N
N

N

HAL

open science

Efficient Enumeration of Fixed Points in Complex
Boolean Networks Using Answer Set Programming

Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman

» To cite this version:

Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman. Efficient Enumeration of Fixed Points in Com-
plex Boolean Networks Using Answer Set Programming. 29th International Conference on Principles
and Practice of Constraint Programming (CP 2023), Aug 2023, Toronto, Canada. pp.35:1-35:19,
10.4230/LIPIcs.CP.2023.35 . hal-04209296

HAL Id: hal-04209296
https://amu.hal.science/hal-04209296

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://amu.hal.science/hal-04209296
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

29th International Conference on
Principles and Practice of
Constraint Programming

CP 2023, August 27-31, 2023, Toronto, Canada

Edited by

Roland H. C. Yap

CP ¥

2023
NV Lercs

LIPlcs — Vol. 280 - CP 2023 www.dagstuhl.de/lipics

Editors

Roland H. C. Yap
National University of Singapore, School of Computing, 13 Computing Drive, Singapore
ryap@comp.nus.edu.sg

ACM Classification 2012
Theory of computation — Constraint and logic programming

ISBN 978-3-95977-300-3

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-300-3.

Publication date
September, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.CP.2023.0

ISBN 978-3-95977-300-3 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-1188-7474
mailto:ryap@comp.nus.edu.sg
https://www.dagstuhl.de/dagpub/978-3-95977-300-3
https://www.dagstuhl.de/dagpub/978-3-95977-300-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CP.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-300-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, 1T)
Christel Baier (TU Dresden, DE)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University, Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, Wadern, DE)

Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CP 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Roland H.C. Yap e 0:ix-0:x
Senior Program Committee
... 0:xi
Program Committee
... 0:xii
Additional Reviewers
... 0:xiii
Authors
... 0:xv—0:xx
Invited Talks
Beyond Optimal Solutions for Real-World Problems
Maria Garcia de la Banda 1:1-1:4
A Tale of Two Cities: Teaching CP with Story-Telling
Jimmy H.M. Lee ... 2:1-2:1
The CP-SAT-LP Solver
Laurent Perron, Frédéric Didier, and Steven Gayccccoiiiiiiiniin. 3:1-3:2
Coupling CP with Deep Learning for Molecular Design and SARS-CoV2 Variants
Exploration
TROMAS SCRICT ..ot e e e e 4:1-4:3
CP Solver Design for Maximum CPU Utilization
Petr VIlim . ..o 5:1-5:1
Regular Papers
Optimization of Short-Term Underground Mine Planning Using Constraint
Programming
Younes Aalian, Gilles Pesant, and Michel Gamache 6:1-6:16
Exploiting Configurations of MaxSAT Solvers
Josep Alos, Carlos Ansétegui, Josep M. Salvia, and Eduard Torres 7:1-7:16
Symmetries for Cube-And-Conquer in Finite Model Finding
Jodo Aratjo, Choiwah Chow, and Mikolds Janotao .. 8:1-8:19
Guiding Backtrack Search by Tracking Variables During Constraint Propagation
Gilles Audemard, Christophe Lecoutre, and Charles Prud’homme 9:1-9:17
Incremental Constrained Clustering by Minimal Weighted Modification
Aymeric Beauchamp, Thi-Bich-Hanh Dao, Samir Loudni, and Christel Vrain 10:1-10:22
29th International Conference on Principles and Practice of Constraint Programming (CP 2023). CP ¥
Editor: Roland H. C. Yap 2023

\\v Leibniz International Proceedings in Informatics oo
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi

Contents

Simplifying Step-Wise Explanation Sequences
Ignace Bleukz, Jo Devriendt, Emilio Gamba, Bart Bogaerts, and Tias Guns

Towards More Efficient Local Search for Pseudo-Boolean Optimization
Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng

Boosting Decision Diagram-Based Branch-And-Bound by Pre-Solving with
Aggregate Dynamic Programming
Vianney Coppé, Xavier Gillard, and Pierre Schaus oo,

Fast Matrix Multiplication Without Tears: A Constraint Programming Approach
Arnaud Deza, Chang Liu, Pashootan Vaezipoor, and Elias B. Khalil

Probabilistic Inference by Projected Weighted Model Counting on Horn Clauses
Alexandre Dubray, Pierre Schaus, and Siegfried Nijssenc.ccooo...

