of datasets, demonstrate that
our approach produces DSes that more accurate than those of the state-of-the-art algorithms and
comparable with them in terms of explanation size.
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1 Introduction

Rapid development of Artificial Intelligence (AI) and Machine Learning (ML) have revolu-
tionized all aspects of human lives in recent years [30, 1]. However, decisions made by most
widely used ML models are hard for humans to understand hence the interest in the theory
and practice of Explainable AI (XAI) rises.

One major approach to XAI is to compute post-hoc explanations for ML predictions
to answer a “why” question [34, 44], i.e. why the prediction is made. Although heuristic
approaches to post-hoc explanations prevail [34, 44, 43], they suffer from a number of
weaknesses [21, 16, 49, 52]. Formal methods [48, 20, 37] provide alternative approaches
to explanations that avoid these weaknesses. Another alternative approach to XAI is to
compute interpretable ML models, i.e. logic-based models, including decision trees [40],
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decision lists [46], and decision sets [29]. These models enable decision makers to obtain
succinct explanations from the models directly. In this paper, we focus on the decision
set (DS) models.

Decisions sets are particularly easy to explain: the rule that fired is an explanation of
the decision. This led to an upsurge in interest of decision sets that are both interpretable
and accurate. Recent work [50] uses propositional satisfiability (SAT) to generate minimum-
size decision sets that are perfectly accurate on the training data, and demonstrates that
decision sets that completely agree with the training data outperform others in terms of
accuracy. A more scalable maximum satisfiability (MaxSAT) approach [18] to this problem
was then proposed. Unfortunately, both of these methods are unable to provide any decision
information if a dataset is not completely solved.

Motivated by these works and their limitations, this paper aims at making a bridge
between formal post-hoc explainability and interpretable DS models. In particular, the paper
focuses on developing a novel anytime approach to computing decision sets that are both
interpretable and accurate, by compiling a gradient boosted tree model into a decision set
on demand with the use of formal explanations. This is done with the use of the recent
approach [17] to compute abductive explanations for gradient boosted trees using maximum
satisfiability (MaxSAT). Furthermore, the paper proposes a range of post-hoc model reduction
heuristics aiming at enhancing interpretability of the result models, done with MaxSAT
and integer linear programming (ILP). The experimental results show that compared with
other state-of-the-art methods, decision sets generated by the proposed approach are more
accurate, and comparable with the competition in terms of interpretability.

2 Preliminaries

SAT and MaxSAT. The standard definitions for propositional satisfiability (SAT) and
maximum satisfiability (MaxSAT) solving are assumed [3]. A propositional formula ϕ is
said to be in conjunctive normal form (CNF) if it is a conjunction of clauses. A clause is
a disjunction of literals, where a literal is either a Boolean variable b or its negation ¬b.
A truth assignment µ is a mapping from the set of variables to {0, 1}. A clause is said to
be satisfied by truth assignment µ if one of the literals in the clause is assigned value 1;
otherwise, the clause is falsified. If all clauses in formula ϕ are satisfied by assignment µ, ϕ is
satisfied; otherwise, assignment µ falsifies ϕ. A CNF formula ϕ is unsatisfiable if there exists
no assignment satisfying ϕ.

In the context of unsatisfiable formulas, the MaxSAT problem consists in finding a truth
assignment that maximizes the number of satisfied clauses. Hereinafter, we use a variant
of MaxSAT called Partial Weighted MaxSAT [3, Chapters 23 and 24]. The formula ϕ in
this variant is represented as a conjunction of hard clauses H, which must be satisfied, and
soft clauses S where each of them is associated with a weight representing a preference to
satisfy them, i.e. ϕ = H ∧ S. Partial Weighted MaxSAT problems aim at finding a truth
assignment µ that satisfies all hard clauses and maximizes the total weight of satisfied soft
clauses.

Classification Problems. We consider classification problems with a set of classes1 K =
{1, . . . , k}, and a set of features F = {1, . . . , m}. The value of each feature i ∈ F is taken
from its corresponding (numeric) domain Di. As a result, the entire feature space is defined as

1 Non-integer class labels can be mapped to a set {1, . . . , |K|}.
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IF “petal.length” < 2.60 THEN class = “setosa”
IF 2.60 ≤ “petal.length” < 4.95 ∧ “petal.width” < 1.75 THEN class = “versicolor”
IF “petal.length” ≥ 2.60 ∧ “petal.width” ≥ 1.75 THEN class = “virginica”
IF “petal.length” ≥ 4.95 THEN class = “virginica”

(a) Decision set.
t1 (setosa)

petal.length

0.42604 -0.21885

< 2.60 ≥ 2.60

t2 (versicolor)
petal.length

petal.width-0.21302

0.35085 -0.19565

< 2.60 ≥ 2.60

< 1.75 ≥ 1.75

t3 (virginica)
petal.width

petal.length 0.39408

-0.21845 0.21724

< 1.65 ≥ 1.65

< 4.95 ≥ 4.95

t4 (setosa)

petal.length

0.29324 -0.19609

< 2.60 ≥ 2.60

t5 (versicolor)
petal.length

petal.length-0.18951

0.25718 -0.16426

< 2.60 ≥ 2.60

< 4.95 ≥ 4.95

t6 (virginica)
petal.length

petal.width petal.length

-0.19479 -0.08968 0.05263 0.28251

< 4.75 ≥ 4.75

< 1.45 ≥ 1.45 < 4.95 ≥ 4.95

(b) BT model [5] consisting of 2 trees per class, each of depth ≤ 2, adopted from [17].

Figure 1 Example DS and BT models computed on the well-known Iris classification dataset.

F ≜
∏m

i=1 Di. A concrete point represented by v = (v1, . . . , vm) ∈ F, s.t. each vi is a constant
value taken by feature i ∈ F , together with its corresponding class c ∈ K, represented by a
pair (v, c), indicate a data instance or example. With a slight abuse of notation and whenever
convenient, a data point v ∈ F is also referred to as an instance. Finally, x = (x1, . . . , xm)
denotes a vector of feature variables xi ∈ Di, i ∈ F , used for reasoning over points in F.

A classifier defines a classification function τ : F → K. The objective of classification
problems is to learn a function τ to generalize well on unseen data given a training dataset E =
{e1, e2, . . . , en}, where each instance ed ∈ E is a pair of (vd, cd). Classification problems are
conventionally posed as an optimization problem, i.e. either to minimize the complexity of τ ,
or maximize its accuracy, or both.

Rules, Decision Sets and Gradient Boosted Trees. Multiple ways exist to learn classifiers
given data E . This paper focuses on arguably one of the most interpretable models, i.e.
decision sets, trained by compiling gradient boosted trees.

A decision rule is in the form of “IF antecedent THEN prediction”, where the antecedent
is a set of feature literals. Informally, a rule is said to classify an instance v ∈ F as class
c ∈ K if its antecedent is compatible with v (or matches v) and its prediction is c. A decision
set (DS) is an unordered set of decision rules R. An instance (v, c) ∈ E is misclassified by a
DS if either there exists no rule in R matching v, or there exists a rule classifying v as a
class c′ ∈ K s.t. c′ ̸= c.

A gradient boosted tree (BT) is a tree ensemble T defining sets of decision trees Tc ∈ T

for each class c ∈ [|K|], where Tc comprises N ∈ N>0 trees tkz+c, z ∈ {0, . . . , N − 1}, k = |K|.
Given an instance v ∈ F, its class is obtained by computing the sum of scores assigned by
trees for each class w(v, c) =

∑
t∈Tc

t(v) and assigning the class which has the maximum
score, i.e. argmaxc∈[|K]|w(v, c). Whenever convenient, n ∈ t denotes a non-terminal node,
where t ∈ T represents an arbitrary decision tree. Moreover, each such n indicates a feature
condition in the form of xi < d, where feature i ∈ F and splitting threshold d ∈ Di.

CP 2023
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Table 1 Several instances extracted from Iris dataset.

# sepal.length sepal.width petal.length petal.width class

e1 5.1 3.5 1.4 0.2 setosa
e2 7.7 2.6 6.9 2.3 virginica
e3 5.6 2.5 3.9 1.1 versicolor
e4 6.2 2.8 4.8 1.8 virginica
e5 5.6 2.8 4.9 2.0 virginica

▶ Example 1. Figure 1 shows DS and BT models trained on the Iris dataset, which has
4 numeric features and 3 classes: “setosa”, “versicolor”, and “virginica”. Observe that
instance v1 ∈ e1 shown in Table 1 is classified as “setosa” by the first rule of the DS.
In the BT model, each class c ∈ [3] is represented by 2 trees t3z+c, z ∈ {0, 1}. Thus, it
also classifies v1 as “setosa”, since the score of this class w(v1, 1) = t1 + t4 = 0.71928
is higher than the score of “versicolor” w(v1, 2) = t2 + t5 = −0.40253 and the score of
“virginica” w(v1, 3) = t3 + t6 = −0.41324. ⌟

Interpretability and Explanations. Interpretability is not formally defined as it is considered
to be a subjective concept [33]. In this paper interpretability is defined as the overall
succinctness of the information offered by an ML model to justify a provided prediction.
Moreover, following earlier work [48, 20], we equate explanations for ML models with abductive
explanations (AXps), which are subset-minimal sets of features sufficient to explain a given
prediction. Concretely, given an instance v ∈ F and a prediction c = τ(v) ∈ K, an AXp is a
subset-minimal set of features X ⊆ F such that

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→ (τ(x) = c) (1)

▶ Example 2. Consider the setup of Example 1. Given instance v1, observe that for any
instance with “petal.length” = 1.4, the BT is guaranteed to predict “setosa” independently of
the values of other features, since the weights for “setosa” and “versicolor” are 0.71928 and
−0.40253 respectively as before, and the maximal weight for “virginica” is 0.39408−0.08968 =
0.30440. Thus, the (only) AXp X for the prediction for e1 made by the BT model is
{“petal.length”}. ⌟

Explanations in BTs. Formal reasoning has been recently applied to computing AXps for
BT models, with the key difficulty being how to effectively reason about the aggregation
over a large number of trees in a BT model. Recent work applied satisfiability modulo
theory (SMT) [21] or mixed integer linear programming (MILP) solvers [42, 27] to directly
address the linear summations arising in the BT encoding. Hereinafter, we build on the
recent MaxSAT approach [17], which maps the aggregation reasoning to a set of MaxSAT
queries to avoid a costly encoding of the linear constraints into CNF. Also, [17] demonstrates
how a MaxSAT query can be made such that (1) holds if and only if the optimal value of
the constructed objective function is negative.2 In general, assuming that each feature i ∈ F
is numeric (continuous), the approach orders the set of splitting thresholds {di1, ..., dihi}
in a BT T for each feature i, where hi is the total number of thresholds of feature i in T

and dij ∈ Di for j ∈ [hi]. Given an instance v = (v1, . . . , vm) ∈ F, the above approach

2 The reader is referred to [17] for the details.
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associates each value vi with a single interval I ′
i from the set of disjoint intervals Di = {

Ii1 ≡ [min(Di), di1), Ii2 ≡ [di1, di2), . . . , Iihi+1 ≡ [dihi
, max(Di)] }. Thus, AXp extraction

boils down to finding a subset-minimal subset X ∈ F s.t.

∀(x ∈ F).
[∧

i∈X
xi ∈ I ′

i

]
→ (τ(x) = c) (2)

▶ Example 3. Recall Example 2 and assume “petal.length” and “petal.width” have indices 3
and 4. Note that the sets of splitting thresholds for feature “petal.length” {d31 = 2.60, d32 =
4.75, d33 = 4.95} and for feature “petal.width” {d41 = 1.45, d42 = 1.65, d43 = 1.75}. Let
min(D3) = −∞ and min(D4) = 0.1. Then we can associate the values of features 3 and
4 in our instance v1 ∈ e1 with intervals I31 ≡ (−∞, 2.60) and I41 ≡ [0.1, 1.45). Hence
by (2), the AXp shown in Example 2 can in fact be seen as a rule ⟨IF “petal.length” <

2.60 THEN class = “setosa” ⟩. ⌟

3 Related Work

Interpretable decision sets are logic-based ML models that can be traced back to the 70s and
80s [39, 15, 4, 45]. To the best of our knowledge, [6] proposed the first approach to decision
sets, which were introduced as the variant of decision lists [45, 7]. The first method making
use of logic and optimization to synthesize a disjunction of rules that match a given dataset
was proposed in [26]. Recent work [29] argued that decision sets are more interpretable than
the other logic-based models, i.e. decision lists and decision trees. This work uses smooth
local search to generate a set of rules first and heuristically minimizes a linear combination
of criteria afterwards, e.g. the size of a rule, their maximum number, overlap or error.

Since then a number of works proposed the use of logic reasoning and optimization
procedures to train DS models [22, 36, 12, 50, 18] claiming to significantly outperform the
approach of [29] in terms of accuracy and performance. Among those, the works closest
to ours are [22, 50, 18]. They proposed SAT-based approaches to computing smallest-size
decision sets that perfectly agree with the training data by minimizing either the number
of rules [22, 18] or the number of literals [50, 18] used in the model. Additionally, [50] is
capable of computing sparse decisions sets that trade off training accuracy for model size.
Despite the dramatic performance increase achieved in [18], all the approaches above suffer
from scalability issues.

Post-hoc explainability is one of the major approaches to XAI. Besides a plethora of
heuristic sampling-based methods to post-hoc explainability [43, 34, 44], a formal reasoning
based approach to computing abductive explanations [48, 20] stands out. AXps can be
related with prime implicants of the decision function (hence an alternative name prime
implicant explanations, PI-explanations) associated with ML predictions and are guaranteed
to capture the semantics of the ML models in the entire feature space. Although hard to
compute in general, AXps were shown to be effectively computable for BT models by an
incremental MaxSAT-based approach [17].

Our work aims at making a bridge between interpretable DS models and AXp computation
by exploiting the latter for training the former. Given a BT model, it focuses on generating
decision rules that agree with the BT. Each rule represents an AXp for the prediction made
by the BT model, resulting in a DS model in a way guided by the original BT model. The
approach is shown to outperform the prior logic-based approaches to DS inference in terms
of test accuracy and performance. Note that despite prior attempts to train sparse models
guided by tree ensembles [38], to our best knowledge, none of the existing works have applied
formal post-hoc explanations to compile interpretable models.

CP 2023
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Finally, our approach can be related to the existing line of work on knowledge distilla-
tion [11, 13], where an interpretable model is trained to approximate a hard-to-interpret
black-box model, which is often seen as teacher-to-student knowledge transfer. Note that in
contrast to knowledge distillation, our approach is able to compile a BT into an equivalent
DS if we consider the entire feature space, as shown below.

4 Decision Sets by Boosted Tree Compilation

Based on [17], this section details a MaxSAT-based approach to compiling a BT into a DS
where each rule in the DS is equivalent to a prime implicant of the BT classification function.

4.1 Rule Extraction
Recall that an AXp, as defined in (1) and (2), can be seen as an if-then rule. Given a
hard-to-interpret BT model, the AXp extraction approach of [17] can be modified to compute
an interpretable DS consisting of a set of AXps for the BT. However, when the features
are continuous (numeric), this potential approach suffers from the following issue. Recall
that an AXp X ∈ F indicates a set of concrete feature values that are sufficient to explain a
prediction c = τ(v) for a certain instance v ∈ F. Although this same AXp can explain other
instances compatible with it, its applicability in general is at the mercy of expressivity of the
feature literals used in the AXp, i.e. equality literals and succinct interval membership in
the case of (1) and (2), respectively. Motivated by this limitation, we propose to compute
AXps over the literals intrinsic to the BT model aiming at getting feature intervals that are
as general as possible, as detailed below.3

In contrast to the work of [17], which associates each feature value vi ∈ Di with a single
narrowest interval I ′

i covering the value, we exploit all the splitting points used by the BT
for feature i and identify all of the corresponding literals satisfied by the feature value vi.
Note that the original MaxSAT encoding [17] introduces a single Boolean variable oij for
each literal xi < dij with dij being a j’th threshold used in the BT for feature i, s.t. oij = 1
iff xi < dij holds true. This way, each positive oij represents an upper bound on the value of
xi while each negative ¬oij represents a lower bound on xi.

▶ Example 4. Feature 3 (“petal.length”) from Example 3 has 3 thresholds: d31 = 2.60,
d32 = 4.75, d33 = 4.95. Boolean variables o31, o32, and o33 are set to true iff x3 < 2.60,
x3 < 4.75, and x3 < 4.95, respectively. Let feature 3 take value 3.9 in the instance we want
to explain. Observe how we can immediately assign literals ¬o31, o32, and o33 to true. ⌟

Next, given an instance v = (v1, . . . , vm) ∈ F, let us construct a complete conjunction∧
i∈F ,j∈[hi] õij of literals õij s.t. õij is to be replaced by oij if vi < dij and replaced by ¬oij

otherwise. By construction, this conjunction holds true for instance v. Now, given this
conjunction of literals, we can apply the existing approach of [17] to extract a subset-minimal
explanation Y ⊆ {õij | i ∈ F , j ∈ [hi]} for instance v over literals õij s.t.

∀(x ∈ F).
[∧

l∈Y
l
]
→ (τ(x) = c) (3)

Such an explanation Y may (or may not) define either a lower bound on feature i, an upper
bound, or both, aiming to construct the most general interval for each feature i ∈ Y . Hence,
we informally refer to such explanations as generalized AXps or simply rules (hereinafter, we
use both interchangeably).

3 An alternative to our approach is inflation of abductive explanations, which is discussed in [23, 24].
Given an AXp, it aims at extending the set of values covered by each feature literal in the AXp while
the AXp condition (1) still holds.
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Algorithm 1 Deletion-based Rule Extraction.
Function: RuleExtract(T, v, c, E)
Input: T: BT defining τ(x), v: Instance, c: Prediction, i.e. c = τ(v) E : Training data
Output: Y: Subset-minimal rule

1: ⟨H,S⟩ ← Encode(T)
2: Y ← Init(T, v)
3: Y ← Sort(Y, E)
4: for l ∈ Y do
5: if EntCheck(⟨H,S⟩, c,Y \ {l}) then
6: Y ← Y \ {l}
7: return Y

▶ Example 5. Consider instance v3 predicted as “versicolor” by the BT (observe that
v3 = 3.9 and v4 = 1.1) and recall the thresholds for features 3 and 4 discussed in Example 3.
We can compute a generalized AXp Y = {¬o31, o33, o43} representing the second rule of the
DS shown in Figure 1a. The original approach of [17] would instead compute an AXp defining
the narrowest intervals for features 3 and 4, representing a rule: ⟨IF 2.60 ≤ “petal.length” <

4.75∧“petal.width” < 1.45 THEN class = “versicolor”⟩, which is far less general than Y . ⌟

A possible rule extraction procedure is outlined in Algorithm 1. (Please ignore line 3 for
now; feature sorting is described in Section 4.2). The input BT model T is encoded into
MaxSAT by applying the approach of [17]. Given an instance v ∈ F, the initial set of literals
Y = {õij | i ∈ F , j ∈ [hi]} is created. Note that any feature i ∈ F unused in the BT T is
excluded from Y. The rest of the procedure implements the standard deletion-based AXp
extraction [20], i.e. it iterates through all literals in Y one by one, and checks which of the
them can be safely removed such that entailment (3) still holds.

▶ Example 6. Consider our running example model and instance v2 ∈ e2 from Table 1
predicted as “virginica” by the BT T. Given the thresholds for features 3 and 4 in Example 3,
set Y is initialized to {¬o31,¬o32,¬o33,¬o41,¬o42,¬o43}. The other two features are excluded
from Y since they are irrelevant to the classification function in T. Applying Algorithm 1
results in extracting a subset-minimal generalized AXp Y = {¬o33}, which represents the
rule ⟨IF petal.length ≥ 4.95 THEN class = “virginica”⟩. ⌟

▶ Remark 7. Algorithm 1 relies on deciding whether formula (3) holds for each feature
in explanation Y. Here, this is done by means of a series of incremental core-guided
MaxSAT oracle calls [19, 17]. One may wonder whether or not incomplete anytime MaxSAT
solving [31, 35, 2, 32] can be applied in this setting. Although this may look plausible at
first glance, time-restricted anytime MaxSAT algorithms can only over-approximate exact
MaxSAT solutions while (3) holds if and only if the exact value of the objective function
is negative. Therefore, an over-approximation of a MaxSAT solution is never able to prove
the validity of (3) and so none of the features being tested can be discarded in the case of
incomplete MaxSAT algorithms, which defies the purpose of Algorithm 1.

4.2 Boosted Tree Compilation
As mentioned above, generalized AXps can be seen as general decision rules that can be
applied to an enormous number of instances. Therefore, it makes little sense to extract
such rules for each instance in the feature space F. Instead, one can devise an on-demand
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Algorithm 2 Compile a BT into a DS.
Function: Compile(T, τ, C)
Input: T: BT defining τ(x), τ : Classification function in T, C: Coverage set
Output: R: Set of Rules

1: R ← ∅
2: Cu ← C
3: while Cu ̸= ∅ do
4: v← GetInst(Cu)
5: Y ← RuleExtract(T, v, c = τ(v), Cu)
6: Cc ← GetCover(Y, Cu)
7: Cu ← Cu\Cc

8: R ← R∪ Y
9: return R

compilation process, i.e. given a yet uncovered instance v ∈ F, we can apply Algorithm 1 to
extract a rule covering v (and some other instances). Clearly, exhaustive compilation of a
BT, i.e. if the target is to cover all the instances in F with generalized AXps of the BT, is
computationally expensive given that AXp extraction for tree ensembles is hard for DP [25].
This can also lead to the large size of the resulting DSes making them hard to interpret. In
practice, local compilation aiming at capturing the behavior of the BT on the training data
only, is sufficient to generate a DS, which is both accurate and interpretable.

The proposed approach to compiling a BT T into a DS R is shown in Algorithm 2.
We initialize the set Cu of currently uncovered instances to be equal to C, i.e. the set of
examples we wish to cover. The algorithm represents a loop generating rules until the
set of computed rules R covers all instances in coverage set data C, i.e. until there is no
uncovered instances in C. Each iteration of the algorithm selects an instance v from Cu.
Afterwards, a generalized AXp Y for the prediction c = τ(v) by the BT T (recall that T is
meant to compute classification function τ(x)) is extracted by invoking Algorithm 1. The
iteration proceeds by updating the set of rules R and the set of uncovered instances Cu. The
algorithm terminates when all the instances in the coverage set C are covered and returns a
compiled DS R.

▶ Proposition 8. Let T be a BT and R be a DS returned by Algorithm 2 for T. Then R ≡ T

with respect to C.

We consider two usages of the algorithm: for exhaustive compilation the coverage set C = F
is all possible feature combinations (in practice we model this coverage set implicitly, rather
than in its explicit exponential sized form), and for training set compilation where C = E is
the training set. Based on the properties of prime implicants, Proposition 8 states that as a
generalized AXp Y ∈ R is a formal explanation for a prediction made by BT T, a compiled
DS captures the semantics of the original model T on coverage set C, assuming everything
else is a don’t care. Furthermore, if the process is applied subject to coverage set C = F,
i.e. when we target the entire feature space F, then R and T behave identically, i.e. they
compute the same classification function τ(x).

▶ Corollary 9. Let Algorithm 2 return a DS R for a BT T. Then there is no instance
in feature space F covered by two distinct rules Y1,Y2 ∈ R predicting inconsistent classes
c1 ̸= c2.
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As each generalized AXp for T represents a prime implicant of the decision function τ(x)
computed over literals õij , the above corollary claims that there are no overlapping rules in
the result DS R. This contrasts with other modern approaches to DS inference, where rule
overlap is known to be a problem [29, 22]. Note that this approach still suffers from another
common issue of DS models: namely, if DS R is computed for the training data E , there
may still be instances in F uncovered by R.

▶ Example 10. Consider the running example BT model shown in Figure 1b. Its compiled
DS representation computed by Algorithm 2 is shown in Figure 1a. Observe that there is
no rule overlap in the DS computed. In fact, as the DS is computed by taking into account
feature space F, it computes the same classification function as the original BT model. ⌟

Feature Sorting. Intuitively, how general and hence how applicable a rule is depends on
how frequently the features used in it appear in the training data E labeled with the target
class. Thus, a simple heuristic to apply when extracting a rule for prediction c = τ(v) is to
sort the initial state of Y = {õij | i ∈ F , j ∈ [hi]} based on how frequently the corresponding
literals õij apply in examples E labeled with c. This feature sorting represented by line 3 in
Algorithm 1 in practice (according to our experiments) results in significantly more general
rules and so overall smaller DSes.

Anytime Property. Most widely used reasoning-based algorithms to infer DSes provide
a solution only if the computation is completed; otherwise, no decision set is reported. In
contrast to these, the proposed approach is an anytime algorithm, i.e. it can return a valid
DS R even though the compilation process is interrupted before all the coverage set instances
C are covered. Furthermore, it can generate a more comprehensive DS R, which covers more
instances as it keeps going, i.e. after we have covered C ⊆ F we can continue running the
algorithm for the (unseen) instances of F.

4.3 Post-Hoc Model Reduction
The compiled DS R can be large (in terms of either the number of rules or the total number
of literals) since each generalized AXp Y ∈ R may need a significant number of literals to
explain a prediction made by BT T, or/and many rules are required to explain all instances
of C. Once the target DS is obtained, we can apply post-hoc heuristic methods for reducing
its size and so making it more interpretable. The methods below are in a way inspired by
the optimization problems studied in [18, 50]. Although these ideas are applicable to any DS
inference method once the result model is devised, they do not look necessary for standard
DS inference algorithms as they minimize the model while training. On the contrary, no
minimization is applied in the rule enumeration process described above and so post-hoc
model reduction plays a vital role in our approach to reduce the size of final DS models.

Reducing the Number of Rules. Given a set of rules R, we can compute a minimum
subset R⋆ ⊆ R that is still equivalent to the BT T wrt. the coverage set C using discrete
optimization, e.g. integer-linear programming (ILP). Concretely, the approach aims at
selecting the smallest-size subset R⋆ ⊆ R that covers all instances in C, where R is the
compiled DS from T. Here, the size of R⋆ is measured as the total number of literals used.
This can be done by solving the following set cover problem [28]. Namely, for each rule
Yj ∈ R, we introduce a Boolean variable uj such that uj = 1 iff Yj is included in R⋆.
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Additionally, a Boolean variable yij is used to indicate that Yj covers ei ∈ C. As a result,
the weighted set cover problem for minimizing the total number of literals used is as follows:

minimize
|R|∑
j=1

(|Yj |+ 1) · uj (4)

subject to ∀i∈[n]

|R|∑
j=1

yij · uj ≥ 1 (5)

Reducing the Number of Literals. Additionally, one can minimize the total number of
literals used in the rules of R. Given a rule Y ∈ R, this can be done either lexicographically
by maximizing rule accuracy followed by size minimization, or by optimizing both, or trading
off misclassifications for rule size – in either case, a single MaxSAT call per rule to minimize
can be made. The intuition is that if a rule Y misclassifies k instances then its optimized
version Y⋆ ⊆ Y should not result in many more misclassifications on training data E . Recall
that a rule misclassifies an instance vk ∈ C if it matches vk but assigns it to a wrong class.

Inspired by [18], we introduce a Boolean variable pk, which is true iff rule Y covers vk –
this holds if Y does not use any literals incompatible with vk. If Yvk

= {õij | i ∈ F , j ∈ [hi]}
are all the literals compatible with vk then this can be modeled with constraints

∀k∈[|C|]. pk ↔
∧

l∈Y\Yvk

¬l (6)

Furthermore, let rule Y predict c ∈ K and let C⊖ ⊆ C contain all instances labeled with any
other class. Thus, we can apply the objective below when minimizing rule Y:∑

l∈Y

l +
∑

k∈[|C⊖|]

W · pk (7)

If W is large enough, say |C|+ 1, this lexicographically minimizes misclassifications and then
literals. If W is small, e.g. 1/λ·|C|, this trades off λ · |C| misclassifications for one literal.

5 Experimental Results

This section compares the proposed approach with the state-of-the-art DS learning algorithms
on a variety of publicly available datasets in terms of accuracy, scalability, model and
explanation size. The experiments are performed on an Intel Xeon 8260 CPU running
Ubuntu 20.04.2 LTS, with the time limit of 3600s and the memory limit of 8GByte. Our
experiments contain two parts, namely, exhaustive BT compilation and training-set BT
compilation.

Prototype implementation. A prototype of the compilation-based approach to generating
DSes was developed as a set of Python scripts using C = E , hereinafter referred to as cpl.
The implementation of BT compilation exploits [17] and, therefore, makes use of the RC2
MaxSAT solver [19].4 The BTs to be compiled are computed by XGBoost [5]; the number
of trees per class in a BT model is 50 and the maximum depth of each tree is 3. Post-hoc

4 Real weights in the objective function are not conventionally supported by MaxSAT solvers; the only
other solver to support real weights besides RC2 is LMHS [47].



J. Yu, A. Ignatiev, and P. J. Stuckey 38:11

literal reduction is done again with RC2 [19]. Let cpl l denote the implementation applying
lexicographic optimization while cpl lλ1 trades off model accuracy for the number of literals
used, with λ1 = 0.005. Let cplr denote the implementation with post-hoc rule reduction
applied using the Gurobi ILP solver [14]. The configuration with both post-hoc lexicographic
optimization and rule reduction is denoted cpl lr. Finally, the proposed approach applying
exhaustive compilation C = F is referred to as cplf .

Competition. Our approach is compared against: twostg a two-stage MaxSAT approach [18]
for DSes perfectly accurate on the training data; opt another MaxSAT approach [50] for
perfectly accurate DSes; spλ1 a sparse alternative to opt by the same authors (with λ1 = 0.005)
optimizing like cpl lλ1 ; imli1 and imli16 using MaxSAT-based IMLI [12] to minimize the
number of literals given a predefined number of rules (we use 1 or 16); ids a state-of-the-
art approach [29] based on smooth local search;5 ripper a popular heuristic DS algorithm
RIPPER [8]; and CN2 (referred to as cn2 ) another heuristic algorithm [7, 6].6

Datasets. For the evaluation, 59 publicly available datasets from UCI Machine Learning
Repository [9] and Penn Machine Learning Benchmarks [41] are considered. We apply 5-fold
cross validation, resulting in 295 pairs of training and test (unseen) data. For the sake of a fair
comparison, the datasets used are preprocessed so that each original feature i ∈ F is replaced
with a number of non-intersecting feature intervals xi < dij defined by the XGBoost model
(see Section 2). This guarantees that all competitors tackle the same problem instances.

5.1 Exhaustive BT Compilation
The first experiment compares exhaustive compilation, where C = F is the entire feature
space. This is impractical except for 6 small benchmarks.

Results. Here we compare cplf with the competition in terms of accuracy, the total number
of literals used and explanation size. We present the results as cactus plots showing the
number of datasets that e.g. reach a certain accuracy, or finish in a certain runtime, for each
method. These experimental results are shown in Figures 2 and 3 as well as the average
results across folds are described in Table 2 where only the results of the datasets completely
solved by compared competitors are presented. Note that cplf is nowhere near as scalable as
the approaches described in the later experiments, but it is the most accurate approach to
creating DSes we are aware of.

Test accuracy. An instance is considered misclassified if either there exists a rule of a
wrong class that covers it, or it is not covered by any rule of the correct class. Thus, the test
accuracy in this paper is calculated as n−g

n , where n is the total number of instances in the
test data and g is the total number of misclassified instances. If an approach fails to train a
model within the time limit, we assume its accuracy to be 0% for this dataset.

5 Since the original implementation performs poorly [22], here we consider the new implementation of
IDS [10], which is claimed to be orders of magnitude faster than the original implementation.

6 Note that since RIPPER and IMLI compute a single class only given the training data, both of these
competitors are augmented with a default rule predicting a class (1) different from the target class
and (2) represented by the majority of training instances. Other algorithms, including our approach,
incorporate a default rule that assigns a class based on the majority class in the training instances.
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Figure 2 Accuracy of exhaustive compilation. The standard interpretation of cactus plots is
assumed, i.e. a plot sorts the datapoints for each method by the y-axis value, and then shows them
in increasing order independently of other methods. Thus, the order of datasets/folds differs for
different methods. Also, the order of datasets for the same method differs in different subplots.
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(b) Explanation size.

Figure 3 Succinctness of exhaustive compilation.

As can be seen in Figure 2b and Table 2, the best accuracy is achieved by BTs and cplf .
In fact, these models share the same accuracy (this is also confirmed in Figure 2a), which
should not come as a surprise given that cplf replicates the behavior of the BT in the entire
feature space F (see Proposition 8).

Model Complexity. In general, complexity of a DS model can be measured by the total
number of literals used in this DS. The total number of literals used in DS models is compared
in Figure 3a and Table 2. Though the accuracy of DSes trained by cplf outperforms the
other competitors, these models are significantly larger, which is no surprise given that cplf

computes many more rules with no post-hoc reduction applied.

Explanation size. Explanation size is defined as the number of literals required to explain
an instance.7 This is arguably more important than the model size, since it defines “how
hard” it is to understand an individual explanation. A small DS model tends to provide

7 See [51] for details.
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Table 2 Accuracy, number of literals used, and explanation size across folds.

Approach Dataset
cardiotocography hayes-roth iris new-thyroid orbit zoo

Accuracy (%)
bt 100.0 84.38 96.0 96.74 99.66 96.0

cplf 100.0 84.38 96.0 96.74 99.66 96.0
spλ1 100.0 73.44 94.0 91.63 99.43 89.05
opt 100.0 70.63 93.33 91.63 99.54 93.05

twostg 100.0 71.25 92.67 92.09 99.54 91.1
cn2 100.0 62.5 92.67 93.02 99.54 89.1

ripper 45.3 66.25 57.33 80.93 94.11 60.33
ids 27.23 43.75 58.67 76.28 85.29 40.62

imli16 27.23 38.75 25.34 69.77 70.55 43.33
imli1 45.3 39.37 32.67 26.98 8.93 60.33

Number of literals used
cplf 3120.0 76.0 214.0 3614.2 729.8 1422
spλ1 21.0 33.5 9.0 15.4 10.0 23.2
opt 21.0 63.6 19.4 23.0 11.8 30.0

twostg 21.0 64.2 19.8 22.6 11.8 29.8
cn2 21.0 116.2 27.2 36.6 13.2 40.8

ripper 3.0 12.8 5.0 8.2 4.0 3.0
ids 21.0 21.6 19.8 20.0 25.0 14.2

imli16 5.0 2.2 7.4 7.4 6.4 5.0
imli1 3.0 2.2 3.0 4.2 3.0 3.0

Explanation size
cplf 7.26 3.76 3.02 4.9 3.18 5.4
spλ1 2.0 6.31 2.45 4.13 2.86 3.64
opt 2.0 5.41 2.76 4.3 2.94 2.96

twostg 2.0 5.4 2.87 4.23 2.94 3.33
cn2 2.0 6.94 3.02 4.47 3.02 4.05

ripper 2.73 10.15 4.3 4.3 3.15 2.59
ids 16.08 18.23 13.06 7.74 6.23 9.28

imli16 2.0 2.2 2.1 1.97 2.8 2.46
imli1 2.18 2.2 3.0 4.0 3.0 2.2

compact explanations but it is not always accurate. As can be seen in Figure 3b and Table 2
and similar to the total number of literals used in DSes, cplf requires more literals to explain
an instance than all competitors except ids.

A crucial observation to make here is that we test explanation size for each of the test
instances available. Although test data are meant to extrapolate the overall unseen data,
such approximation of the unseen feature space is not ideal. As a result, there may be
numerous instances in F uncovered by all the approaches but cplf , in which case it will
be the only approach providing a user not only with a prediction but also with a succinct
explanation of the prediction made.

5.2 BT Compilation Targeting Training Data
Compilation to cover the training set C = E is much more efficient, and the main usage we
expect of our algorithms.

Scalability. Figure 4a depicts scalability of all selected algorithms on the 295 considered
datasets. Note that runtime of our approach includes BT training time. The best performance
is demonstrated by the proposed implementation, i.e. cpl and cpl∗, ∗ ∈ {l, r, lr, lλ1}, where
all selected datasets are solved within the time limit. This is not surprising since the approach
is an anytime algorithm that can always return a valid DS. As for other competitors, the
heuristic method ripper and the MaxSAT approaches imli1 as well as imli16 also solve all
considered datasets. Next is the heuristic algorithm cn2, where 235 datasets are solved
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Figure 4 Summary of experimental results when the competitors aim at training a DS given
training data E (i.e. C = E).

within the 3600s time limit. Followed by ids, which solves 166 considered datasets. The
two-stage MaxSAT approach twostg successfully addresses 130 datasets, while the other
MaxSAT algorithm for perfect decision sets opt and its sparse alternative spλ1 solve 65 and
63 datasets respectively.

Test Accuracy. The accuracy among the selected approaches is shown in Figure 4b. The
average accuracy among all selected datasets for BTs is 77.34%, beating all DS approaches.
The highest accuracy among DSes is achieved by all the configurations of the proposed
approach, i.e. cpl and cpl∗, where the average accuracy ranges from 54.01% (cpl lλ1) to
57.49% (cpl lr).8 Unsurprisingly, the accuracy in cpl lλ1 is lower than the other configurations
since cpl lλ1 trades off training accuracy on the number of literals in the computation process.

Next most accurate are the heuristic methods cn2 (48.03%) followed by ripper (44.81%).
The average accuracy of imli16 and imli1 is 35.47% and 29.7% respectively, while the average
accuracy of twostg is 29.6% and ids is 26.78. Finally, the worst accuracy is demonstrated
by spλ1 and opt (18.84% and 18.27% on average respectively) as these tools fail to provide
prediction information for many datasets within the time limit. We will omit further
discussion of sp and optλ1 since they solve so few datasets.

8 Note that most datasets we used represent non-binary classification. Also, DSes are not to be compared
with BTs. As Figure 4b shows (and as our work aims to demonstrate), our approach outperforms the
state-of-the-art DS inference methods in terms of accuracy.
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Figure 5 Comparison of cpllr vs. cn2 and ripper in terms of accuracy and explanation size.
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Figure 6 cpllr vs. imli16 and twostg in terms of accuracy and explanation size.
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Model Complexity. Figure 4c illustrates the comparison among selected approaches regard-
ing the total number of literals used in each DS solution. The average number of literals are
in order: imli1 (2.77), imli16 (8.26), ids (21.14), ripper (38.47), cpl lλ1 (118.47), cpl lr (157.53),
cpl l (213.27), twostg (265.98), cplr (584.39) cpl (620.82), cn2 (700.49). Clearly, rule reduction
and literal reduction can significantly reduce the size of the model without significantly
affecting accuracy. Note how our approaches while significantly larger than the least accurate
competitors, are significantly smaller than the most accurate competitor cn2.

Explanation Size. Figure 4d shows the explanation size for each competitor. The aver-
age explanation sizes are in order: imli1 (2.61), imli16 (3.00), cpl lλ1 (12.14), ids (15.28),
twostg (17.5), cpl lr (25.34), cpl l (26.18), ripper (29.08), cn2 (81.93), cplr (234.46), cpl (240.88).
Figure 4d demonstrates that post-hoc literal reduction not only helps decrease the number
of literals required to explain DS models, but also enables DSes to remain accurate, whereas
rule reduction does not contribute to smaller explanations. With literal reduction applied
our approaches are very competitive in terms of explanation size.

Detailed Comparison. While cactus plots allow us to compare many methods over a large
suite of benchmarks, they do not allow direct comparison on individual benchmarks. We
provide a detailed comparison of cpl lr versus other decision set inference approaches in
Figures 5 and 6, including cn2, ripper, twostg, and imli16.9 The scatter plots depicting
explanation size are obtained for the datasets solvable by both competitors. Note that cpl lr

can generate more accurate DSes than the competitors. Also observe that the explanation
size of DSes computed by cpl lr is smaller than cn2 and comparable with twostg. Although
the explanation size of DSes in cpl lr is larger than ripper and imli16, the two approaches are
less interpretable as they compute DSes representing only one class.

Summary. The experimental results were performed on various datasets, demonstrating
that our approach computes DSes that outperform the state-of-the-art competitors in terms
of accuracy and yield comparable explanation size to them.

6 Conclusions

This paper introduced a novel anytime approach to generating decision sets by means of
on-demand extraction of generalized abductive explanations for boosted tree models. It
can be used for exhaustive compilation of a BT model wrt. the entire feature space, or
target a set of training instances. Augmented by a number of post-hoc model reduction
techniques, the approach is shown to compute decision sets that are more accurate than
decision sets computed by the state-of-the-art algorithms and comparable with them in terms
of explanation size.

As the proposed approach targets generating a decision set by compiling a BT, a natural
line of future work is to extend the proposed approach to compile BTs into the other
interpretable models, i.e. decision trees and decision lists, making use of AXp extraction for
BTs. Additionally, another future work is to apply AXp extraction to compile other accurate
black box models, e.g. neural networks, into decision sets.

9 The average results across the folds are given in the appendix.
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A Summaries of Results Across Folds
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(b) Accuracy.

Figure 7 Experimental results of runtime and accuracy across folds.
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(b) Explanation Size.

Figure 8 Experimental results of model complexity and explanation size across folds.

Figures 7 and 8 illustrate the average experimental results across folds regarding scalability,
accuracy, model complexity, and explanation size. Since 5-fold cross validation is used, these
results for each dataset are obtained from the average of 5 pairs of training and test data.
Here, observations similar to those described in Section 5 can be made, i.e. the best
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scalability and accuracy among selected DS competitors are both demonstrated by cpl and
cpl∗, ∗ ∈ {l, r, lr, lλ1} , while imli1 and imli16 show the smallest model complexity and
explanation size.
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Figure 9 cpllr vs. CN2 and RIPPER across folds in terms of accuracy and explanation size.
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Figure 10 cpllr vs. imli16 and twostg Across Folds in terms of accuracy and explanation size.

B Detailed Comparisons Across Folds

In this appendix, we provide a detailed comparison of cpl lr versus other decision set inference
approaches across folds.

Figure 9 and Figure 10 detail the comparisons of cpl lr with CN2, RIPPER, imli16 and
twostg in terms of average accuracy and explanation size across folds. As can be seen in
Figure 9a, the accuracy of DSes generated by cpl lr is higher than the accuracy of CN2,
where the average accuracy is 57.49% and 48.03%, respectively. Additionally, Figure 9b
demonstrates that the explanation size of DSes produced by CN2 (81.93 on average) can be
two orders of magnitude larger than the explanation size of cpl lr (25.88 on average).

Figure 9c illustrates that the average accuracy in RIPPER is 44.81%, which is 12.68%
lower than the accuracy in cpl lr. Although Figure 9d depicts that RIPPER is comparable
with cpl lr regarding explanation size (29.08 and 25.34 on average respectively), RIPPER is
less interpretable as it computes DSes representing only one class.

As can be observed in Figure 10a, the accuracy of twostg (29.67% on average) is 27.82%
lower than the accuracy in cpl lr while Figure 10b illustrates that the explanation size is
comparable between the two approaches. Finally, Figure 10c demonstrates that the accuracy
of imli16 is 22.02% lower than the accuracy of cpl lr on average. However, as can be seen
in Figure 10d, the explanation size of imli16 is smaller than the explanation size of cpl lr

but imli16 generates DSes targeting only a single class, which significantly diminishes the
interpretability of computed DSes.

CP 2023





Searching for Smallest Universal Graphs and
Tournaments with SAT
Tianwei Zhang # Ñ

Algorithms and Complexity Group, TU Wien, Austria

Stefan Szeider # Ñ

Algorithms and Complexity Group, TU Wien, Austria

Abstract

A graph is induced k-universal if it contains all graphs of order k as an induced subgraph. For over
half a century, the question of determining smallest k-universal graphs has been studied. A related
question asks for a smallest k-universal tournament containing all tournaments of order k.

This paper proposes and compares SAT-based methods for answering these questions exactly for
small values of k. Our methods scale to values for which a generate-and-test approach isn’t feasible;
for instance, we show that an induced 7-universal graph has more than 16 vertices, whereas the
number of all connected graphs on 16 vertices, modulo isomorphism, is a number with 23 decimal
digits Our methods include static and dynamic symmetry breaking and lazy encodings, employing
external subgraph isomorphism testing.

2012 ACM Subject Classification Mathematics of computing → Extremal graph theory; Software
and its engineering → Constraint and logic languages; Hardware → Theorem proving and SAT
solving; Mathematics of computing → Graph enumeration

Keywords and phrases Constrained-based combinatorics, synthesis problems, symmetry breaking,
SAT solving, subgraph isomorphism, tournament, directed graphs

Digital Object Identifier 10.4230/LIPIcs.CP.2023.39

Supplementary Material Software: https://doi.org/10.5281/zenodo.8147732

Funding The project leading to this publication has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 101034440, and was
supported by the Vienna Science and Technology Fund (WWTF) within the project ICT19-065.

Acknowledgements This work was carried out in part while the second author visited the Simons
Institute for the Theory of Computing, University of Berkeley, within the program Extended Reunion:
Satisfiability. The authors thank Ciaran McCreesh for advising them to use and modify the Glasgow
subgraph solver.

Figure 1 A smallest induced 4-universal graph and how all 11 graphs of order 4 embeds into it.

© Tianwei Zhang and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 39; pp. 39:1–39:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhangtw@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/zhangtw/
https://orcid.org/0009-0000-3745-5234
mailto:sz@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/szeider/
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2023.39
https://doi.org/10.5281/zenodo.8147732
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


39:2 Searching for Smallest Universal Graphs and Tournaments with SAT

Figure 2 A smallest 4-universal tournament and how all 4 tournaments of order 4 embeds into it.

1 Introduction

A graph G is induced k-universal if it contains all k-vertex graphs as induced subgraphs; in
other words, any k-vertex graph can be obtained from G by deleting some of G’s vertices.
This notion of a universal graph, which extends naturally to directed graphs and tournaments
(orientations of complete graphs) was introduced by Rado in 1964 [25] and has since then
attracted much attention in combinatorics. Figures 1 and 2 provide examples of a universal
graph and a universal tournament, respectively. The fundamental question is to determine
for each integer k ≥ 1 the smallest n such that an induced k-universal graph with n

vertices exists; this number is denoted f(k) = n. In 1965, Moon [21] obtained the bounds
2(k−1)/2 ≤ f(k) ≤ O(k · 2k/2); Alstrup et al. [2] recently improved the upper bound to
f(k) ≤ 16 · 2k/2. The tight asymptotic upper bound of f(k) ≤ (1 + o(1))2(k−1)/2 is due to
Alon [1].

In contrast to these general bounds and asymptotic results, very little is known about
exact f(k) values, even for small k. Trimble [26] carried out a brute-force search, expanding
an approach suggested by Preen [24], and could determine the values of f(k) for k ≤ 6 and
the interval 16 ≤ f(7) ≤ 18. The brute-force search enumerates all candidate n-vertex graphs
up to isomorphism and tests for each of them whether it contains all the k-vertex graphs
as induced subgraphs. We refer to the k-vertex graphs that need to be checked as induced
subgraphs as pattern graphs. Tools exist for the isomorph-free enumeration of all connected
n-vertex graphs (we can assume that a candidate graph is connected), but the number of
such graphs exceeds eleven million for n = 10, and one billion for n = 11 [23, A001349].
Thus, the feasibility of the brute-force approach quickly hits a rigid boundary. In particular,
we cannot tighten the gap 16 ≤ f(7) ≤ 18 in this way, as enumerating all graphs with 16
vertices is far out of reach, although we can easily enumerate all the 7-vertex pattern graphs;
the exact number is 1044 [23, A000088].

This paper proposes new methods that allow us to break this boundary. The idea is
to formulate the problem as a synthesis problem for the universal graph rather than the
easier problem of testing a candidate graph for being universal. This way, we can avoid
the bottleneck of enumerating all candidate graphs. We formulate the synthesis problem in
propositional logic to harness the power of solvers for the propositional satisfiability problem
(SAT) [8]. Suppose the sought-for universal graph G has the numbers 1, . . . , n as its vertices.
For each pair 1 ≤ i < j ≤ n, we introduce a propositional variable ei,j (an edge variable)
whose truth value determines whether there is an edge between vertices i and j in G.

We propose and compare various strategies and techniques of encoding the property of G
being induced k-universal. Each of the encodings must combine two fundamental properties:
(i) to ensure that the found graph is indeed induced k-universal and (ii) to break symmetries
to minimize the enormous search space. We have two fundamentally different approaches for
properties (i) and (ii).

Our first approach for ensuring that the found graph is indeed induced k-universal uses
a direct SAT encoding. For the relevant cases, the number of pattern graphs is reasonably
small, and we can enumerate them up to isomophism. For each pattern graph, we obtain
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a formula which constrains the edge variables in such a way that the sought-for universal
graph contains an induced subgraph that is isomorphic to the pattern graph. A conjunction
over the formulas, one for each pattern graph, yields the SAT encoding.

Our second approach for ensuring universality utilizies the Glasgow subgraph solver
(GSS) [19], a powerful constraint-based tool for testing subgraphs. However, during the SAT
solver’s search we don’t have a candidate graph available for testing whether it accommodates
all the required induced subgraphs. A partial truth assignment instead sets a subset of
the edge variables to true or false, with some edge variables remaining undecided. Thus, a
partial truth assignment gives rise to a partially defined graph. Our objective is to find out
already for a partially defined graph whether it could be extended to a fully defined induced
k-universal graph. Indeed, we could achieve this by accessing GSS’s internal functionality.

Our first approach to breaking symmetries utilizes the SAT modulo Symmetries (SMS)
framework [17]. Also SMS works on partially defined graphs as represented by a partial truth
assignment to edge variables. Whenever the solver determines an edge, the partially defined
graph represented by the current partial truth assignment is sent to an external propagator,
which determines whether the partially defined graph can be extended to a fully defined
graph that is canonical (i.e., a unique graph within its ismorphism class). If not, a clause is
sent back to the solver.

Our second approach to symmetry breaking is based on the concept of templates which
serve two purposes: symmetry breaking and search space partition. In an offline phase, we
fix a small collection of highly symmetric pattern graphs and compute all possible ways these
pattern graphs can interact as induced subgraphs in the universal graph, up to isomorphism.
Each possible interaction gives rise to a template. By hardcoding a template, we get a formula
that is satisfiable if and only if there exists an induced k-universal graph on n vertices in
which the fixed collection of pattern graphs interact as prescribed in the template. f(k) ≤ n

if an only if for at least one of the templates, the corresponding formula is satisfiable. In
addition to the symmetry breaking aspect, the templates approach allows us to parallelize
the search, running SAT calls for various templates independently.

We also evaluate our SAT-based approach to determining smallest k-universal tourna-
ments. A tournament is a directed graph that can be obtained from a complete undirected
graph by orienting its edges. The name tournament originates from such a directed graph’s
interpretation as the outcome of a round-robin tournament in which every player encounters
every other player exactly once, and in which no draws occur. Tournaments are a central
combinatorial object whose properties have been intensively studied. The notion of univer-
sality applies to tournaments in a natural way: we say that a tournament is k-universal if it
contains each tournament on k-vertices as a subgraph. Let t(k) denote the smallest number
of vertices a k-universal tournament can have. The study of k-universal tournaments goes
back more than 50 years to Moon’s book (entirely dedicated to tournaments [22]) where
he determined the bounds 2(k−1)/2 ≤ t(k) ≤ O(k · 2k/2). The improvements on the bounds
parallel the ones for induced k-universal graphs: f(k) ≤ 16 · 2⌈k/2⌉ by Alstrup et al. [2] and
f(k) ≤ (1 + o(1))2(k−1)/2 by Alon [1].

The situation regarding exact values for t(k) is even worse than for f(k). While the
number of tournaments up to isomorphism is for all k ≤ 19 [23, A000568], very little can
be found on the value of t(k) in the literature. The only obvious values are t(1) = 1 and
t(2) = 2. In Moon’s book [22], it is left as an exercise to the reader to determine the value of
t(3) and t(4), indicating that these numbers might be easily deduced.

We implemented our SAT-based approaches to obtain new results on smallest induced
k-universal graphs and smallest k-universal tournaments. In particular, we could improve the
known lower bound for the order of an induced 7-universal graph by showing that no induced
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Table 1 Overview of results along the order k of the pattern graphs or tournaments. G(k)/T (k)
give the number of pattern graphs/tournaments of order k, f(k)/t(k) give the order of a smallest
(induced) k-universal graph or tournament, and F (k)/T (k) their number modulo ismomorphism,
respectively. New results are indicated in bold face.

Graphs Tournaments

k G(k) f(k) F (k) T (k) t(k) T (k)

1 1 1 1 1 1 1
2 2 3 2 1 2 1
3 4 5 5 2 4 3
4 11 8 438 4 5 1
5 34 10 22 12 8 1643
6 156 14 >36294 56 10 1088
7 1044 [17,18] – 456 [13,15] –

7-universal graph with 16 vertices exists, leaving the possibilities 17 and 18 for the smallest
solution, and we could determine the exact order of smallest k-universal tournaments up to
k = 6 and leaving the possibilities 13,14, and 15 for the smallest solution for k = 7. We also
determined the precise number of optimal solutions for k-universal tournaments for k ≤ 6,
up to isomorphism, which is of independent interest for combinatorial research. Our main
results are summarized in Table 1, smallest k-universal tournaments that we identified are
shown in Figures 6 and 7 in the appendix.

2 Preliminaries

We denote the set {1, . . . , n} by [n] and the set {m,m+ 1, . . . , n} by [m,n] for m ≤ n.

2.1 Graphs
We consider simple undirected graphs G, denoting the vertex set and the edge set of G by
V (G) and E(G), respectively. The order or a graph is the number |V (G)| of its vertices. An
edge between vertices u, v ∈ V (G) is denoted uv or equivalently vu. A graph G′ is a subgraph
of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A subgraph G′ of G is induced if for any
u, v ∈ V (G′), uv ∈ E(G) implies uv ∈ E(G′). Thus, an induced subgraph is determined by
its set of vertices.

The neighborhood of a vertex u ∈ V (G) is denoted NG(u), i.e., NG(u) := {x ∈ G | ux ∈
E(G) }. Two vertices v, v′ ∈ G are twins if they have the exact same neighbors excluding
each other, i.e., NG(u) \ {v} = NG(v) \ {u}.

The complement graph G of a graph G has V (G) = V (G) and E(H) := {uv | u ≠ v ∈
V (H), uv ̸∈ E(H) }.

We denote the complete graph of order k by Kk, the complete bipartite graph by Kl,r.
A monomorphism from H to G is an injective mapping ϕ : V (H) → V (G) such that for

all u, v ∈ V (H) we have ϕ(u)ϕ(v) ∈ E(G) if uv ∈ E(H). Such a monomorphism ϕ is faithful
if for all u, v ∈ V (H) we have uv ∈ E(H) if ϕ(u)ϕ(v) ∈ E(G) [11]. We say H embeds into
G if there is a faithful monomorphism from H to G. A bijective faithful monomorphism
is an isomorphism. We refer to H as the pattern graph and G as the target graph. For a
monomorphims ϕ from H to G we put ϕ(V (H)) := {ϕ(v) | v ∈ V (H) }.
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Let G(k) denote the class of all graphs of order k up to isomorphism. A graph G is
induced k-universal if all H ∈ G(k) embed into G. f(k) is the smallest order of an induced
k-universal graph, and F (k) is the number of non-isomorphic k-universal graphs of order
f(k).

2.2 Partially Defined Graphs
The notion of partially defined graphs was introduced in the context of SMS [17], for
capturing the combinatorial object represented by a partial truth assignment on the edge
variables. In this paper, we utilize this concept for two further purposes: to check with
an external subgraph solver whether the current branch of the search has the potential of
success (Section 4.5) and for the formulation of our template method for symmetry breaking
and search partition (Section 4.6).

A partially defined graph is a graph where some edges are undefined in the sense that
their presence in the graph is open. Formally, a partially defined graph G is a graph whose
edge set E(G) is split into disjoint sets Ed(G) and Eu(G), the sets of defined and undefined
edges, respectively. G is fully defined if Eu(G) = ∅. For a partially defined graph G, X (G)
denotes the set of all fully defined graphs G can be extended to, i.e., G′ ∈ X (G) if and only
if V (G′) = V (G), Ed(G) ⊆ E(G′) ⊆ E(G).

We extend the notion of a faithful monomorphism and an isomorphism to partially defined
graphs. Let H,G be partially defined graphs. An injective mapping ϕ : V (H) → V (G) is a
faithful monomorphism from H to G if for all u, v ∈ V (H) it holds that
1. uv ∈ Ed(H) if and only if ϕ(u)ϕ(v) ∈ Ed(G), and
2. uv ∈ Eu(H) if and only if ϕ(u)ϕ(v) ∈ Eu(G).
If there is a faithful monomorphism form H to G we say that H embeds into G. We say
that H and G are isomorphic if there is a bijective faithful monomorphism from H to G.

2.3 Directed Graphs and Tournaments
We denote a directed graph (or digraph) D by its vertex set V (D) and arc set A(D) ⊆
V (D) × V (D). A digraph D is an oriented graph if it has no directed digon {(u, v), (v, u)}.
(Induced) subdigraphs, isomorphisms, and faithful monomorphisms are defined for digraphs
analogously to graphs. A tournament is an oriented graph with a maximal number of arcs,
i.e., adding any further arc creates a digon. A tournament is transitive if it contains no
directed cycles. A tournament D′ is a subtournament of tournament D if it is a subdigraph
of D. If a tournament H is isomorphic to a subtournament of D, then we say that H
embeds into D. Hence H embeds into D if and only if there exists a faithful monomorphism
ϕ : V (H) → V (D).

Let T (k) denote the class of all tournaments of order k up to isomorphism. A tournament
D is k-universal if all H ∈ T (k) embed into D. Let T (k) denote the number of non-isomorphic
tournaments of order t(k) that are induced k-universal tournaments.

2.4 SAT
We consider propositional formals in conjunctive normal form (CNF). A CNF formula is
a conjunction of clauses, each clause is a disjunction of literals, a literal is a propositional
variable x or its negation ¬x. A propositional formula F is satisfiable if there exits a
mapping τ that assigns each variable a truth value ∈ {0, 1} such that each clause contains a
literal x with τ(x) = 1 or a literal ¬x with τ(x) = 0. A truth assignment is partial for a CNF
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formula if it is defined only for a subset of the formula’s variables. SAT solvers are tools that
decide whether a given CNF formula is satisfiable or not [8]. Today’s most powerful complete
SAT solvers follow the conflict driven clause learning (CDCL) paradigm. Modern CDCL
SAT solvers like Cadical [4] can certify the unsatisfiability of a CNF formula by producing
DRAT proofs (deletion, reverse asymmetric tautology) that can be independently checked
and verified [12, 27].

3 A Lower Bound for Induced k Universal Graphs

Trimble [26] showed that there is no graph of order less than 2k + 2 that is universal for
{Kk,Kk,K3,3,K3,3}, for all k ≥ 6. We extend this argument to show the following more
general proposition, which gives a strictly tighter lower bound for k ≥ 8.

▶ Proposition 1. 2k + 2⌊ k
2 ⌋ − 4 ≤ f(k) for all k ≥ 2.

Proof. Suppose G is an induced k-universal graph. Graphs Kk and Kk are both elements
of G(k), and therefore there exist faithful monomorphisms ϕK : V (Kk) → V (G) and
ϕI : V (Kk) → V (G). Let S1 := {ϕK(v) | v ∈ V (Kk) }, S2 := {ϕI(v) | v ∈ V (Kk) } and
S3 := V (G)/(S1 ∪ S2). Clearly, the subgraphs induced by S1 and S2 are a clique and an
independent set, respectively, and therefore may overlap by no more than one vertex. This
implies that |S1 ∪ S2| ≥ 2k − 1 and |S3| ≤ n − 2k + 1. Define H := K⌊ k

2 ⌋,⌊ k
2 ⌋+(k mod 2).

Let G1 be an induced subgraph of G that is isomorphic to H. Since there are no edges
between the two cliques of G1, it must be the case that at least one of the two cliques of G1
does not intersect S1. Denote this clique by C. Since S2 is an independent set in G, C
can only intersect S2 by at most one vertex. Since C has at least ⌊ k

2 ⌋ vertices, it follows
that C intersects S3 by at least ⌊ k

2 ⌋ − 1 vertices. In other words, the subgraph induced by
S3 contains a clique D of size ⌊ k

2 ⌋ − 1.
Now consider the graph H. Since H is an induced subgraph of G, it follows that H = H

is an induced subgraph of G. We can repeat the argument of the previous paragraph with the
roles of S1 and S2 reversed to show that the subgraph induced by S3 contains an independent
set of size ⌊ k

2 ⌋ − 1. Since this independent set can overlap with the clique D in at most
one vertex, it follows that the minimal size of S3 is 2(⌊ k

2 ⌋ − 1) − 1. In other words, for any
k-universal graph of order n where S1 ∩ S2 ̸= ∅, n− 2k + 1 ≥ 2(⌊ k

2 ⌋ − 1) − 1, which implies
that f(k) ≥ 2k + 2⌊ k

2 ⌋ − 4. Hence, the proposition is shown. ◀

Proposition 1 gives us f(2) ≥ 2, f(3) ≥ 4, f(4) ≥ 8, f(5) ≥ 10, f(6) ≥ 14 and f(7) ≥ 16.
Note that for k = 4, 5, 6, the lower bound given by the proposition is also the exact value of
f(k). Even though it does not give a tighter lower bound for f(7), it does improve on the
existing knowledge for k ≥ 8.

▶ Corollary 2. Let G be a k-universal graph. If there exist faithful monomorphisms ϕK :
V (Kk) → V (G) and ϕI : V (Kk) → V (G) with ϕK(V (Kk)) ∩ ϕI(V (Kk)) = ∅, then the order
of G is at least 2k + 2⌊ k

2 ⌋ − 3.

4 Encodings for Induced k universal Graphs

Throughout this section, we fix an integer n and consider a potential universal graph G with
V (G) = [n] whose edges are represented by edge variables eu,v, 1 ≤ u < v ≤ n.



T. Zhang and S. Szeider 39:7

4.1 Encoding Universality
First, we define a CNF formula M(H,n) that ensures that (mu,v)u∈V (H),v∈V (G) encodes an
injective mapping from V (H) to V (G).

M(H,n) :=
∧

u∈V (H)

( ∨
x∈[n]

mu,x

)
∧

∧
u ̸=v∈V (H)

x∈[n]

(¬mu,x ∨ ¬mv,x) ∧
∧

u∈V (H)
x ̸=y∈[n]

(¬mu,x ∨ ¬mu,y)

Now, we specify a CNF formula F (H,n) which is satisfiable if and only if H embeds into
G. F (H,n) encodes the existence of a faithful monomorphism ϕ from H to G in terms of
variables mu,v, u ∈ V (H), v ∈ V (G), which are true if and only if ϕ(u) = v.

F (H,n) := M(H,n) ∧
∧

uv∈E(H)
1≤x<y≤n

(¬mu,x ∨¬mu,y ∨ex,y)∧
∧

u̸=v∈V (H)
s.t. uv /∈E(H)

1≤x<y≤n

(¬mu,x ∨¬mv,y ∨¬ex,y).

The second and third conjunct ensure that the mapping preserves edges and non-edges,
respectively. The formula

U(k, n) =
∧

H∈G(k)

F (H,n)

is satisfiable if and only if there exists a k-universal graph on n vertices. From a satisfying
assignment we can read off a k-universal graph.

4.2 Symmetry-breaking Based on Twins
A basic symmetry-breaking can already be achieved by observing the symmetries of a pattern
graph H ∈ G(k). Specifically, if v, v′ ∈ V (H) are twins and ϕ is a faithful monomorphism
from H to G, then ϕ′ : V (H) → V (G) defined as

ϕ′(x) :=


ϕ(v′) if x = v,

ϕ(v) if x = v′,

ϕ(x) otherwise,

is also a faithful monomorphism. This means that we can always require that the faithful
monomorphism encoded by (mu,v)u∈V (H),v∈V (G) preserves the order of vertices (seen as
integers) for twins. The following CNF formula encodes this additional requirement.

Twin(k) :=
∧

H∈G(k)
u<v∈V (H)

s.t. u,v are twins
1≤x<y≤n

¬mv,x ∨ ¬mu,y

4.3 Embedding Kk and Kk

From preliminary experiments we observed that fixing (or “hardcoding”) some edges/non-
edges of the target graph can drastically speed up the solving process. Trimble [26] hardcodes
Kk and Kk in his experiments, and we agree that it is a good place to start. Since the two
subgraphs can have at most one overlapping vertex, we have the following two formulas, each
hardcoding one of the two possibilities. We assume n ≥ 2k.

KIdisjoint(k) :=
∧

1≤x<y≤k

ex,y ∧ ¬ex+k,y+k, KIoverlap(k) :=
∧

1≤x<y≤k

ex,y ∧ ¬ex+k−1,y+k−1.
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In Section 4.6, we will extend this idea by hardcoding more pattern graphs.
To sum up, the following two encodings are shared by all methods.

Ud(k, n) := U(k, n) ∧ Twin(k) ∧ KIdisjoint(k),
Uo(k, n) := U(k, n) ∧ Twin(k) ∧ KIoverlap(k).

Note that U(k, n) is satisfiable if and only if Ud(k, n) or Uo(k, n) is satisfiable.

4.4 SAT Modulo Symmetries (SMS)
If a SAT solver checks the satisfiability of Ud(k, n) or Uo(k, n), it does not break symmetries
and considers isomorphic copies of graphs implicitly represented by the edge variables, making
the approach impractical. Fortunately, the SAT modulo Symmetries (SMS) framework [17]
offers a solution.

For two (fully defined) graphs G1, G2, let G1 ⪯ G2 if and only the adjacency matrix of G1
is lexicographically smaller or equal to the adjacency matrix of G2 (we consider the matrix
as the string obtained by concatenating the rows of the matrix).

SMS works as follows. Whenever the SAT solver decides on an edge variable eu,v, the
partially defined graph G represented by the current truth assignment on the edge variables
is sent to an external propagator. With a certain pre-determined probability the propagator
checks a necessary condition for X (G) containing a ⪯-minimal graph. If the condition is not
met, then this branch of the search can be terminated: a clause that excludes G is learned
and sent back to the SAT solver.

In our context, while the satisfiability of U(k, n) and Twin(k) are unaffected by our
choice of the ⪯-minimal graph as the representative target graph for each isomorphic class,
KIdisjoint(k) and KIoverlap(k) might cause an otherwise satisfying assignment to fail the
minimality check.

The solution to this is to take advantage of the following functionality of SMS. When
SMS checks the ⪯-minimality of a partially defined graph G, one can specify a partition P

of the vertex set such that ⪯-minimality is only checked among all partially defined graphs
that can be obtained from G by permuting vertices within an equivalence class of P . For
Ud(k, n), we give SMS the partition {[k], [k + 1, 2k], [2k + 1, n]}, and for Uo(k, n), we give
the partition {[k− 1], [k, k], [k+ 1, 2k− 1], [2k, n]}. The disadvantage of this adaption is that
we are not able to trim down search branches as efficiently, but the advantage is that we can
enjoy the speed-up brought by hardcoding a part of the target graph.

4.5 External Subgraph Isomorphism Testing
Next we lay out a lazy encoding strategy where we check during the SAT solver’s run whether
the partially defined graph represented by the current partial assignment to the edge variables
can be extended to a k-universal graph. We utilize the Glasgow subgraph solver (GSS) [19] to
achieve this. The GSS is a state-of-the-art solver for the subgraph isomorphism problem based
on constraint programming. Given a pattern graph H and a target graph G, the subgraph
isomorphism problem asks whether there exists a monomorphism from H to G. One of the
key concepts underlying the GSS’s functionality is to generate auxiliary graphs H1, . . . ,Hm

with V (H) = V (Hi), 1 ≤ i ≤ m, and G1, . . . , Gm with V (G) = V (Gi), 1 ≤ i ≤ m, such that
a mapping from V (G) to V (H) is a (faithful) monomorphisms from H to G if and only if
it is a monomorphisms from Hi to Gi, for every 1 ≤ i ≤ m. Now the solver searches for a
mapping from V (G) to V (H) that is a monomorphism from Hi to Gi, for every 1 ≤ i ≤ m.
For instance, the GSS can decide whether H is isomorphic to an induced subgraph of G by
setting H1 = H, G1 = G, H2 = H, and G2 = G.
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We utilize this functionality of the GSS to check whether a partially defined graph can
be extended to an inducted k-universal graph.

For a partially defined graph G we define two fully defined graphs G¬0 and G¬1 by setting
V (G¬0) = V (G¬0) = V (G),

E(G¬0) = {uv | u ̸= v ∈ V (G), uv ∈ Ed(G) ∪ Eu(G) }, and
E(G¬1) = {uv | u ̸= v ∈ V (G), uv ̸∈ Ed(G) }.

▶ Proposition 3. Let H be a graph and G a partially defined graph G. H embeds into some
graph in X (G) if and only if there is a mapping from V (H) to V (G) that is a monomorphism
both from H to G¬0 and from H to G¬1,

Thus, we can use the GSS with a minimal change to its interface to check whether
H embeds into some graph in X (G). We integrate the subgraph solver into the external
propagator of the SMS framework. Whenever the SAT solver decides on an edge variable
eu,v, the partially defined graph G represented by the current truth assignment on the edge
variables is sent to the propagator. The propagator checks whether all graphs from a set of
randomly selected pattern graphs of a certain size are embeddable into G. If the check fails,
this branch of the search can be terminated: a clause that excludes G is learned and sent
back to the SAT solver. We set up three parameters for this process to control the usage of
the subgraph solver: Sample size specifies the number of randomly selected pattern graphs.
Threshold specifies the minimal number of determined edges/non-edges that is required to
present in G for the embedability check to be performed. Finally, frequency specifies the
likelihood the embedability check is performed and is indicated as an integer f . Everytime
the SAT solver decides on an edge variable eu,v, if the threshold is met, then there is a 1/f
chance the emdedability check will be performed.

4.6 Templates
Next we propose a different approach, based on the concept of a template, which extends
the simple method of hardcoding edges or non-edges for speeding up the solving process
discussed in Section 4.3.

As it turned out, templates can be defined as partially defined graphs, but with a different
purpose than the partially defined graphs used in SMS. Fix a small collection of graphs
from G(k). We want each template to provide a distinct way in terms of how this small
collection of graphs can be embedded at simultaneously in the universal graph. Ideally, these
templates should allow us to hardcode as many edges/non-edges into the universal graph
as possible for the benefit of speed-up. At the same time, there should not be too many of
them, as we set a separate SAT instance of each template and need to show that all of them
are unsatisfiable to establish a lower bound. In the end, we also want them to be easy to
generate.

Let H ⊆ G(k). An (n,H)-template is a partially defined graph G such that there exists a
family of faithful monomorphism (δH : V (H) → V (G))H∈H with the additional condition
that for all x, y ∈ V (G), if there is no H ∈ H such that x, y ∈ δH(V (H)), then xy ∈ Eu(G).
Let H(n) denote the set of all (n,H)-templates modulo ismomorphism.

▶ Proposition 4. Let k < n integers and H ⊆ G(k). Then f(k) ≤ n if and only if X (G)
contains a k-universal graph for some G ∈ H(n).

According to this proposition, we can limit the search for an induced k-universal graph to the
graphs in X (G) for some G ∈ H(n). It remains to generate H(n) for suitable sets H for which
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H(n) remains reasonably small. We accomplish that by representing templates (i.e., partially
defined graphs) as directed graphs and utlizing SMS for directed graphs as introduced by
Kirchweger et al. [16], as follows.

Let us define a mapping D from the set of partially defined undirected graphs to the set of
(fully defined) directed graphs: for each partially defined graph G, we put V (D(G)) := V (G)
and A(D(G)) := {uv ∈ Ed(G) | u > v }∪Eu(G). We also define the reverse mapping D′ from
directed graphs to partially defined undirected graphs: for each directed graph D, we put
V (D′(D)) := V (D), Ed(D′(D)) := {uv | uv ∈ A(D), vu ̸∈ A(D) } ∪ {uv | vu ∈ A(D), uv ̸∈
A(D) } and Eu(D′(D)) := {uv | uv, vu ∈ A(D) }. For any partially defined graph G we have
that D′(D(G)) and G are isomorphic.

We encode into CNF the condition for a directed graph D to be D(G) for some template
G of H(n), use SMS for digraphs to enumerate all such D modulo isomorphism, and then
apply D′ to recover the corresponding G. We encode the condition for a directed graph D to
be D(G) for some template G of H as follows.

D(H, n) :=
∧

H∈H

(
M(H,n) ∧

∧
uv∈E(H)
1≤x<y≤n

(mu,x ∧mv,y) → (¬ax,y ∧ ay,x) ∧
∧

uv ̸∈E(H)
1≤x<y≤n

(mu,x ∧mv,y) → (¬ax,y ∧ ¬ay,x)
)

∧
∧

1≤x<y≤n

(
(ax,y ∧ ay,x) ∨

∨
H∈H

(
∨

i∈V (H)

mi,x ∧
∨

i∈V (H)

mi,y)
)
.

The first three conjuncts in D(H, n) enforce that H is an induced subgraph of G, and the
last conjunct ensures that for all pairs u, v of V (G) such that u, v are not both in the range
of δH for all H ∈ H, where δH refers to the faithful monomorphism from H to G, we have
uv ∈ U(G).

By trial and error, we determined that an ideal set of pattern graphs to generate templates
for the task of determining f(7) is H4 := {K7,K7,K3,4,K3,4 }. Running SMS on D(H4, 16)
and D(H4, 17) gives us 350 and 2772 solutions, respectively. We recover the templates
from these solutions by applying D′. Then, we filter out isomorphic templates using Nauty
with the method explained in the Nauty and Traces User’s Guide [20], which converts
detecting isomorphisms between graphs with edge-colorings to that between graphs with
vertex-colorings. This leaves us with 40 and 359 templates, respectively. Hence we have
established the following result.

▶ Proposition 5. |H(16)
4 | = 40 and |H(17)

4 | = 359.

5 Encodings for k Universal Tournaments

5.1 Basic Encoding

For a fixed integer n, we consider a potential k-universal tournament G with V (G) = [n]
whose arcs are represented by arc variables au,v, u ̸= v ∈ [n]. The truth value of au,v

indicates whether there is an arc from u to v.
First, we specify a CNF formula F ′(H,n) which is satisfiable if and only if H embeds

into G, i.e., if H is isomorphic to a subtournament of G. The following CNF formula encodes
the existence of a faithful monomorphism ϕ from H to G, in a similar way F (H,n) encodes
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the universality condition for universal graphs.

F ′(H,n) := M(H,n)∧
∧

x ̸=y∈[n]

(
(¬ax,y∨¬ay,x)∧(ax,y∨ay,x)

)
∧

∧
uv∈A(H)
1≤x<y≤n

(¬mu,x∨¬mv,y∨ax,y).

M(H,n) ensure that (mu,v)u∈V (H),v∈V (G) encodes an injective mapping from V (H) to
V (G). The second conjunct ensures that there is exactly one arc between any two distinct
vertices. The third conjunct ensures that the mapping preserves arcs. The formula

U ′(k, n) =
∧

H∈T (k)

F ′(H,n)

is satisfiable if and only if there exists a k-universal tournament on n vertices. From a
satisfying assignment we can read off a k-universal tournament.

5.2 Approaches to Universal Tournaments
For the SMS approach, we use a recent extension of the framework to directed graphs [16].

For the SAT approach, there are two more features that we add to the basic encoding.
The first feature is to hardcode an embedding of the transitive tournament onto [k].

TT(k) =
∧

1≤i<j≤k

ai,j

The second feature is to utilize the perfect symmetry-breaking clauses from Lohn et al.’s
work [18] who defined a series of CNF formulas I(t), 1 ≤ t ≤ 8, which they call isolators.
These isolators restrict arc variables to achieve a perfect symmetry-breaking for tournaments
in the sense that the satisfying assignments to I(t) are in 1-1 correspondence with the
tournaments of order t modulo isomorphism. Since the size of I(t) grows quickly in t, we
only utilize isolators for t ≤ 6.

Given l ≤ r, we write I(l, r) to denote the isolator resulting from considering [l, r] instead
of [r − l + 1] to be the underlying vertex set. To obtain the overall encoding TTI(k, n), we
start with TT(k) and see how many vertices there are in [k + 1, n]. If n− k ≤ 6, then we
add I(k + 1, n) to the encoding and finish. If n− k > 6, then we add I(k + 1, k + 6) to the
encoding and repeat this process with [k + 7, n]. For example, TTI(6, 10) = TT(6) ∧ I(7, 10)
and TTI(7, 16) = TT(7) ∧ I(8, 13) ∧ I(14, 16).

6 Certificates

There is a long tradition of computer-assisted proofs in mathematics; a famous example is the
proof of the Four-Color Theorem by Apple and Haken [3]. There are mathematical statements
whose proof seems to require extensive brute-force search, which is impossible for a human to
check [13]. For trusting mathematical statements established by such computational methods,
certifying the computational result with a formal proof that can be independently checked is
highly desirable. Proof checking should ideally be accomplished through a simple algorithm
whose correctness can be trusted or even fully verified. Most of the SAT-based methods
described in our paper can be independently verified. In particular, the runs of a CDCL
SAT solver on our encodings can produce a DRAT proof, for which a verified proof checker
DRAT-trim is available [12, 27]. This approach extends to SMS as follows [15]. During
the SMS run, we collect all the generated symmetry-breaking clauses and add them to the
clauses generated from the encoding. We can run a plain CDCL SAT solver on this extended
set of clauses that generates a DRAT proof. The validity of the symmetry-breaking clauses
can also be checked offline with a simple tool.
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One could extend the our current verification tool chain in various ways. One can formally
verify SAT encodings themselves [5, 6, 9] to provide additional trust in the obtained results.
To certify the correctness of auxiliary computations provided by the Glasgow subgraph
solver, one can utilize a Cutting Planes proof logging format [10]. What remains is the
usage of Nauty [20] for generating pattern graphs and occasionally for filtering isomorphic
copies, which does not support independent certification. The former usage, the generation
of pattern graphs, can easily be replaced by SMS. For the latter, if an isomorphism between
two objects has been found, it is easy to verify whether this is indeed a correct isomorphism.
On the other hand, if Nauty fails to identify two objects as being isomorphic, this would
only make our overall approach less efficient but would not alter the final results.

7 Experiments

7.1 Configurations

Based on the techniques discussed in Sections 4 and 5, we consider several configurations that
we test in our experiments. We use a naming convention for configurations, where a name
starting with UG indicates a configuration for universal graphs and a name starting with
UT indicates a configuration for universal tournaments. All UG configurations contain the
following basic encoding: the encoding for universality (Section 4.1), the symmetry breaking
for twins (Section 4.2), and the hardcoded Kk,Kk (Section 4.3). We distinguish between the
use of SMS and the use of SAT without SMS (plain SAT).

UG-SAT basic encoding with plain SAT.
UG-SMS basic encoding with SMS.
UG-SMS-GSS basic encoding with SMS extended with the Glasgow Subgraph Solver.
UG-SAT-Temp basic encoding together with templates from Section 4.6 with plain SAT.
UT-SMS encoding for universality from Section 5.1 with SMS.
UT-SAT-TTI encoding for universality with fixed transitive tournament and isolators from

Section 5.2 and plain SAT.

Theoretically, it is also possible to run SMS extended with GSS without the basic encoding.
However, the preliminary experiments we conduct show that this is impractical given the
drastically increased running time. Hence, we do not use this method in our main experiments.

7.2 Setup

The setup for the experiments is as follows. We generate G(k) and T (k) with Nauty 2.8.6 [20].
For configurations based on SMS, we use a recent SMS version that invoke a recent version
of the Cadical SAT solver through the new IPASIR-UP interface [7]. For configurations that
do not use SMS we employ Cadical as provided by the PySAT package [14]. We made minor
changes to GSS [19] to access its internal functionality. All non-standard tools can be found
in the supplementary material.

The experiments are run on a Sun Grid Engine (SGE) with Ubuntu 18.04.6 LTS. The
architecture of the nodes in the SGE are among the following: 2× Intel Xeon E5540 with
2.53 GHz Quad Core, 2× Intel Xeon E5649 with 2.53 GHz 6-core, 2× Intel Xeon E5-2630 v2
with 2.60GHz 6-core, 2× Intel Xeon E5-2640 v4 with 2.40GHz 10-core and 2× AMD EPYC
7402 with 2.80GHz 24-core.
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7.3 Universal Graphs

7.3.1 Verifying f(k) and F (k) for 1 ≤ k ≤ 5

We run the configurations UG-SMS and UG-SAT-Temp to verify values f(k) and F (k) for
1 ≤ k ≤ 5 as obtained by Trimble [26]. To verify the values of f(k), we run both configurations
on n = f(k) − 1 and n = f(k) to see whether the former gives a negative answer (unsat) and
the latter a positive (sat). To verify the values of F (k), we solve incrementally, i.e., every
time a universal graph is discovered, a clause that prohibits the generation of this particular
graph is added to the solver and the solver continues. For UG-SMS, we do not hardcode
Kk and Kk and start with ([n]) as the initial partition. This way, the minimality check is
enough to filter out non-isomorphic solutions. For UG-SAT-Temp, we detect and exclude
isomorphic copies among the found universal graphs using Nauty. It turns out, that both
configurations can verify each of the vaules within a couple of seconds.

7.3.2 Comparing the Efficiency of Computing f(6)

The case of k = 6 serves as a good benchmark for testing the efficiency of different methods,
since it is neither too hard nor too easy. The value f(6) = 14 was determined by Trimble [26].
Hence, we test various configurations on k = 6, n = 13 and k = 6, n = 14. In the experiments
described below, we run all instances 5 times and take the average running time.

For the case of k = 6, n = 13, we only test UG-SAT and UG-SMS since this case is
computationally easy. The configurations use 0.61s and 1.39s, respectively.

For the case of k = 6, n = 14, we test UG-SAT, UG-SMS, and UG-SMS-GSS. The
first two configurations use 13.9s and 521s, respectively. With UG-SMS-GSS, we try all
possible combinations of the following parameter values: threshold ∈ {40, 50, 60, 70, 80},
frequency ∈ {5, 20, 50, 100, 500, 1000}, and sample size ∈ {5, 20, 60, 100, 156}. We record the
total time used in solving and the time used by the embedability check.

Figure 3 Data points for UG-SMS-GSS on k = 6, n = 14, grouped according to the value of
frequency. We cast the data points in a two-dimensional space where the x-axis represents the
percentage of time taken by the embedability check, and the y-axis represents the total time used.
We draw a red horizontal line standing for the case of SMS, and a black horizontal line standing for
the case of pure SAT.
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Table 2 Running times for UG-SMS-GSS on the unsatisfiable case with k = 7 and n = 16.

case sample size frequency threshold total time/h time used in
embedability check/h

1 1044 500 100 73.63 0.12
2 1044 1000 80 71.34 3.40
3 1044 500 70 82.36 11.63
4 1044 1000 110 76.34 0

To understand the parameters’ influence on the running time, and how the three configu-
rations compare with each other, we present our findings in Figure 3. We first observe that
UG-SAT uses significantly less time than UG-SMS or UG-SMS-GSS. Second, the introduction
of the embedability check slightly decreases the running time in some cases and drastically
increases the running time in others. Third, the solving time positively correlates with
the percentage of the time used by the embedability check. In general, UG-SAT is clearly
the most efficient among the configurations and the benefit of UG-SMS-GSS compared to
UG-SMS is not obvious.

In Figure 3, data points of different frequency are shown in different colors. We see that
data points of the same color form loose clusters. A further check into the distribution in
terms of sample size and threshold within each group does not yield any meaningful pattern.
We also tried grouping the same data points according to sample size and threshold, but did
not obvious any obvious patterns. This indicates that the frequency parameter might be the
only useful one among the three in terms of tuning for efficiency, and giving it a reasonably
large value (which corresponds to the infrequent invocation of the embedability check) is
preferred.

We also tried to determine the value of F (6) incrementally with UG-SAT. After a few
days we terminated the program. At that state, it had generated 36294 non-isomorphic
6-universal graphs of order 14.

7.3.3 f(7) > 16
To show f(7) > 16, we use UG-SAT, UG-SMS, UG-SMS-GSS, and UG-SAT-Temp. All four
configurations conclude that a 7-universal graph with 16 vertices does not exist. UG-SAT takes
39 hours and UG-SMS takes 68 hours. For UG-SMS-GSS, we narrow down the choices of the
possible values for the parameters based on previous experiments, and test all combinations
with sample size = 1044, frequency ∈ {500, 1000} and threshold {70, 80, 90, 100, 110}. Only 4
test cases out of 50 terminate within 97 hours. Table 2 provides some details. For UG-SAT-
Temp, there are |H(16)

4 | = 40 templates to consider. The easiest template takes 0.4s, the
hardest 38 minutes. The total time spent on all 40 templates is 3.6 hours, making the average
time spent on each template 322.4s.

Since UG-SAT-Temp seems to be the most effective among the considered configurations,
we also tried using it to determine whether there exists a 7-universal graph of order 17. Here
we have |H(17)

4 | = 359 templates to consider. Unfortunately, this approach does not seem
to be able to bring the problem down to the reach of modern SAT solvers. By the time
of the writing, 25 out of the 359 cases still have not terminated. The 334 cases that have
terminated spent 4237 CPU days, all returning with a negative answer. Figure 4 shows the
time spent on each template in an ascending order. Even though we have no definitive result,
the facts that (i) most cases could be shown unsatisfiable, and (ii) the SAT solver was not
able to find a counter example on the remaining cases even after a long runtime, provide
some evidence that a 7-universal graph of order 17 might not exist.
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Table 3 Overview of running times in seconds for finding one or all solutions up to isomorphism.

t(k) − 1 t(k)

UT-SAT-TTI UT-SMS UT-SAT-TTI UT-SMS

k T (k) t(k) T (k) one all one all

5 12 8 1643 0.03 0.17 0.00 48.28 0.06 3.27
6 56 10 1088 6.41 30.68 11.83 N/a 105.36 47033.06

Figure 4 Time spent on each template ordered by their value. The blue bars represent the time
spent by templates that have terminated, and the red bars show the time spent on templates that
have not terminated by the time of writing.

7.4 Universal Tournaments

7.4.1 t(k) and T (k) for 1 ≤ k ≤ 6
We run the configurations UT-SMS and UT-SAT-TTI to calculate t(k) and T (k) for 1 ≤ k ≤ 6.
To calculate the value of f(k), we start with the lower bound

t(k) ≥ max({k, t(k − 1),min{x | Cx
k ≥ |T (k)| }})

where Cx
k denotes the number of k-combinations from a given set of x elements, i.e., Cx

k =
x!

k!(x−k)! . We test TTI(k, n) while increasing n until we find a universal tournament. To
calculate T (k), we modify the two methods similarly as we did for verifying F (k). Table 3
shows the time spent on the case n = t(k) − 1 and n = t(k). The time consumed in all
applicable cases for 0 ≤ k ≤ 4 are under 0.005s, so we omit them in the table. The process
of finding out all non-isomorphic 6-universal tournaments of order 10 with UT-SAT-TTI does
not terminate within a couple of days.

CP 2023
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7.4.2 13 ≤ t(7) ≤ 15
An obvious lower bound for t(7) is 11 since C10

7 = 120 < 456 = |T (7)|. Neither UT-SMS
nor UT-SAT-TTI gives a result on k = 7, n = 11 within half an hour. We generate separate
SAT instances where we hardcode each of the four non-isomorphic tournaments of order 4
onto [8, 11] ⊆ V (G) in addition to TTI(7, 11). The four instances terminate with a negative
answer in 14.55s, 458.32s, 1399.09s, and 1212.89s, respectively. This way, we have shown
that t(7) > 11. To show that t(7) > 12, we generate and test the following SAT instance for
each a⃗ = (ai)i∈[7], ai ∈ [4],

TTI(7, 12) ∧
∨

i∈[7]

ψai
(i)

where

ψ1(i) := |{ j ∈ [8, 12] | ei,j = 1 }| ≤ 1, ψ2(i) := |{ j ∈ [8, 12] | ei,j = 1 }| = 2
ψ3(i) := |{ j ∈ [8, 12] | ei,j = 1 }| = 3, and ψ4(i) := |{ j ∈ [8, 12] | ei,j = 1 }| ≥ 4.

This gives us 16384 instances in total and all of them return with a negative answer. Thus,
t(7) > 12. The sum of the time spent is around 2002 CPU days, making the average running
time for each case 2.9 hours. More than half of the cases terminate within 40 minutes, and
the hardest case takes almost 4 days.

The upper bound t(7) ≤ 15 is obtained with UT-SAT-TTI, which finds a 7-universal
tournament of order 15 within 57.95s. As for the cases of TTI(7, 13) and TTI(7, 14), UT-
SAT-TTI does not terminates within a few days, and it is not practical to generate separate
SAT instances in the way we did for TTI(7, 12), given the large number of instances and the
estimated time per case from our preliminary experimentation.

8 Conclusion

We have proposed several methods to compute the smallest order of induced k-universal
graphs and tournaments as a synthesis problem that does not require the enumeration of
all potential candidates. Our approaches make use of state-of-the-art CDCL SAT solvers.
For the SAT encoding, we proposed a direct encoding and a lazy encoding that utilizes the
Glasgow subgraph solver (GSS); for symmetry breaking, we proposed using the SAT modulo
Symmetries (SMS) framework and a new templates approach.

We tested and compared these methods, which let us understand their strengths and
weaknesses. The template approach was the fastest for unsatisfiable instances; SMS was
particularly strong for enumerating all solutions; the GSS was able to speed up the SMS
approach. We could improve the known lower bound and show that no induced 7-universal
graph with 16 vertices exists, leaving possibilities 17 and 18 for the smallest solution.