A CP Approach for the Liner Shipping Network Design Problem
Yousra El Ghazi, Djamal Habet, and Cyril Terriouxo ..

Optimization Models for Pickup-And-Delivery Problems with Reconfigurable
Capacities
Arnoosh Golestanian, Giovanni Lo Bianco, Chengyu Tao, and J. Christopher Beck

Preprocessing in SAT-Based Multi-Objective Combinatorial Optimization
Christoph Jabs, Jeremias Berg, Hannes IThalainen, and Matti Jarvisalo

An Efficient Constraint Programming Approach to Preemptive Job Shop
Scheduling
Carla Juvin, Emmanuel Hebrard, Laurent Houssin, and Pierre Lopez

Horizontally Elastic Edge Finder Rule for Cumulative Constraint Based on Slack
and Density
Roger Kameugne, Sévérine Fetgo Betmbe, Thierry Noulamo, and
Clémentin Tayou Djamegnio

Exploring Hydrogen Supply/Demand Networks: Modeller and Domain Expert
Views
Matthias Klapperstueck, Frits de Nijs, Illankaikone Senthooran, Jack Lee-Kopij,
Maria Garcia de la Banda, and Michael Wybrowcccciiiiiiiiio...

Binary Constraint Trees and Structured Decomposability
Petr KUCETA ... e e e e e e

Large Neighborhood Beam Search for Domain-Independent Dynamic
Programming
Ryo Kurotwa and J. Christopher Beck i

MDD Archive for Boosting the Pareto Constraint
Steve Malalel, Arnaud Malapert, Marie Pelleau, and Jean-Charles Régin

Learning a Generic Value-Selection Heuristic Inside a Constraint Programming
Solver

Tom Marty, Tristan Francois, Pierre Tessier, Louis Gautier,

Louis-Martin Rousseau, and Quentin Cappartccooiiuiiiniiiiinan..

11:1-11:20

12:1-12:18

13:1-13:17

14:1-14:15

15:1-15:17

16:1-16:21

17:1-17:17

18:1-18:20

19:1-19:16

20:1-20:17

21:1-21:18

22:1-22:19

23:1-23:22

24:1-24:15

25:1-25:19

Contents

Proof Logging for Smart Extensional Constraints

Matthew J. Mcllree and Ciaran McCreeshc.c.eiiio. ..

Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

Gioni Mexi, Timo Berthold, Ambros Gleizner, and Jakob Nordstrom

Using Canonical Codes to Efficiently Solve the Benzenoid Generation Problem
with Constraint Programming

Xiao Peng and Christine Solnon e

Distribution Optimization in Constraint Programming

Guillaume Perez, Gaél Glorian, Wijnand Suijlen, and Arnaud Lallouet

The p-Dispersion Problem with Distance Constraints

Nikolaos Ploskas, Kostas Stergiou, and Dimosthenis C. Tsouros

Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling
with Generalized Precedence Relations and Calendars

Guillaume Povéda, Nahum Alvarez, and Christian Artigues

Assembly Line Preliminary Design Optimization for an Aircraft

Stéphanie Roussel, Thomas Polacsek, and Anouck Chan

SAT-Based Learning of Compact Binary Decision Diagrams for Classification

Pouya Shati, Eldan Cohen, and Sheila Mcllraith

Constraint Programming with External Worst-Case Traversal Time Analysis

Pierre Talbot, Tingting Hu, and Nicolas Navet,

Efficient Enumeration of Fixed Points in Complex Boolean Networks Using
Answer Set Programming

Van-Giang Trinh, Belaid Benhamou, and Sylvain Soliman

Guided Bottom-Up Interactive Constraint Acquisition

Dimosthenis C. Tsouros, Senne Berden, and Tias Guns

Addressing Problem Drift in UNHCR Fund Allocation

Sameela Suharshani Wijesundara, Maria Garcia de la Banda, and Guido Tack ...

From Formal Boosted Tree Explanations to Interpretable Rule Sets

Jingiang Yu, Alexey Ignatiev, and Peter J. Stuckey

Searching for Smallest Universal Graphs and Tournaments with SAT

Tianwei Zhang and Stefan Szeider

FastMapSVM for Predicting CSP Satisfiability

Kexin Zheng, Ang Li, Han Zhang, and T. K. Satish Kumar

Improving Local Search for Pseudo Boolean Optimization by Fragile Scoring
Function and Deep Optimization
Wenbo Zhou, Yujiao Zhao, Yiyuan Wang, Shaowei Cai, Shimao Wang,

Xinyu Wang, and Minghao Yincoo e

0:vii

26:1-26:17

27:1-27:19

28:1-28:17

29:1-29:19

30:1-30:18

31:1-31:21

32:1-32:19

33:1-33:19

34:1-34:20

35:1-35:19

36:1-36:20

37:1-37:18

38:1-38:21

39:1-39:20

40:1-40:17

41:1-41:18

CP 2023

0:viii

Contents

Short Papers

Predict-Then-Optimise Strategies for Water Flow Control

Vincent Barbosa Vaz, James Bailey, Christopher Leckie, and Peter J. Stuckey

Constraint Programming Models for Depth-Optimal Qubit Assignment and
SWAP-Based Routing

Kyle E. C. BOOth ..o e

Constraint Model for the Satellite Image Mosaic Selection Problem
Manuel Combarro Simon, Pierre Talbot, Grégoire Danoy, Jedrzej Musial,

Mohammed Alswaitti, and Pascal BoUvTyooeiiiii i .

Partitioning a Map into Homogeneous Contiguous Regions: A Branch-And-Bound
Approach Using Decision Diagrams

Nicolas Golenvauz, Xavier Gillard, Siegfried Nijssen, and Pierre Schaus

Constraint Programming to Improve Hub Utilization in Autonomous Transfer
Hub Networks
Chungjae Lee, Wirattawut Boonbandansook, Vahid Eghbal Akhlaghi,

Kevin Dalmeijer, and Pascal Van Hentenryck

A New Approach to Finding 2 x n Partially Spatially Balanced Latin Rectangles

Renee Mirka, Laura Greenstreet, Marc Grimson, and Carla P. Gomes

Proven Optimally-Balanced Latin Rectangles with SAT

Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider

Enumerative Level-2 Solution Counting for Quantified Boolean Formulas

Andreas Plank, Sibylle Mohle, and Martina Seidl

42:1-42:10

43:1-43:10

44:1-44:15

45:1-45:10

46:1-46:11

47:1-47:11

48:1-48:10

49:1-49:10

Preface

This volume contains the proceedings of the 29th International Conference on Principles
and Practice of Constraint Programming (CP 2023), which was held in Toronto, Canada,
August 27-31, 2023. More details of the conference can be found at https://cp2023.adcp.
org/index.html.

Held annually, CP is the premier international conference on constraint programming.
CP is concerned with all aspects of computing with constraints, including, but not restricted
to: theory, algorithms, environments, languages, models, systems, and applications.

As is customary for CP, papers could be submitted to multiple tracks. CP 2023 had the
following tracks:

Technical Track Chair: Roland Yap
Applications Track Chair: Helmut Simonis
Machine Learning Track Chair: Tias Guns
Operations Research Track Chair: Gilles Pesant
Trustworthy Decision Making Chair: Peter Stuckey

In addition, there was a SAT Fast Track to synchronize with the SAT 2023 conference.

A total of 109 papers (excluding abstracts) were submitted to these tracks. Authors could
submit either a full paper with a maximum length of 15 pages (references excluded) or a short
paper with a maximum length of 8 pages (references excluded). Each paper was reviewed with
a senior Program Committee together with Program Committees and additional reviewers
recruited by the Program Committee. The track chairs managed the review process for their
respective tracks. All papers had at least three reviews. Authors had the opportunity to
answer questions from reviewers in an author response phase. Based on extensive discussion
on the papers from reviewers, program and senior program committee, and track chairs taking
into account reviews and author responses, a total of 44 papers were accepted. A meta-review
was prepared for each paper by a senior program committee member summarizing the
decision with suggestions to authors. The Senior Program Committee and Chairs nominated
papers for the best paper prizes. A select committee from the Senior Program Committee
together with the Program Chair awarded the Best Paper Prize to Mathew J. Mcllree
and Ciaran McCreesh for “Proof Logging for Smart Extensional Constraints” and the best
application paper prize to Matthias Klapperstueck, Frits De Nijs, Ilankaikone Senthooran,
Jack Lee-Kopij, Maria Garcia De La Banda and Michael Wybrow for “Exploring Hydrogen
Supply /Demand Networks: Modeller and Domain Expert views”.