We could determine the exact order of smallest k-universal tournaments up to k = 6 and
the interval [13,15] for k = 7. We determined the precise number of optimal solutions, which
is of independent interest for combinatorial research.

As future work, determining the exact order of a smallest induced 7-universal graph might
be within reach by refining our methods and additional cubing. It would be interesting to
see whether it is possible to combine SMS with the templates approach, as this might give a
significant boost to possibly allow us to attack the k-universality problems for even larger
values of k.
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A Appendix

0
k = 1

0 0 1
0 0 1
1 1 0
k = 2

0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 0

k = 3

0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 1
0 1 1 1 0 1 0 1
1 0 1 0 0 1 1 0

k = 4

0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 0 1 0 1 1
0 0 1 0 1 1 0 0 1 1
0 1 1 1 1 0 0 0 0 1
1 0 1 1 1 1 1 0 0 1
1 1 0 1 1 1 1 1 1 0

k = 5

0 1 1 1 1 1 0 0 0 0 1 1 1 1
1 0 1 1 1 1 1 1 1 0 1 0 0 1
1 1 0 1 1 1 1 0 0 0 1 0 1 0
1 1 1 0 1 1 1 1 0 0 0 1 0 0
1 1 1 1 0 1 0 1 0 0 1 0 0 1
1 1 1 1 1 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 0 1 0 0 0 0 0 0 0 1 0
1 0 0 1 0 1 0 1 1 0 0 0 0 1
1 0 1 0 0 0 1 1 0 1 1 0 0 0
1 1 0 0 1 0 1 1 1 1 0 1 0 0

k = 6

Figure 5 Smallest induced k-universal graphs and their incidence matrices.

0
k = 1

0 0
1 0

k = 2

0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0
k = 3

0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0

0 0 0 0 1
1 0 0 0 0
1 1 0 0 1
1 1 0 0 0
0 1 0 1 0

k = 4

Figure 6 All smallest k-universal tournaments for k = 1, 2, 3, 4, and their incidence matrices.
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Abstract
Recognizing the satisfiability of Constraint Satisfaction Problems (CSPs) is NP-hard. Although
several Machine Learning (ML) approaches have attempted this task by casting it as a binary
classification problem, they have had only limited success for a variety of challenging reasons. First,
the NP-hardness of the task does not make it amenable to straightforward approaches. Second,
CSPs come in various forms and sizes while many ML algorithms impose the same form and size on
their training and test instances. Third, the representation of a CSP instance is not unique since the
variables and their domain values are unordered. In this paper, we propose FastMapSVM, a recently
developed ML framework that leverages a distance function between pairs of objects. We define
a novel distance function between two CSP instances using maxflow computations. This distance
function is well defined for CSPs of different sizes. It is also invariant to the ordering on the variables
and their domain values. Therefore, our framework has broader applicability compared to other
approaches. We discuss various representational and combinatorial advantages of FastMapSVM.
Through experiments, we also show that it outperforms other state-of-the-art ML approaches.
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1 Introduction

Constraints constitute a very natural and general means for formulating regularities in
the real world. A fundamental combinatorial structure used for reasoning with constraints
is that of the Constraint Satisfaction Problem (CSP). The CSP formally models a set of
variables, their corresponding domains, and a collection of constraints between subsets of
the variables. Each constraint restricts the set of allowed combinations of values of the
participating variables. A solution of a given CSP instance is an assignment of values to
all the variables from their respective domains such that all the constraints are satisfied.
Technologies for efficiently solving CSPs bear immediate and important implications on
how fast we can solve computational problems that arise in several other areas of research,
including computer vision, spatial and temporal reasoning, model-based diagnosis, planning
and scheduling, and language understanding.
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Unfortunately, solving CSPs is NP-hard since they generalize the Satisfiability (SAT)
problem. Although many technologies have been developed for solving CSPs in practice [4],
they do not sufficiently harness the power of Machine Learning (ML) techniques. While
there have been a lot of attempts to apply ML techniques to CSPs, none of these attempts
have yielded spectacular results: They do not consistently produce high-quality outcomes.
Examples of ML approaches used in the CSP domain include the application of Support Vector
Machines (SVMs) [2], linear regression [22], decision tree learning [7, 6], clustering [15, 8],
k-nearest neighbors [13], and others [9]. However, most of these approaches have had limited
success for a variety of challenging reasons.

First, from a complexity theory perspective, the NP-hardness of the task does not make
it amenable to straightforward ML approaches. For example, since a neural network (NN)
is essentially a continuous differentiable form of a circuit, it is not straightforward to make
NNs effective in the CSP domain. Second, CSPs come in various forms and sizes while
many ML algorithms use an architectural framework that imposes the same form and size
on their training and test instances. For example, an NN may have a fixed input layer
that it uses for the training and test instances alike. Third, the representation of a CSP
instance is not unique since the variables and their domain values are unordered. This
poses a significant combinatorial challenge for ML algorithms since they have to learn the
permutation invariance with respect to orderings on the variables and their domain values.
For example, an NN may pose the overhead of having to be trained on all permutations of
the same CSP instance to become effective.

In this paper, we consider the problem of predicting the satisfiability of CSP instances
using ML. In ML terminology, this is essentially a binary classification problem defined
on CSPs with the two possible classification labels “satisfiable” and “unsatisfiable”. This
classification problem is a cornerstone task for addressing the combinatorics of CSPs. It
also serves as a stepping stone for the task of solving CSPs. In fact, any ML framework
expected to be viable for solving CSPs should likely first demonstrate its success on solving
the aforementioned classification problem on CSPs.

We propose to solve the above classification problem on binary CSPs2 using a recently
developed ML framework called FastMapSVM [19]. While most ML algorithms learn to
identify characteristic features of individual objects in a class, FastMapSVM leverages a
domain-specific distance function on pairs of objects. It does this by combining the strengths
of FastMap [5] and SVMs. In its first stage, FastMapSVM invokes FastMap, an efficient
linear-time algorithm that maps complex objects to points in a Euclidean space, while
preserving pairwise distances between them. In its second stage, it invokes SVMs and kernel
methods for learning to classify the points in this Euclidean space.

FastMapSVM has demonstrated success on classifying complex objects such as seismo-
grams in Earthquake Science [19]. It offers several advantages over ML algorithms that reason
about individual objects instead of pairs of objects. First, FastMapSVM enables domain
experts to incorporate their domain knowledge using a distance function. This avoids relying
on complex ML models to infer the underlying structure in the data entirely. Second, because
the distance function encapsulates domain knowledge, FastMapSVM naturally facilitates
interpretability and explainability. In fact, it even provides a perspicuous visualization
of the objects and the classification boundaries between them. Third, FastMapSVM uses
significantly smaller amounts of time and data for model training compared to other ML
algorithms. Fourth, it extends the applicability of SVMs and kernel methods to domains
with complex objects.

2 Binary CSPs have at most two variables per constraint but are allowed to have non-Boolean variables.
Binary CSPs are representationally as powerful as general CSPs with bounded arity of the constraints.
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Figure 1 The left panel shows the (0, 1)-matrix representation of a single constraint C(X1, X2).
The right panel shows the (0, 1)-matrix representation of an entire binary CSP instance.

In applying FastMapSVM to the CSP domain, we define a novel distance function
between two CSP instances. This distance function uses maxflow computations and is
well defined for CSP instances of different sizes. It is also invariant to the ordering on
the variables and their domain values in the CSP instances. Therefore, FastMapSVM has
broader applicability compared to other ML approaches in the CSP domain. Moreover, since
it uses the intelligence of SVMs, kernel methods, and maxflow computations, it is able to
significantly outperform competing ML approaches. It is also able to outperform procedures
that invest polynomial time in establishing local consistency—such as arc-consistency—to
discover unsatisfiable CSP instances. This demonstrates that a trained FastMapSVM model
acquires an intelligence beyond that of prominent polynomial-time procedures.3 We discuss
various other representational and combinatorial advantages of FastMapSVM and, through
experiments, we also demonstrate its superior performance.

2 Preliminaries and Definitions

A CSP instance is defined by a triplet ⟨X ,D, C⟩, where X = {X1, X2 . . . XN} is a set of
variables and C = {C1, C2 . . . CM} is a set of constraints on subsets of them. Each variable
Xi is associated with a finite discrete-valued domain Di ∈ D, and each constraint Ci is a pair
⟨Si, Ri⟩ defined on a subset of variables Si ⊆ X , called the scope of Ci. |Si| is referred to as
the arity of the constraint. Ri ⊆ DSi (DSi = ×Xj∈SiDj) denotes all compatible tuples of DSi

allowed by the constraint. The absence of a constraint on a certain subset of the variables is
equivalent to a constraint on the same subset of the variables that allows all combinations of
values to them. A solution of a CSP instance is an assignment of values to all the variables
from their respective domains such that all the constraints are satisfied. A binary CSP
instance has at most two variables per constraint. Binary CSPs are representationally as
powerful as general CSPs with bounded arity of the constraints [4].

A binary CSP is arc-consistent if and only if for all variables Xi and Xj , and for every
instantiation of Xi, there exists an instantiation of Xj such that the direct constraint between
them is satisfied. Similarly, a binary CSP is path-consistent if and only if for all variables

3 This is an important hallmark of an ML algorithm. In [20], a deep NN model is presented to recognize
the satisfiability of CSP instances with Boolean variables and binary constraints. However, this class of
CSP instances is equivalent to 2-SAT and can be solved in polynomial time, diminishing the advantages
of an ML framework over polynomial-time reasoning.

CP 2023
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Figure 2 The figure, borrowed from [3], illustrates how coordinates are computed and recursion
is carried out in FastMap.

Xi, Xj and Xk, and for every instantiation of Xi and Xj that satisfies the direct constraint
between them, there exists an instantiation of Xk such that the direct constraints between
Xi and Xk and between Xj and Xk are also satisfied.

For a given binary CSP instance, we can build a matrix representation for it using a
simple mechanism. First, we assume that the domain values of each variable are ordered
in some way. (We can simply use the order in which the domain values of each of the
variables are specified.) Under such an ordering, we can represent each binary constraint
as a 2-dimensional matrix with all its entries set to either 1 or 0 based on whether the
corresponding combination of values to the participating variables is allowed or not by that
constraint. The left panel of Figure 1 shows the (0, 1)-matrix representation of a binary
constraint between two variables X1 and X2 with domain sizes of 5 each. The combination
of values (X1 ← d12, X2 ← d21) is an allowed combination, and the corresponding entry in
the matrix is therefore set to 1. However, the combination of values (X1 ← d14, X2 ← d22)
is a disallowed combination, and the corresponding entry is therefore set to 0. In general, dip

denotes the p-th domain value of Xi assuming an index ordering on the domain values of Xi.

The (0, 1)-matrix representation of an entire binary CSP instance can be constructed
simply by stacking up the matrix representations for the individual constraints into a bigger
“block” matrix. The right panel of Figure 1 illustrates how a binary CSP instance on 3
variables X1, X2, and X3 can be represented as a “mega-matrix” with 3 sets of rows and 3
sets of columns. Each block-entry inside this mega-matrix is the matrix representation of the
direct constraint between the corresponding row and column variables. Therefore, the matrix
representation of an entire binary CSP instance has

∑N
i=1 |Di| rows and

∑N
i=1 |Di| columns.

3 FastMap and FastMapSVM

In this section, we describe FastMap and FastMapSVM to set up the groundwork for our
approach. Both these rely on a domain-specific distance function D(·, ·) on pairs of objects.
D(·, ·) is required to be a non-negative symmetric function.
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3.1 FastMap
FastMap [5] is a Data Mining algorithm that embeds complex objects—like audio signals,
seismograms, DNA sequences, electrocardiograms, or magnetic-resonance images—into a
K-dimensional Euclidean space, for a user-specified value of K and a user-supplied distance
function D(·, ·) on pairs of objects. The Euclidean distance between any two objects in the
embedding approximates the domain-specific distance between them. Therefore, similar
objects, as quantified by D(·, ·), map to nearby points in Euclidean space while dissimilar
objects map to distant points. Although FastMap preserves O(N2) pairwise distances
between N objects, it generates the embedding in only O(KN) time. Because of its efficiency,
FastMap has already found numerous real-world applications, including in Data Mining [5],
shortest-path computations [3], solving combinatorial optimization problems on graphs [12],
and community detection and block modeling [11].

FastMap embeds a collection of complex objects in an artificially created Euclidean
space that enables geometric interpretations, algebraic manipulations, and downstream ML
algorithms. It gets as input a collection of complex objects O, where D(Oi, Oj) represents the
domain-specific distance between objects Oi, Oj ∈ O. It generates a Euclidean embedding
that assigns a K-dimensional point pi ∈ RK to each object Oi. A good Euclidean embedding
is one in which the Euclidean distance ∥pj − pi∥2 between any two points pi and pj closely
approximates D(Oi, Oj).

In the first iteration, FastMap heuristically identifies the farthest pair of objects Oa and
Ob in linear time. Once Oa and Ob are determined, every other object Oi defines a triangle
with sides of lengths dai = D(Oa, Oi), dab = D(Oa, Ob), and dib = D(Oi, Ob), as illustrated
in Figure 2a. The lengths of the sides of the triangle define its entire geometry, and the
projection of Oi onto the line OaOb is given by

xi = (d2
ai + d2

ab − d2
ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding of Oi, equal to xi. In the
subsequent K − 1 iterations, the same procedure is followed for computing the remaining
K− 1 coordinates of each object; however, the distance function is adapted for each iteration.
For example, for the first iteration, the coordinates of Oa and Ob are 0 and dab, respectively.
Because these coordinates fully explain the true distance between these two objects, from the
second iteration onward, the rest of pa and pb’s coordinates should be identical. Intuitively,
this means that the second iteration should mimic the first one on a hyperplane that is
perpendicular to the line OaOb. Figure 2b illustrates this. Although the hyperplane is
never explicitly constructed, it conceptually implies that the distance function for the second
iteration should be changed for all i and j in the following way:

Dnew(O′
i, O′

j)2 = D(Oi, Oj)2 − (xi − xj)2, (2)

in which O′
i and O′

j are the projections of Oi and Oj , respectively, onto this hyperplane,
and Dnew(·, ·) is the new distance function. The distance function is recursively updated
according to Equation 2 at the beginning of each of the K − 1 iterations that follow the first.

In each of the K iterations, FastMap heuristically finds the farthest pair of objects
according to the distance function defined for that iteration. These objects are called pivots
and are stored as reference objects. There are very few, that is, ≤ 2K, reference objects.
Technically, finding the farthest pair of objects in any iteration takes O(N2) time. However,
FastMap uses a linear-time “pivot changing” heuristic [5] to efficiently and effectively identify
a pair of objects Oa and Ob that is very often the farthest pair. It does this by initially

CP 2023
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choosing a random object Ob and then choosing Oa to be the farthest object away from Ob.
It then reassigns Ob to be the farthest object away from Oa, reassigns Oa to be the farthest
object away from Ob, and so on, until convergence or a maximum of C iterations, for a small
constant C ≤ 10.

3.2 FastMapSVM

FastMapSVM [19] elegantly combines the strengths of FastMap and SVMs. In the first phase,
it invokes FastMap for efficiently mapping complex objects to points in a Euclidean space,
while preserving pairwise distances between them. In the second phase, it invokes SVMs and
kernel methods for learning to classify the points in this Euclidean space. FastMapSVM has
several advantages over other methods.

First, FastMapSVM leverages domain-specific knowledge via a distance function. There
are many real-world domains in which feature selection for individual objects is hard. While
a domain expert can occasionally identify and incorporate domain-specific features of the
objects to be classified, doing so becomes increasingly hard with increasing complexity of the
objects. Therefore, many existing ML algorithms for classification find it hard to leverage
domain knowledge when used off the shelf. However, in many real-world domains with
complex objects, a distance function on pairs of objects is well defined and easy to compute.
In such domains, FastMapSVM is more easily applicable than other ML algorithms that
focus on the features of individual objects. FastMapSVM also enables domain experts to
incorporate their domain knowledge via a distance function instead of relying on complex
ML models to infer the underlying structure in the data entirely. Examples of such real-
world objects include audio signals, seismograms, DNA sequences, electrocardiograms, and
magnetic-resonance images. While these objects are complex and may have many subtle
features that are hard to recognize, there exists a well-defined distance function on pairs of
objects that is easy to compute. For instance, individual DNA sequences have many complex
and subtle features but the edit distance4 between two DNA sequences is well defined and
easy to compute. Similarly, the Minkowski distance [1] is well defined for images and the
cosine similarity [16] is well defined for text documents.

Second, FastMapSVM facilitates interpretability, explainability, and visualization. Many
existing ML algorithms produce results that are hard to interpret or explain. For example, in
NNs, a large number of interactions between neurons with nonlinearities makes a meaningful
interpretation or explanation of the results very hard. In fact, the very complexity of the
objects in the domain can hinder interpretability and explainability. FastMapSVM mitigates
these challenges and thereby supports interpretability and explainability. While the objects
themselves may be complex, FastMapSVM embeds them in a Euclidean space by considering
only the distance function defined on pairs of objects. In effect, it simplifies the description of
the objects by assigning Euclidean coordinates to them. Moreover, since the distance function
is itself user-supplied and encapsulates domain knowledge, FastMapSVM naturally facilitates
interpretability and explainability. In fact, it even provides a perspicuous visualization of the
objects and the classification boundaries between them. This aids human interpretation of
the data and results. It also enables a human-in-the-loop framework for refining the processes
of learning and decision making. As a hallmark, FastMapSVM produces the visualization
very efficiently since it invests only linear time in generating the Euclidean embedding.

4 The edit distance between two strings is the minimum number of insertions, deletions, or substitutions
that are needed to transform one to the other.
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Third, FastMapSVM uses significantly smaller amounts of time and data for model
training compared to other ML algorithms. While NNs and other ML algorithms store
abstract representations of the training data in their model parameters, FastMapSVM stores
explicit references to some of the original objects, referred to as pivots. While making
predictions, objects in the test instances are compared directly to the pivots using the
user-supplied distance function. Thereby, FastMapSVM obviates the need to learn a complex
transformation of the input data and thus significantly reduces the amounts of time and
data required for model training. Moreover, given N training instances, that is, N objects
and their classification labels, FastMapSVM leverages O(N2) pieces of information via the
distance function that is defined on every pair of objects. In contrast, ML algorithms that
focus on individual objects leverage only O(N) pieces of information.

Fourth, FastMapSVM extends the applicability of SVMs and kernel methods to complex
objects. Generally speaking, SVMs are particularly good for classification tasks. When
combined with kernel methods, they recognize and represent complex nonlinear classification
boundaries very elegantly [17]. Moreover, soft-margin SVMs with kernel methods [14] can
be used to recognize both outliers and inherent nonlinearities in the data. While the SVM
machinery is very effective, it requires the objects in the classification task to be represented as
points in a Euclidean space. Often, it is very difficult to represent complex objects as precise
geometric points without introducing inaccuracy or losing domain-specific representational
features. In such cases, deep NNs have gained more popularity compared to SVMs for
the reason that it is unwieldy for SVMs to represent all the features of complex objects in
Euclidean space. However, FastMapSVM revives the SVM approach by leveraging a distance
function and creating a low-dimensional Euclidean embedding of the complex objects.

4 Distance Function on CSPs

In this section, we describe a distance function on binary CSPs. This distance function is
based on maxflow computations and is illustrated in Figure 3. It is well defined for CSP
instances I1 and I2 that may have different sizes. The maxflow computations are utilized in:
(a) a single high-level “maximum matching of minimum cost” problem posed on the variables
of I1 and I2, and (b) multiple low-level “maximum matching of minimum cost” problems
posed on the domain values of pairs of variables, one from each of I1 and I2.

The high-level “maximum matching of minimum cost” problem is posed on a complete
bipartite graph, in which the two partitions of the bipartite graph correspond to the variables
of I1 and I2, respectively. If the number of variables in I1 does not match the number of
variables in I2, dummy variables are added to the CSP instance with fewer variables. Figure 3
(top panel) illustrates this for I1 and I2 with variables {X1, X2, X3, X4} and {X ′

1, X ′
2, X ′

3},
respectively. A dummy variable X ′

4 is added to I2. The dummy variable has a single domain
value that is designed to be consistent with all domain values of all other variables, since
this does not change the CSP instance.

The distance between I1 and I2 is defined to be the cost of the “maximum matching of
minimum cost” on the high-level bipartite graph. This bipartite graph has an edge between
every Xi in I1 and every X ′

j in I2. The cost annotating an edge between Xi and X ′
j is itself

set to be the cost of the “maximum matching of minimum cost” posed at the low level on
the domain values of Xi and X ′

j . Figure 3 (bottom-left panel) shows the high-level bipartite
graph and highlights an edge between X1 and X ′

2 for explanation of the low-level “maximum
matching of minimum cost”.
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Figure 3 The top panel shows two CSP instances with variables {X1, X2, X3, X4} (left) and
{X ′

1, X ′
2, X ′

3} (middle), respectively. A dummy variable X ′
4 with a singleton domain is added to the

CSP instance with fewer variables (right). The bottom panel (left) shows how a “maximum matching
of minimum cost” problem is posed on a complete bipartite graph with the variables of the two CSP
instances in each partition. The cost annotating the edge between Xi and X ′

j is itself derived from
a “maximum matching of minimum cost” problem posed on the domain values of Xi and X ′

j . The
bottom panel (right) shows this “maximum matching of minimum cost” problem for the variables
X1 and X ′

2. It is posed on a complete bipartite graph with the domain values {d11, d12, d13} and
{d′

21, d′
22, d′

23, d′
24, d′

25, d′
26} in each partition. The cost annotating the edge between d11 and d′

21
is the absolute value of the difference between the average compatibility of d11 and the average
compatibility of d′

21.

The low-level “maximum matching of minimum cost” problem posed on the domain
values of Xi and X ′

j also uses a complete bipartite graph. The two partitions consist of the
domain values of Xi and X ′

j , respectively. The cost annotating the edge between dip and
d′

jq is the absolute value of the difference between the average compatibility of dip and the
average compatibility of d′

jq. Figure 3 (bottom-right panel) shows the low-level “maximum
matching of minimum cost” problem posed on the domain values of X1 and X ′

2. The domains
of X1 and X ′

2 are {d11, d12, d13} and {d′
21, d′

22, d′
23, d′

24, d′
25, d′

26}, respectively. Consider the
edge between d11 and d′

21. The average compatibility of d11 is the fraction of “1”s in the
column “d11” in the matrix representation of I1. This fraction is equal to 8/16. The average
compatibility of d′

21 is the fraction of “1”s in the column “d′
21” in the matrix representation

of I2 after adding the dummy variable X ′
4. This fraction is equal to 4/11. Therefore, the

cost annotating the edge between d11 and d′
21 is equal to |8/16− 4/11|.

The “maximum matching of minimum cost” problems in the high level and the low level
are posed on bipartite graphs. Since the costs annotating the edges of the bipartite graphs in
the high level and the low level are non-negative, the distance function is also non-negative.
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Moreover, since the two partitions of any bipartite graph can be viewed interchangeably
without affecting the “maximum matching of minimum cost”, the overall distance function is
symmetric. It is also easy to observe that the distance between two identical CSP instances
is always 0. These properties of the distance function satisfy all the requirements imposed
on it by the FastMap component of FastMapSVM.

The high-level bipartite graph is invariant to the orderings on the elements within each
partition. That is, it is invariant to the orderings on the variables of I1 and I2. Similarly,
all low-level bipartite graphs are invariant to the orderings on the domain values of the
participating variables. Therefore, the overall distance function is invariant to variable-
orderings as well as domain value-orderings. This allows us to bypass data augmentation
methods typically required for training other ML models.5 In the context of CSPs, a CSP
instance is typically augmented by changing the ordering on its variables or the ordering
on the domain values of individual variables. However, doing so generates an exponential
number of CSP training instances within the same equivalence class. This drawback of
traditional ML algorithms of having to learn equivalence classes is now intelligently addressed
within the framework of FastMapSVM by utilizing a distance function that is invariant to
both variable-orderings and domain value-orderings.

We note that the above distance function could have been defined in many other ways.
For example, we could have introduced dummy domain values in the low-level “maximum
matching of minimum cost” problems to equalize the domain sizes of the participating
variables. We could have also chosen not to use dummy variables in the high-level “maximum
matching of minimum cost” problem. In addition, we could have defined the costs annotating
the edges of the bipartite graphs using many other characteristics of the CSPs. These
variations of the distance function are not of fundamental importance to this paper. Instead,
in this paper, we focus on the advantages of the FastMapSVM framework as a whole. The
study of more refined distance functions is delegated to future work.

5 Experimental Results

In this section, we describe the comparative performance of FastMapSVM against other
state-of-the-art ML approaches on predicting CSP satisfiability.

5.1 Experimental Setup
We evaluate FastMapSVM against three competing approaches. The first is a state-of-the-art
deep graph convolutional neural network (DGCNN) [23]. The second is a state-of-the-art
graph isomorphism network (GIN) [21]. Both these networks ingest a CSP instance in the
form of a graph, as shown in Figure 4. In the graphical representation of a binary CSP
instance, a vertex represents a domain value and is tagged with the name of the variable that
it belongs to. Information in these tags is utilized by the DGCNN and the GIN. An edge
between two vertices v1 and v2 with tags Xi and Xj , respectively, represents the compatible
combination (Xi ← v1, Xj ← v2) allowed by the direct constraint between Xi and Xj .6
DGCNN and GIN do not require the CSP training and test instances to be of the same size.

The third is a polynomial-time algorithm based on establishing arc-consistency. This
algorithm first establishes arc-consistency and then checks whether any variable’s domain is
annihilated. If so, it declares the CSP instance to be “unsatisfiable”. Otherwise, it declares

5 Data augmentation refers to transformations of data without changing their labels, known as label-
preserving transformations. For example, to generate more training data serving object recognition
tasks in computer vision applications, an image can be augmented by translating it or reflecting it

CP 2023



40:10 FastMapSVM for Predicting CSP Satisfiability

1111111001
0011011010
1100110100
1011001011
1111010111
1111100101
1101111011
0110111011
0111110101
1001111101

𝑋!

𝑋"

𝑋#

𝑋$

𝑑!!

𝑑!"

𝑑!#

𝑑"!

𝑑""

𝑑"#

𝑑#!

𝑑#"

𝑑$!

𝑑$"

𝑑$"𝑑$!𝑑#"𝑑#!𝑑"#𝑑""𝑑"!𝑑!#𝑑!"𝑑!!

𝑋! 𝑋" 𝑋# 𝑋$

(𝑋!, 𝑑!!)

(𝑋!, 𝑑!")

(𝑋!, 𝑑!#) (𝑋", 𝑑"!)

(𝑋", 𝑑"")

(𝑋", 𝑑"#)

(𝑋#, 𝑑#!)
(𝑋#, 𝑑#")

(𝑋$, 𝑑$!)

(𝑋$, 𝑑$")

Figure 4 The left panel shows the matrix representation of a binary CSP instance. The right
panel shows its graphical representation. The vertices represent domain values and are clustered
into four groups, corresponding to the four variables {X1, X2, X3, X4}.

the CSP instance to be “satisfiable”. This algorithm is used in our evaluation to demonstrate
that FastMapSVM’s capabilities go beyond that of a polynomial-time algorithm.7 Of course,
a polynomial-time algorithm based on establishing path-consistency could also have been
used. But we excluded this algorithm since arc-consistency already provides the required
proof of concept and establishing path-consistency is prohibitively expensive.

In our experiments, we do not include results from the CSP-cNN framework of [20] for
the following reasons. First, this framework has the drawback that it is applicable only
to CSP training and test instances of the same size. (FastMapSVM does not have this
drawback since the distance function does not require the CSP instances to be of the same
size.) Second, the success of CSP-cNN critically depends on data augmentation methods: For
each CSP training instance, a very large number of other training instances that permute the
variables and their domain values also have to be generated. (This requirement is completely
obviated by FastMapSVM since the distance function is invariant to such permutations.)
Third, CSP-cNN has been shown to be successful only on Boolean binary CSP instances,
that is, the polynomial-time solvable 2-SAT problems. (FastMapSVM does not have this
limitation; below, we demonstrate its success on general binary CSP instances.)

We implemented FastMapSVM and arc-consistency in Python3 and ran them on a
laptop with an Apple M2 chip with 16 GB memory. We ran DGCNN and GIN on a Linux
system with an Intel(R) Xeon(R) Silver 4216 CPU at 2.10 GHz. The different platforms
are inconsequential to the comparative performances of these algorithms with respect to
effectiveness. For each dataset, we trained DGCNN and GIN for 100 epochs with a learning
rate of 0.0001 and a minibatch size of 100 to obtain representative results.

5.2 Instance Generation
We generate the binary CSP instances for both training and testing using the Model A
method in [18, 20]. We generate a CSP instance by first picking the number of variables N

uniformly at random to be an integer within the range [1, 100]. Then, we pick the domain

horizontally without changing its label [10].
6 The graphical representation of a binary CSP instance is obtained by parsing its matrix representation.

Thus, we correctly represent the compatible tuples of domain values between every pair of variables,
even if there does not exist a direct constraint between those variables.

7 This is done to avoid the pitfalls of [20], as mentioned before.
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size of each variable independently and uniformly at random to be an integer within the
range [1, 10]. We use a probability parameter P1 to independently determine the existence of
a direct constraint between each pair of distinct variables. That is, for each pair of distinct
variables Xi and Xj , we introduce a direct constraint between them with probability P1.
Moreover, we use a probability parameter P2 to determine the compatible tuples of a direct
constraint. For a pair of variables Xi and Xj with a direct constraint between them, each
tuple (Xi ← dip, Xj ← djq) is independently deemed to be compatible with probability
1− P2. We set P1 = 1 and P2 = 0.4 to obtain representative results for all approaches.

Model A has a tendency to produce mostly unsatisfiable CSP instances with increasing
N [18, 20]. Therefore, we use a “hidden solution” method to generate satisfiable CSP
instances whenever required. In this method, a set of hidden solutions of the CSP instance is
chosen a priori.8 A hidden solution (X1 ← d1p1 , X2 ← d2p2 . . . XN ← dNpN

) is utilized as
follows: While generating the direct constraints using Model A, a direct constraint between
variables Xi and Xj reserves the tuple (Xi ← dipi

, Xj ← djpj
) as being compatible before

the other tuples are set using the probability parameter P2. Therefore, (X1 ← d1p1 , X2 ←
d2p2 . . . XN ← dNpN

) satisfies all the direct constraints and, consequently, qualifies as a
solution. Similarly, multiple hidden solutions can be utilized with the following modification
in the generation procedure: A direct constraint between variables Xi and Xj reserves
multiple tuples as being compatible. For generating satisfiable CSP instances, we pick the
number of hidden solutions uniformly at random to be an integer within the range [1, 10]. We
pick a hidden solution itself by assigning a domain value chosen independently and uniformly
at random for each variable from its domain.

We generate three datasets: Dataset-1, Dataset-2, and Dataset-3. For each dataset, we
generate 1000 training instances and 1000 test instances. Each training and test set has an
equal number of satisfiable and unsatisfiable instances.

In Dataset-1, we generate the instances using Model A. Since Model A frequently generates
unsatisfiable instances, we use a complete CSP solver to identify and collect such instances.
We generate the satisfiable instances using the hidden solution method, as described above.

In Dataset-2, we generate the satisfiable instances as in Dataset-1. However, we design
and generate the unsatisfiable instances to be more challenging. We do this by hiding
two complementary pseudo-solutions (X1 ← d1p1 , X2 ← d2p2 . . . XN ← dNpN

) and (X1 ←
d1q1 , X2 ← d2q2 . . . XN ← dNqN

). We identify a pair of distinct variables Xi and Xj such
that dipi

̸= diqi
and djpj

̸= djqj
. All direct constraints between distinct variables Xs

and Xt such that {Xs, Xt} ≠ {Xi, Xj} are generated as before by reserving the tuples
(Xs ← dsps

, Xt ← dtpt
) and (Xs ← dsqs

, Xt ← dtqt
) as being compatible. However, the

direct constraint between Xi and Xj reserves the tuples (Xi ← dipi
, Xj ← djqj

) and
(Xi ← diqi , Xj ← djpj ) as being compatible and reserves the tuples (Xi ← dipi , Xj ← djpj )
and (Xi ← diqi

, Xj ← djqj
) as being not compatible. We finally use a complete CSP solver

to verify that the CSP instance is indeed unsatisfiable.9

In Dataset-3, we generate the satisfiable instances as in Dataset-1. However, we design
and generate the unsatisfiable instances differently from in Dataset-2. We do this by
first hiding two complementary pseudo-solutions (X1 ← d1p1 , X2 ← d2p2 . . . XN ← dNpN

)
and (X1 ← d1q1 , X2 ← d2q2 . . . XN ← dNqN

), as in Dataset-2. However, we gather all
variables Xr1 , Xr2 . . . XrM̄

for which the two pseudo-solutions have different assignments

8 The CSP instance can have other solutions as well.
9 This procedure frequently generates unsatisfiable instances, as required. However, satisfiable instances

that are generated occasionally are filtered out by the CSP solver.
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of domain values, that is, drmprm
̸= drmqrm

, for all 1 ≤ m ≤ M̄ . For any two distinct
variables Xi and Xj in {Xr1 , Xr2 . . . XrM̄

}, we reserve the tuples (Xi ← dipi
, Xj ← djqj

)
and (Xi ← diqi

, Xj ← djpj
) as being not compatible. Finally, we pick two distinct variables

Xs and Xt from {Xr1 , Xr2 . . . XrM̄
} and overwrite the tuples (Xs ← dsps , Xt ← dtqt) and

(Xs ← dsqs
, Xt ← dtpt

) as being compatible and reserve the tuples (Xs ← dsps
, Xt ← dtpt

)
and (Xs ← dsqs , Xt ← dtqt) as being not compatible. As before, we use a complete CSP
solver to verify that the CSP instance is indeed unsatisfiable.

5.3 Results
We show three sets of results pertaining to FastMapSVM. First, we show the 2-dimensional
and the 3-dimensional embeddings that FastMapSVM produces to aid visualization. Second,
we show the behavior of FastMapSVM with respect to the hyperparameter K, that is, the
number of dimensions and with respect to the size of the training data. Third, we show the
comparative performance of FastMapSVM against DGCNN, GIN, and arc-consistency.

FastMapSVM used the SVM classifier from the scikit-learn library. Its hyperparameter
settings were determined by grid search. For Dataset-1 and Dataset-3, the hyperparameters
were regularization parameter = 8, kernel = “rbf”, and kernel coefficient = “scale”. For
Dataset-2, the hyperparameters were regularization parameter = 8, kernel = “poly”, and
kernel coefficient = “scale”.

Figure 5 shows a perspicuous visualization of the CSP test instances for all three datasets.
This visualization capability is unique to FastMapSVM. We note that while the accuracy,
recall, precision, and the F1 score of FastMapSVM typically increase with increasing K,
K = 2 and K = 3 are the only two values that support visualization. Still, in most
cases, Figure 5 shows a clear separation between the satisfiable and unsatisfiable instances.
Moreover, the separation is clearer in the 3-dimensional embeddings compared to their
2-dimensional counterparts.

Figure 6a shows the behavior of FastMapSVM with respect to the number of dimensions
K on Dataset-1. Its behavior on the other datasets is similar. The performance metrics,
that is, the accuracy, recall, precision, and the F1 score, improve with increasing K. This
is intuitively expected since the distances between the CSP instances can be embedded
with lower distortion in higher dimensions. However, Figure 6a also shows that a point of
diminishing returns is attained rather quickly at around K = 8. This shows that K = 8, 9, or
10 is good enough for the CSP domain. Finally, Figure 6a also shows that the improvements
in the performance metrics are significant between K = 2 and K = 8.

Figure 6b shows the behavior of FastMapSVM with respect to the size of the training data
on Dataset-1. Its behavior on the other datasets is similar. The performance metrics improve
with increasing size of the training data. Figure 6b also shows that the improvements in the
performance metrics are significant between 128 and 256 training data instances. Further
improvements are gradual between 256 and 1000 training data instances. This shows that
FastMapSVM has the capability to achieve good performance from relatively small amounts
of training data and training time.

Table 1 shows a comparison of all the competing methods on all three datasets with
respect to all of the performance metrics. It uses K = 8 for FastMapSVM. It also shows two
versions of DGCNN and GIN: the “labeled” version and the “unlabeled” version.

We recollect that in the graphical representation of a binary CSP instance, a vertex
represents a domain value and is tagged with the name of the variable that it belongs to.
Information in these tags is available to be utilized by the DGCNN and the GIN. The labeled
versions of DGCNN and GIN utilize this information while the unlabeled versions ignore this
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(a) Dataset-1 CSP instances embedded in a 2-
dimensional Euclidean space by FastMapSVM

(b) Dataset-1 CSP instances embedded in a 3-
dimensional Euclidean space by FastMapSVM

(c) Dataset-2 CSP instances embedded in a 2-
dimensional Euclidean space by FastMapSVM

(d) Dataset-2 CSP instances embedded in a 3-
dimensional Euclidean space by FastMapSVM

(e) Dataset-3 CSP instances embedded in a 2-
dimensional Euclidean space by FastMapSVM

(f) Dataset-3 CSP instances embedded in a 3-
dimensional Euclidean space by FastMapSVM

Figure 5 The figure shows the low-dimensional Euclidean embeddings produced by FastMapSVM
for classifying CSP instances. Mostly, there is a clear separation of satisfiable instances (blue) and
unsatisfiable instances (red).

information. Table 1 shows that the unlabeled versions perform better than their labeled
counterparts. While this is a little surprising, it is likely that the unlabeled versions indirectly
perform permutation reasoning on the tags (names of variables) much more efficiently.

Table 1 shows that FastMapSVM generally outperforms all other competing methods by
a significant margin. Even on a particular dataset where it is not the top performer with
respect to a particular performance metric, it is a close second. Overall, Dataset-1 seems to
be the easiest for all methods and Dataset-2 seems to be the hardest for all methods.

In comparison to arc-consistency, FastMapSVM is significantly better on Dataset-2 and
Dataset-3. On these datasets, arc-consistency declares all test instances as being “satisfiable”,
leading to a perfect recall score but very poor precision, accuracy, and F1 scores. On the one
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(b) Influence of the size of the training data on the performance of FastMapSVM

Figure 6 The figure shows the behavior of FastMapSVM with respect to the number of dimensions
and with respect to the size of the training data. The performance metrics include the accuracy,
recall, precision, and the F1 score.

hand, this shows that arc-consistency is ineffective in recognizing unsatisfiable CSP instances.
On the other hand, it also shows that CSP instances generated as in Dataset-1 are insufficient
to conclusively evaluate competing ML methods. In contrast, FastMapSVM performs well
on all three datasets.

In comparison to DGCNN and GIN, FastMapSVM is significantly better on all three
datasets. On the accuracy, recall, and F1 scores, FastMapSVM is better than DGCNN, which
in turn is better than GIN. GIN generally has high precision scores but very poor recall
scores. This shows that it is poor in identifying satisfiable instances but is mostly correct
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Table 1 The table shows all performance metrics for all competing methods on all datasets. “AC”
represents arc-consistency.

Dataset Model Accuracy Recall Precision F1

Dataset-1

FastMapSVM 96.7% 97.0% 96.4% 96.7%
AC 99.3% 100.0% 96.7% 98.3%
DGCNN (unlabeled) 94.2% 92.2% 96.0% 94.1%
DGCNN (labeled) 82.3% 82.0% 82.5% 82.2%
GIN (unlabeled) 84.1% 67.0% 99.4% 80.0%
GIN (labeled) 56.4% 52.6% 56.9% 54.7%

Dataset-2

FastMapSVM 82.9% 72.8% 91.2% 81.0%
AC 50.1% 100.0% 50.1% 66.8%
DGCNN (unlabeled) 73.4% 61.4% 80.8% 69.8%
DGCNN (labeled) 53.9% 51.2% 54.1% 52.6%
GIN (unlabeled) 71.9% 49.0% 90.4% 63.6%
GIN (labeled) 54.4% 51.6% 54.7% 53.1%

Dataset-3

FastMapSVM 95.4% 94.4% 96.3% 95.3%
AC 50.0% 100.0% 50.0% 66.7%
DGCNN (unlabeled) 90.3% 86.6% 93.5% 89.9%
DGCNN (labeled) 74.7% 71.8% 76.2% 73.9%
GIN (unlabeled) 78.4% 53.6% 98.5% 69.4%
GIN (labeled) 57.4% 53.8% 58.0% 55.8%

when it does so. FastMapSVM does not have this drawback. Moreover, on the accuracy and
F1 scores, FastMapSVM outperforms the closest competitor (DGCNN) by larger margins
with increasing hardness of the CSP instances, that is, in the order of Dataset-1, Dataset-3,
and Dataset-2. Even on the metric of efficiency, FastMapSVM outperforms DGCNN and
GIN.10

6 Conclusions and Future Work

In this paper, we introduced a novel ML framework, called FastMapSVM, for the task
of predicting CSP satisfiability. FastMapSVM overcomes the hurdles faced by other ML
approaches in the CSP domain. It leverages a distance function on CSPs that is defined
via maxflow computations. FastMapSVM is applicable to CSP training and test instances
of different sizes and is invariant to both variable-orderings and domain value-orderings.
This allows it to bypass the onus of having to learn equivalence classes of CSP instances
and, therefore, requires significantly smaller amounts of time and data for model training
compared to other ML algorithms. FastMapSVM also uses the intelligence of SVMs, kernel
methods, and maxflow computations, accounting for its superior empirical performance,
even over state-of-the-art graph neural networks. Moreover, it facilitates a perspicuous
visualization of the CSP instances, their distribution, and the classification boundaries
between them. Overall, the FastMapSVM framework for CSPs has broader applicability and
various representational and combinatorial advantages compared to other ML approaches.

There are many avenues for future work. These include the design of better distance
functions on CSPs, the application of FastMapSVM to optimization variants of CSPs, and the
general facilitation of integrating constraint reasoning and ML methods via FastMapSVM.

10 DGCNN and GIN ran on a different platform compared to FastMapSVM. However, the ballpark results
are still conclusive.
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1 Introduction

The Boolean Satisfiability (SAT) problem is a prototypical NP-complete problem, whose
aim is to determine whether a given propositional formula is satisfiable or not. The SAT
problem plays a core role in many domains of computer science and artificial intelligence [14].
Many real-world problems can be encoded into SAT and its optimization version MaxSAT
and solved using their powerful solvers. However, due to the limited expressive power of
SAT and MaxSAT, their encodings often generate very large problem instances. For such
cases, pseudo-Boolean optimization (PBO) provides a more expressive and natural way to
express constraints than SAT and MaxSAT [23]. Besides, PBO is very close enough to SAT
to benefit from the recent advances in SAT solving [23].

The PBO consists of a set of pseudo-Boolean constraints and an objective function, whose
goal is to find a solution that minimizes the objective function and satisfies all pseudo-Boolean
constraints. Solvers for PBO can be divided into complete and incomplete solvers. Up to
now, many complete PBO solvers have been proposed, such as Sat4j [3], Open-WBO [21],
NaPS [24], RoundingSat [12, 10], RSCard [13], RS/lp [9] and PBO-IHS [26, 27].

Compared to complete PBO solvers, there are relatively fewer incomplete solvers on
PBO. The reason may be that PBO is more complicated than SAT and how to find a
suitable variable to flip is still difficult. As one of the most popular incomplete approaches,
local search can find an approximate solution within a reasonable time [32, 33]. Lei et al.
[18] proposed a novel local search algorithm called LS-PBO to handle PBO. Key features
of LS-PBO include a converting method to obtain corresponding objective constraints, a
weighting scheme to guide the search direction, and a well-designed scoring function to flip
some candidate variables. Besides, for some special cases of PBO such as NK-Landscapes
and MAX-kSAT, a new perturbation strategy called VIGbP was proposed [29]. According
to the literature, the current best incomplete algorithm for PBO is LS-PBO.

In this work, to further improve the performance of local search algorithms on solving
PBO, we propose a local search framework for PBO based on three main ideas.

First, we present a two-level selection strategy to choose which variable to flip. In our
proposed algorithm, we use the previous scoring function score [18] as a primary scoring
function, which is defined as the decrease of the total penalty of related constraints and
objective function. To address the issue about tie-breaking in the primary scoring function,
we propose a fragile scoring function hhscore as the secondary scoring function. The proposed
hhscore can greatly differentiate between two kinds of satisfied constraints by using the
definition of satisfied threshold.