In addition to the paper tracks, the conference had a number of satellite events. Lars
Kotthoff (University of Wyoming) organized the workshops on the first day of the conference
with five workshops. The doctoral program, also on the first day, was organized by Xavier
Gillard (Université catholique de Louvain) and forms an important part of the conference to
give students an environment to present their research with discussions with senior researchers,
and networking activities combined with a poster presentation during the conference reception.
CP features two tutorials organized by Emir Demirovié¢ (TU Delft) on the timely topics of
explainable constraint solving and machine learning for solvers. The conference program
featured four invited talks given by Maria Garcia de la Banda, Jimmy Lee, Laurent Perron,
Thomas Schiex and Petr Vilim. The talks were selected to showcase a range of research in CP
and include constraint solver design, designing proteins with applications to the SARS-Cov2
virus, teaching of CP, and making optimisation technology more usable.

29th International Conference on Principles and Practice of Constraint Programming (CP 2023). CP ¥
Editor: Roland H.C. Yap 2023

\\v Leibniz International Proceedings in Informatics oo
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://cp2023.a4cp.org/index.html
https://cp2023.a4cp.org/index.html
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Preface

Many people have contributed to make the conference a success. The conference would
not be possible for the hard work of the authors in submitting high-quality scientific work
which forms the basis of the conference proceedings. The program and senior committee
together with track chairs had the challenging tasks of selecting papers as well as providing
authors with suggestions on paper improvements. A special thanks goes to Andre Cire and
Eldan Cohen, the conference and local chairs respectively, both at the University of Toronto,
who made CP possible in Toronto. In addition to the above mentioned conference organizers,
I would like to thank the following co-organizers. The diversity, equity, and inclusion (DEI)
chairs, Maria Andreina Francisco Rodriguez (Uppsala University) and Andrea Rendl (Satalia).
Arvind Raghunathan (Mitsubishi Electric Research Laboratories), the sponsorship chair.
Anna Latour (National University of Singapore) was instrumental in managing the website
and also handled the publicity and social media.

I would also like to thank the Association for Constraint Programming (ACP) which
makes the CP conference series possible. The conference is grateful to the ACP president,
David Bergman (University of Connecticut) and the ACP conference coordinator, Héléne
Verhaeghe (KU Leuven) for their support and feedback.

The conference acknowledges the generous support of all our sponsors:

ACP

The Artificial Intelligence Journal (Elsevier)

Cosling

Department of Management, University of Toronto Scarborough

Google

IBM

MERL

The Optimization Firm

ScheduleOpt

July 2023, Singapore Roland Yap

Organization

Senior Program Committee

Christian Bessiere
Mats Carlsson
Berthe Choueiry
David Cohen

Maria Garcia De La Banda

Tan Gent

Philip Kilby
Christophe Lecoutre
Jimmy Lee

Kuldeep Meel

Tan Miguel

Michela Milano
Barry O’Sullivan
Justin Pearson
Thomas Schiex
Laurent Simon Labri
Christine Solnon
Peter J. Stuckey
Michael Trick

Neil Yorke-Smith

CNRS, University of Montpellier, France

RISE Research Institutes of Sweden, Sweden
University of Nebraska-Lincoln, USA

Royal Holloway, University of London

Monash University, Australia

University of St Andrews, United Kingdom
Data61 & The Australian National University
CRIL, University of Artois, France

The Chinese University of Hong Kong, Hong Kong
National University of Singapore, Singapore
University of St Andrews, United Kingdom
University of Bologna, Italy

University College Cork, Ireland

Uppsala University, Sweden

Universite Fédérale de Toulouse, ANITI, INRAE, France
Bordeaux Institute of Technology, France

INSA Lyon, France

Monash University, Australia

Carnegie Mellon University, USA

Delft University of Technology, Netherlands

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).