Second, we propose a novel deep optimization strategy (DeepOpt) to deeply probe some
regions using locked and unlocked operations during the local search. Recently, the DeepOpt
strategy was first proposed by Chen et al. [8] and has been successfully applied in solving
dominating set problems. In our proposed DeepOpt strategy, we preferentially select some
variables in unsatisfied constraints as unlocked operations. Moreover, we use some trigger
conditions to decide whether the algorithm calls DeepOpt or not.
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Third, we design a sampling flipping method to modify a current candidate solution
when the algorithm tramps into local optimum. In the proposed method, we adopt two
sampling ways to collect some samples among all unsatisfied constraints. We further employ
a probabilistic heuristic “best from multiple selections” (BMS) [6] to select a candidate
variable. Besides, we also apply a new scoring function to simultaneously flip two variables.

By incorporating these three ideas and some other tricks, we develop two local search
algorithms for PBO. Extensive experiments are carried out to evaluate our algorithms on the
benchmarks used in the literature. Experimental results show that the proposed algorithms
outperform three state-of-the-art PBO algorithms on almost all the benchmarks.

2 Preliminaries

Since a non-linear pseudo-Boolean (PB) constraint can be translated into an equivalent set of
linear PB constraints [23], we only start with a review of the basics of linear PB constraints
here. A linear PB constraint is defined over a finite set of Boolean variables. Boolean variable
xi can take only two values false (0) and true (1). A literal li over a Boolean variable xi is
either xi or xi = 1 − xi. A linear PB constraint is a 0-1 integer inequality.∑

i

aili ▷ b (1)

where ai and b are integer constants, li are literals and ▷ ∈ {=, >, ≥, <, ≤} is one of the
classical relational operators. All PB constraints can be normalized into the following form.∑

i

aili ≥ b (2)

where all the literals li are distinct, and all the coefficients ai and the degree b are non-negative
integers.

A PB formula is a conjunction of PB constraints, denoted as F = C1 ∧ C2 ∧ · · · ∧ Cm,
where Cp (p ∈ Z, 1 ≤ p ≤ m) is a PB constraint. The PBO problem consists of a PB formula
F and an objective function O :

∑
i cili where ci is a non-negative integer coefficient. Given

a PB constraint Cp :
∑

i ap
i lp

i ≥ bp, the sum of its coefficients is defined as sum(Cp) =
∑

i ap
i ,

its average coefficient is defined as coeff (Cp) = sum(Cp)/|L(Cp)| where L(Cp) is the set of
literals in Cp, and its maximum coefficient ap

max is the maximum value of coefficients in
Cp. The average coefficient of an objective function O is defined as coeff (O) =

∑
i ci/|L(O)|

where L(O) is the set of literals in O.
Given a PB formula F , its complete assignment is a mapping that assigns 0 or 1 to each

variable. Given a complete assignment of F , if a literal evaluates to true, we say it is a
true literal and otherwise it is a false literal. A PB constraint Cp is satisfied when the left
and right terms of the constraint evaluate to integers which satisfy the relational operator.
Otherwise, Cp is unsatisfied. The sum of coefficients of true literals in Cp is denoted as
SatL(Cp) =

∑
lp
i

=1∧lp
i

∈Cp
ap

i . An assignment α of F is feasible if and only if α satisfies all
PB constraints in F . The value of the objective function of a feasible solution α is denoted
as obj(α). The PBO problem aims to obtain a feasible solution for F with the minimum
objective value.

2.1 Review for Weighting and Scoring Function
Constraint weighting techniques have usually been used to guide and diversify the search
process [31, 5, 15]. The weighting based scoring function score for PBO is recently proposed
by Lei et al. [18]. Each PB constraint Cp ∈ F and an objective function O have the property
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of weighting, denoted as w(Cp) and w(O), respectively. Before introducing the weighting, we
first present a basic concept. Given a PB formula F and m is the number of constraints, the
average constraint coefficient of F is defined as avg_coeff =

∑m
p=1 w(Cp) × coeff (Cp)/m.

The property of weighting works as follows.
Weighting Rule 1: At first, w(O) = 1 and w(Cp) = 1 for an objective function O and each

PB constraint Cp.
Weighting Rule 2: For each unsatisfied constraint Cp, w(Cp) = w(Cp) + 1.
Weighting Rule 3: If the current obj(α) of the objective function is better than the current

best-found value of objective function during the search process so far and w(O) ×
coeff (O) − avg_coeff ≤ ζ, then w(O) = w(O) + 1. In our work, we use the same
parameter value of ζ as [18], i.e., ζ = 100.

Given an assignment α of F , if a PB constraint Cp :
∑

i ap
i lp

i ≥ bp is unsatisfied, the
penalty of Cp is defined as w(Cp) × (bp −

∑
i ap

i lp
i ). For the objective function O :

∑
i cili,

the penalty of O is defined as w(O) ×
∑

i cili. Based on the definition of penalty, we
introduce two scoring functions including hard score hscore and objective score oscore as
below. For a Boolean variable xi, the respective hscore(xi) and oscore(xi) are the decrease
of the total penalty of unsatisfied PB constraints and the objective function caused by
flipping xi. Combing the above scoring functions, we define the score of a variable xi as
score(xi) = hscore(xi) + oscore(xi). Remark that after flipping some variables during the
search process, the corresponding score values should be updated accordingly.

3 Two-Level Selection Strategy

In this section, we introduce a secondary scoring function to reinforce local search algorithms
for PBO and then propose a two-level selection strategy to decide a candidate variable.

3.1 Fragile Scoring Function
As a core guidance for the search process, scoring functions play an important role in local
search algorithms, which measure the benefits of a candidate variable. In local search
algorithms for PBO, such benefits hscore can be set as the distance between the sum of
coefficients of true literals and the corresponding degree, whereas oscore can be set as the
distance between the current and best-found objective values [18].

In our algorithm, we consider the sum of hscore and oscore (i.e., score) as the primary
scoring function, which is the same method as LS-PBO [18]. According to our preliminary
experiments, 9% candidate variables on average have the same largest score value during
the search. To address the issue about tie-breaking in the primary scoring function, previous
work uses the age information of variables as the secondary scoring function, where age is
defined as the number of steps since the last time it is flipped. But the experimental results
show that the use of only age cannot effectively guide the search process. Thus, to further
choose a variable among these variables with the same best score value, we design a novel
fragile scoring function denoted as hhscore.

Before introducing hhscore, we first introduce a necessary concept. For a PB constraint
Cp, gap(Cp) = min{bp + ap

max, sum(Cp)} is used to denote the satisfied threshold of Cp,
which plays a key role in our proposed hhscore. Based on the satisfied threshold of PB
constraints, we define a fragile satisfied PB constraint in the following.

▶ Definition 1. For a satisfied PB constraint Cp (i.e., SatL(Cp) ≥ bp), the Cp is a fragile
satisfied PB constraint if and only if SatL(Cp) < gap(Cp).
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On the one hand, if a satisfied PB constraint Cp is fragile, we think that flipping any
variable in this PB constraint would probably make this constraint become unsatisfied. On
the other hand, if a satisfied PB constraint is not fragile (i.e., SatL(Cp) ≥ gap(Cp)), we
think this PB constraint is solid, which means that flipping any true literal in Cp would not
make Cp become unsatisfied with a high probability. Although we have also tried a similar
property that measures the number of true literals in a satisfied PB constraint Cp, such as
gap(Cp) = bp + 1, we did not find it useful in our algorithm.

To maintain the information of “fragile” for each literal during the search process, we
define inner as below.

▶ Definition 2. Suppose that a Boolean variable xi whose literal li appears in some PB
constraints (e.g., Cp) and the coefficient of li in Cp is ap

i . The value of inner(xi, Cp) is
calculated as follows.
(a) Cp is an unsatisfied PB constraint, i.e., SatL(Cp) < bp:

If li is a true literal in Cp, inner(xi, Cp) = 0;
If li is a false literal in Cp, inner(xi, Cp) = max{ap

i − (bp − SatL(Cp)), 0}.
(b) Cp is a fragile satisfied PB constraint, i.e., bp ≤ SatL(Cp) < gap(Cp):

If li is a true literal in Cp, inner(xi, Cp) = −min{ap
i , SatL(Cp) − bp};

If li is a false literal in Cp, inner(xi, Cp) = min{ap
i , gap(Cp) − SatL(Cp)}.

(c) Cp is satisfied but not a fragile PB constraint, i.e., gap(Cp) ≤ SatL(Cp):
If li is a true literal in Cp, inner(xi, Cp) = −max{ap

i − (SatL(Cp) − gap(Cp)), 0};
If li is a false literal in Cp, inner(xi, Cp) = 0.

The value of inner(xi , Cp) is subject to three distinct factors including the state of Cp

(i.e., satisfied or unsatisfied), the value of li (i.e., true or false), and the coefficient of li (i.e.,
ap

i ). To make the readers easily understand the above Definition 2, we list all the situations
corresponding to different inner values in Figure 1.

Considering all the PB constraints in which variable x’s literal appears, the proposed
fragile scoring function hhscore of variable xi is defined as below.

hhscore(xi) =
nx∑

p=1
inner(xi, Cp) (3)

where nx is the number of PB constraints including the literal of xi.

3.2 Selection Rule
Combining the respective advantages of score and hhscore, we propose a two-level selection
strategy as follows.

Flipping Rule. Flip a variable xi with the biggest score(xi) value, breaking ties by preferring
the one with the biggest hhcore(xi) value, further ties are broken randomly.

The proposed secondary scoring function is inspired by subscore [7], but has two essential
differences. First, our proposed scoring function can be considered as a general version of
subscore because the value of satisfied threshold gap is equal to 2 for the SAT problem,
which is the same function as subscore. Second, previous work uses a linear combination
of subscore and another scoring function as the primary scoring function, whereas our work
considers a two-level scoring function to guide the search process. In addition, experiments
show that the trigger fraction of using hhscore at least once for all tested instances is about
99.6%.
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Algorithm 1 DeepOpt.
Input: PBO instance F and a perturbation initialization assignment α

Output: A perturbation solution α of F

1 UnSatSet := unsat(α) and SatSet := F \ UnsatSet;
2 CandSet := ∅;
3 while |CandSet| ≤ γ × n do
4 if UnSatSet ̸= ∅ then
5 select a random unsatisfied PB constraint C;
6 UnSatSet := UnSatSet \ {C};
7 for each variable x ∈ C do
8 if x’s literal is true && with 50% probability then α := α with x flipped ;
9 CandSet := CandSet ∪ {x};

10 else
11 select a random satisfied PB constraint C;
12 SatSet := SatSet \ {C};
13 for each variable x ∈ C do
14 CandSet := CandSet ∪ {x};

15 if |unsat(α)| > MaxHard then break ;
16 for step = 0; step < Lopt; step++ do
17 select a variable x among |CandSet|/2 samples from CandSet based on Flipping Rule;
18 α := α with x flipped;
19 return α;

4 Deep Optimization for PBO

Local search algorithms usually search the entire space and focus on exploring some promising
spaces using several heuristic strategies. Recently, a general perturbation mechanism called
deep optimization has been proposed by Chen et al. [8], which can deeply probe some regions
based on locked and unlocked operations and then converge to a new solution quickly. Note
that deep optimization is somewhat similar to some classic search frameworks such as large
neighborhood search [25]. According to this general framework, we propose a new deep
optimization approach DeepOpt for PBO.

The pseudo-code of our proposed DeepOpt is reported in Algorithm 1 and the corres-
ponding trigger conditions of DeepOpt will be displayed in the next section. We use the
unsat(α) function to denote the set of unsatisfied PB constraints under an assignment α.
At first, the algorithm uses UnSatSet and SatSet to store unsatisfied and satisfied PB
constraints under a perturbation initialization assignment, respectively (Line 1). Afterward,
a candidate variable set CandSet is initialized to an empty set (Line 2), which stores all
unlocked variables in the following search. Note that, in our work, we use CandSet to store
all unlocked variables which means that these variables can be flipped in the following search
phase, while the remaining variables can be seen as locked variables.

The DeepOpt usually consists of two phases including a selection phase (Lines 3–15) to
generate several candidate local search spaces and a search phase (Lines 16–18) to repair
these search spaces.

In the first phase, we flip several variables to achieve the purpose of early preparation.
There are two exit conditions in this phase. The first one is that |CandSet| is larger than
γ × n where n is the number of variables (Line 3), whereas the second one is that the number
of unsatisfied constraints under the current assignment is larger than MaxHard (Line 15)
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where γ and MaxHard are two parameters in DeepOpt. At each iteration, if UnSatSet is
not empty, the algorithm preferentially chooses a random unsatisfied PB constraint C from
UnSatSet (Lines 4–5) and puts all variables of C into CandSet (Line 9). For each variable
x ∈ C, if x’s literal in C is true, it occurs with 50% probability to flip x (Line 8). If the
algorithm selects a random satisfied constraint C, the algorithm only adds all variables
of C into CandSet (Line 14). Note that according to our preliminary experiments, if the
first phase only selects the candidate variables and does not flip these variables, then the
performance of DeepOpt will become bad.

In the second phase, the algorithm applies the search process to perturb the assignment α

until the limit of iterations Lopt is reached (Line 16). The algorithm employs the BMS strategy
[6] in the process of selecting a candidate variable, i.e., randomly choosing |CandSet|/2
variables to compose a candidate set. Afterward, the algorithm flips a variable x among a
candidate set based on the flipping rule (Lines 17–18). At last, the algorithm returns the
final assignment α (Line 19).

5 DeepOpt-PBO Algorithm

In this section, we propose an effective local search algorithm DeepOpt-PBO for PBO, whose
main framework is presented in Algorithm 2. The DeepOpt-PBO is mainly divided into the
initialization and search phases.

In the initialization phase (Lines 1–3), the best solution α∗ is set to ∅ and its objective
value obj∗ is set to +∞. To obtain an initial assignment α, all variables are set to 0. The
algorithm initializes the related weight information according to the weighting rule 1.

In the following, there is an outer loop (Lines 4–32) and an inner loop (Lines 7–31).
During the search, whenever a better feasible assignment is obtained, α∗ and obj∗ are updated
accordingly (Line 12). After each inner loop, the algorithm uses the RestartV ar function to
restart a current assignment (Line 32), which will be presented in Section 5.2. Finally, the
algorithm returns α∗ and obj∗ when reaching a time limit.

In each inner loop (step < L), the algorithm searches for a local optimal assignment α.
The algorithm uses GoodSet to store variables whose score is larger than 0 (Line 15). If
GoodSet is not empty, the algorithm flips a candidate variable based on the proposed flipping
rule (Lines 16–18). Otherwise, it means that the algorithm tramps into local optimum. The
algorithm uses the modified weighting rule 2 and weighting rule 3 to update the corresponding
weight value (Lines 20–21). Specifically, we optimize previous weighting rule 2, resulting in
a novel modified weighting rule 2, which will be mentioned in Section 5.2. Moreover, the
algorithm will use a sampling technique SampleF lip to flip one or more variables to help the
algorithm itself jump out of local optimum, which will be introduced in the next subsection
(Line 22).

Trigger Conditions of DeepOpt. In the below part, we will introduce some trigger conditions
of DeepOpt in our proposed algorithm. At first, three variables are defined as below.
1) unhard is used to denote the number of unsatisfied PB constraints. Before each inner

loop, unhard is initialized to the number of unsatisfied constraints under the current
assignment (i.e., |unsat(α)|) (Line 6). In the inner loop, whenever |unsat(α)| < unhard,
unhard is updated accordingly (Lines 8–9). After calling the DeepOpt method, unhard

will be updated by |unsat(α)| (Line 31).
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Algorithm 2 DeepOpt-PBO.
Input : PBO instance F and cutoff time cutoff
Output : An assignment α∗ of F and its objective value

1 α∗ := ∅ and obj∗ := +∞;
2 α := all variables are set to 0;
3 initialize the weight value of the objective function and each constraint to 1;
4 while elapsed time < cutoff do
5 stepopt := 1 and coff := 1;
6 unhard := |unsat(α)|;
7 for step = 1; step < L; step++ do
8 if |unsat(α)| < unhard then
9 unhard := |unsat(α)|;

10 stepopt := stepopt/2 and step := step/2;
11 if α is feasible && obj(α) < obj∗ then
12 α∗ := α and obj∗ := obj(α);
13 stepopt := step := 1;
14 if coff ̸= 1 then coff := coff /2;
15 GoodSet := {x | score(x) > 0};
16 if GoodSet ̸= ∅ then
17 select a variable x in GoodSet based on Flipping Rule;
18 α := α with x flipped;
19 else
20 update the weight of each constraint based on Modified Weighting Rule 2;
21 update the weight of the objective function based on Weighting Rule 3;
22 SampleF lip(F, α);
23 stepopt := stepopt + 1;
24 if stepopt%(coff × MinStep) == 0 then
25 if |unsat(α)| ≤ MinHard && with 50% probability then
26 if coff ̸= δ then coff := coff × 2;
27 DeepOpt(F, α);
28 else if α∗ ̸= ∅ then
29 α := α∗;
30 DeepOpt(F, α);
31 unhard := |unsat(α)| and stepopt := 1;

32 RestartV ar(F, α);
33 return (α∗, obj∗);

2) stepopt records the non-improvement steps after the initialization phase or the last
DeepOpt operation. Before each inner loop, the algorithm sets stepopt to 1 (Line 5). In
each iteration of the inner loop, stepopt is increased by 1 (Line 23). When the algorithm
obtains a better assignment (Line 13) or the algorithm calls the DeepOpt method (Line
27 or 30), stepopt will be set to 1 (Line 31). If |unsat(α)| < unhard, then stepopt will be
cut in half (Lines 8 and 10).

3) coff is used to control the frequency of using the DeepOpt method. Before each inner
loop, coff is initialized to 1 (Line 5). When the algorithm finds a better assignment,
the value of coff is divided by 2 to reduce the frequency of perturbations (Line 14). If
|unsat(α)| is smaller than parameter MinHard, it means unsatisfied PB constraints are
few enough to consider perturbations, avoiding tramping into a local optimum. The value
of coff will be doubled with a 50% probability (Line 26). During this process, parameter
δ controls the maximum value of coff .
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The algorithm judges whether to call the DeepOpt method under each (coff × MinStep)
iteration (Line 24). If |unsat(α)| ≤ MinHard, the algorithm calls the DeepOpt method with
a 50% probability (Line 27). Otherwise, if α∗ is not empty, the algorithm will use α∗ as a
perturbation initialization assignment and then employ the DeepOpt method (Lines 28–30).

Algorithm 3 SampleFlip.
Input : PBO instance F and an assignment α

Output : A modified assignment α

1 if |unsat(α)| == 0 then
2 select a random variable x with oscore(x) > 0;
3 α := α with x flipped;
4 return α;
5 select a random unsatisfied constraint C;
6 CSet := V Set := ∅;
7 if |unsat(α)| ≥ β then
8 for i = 1 to β do
9 select a random unsatisfied constraint Ci;

10 CSet := CSet ∪ {Ci};

11 if |L(C)| == 1 then
12 select only variable x in C and α := α with x flipped;
13 else if |L(C)| == 2 then

/* Two variables x1 and x2 in C */
14 select a variable xi with the largest scoret(x1, xi) value, breaking ties randomly;
15 select a variable xj with the largest scoret(x2, xj) value, breaking ties randomly;
16 if scoret(x1, xi) > 0 || scoret(x2, xj) > 0 then
17 if scoret(x1, xi) > scoret(x2, xj) then
18 α := α with x1 and xi flipped;
19 else α := α with x2 and xj flipped;
20 else
21 select a variable x among xi and xj based on Flipping Rule and α := α with x

flipped;

22 else
23 if |unsat(α)| ≥ β then
24 for each constraint Cp ∈ CSet do
25 select |L(Cp)|/2 samples from L(Cp) and put them into V Set;

26 else
27 select |L(C)|/2 samples from L(C) and put them into V Set;
28 select a variable x from V Set based on Flipping Rule;
29 α := α with x flipped;
30 return α;

5.1 Sampling Flipping
The pseudo-code of SampleF lip is outlined in Algorithm 3. First, we introduce a new
scoring function, which is used in our SampleF lip method. When flipping two variables
xs and xz simultaneously, scoret(xs, xz) is defined as the sum of the decrease of the total
penalty of unsatisfied PB constraints and the objective function. Although it is easy to see
the computation complexity of score is quite lower than scoret, scoret can find a better
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flipping operation compared to score. The method of selecting more candidate elements
simultaneously has also been used in some different NP-hard problems [28, 34]. Moreover,
in the SampleF lip method, we only consider scoret in a special case that the number of
literals in the selected constraint C is 2 (i.e., |L(C)| = 2).

In the beginning, if there are no unsatisfied constraints, the algorithm selects and flips
a random variable x with oscore(x) > 0 (Lines 1–4). There are two main important
components, including clause sampling (Lines 5–10) and variable flipping (Lines 11–29) in
the algorithm. In the phase of clause sampling, the algorithm adopts two kinds of sampling
ways. The first sampling method is to select a random unsatisfied constraint C (Line 5). If
|unsat(α)| > β, then the algorithm activates the second sampling method, i.e., adding β

unsatisfied constraints into CSet (Lines 7–10).
In the phase of variable flipping, if C is a unit clause (i.e., |L(C)| = 1), the algorithm

flips the only variable x in C (Lines 11–12). If C is a binary clause (i.e., L(C) = {x1, x2}),
the algorithm tries to find two pairs of variables {x1, xi} and {x2, xj} with the largest scoret

value (Lines 14–15). If there exists a positive flipping operation among these two pairs, the
algorithm flips a pair with the better scoret value (Lines 16–19). Otherwise, the algorithm
still flips only one variable among x1 and x2 based on the flipping rule (Lines 20–21). In the
subsequent process, the algorithm will depend on the value of parameter β to collect some
samples from CSet or C into V Set (Lines 23–27). At last, the algorithm selects and then
flips the best variable x from V Set (Lines 28–29).

The intuitive explanations behind SampleF lip come from two aspects. First, single
flipping mechanism for local search is easy to fall into a local optimum, while sampling
strategy can explore the solution space more effectively in a look-ahead way. Second, the
sampling strategy selects variables from various unsatisfied constraints, providing more search
directions. In addition, we specially focus on the case of two literals, to keep running time
low but a good performance.

5.2 Some Other Techniques
Based on the main part as shown above, we also introduce some additional heuristics to
further improve the efficiency, including a weighting rule and a restart strategy.

Modified Weighting Rule 2. The weighting scheme plays an important role in the
search process. By increasing the weight of unsatisfied constraints, we can accurately guide
the search process toward more efficient directions. In each iteration of the inner loop, if
GoodSet is empty, the visited times of each unsatisfied constraint will be increased by 1. For
an unsatisfied constraint Cp, when its visited times are larger than bp/coeff (Cp), the value
of w(Cp) will be increased by 1, and the value of its visited times is reset to 0.

Restart Strategy. The second adopted technique is the restart strategy. Under a current
assignment α, we can change the original value of each variable with a certain probability,
i.e., from 1 (0) to 0 (1). Besides, the restart strategy will reset the weight value of each
constraint according to the weighting rule 1. If the number of literals in an objective function
O is larger than β (i.e., |L(O)| > β), then w(O) will be reset based on the weighting rule 1,
too.

6 Experimental Evaluation

We first introduce the seven selected benchmarks, three state-of-the-art PBO competitors,
and the adopted experimental setup. Then, we carry out extensive experiments to evaluate
the performance of our proposed algorithm.
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6.1 Experiment Preliminaries
Since the literature on local search algorithms for handling PBO is very sparse, we selected all
used instances from [18, 10]. To be specific, we considered 3738 instances obtained from three
application benchmarks and four standard benchmarks: (1) 24 instances from the minimum-
width confidence band problem (MWCB) [2]. These MWCB instances were obtained based
on the MIT-BIH arrhythmia database2. (2) 18 instances from the wireless sensor network
optimization problem (WSNO) [16, 17]. We used the same encoding as previous work [18] to
obtain an optimization version of WSNO. (3) 21 instances from the seating arrangements
problem (SAP) [1]. These instances were originally proposed in the MaxSAT Evaluation
2017. (4) 1600 OPT-SMALL-INT instances from the most recent PB Competition in 2016
(PB2016)3. The PB2016 benchmark is often considered as the main target for comparing
against some other PB solvers [10, 27]. (5) The 0-1 integer linear programming optimization
benchmark (MIPLIB) contains 267 instances from the mixed integer programming library
MIPLIB 20174. (6) 1025 crafted combinatorial instances (CRAFT) are provided in the
literature [30]. (7) The Knapsack benchmark (KNAP) consists of a total of 783 instances
[22].

Table 1 Tuned parameters of our proposed algorithms.

Parameter Range Final value

DeepOpt
MinStep {103,104,105,106} 105

δ {64,128,256} 128
γ {0.02,0.05,0.08,0.11} 0.05
MaxHard {30,50,70,90} 50
MinHard {5,10,15} 10
Lopt {10,30,50,70} 50
Some other parameters in our proposed algorithms
β {50,100,150,200} 100
L {102,103,104,105} 104

According to the frequency of using the proposed restart strategy, we propose two
versions of DeepOpt-PBO, resulting in DeepOpt-PBO-v1 and DeepOpt-PBO-v2. In detail,
DeepOpt-PBO-v1 does not use the restart strategy (i.e., parameter L is set to INT_MAX).
DeepOpt-PBO-v2 is run for half of the computation time given to the algorithm with the
restart strategy, while the second half of the available computation time of DeepOpt-PBO-
v2 is given to the algorithm without the restart strategy. We also attempted to use the
restart strategy during the whole time, and the result is not satisfactory. According to our
preliminary experiments by using the automatic configuration tool irace [20], Table 1 shows
the parameter values. Specifically, since these benchmarks have different scales, we built a
training set and randomly selected 10 instances from the corresponding tested benchmark.
The tuning process is given a budget of 5000 runs for the training set with a time budget of
3600s per run.

The proposed algorithms are compared against three state-of-the-art PBO algorithms,
including a local search algorithm LS-PBO [18] and two exact PBO solvers, i.e., RoundingSat
[10] and PBO-IHS [27]. Although mixed integer programming solvers (e.g., SCIP [4]) and

2 http://physionet.org/physiobank/database/mitdb/
3 http://www.cril.univ-artois.fr/PB16/
4 http://miplib.zib.de

http://physionet.org/physiobank/database/mitdb/
 http://www.cril.univ-artois.fr/PB16/
 http://miplib.zib.de
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MaxSAT solvers (e.g., CASHWMaxSAT-CorePlus [19]) can be directly applied to solving
PBO, we mainly focus on evaluating the performance of specialized solvers for PBO. The
codes of all competitors were kindly provided by the authors. As for LS-PBO, RoundingSat
and PBO-IHS, we employ the default parameters in the corresponding literature, respectively.
Our code will be made publicly available. All algorithms are implemented in C++ and
compiled by g++ with -O3 option. All the algorithms are run on Intel Xeon Gold 6238 CPU
@ 2.10GHz with 512GB RAM under CentOS 7.9.

For the application benchmarks, our proposed algorithms and LS-PBO are both run 20
times whose seed is from 1 to 20 on each instance, whereas the exact solvers are run once
on each instance. For the other four standard benchmarks (i.e., PB2016, MIPLIB, CRAFT
and KNAP), following the settings of previous works [10, 27], all the algorithms are run only
once on each instance. We test the algorithms with a time limit of 3600 seconds.

For the application benchmarks, we use min to denote the best solution value found and
avg to denote the average value over the 20 runs. For all the benchmarks, we report the number
of instances where the algorithm finds the best solution value among all algorithms, denoted
by #win. There are some unsatisfied instances in the PB2016 benchmark. RoundingSat and
PBO-IHS can guarantee the optimality of the solutions they obtain and thus can prove some
of these unsatisfied instances, whereas DeepOpt-PBO and LS-PBO cannot do it because these
two algorithms belong to incomplete algorithms. For the above case, following the similar
method from the literature [18], if all the algorithms fail to obtain any feasible solution for
such an unsatisfied instance, then #win value of all the algorithms for this instance needs
to be increased by 1. The bold value indicates the best solution value obtained by all the
algorithms. In detail, the bold value of each avg column indicates the best average solution
when some algorithms obtain the same minimal solution values. For one instance, if only one
algorithm finds the best minimal solution value, only its corresponding min column should
be marked.

6.2 Experimental Results
Note that for the application benchmarks, two exact solvers RoundingSat and PBO-IHS can
obtain the same best solution as our proposed algorithms for only 4 instances. Thus, for the
sake of space, we do not report the detailed results of these two exact solvers. We mainly
compare DeepOpt-PBO-v1 and DeepOpt-PBO-v2 with LS-PBO. The experimental results
on the application benchmarks are presented in Tables 2–4. According to our results, our
proposed algorithms are consistently superior on the MWCB and SAP benchmarks. For
the WSNO benchmark, two proposed algorithms and LS-PBO can obtain the same best
solution values. Furthermore, LS-PBO can find a minimal average solution for 15 instances,
while our proposed algorithms do it for only 6 instances. Our proposed algorithms adopt
some perturbation mechanisms, which may make them difficult for the algorithms to steadily
obtain a good solution.

Table 5 gives a summary on all the benchmarks. According to the experimental results,
DeepOpt-PBO-v2 outperforms other algorithms in terms of obtaining more optimal solution
values on PB2016, MIPLIB and CRAFT, except for the benchmark KNAP where PBO-IHS
has a better performance. In addition, under a given time limit, we observe that PBO-IHS
can prove the optimality of a solution for more instances compared to RoundingSat in all
benchmarks. Although our proposed algorithms cannot prove the optimality due to the
natural property of local search, DeepOpt-PBO-v2 can find more minimal solution values
overall. Because some instances from the above benchmarks have different kinds of problem
structures and all the local search algorithms are run only once on each instance, the restart
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Table 2 Experiment results on MWCB.

Instance DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO
min avg min avg min avg

1000_200_90 103363 104188.35 103430 104233 110450 111314.25
1000_250_90 140223 141182.2 140237 141194.9 148181 149828.65
1200_200_90 104063 104572.25 104063 104589.1 110993 112897.1
1200_250_90 141211 142310.6 141238 142343.2 150212 152888.7
1400_200_90 103948 104867.35 104057 104901.55 110792 112975.65
1400_250_90 141567 142675.7 141746 142722.15 150981 152932.9
1600_200_90 119226 120182.4 119226 120215.9 136944 143371.9
1600_250_90 162651 163893.3 162656 163937.1 183797 196547.75
1800_200_90 203135 205888.75 203135 205959.2 219536 224144.95
1800_250_90 253073 257501.75 253078 257715.25 276336 283192.95
2000_200_90 227294 229591.95 227424 229676.1 246109 250958.4
2000_250_90 286970 289889.4 286970 290058.1 309645 314528.5
1000_200_95 113384 114749.8 113501 114855.95 117064 117945.7
1000_250_95 151882 153581.05 152007 153622 156543 157976.1
1200_200_95 114585 115920.2 114675 115975 118045 119544.4
1200_250_95 153104 155765.8 153138 155798.35 159310 161454.1
1400_200_95 114195 115231.3 114195 115305.95 118913 119779.4
1400_250_95 155158 156149.65 155174 156180.15 161658 162917.95
1600_200_95 168271 171985.9 168271 172024.6 185707 190763.55
1600_250_95 215266 218013.5 215316 218069.55 236547 244060.35
1800_200_95 238699 241690.55 238702 241779.85 251744 256988.75
1800_250_95 297981 302487.3 297981 302927.25 314968 318961.25
2000_200_95 257696 262062.9 257696 262113.6 272832 277406.7
2000_250_95 324379 328952.6 324379 329032.9 340859 346007.95

Table 3 Experiment results on WSNO.

Instance DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO
min avg min avg min avg

100_40_4 210 210 210 210 210 210
150_60_4 602 612.85 602 602 602 602.2
200_80_4 715 719.45 715 716.65 715 715.1
250_100_4 1305 1401.2 1305 1330.05 1305 1305
300_120_4 1257 1330.25 1257 1373 1257 1257.05
350_140_4 1737 1957.4 1737 1997.95 1737 1744.05
400_160_4 2240 2509.55 2241 2598.85 2240 2240.5
450_180_4 1869 2780.7 1878 2598.7 1869 1889.25
500_200_4 2577 3676.8 2674 3637.95 2577 2616.2
100_40_6 140 140 140 140 140 140
150_60_6 402 402 402 402 402 402
200_80_6 477 480 477 477.05 477 477.7
250_100_6 870 893.35 870 870.1 870 870.5
300_120_6 839 866.55 839 862.15 839 839.3
350_140_6 1158 1267.7 1158 1288.25 1158 1158.85
400_160_6 1493 1671.8 1493 1656.5 1493 1494.25
450_180_6 1246 1588.45 1265 1641.6 1246 1247.8
500_200_6 1718 1984.05 1718 1927 1718 1727.65

strategy plays a key role in the performance of DeepOpt-PBO-v2. To sum up, for three
application benchmarks, PB2016, MIPLIB, and CRAFT, our algorithm totally dominates all
the competitors, whereas PBO-IHS performs better than other PBO solvers for the KNAP
benchmark.

Additionally, we evaluate the performance of all the solvers on seven benchmarks using
performance profile [11]. As shown in Figure 2, the plot captures the probability of reaching
a fixed quality in a time, at most a factor τ slower than the optimal algorithm. Specially,
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Table 4 Experiment results on SAP.

Instance DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO
min avg min avg min avg

100 579 579.7 579 579.8 580 583
110 618 618.75 618 618.85 619 626.05
120 675 677.15 675 677.8 679 685.6
130 733 736.9 734 738.4 738 744.6
140 750 751.9 750 753.75 757 763.65
150 803 808.4 803 810.3 821 828.45
160 849 854.85 849 855.75 867 872.75
170 880 884.4 880 885.55 897 907.5
180 939 948.45 941 951.7 971 977.4
190 965 973.2 970 977 996 1005.25
200 1029 1040 1029 1042.55 1067 1073.4
210 1067 1074.7 1068 1077.9 1094 1112.75
220 1114 1127.3 1114 1129.6 1151 1163.1
230 1151 1166.85 1162 1169.7 1195 1205.75
240 1179 1192.6 1183 1195.5 1219 1234.55
250 1235 1243.1 1237 1245.5 1274 1290.55
260 1275 1286.15 1277 1287.45 1318 1334.9
270 1344 1353.1 1348 1356.1 1392 1403.55
280 1348 1370.75 1354 1375.35 1407 1424.3
290 1403 1416.35 1405 1419.5 1448 1471.15
300 1471 1491.5 1480 1496.1 1538 1548.4

Table 5 Summary results of comparing our proposed algorithms to its competitors on all the
benchmarks. #inst denotes the number of instances in each benchmark.

Benchmark #inst DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO RoundingSat PBO-IHS
#win #win #win #win #win

MWCB 24 24 9 0 0 0
WSNO 18 18 14 18 4 4
SAP 21 21 9 0 0 0
PB2016 1600 1141 1226 1060 1195 1101
MIPLIB 267 163 168 135 125 130
CRAFT 1025 903 930 878 882 917
KNAP 783 695 693 649 392 778
Total 3738 2965 3049 2740 2598 2930

Table 6 Comparative results for DeepOpt-PBO-v1 and its modified versions with different
strategies on the application benchmarks. #better and #worse denote the number of instances
where DeepOpt-PBO-v1 obtains better and worse solution values, respectively.

Benchmark #inst vs. v1+nohh vs. v1+nodo vs. v1+nosf
#better #worse #better #worse #better #worse

MWCB 24 11 8 24 0 24 0
WSNO 18 1 0 1 0 0 0
SAP 21 11 5 18 0 20 0
Total 63 23 13 43 0 44 0

when τ equals 1, we obtain the probability that the algorithm is the fastest. Figure 2 (a)
demonstrates the superior performance of DeepOpt-PBO-v1 on the first three application
benchmarks. It can be observed that DeepOpt-PBO-v1 has a higher probability of finding
the optimal solution for each τ . In Figure 2 (b), LS-PBO performs the best within a short
time scale. However, DeepOpt-PBO-v2 surpasses LS-PBO around τ = 6 and maintains its
leadership consistently.
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Figure 2 Performance profiles for DeepOpt-PBO and all competitors for reaching the best solution
on the three application benchmarks (a) and four standard benchmarks (b).

For three application benchmarks, to determine better solution values, we increase the
execution time to 5400 seconds, and once again our algorithms perform better than LS-PBO.
For the PB2016 benchmark, when increasing the execution time to 5400 seconds, although
the solution values obtained by RoundingSat and PBO-HIS are better than before, our
algorithm can still find more best solution values than RoundingSat and PBO-IHS for 29
and 140 instances, respectively.

To verify the effectiveness of the proposed strategies, we compare DeepOpt-PBO-v1
with three alternative versions: 1) v1+nohh utilizes the age strategy instead of hhscore; 2)
v1+nodo does not use the DeepOpt method; 3) v1+nosf does not employ the SampleF lip

function. The results in Table 6 demonstrate that all proposed strategies are effective. In
addition, we randomly select 20 instances for each standard benchmark. In total, 80 instances
are picked. We also test the performance of our proposed algorithm and three alternative
versions on these picked instances. All the algorithms are run 20 times on each instance.
Once again, the results show that our proposed algorithm obviously performs better than
three alternative versions.

Here, we give a discussion to compare our algorithm with MIP solvers and MaxSAT
solvers. First, although MaxSAT solvers (e.g., CASHWMaxSAT-CorePlus [19]) can be
directly applied to solving PBO, Lei et al. [18] observed that several of the instances from
some benchmarks, such as PB2016, are too large to admit practical encodings into MaxSAT.
Thus, MaxSAT solvers have usually poor performance for PBO. Second, more general solvers
(e.g., MIP solvers) could also be used for comparison, but in our work, we mainly focus
on evaluating the performance of specialized solvers for PBO. We have also tested the
performance of the non-commercial MIP solver SCIP [4] on all the seven benchmarks. In
detail, for the KNAP benchmark, the performance of PBO-IHS and SCIP is better than our
algorithm. But, for the remaining six benchmarks, our algorithms perform better than SCIP.

7 Conclusion

In this paper, we propose a two-level selection strategy, a novel deep optimization strategy,
and a sampling flipping method. Based on the above strategies and some other tricks,
we develop two local search algorithms. Experiments show that the proposed algorithms
significantly outperform the state-of-the-art PBO algorithms.
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Abstract
A pressure sewer system is a network of pump stations used to collect and manage sewage from
individual properties that cannot be directly connected to the gravity driven sewer network due
to the topography of the terrain. We consider a common scenario for a pressure sewer system,
where individual sites collect sewage in a local tank, and then pump it into the gravity fed sewage
network. Standard control systems simply wait until the local tank reaches (near) capacity and
begin pumping out. Unfortunately such simple control usually leads to peaks in sewage flow in
the morning and evening, corresponding to peak water usage in the properties. High peak flows
require equalization basins or overflow systems, or larger capacity sewage treatment plants. In this
paper we investigate combining prediction and optimisation to better manage peak sewage flows.
We use simple prediction methods to generate realistic possible future scenarios, and then develop
optimisation models to generate pumping plans that try to smooth out flows into the network. The
solutions of these models create a policy for pumping out that is specialized to individual properties
and which overall is able to substantially reduce peak flows.
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1 Introduction

A Pressure Sewer System (PSS) is a network of pump stations used to collect and manage
sewage from individual properties that cannot be directly connected to the classic gravity
sewer network due to the topography of the terrain (gravity limitation). The sewerage gravit-
ates to the pump station and is then pumped through a pressure main to a main sewer and on
to wastewater treatment plants. This is illustrated in Figure 1a. A PSS is often composed of
intermediate, bigger pump stations between sub parts of the whole network (Figure 1b). Pump
stations collect household sewage from a sub part of the network and pump it to the main. Our
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Figure 1 (a) Pressure sewer unit. (b) Pressure sewer network.

focus in this paper is to optimise the operation of individual pump stations to balance the over-
all load at the treatment plant. In this paper, we only consider an existing network managed by
our industry partner South East Water. The network that we consider is free of intermediate
pump stations. Extending the approach to handle intermediate pump stations would require
adding constraints to ensure the capacity of the pump station is not violated at any time.

We consider a classic scenario for PSS where volumes at the residential level are released
without optimised control. When the collection tanks reach their capacity, water is released
entirely into the network. This represents a considerable amount of sewage conveyed through
the sewer network that must be handled by the treatment plant, resulting in stress on the
treatment processes and increased capital costs of upsized pipe and pump networks. This
simple control policy does not make good use of the network. Volumes can be retained
in pressure sewer tanks at the residential level and selectively released in a way that can
optimise the flows to provide network capacity increases for the current network, and improve
operations of the downstream treatment plant.

Most of the water usage occurs in the morning and the evening peak loads, when people
are home. This results in two, identifiable peaks of activity in the network. This sudden
surge in activity represents a challenge for the water treatment processes that follow. Huge
amounts of resources need to be deployed at the treatment plant at these times to cope with
the volumes to be treated and the associated unpredictability. South East Water would like
to flatten the input flow at the treatment plant to achieve greater plant operational efficiency.
This is possible by leveraging the buffer capabilities of the collection tanks, assuming that
each tank can be controlled individually.

Current operational strategy. The water industry has yet to integrate data-driven models
and optimisation techniques to facilitate and control their processes in a more efficient
and systematic way. Most water companies rely on operators’ knowledge and experience
to parameterise and control their network. In current operation each tank fills until it
reaches its capacity (cut-in setpoint) and then fully (until cut-off setpoint) empties the
tank. In a previous approach to tackling the problem of reducing maximum outflows on
the network we investigated simply modifying the (cut-in) set points of the tanks to try
to reduce homogeneous behaviour but this was not really successful. Without adjustment
the tanks quickly reached a steady state where the usual morning and evening peak inflows
again resulted in high outflow. Due to the location of the network in a holiday zone the set
points needed to be adjusted frequently as usage behaviour fluctuated rapidly over weekends,
summer etc.



V. Barbosa Vaz, J. Bailey, C. Leckie, and P. J. Stuckey 42:3

In this paper we define an optimisation based approach to controlling the maximum
outflow, by deciding in which time periods to empty the tanks. In order to flatten out
peaks we need to have some idea of the future inflows into the tanks. Because patterns of
water usage are quite distinct generating realistic time series of inflows is challenging with
machine learning models. Hence we use simple historical sampling to generate plausible
future inflows. We show how combining (simplistic) prediction models with an optimisation
model to determine when to release sewage into the network from individual properties, can
substantially reduce the peak flows in the network.

2 Problem Description

We model the problem of controlling a PSS system to reduce peak flows as a MIP. We
discretize the control problem by working over a finite time horizon of n discrete time steps,
which for our experiments are always 1 hour long. Note that this discretization is fine enough
that none of our historical data has examples where a tank is filled from empty in under
an hour. Finer discretization would allow some further reduction in peak outflows, but we
expect that we capture most of the possible reduction using 1 hour discretization. The
parameters for the water flow control model are shown in Table 1. In each time step we
decide whether to empty the tank at a particular site. In the default control mechanism,
when we decide to pump out of a tank, we empty it. This has the least wear and tear on the
pumping and control mechanism.

Table 1 Parameters for the water flow control model.

Description Parameter

Time horizon T = 1..n

Set of tanks S

Capacity of tank at site s (cut-in setpoint) cs

Minimum amount of water to be pumped out m

Inflow to tank at site s during time period t is,t

Tank level of site s tank at the beginning of the first time period ls,0

2.1 Direct Formulation
In this section, we propose a direct MIP formulation for the PSS problem, over a given set of
tank sites S and time horizon T . The control systems for the tanks have simple functionality,
we can (re-)set minimum and maximum tank levels, or initiate a pump out of the tank, but
not control exactly how much volume is pumped out of the tank. This leads to the important
decision we must make – for each tank s at what times t should it be emptied? Xs,t ∈ {0, 1}.
The model makes use of auxiliary variables: ls,t the level of tank s at (the end of) time t;
and os,t the volume of water pumped out of tank s during time period t. The model is:

minimize max
t∈T

∑
s∈S

os,t

ls,t = (ls,t−1 + is,t) ∗ (1−Xs,t), ∀s ∈ S, t ∈ T (1)
ls,t ≤ cs, ∀s ∈ S, t ∈ T (2)

os,t = (ls,t−1 + is,t) ∗Xs,t, ∀s ∈ S, t ∈ T (3)
Xs,t = 1→ os,t ≥ m, ∀s ∈ S, t ∈ T (4)

Xs,t ∈ {0, 1}, ∀s ∈ S, t ∈ T

CP 2023
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where Equation (1) computes the level ls,t in each tank s at the end of time period t (previous
level plus inflows, unless emptied); Equation (2) ensures that each tank’s level remains below
tank capacity; Equation (3) computes the outflow os,t from tank s at time t; and Equation (4)
ensures that if the tank is emptied there is a minimum volume present (to prevent accelerated
wear and tear on the infrastructure). The objective is to minimize maximum outflow across
the period considered. Note that each of the constraints, and the objective are linear or easy
to linearise.

2.2 Packing Formulation
The model above straightforwardly models the problem, but can become challenging to solve
as the problem size grows. Next we instead consider the inflow to tank s at time t as a fixed
amount of flow, we then decide when this should be pumped out. By precomputation we can
then specify simple constraints to enforce that the capacity of tank is not exceeded. This
leaves a packing problem, deciding when each chunk of water is pumped into the network.

The tank inflows are aggregated by hours and constitute the items of the problem. We
require that the inflows are pumped out in order of inflow. The inflow at time t, is,t, must
be pumped out, no earlier than t, and not later than latest(s, t) = min({t′ − 1 | t ≤ t′ ≤
n,

∑
t≤i≤t′ is,i ≥ cs}∪ {n}) which would mean the tank capacity was exceeded, since no later

flows can be pumped out before is,t. Note that we treat the starting tank level ls,0 as an
inflow at time 0, is,0 = ls,0. We can also define the last inflow that must be pumped out
in the considered time period, last(s) = min{t |

∑
t≤i≤n is,i ≤ cs} − 1. And for each tank

and time define below(s, t) = max{t′ | t ≤ t′ < latest(s, t),
∑

t<i≤t′ is,i < m} to be the latest
time t′ such that if the tank is emptied at time t the sum of inflows after it up to t′ is too
small to empty.

The new decision variables ps,t,t′ determine the time t′ when the inflow to s at time t is
pumped out (including the original tank volume t = 0). The model is defined by:

minimize max
t∈T

∑
s∈S,t′≤t

ps,t′,t × is,t∑
t≤i≤latest(s,t)

ps,t,i = 1 s ∈ S, t ∈ 0..last(s) (5)

ps,0,0 = 0 s ∈ S (6)∑
t≤i≤t′

ps,t,i ≥ ps,t+1,t′ , ∀s ∈ S, t ∈ 1..n, t′ ∈ t + 1..latest(s, t) (7)

Xs,t′ = 1→
∑

t≤i≤t′

ps,t,i ≥ 1, s ∈ S, t ∈ T, t′ ∈ t..latest(s, t) (8)

∑
t′≤t≤latest(s,t′)

ps,t′,t ≥ 1→ Xs,t = 1, s ∈ S, t ∈ T (9)

Xs,t = 1→
∑

t<i≤below(s,t)

Xs,i ≤ 0, ∀s ∈ S, t ∈ T (10)

Xs,t ∈ {0, 1}, ∀s ∈ S, t ∈ T

ps,t,t′ ∈ {0, 1}, ∀s ∈ S, t ∈ 0..n, t′ ∈ t..latest(s, t)

where Equation (5) enforces we pump out each inflow (before last(s)) exactly once; Equation
(6) enforces that nothing is pumped out at time 0; Equation (7) enforces that the inflow to
tank s at time t is pumped out no later than the time the inflow at time t + 1 is pumped out,
i.e. the inflows are pumped out in order; Equation (8) connects the emptied variables to the
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pump out variables by requiring that if tank s is emptied at time t′ then each inflow before t′

is pumped out by time t′; Equation (9) connects them in the other direction requiring that if
any inflow is pumped out of tank s at time t then tank s is emptied at time t; and Equation
(10) enforces that if tank s is emptied at time t then it is not emptied again until at least m

units of flow have entered the tank. The objective minimizes maximum outflow, computed
from the pumped out variables. Again the entire model is easy to linearise.

3 Predicted Water Usage Generation

Online optimisation problems can be augmented with a predictor that informs the model on
future instances. Simple predictors can sample the inputs or sample the distribution of the
inputs. More complex Machine Learning based predictors can learn from the distribution
of the inputs as the online problem is being solved. Research [5, 1, 2, 3] has demonstrated
that sampling the distribution of the inputs or providing estimates can significantly improve
the quality of the solution. In practice, not all optimisation problems have access to the
distribution of the inputs.

We wish to generate water usage predictions for each site. The collected water usage
comes from diverse households exhibiting different behavioural patterns. Care must be taken
when building a predictor to capture the seasonality and cycles in the data. Because of these
properties, building an individual predictor for each site and time instance is unlikely to
produce realistic distributions of water usage.

3.1 Historical Sampling
We use historical sampling as described by Bent and Van Hentenryck [4]. This generates
samples from past subsequences in the historical data. Despite its simplicity, historical
sampling captures the structure of the sequence while providing fast outcomes compared to
ML techniques that require training during the online algorithm. We adapt the algorithm to
sample historical data while preserving the structural periodic information of our samples. In
particular, we “retrieve” a prediction sequence on inflows for tank s for times T = 1..n from
the historical data sequence S of inflows for tank s including d̄ days of data, by randomly
selecting starting position t′ which is the start of some day (since our experiments always
commence from the first hour of a day) in S, where S[l..u] returns the slice of sequence S

from index l to u inclusive.

Algorithm 1 Historical sampling.

1 historicalSample(S, n)
2 d̄← |S| div 24
3 t′ ← 24×RANDOM([0, d̄− 1]) + 1
4 return S[t′..t′ + n− 1]

4 Experimental Evaluation

In this section, we present the results of using proposed models on a set of benchmark
instances. The models are implemented in MiniZinc [8], a high-level and solver-independent
modelling language, allowing for fast experimentation across existing solvers (OR-tools,
Gurobi, CPLEX) without compromising on efficiency. All experiments were run on the same

CP 2023
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Figure 2 (a) Original level data available from the SCADA system, and (b) the reconstructed
level (from where we compute inflow data).

machine which has an Apple M1 Pro 3.22 GHz CPU with 10 cores and 16 GB of RAM. All
approaches were given a time limit of one hour per instance. The solver used was Gurobi
version 9.5.2.

4.1 Benchmark Instances

The data is provided by our industry partner, South East Water, and corresponds to pressure
sewer readings. This catchment has been selected as it is of reasonable scale and is free of
infiltration. The data is collected, through a series of scripts, from the SCADA server and
corresponds to 3 years (2019-2021) of historical readings from approximately 4200 individual
households. A range of attributes can be extracted from the readings; we focus on the water
level and pump activation. The network is free of intermediate pump stations.

In order to make different decisions, we first need to rollback any previous decisions to
obtain the original system inputs. The tanks are not equipped with water meters to measure
the inflows but have level sensors. From the water level, we can derive the inflows to be the
difference between two positive consecutive readings. This is illustrated in Figures 2(a) and
2(b). We generated inflow data for each site for each hour of the day in the periods used for
instance generation.

We cluster similar sites using the k-means algorithm where distance is defined as the
sum of absolute differences over their inflow data. We observe the average inflow for each
cluster. We determined four identifiable water usage profiles amongst the households: two
diurnal/bimodal (with a morning and afternoon peak) and two uni-modal usages (with
just a morning peak), at a time translation respectively. We combined the bimodal and
uni-modal sites respectively. The average inflow for each cluster is shown in Figure 4 in the
supplementary material.

We created 6 problem instances from our industry partner. These instances represent
different levels of complexity. To ensure they are different we choose different kinds of flows.
For each instance we pick |S| sites to use, either from the unimodal clusters, the bimodal
clusters, or the complete set of clusters. We choose a number of hours n to solve over and a
uniform capacity C for each tank. For each instance we create 30 scenarios, corresponding to
different date ranges for the actual flow, and generate different historical sampling predictions
for each site in each of the scenarios. Details of the problem instances are shown in Table 2.
We consider scenarios of 24 and 48 hours length, the 48 hour instances allow water to be
kept overnight in the tanks in order to smooth the outflows. We also briefly explored longer
scenarios of 1 week but they did not lead to much greater peak outflow reductions than 48
hour scenarios.
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Table 2 Statistics of the 6 difference problem instances giving: the kinds water usages: unimodal
(only using tanks that have a single peak in usage), bimodal (only using tanks that have bimodal
water usage) and complete (using all types of tanks); number of tanks |S|; number of periods n; and
the peak capacity of each tank C.

Inst. Types of usage |S| n C

I1 unimodal 1250 24 500
I2 unimodal 1250 48 500
I3 bimodal 1250 24 500
I4 bimodal 1250 48 500
I5 complete 2500 24 500
I6 complete 2500 48 500

4.2 Alternative approaches to controlling outflow

Because we only have a prediction of the future, the decisions made by the optimisation
models may not be implementable with the actual inflows. Thus we implement out decisions
as a “policy” for the tank to follow. If Xs,t = 1 then tank s will empty only if there is
sufficient volume in the tank (≥ m), and if Xs,t = 0 then the tank will still empty if the level
would reach capacity cs. This means that the decisions always lead to operation of the tank
within specification. We denote this approach as HS (historical sampling).

The current operational approach and baseline is that a tank s only empties when it
reaches capacity. We can understand this as a set of decisions where Xs,t = 0, ∀s ∈ S, t ∈ T ,
since emptying only happens when capacity is reached. We denote this policy [0, 0].

An alternate baseline strategy is to set Xs,t = 1, ∀s ∈ S, t ∈ T , this guarantees to empty
each tank as soon as it has more than the minimal capacity. While unattractive in practice,
since it induces significant wear and tear on the pumps, this may reduce peak outflows. We
denote this policy [1, 1].

We also consider a random policy by counting the average proportion of pump out periods
props for each site s using the baseline [0, 0] policy. We draw a random number in [0..1)
for each site, and try to pump out if it is below props. The random policy is defined as
Xs,t = 1→ RANDOM([0..1)) ≤ props, ∀s ∈ S, t ∈ T .

Only using a single historical scenario is not robust, although since we are sampling for
many tanks, certainly some of the variance of the problem is considered. We can make more
robust plans by sampling for each tank s instead k scenarios, and computing the plan that
leads to the minimum average maximum outflow across the scenarios (the deterministic
equivalent). But the models are already slow, and this would substantially increases solve
time. Instead we construct an artificial worst case scenario w, by in each time period defining
the iw

s,t = max{ii
s,t | i ∈ 1..k}, that is, the maximum inflow over all the k scenarios. This has

the same size, and hence solving difficulty, as a single scenario. We denote this approach as
WHS (worst case historical sampling) where we use k = 7.

4.3 Results

The direct formulation while asymptotically smaller, O(|S||T |)), is challenging to solve for
the size of problem we tackle. On instances with 2500 sites it struggles to find solutions
quickly. The packing formulation which is ostensibly O(|S||T |2) but since latest(s, t)− t is
either small, or there are many time periods where is,t = 0 which do not require any pumped
out decision variables, the actual size grows as O(|S||T |)), and the constraints are much
simpler and hence faster to solve. For the remainder of the paper, we only report results for
the packing formulation.

CP 2023
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Table 3 (Maximum mean outflow/standard deviation of outflow) for each problem instance and
method across 30 scenarios.

[0,0] [1,1] random clairvoyant HS WHS
I1 (13,793/223) (14,444/170) (10,858/204) (8,596/169) (8,998/170) (9,514/173)
I2 (13,793/223) (14,444/170) (11,408/209) (8,110/206) (8,702/205) (8,592/202)
I3 (12,176/254) (12,425/217) (11,156/236) (10,859/212) (11,387/221) (10,877/213)
I4 (12,176/254) (12,425/217) (11,042/239) (9,717/272) (10,382/241) (10,865/237)
I5 (24,438/303) (25,165/273) (19,578/284) (18,446/261) (18,793/276) (20,309/270)
I6 (24,438/303) (25,165/273) (19,225/285) (17,035/281) (17,314/290) (17,368/287)

Our proposed methods are compared against the current operational strategy [0,0] and an
alternate base line [1,1]. In order to see how close to optimal we get we also compare against
the clairvoyant approach which is running the optimisation model with the actual inflow
data for the tested time period. This computes the minimal maximum outflow possible.

Figure 3 shows the behavior of the models running on instance I5. The clairvoyant
approach illustrates that there is a significant reduction in peak outflow available if we
make wise emptying decisions. The historical sampling approach actually gets quite close
to the best solution on average but it is clear that the variance is large, often well over the
clairvoyant solution. The worst case approach pays some penalty, it is unable to reduce the
peak flow as well, but still is not that far from the clairvoyant solution, and its standard
deviation is much smaller.
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Figure 3 Mean total outflows in each hour of the day for different approaches applied to instance
I5. The shaded regions show the 25% - 75% confidence interval, across the 30 scenarios.

Table 3 gives the summary results across the 6 instances. First note that the current
baseline [0,0] is much better at reducing mean peak outflow then the alternative [1,1] of
always pumping out when possible, but the standard deviation of the second method is
much lower. The clairvoyant method shows that there is considerable reduction in peak
available compared to the current baseline. The historical sampling optimisation approach
HS is able to capture much of the available reduction in peak outflow and while the standard
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deviation is larger than the clairvoyant approach it is not that much larger and considerably
better than the current baseline. The worse case WHS approach also beats the baseline,
and for some instances can be better than HS, its main strength is that usually reduces the
standard deviation compared to HS. The random policy performs well for 24 period instances
comparatively to 48 period instances. The HS and WHS approaches consistently perform
better at reducing the peak flow when considering larger periods. The random policy is able
to use the morning buffer capability of the tanks that is overlooked by the other approach for
24 period instances. For larger periods instances, the HS and WHS approaches systematically
beat the random policy. This suggests a potential performance gain for CP based approach
for larger period instances.

5 Conclusion

In this work, we introduced a novel practical problem from the water industry, controlling a
pressure sewer system to reduce peak outflow. We proposed a direct MIP formulation and a
packing formulation to solve practical scenarios. We provide an extensive experimental study
on challenging and realistic instances of considerable size. The results show an optimisation
model can significantly reduce the peak outflow of the system compared to the current
operational approach.

So far we have only considered the most simple prediction approach, we plan to investigate
forecasting models such as LSTM and LightGBM, to see whether they can produce realistic
future flows. Ideally we would also extend the forecast to take into account parameters that
affect the likely inflows, such as day of the week, season, and weather (the PSS we study is in
a holiday zone, so inflow patterns change significantly on weekends, during summer, and when
the weather is hot). It would be interesting to investigate Predict+Optimise approaches [6, 7]
applied to the problem, but seeing that the predictions are for individual tanks and the
objective results from considering all tanks simultaneously this appears challenging. While
the simple optimisation approach we use here works we also plan to investigate decomposition
approaches such as Benders or column generation, since the tanks are only weakly coupled
by the objective. As future work, we plan to take into account more of the real features of
the network such as the distance of tanks from the sewer treatment plant, the full topology
of the network, and the inclusion of intermediate pump stations.
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Abstract
Due to the limited connectivity of gate model quantum devices, logical quantum circuits must be
compiled to target hardware before they can be executed. Often, this process involves the insertion
of SWAP gates into the logical circuit, usually increasing the depth of the circuit, achieved by solving
a so-called qubit assignment and routing problem. Recently, a number of integer linear programming
(ILP) models have been proposed for solving the qubit assignment and routing problem to proven
optimality. These models encode the objective function and constraints of the problem, and leverage
the use of automated solver technology to find hardware-compliant quantum circuits. In this work,
we propose constraint programming (CP) models for this problem and compare their performance
against ILP for circuit depth minimization for both linear and two-dimensional grid lattice device
topologies on a set of randomly generated instances. Our empirical analysis indicates that the
proposed CP approaches outperform the ILP models both in terms of solution quality and runtime.
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1 Introduction

The quantum circuit model of computation specifies quantum algorithms as sequences of
logical quantum gates [12]. Quantum circuit compilation is the process of compiling a
logical quantum circuit to a target quantum device such that the compiled circuit adheres
to device-specific connectivity constraints. Commonly, this process involves the insertion of
SWAP gates into the original circuit enabling qubits to move to neighboring locations on the
hardware. Determining the initial qubit allocation as well as when and where these gates
should be inserted has been studied under the name qubit routing [6].

Figure 1 provides an illustration of an input logical quantum circuit, a quantum device
topology (represented as an undirected graph that specifies device connectivity), and a valid
compiled circuit that inserted a single SWAP gate. Due to the effects of quantum decoherence,
particularly in superconducting devices, it is often beneficial to solve the qubit assignment
and routing problem while minimizing circuit depth (where the depth is the number of layers
of parallelized gates). For this reason, additional gates should be used sparingly and with
high parallelization, when possible.

A variety of techniques have been proposed for solving this problem in the literature,
including both exact and heuristic approaches. Exact methods typically involve the use of
search-based solvers leveraging smart inference techniques that, given enough time, will find
and prove the optimal solution [4, 3, 10, 9, 14]. Alternatively, heuristic methods (which have,
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q1 • •
q2 •
q3 •
q4

(a) Logical circuit.

v1 v2

v4 v3

(b) Target device topology.

q1 : v1 • •
q2 : v2 ×
q3 : v3 • × •
q4 : v4

(c) Hardware-compliant compiled
circuit.

Figure 1 Qubit assignment and routing problem example specifying the input logical circuit (a),
target device topology (b) and a compiled circuit (c). The input circuit has a depth of 2 (gates
(q1, q3) and (q2, q4) can be executed in parallel), while the compiled circuit has a depth of 3.

until recently, been the focus of previous work) sacrifice completeness in favor of rapidly
producing high quality circuits [8, 15, 6]; these methods tend to scale more effectively to
larger problem instances as well.

In this short paper, we focus on the development of exact model-based approaches that
outperform those from the literature. Specifically, we introduce and report initial results
for two new CP models for the qubit assignment and routing problem. Our models have
a relatively simple implementation, and leverage constraints supported by a variety of CP
solvers. The first model is designed for linear array quantum device topologies, while the
second can be used to solve problems involving more general architectures. We conduct
an empirical analysis of the ILP models proposed by Boccia et al. [3] and Nannicini et al.
[10] using circuit depth minimization as our objective function. We demonstrate, through
empirical evaluation using different solvers, that our CP models outperform these existing
ILP approaches in terms of solution quality and runtime for depth minimization.

The remainder of this paper is organized as follows. In Section 2 we define the specific
variant of the qubit assignment and routing problem that we consider in this paper. In
Section 3 we present our new CP models for the studied problem. In Section 4 we conduct an
empirical assessment of the presented models on both linear array and 2D lattice architectures
of varying size. Finally, in Section 5 we provide concluding remarks.

2 Preliminaries and definitions

We follow previously used notation with minor alterations to ease the presentation of the
problem definition [10]. The input to the qubit assignment and routing problem consists of:
i) a sequence of quantum gate groups (e.g., Figure 1a), and a hardware graph (e.g., Figure
1b). The hardware graph, H = (V, E), consists of nodes i ∈ V , where each node represents
a physical qubit on the quantum computer. The graph has edges e ∈ E, where each edge
e = {i, j} dictates pairs of physical qubits that can execute two-qubit gates (i.e., qubits that
are neighboring each other on the architecture). Often, as in previous work [10], it is useful
to define a directed graph A such that each undirected edge in E corresponds to two directed
edges in A, (i, j) and (j, i). In this paper we study both linear and general hardware graphs
(e.g., lattices).

The sequence of quantum gate groups is represented by G = (G1, G2, . . . , G|L|) where
L is the set of layers in the original circuit and Gℓ indicates the set of gates that must be
executed in the ℓth layer. In this paper, we consider two-qubit quantum gates, g = {p, q},
involving a pair of logical qubits p, q ∈ Q such that Gℓ = {gℓ

1, gℓ
2, . . . }. All of the two-qubit
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gates executed in a given layer involve a set of non-overlapping pairs of qubits. This way,
the gates in a layer are parallelized. To account for inserted SWAP gates, we augment the
original circuit with a number of “auxiliary layers” between each of the logical circuit layers.
We denote the total set of layers as L′, and use LSW AP to specify the auxiliary layers only.

Qubit assignment involves producing an initial mapping of logical qubits, Q, to physical
qubits, V , on the quantum hardware. For simplicity, we refer to logical qubits and physical
qubits as qubits and nodes from now on, respectively. We also assume that |Q| = |V |.1

Qubit routing is the process of moving qubits around the hardware architecture such
that the gates at each layer can be executed in a way that satisfies the connectivity of the
device. In this work, we consider routing accomplished via the use of SWAP gates (although
we note there are other routing techniques [2]), two-qubit gates which exchange the position
of two neighboring qubits. These SWAP gates are inserted into the auxiliary layers between
the layers of the idealized quantum circuit and (often) increase its overall depth.

The objective of the qubit assignment and routing problem studied in this paper is to: i)
assign qubits to nodes on the hardware, and ii) route the positions of the qubits such that
the gates at each layer can be executed while satisfying the connectivity of the device. We
seek to minimize the number of auxiliary layers utilized, effectively resulting in circuits with
lower depth. This problem is known to be NP-Complete [5].

Following previous work, our assumptions on the formulation of the problem include:
Qubits involved in a two-qubit gate can also swap positions. This is also called “merging”
SWAPs with adjacent two qubit gates [7].
Two-qubit gates are undirectional (i.e., the cost of executing a two-qubit gate in the
forward configuration is the same as in the reverse configuration).
We restrict our attention to circuits involving two-qubit gates, since single qubit gates
can be merged with two-qubit gates and thus do not need to be considered.

3 Constraint programming models

For each of our proposed models, the main decision variable is xqℓ ∈ {1, . . . , |V |} which
represents the node location of logical qubit q ∈ Q at layer ℓ ∈ L′. Since ILP is less flexible
than CP (e.g., due to linearity restrictions) the ILP models from the literature [10, 3, 9] must
introduce additional variables to properly model the problem. In our models, we exploit the
structure of the problem such that it is sufficient to constrain the values of xqℓ from one
layer to the next and avoid additional variable overhead.

3.1 Linear array architectures
The first CP model we present is applicable to linear array architectures (such as the
one presented in Figure 1b). The linear array is represented as a graph with nodes V =
{1, 2, . . . , |V |} and edges E = {(i, i + 1) : i ∈ V \ |V |}. This model is motivated by previous
work in ILP [9], and employs absolute value constraints to ensure that qubit movement
between layers is valid, and to ensure that qubits involved in a gate are at adjacent locations
on the device.2

1 Note that, in the case where |Q| < |V |, we can just introduce and route auxiliary qubits.
2 We note that the work in [9] does not minimize circuit depth, but rather the number of SWAPs inserted,

and so we do not compare to it in this paper (non-trivial changes to the model must be made in order
to express a depth minimization objective).

CP 2023
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The first constraint in our model ensures that, at each layer, each logical qubit is located
at one node on the architecture, and all of the locations of the logical qubits are different.
We use the alldifferent global constraint [13] to accomplish this:

alldifferent({x1ℓ, . . . , x|Q|ℓ}), ∀ℓ ∈ L′ (1)

The next set of constraints ensure that the gates specified in each layer are executed while
adhering to the connectivity constraints of the target hardware. These constraints are
expressed as follows:

|xpℓ − xqℓ| = 1, ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (2)

Intuitively, these constraints specify that the locations of logical qubits (p, q) involved in
two-qubit gate g must be neighboring. Note that, since this model is for a linear architecture
(as defined above), this constraint is enough to ensure the gates in a layer can be executed;
more complex architectures require more sophisticated modeling (as described in the next
section).

A similar set of constraints is used to constrain the movement of qubits from one layer to
the next. These are expressed as follows:

|xqℓ − xqℓ+1| ≤ 1, ∀ℓ ∈ {1, . . . , |L′| − 1}, q ∈ Q (3)

The above constraints dictate that, from one layer to the next, a given qubit cannot move more
than one location away from its current location (preventing, for example, two simultaneous
SWAP gates involving the same qubit). Additional constraints must be added to ensure that
pairs of qubits, where qubit is involved in a gate at a given layer and the other is not (recall
that the qubit pairs involved in a gate are permitted to SWAP), cannot SWAP from that
layer to the next. This constraint is expressed as follows:

|xpℓ − xqℓ+1| ≤ 1, ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (4)

Constraint (4) ensures that the qubit pair involved in a gate are still neighboring at the next
layer. Note that this permits the qubit pair to exchange positions, but it does not allow
either qubit to swap with another qubit not involved in the gate.

Finally, we encode the objective function of the optimization which is to minimize the
number of auxiliary layers added to the circuit to support SWAP insertions; this is effectively
the same as circuit depth, and follows previous work [10]. To express this objective, we
introduce a binary decision variable zℓ ∈ {0, 1} for each layer, ℓ ∈ LSW AP . We constrain
the variable such that it takes on a value of 1 whenever a SWAP gate is inserted into an
auxiliary layer:

zℓ ≥ |xqℓ − xqℓ+1|, ∀q ∈ Q, ℓ ∈ LSW AP . (5)

Constraint (5) tracks each time a qubit changes locations from one layer to the next, and the
location change is not due to a (non-SWAP) gate operation. Finally, the objective function
is expressed as:

min
∑

ℓ∈LSW AP

zℓ (6)

Note that if all qubit routing operations can be achieved by merged SWAPs, the optimal
solution will be zero as no auxiliary SWAP gates need to be introduced.
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The linear architecture CP model has O(|Q||L′|) variables, each with a domain of O(|V |),
and O(|Q||L′|) constraints. While the model is designed according to the assumptions stated
in Section 2, it can be altered fairly easily to accommodate problem variations. For example,
if qubits involved in a two-qubit gate cannot also SWAP places, we could simply constrain
the locations of the qubits involved in the gate as necessary; though this would undoubtedly
increase the depth of the produced circuits.

3.2 General architectures
When the problem is extended to more general architectures, the linear architecture model
is no longer valid. This is because in the linear model, there is a clear mapping between
the locations of the logical qubits and the chip connectivity; any qubits whose positions are
within one of each other could have a gate applied between them. In the more general case,
however, this is no longer true.3

Our model for general architectures is similar to that for linear array architectures,
however, instead of using absolute value constraints we use table constraints. The table
constraint specifies the list of tuples (solutions) to which a vector of variables can be fixed.
For example, the constraint table((y1, y2), {(1, 2), (2, 3)}) specifies that, in a solution, the
variables y1 and y2 can be assigned values (1, 2) or (2, 3), respectively.

For our model, we utilize the table constraint to conveniently encode the connectivity of
the hardware device, using A as the list of tuples representing the locations of neighboring
pairs of qubits. Our model for general architectures is given as follows:

min
∑

ℓ∈LSW AP

zℓ (7)

alldifferent({x1ℓ, . . . , x|Q|ℓ}) ∀ℓ ∈ L′ (8)
table((xpℓ, xqℓ), A) ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (9)
table((xqℓ, xqℓ+1), A ∪ {(i, i) : i ∈ V }) ∀q ∈ Q, ∀ℓ ∈ {1, . . . , |L′| − 1} (10)
xqℓ = xqℓ+1 ∨ xqℓ = xpℓ+1 ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (11)
zℓ|Q| ≥ |xqℓ − xqℓ+1| ∀ℓ ∈ LSW AP , q ∈ Q (12)

The first constraint in the general architecture model, Constraint (8), is the same as
Constraint (1) in the linear array model, leveraging the alldifferent global constraint.

Constraint (9) uses the table constraint to enforce that, at each gate layer, the qubits
involved in each gate are at neighboring locations on the architecture (i.e., at locations
represented by one of the tuples in arc set A).

Constraint (10) uses the table constraint to dictate the permissible movement of qubits
from one layer to the next. Specifically, this constraint requires a qubit to stay in the same
location (represented by the value (i, i)), or move to a neighboring location on the hardware.
Constraint (11) adds some additional restriction regarding the movement of qubits involved
in a two-qubit gate, similar to Constraint (4) in the linear array model. Finally, Constraint
(12) links the objective function to the main variables, acting as a flag each time a qubit
changes positions from one layer to the next (not including original circuit layers).

As with the linear array model, the general architecture model has O(|Q||L′|) variables
and constraints.

3 In a simple square toplogy with four nodes, v1 and v4 can be neighboring, but the absolute value of the
difference of their node labels is not equal to one.

CP 2023



43:6 CP Models for Depth-Optimal Qubit Assignment and Routing

4 Experiments

We present an empirical analysis of our models on a benchmark set of randomly generated
instances. Following previous work [10] we generate “square” circuits (similar to those used
for quantum volume testing) where |Q| = |L| (e.g., 4 × 4 indicates a circuit with four qubits
and four layers). For a given problem size, we generate a random permutation of the qubits
{1, 2 . . . , |Q|} for each ℓ ∈ L. Based on this permutation, we group neighboring pairs of
qubits into the ⌊ |Q|

2 ⌋ two-qubit gates for that layer (e.g., permutation 3-1-2-4 would yield
gates (3, 1) and (2, 4)). By increasing the size of Q and L, we test the scalability of our
models (e.g., a 10 × 10 instance will involve an initial circuit with 50 two-qubit gates). For
each problem size, we generate ten problem instances.

The target devices used for experimentation include a linear array and two-dimensional
lattice grids of increasing size. We generate the devices such that the number of hardware
vertices, |V |, is equal to the number of logical qubits, |Q|.4 The linear array device topologies
are straightforward. The lattice grids are generated for |Q| ∈ {4, 6, 8, 9, 10}, where Q ∈ {4, 9}
corresponds to square lattices, and the remainder are rectangular lattices.

The CP models are implemented with the CP-SAT solver in OR-Tools (v9.3) [11] using the
Python interface. We include the symmetry breaking constraints used in previous ILP models
[10]. The absolute value expressions in the CP models were implemented using auxiliary
variables and the AddAbsEquality constraint, while the table constraint was implemented
using the AddAllowedAssignments constraint. Finally, in the general architecture CP model,
the dijsunction in Constraint (11) was implemented using auxiliary boolean variables and
the OnlyEnforceIf enforcement literal. Following previous work [10], we set the number of
auxiliary layers between each original layer to four.

To thoroughly assess the previously proposed ILP models, we implement them in SCIP [1],
Xpress (v8.13.5), and using the CP-SAT solver in OR-Tools.5 For the SCIP experiments, we
use the OR-Tools modeling interface and select SCIP as the backend solver. All experiments
are run with default search and inference settings on a machine with a 2.6 GHz 6-Core Intel
i7 processor and 16GB of RAM. Additionally, some modifications to the model presented by
Boccia et al. [3] are made to enable fair comparison. Specifically, auxiliary variables and
constraints were added to permit the merged SWAP functionality.

4.1 Linear array architectures
Our first set of experiments involve linear array architectures. For these experiments, both
of the CP models we propose can be used to solve the problem. The results are visualized
in Figure 2. Our proposed models are denoted “CP-linear” (for the linear array model)
and “CP-general” (for the general model). We split the instances into two classes: the first
involves randomly generated square circuits of size 4 × 4, 5 × 5, 6 × 6, and 7 × 7 while the
second involves square circuits of sizes 8 × 8, 9 × 9, 10 × 10, and 11 × 11.

In Figure 2a, we illustrate the performance of all of the implementations on Class 1
instances with a solver time limit set to 10 seconds. The figure details the number of
instances solved to proven optimality vs. runtime. We can see that all of the methods
implemented with the CP-SAT solver in OR-Tools are able to quickly find and prove the
optimal solution to all 30 problems in less than two seconds. Conversely, the ILP models

4 Our approaches are not restricted to this case; auxiliary qubits can be used to handle the situation
where |V | > |Q|.

5 Since the ILP models do not contain continuous variables, this is straightforward.
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(b) Class 2 instances (|Q| ∈ {8, 9, 10, 11}).

Figure 2 Empirical results: CP models against ILP models from the literature for linear array
device topologies. Number of instances solved to proven optimality over time. Time limit of 10
seconds (Class 1) and five minutes (Class 2).

implemented in SCIP and Xpress are much slower at finding and proving optimal solutions.
For these approaches, the SCIP implementations seem to perform the worst, and Xpress
provides a modest improvement. The experiments indicate that ILP (and ILP-based solvers)
may not be the best candidate approach for this problem; this is in-line with previously
reported results that showed ILP (implemented with an ILP solver) struggled to solve square
circuit instances to proven optimality in short runtimes beyond six qubits [10]. As such,
we elect to only investigate the models solved with OR-Tools CP-SAT for larger problem
instances.

Figure 2b illustrates the performance of the CP-based implementations on medium-sized
instances with a solver time limit of 5 minutes. From the figure, it is evident that our
proposed CP models outperform the ILP models even when using the OR-Tools CP-SAT
solver for all methods. Further, the linear array model (using absolute value constraints)
performs slightly better than the more general model. Both models are able to find and prove
optimality for all problem instances in less than 50 seconds, whereas the implementations of
the ILP models require significantly more time.

Recall that, due to the insertion of SWAP gates as a result of our optimization, the
number of layers in the final compiled circuits almost always increases. In Table 1 we detail
the average circuit depth for each of the problem sizes, obtained by our depth-optimal CP
methods. From the table, we can see that the inclusion of SWAP gates often doubles the
depth of the circuit.

4.2 General architectures

Our second set of experiments involve 2D grid lattice topologies, and are visualized in Figure
3. We use the same solvers and settings as in the linear array experiments (recall that we
cannot run the proposed linear array model for these lattice topology problems). For these
tests, Class 1 instances are 4 × 4 and 6 × 6 (to permit grid lattice construction), while Class
2 instances are 8 × 8, 9 × 9, and 10 × 10.
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Figure 3 Empirical results: CP models against ILP models from the literature for 2D grid lattice
device topologies. Number of instances solved to proven optimality over time. Time limit of 10
seconds (Class 1) and five minutes (Class 2).

In Table 2 we summarize the average depths of the optimally compiled circuits for each of
the problem sizes. Comparing to the linear array results in Table 2, it is immediately apparent
that the increased connectivity offered by 2D lattice topologies results in significantly shorter
circuits. In the 10 × 10 case, for example, only 5.4 layers were added (on average) to permit
SWAP operations, versus the 17.0 layers added (on average) in the linear case.

In terms of model/solver runtime performance, from Figure 3a we see a similar trend to
the linear topology case: the ILP methods implemented in SCIP and Xpress struggle to find
and prove optimal solutions within the runtime limit, while the OR-Tools implementations
rapidly solve these problems (in less than one second). Figure 3b illustrates the performance
of the OR-Tools implementations for the larger class of instances. As visualized in the
figure, our proposed CP approach is able to find provably optimal solutions to all instances
significantly faster than the ILP models from the literature.

5 Conclusions

In this paper we propose CP models for depth-optimal qubit assignment and SWAP-based
routing. Our first model is specific to linear array topologies, while our second model
is applicable to more general architectures (e.g., grid lattices). We conduct a series of
experiments on randomly generated circuits, and demonstrate that the CP-based approaches

Table 1 Empirical results: CP model solution circuit depths by class, linear array device
topologies.

Class 1 Compiled circuit depth (avg.) Class 2 Compiled circuit depth (avg.)

4 × 4 6.1 8 × 8 18.0
5 × 5 6.2 9 × 9 20.9
6 × 6 10.9 10 × 10 27.0
7 × 7 12.4 11 × 11 30.7
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Table 2 Empirical results: CP model solution circuit depths by class, 2D grid lattice device
topologies.

Class 1 Compiled circuit depth (avg.) Class 2 Compiled circuit depth (avg.)

4 × 4 4.0 8 × 8 10.3
6 × 6 6.5 9 × 9 12.2

− − 10 × 10 15.4

provide superior performance over their ILP counterparts. Our results suggest that CP is a
promising technology for producing provably depth-optimal circuits when qubit routing is
accomplished via SWAP gate insertion.
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Abstract
Satellite imagery solutions are widely used to study and monitor different regions of the Earth.
However, a single satellite image can cover only a limited area. In cases where a larger area of
interest is studied, several images must be stitched together to create a single larger image, called a
mosaic, that can cover the area. Today, with the increasing number of satellite images available for
commercial use, selecting the images to build the mosaic is challenging, especially when the user
wants to optimize one or more parameters, such as the total cost and the cloud coverage percentage
in the mosaic. More precisely, for this problem the input is an area of interest, several satellite
images intersecting the area, a list of requirements relative to the image and the mosaic, such as
cloud coverage percentage, image resolution, and a list of objectives to optimize. We contribute to
the constraint and mixed integer lineal programming formulation of this new problem, which we call
the satellite image mosaic selection problem, which is a multi-objective extension of the polygon
cover problem. We propose a dataset of realistic and challenging instances, where the images were
captured by the satellite constellations SPOT, Pléiades and Pléiades Neo. We evaluate and compare
the two proposed models and show their efficiency for large instances, up to 200 images.
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Figure 1 Optimization of the subset of images to make a mosaic of the Tokyo Bay region.
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1 Introduction

The space industry is continuously growing and is no longer an exclusive market for military
and government applications. According to the most recent report of the European Union
Agency for the Space Programme (EUSPA) [13], the global market for navigation systems
and earth observation (EO) had revenues of around €200 billion in 2022 and is expected to
reach €500 billion by 2031. As access to space has become cheaper, an increasing number
of private companies have entered the space business. Due to advances in satellite design
and high-resolution remote sensors, the number of satellite launches dedicated to EO in 2021
was greater than the sum of launches between 2012 and 2016 [37]. In 2020 more than 100
terabytes of satellite imagery was generated per day [28].

There are several EO-based applications that analyze a vast area of interest (AOI)
that can only be covered by combining several adjacent images into a larger one, called a
mosaic. Mosaics are crucial for applications such as crop classification [21, 14], environmental
monitoring [30, 15], and urban development analysis [38, 32]. The mosaicking of satellite
images is a complicated process that presents challenges, such as color balancing [39] and
image stitching [27].

In this work, we focus on the combinatorial problem of selecting the images to create
the mosaic by optimizing one or several criteria. This problem is an extended version of
the NP-hard problem of finding the minimum axis-parallel rectangle cover of a rectilinear
polygon without holes [11], where the axis-parallel rectangles can be seen as the satellite
images, and the rectilinear polygon as the AOI. In our problem, a cover is the subset of
images that can be used to generate a mosaic. In Figure 1 a particular example of this
problem is shown, where the objective is to build a mosaic using the smaller number of
images. There are 30 images to choose from, and the optimization algorithm finds an optimal
subset of four images.

In this paper, we present a multi-objective approach for this problem that seeks to
optimize four popular parameters of satellite images for mosaic generation: cloud cover,
incidence angle [1], resolution and cost of the images. In general, there might not be an
objective that is more important than the other, which is why we propose a multi-objective
approach, instead of a linear aggregation or lexicographic ordering of the objectives.

As the number of available satellite images has increased significantly, it is becoming
more challenging to select the optimal combination of images to build a mosaic. The number
of images covering one place can reach hundreds. This is even more difficult if the user is
interested in optimizing several parameters. Without a computational approach for this,
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users have to select by hand the images they want for the cover. Providing a Pareto front
from which users can choose a cover is crucial to save money and time, considering that
high-resolution satellite images are expensive.

In this paper, we propose a constraint programming (CP) model and a mixed integer linear
programming (MILP) model to solve the problem presented. However, directly modeling this
geometric problem with constraints is challenging, as we would need to encode geometric
operations such as union and intersection of polygons. Instead, we preprocess each instance
by computing a discretization where the intersections of all images are first computed
(Section 2.1). We obtain a set of non-overlapping polygons where each polygon is simply an
integer and the geometric characteristics can be ignored. This problem is a multi-objective
extension of the well-known set covering problem (Section 3).

A unique aspect of this problem is to minimize the cloud coverage of the mosaic, which, in
contrast to other objectives, does not have the same value throughout the image. While any
part of the image has the same resolution, not all parts of the images have the same amount
of clouds, except for images with 0 or 100% of cloud coverage. Because of this particularity
of the problem, it is possible to reduce the cloud coverage percentage in the final mosaic by
choosing a specific combination of images in such a way that cloudy regions of an image are
overlapped by non-cloudy regions of other images.To the best of our knowledge, there is no
work taking this into account to reduce the cloud coverage in the final mosaic. We call this
problem the satellite image mosaic selection problem (SIMS) (Section 2).

The main contribution of this paper is to introduce the SIMS problem and present a
CP model, as well as MILP model that can successfully find solutions to real instances of
up to 200 images (Section 4). The constraint and mixed integer programming approaches
are part of a larger framework where the images are automatically retrieved from different
marketplaces and the solutions found by the solver can be visualized.

Although SIMS can be expressed as a linear problem (Section A), we choose to rely on
constraint programming for two reasons: to ease the formulation of the model – in particular,
it is convenient to use set variables – and because this problem aims to be extended for new
requirements, which can be non-linear. The flexibility of the model is of utmost importance
in this work, which is why constraint programming is our main choice.

2 Satellite Image Mosaic Selection Problem

The input for the SIMS problem is an area of interest (AOI) on Earth and a set of satellite
images that intersect it. Each image has a cost and a list of parameters including the
resolution, incidence angle and cloud coverage. The AOI is represented as a simple closed
polygon without holes, and the images are represented as quadrilaterals. For both the AOI
and satellite images, the corner coordinates are provided. With that information, the AOI
and the images can be represented in the plane.

As clouds are not usually even distributed in the images, having images with a certain
cloud coverage percentage does not guarantee that the final mosaic has less than that cloud
coverage. Depending on the cloud distribution in the images, the final mosaic can have a
lower or higher percentage of cloud coverage as depicted in Figure 2. This is not the case for
the other objectives because they have a unique value along the image. For example, if all
images have a determined resolution, the final mosaic will have the same resolution.

CP 2023
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Figure 2 A cloudy region of an image can be covered by a non-cloudy region of another image,
impacting the cloud coverage percentage of the final mosaic.

Table 1 Number of intersections for the instances covering the Tokyo Bay region.

Images Intersections
30 298
50 806
100 3278
150 8079
200 14855

2.1 Preprocessing of the Problem

To make the discretization, we first remove the parts of the images that are outside the AOI,
and then we find all the polygons resulting from the intersection of the images, we find the
polygons using the GEOS library [17]. The universe is partitioned into a set of polygon
elements, and each of them is assigned to its corresponding images. In Figure 3, we show
an example of this process, where we generate 254 polygons from 30 images. In Table 1,
we show the number of intersections for different cardinality of the images set to cover the
Tokyo Bay region.

The following step is to detect the clouds in the images and add them to the universe
and to the correspondig sets. The objective of doing this is to know whether a region of the
final mosaic, that is represented by one element of the universe, is free of clouds or not. We
consider that a region of the AOI is free of clouds if there is at least one image in the cover
in which that region does not have clouds.

Figure 3 298 polygons are obtained after preprocessing of 30 images. First the area of the images
outside the AOI is removed and then the polygons resulting from the images intersections are found.
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Figure 4 Possible cases for the integration of the detected clouds to the universe and the
corresponding sets. Set I and II are represented by the rectangles with red and blue borders
respectively.

A cloudy region is an element in the universe that is present in all the sets that cover
that region. For the set that represents the image in which the cloud occurred, we make a
distinction and we say that the element is cloudy for that set. In this way, a set is composed
of cloudy elements and non-cloudy elements.

In real applications, clouds can be detected using cloud detectors [36, 19, 22]. As this
is a problem orthogonal to our work, we do not detect the clouds, but instead randomly
allocate them in the parts of the image. For each image, we have metadata indicating the
cloud coverage percentage of the image. With that information and knowing the elements
that belong to the image, we randomly set one of the elements as cloudy. We repeat this
operation until the cloud coverage percentage of the image is achieved.

In Figure 4a, all possible scenarios of how clouds are converted to elements of the universe
are shown for the general case. To facilitate the understanding of this process, only two
overlapping images are shown, but the procedure is the same when more than two images
overlap. Images I and II are represented as rectangles with red and blue borders, respectively.
The clouds in image I are colored red, and the ones in image II are colored blue. Initially,
both sets have in common its intersection, element 3 (I = {1, 3} and II = {2, 3}). We can see
that both clouds of I are partially covered by II; in one case is because one part of the cloud
is in the intersection, and in the other case is because one part of the cloud is overlapped by
a cloud from II, so it can not be completely covered by a non-cloudy region of II. From the
previous, we can see that three elements are created, 4, 5 and 7. Element 4 are the clouds
that are only present in I, element 5 is the cloudy region of I that is not cloudy in II, i.e.
covered by II, and element 7 is a cloudy region of I that is also cloudy in II. Element 6 is
similar to element 5, is a cloudy area in II that is not cloudy in I. When all the clouds are
detected and incorporate to the universe, the original three elements 1, 2 and 3 are modified
as follows: element 1 is the non-cloudy region of I that is not overlapped by any other image,
element 2 is equivalent to element 1 but for image II, and element 3 is the non-cloudy area
of the intersection between I and II. Finally, the universe has seven elements, and the sets
are I = {1, 3, 4, 5, 6, 7}, II = {2, 3, 5, 6, 7}. In Figure 4b, we show a resulting mosaic after
covering the clouds. Importantly, taking into account the clouds in this way increases the
cardinality of the universe, but the problem itself does not change, which is why we took a
simpler approach to randomly assign clouds to each element.