Editor: Roland H.C. Yap

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

ooooooooooooo

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

Program Committee

Carlos Ansotegui
Christopher Beck
Nicolas Beldiceanu
David Bergman
Armin Biere
Nikolaj Bjorner
Ken Brown
Quentin Cappart
Martin Cooper
Simon de Givry
Jean-Guillaume Fages
Pierre Flener
Emmanuel Hebrard
Alexey Ignatiev
George Katsirelos
Zeynep Kiziltan

T. K. Satish Kumar
Mikael Lagerkvist
Nadjib Lazaar
Chu-Min Li
Michele Lombardi
Ciaran McCreesh
Laurent Michel
Nysret Musliu
Peter Nightingale
Jakob Nordstrom
Marie Pelleau
Guillaume Perez
Laurent Perron
Steve Prestwich
Patrick Prosser
Charles Prud’Homme
Claude-Guy Quimper
Jean-Charles Regin
Pierre Schaus

Paul Shaw
Mohamed Siala
Mate Soos

Kostas Stergiou
Guido Tack

Cyril Terrioux
Gilles Trombettoni
Charlotte Truchet
Willem-Jan Van Hoeve
Hélene Verhaeghe
Petr Vilim

Mark Wallace
Ruiwei Wang
Armin Wolf
Lebbah Yahia
Neng-Fa Zhou

Universitat de Lleida, Spain

University of Toronto, Canada

IMT Atlantique (LS2N), France
University of Connecticut, USA
University of Freiburg, Germany
Microsoft, USA

University College Cork

Ecole Polytechnique de Montréal, Canada
IRIT - Universite Paul Sabatier, France
INRA - MIAT, France

COSLING, France

Uppsala University, Sweden

LAAS, CNRS, France

Monash University, Australia

MIA Paris, INRAE, AgroParisTech, France
University of Bologna, Italy

University of Southern California, USA
Optischedule, Sweden

UM2-LIRMM, France

Université de Picardie Jules Verne, France
University of Bologna, Italy

University of Glasgow, United Kingdom
University of Connecticut, USA

TU Wien, Austria

University of York, United Kingdom
University of Copenhagen & Lund University

Université Cote d’Azur, France

University of Nice-Sophia Antipolis/I3S, France

Google France, France

Insight Centre for Data Analytics, Ireland
Glasgow University, United Kingdom
IMT Atlantique, LS2N, France

Laval University, Canada

University Nice-Sophia Antipolis/I3S/CNRS, France

UCLouvain, Belgium

IBM, France

INSA Toulouse & LAAS-CNRS, France
National University of Singapore, Singapore
University of Western Macedonia, Greece

Monash University, Australia

LIS - UMR CNRS 7020 - Aix-Marseille Université, France

LIRMM, University of Montpellier, France
Université de Nantes, France

Carnegie Mellon University, USA

KU Leuven, Belgium

ScheduleOpt

Monash University, Australia

National University of Singapore, Singapore
Fraunhofer Institute, Germany

University of Oran 1, Algeria

CUNY Brooklyn College & Graduate Center, USA

Organization O:xiii

Additional Reviewers

Josep Alos
Valentin Antuori
Noureddine Aribi
Federico Baldo
Nassim Belmecheri
Hendrik Bierlee
Andrea Borghesi
Touati Chahira
Vianney Coppé
Timothy Curry
Toby O. Davies
Guillaume Derval
Julien Ferry
Romain Fontaine
Andrea Formisano
Matteo Francobaldi
Xavier Gillard
Ramiz Gindullin
Luca Giuliani
Arthur Gontier
Cristian Grozea
Matthias Horn
Victor Jung
Anthony Karahalios
Amina Kemmar
Lucas Kletzander
Stepan Kochemazov
Tanguy Lapegue
Shuolin Li
Matthew J. Mcllree
Claude Michel
Florian Mischek
Eleonora Misino
Pierre Montalbano
Antonio Morgado
Bertrand Neveu
Andy Oertel

Jolan Philippe
Philippe Refalo
Andrés Z. Salamon
Noah Schutte
Jean-Baptiste Sciau
Dimosthenis C. Tsouros
Marc Vinyals
Damien T. Wojtowicz
Oleg Zaikin
Yuanlin Zhang

CP 2023

List of Authors

Younes Aalian (6)

Département de mathématiques et de génie
industriel, Polytechnique Montréal, Québec,
Canada

Vahid Eghbal Akhlaghi (46)

H. Milton Stewart School of Industrial and
Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Mohammed Alswaitti (44)

University of Luxembourg, Luxembourg;
Interdisciplinary Centre for Security, Reliability
and Trust (SnT), Luxembourg

Nahum Alvarez (31)
Airbus (Al Research), Toulouse, France

Josep Alos (7)
Logic & Optimization Group (LOG), University
of Lleida, Spain

Carlos Ansétegui (7)
Logic & Optimization Group (LOG), University
of Lleida, Spain