CP 2023
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3 Constraint Model

Let U = {k1, . . . , kn} ⊂ N be a set of n parts of the area of interest, called the universe.
The set U is a polygon partition of the area of interest, i.e. two parts do not overlap and
their union is exactly the area of interest. Each satellite image is represented by a collection
Pi ⊂ U of parts. We write I = {P1, . . . , Pm} the set of all m satellite images. The goal is to
find a subset T ⊂ {1, . . . , m} of images that covers the area of interest. The parameters of
the model are U and I while T is the main decision variable. The set covering constraint is
captured by the following:⋃

i∈T

Pi = U (1)

A trivial solution to this constraint is to take all the images, but we usually consider
an optimization version where the cardinality of T is minimized. In our case, each image
i ∈ {1, . . . , m} has a cost Wi ∈ N that we seek to minimize:

min
∑
i∈T

Wi (2)

Along with Equation 1, this problem is called weighted set cover. Depending on the user
requirements, we can consider other objectives such as resolution and incidence angle. For
each part k ∈ U , we have its area Ak ∈ N. And for each image i ∈ {1, . . . , m}, we have its
resolution Ri ∈ N and its incidence angle Fi ∈ N. We seek to minimize (the resolution is
given in how many cm2 represents a pixel, the less the better) the best resolution obtained
for each part:

min
∑
k∈U

min{Ri | i ∈ T, k ∈ Pi} (3)

For the incidence angle, we seek to minimize the maximal angle, although other choices
would be possible such as minimizing the average.

min {max {Fi | i ∈ T}} (4)

A more challenging aspect of this problem is to minimize the area covered by clouds.
To achieve that, we consider that each part is either cloudy or not. We leave the cloud
detection and the splitting of the image into cloudy and non-cloudy parts to a preprocessing
step. Let Ci ⊂ Pi the cloudy parts of the image i. For each part k ∈ U , we define
Dk := {i ∈ {1, . . . , m} | k ∈ Pi \ Ci} the set of all images containing a non-cloudy view of
the part k. For each part k ∈ U , we can now define the Boolean variable Vk to be true when
the part k is cloudy in the cover:

Vk ⇔
∧

i∈Dk

i /∈ T (5)

We can now minimize the area covered by clouds:

min
∑
k∈U

Vk ∗ Ak (6)

This objective can also be turned into a constraint if the user only wants covers with a
certain cloud coverage threshold.



M. Combarro Simón, P. Talbot, G. Danoy, J. Musial, M. Alswaitti, and P. Bouvry 44:7

The model introduced is actually linear, as shown in Appendix A, and can be solved
by mixed integer programming solvers. We simply represent the set T by m 0-1 variables
{x1, . . . , xm} such that xi = 1 if we take the image and xi = 0 otherwise. We also use this
representation for constraint programming solvers, because it is not possible to represent the
set covering constraint otherwise – this is due to T having a non-fixed cardinality.

3.1 Search Strategy Based On Greedy Algorithm

A well-known greedy algorithm for the set covering problem consists in taking the images
covering the most uncovered parts of the universe first [9]. We model this heuristic as a
search strategy within the MiniZinc constraint model. This has the advantage of always
producing a solution that is at least as good as the greedy heuristics – since it is the first
solution found. To achieve that, we reuse an existing search strategy provided by MiniZinc.
A second advantage is that our search strategy can be reused with any constraint solver
compatible with MiniZinc. We select the variable using the anti_first_fail strategy –
the variable with the largest domain is selected first – and we take the highest value in its
domain (indomain_max). The trick is to model a set of variables {G1, . . . , Gm} such that
Gi ∈ {0, . . . , |Pi|} is equal to the number of parts covered by the image i. Actually, in any
solution, we have Gi = |Pi| since the whole universe must be covered. What is interesting is
the value of Gi in partial assignments during the search. The difference between the upper
and lower bounds max(Gi) − min(Gi) is the number of parts that are currently uncovered
by the partial assignment, and that can be covered by the image i. Since the anti-first-fail
strategy selects the largest domain first, it effectively implements the greedy heuristics. We
model Gi as follows:

Gi =
∑
k∈Pi

(
∨
i∈T

k ∈ Pi) (7)

We note that the new variables Gi are fully defined with the parts, and therefore once the
main decision variable T is assigned, the variables Gi must be assigned as well.

3.2 Multi-Objective Constraint Optimization Algorithm

The multi-objective constraint programming algorithm used in this work was pionneered by
Gavanelli [16] and has been frequently used in constraint optimization [23, 33, 18]. The main
idea is to run a satisfaction constraint solver iteratively and add new constraints representing
the Pareto front to ensure the next solution is not dominated by any point in the current
Pareto front. To illustrate this algorithm, suppose a biobjective maximization problem where
x and y are the two variables to optimize. We run the constraint solver which returns a first
satisfiable solution where x = 10 and y = 5. At that point the Pareto front is {(10, 5)}. We
add to the model the constraint x > 10 ∨ y > 5 which guarantees that the next solution
will not be dominated by the current points in the Pareto front. The solver might then
find the solution x = 2 and y = 6 which is incomparable to the previous solution and is
added to the Pareto front {(10, 5), (2, 6)}. The constraint generated from the Pareto front
is now (x > 10 ∨ y > 5) ∧ (x > 2 ∨ y > 6). This process continues until the solver finds an
unsatisfiable solution, in which case we are guaranteed to have found the optimal Pareto
front.

CP 2023
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4 Evaluation

4.1 Dataset Description
For each experiment, there is an AOI and a number of images that cover the AOI. The
objective is to find the Pareto front, where each point in the front represents a subset of
images that must cover the AOI and optimize four objectives: cost, resolution, incidence
angle and cloud coverage.

To carry out this research, we developed a framework capable of retrieving image metadata
from different satellite marketplaces, preprocessing it (discretization and cloud integration to
the universe), calling a CP or a MILP solver, and visualizing the solutions from the Pareto
front.

We selected five AOIs from around the world: Mexico City (Mexico), Rio de Janeiro
(Brazil), Paris (France), Lagos (Nigeria), and Tokyo Bay (Japan). For each AOI, we obtained
all available images that were captured from 01-01-2021 to 01-01-2023 by the following
satellite constellations SPOT [4], Pléiades [2] and Pléiades Neo [3]. We opted for those
satellite constellations as they have all the metadata used in the experiments; other satellite
constellations lacked some parameters such as cloud coverage or incidence angle.

Five instances were generated for all AOIs, except Lagos. Each of these instances differs
from each other by the number of images given to cover the AOIs. The number of images for
the instances were 30, 50, 100, 150 and 200. For Lagos, the total number of images available
for the specified date range was 145, so the number of images for the Lagos instances were
30, 50, 100 and 145.

4.2 Experimental Setup
Each instance was solved using the CP model and the MILP model. We run the CP model
with two solvers, OR-tools [31] and Gecode 6.3.0 [34]. For each of these solvers, we run the
experiments twice; one with the default solver search strategy, and the other one with the
greedy search strategy proposed in Section 3.1. The MILP model was implemented using
the Gurobi solver [20]. We will refer to these five approaches as OR-tools default, OR-tools
greedy, Gecode default, Gecode greedy and Gurobi

For the MILP model, the algorithm used to obtain the exact Pareto front was SAUG-
MENCON [40] which is based on the AUGMECON [25, 26] algorithm and on the well-known
ϵ-constraint method. In the ϵ-constraint methods, one objective is optimized, and the others
are added as constraints to the model. The right-hand side of the objective constraints
gradually changes from the less restrictive values of the objectives to the most restricted
ones. This process continues until all combinations of values for the constraint objectives
have been explored. The SAUGMENCON method introduces two acceleration mechanisms
to improve the computational efficiency of the front generation.

The experiments were run on an AMD Epyc ROME 7H12 processor (64 cores, 280W).
All the solvers were configured to run in parallel with 8 cores and 16 threads. The running
time for each experiment was 1 hour.

4.3 Experimental Results
To compare the results, we used the hypervolume of the Pareto front, which is a standard
metric for comparing fronts in multiobjective optimization. For each instance, we score the
strategies, calculating how worst they are compared to the best. For example, a score of 1
means that the strategy has the same hypervolume value as the best one, and a score of 0.5
means that the hypervolume of the strategy is half of the best hypervolume for that instance.
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Figure 6 Average score for each approach.

In Table 2 from Appendix C we can see the hypervolume values for each strategy for all
instances.

For only one instance, the complete Pareto front was found in the running time, the
strategies that found the complete front were OR-tools default, OR-tools greedy and Gurobi.
For the rest of the instances, the whole Pareto front was not found, and the hypervolume
corresponds to the partial front found during the running time. For 3 of the 4 instances with
200 images, the CP strategies could not find any point of the front; the entire running time
was employed by the FlatZinc submodule of Minizinc, to flatten the model with the data file.
However, Gurobi for 3 of these instances could find one point of the Pareto front. For the
rest of the instances, all the strategies could find at least one point of the Pareto front, and
generally the CP approaches obtained superior results compared to MILP.

As we can see in Figures 5 and 6a, for these experiments, the best approach was OR-tools
default, being the best for 13 out of 24 instances and with a score average of 0.806. The
second and third best strategies were OR-tools greedy and Gurobi, with a similar performance.
The fourth and fifth places were occupied by Gecode default and greedy, being really close.

If we do not consider the 3 instances in which the CP strategies could not find a solution,
the score averages change; see Figure 6b. OR-tools default has an average score very close
to 1, and OR-tools greedy has a much better average score than Gurobi, which for these
instances is the worst strategy in average. The difference in the average score between both
Gecode stratgies remains very close.

It is interesting to note that Gurobi showed excellent performance for small instances
comprising 30 and 50 images. However, its performance was not as impressive for larger
instances. This could be related to the way solutions are discovered and added to the front.
For future research, it could be interesting to compare the hypervolume anytime behavior
for different approaches used for CP and MILP to get the exact Pareto front.

CP 2023
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5 Related Work

Geometric set covering problems can be divided into two categories based on the requirements
of the covering shapes. In one category, the covering shapes do not have a fixed position
in the plane, for example, covering a polygonal region with the minimum amount of fixed
sized rectangles [24] or with a set of known rectangles that can freely move on the plane [35].
The other category is where the covering shapes have a fixed size and position, for example,
covering a polygonal region with discs with a fixed size and position on the plane [10]. SIMS,
belongs to the second category as the satellite images represent a fixed region on the Earth.

Considering the cloud coverage percentage in the final mosaic makes SIMS problem
different from polygon cover and other geometrical cover problems, where the covering shapes
only have to cover the polygon or the universe of points in the space. In this problem, the
covering shapes, besides covering the polygon, should also cover certain regions (clouds) that
are present in the shapes. Interestingly, this can be seen as solving two weighted set covering
problems; in one, the AOI must be covered and in the other, the clouds.

The main approaches to solving geometric set covering problems are local search [6, 12, 5]
and linear programming (LP) [7, 8]. In most of the papers, opposite to SIMS, the universe
is a set of points instead of a region. In [10], they provide an exact algorithm for the case
where the universe is a set of regions, and the covering objects are discs. The algorithm is
effective when the minimum number of discs to cover the space is low.

In [29], set covering problem is tackled using constraint programming. There, the authors
propose a way to prune the domain of possible solution using a lower and upper bound
for the objective value. The lower bound consists of determining the minimum number of
sets that can cover the space. This is equivalent to answering the following NP-complete
problem: does a cover of the universe exist with K sets. They propose a new strategy to
get an approximation of this lower bound and compare it against two other well-known
lower-bound values: the value of the LP relaxation problem and a greedy algorithm. The
proposed prune strategy is good for problems where the size of the sets is small, for bigger
subsets, they recommend alternating between the LP relaxation and the greedy algorithm.

6 Conclusion

In this paper, we introduce a novel geometrical NP-hard problem, SIMS, inspired by the
selection of satellite images for mosaic generation. CP and MILP models are provided for this
problem, together with a search strategy for the CP model, based on the well-known greedy
algorithm used for set covering problems. In the experiments performed, the CP solved
with OR-tools got the best result, evidencing the power of this solver. Our proposed search
strategy could not outperform the default search strategies, but in the case of the Gecode
solver, it produced similar results. Generally, the CP model outperformed the MILP model.
This could be related to the method used to generate the Pareto front. For future work, it
will be interesting to compare different approaches to generate the exact Pareto front for
the CP and MILP models, based on the metric anytime behavior for the hypervolume. We
also plan to propose heuristics to tackle larger instances and to evaluate their performance
against the proposed CP and MILP models.
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A Linear Programming Model

For the mixed integer linear programming, we use the same nomenclature as for the constraint
model. We just add the necessary variables to linearize the model.

To linearize the cover constraint (1) it is necessary to associate each image Pi with a
decision variable xi that is equal to 1 if the image i is selected, otherwise it is 0. We rewrite
the constraint as follows:∑

i:k∈Pi

xi ≥ 1, for all k ∈ U (8)

The previous constraint guarantees that all the parts are covered by at least one image.
To linearize the cost constraint (2) it is necessary to associate each image Pi with an

auxiliary variable wi that represents the cost of the image. The linear constraint can be
written as:

min
∑
Pi∈I

xiwi (9)

The constraints (8) and (9) are the classical constraints used for set covering problems.
The resolution objective is a min-min problem, where the objective is to minimize the sum

of the min resolution of each part. The min resolution of a part is the minimum resolution
of the images that contain them and belong to a cover. We need to add an auxiliary decision
variable rk representing the best resolution of the part k and a big constant B, bigger than the
maximum image resolution. Also, we need to add an auxiliary binary decision variables zkj

for each image Pj that contains k. For each part k, we define Lk := {i ∈ {1, . . . , m} | k ∈ Pi}
as the set of all images containing the part k. For each part k we can now define a constraint
for the values that can take the variables zkj .

|Lk|∑
k=1

zkj
= |Lk| − 1 (10)

The constraint expressed above states that only one of the zkj
variables can be 0, the

rest have to be 1. We define the minimum resolution of a part as rk. With the following two
constraints, we can linearize (3).

rk ≥ (xjRj + B(1 − xi)) − 2Bzkj
for all j ∈ Lk (11)

min
∑
k∈U

rk (12)
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The first term on the right-hand side of (11) affects how the part k perceives the resolution
of the images to which it belongs. If the image is in a cover, the resolution is equal to Rj .
If the image is not in a cover, then the resolution is equal to the big constant B. As we
minimize rk, the lower this first term, the better. This term forced the images with lower
resolution to be in a cover. The second term on the right-hand side of (11) is used to force rk

equal to the minimum value of the resolution of the images that contain the part k and are
in the cover. When zkj

= 1 the right-hand side is negative and when 0 the value is positive,
and it is the value that rk takes.

To linearize the incidence angle objective, we need to minimize an auxiliary variable
maxf that represents the maximum incidence angle of the images in the cover.

min maxf ≥ xiFi, for all i = 1, . . . , m (13)

To minimize the area of the clouds, we can model this as a partial set cover problem,
where the universe C = {1, . . . c} is formed by all the clouds, and the sets are the images
that can cover the clouds. For example, if we have the following set P2c

= {c1, c2, c5} it
means that image 2 can cover clouds 1, 2 and 5, i.e. parts 1, 2 and 5 are not cloudy in image
2. For each cloud ci we have a variable yi that is 1 if the cloud is covered or 0 otherwise and
Ac indicating the area of the cloud. To maximize the covering of the cloudy areas, we will
minimize the following expression:

min −
∑
c∈C

ycAc (14)

Subject to the following constraint, which forces yc to be 0 if any of the images that cover
it is selected to cover the AOI.∑

i:c∈Pic

xi ≥ yc, for all c ∈ C (15)

B MiniZinc Model

We describe the full MiniZinc constraint model implementing the mathematical model given
in Section 2.
int: num_images ;
int: universe ;
int: max_cloud_area ;

set of int: IMAGES = 1.. num_images ;
set of int: UNIVERSE = 1.. universe ;

array [ IMAGES ] of set of int: images ;
array [ IMAGES ] of set of int: clouds ;
array [ IMAGES ] of int: costs;
array [ UNIVERSE ] of int: areas;
array [ IMAGES ] of int: resolution ;
array [ IMAGES ] of int: incidence_angle ;

array [ IMAGES ] of var bool: taken;

% Which images have a universe ‘u‘ without cloud ?
% That is , uclear [u] = {i1 , i2 , ..} means that the images numbered i1 , i2

, ... contains ‘u‘ without clouds .
array [ UNIVERSE ] of set of int: uclear = [{ i | i in IMAGES where not (u

in clouds [i]) /\ u in images [i] } | u in UNIVERSE ];



M. Combarro Simón, P. Talbot, G. Danoy, J. Musial, M. Alswaitti, and P. Bouvry 44:15

% Set covering constraint .
constraint forall (u in UNIVERSE )(

exists (i in IMAGES )( taken [i] /\ u in images [i]));

% cloudy [u] is true iff no image containing a version of ‘u‘ without
clouds is taken.

array [ UNIVERSE ] of var bool: cloudy ;
array [ UNIVERSE ] of var int: num_clear_images ;
constraint forall (u in UNIVERSE )(

num_clear_images [u] = sum(i in uclear [u])(taken [i])
);
constraint forall (u in UNIVERSE )( cloudy [u] = ( num_clear_images [u] == 0));

var int: cloudy_area = sum(u in UNIVERSE )( cloudy [u] * areas [u]);

var int: total_cost = sum(i in IMAGES )( costs [i] * taken [i]);
var int: max_resolution = sum(u in UNIVERSE )(min(i in IMAGES where u in

images [i] /\ taken [i])( resolution [i]));
var int: max_incidence = max(i in IMAGES )( taken [i] * incidence_angle [i]);

array [1..4] of var int: objs;
constraint objs [1] = total_cost ;
constraint objs [2] = cloudy_area ;
constraint objs [3] = max_resolution ;
constraint objs [4] = max_incidence ;

C Experimental results detailed

Table 2 Hypervolume values for all the experiments.

Instance OR-tools default OR-tools greedy Gecode default Gecode greedy Gurobi
lagos_nigeria_30 5.46E+33 5.21E+33 4.89E+32 4.91E+33 4.87E+33
mexico_city_30 4.83E+32 4.82E+33 4.62E+33 4.59E+32 4.83E+33
paris_30 1.95E+34 1.95E+34 1.59E+34 1.58E+34 1.95E+33
rio_de_janeiro_30 5.76E+33 5.65E+33 5.65E+33 5.65E+33 5.76E+33
tokyo_bay_30 6.35E+33 6.33E+33 6.05E+33 6.05E+33 6.30E+33
lagos_nigeria_50 3.26E+34 3.15E+34 2.19E+34 2.18E+34 2.77E+34
mexico_city_50 2.88E+33 2.92E+34 2.63E+34 2.57E+34 2.71E+34
paris_50 9.02E+34 8.85E+34 7.12E+34 7.24E+34 7.85E+34
rio_de_janeiro_50 3.94E+33 3.87E+34 3.05E+34 3.04E+34 3.83E+34
tokyo_bay_50 3.32E+34 3.22E+34 1.65E+34 1.78E+34 1.98E+34
lagos_nigeria_100 1.86E+35 1.87E+35 1.68E+35 1.68E+35 8.55E+34
mexico_city_100 1.98E+35 1.97E+35 2.11E+35 2.03E+35 1.58E+35
paris_100 4.73E+35 3.13E+34 4.32E+35 2.91E+35 4.32E+35
rio_de_janeiro_100 4.76E+35 4.14E+35 2.28E+35 1.83E+35 3.39E+35
tokyo_bay_100 1.23E+35 1.23E+35 1.89E+35 1.89E+35 2.77E+35
lagos_nigeria_145 2.98E+36 3.78E+36 2.32E+36 2.32E+36 9.30E+35
mexico_city_150 1.52E+36 1.11E+36 2.27E+36 2.28E+36 3.42E+35
paris_150 2.60E+36 2.83E+36 1.11E+36 1.11E+36 2.87E+36
rio_de_janeiro_150 6.59E+35 4.81E+34 4.00E+35 4.00E+35 4.61E+34
tokyo_bay_150 1.16E+36 8.68E+35 8.36E+35 8.36E+35 1.12E+36
mexico_city_200 2.66E+36 2.05E+35 4.28E+36 4.28E+36 1.06E+36
paris_200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.60E+36
rio_de_janeiro_200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
tokyo_bay_200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.46E+35
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Abstract
Regionalization is a crucial spatial analysis technique used for partitioning a map divided into
zones into k continuous areas, optimizing the similarity of zone attributes within each area. This
technique has a variety of applications in fields like urban planning, environmental management, and
geographic information systems. The REDCAP algorithm is a well-known approach for addressing
the regionalization problem. It consists of two main steps: first, it generates a spatially contiguous
tree (SCT) representing the neighborhood structure of the set of spatial objects using a contiguity-
constrained hierarchical clustering method. Second, it greedily removes k − 1 edges from the SCT to
create k regions. While this approach has proven to be effective, it may not always produce the
most optimal solutions. We propose an alternative method for the second step, an exact dynamic
programming (DP) formulation for the k-1 edges removal problem. This DP is solved using a
multi-valued decision diagram (MDD)-based branch and bound solver leading to a more optimal
solution. We compared our proposed method with the REDCAP state-of-the-art technique on
real data and synthetic ones, using different instances of the regionalization problem and different
supervised and unsupervised metrics. Our results indicate that our approach provides higher quality
partitions than those produced by REDCAP at acceptable computational costs. This suggests
that our method could be a viable alternative for addressing the regionalization problem in various
applications.
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1 Introduction

Spatial analysis plays a crucial role in comprehending and managing intricate spatial relation-
ships [13]. A fundamental challenge in spatial analysis involves determining homogeneous
regions based on similarity computed from shared attributes.

Given a geographical map divided into zones that partition the space, each zone is
associated with a set of attributes (e.g., population density, land use, socio-economic factors,
etc.) as represented on Figure 1a where the colors represent the attributes. The regionalization
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problem studied in this paper, involves grouping these zones into k contiguous areas (also
referred to as regions), optimizing the similarity of attributes within each area. The contiguity
constraint requires that each grouping forms a single, connected area without any isolated
parts or exclaves.

Solving the regionalization problem can be computationally complex, even for a moderate
number of zones and areas, as it often entails searching for an optimal solution within a
large combinatorial search space. The state-of-the-art method called REDCAP [12] involves
solving the problem in a two-step approach as illustrated on Figure 1. In the first step, a
spatially contiguous (spanning) tree is created using a hierarchical clustering strategy. In
the second step, k − 1 edges are greedily deleted from the tree. The final contiguous areas
are defined by the k remaining connected components of the tree, ensuring both attribute
similarity and contiguity.

(a) (b) (c) (d)

Figure 1 Steps for solving a regionalization problem to cluster four areas: (a) Input of the
problem where colors represent the attributes of each zone. (b) Create a spatially contiguous tree
that connects all the zones. (c) Remove three edges from the tree. (d) The output areas are then
formed.

2 Related Work

The regionalization problem has been a well-studied combinatorial problem since the 1970s
[5]. Regionalization methods can be broadly classified as spatially implicit or spatially explicit
models, depending on how they represent the spatial contiguity constraints of the formed
regions [9]. Implicit methods initially apply traditional or non-spatial clustering methods to
obtain a preliminary solution, which is then adjusted to enforce spatial constraints [16, 17].
Conversely, explicit models enforce spatial contiguity constraints from the outset [9].

Exact methods provide an optimal guarantee for the solutions. However, they are
considered computationally intensive and still limited to small problems [8], meaning they
are suited for situations with a low number of zones and regions. In contrast, heuristic
approaches, which are more scalable, do not guarantee optimal solutions.

Among heuristic approaches with spatially explicit constraints, tree-based methods such
as SKATER [14, 2] and REDCAP [12] are widely used and have been demonstrated to
generate near-optimal partitions with acceptable computational costs [1, 6]. Both SKATER
and REDCAP employ a two-step approach that first constructs a spatially contiguous tree
connecting all the zones, then greedily splits it to create the desired number of regions.

Certain spatially explicit regionalization methods, such as those described by [7] and [18],
do not require a predetermined number of regions. Instead, these methods aim to identify
underlying regions while imposing constraints related to these regions.

It is worth noting that the regionalization problem can be viewed as a variant of the
optimal graph partitioning problem [4]. The main difference is that, in graph partitioning,
the dissimilarities between non-adjacent pairs of nodes are not considered by the objective
function.
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3 Proposed Approach

We start by stating formally the problem. Let us denote by V = {1, 2, . . . , n} the zones of our
map or more generally the zones. Let G = (V, E) represent the contiguity graph of the map,
where edges (i, j) ∈ E exist if and only if zones i and j share a common border on the map. G

must be connected. Let P = {V1, V2, . . . , Vk} represent a partition (areas) of the zones V into
k regions, with 1 ≤ k ≤ n. A partition P is considered feasible if all areas are disjoint, cover the
original set of zones, and the induced subgraphs G(Vu) are connected for all u ∈ {1, 2, . . . , k}.
Let (ai,1, ai,2, . . . , ai,m) denote the m numerical attributes of zone i. The quadratic distance or
dissimilarity between zones based on the set of numerical attributes is di,j =

∑m
l=1(ai,l −aj,l)2.

The heterogeneity of a region Vu is defined as h(Vu) = 1
|Vu|

∑
i<j|i,j∈Vu

di,j . It can be shown
that the heterogeneity can equivalently be computed as the sum of squared distances to
the mean of attributes h(Vu) =

∑
i∈Vu

∑m
l=1(ai,l − āl)2 with āl = 1

|Vu|
∑

i∈Vu
ai,l. The

regionalization problem is to find a feasible k-partition minimizing the overall heterogeneity
H(P ) =

∑k
u=1 h(Vu).

3.1 The REDCAP Two-Step Approach
REDCAP [12] is a state-of-the-art method for solving the regionalization problem. This
approach consists of two consecutive steps. First, it identifies a spanning tree, T , of graph G

(also referred to as a spatially contiguous tree (SCT) in this context) using a hierarchical
clustering approach. Second, it identifies k − 1 edges that partition the tree into a forest of k

subtrees, each of which constitutes the final cluster of the regionalization problem.

Step1. Starting initially with a set of n clusters C, each one containing one of the zones
C = {c1 = {1}, c2 = {2}, . . . , cn = {n}}, the hierarchical clustering approach merges at each
step, the two closest contiguous clusters cI and cJ until one single cluster regroups all the
zones. Two clusters cI and cJ are considered contiguous if there is an edge in the connectivity
graph G linking two zones from each cluster cI and cJ . The distance between two clusters cI

and cJ denoted as D(cI , cJ ) and can be computed with different variants. The variant that
generally yields the best results is called full-order complete linkage (Full-Order-CLK) defined
as D(cI , cJ ) = max

i∈cI ,j∈cJ

di,j . Initially empty, one edge is thus added to the SCT T each time
two clusters cI and cJ are merged. This edge e ∈ E is the one of the original connectivity
graph with minimal cost i.e. argmin(i,j)∈E|i∈cI ,j∈cJ

di,j . At the end of the procedure, T

contains n − 1 edges connecting all the nodes. Overall, the computational complexity for
building T using the aforementioned method is O(n2 log n).

Step2. The second step of REDCAP [12] to obtain k homogeneous regions is to identify
k − 1 edges to remove from T as illustrated in Figure 1c. The remaining components form
the final k regions. Due to the inherent complexity of finding an optimal solution for the
second-step tree partitioning problem [14], this problem is solved in REDCAP using a greedy
heuristic. Let us denote by F = {T1, T2, . . . , Tk} the spanning forest obtained after the
removal of k − 1 edges from T . The set of nodes and edges of each tree Tu are denoted by
Vu and Eu.

At each iteration, one edge is taken out, splitting one tree of the forest into two trees.
Notice that a subtree can possibly contain a single node in case a leaf-edge is removed. The
edge that results in the greatest decrease in heterogeneity (or in other words, the highest
homogeneity gain) is chosen to be eliminated.
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For a tree Tu = (Vu, Eu), the homogeneity gain hg(e) obtained by the removal of an
edge e ∈ Eu, dividing the tree into two trees Tu1 and Tu2 is defined as hg(e) = h(Vu) −
h(Vu1) − h(Vu2) where Vu1 , Vu2 are the nodes in the corresponding sub-trees Tu1 and Tu2 .
The complexity of this greedy algorithm is O(k · n2) but as k is usually much smaller than
n, it can be ignored. We propose to replace this second-step greedy algorithm for the tree
partitioning problem by an exact formulation using dynamic programming and MDD-based
optimization as explained in the next section.

3.2 Edge Removal using MDD-based Optimization
We express the problem of the optimal removal of k − 1 edges from the spanning tree
T = (VT , ET ) to minimize the heterogeneity as a Dynamic Programming Problem. We use a
sequence of k − 1 decision variables xi representing the edges that are successively removed
from the SCT. The domain of each of these variables is the set of edges ET of the tree.
The search-space can be described as Layered Transition Diagram, also called Multivalued
Decision Diagrams (MDD) [3]. Let us denote by Fi the set of possible forests obtained by
removing exactly i edges from T . This set of forests

⋃
0≤i≤k−1 Fi constitutes the state space

and the corresponding nodes of the MDD. A state (forest) is denoted by f = (Vf , Ef ). Since
we always remove edges on the transitions, but not nodes, the set of nodes of each forest of the
state space remains the one of the original contiguity graph Vf = V, ∀f ∈ Fi, ∀0 ≤ i ≤ k − 1.
Let us now describe the important nodes, the transition function and cost functions for the
MDD:

The set of state-spaces F = {F0, . . . , Fk−1} forms the layers, where Fi corresponds to all
the states formed by removing exactly i edges from T .
The root of the MDD is denoted as r and corresponds to the state f0 ∈ F0, with f0 = T ,
and its initial value is vr = −h(VT ), representing the heterogeneity of the entire original
map.
The terminal states are denoted by t and regroup every state fk−1 ∈ Fk−1.
The set τ of transition functions s.t. τi : Fi × E → Fi+1 for i = 0, . . . , k − 2 taking the
system from one state f i to the next state f i+1 based on the edge removed.
The set c of transition cost functions ci : Fi × E → R s.t. ci(f, e) is the homogeneity gain
hg(e) of making the decision for xi to remove the edge e from the forest f at the level i.

The objective function is then to maximize vr +
∑k−2

i=0 ci(f i, xi) so that f i+1 = τi(f i, xi)
and xi ∈ ET , ∀i ∈ {0, . . . , k − 2}; f i ∈ Fi, ∀i ∈ {0, . . . , k − 1}. The optimal solution can be
obtained by searching the longest path from the root r to one of the terminal nodes t.

3.3 Branch-and-Bound with MDD
The number of states in the MDD augments rapidly with k and n (n − 1 choose k − 1). For
such a situation, Bergman et al. [3] have introduced a branch-and-bound (BnB) framework
to explore the state space of the MDD without generating it completely upfront and keeping
the memory requirement limited. In BnB based on MDDs, relaxed and restricted MDDs,
obtained by limiting the width of the MDDs, are used to efficiently explore and prune the
solution space. A relaxed MDD is obtained by state-merging. It is an over-approximation of
the solution space, where some infeasible solutions might be included. The optimal path of a
relaxed MDD provides an upper-bound, which can be used to prune the search space. A
restricted MDD, on the other hand, is an under-approximation of the solution space. It is
obtained by discarding the less promising states. Some feasible solutions might be excluded
but it can nevertheless be used to get lower bounds (similarly to a beam-search). MDD based
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BnB enqueues nodes of the original MDD in the queue. When a node is popped, a restricted
and a relaxed MDD are compiled from this node to hopefully improve the incumbent solution
and prune the search by upper-bounding. This combination of dynamic compilation of
restricted and relaxed MDD allows for a more effective exploration of the solution space of
the MDD and helps to find the optimal solution in a computationally efficient manner. The
nodes can also be pruned by computing a (cheap) upper-bound [11]. We describe next the
state-merging procedure and the cheap upper-bound for the optimal edge removal problem.

3.3.1 State Merging
As opposed to restricted MDD, a relaxed MDD encodes a superset of the solutions of the
original MDD and thus leads to an upper-bound. Its construction is limited to a given width
by applying a problem-specific merge operator. In the context of the edge-removal problem,
the merge operator applied to two nodes at a same level simply consists in taking the union
of the edges in the two forests: merge(fA = (V, EfA

), fB = (V, EfA
)) = (V, EfA

∪ EfB
). The

costs of the arcs leading to the merged nodes remain unchanged. Notice that in a relaxed
MDD, it is no longer true that the forests f i at level i have exactly i + 1 components. One
can be convinced that this merging definition correctly includes a superset of the possible
paths. It also guarantees an upper-bound on the optimal homogeneity gain that would be
obtained without compression. This is a direct consequence of the following property.

▶ Lemma 1. For a tree T = (V, E) and a super-tree of T denoted T ′ = (V ′, E′) with V ⊆ V ′

and E ⊆ E′, let e be an edge present in both E and E′. The homogeneity gain of this edge
removal in T denoted hg(e) is lower than h′

g(e) i.e. when this edge is removed from T ′.

Proof. Assuming e connects the two sub-trees T1 = (V1, E1) and T2 = (V2, E2) of T and
T ′

1 = (V ′
1 , E′

1) and T ′
2 = (V ′

2 , E′
2) of T ′. The homogeneity gain in T is hg(e) = h(V ) −

h(V1) − h(V2) which can equivalently be computed as hg(e) =
∑

i∈V1

∑
j∈V2

di,j . Similarly
h′

g(e) =
∑

i∈V ′
1

∑
j∈V ′

2
di,j . Therefore h′

g(e) − hg(e) =
∑

i∈V ′
1 \V1

∑
j∈V ′

2 \V ′
1

di,j ≥ 0. ◀

3.3.2 Cheap Upper-Bound
To efficiently compute an upper-bound for a state forest f i at level i, one can assume that
the k − i − 1 remaining edges that will be removed induce sub-trees that are perfectly
homogeneous (null heterogeneity). The upper-bound on the total homogeneity gain starting
from f i can then be calculated as :

∑min(k−i−1,|fi|)
l=1 h(V ∗

l ) where V ∗
1 , . . . , V ∗

k−i−1 are the
k − i − 1 trees of f i having the highest heterogeneity value. Notice that the count of trees in
f i may be fewer than k − i − 1. Should this occur, the formula accounts for the heterogeneity
of all present trees in the state.

4 Experiments

To assess the effectiveness of our MDD-based method for partitioning spatially contiguous
trees, we carried out experiments that compare our approach to REDCAP using both real-life
datasets and synthetic datasets with known ground-truth regions.

Real-life datasets. We use a set of 5 real-life regionalization datasets varying in size,
geometry and number of attributes. Since comparing the absolute value of heterogeneity is
meaningless, we use the Rescaled Overall Heterogeneity Hr. That corresponds to the ratio
between the overall heterogeneity of the MDD approach and the one of REDCAP.
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Economic and demographic indicators in NUTS zones: We collected economic
and demographic data on the NUTS areas of Europe to create several datasets that can
be used as instances of the regionalization problem. Using the Eurostat database, we
gathered data on the density, median age, average GDP per inhabitant, and migration
rate for each NUTS-1, NUTS-2, and NUTS-3 European zones in 2019. We constructed one
regionalization dataset for each level of NUTS classification, which we refer to as Ecodemo
NUTS1, Ecodemo NUTS2, and Ecodemo NUTS3. After removing the unconnected NUTS
zones, we are left with 94 zones for the Ecodemo NUTS1 dataset, 236 for the Ecodemo
NUTS2 dataset, and 1,155 for the Ecodemo NUTS3 dataset, each having four attributes.
Education in Belgium: We collected data on the level of education in each municipality
in Belgium for the year 2017 from the StatBel Open Data. Using this data, we created a
regionalization dataset named Education BE, where the Belgian municipalities serve as
the zones, and their attributes include the share of low, medium, and highly educated
inhabitants living in their respective territories. This dataset comprises a total of 563
zones, each having three attributes.
USA Ecoregions: Ecoregions are geographic regions of ecological systems based
on vegetation, climate conditions, and land cover [15]. They are frequently used in
conservation ecology for planning urban and agricultural development while preserving
biodiversity. We use the same dataset as [1] to evaluate our regionalization model. The
dataset gathers climatic and land-cover measurements from 1994 in 186 zones of the USA
territory. Once the isolated zones are removed, our Ecoregions USA dataset includes 172
zones, each one having 15 different ecological attributes.

Synthetic Maps. We evaluate the performance of regionalization models in recovering the
original regions on synthetic maps using supervised-learning metrics. Our synthetic maps are
generated following the methodology proposed in [1], and are parameterized by the number
of zones (cells of a square grid), number of regions, region fuzziness, and region geometries.

We created 3 different classes of synthetic maps obtained for different settings of the
parameters of the generation process. Each class describes a different level of complexity for
regionalization methods. The family A regroups maps with 100 zones divided in 5 regions
with simple concentric geometries and well-delimited attribute values. The family B consists
of synthetic maps of 400 zones distributed in 10 regions, with more complex and different
geometries, and less pronounced frontiers between regions due to their more similar mean
values. Finally, the family C comprises maps with 900 zones divided in 20 regions having
more complex geometries and more diverse sizes but similar fuzziness than family B. An
example of map for each family is represented on Figure 2.

In the case of synthetic datasets, we have access to the original partition, or the ground-
truth. Consequently, the optimization problem can be reframed as a machine learning
problem, with the goal of recovering the original partition. By comparing the assigned
regions with the ground truth, we can calculate various machine learning metrics to assess
the performance of the regionalization models. We use the pairwise comparison to evaluate
the regionalization algorithms. Each pair of zones is labeled as positive if they belong in
the same original region and as negative if they come from different ones. One can then
compute the classical True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN) rates and evaluate the precision, recall and F1 score metrics to evaluate the
regionalization methods on the synthetic maps. In addition to these 3 supervised metrics,
we also calculate the ratio between the overall heterogeneity of the partition generated by
the regionalization algorithm with the one of ground-truth partition. We name this metric
the True Overall Heterogenity Ratio HT .



N. Golenvaux, X. Gillard, S. Nijssen, and P. Schaus 45:7

Figure 2 Examples of ground-truth regions for each synthetic map class. From left to right, we
have an example of the regions’ geometry of a synthetic map from family A, family B and family C.
The zones belonging to the same region are colored in the same color.

Table 1 Comparison of MDD and REDCAP approaches on real-life regionalization problems. The
table presents the rescaled overall heterogeneity for each dataset and partition size (k ∈ 5, 10, 15, 20).

Number of regions k

Dataset 5 10 15 20
Ecodemo NUTS1 1.00 0.98 0.96 0.965
Ecodemo NUTS2 0.989 0.97 0.958 0.935
Ecodemo NUTS3 0.997 1.00 1.00 1.00
Education BE 0,956 0.861 0.887 0.916
Ecoregions USA 1.00 0.997 0.963 0.953

5 Results

For each regionalization problem, we construct the corresponding SCT using REDCAP’s
hierarchical clustering. In the second step, we compare the greedy edge removal of REDCAP
with the one computed using MDD-based optimization. We employ the DDO solver [10]
with a width of 50 for both restricted and relaxed DDs and set a timeout of 100 seconds to
identify the final k regions. Before the regionalization process, we normalize the attributes of
the zones within a range between 0 and 1 using a MinMax scaler.

5.1 Real-life Instances
We assessed the performance of the MDD approach and REDCAP in generating 5, 10, 15,
and 20 regions for each dataset described. The comparison between the two methods on the
real-life regionalization problems is presented in Table 1. The table provides insights into
the quality of the methods’ partitions by displaying the rescaled overall heterogeneity for
each dataset and for the partition sizes k = 5, 10, 15, 20.

Regardless of the requested number of regions, our experimental results show that
the MDD approach consistently matches or outperforms REDCAP in terms of overall
heterogeneity for each regionalization dataset. This indicates that the partitions generated by
the MDD approach are of higher quality. However, the degree of difference varies depending
on the dataset. For instance, in the case of the Education BE dataset, the MDD approach
reduces the heterogeneity of the partition by almost 15% for 10 regions compared to REDCAP.
In contrast, for the Ecodemo NUTS3 dataset, the two algorithms produce similar partitions
for all values of k. Although the MDD approach only achieved optimality for the Ecodemo
NUTS1 dataset when k = 5, it outperformed REDCAP for all datasets.
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Table 2 Number of seconds taken by the MDD approach to find the first solution for each real-life
regionalization problem. The time at which it discovers the best solution is presented in parentheses
in the cases where it is not equivalent to the first solution founded.

Number of regions k

Dataset 5 10 15 20
Ecodemo NUTS1 <1 <1 <1 <1
Ecodemo NUTS2 <1 <1 2 2 (28)
Ecodemo NUTS3 6 13 19 21
Education BE 2 (18) 3 (85) 5 (97) 6
Ecoregions USA <1 <1 <1 (21) 2 (24)

Table 3 Comparison of our MDD approach with REDCAP on synthetic datasets

A B C
Metric MDD REDCAP MDD REDCAP MDD REDCAP

Precision 0,988 0,944 0,966 0,912 0,956 0,954
Recall 0,989 0,962 0,949 0,891 0,951 0,908
F1 Score 0,988 0,952 0,956 0,903 0,954 0,928
HT 0,99 1,19 0,978 1,108 1,015 1,078

Regarding performance, there is a significant difference between the MDD approach and
REDCAP. REDCAP takes, on average, between 0.01 and 0.3 seconds to produce a partition
depending on the dataset and the number of regions requested, while the MDD approach is
allowed to use up to 100 seconds to obtain the best possible solution. However, for the most
part, the first partition discovered by the MDD approach is also the best one obtained within
the 100-seconds timeframe. Table 2 presents the amount of time the MDD approach searched
before finding the first valid partition for each regionalization problem. It is noteworthy
that this first partition found by the MDD approach has always a lower or equal overall
heterogeneity than the partition found by REDCAP. Additionally, if this first solution is not
the best one found within the 100-seconds timeframe, Table 2 reports in parentheses the time
taken by the MDD approach to discover the partition with the lowest overall heterogeneity.

5.2 Synthetic Maps
We evaluated both the REDCAP and MDD approaches on various synthetic maps of different
sizes and complexities (families A, B, and C). For each family, we generated and assessed 20
maps using both methods. Table 3 displays the mean Precision, Recall, F1 Score, and True
Overall Heterogeneity Ratio for each method, computed using the ground-truth values. The
MDD approach was able to prove the optimal solution for the edge removal problem only for
instances belonging to family A.

We can see that using the MDD-based approach for the second step of REDCAP improves
the solution in all metrics for the three synthetic map families. Comparing the results of
the MDD approach, it can be seen that the precision and recall are lower for families B and
C. Both of these families share a characteristic in that their region boundaries are more
fuzzy than those of family A. This suggests that our method encounters more difficulty in
recovering the initial partition when the attributes between two neighboring regions are more
similar, i.e. when the delimitations between regions are less pronounced. The number of
zones, the number of regions and their geometric complexity seem to have a lesser impact on
the capacity of our model to recover the original regions.
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Moreover, for families A and B, the MDD approach generates regions with a lower overall
heterogeneity than the ground-truth partition on average. This implies that the original
partition is not always the optimal one in terms of overall heterogeneity. Thus, it can
be concluded that for the first two families, the regions generated by the MDD approach
deviate from the ground-truth ones simply because it discovered partitions with lower overall
heterogeneity than the original ones.

6 Conclusion

In this paper, we have proposed a novel approach for the regionalization problem, an essential
clustering task in a variety of spatial analysis domains. We have improved upon the second step
of the well-established REDCAP algorithm by introducing an exact dynamic programming
formulation for the edge removal problem solved using a multi-valued decision diagram
(MDD)-based branch and bound solver. We have provided comprehensive experiments on
both real-life datasets and synthetic ones to illustrate the efficacy of our method. Our
comparison with the REDCAP algorithm using a wide range of supervised and unsupervised
metrics demonstrated that our approach consistently produces partitions of higher quality.
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1 Introduction

It is widely believed that autonomous trucks will revolutionize the freight industry, and
many companies have started exploring its potential [5, 6, 7, 11, 26, 27]. Some of the major
players describe the transfer hub business model to be the most likely implementation for
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autonomous trucking [21, 25, 28]. An Autonomous Transfer Hub Network (ATHN) is a
network of autonomous truck ports (transfer hubs) that leverages the strengths of humans
and automation in their most effective roles. Autonomous trucks handle the monotonous
middle mile to transport goods between the transfer hubs, while humans handle the complex
first and last miles through local cities and deal with customer contacts. According to
Roland Berger [21], implementing a transfer hub model can lower operational costs by 22%
to 40%. A case study in the Southeast of the United States by Ryder System, Inc. and
the Socially Aware Mobility lab [22] reports savings from 27% to 40%, supporting earlier
estimates. The authors model optimizing ATHN operations as a scheduling problem, and a
Constraint Programming (CP) model is used to minimize the empty miles [4]. Subsequent
work by [13] presents a column-generation approach and a bespoke network-flow model to
quickly find high-quality solutions. These findings are combined by [14] into a flow-based
Mixed Integer Programming (MIP) framework that can solve large-scale instances over a
long time horizon (e.g., a month) optimally in reasonable time. These capabilities also allow
for detailed analyses of the benefits and costs of ATHNs.

This paper builds on previous work by introducing a framework for optimizing both
ATHN operations and transfer hub capacity utilization. Capacity planning plays a critical
role in an actual implementation of the ATHN for operational scheduling. Furthermore, hub
capacity has an impact on the number of essential personnel required, which is a crucial
factor to consider in labor planning and policy design. Prior research on ATHN operations
primarily focused on routing and scheduling, but neglected the capacity considerations
involved. Including capacity constraints in a scalable way is not obvious. The CP method
in [4] could be extended to incorporate hub capacity constraints by modeling a Resource-
Constrained Project Scheduling Problem [9, 12, 20] at every hub and adding cumulative
constraints [1, 24] for hub capacity. However, the poor performance reported in [4] makes it
unlikely this method will provide good solutions on the national level. The MIP framework
from [14] does handle large scale systems, but does not support a cumulative constraint.
Alternatives typically require sophisticated modeling techniques and solution methods such
as Time-expanded Networks or Dynamic Discretization Discovery [2, 3, 10, 15, 23, 29, 30],
which are not obvious to scale either.

The method presented in this work optimizes ATHN operations and improves hub
utilization even for large-scale systems by combining the strengths of MIP and CP. The MIP
model is used to generate routes and an initial schedule, while the CP model is used to shift
the schedule and minimize the required hub capacities. A case study based on real data is
conducted to demonstrate the effectiveness of the new methodology on an ATHN system
spanning the United States for a four-week horizon. The proposed CP model efficiently
finds optimal solutions and lowers the necessary total hub capacity by 42%. This reduction
in capacity may save $15.2M per year in labor cost. Furthermore, it is shown that this
is close to the best possible savings for any initial schedule. This paper also includes a
sensitivity analysis and provides operational insights for future implementation of the ATHN
framework. The remainder of this paper is organized as follows. Section 2 presents the MIP
and CP methodology. Section 3 describes the data and experimental settings used in the
case study. Results and sensitivity analysis are presented in Section 4. Finally, Section 5
provides conclusions and suggests directions for future research.

2 Methodology

This paper uses the methods by [14] to design an ATHN and to optimize the routes of the
autonomous vehicles with a MIP. The resulting solution minimizes the cost of the system,
but does not take into account the necessary capacity at each of the hubs, which may lead
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to low hub utilization. To address this issue, this paper introduces a CP model to shift the
schedule in such a way that the original time windows remain satisfied, and the necessary
hub capacities are minimized.

2.1 ATHN Design and Operations
The input data for the design and optimization of ATHN consists of a set of loads with origins,
destinations, and release times. Following [14], K-means clustering is used to determine
hub locations H, and loads are assigned to hubs according to a hub-assignment rule that
minimizes the total driving distance (with autonomous miles discounted by a factor γ).

To optimize the ATHN operations, first define a set of tasks T = {1, 2, . . .}, where each
task t ∈ T corresponds to moving a load from origin hub h+

t ∈ H to destination hub h−
t ∈ H

with an autonomous truck. Each task t ∈ T is associated with a desired pickup time pt

and a flexibility ∆ ≥ 0, resulting in a pickup time window of [pt − ∆, pt + ∆]. A task graph
G = (V, A) is introduced to find the optimal sequence of tasks for every vehicle. The set
V = T ∪ {0} ∪ {|T | + 1} consists of vertices that correspond to the tasks, together with a
source node 0 and a sink node |T |+1. Choosing an arc a ∈ A indicates that the corresponding
tasks are performed sequentially by the same vehicle. An arc between two tasks t, t′ ∈ T

represents loading at h+
t , moving freight from h+

t to h−
t , unloading at h−

t , and relocating
from h−

t to h+
t′ to be ready for the next task. Each arc is associated with a corresponding

time τa. The time for loading or unloading is given by a parameter σ, and OpenStreetMap
times are used for driving and relocation [17].

The cost is calculated in two parts: dt is the direct cost, which represents the cost of
serving task t ∈ T directly with a conventional truck without using any of the hubs. This
cost is taken to be the total distance for delivery and empty return. Note that the current
non-autonomous system corresponds to using only direct trips. The second component is
a cost differential ca associated with each arc a ∈ A. For arc a = (t, t′) this represents the
difference in cost to switch task t from conventional to autonomous delivery, including the
relocation cost from h−

t to h+
t′ . That is, dt is the direct trip cost, and dt + ctt′ is the cost to

serve task t ∈ T autonomously and relocate to the start of task t′. The autonomous middle
miles are discounted by a factor α ∈ [0, 1] and it is assumed that a fraction β ∈ [0, 1) of the
implied first/last miles are empty. Additional details on how τa and ca are calculated are
provided by [14].

Let ya be a binary variable that indicates that arc a ∈ A is selected, and let xt be the
start time of task t ∈ T . For convenience, let δ+

v and δ−
v denote the out-arcs and in-arcs

of vertex v ∈ V , respectively. For a given number of autonomous trucks K, MIP (1) asks
for a set of at most K routes from source to sink that cover different tasks. Objective (1a)
minimizes the total cost. If a task is not covered it means it is served by conventional means
and the cost is that of a direct trip dt. If the task is covered, the cost differential ctt′ is added
to calculate the autonomous cost. Constraints (1b) enforce that every task is performed at
most once. Constraints (1c) are flow conservation constraints, and Constraint (1d) limits
the number of vehicles to K. Constraints (1e) are Miller-Tucker-Zemlin constraints [16]
that ensure sufficient time passes between subsequent tasks, where M is a sufficiently large
constant. These constraints also eliminate cycles. Finally, the variables and their domains
are given by Equations (1f) and (1g). The MIP Model (1) is solved with a blackbox solver
after applying the acceleration techniques detailed in [14]. The arc-flows (y-variables) are
translated into a set of routes, which are represented as sequences of tasks, by tracing the
flows from the source node 0 to the sink node |T | + 1. Note that for given optimal routes,
the start times (x-variables) are typically not unique. For consistent analysis, the start times
are shifted to as early as possible in post processing.
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min
∑
t∈T

dt +
∑
a∈A

caya, (1a)

s.t.
∑

a∈δ+
t

ya ≤ 1 ∀t ∈ T, (1b)

∑
a∈δ+

t

ya =
∑

a∈δ−
t

ya ∀t ∈ T, (1c)

∑
a∈δ+

0

ya ≤ K, (1d)

xt′ ≥ xt + τtt′ − M(1 − ytt′) ∀t, t′ ∈ T, (t, t′) ∈ A, (1e)
xt ∈ [pt − ∆, pt + ∆] ∀t ∈ T, (1f)
ya ∈ B ∀a ∈ A. (1g)

Figure 1 Mixed Integer Program for Optimizing ATHN Operations.

2.2 Minimizing Required Hub Capacities
The routes and schedule obtained from the MIP do not take hub utilization into account.
Therefore, it may happen that many trucks are loading and unloading at the same hub at
the same time. To address this issue, a CP model is introduced to shift the schedule to
minimize the necessary loading/unloading capacity at the hubs, while satisfying the original
time windows and maintaining the same route (sequence of tasks) for every vehicle.

The CP model is based on K; the set of routes obtained from MIP (1). Every route
k ∈ K is split into an sequence of jobs Jk = {1, 2, . . .}. For notational convenience, the
jobs are numbered sequentially by the order in which they are performed, rather than using
the original task numbers. Figure 2 provides a visualization, which will serve as a running
example. Each job j ∈ Jk has up to four properties:

type(j) ∈ {l, d, u, r, p}; type of job: load, drive, unload, relocate, park, respectively.
duration(j) (only for types l, d, u, r); duration of this job.
task(j) ∈ T (only for types l, d, u); task associated with this job.
hub(j) ∈ H (only for types l, u, p); hub associated with this job.

Each route is modeled with the same repeating sequence of loading at the origin hub
(l), waiting before driving (p), driving (d), waiting at the destination hub before unloading
(p), unloading (u), waiting before relocating to the next task if any (p), relocating (r), and
waiting at the origin hub of the next task until loading (p). Note that jobs of type l, d, u,
r have a fixed duration, while the duration of p jobs is flexible and can be zero. When no
relocation is necessary (the previous destination is equal to the next origin), the r job is still
defined with duration zero for convenience. Every l, d, u job is trivially associated with an
original task t ∈ T . Jobs l, u, p for which the vehicle is standing still are associated with a
hub as described above.

CP Model

The CP Model (2) is based on variables Sk
j that indicate the start time of job j ∈ Jk in

route k ∈ K, and variables Ch that indicate the necessary loading/unloading capacity at
hub h ∈ H. For convenience, Sk

|Jk|+1 is defined to represent the time at which the final job
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l ... r p l p d p u p r p l ... u

Sk
1 Sk

j−2 Sk
j Sk

j′−2 Sk
j′ Sk

j′+2 Sk
|Jk| Sk

|Jk|+1

Hub h+
t Hub h−

t
Task t ∈ T

Figure 2 Jobs Jk for Route k ∈ K (jobs j, j′ ∈ Jk are used as examples in the main text).

min
∑
h∈H

Ch, (2a)

s.t. Ik
j = Interval([Sk

j , Sk
j+1]) ∀k ∈ K, j ∈ Jk, (2b)

Cumulative
(
[Ik

j |k ∈ K, j ∈ Jk, type(j) ∈ {l, u}, hub(j) = h], Ch

)
∀h ∈ H, (2c)

Sk
j+1 = Sk

j + duration(j) ∀k ∈ K, j ∈ Jk, type(j) ∈ {l, d, u, r}, (2d)
dom(Sk

j ) = [sk
j , sk

j ] ∀k ∈ K, j ∈ Jk. (2e)

Figure 3 Constraint Programming Model for Minimizing Required Hub Capacities.

u is completed (see Figure (2)). Objective (2a) minimizes the total necessary hub capacity.
To calculate the hub capacity, the model first defines an interval variable Ik

j for every job
(Equation (2b)), which implicitly enforces Sk

j ≤ Sk
j+1. Equation (2c) defines a cumulative

constraint for every hub h ∈ H to collect the intervals of the jobs with type l and u at that
hub, and to assign the neccesary hub capacity to Ch. Note that this cumulative constraint
has a variable as the capacity. It is also worth mentioning that Constraints (2c) span all the
vehicles. Constraints (2d) ensure the correct job duration when a duration is defined (p jobs
are flexible). Finally, Equation (2e) defines the domains of the S-variables, where constants
sk

j , sk
j remain to be defined. This paper focuses on loading/unloading capacity, but note that

CP Model (2) is easily adapted to other objectives, such as minimizing parking space.
To ensure that the time flexibility ∆ is respected, the domains of the S-variables need

to be defined accordingly. For job j ∈ Jk of route k ∈ K and type(j) = l, the domain
is defined around the desired pickup time of the task to match the MIP: dom(Sk

j ) =
[ptask(j) − ∆, ptask(j) + ∆]. This domain is translated to the following d and u jobs to make
sure that the flexibility is not exceeded until the task is complete. With slight abuse of
notation, this gives the translated domains dom(Sk

j ) = dom(Sk
j−2) + duration(j − 2) for jobs

of type(j) ∈ {d, u} (see Figure 2).

Redundant Bounds and Constraints

Non-trivial bounds for jobs of type r and p are not strictly necessary, but it is straightforward
to derive the following:

dom(Sk
j ) =

{
[sk

j−2 + duration(j − 2), sk
j+2 − duration(j)] if type(j) = r,

[sk
j−1 + duration(j − 1), sk

j+1] if type(j) = p.
(3)

Relocation can only start after unloading is completed, and has to start to be in time for
the next loading (see job j′ in Figure 2). In a similar way, parking can only start after the
previous job is completed, and parking for duration zero is possible until the upper bound of
the next job.

CP 2023
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Table 1 Baseline Parameter Values for the Case Study.

Parameter Value
n 6842 loads
|H| 100 transfer hubs
γ 40% discount for autonomous mileage during hub-assignment
β 25% first/last-mile inefficiency
α 25% discount for autonomous mileage
∆ 1 hour pickup-time flexibility
σ 30 minutes autonomous truck loading/unloading time
K 100 autonomous trucks

For the current Objective (2a), the following observation is used to reduce the search
space: To minimize the loading/unloading capacity, it does not matter when relocation takes
place between the jobs u and l. It is therefore possible without loss of generality to impose
that relocation starts immediately after unloading:

Sk
j = Sk

j−1 ∀k ∈ K, j ∈ Jk, type(j) = r. (4)

3 Case Study

This paper conducts a realistic case study based on data from Ryder System, Inc. (Ryder),
one of the largest transportation and logistics companies in North America. Ryder has
provided a dataset that is representative for its dedicated transportation business in the US,
reducing the scope to orders that are strong candidates for automation. Following [14], the
case study focuses on orders that are challenging in the sense that they would currently
induce an empty return trip. Every order represents a load with an origin, a destination,
and a scheduled release time. The hubs are chosen based on data from October to December
2019, while the experiments are based on 6842 loads in the first four weeks of October.

Experimental Settings

The parameter settings are taken from [14] and summarized in Table 1. All methods from
Section 2 are implemented in Python 3.9. The MIP models are solved with Gurobi 9.5.2,
and the CP models are solved with CP-SAT 9.6 [19]. All time-related data is rounded to
the nearest minute to facilitate the integer domains that are required by CP-SAT. The
experiments are conducted on a Linux machine with dual Intel Xeon Gold 6226 CPUs on
the PACE Pheonix cluster [18]. Each experiment is assigned to use at most 24 cores and
192GB of RAM. If Gurobi runs out of memory, the experiment is repeated on a machine with
384GB of RAM, and if that fails, the number of cores is halved until the solver terminates
successfully. CP-SAT did not encounter memory issues at any point. The Gurobi time limit
is set to three hours, except for the sensitivity analysis for flexibility ∆, which is given 12
hours to obtain better solutions and is warm started with a MIP start. The CP-SAT solver
is warm started with the solution obtained by the MIP, which is provided as a hint.

4 Results

Figure 4 summarizes the results of using the CP model to minimize the necessary hub
capacity for loading and unloading trucks. “Before CP” shows the required capacity if
the MIP solution were implemented immediately, while “After CP” shows the results after
applying the CP model. The ATHN problem was solved to optimality for all instances except
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Figure 4 Capacity Before and After CP. Figure 5 Loads Served Autonomously.

(a) Before CP Optimization. (b) After CP Optimization.

Figure 6 Capacity Reduction for the 100 Truck Case (circle area proportional to hub capacity).

when K = 50, which remained at a 0.05% optimality gap within the given time limit. For the
CP problem, all instances were solved to optimality in under 30 seconds. The figure shows
that the CP model is highly effective in reducing the total hub capacity for all instances,
reducing the necessary capacity by 31% up to 50%. For the base case of K = 100 the CP
model can reduce capacity by 42%. Note that this may correspond to significant monetary
savings: If each unit of loading/unloading capacity requires the assistance of a mechanic
around the clock (three shifts of $57,557 per year [8]), the CP model reduces the annual
labor cost by $15.2 million. Figure 4 also shows that the resulting capacity is close to the
lower bound for any ATHN solution, which is obtained by removing the time constraints
between subsequent tasks, i.e., treat every task as if it is the only task on the route.

As the number of trucks increases, the ATHN starts serving more loads autonomously,
as shown by Figure 5. Without the CP model, this leads to a substantial increase in hub
capacity as more loads are added to the system. The CP model completely mitigates this
effect, and is able to maintain an almost stable hub capacity as the workload increases.
This reveals a suprising robustness to accomodate new orders that the CP model is able to
exploit. When making investment decisions and hiring personnel to operate the hubs, this is
a very desirable property. The maps in Figure 6 demonstrate that the necessary capacity is
reduced throughout the system, and the peaks in the South and Northeast have decreased
significantly. The capacity at the hub near Louisville, Kentucky for example was reduced
from 7 to 2.

Interestingly, only a small portion of the jobs needs to be rescheduled to obtain the
substantial savings in hub capacity. E.g., in the 100-truck case only 13% of loadings were
rescheduled. Figure 7 provides histograms for the absolute size of the shift for the loading
and unloading times that were shifted. It can be seen that a majority of these jobs were

CP 2023
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(a) Histogram of Shifted Loading Times. (b) Histogram of Shifted Unloading Times.

Figure 7 Shifted Schedule Times for the 100 Truck Case.

(a) Impact of Loading/Unloading Time σ. (b) Impact of Flexibility ∆.

Figure 8 Sensitivity Analysis Loading/Unloading Time and Flexibility for the 100 Truck Case.

moved by no more than 30 minutes, which shows that the ATHN solutions are sufficiently
flexible to be adjusted without propagating delays through the schedule. The fact that the
CP model is easy to solve and only makes small modifications also makes it an attractive
tool at the operational level: if order details are changed or delays are encountered, the CP
model can quickly be re-solved to avoid causing overlap in loading and unloading at the hubs.

Sensitivity Analysis

The loading/unloading time σ and the flexibility ∆ are two significant factors that affect the
ATHN. Figure 8 summarizes how these parameters impact the total hub capacity and the
CP model’s performance. The ATHN is solved for loading/unloading time from zero to two
hours, and for no flexibility up to one day of flexibility. Note that loading/unloading time up
to two hours may be realistic if the vehicle is inspected every time it leaves or enters a hub.

For σ, the ATHN solver found optimal solutions for all instances and the CP problem
found optimal schedules within 15 seconds. As σ increases, the total hub capacity increases
because jobs overlap more frequently. The CP model is not able to fully compensate for this
effect, but can still improve the hub capacity by at least 28%.

For ∆, optimal solutions were found for ∆ ∈ {0h, 1h}, a near-optimal solution within
0.05% optimality gap was found for ∆ = 2h, while ∆ ∈ {12h, 24h} remained at a 3%
optimality gap. The CP solver took 7 minutes for ∆ = 12h and 13 minutes for ∆ = 24h
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Table 2 CP Solving Time Speedup compared to Omitting Redundant Bounds and Constraints.

Number of Trucks
Redundant Bounds Redundant Constraints 50 100 150 200 250

✗ ✗ 1.0x 1.0x 1.0x 1.0x 1.0x
✓ ✗ 1.1x 1.4x 1.2x 0.9x 0.8x
✗ ✓ 3.9x 6.8x 7.4x 3.9x 5.4x
✓ ✓ 3.5x 5.5x 6.3x 3.1x 5.5x

to find optimal schedules, which suggests that the CP computation time is more sensitive
to changes in ∆ than in σ. This is explained by the fact that increasing the flexibility
significantly increases the search space. Again, the CP model shows substantial improvement
over the initial solution with improvements ranging from 39% to 50% for the case study.
When the flexibility increases, the necessary capacity goes down even before CP is applied,
but the CP model is able to benefit more from the additional freedom.

Impact of Redundant Bounds and Constraints

Table 2 shows the impact of the redundant bounds and constraints introduced in Section 2.
These results are based on the baseline parameter settings for different numbers of trucks.
It can be seen that only adding redundant bounds can both speed up or slow down the
solver. For example, the solver becomes 1.4 times faster for K = 100 trucks, but a factor
0.8 slower for K = 250 trucks. The main benefit comes from adding redundant constraints,
which speeds up the solver by up to 7.4 times for K = 150 trucks. When the redundant
bounds and constraints are combined, performance may be improved further, as is the case
for K = 250 trucks, but it appears that only including redundant constraints is the most
efficient setting for these experiments.

5 Conclusion

The Autonomous Transfer Hub Network (ATHN) is one of the most promising ways to adapt
self-driving trucks for the freight industry. This paper proposes a framework for optimizing
ATHN operations with respect to hub utilization. To accomplish this, a MIP model generates
autonomous vehicle routes and an initial schedule, which is then optimized using a CP model
to reduce the required hub capacity for loading and unloading trucks. Results from the Ryder
case study demonstrate the effectiveness of this approach, with the CP model reducing the
total capacity by at least 42% while requiring only minor schedule modifications. This may
save $15.2M per year in labor cost and is close to the lowest possible capacity for any initial
schedule. Sensitivity analysis on loading/unloading duration and flexibility provides practical
insights for ATHN operations and systematically shows the benefit of the CP model. Future
work may explore alternative objective functions, such as minimizing parking space. Another
interesting direction is to attempt to jointly optimize routes and hub capacity directly.
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Abstract
Partially spatially balanced Latin rectangles are combinatorial structures that are important for
experimental design. However, it is computationally challenging to find even small optimally balanced
rectangles, where previous work has not been able to prove optimality for any rectangle with a
dimension above size 11. Here we introduce a graph-based encoding for the 2 × n case based on
finding the minimum-cost clique of size n. This encoding inspires a new mixed-integer programming
(MIP) formulation, which finds exact solutions for the 2 × 12 and 2 × 13 cases and provides improved
bounds up to n = 20. Compared to three other methods, the new formulation establishes the best
lower bound in all cases and establishes the best upper bound in five out of seven cases.
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1 Introduction

Latin squares and rectangles are combinatorial objects represented by n × n or k × n grids
with entries assigned from {1, 2, . . . , n} such that no entry is repeated in a row or column.
They are important structures for experimental design. For example, in agronomic field
experiments, experts are interested in applying n treatments consisting of n fertilizers in
different orderings, which can be achieved by designing the treatment sequences following a
Latin square. Arbitrary Latin squares are not hard to generate. However, geometric imbalance
due to some treatments occurring closer together more frequently can bias experimental
results [21]. This motivates the use of spatially balanced Latin squares and rectangles which
require additional structure to capture the notion of distance between any two treatments in
the square or rectangle and are more computationally challenging to construct.

A large body of previous work has focused on spatially balanced Latin squares, including
introducing streamlining constraints [8], using stochastic optimization [11, 10, 12, 6], and
applying local search methods [22]. While spatially balanced Latin squares have been
extensively studied [9, 16, 17, 21], there has been much less work on spatially balanced Latin
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rectangles [4], despite rectangular conditions occurring more frequently in practice. For
example, in the case of fertilizer treatments, the number of treatments is often less than the
number of fertilizers resulting in a rectangular structure.

The main previous work investigating spatially balanced Latin rectangles established
the non-existence of perfectly balanced Latin rectangles for an infinite family of sizes and
shifted focus to constructing partially spatially balanced Latin rectangles (PSBLRs) [4]. Diaz
et al. introduce and experimentally compare three approaches to generating PSBLRs: an
assignment-based mixed-integer program (MIP), a constraint satisfaction program (CP), and
a random-restart hill climbing local search. Using these approaches, Diaz et al. were able to
find the provably optimal imbalance for rectangles up to a size of 2 × 11 and provide bounds
up to 12 × 12.

In this work, we focus on the 2 × n case of constructing PSBLRs, introducing a new
graph-based encoding based on a reduction to a minimum-edge weight clique problem. The
maximum/minimum edge-weight clique problem (MEWC) is a generalization of the classic
max clique problem, where given an input graph G = (V, E) instead of finding the largest
complete subgraph the goal is to find the subgraph with the largest/smallest sum of weighted
edges. The MEWC problem has many applications including in experimental design [3],
molecular biology [20], and materials discovery [1]. Multiple approaches have been developed
for MEWC problems including linear and quadratic mixed-integer programs [5, 7, 18], branch-
and-cut [5, 15, 19], and heuristic methods [2, 14]. Several benchmarks have been developed
for MEWC, though less than half the instances have been solved to optimality [13].

For our experiments, we use a straight-forward MIP formulation of MEWC to emphasize
the benefits of the reduction instead of advanced techniques developed for MEWC. This
new MIP formulation for the problem of finding 2 × n PSBLRs finds optimal solutions for
the previously unsolved cases of n = 12 and 13 and provides new bounds for n = 14 − 20.
Further, we demonstrate the new clique-based MIP formulation outperforms the previous
assignment-based MIP formulation and A* search and finds comparable solutions to local
search while providing lower bounds.

2 Preliminaries

▶ Definition 1 (Latin Rectangle). Let k and n be positive integers with k ≤ n and R be
a k × n matrix. Then R is a Latin rectangle if every entry of R contains a number in
[n] = {1, 2, · · · , n} and no number is repeated in any row or column.

In order to discuss partially spatially balanced Latin rectangles, we first introduce the
notion of distance between two symbols in a Latin rectangle and imbalance:

▶ Definition 2 (Imbalance). For two symbols u, v ∈ [n] and i ≤ k, the distance between u and
v in row i, denoted di(u, v), is the absolute value of the difference of the indices of the positions
of u and v in row i. The overall distance between u and v is then d(u, v) =

∑
i≤k di(u, v).

The spatial imbalance of a Latin rectangle, R, is defined by

I(R) =
∑
i,j

∣∣∣∣d(i, j) − k(n + 1)
3

∣∣∣∣ .

▶ Definition 3 (Spatially Balanced Latin Rectangle). We say that a k×n rectangle R is spatially
balanced if all distances d(u, v) are the same. For brevity, we denote this as SBLR(k, n).

Note that in this case, Diaz et al. show that each distance must be exactly k(n+1)
3 and

thus the imbalance of the rectangle is 0; see [4] for a short proof of this proposition.
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▶ Proposition 4. If there exists a solution for SBLR(k, n) then the distance between any
pair of symbols is equal to k(n + 1)/3.

As a corollary, k ≡3 0 or n ≡2 2 are necessary conditions for the existence of SBLR(k, n)
as k(n+1) ≡3 0 must hold. Diaz et al. have further shown the non-existence of SBLRs of size
2 × n for n ̸= 2 and 3 × n for n ̸= 3, as well as experimentally demonstrated that no perfectly
spatially balanced rectangles with k ̸= n exist up to size 7 × 7 [4]. In practice, it is useful to
minimize the imbalance even if it is not possible to reduce it to zero. This motivates the
definition of the object of our study- partially spatially balanced Latin rectangles (PSBLRs):

▶ Definition 5 (Partially Spatially Balanced Latin Rectangle). A k × n Latin rectangle R

is partially spatially balanced if I(R) is minimized. In particular, R is partially spatially
balanced if for any k × n Latin rectangle R′, I(R) ≤ I(R′).

3 Graph Encoding

In this section, we describe a new graph-based encoding for the problem of constructing
PSBLRs. For the 2 × n Latin rectangles we consider, we will always assume the first row is
ordered and given by 1 2 . . . n, as any other solution can be transformed into a solution
in this form through relabelling symbols. This reduces the problem to selecting a single
imbalance-minimizing derangement, or permutation with no fixed points, for the second row
of the rectangle. It also simplifies the computation of the distance between any two symbols
u and v. Particularly, for 1 ≤ u < v ≤ n, we have d(u, v) = v − u + |iv − iu| where iv, iu

are the indices of v, u in the second row, respectively. For fixed u, v and n, d(u, v) is solely
determined by the choices for iu and iv. We exploit this through the construction of a graph
which encodes how these choices affect the imbalance.

The graph encoding is as follows. For a given n, construct a complete graph G = (V, E)
with V = {vij : 1 ≤ i, j ≤ n, i ≠ j} and E = {(u, v) : u, v ∈ V }. Intuitively, a vertex vij

represents a Latin rectangle where j is the index of i in the second row. We include a cost
on each edge (vst, vqr) which represents how much is contributed to the imbalance from
d(s, q) if t and r are the indices of s and q in the second row, respectively. In particular, for
e = (vst, vqr) ∈ E with s ̸= q and t ̸= r, let

ce =
∣∣∣∣d(s, q) − 2(n + 1)

3

∣∣∣∣
=

∣∣∣∣|s − q| + |is − iq| − 2(n + 1)
3

∣∣∣∣
=

∣∣∣∣|s − q| + |t − r| − 2(n + 1)
3

∣∣∣∣ .

If s = q or t = r, the cost on the edge is ∞, since the assignments these vertices represent
are not valid for a Latin rectangle. See Figure 1 for an example when n = 3.

To complete the problem encoding, we need to discern how to recover a PSBLR from
this complete graph. The key observation is that every n-clique where all edges have finite
cost corresponds to a valid Latin rectangle. The finiteness of the costs ensures that the
assignment rules of the Latin rectangle are obeyed. Furthermore, the sum of the costs on the
edges of an n-clique is exactly equal to the imbalance of its corresponding Latin rectangle.
As such, to find a PSBLR, it suffices to find an n-clique whose sum of edge costs is minimal.
Figure 1 illustrates an optimal clique corresponding to an optimal Latin rectangle for n = 3:[

1 2 3
2 3 1

]
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Figure 1 (Left) The graph encoding after including all edges with infinite costs between vertices
vsq and vsr for s = 1, 2, 3 (thin edges) and between vertices vsq and vrq for q = 1, 2, 3 (bold edges).
(Center) The graph encoding after including all remaining edges with finite costs (bold edges) between
the remaining pairs of vertices. The boxed value is calculated as |(2 − 1) + (3 − 1) − 8/3| = 1/3.
(Right) A 3-clique (bold edges) in the graph encoding when n = 3 corresponding to a 2 × 3 PSBLR.

4 MIP Formulation

Now that we have reduced the problem of finding a 2 × n PSBLR to finding a minimum-cost
n-clique, we can model the problem through a new integer program:

minimize
∑
e∈E

cexe

subject to
∑
v∈V

zv = n, (1)

xe ≥ zv + zu − 1, ∀e = (u, v) ∈ E, (2)
xe ∈ {0, 1}, ∀e ∈ E,

zv ∈ {0, 1} ∀v ∈ V.

In this model, we have binary variables zv and xe for each vertex v and edge e in the graph
representing whether the vertex or edge is included in the n-clique. While (1) guarantees that
we select n vertices, (2) requires that any edges between two selected vertices are included in
the cost; together these ensure the model selects an n-clique.

Note that the size of this model is polynomial in n with n(n−1)+n(n−1)(n(n−1)−1)/2
variables and n(n − 1)(n(n − 1) − 1)/2 + 1 constraints. Furthermore, by construction, an
optimal solution will be a PSBLR. However, the presence of so many binary variables makes
finding the optimal solution a cumbersome computational task.

The following observation allows us to partially relax the integer program and significantly
reduce the number of binary variables:

▶ Observation 6. For each edge e ∈ E, xe will be 0 or 1 if zv is binary for all v ∈ V . In
other words, we can relax the restriction that xe is binary for all e ∈ E by replacing it with
xe ≥ 0 for all e ∈ E and still guarantee a binary solution.

The relaxed mixed integer program only requires n(n − 1) binary variables, one for each
vertex, where the remaining edge variables are continuous.
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5 Methods

We compared the min-cost n-clique MIP formulation, hereafter referred to as the clique
formulation, to an assignment-based MIP formulation, A* search, and a local search approach.

In the assignment based MIP formulation, we again assume the first row is fixed to
1 2 . . . n. Thus, we only need to introduce binary variables indicating whether value

i occurs in position j of the second row, i, j ∈ {1, 2, · · · , n} ≡ [n], i ̸= j. Note that
these exactly correspond to the vertex variables in the clique formulation, zv = zvij

for
v ∈ {vij : i, j ∈ [n], i ̸= j}. As the imbalance is dependent on pairwise positions in the second
row, we also introduce binary variables that are 1 if a pair of variables is included in the
solution. Note that these correspond exactly to the edge variables in the clique formulation,
xe for e ∈ {(u, v) : u, v ∈ V }, where the pairwise cost corresponds to ce. Finally, we introduce
constraints ensuring each value appears exactly once in the second row (3) and each position
in the second row is assigned exactly one value (4):

minimize
∑
e∈E

cexe

subject to
∑

j∈[n],j ̸=i

zvij
= 1, ∀i ∈ [n] (3)

∑
i∈[n],i̸=j

zvij
= 1, ∀j ∈ [n] (4)

xe ≥ zv + zu − 1, ∀e = (u, v) ∈ E,

xe ∈ {0, 1}, ∀e ∈ E,

zv ∈ {0, 1} ∀v ∈ V.

Similar to the clique formulation, we can partially relax the integer program by allowing
the xe variables to assume continuous values, reducing the number of binary variables to
n(n − 1).

Both MIP formulations were implemented in Gurobi and CPLEX using their respective
Python APIs. As previous work has established optimal solutions up to n = 11, we replicated
previous results and further tested instances with n = 12 − 20. For each n, both models were
tested for 6 hours running on a Intel Xeon 6154 processor and allowed 32GB of memory in
three configurations: a single instance running on a single thread, a single instance running
on 32 threads, and 8 instances running on a total of 32 threads.

For A* search, we again fix the first row and only consider positions in the second row.
Starting with an empty second row, we add all valid placements of the first digit to a priority
queue, assigning each node a cost based on the partial imbalance of the filled digits and an
admissible heuristic for the imbalance due to the unplaced digits. We repeatedly evaluate
the first node in the queue until we reach a node with all digits filled which is guaranteed to
be an optimal solution. As a heuristic, for each unplaced digit we calculated the minimum
increase to the imbalance that would result from placing it in one of the remaining positions,
accounting only for interactions with already placed digits. We then summed these values
across all unplaced digits.

A* search was implemented in C++ and was also tested for 6 hours each on instances
of size n = 12 − 20 on an Intel Xeon 6154 processor. As A* search is memory intensive,
runs were allocated 128GB of memory, compared to 32GB for the other methods. If A*
search does not complete, the value of the node at the front of the queue can be used as a
lower bound on the solution value. However if the algorithm does not run to completion, no
feasible solutions are found, resulting in no upper bound on the imbalance.

CP 2023
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We implemented local search using a random walk from a random initial derangement,
where at each step the position of two random digits were swapped, maintaining feasibility.
The random walk was implemented in C++ and tested for 6 hours each on instances of size
n = 12 − 20 on an Intel Xeon 6154 processor and allocated 32GB of memory. Unlike the
other methods, a random walk cannot prove optimality or provide a lower bound on the
solution.

In addition to testing methods to bound the optimal solution, we performed several tests
to better characterize the solution space. First, for n = 2 − 10 we brute force computed all
solutions to determine the number of optimal solutions. We were inspired to characterize
the number of solutions due to the observation that mirroring either the first or second row
results in a rectangle with the same imbalance. For example if we have a solution R, we
can construct a rectangle R′ with the second row mirrored by setting R′

2i = n + 1 − R2i for
i ∈ [n]. This results in the same imbalance:

I(R′) =
∑
i,j

∣∣∣∣|R1i − R1j | − |(n + 1 − R2i) − (n + 1 − R2j)| − 2(n + 1)
3

∣∣∣∣
=

∑
i,j

∣∣∣∣|R1i − R1j | − |R2i − R2j | − 2(n + 1)
3

∣∣∣∣
= I(R)

However, it is not guaranteed that R′ is a Latin rectangle, as the rearrangement may not
respect the column constraint. Similarly, we can create a rectangle, R†, with the first row
mirrored by setting R†

1i = n + 1 − R1i for i ∈ [n]. While this does not result in a rectangle
with the first row ordered as 1 2 . . . n, we can relabel the variables so the first row goes
from 1 2 . . . n which results in the second row having the labels R†

2i = R2(n+1−i). While
this could potentially allow up to four solutions from a single solution, there is no guarantee
that these solutions satisfy the column constraints. As multiple solutions are not guaranteed,
we cannot use methods like streamlining. However, the presence of multiple solutions may
make it difficult for the MIP formulations to prove optimality.

Further, we sought to characterize the distribution of feasible solutions. For n = 2 − 10
we were able to compute the distribution exactly. For n = 11 − 16, we randomly sampled
a million solutions to approximate the distribution. The distribution of solutions impacts
all four methods, where having many solutions with nearly optimal imbalance will benefit a
random walk, while it will make it difficult for the MIP formulation and A* search to prove
optimality.

6 Results

While CPLEX had better runtimes up to n = 10, only Gurobi was able to prove optimality
for n = 12 and 13 and Gurobi consistently found better bounds for n = 14 − 20 (see Tables
3-5). Thus, for the remainder of the results we report the performance of the Guorbi model
for both MIP formulations. In general, running the model using a single instance and a single
thread performed better than running a single instance with multiple threads or multiple
instances, with the only notable exception being for n = 20, where running with multiple
instances found the smallest upper bound of 816 (See Tables 6-7).

While both MIP formulations were able to prove optimality for n = 12, only the clique
formulation was able to prove optimality for n = 13 within the 6 hours allotted (See Table
8). While local search is not able to prove optimality, it found the optimal solution for both
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n = 12 and 13. For all n = 2 − 20, the clique formulation resulted in the largest lower bound
(See Table 1). The results were more varied for the upper bound, where the random walk
found the lowest upper bound for n = 14 and 17, the clique found the lowest upper bound
for n = 18, 19, and 20, and both methods found the same upper bound for n = 15 and 16
(See Table 2). For n = 16, the assignment formulation matched the upper bound found by
the clique formulation and random walk.

A* was only able to run to completion for n = 12. For n = 13 − 15, A* ran out memory,
despite being allotted 128GB where all other methods used under 32GB. For n > 15, A* was
only able to reach configurations with at most seven fixed values, resulting in a weak lower
bound on the optimal solution.

Table 1 Lower bound by method for n = 12 − 20. Bold values indicate the best bound, i.e. the
largest lower bound, for each n. All methods were allotted 6 hours.

n

12 13 14 15 16 17 18 19 20
Clique MIP 168 218.66 191 252.66 273.66 252 402.66 465.33 155
Assignment MIP 168 218.66 131 141.33 133 91 121 138.66 47
A* search 168 191 166 169 164.66 134 159.33 158.66 106
Random walk - - - - - - - - -

Table 2 Upper bound by method for n = 12 − 20. Bold values indicate the best bound, i.e. the
smallest upper bound, for each n. All methods were allotted of 6 hours.

n

12 13 14 15 16 17 18 19 20
Clique MIP 168 218.66 272 345.33 427.33 522 617.33 732 816
Assignment MIP 168 218.66 272 346 427.33 526 621.33 732 886
A* search 168 - - - - - - - -
Random walk 168 218.66 268 345.33 427.33 508 623.33 742.66 866

For the exploratory tests, for all n = 2 − 10 there are multiple optimal solutions (See
Figure 2). The number of solutions did not show any obvious patterns, such as a monotonic
increase or alternation between odd and even digits. For n = 6 − 10 where we were able to
compute the distribution of solutions exactly, up to 10% of solutions were within 10% of
optimal and as many as 40% of solutions were within 20% of optimal (See Figure 2). For
n = 11 − 20 we looked at the distribution over a million random solutions instead of the full
solution space, so the best solution likely does not represent the optimal solution. However,
the trend of a large proportion of the cumulative distribution being within 20% of the best
solution continued, where at the high-end of the range over 40% of solutions were within
10% of the best solution and over 90% were within 20% of the best solution.

7 Discussion

Both the clique and assignment formulation were able to prove optimality for the previously
unsolved case of n = 12 and the clique formulation was further able to prove optimality for
n = 13. For n = 14 − 20, the clique formulation consistently found the best lower-bounds,
outperforming the assignment formulation and A* in all seven cases. While the clique
formulation and a random walk were comparable in establishing upper bounds, finding the
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Figure 2 (Left) Number of optimal solutions by n. (Right) Cumulative distribution of solutions
as proportion of the best solution. For n = 6 − 10 (green), distributions represent all solutions. For
n = 11 − 20 (blue), distributions are over a million random solutions. Dashed lines indicate solutions
that are 10% and 20% greater than the best solution respectively.

best upper bound in five and four cases respectively, the clique formulation appeared to
perform better for large n, establishing the best upper bound for n = 18 − 20. Thus, the
clique formulation outperformed each of the other three methods individually, as well as
performed better than using a combination of other methods, such as using A* to establish
lower bounds and a random walk to establish upper bounds.

While the clique formulation outperformed the other methods, no method was able
to prove the optimality of a solution above n = 13. The exploratory results shed some
light on why it is difficult to find even relatively small PSBLRs. First, the potential for
mirror solutions as well as the presence of multiple solutions for all n = 3 − 10 make it
challenging for the MIP formulations to prove optimality, as potentially many branches of
the branch-and-bound tree include optimal solutions and must be extensively explored before
they can be pruned. Further, while there are likely multiple solutions, the possibility of a
mirror rectangle violating a column constraint means we cannot guarantee multiple solutions
and use techniques like streamlining constraints to guide the model towards a single optimal
solution.

The large portion of the cumulative distribution close to the optimal solution further
hampers the MIP formulations, making it difficult to prune branches that include near-
optimal solutions. This large number of near-optimal solutions also hampers A* search,
where a very tight heuristic is needed to allow for any significant amount of pruning, where
experimentally we found that most nodes could generally only be pruned once all but one or
two values had been assigned. While a random walk would benefit from multiple optimal
solutions, a random walk or other local-search based methods cannot establish optimality.

8 Conclusion

Spatially and partially spatially balanced Latin squares and rectangles are important com-
binatorial structures used for experimental design. While spatially balanced Latin squares
have been extensively studied, relatively little work has considered spatially balanced Latin
rectangles, despite them occurring more frequently in practice.
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We introduce a new graph-based encoding for a 2 × n Latin rectangle which inspires a
new MIP formulation based on the MEWC problem. This new formulation found optimal
solutions previously unsolved 2 × 12 and 2 × 13 cases and outperforms an assignment-based
MIP formulation, A* search, and a random-walk based local-search, establishing improved
bounds up to n = 20. Given the success of our straight-forward MIP implementation for
MEWC, a direction for future work is to explore whether more advanced MEWC methods
are able to find optimal PSBLRs for n > 13.

Further, our exploratory results help characterize what make finding PSBLRs computa-
tionally challenging. The potential, but not guarantee, of multiple optimal solutions makes it
difficult for mathematical programming methods to establish optimality and prevents the use
of standard methods for handling multiple solutions, such as streamlining. The large number
of near-optimal solutions makes it difficult for informed search-based methods to prune any
significant amount of solutions, requiring near brute-force exploration of the search space.
While simple to encode, this problem is quite challenging, making it an ideal benchmark
for future search and optimization methods and we encourage further exploration of the
problem.
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A Supplementary Results

Table 3 Runtime in seconds for single instances of the clique formulation run in Gurobi and
CPLEX using a single thread for n = 8 − 13. The dash indicates that the model was not able to
prove optimality in 6 hours (21,600 s). For all n less than 8, both models ran in under one second.

n
8 9 10 11 12 13

CPLEX 1.10 4.48 28.76 675.16 - -
Gurobi 1.15 4.99 51.13 171.22 614.22 4750.96
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n
14 15 16 17 18 19 20

CPLEX 132 119.29 97.54 88 47.79 40.06 45.06
Gurobi 191 252.66 273.66 252 402.66 465.33 155

Table 4 Comparison of the greatest lower bound found by single instances of the clique formulation
run in Gurobi and CPLEX using a single thread for 6 hours for n = 14 − 20.

n
14 15 16 17 18 19 20

CPLEX 272 354 437.33 526 631.33 762 878
Gurobi 272 345.33 427.33 522 617.33 732 876

Table 5 Comparison of the smallest upper bound found by single instances of the clique
formulation run in Gurobi and CPLEX using a single thread for 6 hours for n = 14 − 20.

n
Instances Threads/Inst. 14 15 16 17 18 19 20
1 1 191 252.66 273.66 252 402.66 465.33 155
8 1 159.69 185.28 203.11 198.56 - 389.50 92.5
1 32 201.57 249.79 273.82 240.90 185.75 371.95 28

Table 6 Comparison of the greatest lower bound found by three Gurobi configurations run for 6
hours for n = 14 − 20. The dashed cell indicates a run that failed due to numerical instability.

n
Instances Threads/Inst. 14 15 16 17 18 19 20
1 1 272 345.33 427.33 522 617.33 732 886
8 1 270 358.66 442.66 530 - 747.33 816
1 32 276 347.33 430.66 522 631.33 766 900

Table 7 Comparison of the smallest upper bound found by three Gurobi configurations run for 6
hours for n = 14 − 20. The dashed cell indicates a run that failed due to numerical instability.

n
8 9 10 11 12 13

Assignment MIP 1.09 6.23 59.02 678.39 3790.28 -
Clique MIP 1.15 4.99 51.13 171.22 614.22 8573.43
A* 0.07 0.78 8.72 98.70 1299.66 -

Table 8 Runtime in seconds for single instances of the clique and assignment formulations run in
Gurobi using a single thread and A* search for n = 8 − 13. The dash indicates that the model was
not able to prove optimality in 6 hours (21,600 s). For all n less than 8, all models finished in under
one second. The random walk is not included in this table as the method does not prove optimality.

CP 2023
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Abstract
Motivated by applications from agronomic field experiments, Díaz, Le Bras, and Gomes [CPAIOR
2015] introduced Partially Balanced Latin Rectangles as a generalization of Spatially Balanced Latin
Squares. They observed that the generation of Latin rectangles that are optimally balanced is a
highly challenging computational problem. They computed, utilizing CSP and MIP encodings, Latin
rectangles up to 12 × 12, some optimally balanced, some suboptimally balanced.

In this paper, we develop a SAT encoding for generating balanced Latin rectangles. We compare
experimentally encoding variants. Our results indicate that SAT encodings perform competitively
with the MIP encoding, in some cases better. In some cases we could find Latin rectangles that
are more balanced than previously known ones. This finding is significant, as there are many
arithmetic constraints involved. The SAT approach offers the advantage that we can certify that
Latin rectangles are optimally balanced through DRAT proofs that can be verified independently.
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1 Introduction

A Latin square is an n × n array filled with n different symbols, each occurring exactly once
in each row and exactly once in each column. The notion goes back to the 18th century
and Leonard Euler, who studied the problem of generating Latin squares. More recently,
additional constraints have been added, making the combinatorial design problem even more
challenging. An interesting additional constraint asks for a Latin square to be spatially
balanced, i.e., any two symbols u, v have the same distance. The distance of u and v is
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defined as the sum of their distances over all the rows. A polynomial-time algorithm is
known that constructs for any given n such that 2n + 1 is prime a spatially balanced Latin
square [10].

Díaz, Le Bras, and Gomes [3] introduced spatially balanced Latin rectangles, which are
arrays with n columns and k rows filled with n symbols, such that no symbol occurs more
than once in any row or column, and again the distance of any pair of symbols is the same.
As it turned out that spatially balanced Latin rectangles only exist for a relatively restricted
set of combinations of n and k, Díaz et al. defined a notation of imbalance and asked for Latin
rectangles where the imbalance is minimal. In a spatially balanced k × n Latin rectangle,
the distance between any two symbols is k(n + 1)/3. Therefore, the imbalance of a pair of
symbols i, j is naturally defined as I(u, v) = |d(u, v) − k(n + 1)/3|. The imbalance of a Latin
rectangle L is then I(L) =

∑
u<v I(u, v) =

∑
u<v|d(u, v) − k(n + 1)/3|. See Figure 1b for a

sample working out of this quantity. Latin squares are of general importance for the design of
agronomic experiments [9]. More specifically, however, the balanced version is essential to the
design of bias-free agronomic experiments, as they avoid unintentional patterns introduced
due to spatial auto-correlation [13].

Díaz et al. computed Latin rectangles up to 12 × 12, trying to minimize the total
imbalance. They used CSP, local search, and MIP methods, with the latter being the most
efficient. In some cases, they could obtain optimal imbalance; in other cases, upper bounds.
They conclude that finding Latin rectangles with minimum imbalance seems to be a very
challenging computational problem and suggest it as an ideal benchmark for different search
and optimization approaches.

In this paper, we follow this insight and consider the research question of whether
propositional satisfiability (SAT) solvers [4] are competitive in finding optimally balanced
Latin rectangles. This question is particularly interesting as the definition of a partially
balanced Latin rectangle entails many arithmetic constraints, including addition, subtraction,
and absolute values, which adds to the challenge. A SAT approach that is competitive
with MIP brings the added value of certification: one can certify that a Latin rectangle is
optimally balanced through a DRAT proof that can be checked independently. This provides
an additional layer of confidence to the results.

In brief, the SAT encoding developed by us represents the position of each symbol on a row
by a set of propositional variables. The assignment of these variables is then propagated by
means of auxiliary variables and clauses through the rest of the encoding. This propagation
terminates at a set of variables which represent the total imbalance of the Latin rectangle
expressed in unary. Bounding these variables effectively bounds the imbalance. Special care
must be taken to encode the absolute value arithmetic and the nested summations with the
auxiliary variables and clauses.

From our experiments, we observe that the SAT approach is able to replicate 44 out of
the 63 upper bounds shown by the MIP approach and in 14 cases even find a tighter upper
bound. From the infeasibility side as well, the SAT approach is comparable to the MIP
approach and is able to confirm almost all the optimality results with the added bonus of
producing DRAT proofs with some minor overhead.

2 Preliminaries

We denote the set of integers {1, . . . , n} by [n]. For positive integers k ≤ n, a k × n

Latin rectangle is a matrix L with k rows and n columns with elements from [n] such that
L(i, j) ̸= L(i′, j′) whenever i = i′ ∧ j ̸= j′ or i ̸= i′ ∧ j = j′.
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Consider a k × n Latin rectangle L and i, j ∈ [n]. The row i distance between u, v, if
L(i, cu) = u and L(i, cv) = v, is

di(u, v) := |cu − cv|. (1)

The distance between u and v in L is

d(u, v) :=
∑
i∈[k]

di(u, v), (2)

and the imbalance of the pair u, v is

I(u, v) := |d(u, v) − k(n + 1)/3|. (3)

The imbalance of a Latin rectangle L is the sum of the pairwise imbalances, i.e.,

I(L) :=
∑
u<v

I(u, v). (4)

We are interested in finding Latin rectangles with low imbalance. A Latin rectangle L is
optimally balanced (or partially spatially balanced as Díaz et al. [3] call it) if I(L) is minimum
and suboptimally balanced otherwise. See Figure 1a for an example.

1 2 3 4 5
2 5 1 3 4
4 1 5 2 3

(a) 3 × 5 optimally balanced
Latin rectangle with imbal-
ance 6.

u, v d(u, v) |d(u, v) − Z| u, v d(u, v) |d(u, v) − Z|

1, 2 5 1 2, 4 9 3
1, 3 6 0 2, 5 5 1
1, 4 6 0 3, 4 6 0
1, 5 6 0 3, 5 6 0
2, 3 5 1 4, 5 6 0

(b) Breakdown (for each pair) of the total imbalance, where Z = k(n +
1)/3 = 6. For illustration, d(1, 2) = d1(1, 2) + d2(1, 2) + d3(1, 2) which is
1 + 2 + 2 = 5.

Figure 1 Example of an optimally balanced 3 × 5 Latin rectangle.

3 Encoding

In this section, we describe the details of the SAT encoding. We describe the clauses that
are conjuncted together to form the CNF formula F(k, n, t). This formula is satisfiable
if and only if there exists a k × n Latin rectangle L such that I(L) ≤ t. For the sake of
convenience, we sometimes shorten F(n, k, t) to F , and use ∆n to denote all ordered pairs
(u, v) such that u < v ∈ [n]. We also use Z := k(n + 1)/3, assuming that 3 divides k(n + 1).
We address the case of indivisibility later. Further, we make extensive use of higher-level
cardinality constraints written as { vi | i ∈ [ℓ] }≤k, { vi | i ∈ [ℓ] }=k, or { vi | i ∈ ℓ }≥k to
encode the condition that only at most k, exactly k, or at least k variables, respectively, from
the set {v1, . . . , vℓ} are set to true. Each higher-level constraint can then be rewritten as a
conjunction of several elementary clauses utilizing auxiliary variables.

The core variables in F(n, k, t) are p(i, u, j) for u, j ∈ [n], i ∈ [k] which are true if and
only if the column where element u appears in the ith row is j. The following cardinality
constraint encodes the condition that each cell of the matrix contains exactly one element:∧

i∈[k], j∈[n]

{ p(i, u, j) | u ∈ [n] }=1

CP 2023
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The following cardinality constraints encode the requirement that each element appears
exactly once within a row:∧

i∈[k], u∈[n]

{ p(i, u, j) | j ∈ [n] }≥1 ∧ { p(i, u, j) | j ∈ [n] }≤1

Lastly, the following cardinality constraint encodes the requirement that no element appears
twice within the same column:∧

u,j∈[n]

{ p(i, u, j) | i ∈ [k] }≤1

Then, to capture Equation (1), we introduce the auxiliary variables c(i, u, v, d) which are
true if di(u, v) ≥ d and constraint them using the following three sets of clauses:∧

i∈[k]
(u,v)∈∆n

j1 ̸=j2∈[n]

(p(i, u, j1) ∧ p(i, v, j2)) → c(i, u, v, |j1 − j2|)

∧
i∈[k]

(u,v)∈∆n

j1 ̸=j2∈[n]

(p(i, u, j1) ∧ p(i, v, j2)) → ¬c(i, u, v, |j1 − j2| + 1)

∧
i∈[k]

(u,v)∈∆n

d∈[n−1]

c(i, u, v, d) → c(i, u, v, d − 1)

Then we represent the inner sum d(u, v) =
∑

i di(u, v) from Equation (2) using the two
sets of auxiliary variables; sg(u, v, p) which when falsified enforces the condition d(u, v) ≤ p

and similarly sl(u, v, p) which when falsified enforces the condition
∑

i d(u, v) ≥ p. This is
achieved using the following conditional cardinality constraints:∧

i∈[k]
(u,v)∈∆n

k≤p≤k(n−1)

¬sg(u, v, p) → { c(i, u, v, d) | d ∈ [n − 1] }≤p

∧
i∈[k]

(u,v)∈∆n

k≤p≤k(n−1)

¬sl(u, v, p) → { c(i, u, v, d) | d ∈ [n − 1] }≥p

Recall from Equations (3) and (4), that our final goal is to bound the quantity I(L) =∑
(u,v)∈∆n

|d(u, v) − Z|, where Z = k(n + 1)/3. The redundancy in the form of two sets of
variables sg and sl is to allow us to later deal with the expression |d(u, v) − Z| and help
count up from Z in either direction. We thus introduce auxiliary variables which encode
the sign of the term d(u, v) − Z. s0(u, v) is true if and only if d(u, v) = Z; s+(u, v) is true
if d(u, v) > Z, false if d(u, v) < Z, and undefined otherwise. The following sets of clauses
encode these auxiliary variables:∧

(u,v)∈∆n

s0(u, v) → ¬sg(u, v, Z) ∧ ¬sl(u, v, Z)

∧
(u,v)∈∆n

(¬s0(u, v) ∧ s+(u, v)) → ¬sl(u, v, Z + 1)
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∧
(u,v)∈∆n

(¬s0(u, v) ∧ ¬s+(u, v)) → ¬sg(u, v, Z − 1)

Then, using the auxiliary variables f(u, v, q), we represent the condition |d(u, v) − Z| ≤ q.
We encode these variables using the following set of clauses:∧

(u,v)∈∆n

1≤q≤k(n−1)−Z

(¬s0(u, v) ∧ s+(u, v) ∧ sg(u, v, Z + q)) → f(u, v, q)

∧
(u,v)∈∆n

1≤q≤Z−k

(¬s0(u, v) ∧ ¬s+(u, v) ∧ sl(u, v, Z − q)) → f(u, v, q)

And finally, we express the bound I(L) ≤ t by adding the cardinality constraint:

{ f(u, v, q) | (u, v) ∈ ∆n, 1 ≤ q ≤ max(k(n − 1) − Z, Z − k) }≤t

Symmetry Breaking

We refer to the encoding so far as the base version and denote the formula by F(n, k, t). We
optionally add two sets of symmetry-breaking clauses which reduce the size of the search
space by identifying equivalent solutions. These constraints are identical to those mentioned
by Díaz et al. [3], however, in our approach, we selectively enable or disable these constraints
depending on whether we are seeking a SAT instance (i.e., upper bound) or an UNSAT
instance (i.e., infeasibility). The following set of clauses fixes the first row to be the identity
permutation:∧

u∈[n]

p(1, u, u)

We refer to the encoding with these additional clauses as F ′(n, k, t). Similarly, the following
set of clauses forces the first column to follow a strictly increasing order, i.e., a lexicographic
order: ∧

(u,v),i∈[k−1]

p(i, v, 1) → ¬p(i + 1, u, 1)

We refer to the encoding with both these sets of additional clauses as F ′′(n, k, t). These two
sets of symmetry breaking clauses enforce that the Latin rectangle is in its reduced form [3].

Non-integral Instances

In the description of the encoding above, we made the assumption that 3 divides k(n + 1). In
this case, we do not need to deal with fractional 1

3 values. We call these the integral instances
and all other instances non-integral instances. To deal with the non-integral instances, we
modify our encoding by multiplying the distances by 3. To this end, we use Z = k(n + 1)
instead of Z = k(n + 1)/3. We use 3|j1 − j2| instead of |j1 − j2| and we also multiply the
bounds for d, p, and q by 3.

4 Experimental Evaluation

To analyze the performance of our proposed encodings, we implemented a method for
generating the encodings in Python 3.10.6 with help from the PySAT 0.1.7 library [8] for
handling some of the higher-level cardinality constraints [12, 1, 5]. We then ran the SAT solver
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kissat [2] with default settings on the generated encodings. We ran all our experiments on
a 10-core Intel Xeon E5-2640 v4, 2.40 GHz CPU, with each process having access to 8GB
RAM.

kissat, like other state-of-the-art CDCL solvers, is capable of producing a proof in the
DRAT (Deletion Resolution Asymmetric Tautology) format for formulas which it claims
to be unsatisfiable. Similar to how a mathematical proof of a theorem follows a sequence
of smaller lemmas, a DRAT proof also consists of lemmas (in the form of a set of literals)
and lemma deletion instructions. Due to the elementary nature of the proof format, it is
straightforward for a CDCL solver to emit a DRAT proof with minimal overhead. This proof
can then be independently verified using tools such as DRAT-trim [6, 15]. DRAT-trim takes
as input the original CNF formula and the DRAT proof produced by the SAT solver and
can verify, in time comparable to original proof producing time, that the proof indeed holds.

There are several ways of translating the higher-level cardinality constraints into el-
ementary CNF clauses. Thus, we conducted a preliminary investigation to identify the
most promising translations from those provided by the PySAT library1. We also tested
the three versions of the encoding with different levels of symmetry breaking F , F ′, F ′′

in combination with the different cardinality encoding types. From this investigation, we
found that F ′ combined with the bitwise cardinality encoding [12] and F ′′ combined with
the ladder cardinality encoding [1] were the two best performing encodings for SAT and
UNSAT instances, respectively. Hence, we stuck with these two combinations for the main
experiments. In this preliminary investigation, we worked with instances which were already
known to be either SAT or UNSAT. In the main experiments, typically, we don’t know
beforehand if the instance is SAT or UNSAT, thus we try both these encodings.

This paper focuses on the obtained bounds and their verification rather than on exact
running times; the results reported by Díaz et al. serve as a basic comparison of the runtime
performance with other methods. We conducted cursory experiments with a CSP model
formulated with MiniZinc [11] for a direct and reproducible comparison on the same hardware.
We tested on the solvers Gecode 6.3.0 and Chuffed 0.11.0, the former outperforming the
latter. On small rectangles, up to around 5 × 7, the CSP approach is significantly faster than
our SAT approach, but its performance quickly deteriorates as the size grows. For example,
the CSP approach fails to replicate known bounds for 6 × 8 within 10 hours even though, on
the other hand, our approach produced solutions in under an hour.

Apart from the prototyping experiments, we conducted two main experiments rigorously.
The first was for showing upper bounds and consequently generating Latin rectangles matching
those bounds, and the second was to show lower bounds and consequently generating DRAT
proofs of infeasibility. We worked with the same set of instances as Díaz et al. and used
a timeout of 24 hours. We used our proposed encodings to replicate their upper bounds,
produce verifiable proofs for their lower bounds, and also in some cases improve their upper
bounds. The results of these experiments are summarized in Table 1. Table 2 shows some
attributes of the proofs generated by our method for a representative set of instances. Figure 2
shows some of the Latin rectangles that witness the new upper bounds shown by us. In
the supplementary material, we include the script used to generate the encodings and some
generated encodings along with their corresponding models (if satisfiable) or DRAT proofs (if
unsatisfiable).

1 List of cardinality encoding types: pysat.card.EncType

https://pysathq.github.io/docs/html/api/card.html#pysat.card.EncType
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Table 1 Table of results. The top row indicates the value of k and the left column indicates
the value of n. Grey cells indicate values claimed optimal by Díaz et al. using CSP/MIP. The
cells with bold text indicate upper bounds that we could replicate. Cells with a ‘∗’ indicate lower
bounds that we could confirm and certify with a DRAT proof (not applicable for rectangles with
minimum imbalance 0). Green cells indicate an earlier upper bound (strike-through text) that we
could improve.

2 3 4 5 6 7 8 9 10 11 12

4 2.6* 4* 5.3*

5 8* 6* 8* 0

6 16* 12* 13.3* 16* 0

7 28* 22* 22.6* 22.6* 20* 18.6*

8 40* 36* 32 30 24 28 0

9 65.3* 56 56.6
56.0

56
54

52
48

66
64.6

60
58.6 0

10 92* 86
84

92
91.3 66.6 102

96
100
99.3 99.3 80 40

11 124* 120
118

122
118

122
120

126
124

136
132 132 128 110 0

12 168 158 162.6 170.6 120 183 184.6 178 174.6 147.3 0

Table 2 Encoding size for some representative instances along with time required to prove
optimality and the size of the generated DRAT proof. All these proofs were generated by running
the SAT solver with the --unsat preset on F ′′ combined with the ladder cardinality encoding.
Notice that the encoding size for the non-integral instance 4 × 6 is much bigger than that of the
integral instance 6 × 7.

k × n #variables #clauses Unsat Time Proof Overhead Proof Size

3 × 5 2364 5750 <1 s <1 s 20 KB
4 × 6 73184 147903 45 s 2 s 11 MB
6 × 7 37809 84906 1 hr 12 min 1 hr 45 min 1.6 GB
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1 2 3 4 5 6 7 8 9 10
4 10 2 8 7 5 1 6 3 9
7 3 8 1 4 9 2 10 6 5

(a) 3 × 10 rectangle with imbalance 84 (32 min).

1 2 3 4 5 6 7 8 9 10 11
2 6 5 7 11 8 1 3 10 9 4
3 5 11 8 9 2 10 4 1 6 7
5 1 9 10 7 3 6 2 11 4 8

(b) 4 × 11 rectangle with imbalance 118 (102 min).

1 2 3 4 5 6 7 8 9 10
5 8 6 1 9 3 10 4 2 7
6 5 9 3 2 7 4 10 1 8
7 6 1 5 10 2 8 9 4 3
9 1 7 10 4 5 6 3 8 2
10 3 5 7 1 8 9 2 6 4

(c) 6 × 10 rectangle with imbalance 96 (40 min).

1 2 3 4 5 6 7 8 9 10 11
2 11 7 6 4 5 1 9 8 3 10
3 7 9 5 10 2 6 1 11 4 8
5 1 11 10 7 3 8 6 4 2 9
6 10 1 3 8 7 2 11 5 9 4
7 4 10 1 9 11 3 2 6 8 5

(d) 6 × 11 rectangle with imbalance 124 (5.5 hr).

Figure 2 Examples of Latin rectangles witnessing new upper bounds along with the time required
by the SAT solver to find these solutions in parentheses. All these rectangles were found by the
version of the encoding that combines F ′′ with the ladder cardinality encoding. Note that, no lower
bounds are known for these sizes.

5 Conclusion

This work presented a SAT approach to the balanced Latin rectangle problem treating
complex arithmetic expressions by translating them into propositional logic. Our approach
is competitive with the prior CSP/MIP-based techniques with a slight advantage. On the
one hand, the SAT approach can find tighter upper bounds for realizing Latin rectangles.
On the other hand, our approach performs comparably to the MIP approach when it comes
to proving the infeasibility of particular Latin rectangles. This finding is significant, as
propositional logic is often considered inferior to MIP when handling complex arithmetic
expressions. A key advantage of our SAT approach is its ability to produce DRAT proofs of
optimality that can be independently verified. The proof generation causes only some minor
computational overhead. On a more technical level, our work shows how to handle non-trivial
nested summations in a SAT encoding by chaining ladders and cardinality counters. We
observe that it is sometimes beneficial to construct two different encodings tailored towards
SAT and UNSAT instances in problems where one is interested in both upper and lower
bounds. For instance, these encodings can use different levels of symmetry-breaking and
different types of cardinality encodings.

We see many potential avenues for future work. One could use techniques such as
cubing [7] to tackle the instances for which proving optimality is still challenging. The cubing
can be performed by either fixing the values of the first column, fixing the imbalance of certain
pairs to be 0, or bounding the number of pairs with 0 imbalance. We can enumerate all
unique (up to isomorphism) Latin rectangles of a particular size and imbalance by extending
the SAT approach to an incremental solving approach. Lastly, another natural direction is
to apply Pseudo-Boolean solving to this problem. Pseudo-Boolean solving can also produce
cutting planes proofs for verification [14] and might be even better suited to handle the
arithmetic constraints involved in this problem.
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Abstract
We lift the problem of enumerative solution counting to quantified Boolean formulas (QBFs) at
the second level. In contrast to the well-explored model counting problem for SAT (#SAT), where
models are simply assignments to the Boolean variables of a formula, we are now dealing with
tree (counter-)models reflecting the dependencies between the variables of the first and the second
quantifier block. It turns out that enumerative counting on the second level does not give the
complete model count. We present the – to the best of our knowledge – first approach of counting
tree (counter-)models together with a counting tool that exploits state-of-the-art QBF technology.
We provide several kinds of benchmarks for testing our implementation and illustrate in several case
studies that solution counting provides valuable insights into QBF encodings.
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1 Introduction

Over the last decade, solvers for quantified Boolean formulas (QBFs) have become appealing
tools to handle PSPACE-hard problems as found in many applications from, for example,
artificial intelligence and formal verification (see [21] for a survey). Much progress has
been made in the theory and practice of solving [3, 18], partly relying on generalizations of
techniques from SAT, but partly being enabled by new genuine QBF techniques. However,
some aspects of QBFs are hardly explored yet. One of these is counting the number of
solutions of a formula. The problem of counting the number of solutions of a given QBF is
also known as #QBF [13]. In contrast to #SAT [9], the counting problem of propositional
logic, which is used in many application domains including probabilistic reasoning [7, 19],
verification of neural networks [1, 16] and the analysis of software vulnerability [5, 24], #QBF
has mainly been studied theoretically [13, 10, 2].

Only recently, some work has been presented dealing with counting the solutions of a
QBF at the outer-level [22]. Given a true QBF with first quantifier block ∃X, this work is
concerned with the problem of counting the number of assignments to the variables in X

leading to a QBF that is true. The authors also consider the dual problem, i.e., given a false
QBF starting with quantifier block ∀Y , how many assignments of the variables Y result in a
false QBF? In order to answer these questions, they presented an enumerative approach that
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directly resulted from enumerative propositional model counting [6, 8]. Therefore, a solver is
used to obtain one solution, which is then excluded from the formula to obtain a different
solution. This process is repeated until no further solution is found.

In this work, we go one step further by dealing with solutions of true QBFs that start with
quantifier prefix ∀X∃Y and false QBFs that start with quantifier prefix ∃X∀Y , i.e., in the
first case, we count models and in the second case, we count counter-models. For both cases,
the solutions are not simply propositional assignments as in outer-level counting, but tree
models and counter-models capturing the dependencies between the variables of the first and
second quantifier block. While tree (counter-)models are a very convenient way to describe
QBF solutions, in practice, QBF solvers represent solutions by Boolean functions. We will use
both views on QBF solutions to investigate to what extend enumeration-based counting can
be lifted to the second level. Therefore, solutions are excluded by conjunctively/disjunctively
adding (negated) functions to the formula until no further solutions are found. It turns out,
that enumeration-based solution counting at the second level does not lead to the full model
count, but still gives valuable insights about the solutions of a formula. We implemented the
approach in a first prototype to evaluate how it works in practice. To this end, we build on
state-of-the-art QBF solving technology like incremental solving and function extraction.

This paper is structured as follows. First, we introduce the necessary preliminaries in
the next section. Then we present the level-2 counting problem by an example in Section 3
before we discuss enumeration-based solution counting in Section 4. In Section 5, evaluate
our implementation on three different types of benchmarks, before we conclude in Section 6.

2 Preliminaries

We consider quantified Boolean formulas of the form Π.ϕ, where Π = Q1X1 . . . Qn is called
quantifier prefix (with Qi ∈ {∀, ∃}, Qi ̸= Qi+1 for i ∈ {1, ..., n − 1} and X1, . . . , Xn are
pairwise disjoint, non-empty sets of Boolean variables). The matrix ϕ is a propositional
formula over variables Xi with standard Boolean connectives ¬, ∨, ∧, →, ↔ and ⊕ (XOR).
The prefix Π induces an ordering on the variables: xi <Π xj if xi ∈ Xi, xj ∈ Xj and i < j.
If prefix Π is clear from the context, we just write xi < xj . In this paper, we consider only
closed formulas, i.e., every variable that occurs in matrix ϕ also occurs in the prefix Π.

A QBF Π.ϕ is in prenex conjunctive normal form (PCNF), if ϕ is a conjunction of clauses.
A clause is a disjunction of literals and a literal is a variable or a negated variable. If l is a
literal, then var(l) = x if l = x or l = ¬x. As usual, l̄ = x if l = ¬x and l̄ = ¬x otherwise.
For a QBF φ = Q1X1 . . . QnXn.ϕ, var(φ) = X1 ∪ . . .∪Xn. An assignment σ of φ is a set of
literals over (a subset of) var(φ) such that there is no l ∈ σ with l̄ ∈ σ. For an assignment σ,
var(σ) = {var(l) | l ∈ σ}. If var(σ) = var(φ), then σ is a full assignment, else it is a partial
assignment. A (partial) X-assignment is an assignment over a (sub-)set of variables X.

Given a propositional formula ϕ and an assignment σ, then ϕσ denotes the formula
obtained when setting all variables x ∈ var(σ) to true if x ∈ σ and to false if ¬x ∈ σ,
respectively. Based on this notation, the semantics of a QBF is defined as follows: ∀xΠ.ϕ
is true iff Π.ϕ{x} and Π.ϕ{¬x} are true. A QBF ∃xΠ.ϕ is true iff Π.ϕ{x} or Π.ϕ{¬x} is true.
For example, the QBF ∀x∃y.(x ↔ y) is true, while the QBF ∃y∀x.(x ↔ y) is false. A model
for a QBF φ = Π.ϕ with |var(φ)| = m is a tree of height m+ 1 such that every node at level
k ∈ {1, . . . ,m} is labeled with a variable xk in the order of the prefix, i.e., if variable xj is at
level j and variable xk is at level k with j < k then xj ≤Π xk. A node at level k has one
child if xk ∈ Xi and Qi = ∃, and two children if Qi = ∀. In the graphical representation, a
dashed edge indicates that the parent variable is set to false and a solid edge indicates that
it is set to true. Examples are shown in Figure 1. The path from the root to the leaves gives
a full assignment under which ϕ evaluates to true.
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x:
y:
a:
b:
ϕ: ⊤ ⊤ ⊤ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊥ ⊤

4 models 2 models 2 models 1 model

x:
y:
a:
b:
ϕ: ⊤ ⊤ ⊤ ⊤

Figure 1 The left tree shows the full assignment tree for the given QBF. Tree models (16 in
total) are subtrees of the assignment tree such that universal nodes have two children, existential
nodes have one child and all leaves are ⊤. An example of a tree model is shown on the right.

A counter-model is defined dually, with the difference that universal nodes have one child
node, existential nodes have two child nodes, and the matrix evaluates to false under the
respective assignments. An alternative representation of tree models that is practically more
relevant are sets of Skolem functions, so-called Skolem sets. A Skolem set F of a true QBF
Φ is a set of Boolean functions such that for each each existential variable y of Φ, there is a
function fy(x1, . . . , xn) ∈ F where x1, . . . , xn are the universal variables of Φ with xi < y.
The elements of a Skolem set are called Skolem functions. If we take the matrix of Φ and
replace all the existential variables by their Skolem functions, we obtain a valid propositional
formula over the universal variables of Φ. A Skolem set for the true QBF ∀x∃y.(x ↔ y) is
{fy = x}. If we replace y by fy, we obtain the valid formula (x ↔ x). If σX is an assignment
to a set of universal variables X, then fy(σX) denotes the value of y w.r.t. the assignment of
the variables in X. For false QBFs and their tree counter-models, functions for the universal
variables are defined dually. Such functions are called Herbrand functions and are collected in
Herbrand sets. If we replace all universal variables by their Herbrand functions of a Herbrand
set, we obtain an unsatisfiable formula.

3 Counting at Level Two

In the following, we introduce the QBF level-2 counting problem by an example. Consider
the true QBF

Φ = ∀x, y∃a, b.(¬x ∨ a) ∧ (¬y ∨ b).

On the left of Figure 1 we see the full assignment tree of φ = Π.ϕ. Each complete path from
the root to a leaf node represents a full assignment to the variables in φ. A tree model of
φ is a subtree of this assignment tree such that nodes x and y have two children, nodes a
and b have one child each, and the leaves are labeled by ⊤. An example of a tree model is
shown on the right of Figure 1. We are concerned with the question of counting the number
of tree models of a given true QBF. Alternatively, we could also ask the question how many
different Skolem sets a true QBF has. Here it is important that syntactically different, but
semantically equivalent Skolem sets are not counted multiple times. For example the Skolem
functions fa = ⊤ and fa = (x ∨ ¬x) of our example are semantically equivalent even though
they are syntactically different.

A direct approach to count tree models is to iterate over all assignments σ of the universal
variables in the first quantifier block of a true QBF φ = Π.ϕ. With a propositional model
counter we can determine the number of satisfying assignments of ϕσ. If S is the set of all
assignments of the universal variables in the first quantifier block, then the total number

CP 2023
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T1 T2 T3 T4
x:
y:
a:
b:
c:
ϕ: ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

variable is set to ⊥ variable is set to ⊤

Figure 2 Tree models of ∀x∀y∃a∃b∃c.(¬x ∨ a ∨ c) ∧ (¬y ∨ b ∨ ¬c).

of tree models is Πσ∈S#SAT (ϕσ). Counting counter-models is defined dually, with the
difference that the role of existential and universal quantifiers is exchanged, i.e., the formulas
need to have a prefix starting with ∃X∀Y . While this direct approach results in a complete
solution counter, it is very inefficient to iterate over all assignments of the variables in the
outermost quantifier block and solve a propositional counting problem for each assignment.
In the following section, we therefore investigate if an enumeration-based approach relying
on recent QBF solving technology is possible.

4 Enumerative Model Counting for 2QBF

In this section, we formalize enumeration-based solution counting for the second level. For
technical simplicity, we focus on true 2QBFs (formulas with quantifier prefix ∀X∃Y ). To
this end, we lift the idea of blocking clauses to blocking functions. Recall that a blocking
clause in SAT is the negation of a model σ of a formula ϕ. If ϕ is enriched with ¬σ, then σ

is excluded from the solution space. For QBFs, we introduce the notion of blocking Skolem
set as follows.

▶ Definition 1. Let Φ = ∀X∃Y.ϕ be a true QBF and let F be a Skolem set of Φ. Then ¬ϕF

is a blocking Skolem set of Φ where ϕF =
∧

fy∈F (y ↔ fy).

In the following example, we now use blocking Skolem sets to exclude solutions.

▶ Example 2. Consider the true QBF Φ = ∀x∀y∃a∃b∃c.(¬x∨ a∨ c) ∧ (¬y ∨ b∨ ¬c). We now
incrementally add blocking Skolem sets ¬ψFi

until the formula becomes false. The resulting
models are shown in Figure 2.
1. One solution of this formula is tree T1, which is represented by Skolem set F1 = {fa(x, y) =

⊤, fb(x, y) = ⊤, fc(x, y) = ¬y}. To exclude F1, we add ¬ψF1 to Φ and obtain Φ1 =
∀x∀y∃a∃b∃c.(¬x ∨ a ∨ c) ∧ (¬y ∨ b ∨ ¬c) ∧ ¬ψF1 . Now T1 is no solution of Φ1.

2. A solution of Φ1 is T2 with Skolem set F2 = {fa(x, y) = ⊥, fb(x, y) = (x ↔ y), fc(x, y) =
x}. To exclude F2 as well, we get Φ2 = ∀x∀y∃a∃b∃c.(¬x∨a∨c)∧(¬y∨b∨¬c)∧¬ψF1 ∧¬ψF2 .

3. Next, we get tree model T3 with Skolem set F3 = {fa(x, y) = ⊤, fb(x, y) = (x ⊕
y), fc(x, y) = ¬x}. We exclude F3 from Φ2 as before and obtain Φ3.

4. The next tree model we find is T4 with Skolem set F4 = {fa(x, y) = x, fb(x, y) =
y, fc(x, y) = y}.

5. Finally, the QBF Φ4 = ∀x∀y∃a∃b∃c.ϕ ∧ ¬ψF1 ∧ ¬ψF2 ∧ ¬ψF3 ∧ ¬ψF4 is false.

We found four different tree models, each with four branches. Hereby Tseitin transform-
ation is used to add the blocking function to the PCNF formula before each solver call.
From these four models, we can assemble more models by combining the red branches of
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Figure 2. To calculate the full model count, all possible combinations of the paths need to be
considered, resulting in 44 models in total (there are four choices for the branch {x̄, ȳ}, four
choices for the branch {x, ȳ} and so on). When we take a closer look, however, the count is
not correct, as also {x̄, ȳ, a, b, c̄} is a model of the matrix of Φ, but it has not been considered.

As the example above shows, blocking Skolem sets can indeed be used to exclude solutions,
but they are sometimes too restrictive. To describe what is happening when adding blocking
Skolem sets to a formula, we need to introduce the following definitions.

▶ Definition 3. Let Φ = ∀X∃Y.ϕ be a true QBF and let T1 and T2 be tree models of Φ. Then
T1 and T2 are disjoint if there are no complete paths σ1 of T1 and σ2 of T2 with σ1 = σ2.

A complete path describes a full assignment (i.e., an assignment of all variables), such that
the according branch of the tree model evaluates to true. The trees of Figure 2 are disjoint,
because all their paths are different. If we want to characterize the models of a QBF in terms
of Skolem sets, we get the following definition.

▶ Definition 4. Let Φ = ∀X∃Y.ϕ be a true QBF and let F and G be Skolem sets of Φ. Then
F and G are called disjoint if for each full assignment σX of the universal variables X there
exists an existential variable y ∈ Y such that fy(σX) ̸= gy(σX) with fy ∈ F and gy ∈ G.

The notion of disjoint models is rather strong as it forbids to have to have common paths
in the tree model representation. We therefore also introduce the notion of different models
requiring that at least one path of two tree models is different. This notion is transferred to
Skolem sets as follows.

▶ Definition 5. Let Φ = ∀X∃Y.ϕ be a true QBF. Furthermore, let F and G be Skolem sets
of Φ. Then F and G are called different if there exists a full assignment σX of the universal
variables X such that there is an existential variable y ∈ Y with fy(σX) ̸= gy(σX), fy ∈ F ,
and gy ∈ G.

Obviously, any two disjoint models are different. The other direction does not hold. To
count all models of a QBF, we need to count the different models. As the following lemma
shows, using blocking Skolem sets excludes disjoint models only.

▶ Lemma 6. Let Φ = ∀X∃Y.ϕ be a QBF and F be a Skolem set of Φ. If G is a Skolem set
of Φ′ = ∀X∃Y.ϕ ∧ ¬ϕF , where ¬ϕF is a blocking Skolem set as defined above, then F and G
are disjoint.

Proof. Assume that F and G are not disjoint. Then there is an assignment σX such that for
all y ∈ Y it holds that fy(σX) = gy(σX) for fy ∈ F, gy ∈ G. Now we extend the assignment
σX to an assignment over X ∪ Y as follows: σ = σX ∪ {y | fy(σX) = ⊤, fy ∈ F} ∪ {¬y |
fy(σX) = ⊥, fy ∈ F} = σX ∪ {y | gy(σX) = ⊤, gy ∈ G} ∪ {¬y | gy(σX) = ⊥, gy ∈ G}. As
G is a Skolem set of Φ′, σ has to satisfy ¬ϕF . But by its construction, σ also satisfies ϕF ,
leading to a contradiction. Hence, F and G have to be disjoint. ◀

As the following lemma shows, we can use the enumerative approach to calculate the
maximum number of pairwise disjoint Skolem sets.

▶ Proposition 7. Let Φ = ∀X∃Y.ϕ be a true QBF and let F1, . . . , Fm be pairwise disjoint
Skolem sets of Φ such that

Φ′ = ∀X∃Y.ϕ′ = ∀X∃Y.(ϕ ∧ ¬ϕF1 ∧ . . . ∧ ¬ϕFm
)

is false. Then m is the maximum number of pairwise disjoint Skolem sets.

CP 2023
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Proof. Since Φ′ is false, there is at least one assignment σX such that ϕ′ is unsatisfiable
under σX . Assume there is a Skolem set Fm+1 that is pairwise disjoint with F1, . . . , Fm.
Let σ = σX ∪ {x | fx(σX) = ⊤, fx ∈ F} ∪ {¬x | fx(σX) = ⊥, fx ∈ F}. Since Fm+1 is a
Skolem set of Φ, ϕ is satisfied by σ. Further, σ satisfies ¬ϕFi with 1 ≤ i ≤ m, because Fi

and Fm+1 are disjoint. Hence, ϕ′ is satisfied by σ. This contradicts the assumption that ϕ′

is unsatisfiable under σX . ◀

The maximum number of pairwise disjoint models is determined by the assignments of
the variables in the outermost universal quantifier block that, when the universal variables
are assigned accordingly, lead to the fewest propositional models.
▶ Lemma 8. Let Φ = ∀X∃Y.ϕ be a true QBF and let S be the set of all full assignments
of universal variables X. Then the maximum number of pairwise disjoint models of Φ is
min({#SAT (ϕσ) | σ ∈ S}).

The proof of the lemma above follows directly from the construction of disjoint models.
For example, the QBF ∀x, y∃a, b.(¬x ∨ a) ∧ (¬y ∨ b) with the assignment tree shown in
Figure 1 has only one disjoint model, because for the assignment σ = {x, y}, there is
only one assignment to {a, b} that satisfies the matrix under σ. In contrast, the QBF
∀x∀y∃a∃b∃c.(¬x ∨ a ∨ c) ∧ (¬y ∨ b ∨ ¬c) from Example 2 has four disjoint models, because
of the assignment {x, y}. In practical encodings, those assignments of the universal variables
determine the number of disjoint models for which the assignment of the outermost variables
not immediately falsifies the formula. The number of disjoint models gives us a lower bound
for the full model count.
▶ Proposition 9. Given a true QBF Φ = ∀X∃Y.ϕ with |X| = n and m pairwise disjoint tree
models. Then Φ has at least m2n different tree models.

If we know that a true QBF Φ = ∀X∃Y.ϕ with |X| = n has m pairwise disjoint models, we
can calculate the full model count as follows. Let Φ′ = ∀X∃Y.ϕ′ with ϕ′ = ϕ∧¬ϕF1 ∧. . .∧¬ϕFm

be the false QBF obtained by enriching Φ with the m blocking Skolem sets. Furthermore,
let S be the set of assignments of variables X such that ϕ′

σ is true ∀σ ∈ S. Then the full
model count is∏

σ∈S

#SAT (ϕ′
σ) ∗m2n−|S|

While the enumerative approach also works for true QBFs with prefix ∀X∃Y ∀ZΠ.ϕ for
counting disjoint partial Skolem sets that consider only functions of the set Y , it is not
possible to obtain a full model count of partial Skolem sets in the Y variables by using a
propositional model counter. Here, the approach needs to be applied recursively.

The enumerative approach for counting disjoint models also directly transfers to an
enumerative approach for counting disjoint counter-models of false QBFs starting with the
prefix ∃X∀Y ∃Z.1

▶ Proposition 10. Let Φ = ∃X∀Y ∃Z.ϕ be a false QBF and let H1, . . . ,Hm be disjoint
Herbrand sets such that

Φ′ = ∀X∃Y.(ϕ ∨ ϕH1 ∨ . . . ∨ ϕHm
)

is true with ϕH =
∧

hy∈H(y ↔ hy). Then m is the maximum number of pairwise disjoint
Herbrand sets over the variables from Y .

1 Note that we include the last quantifier block to deal with formulas in PCNF. Otherwise, the universal
variables could be immediately removed.
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Figure 3 Runtime related to number of disjoint models for randomly generated formulas (left)
and Unique-SAT/QBFEval benchmarks (right).

5 Evaluation

We implemented the previously described approach in the tool qCounter.2 As backend solver
our tool relies on the QBF solver DepQBF 6.03 [15] which is able to produce Q-resolution
proofs for true and false formulas from which Skolem and Herbrand functions can be extracted.
We used the QBF certification framework QBFCert [17] to obtain the functions in the Aiger
format.3 We implemented a small tool to convert the blocking functions of the variables
from the second quantifier block. Therefore, the Skolem functions needed to be negated and
appended conjunctively to the current QBF by using the incremental interface of DepQBF.
To disjunctively add the Herbrand functions, an extra Tseitin transformation step is necessary
to obtain a formula in PCNF. While this transformation introduces auxiliary variables we
can avoid an exponential increase of the formula using this technique[23, 12]. For this we
also used the incremental interface of DepQBF with its ability to add temporary clauses.
To calculate the full model count as described above, we employed the propositional model
counter Ganak [20] together with the SAT solver Lingeling [4].

Currently, there exist no standard benchmark sets which we could use to evaluate the
correctness and performance of our implementation. To this end, we propose three different
benchmark sets: (1) randomly generated formulas, (2) QBF encodings of the unique-SAT
problem (does a given propositional formula have exactly one solution?) and (3) benchmarks
from past QBF Evaluations with a suitable quantifier structure. Whereas the benchmarks
from (1) and (2) are constructed in such a way that the number of models is known, this
is not the case for the benchmarks from (3). Details follow below. All experiments were
performed on a cluster of dual-socket AMD EPYC 7313 @ 16 × 3.7GHz machines with 4GB
memory limit and 1800 seconds as timeout.

2 The tool, the benchmarks and the log-files are publicly available at
https://qcount.pages.sai.jku.at/l2count

3 http://fmv.jku.at/aiger/
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5.1 Randomly Generated Formulas
We provide a generator that returns true 2-QBFs in PCNF with quantifier structure ∀X∃Y
such that the number of (disjoint) models is known. The parameters n (size of X), m (size
of Y ) have to be provided. For producing the clauses of the matrix, the generator iterates
over all possible assignments of the universal variables X and excludes propositional models
by randomly assigning the existential variables Y and building blocking clauses. For example,
for a prefix ∀x1, x2∃y1, y1 the clause (x1 ∨ x̄2 ∨ y1 ∨ y2) prohibits in any QBF model that
in the branch where x1 is set to false and x2 is set to true, both y1 and y2 are both set to
false. The number of disjoint models is determined by the branch with the smallest number
of propositional models (see also Lemma 8).

We generated 3950 formulas with 2 ≤ |X|, |Y | ≤ 11 having up to 100 disjoint models
each. For 2608 of these formulas, the number of disjoint models could be determined. The
results are shown in the left plot of Figure 3. We cluster the results according to the size of
X, indicating that not only the number of disjoint models impacts the runtime, but also the
size of the first quantifier block.

5.2 Unique-SAT Encodings
The question whether a given propositional formula ϕ has exactly one model can be encoded
by a QBF ∃X∀.ψ as shown in [11]. In this QBF, X contains the variables of ϕ, Y is a copy of
the variables of ϕ, and ψ is constructed in such a way that the QBF is true iff ϕ has exactly
one model. The prefix fits for counting the counter-models at level-2 in case the QBF is false.
The number of QBF counter-models can be determined based on the number of the models
of ϕ. If ϕ is unsatisfiable and has n variables, then the number of disjoint counter-models
equals the number of different counter-models and is 22n . If ϕ has m models, then it has
(m− 1) disjoint models and (2n)2n−m(m− 1)m different models.

We generated 497 Unique-SAT formulas based on true propositional formulas with 26
to 240 variables and 61 and 643 clauses by using the random generator from [14]. We
considered only propositional formulas with more than one model in order to count disjoint
counter-models of the resulting false QBFs. The performance of our tool is shown in the
right plot of Figure 3. The number of disjoint counter-models enumerated by our tool could
be quickly validated with a propositional model counter. In this way, we could check the
results of our tool for false formulas.

5.3 Benchmarks from QBF Evaluations
As a final set of benchmarks, we considered formulas from the main tracks of QBFEval
2022 and QBFEval 2008.4 From the QBFEval 2022 set, we identified 18 true formulas and
102 false formulas with a suitable prefix structure that could be solved by plain DepQBF
within a time limit of 1800 seconds. In a similar way, we selected two true formulas and 683
false formulas from the QBFEval 2008 set. For the 2022 formulas, we could determine the
number of disjoint models of 3 formulas and the number of disjoint counter-models of 53
formulas. For the 2008 formulas, we could determine the number of disjoint models for both
formulas and the number of disjoint counter-models of 285 formulas. Interestingly, many
of the formulas have only one disjoint model indicating that the search space is strongly

4 http://www.qbflib.org

http://www.qbflib.org
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restricted for certain assignments of the variables in the outermost quantifier block. On
the other hand, for some of the formulas we could find up to 82 disjoint (counter-)models.
Details are shown in the right plot of Figure 3.

6 Conclusion

We considered the problem of counting level-2 (counter-)models for QBFs. It turned out
that enumerating Skolem/Herbrand functions does not provide the full count of solutions
as it is the case for propositional model counting and counting QBF models at the outer
level. We characterized the subset of solutions which can be counted in an enumerative
manner. This subset often connects to interesting solutions of a QBF encoding. We also
provided the first practical implementation of an enumerative method for level-2 solution
counting. Our approach cannot only be used for counting, but also for explicitly enumerating
solutions which might also have some applications in better understanding and debugging
QBF encodings. We provided several sets of benchmarks of true and false instances to
evaluate our implementation.

We consider this work as an important first step to full solution counting, i.e., for QBFs
with an arbitrary number of quantifier blocks. While a recursive application of our approach
seems possible, it has to be expected that this approach will be inefficient. Hence, alternative
ways need to be explored like a tight integration of solving and counting or exploiting
approaches that process the prefix in a reverse order as it is for example done in certain
preprocessing techniques.
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