Jodo Araijo (8)
Universidade Nova de Lisboa, Lisbon, Portugal

Christian Artigues (31)
LAAS-CNRS, Universite de Toulouse, CNRS,
Toulouse, France

Gilles Audemard (9)
CRIL, Univ. Artois & CNRS, France

James Bailey (42)
The University of Melbourne, Australia

Vincent Barbosa Vaz (42)

The University of Melbourne, Australia; the
Australian Research Council OPTIMA ITTC,
Melbourne, Australia

Aymeric Beauchamp (10)
University of Orléans, INSA Centre Val de Loire,
LIFO EA 4022, France

J. Christopher Beck (17, 23)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Belaid Benhamou (35)
LIS, Aix-Marseille University, Marseille, France

Senne Berden (36)
KU Leuven, Belgium

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).

Editor: Roland H.C. Yap

\\v LIPICS

Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

Jeremias Berg (18)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Timo Berthold (27)
Fair Isaac Deutschland GmbH, Berlin, Germany;
TU Berlin, Germany

Sévérine Fetgo Betmbe (20)

Faculty of Sciences, Department of Mathematics
and Computer Science, University of Dschang,
Cameroon

Giovanni Lo Bianco (17)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Ignace Bleukx (11)
DTAI, KU Leuven, Belgium

Bart Bogaerts (11)
Artificial Intelligence Lab, VUB, Brussels,
Belgium

Wirattawut Boonbandansook (46)
H. Milton Stewart School of Industrial and
Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Kyle E. C. Booth (43)
Amazon Quantum Solutions Lab, Seattle, WA,
USA

Pascal Bouvry (44)

University of Luxembourg, Luxembourg;
Interdisciplinary Centre for Security, Reliability
and Trust (SnT), Luxembourg

Shaowei Cai (12, 41)

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of
Sciences, Beijing, China

Quentin Cappart (25)
Polytechnique Montréal, Montreal, Canada

Anouck Chan (32)
ONERA, ONERA DTIS, Toulouse, Université
de Toulouse, France

Choiwah Chow (8)
Universidade Aberta, Lisbon, Portugal

Yi Chu (12)
Institute of Software, Chinese Academy of
Sciences, Beijing, China

CP ¥
2023

ooooooooooooo

https://doi.org/10.4230/LIPIcs.CP.2023.6
https://orcid.org/0000-0002-3120-4108
https://doi.org/10.4230/LIPIcs.CP.2023.46
https://orcid.org/0000-0003-0580-6954
https://doi.org/10.4230/LIPIcs.CP.2023.44
https://orcid.org/0000-0003-1717-2506
https://doi.org/10.4230/LIPIcs.CP.2023.31
https://orcid.org/0000-0002-7342-2701
https://doi.org/10.4230/LIPIcs.CP.2023.7
https://orcid.org/0000-0001-7727-2766
https://doi.org/10.4230/LIPIcs.CP.2023.7
https://orcid.org/0000-0001-6655-2172
https://doi.org/10.4230/LIPIcs.CP.2023.8
https://orcid.org/0000-0002-9766-9864
https://doi.org/10.4230/LIPIcs.CP.2023.31
https://orcid.org/0000-0003-2604-9657
https://doi.org/10.4230/LIPIcs.CP.2023.9
https://orcid.org/0000-0002-3769-3811
https://doi.org/10.4230/LIPIcs.CP.2023.42
https://orcid.org/0000-0002-8362-8113
https://doi.org/10.4230/LIPIcs.CP.2023.42
https://orcid.org/0000-0001-9894-7056
https://doi.org/10.4230/LIPIcs.CP.2023.10
https://orcid.org/0000-0002-4656-8908
https://doi.org/10.4230/LIPIcs.CP.2023.17
https://doi.org/10.4230/LIPIcs.CP.2023.23
https://doi.org/10.4230/LIPIcs.CP.2023.35
https://orcid.org/0000-0002-6473-5757
https://doi.org/10.4230/LIPIcs.CP.2023.36
https://orcid.org/0000-0001-7660-8061
https://doi.org/10.4230/LIPIcs.CP.2023.18
https://orcid.org/0000-0002-6320-8154
https://doi.org/10.4230/LIPIcs.CP.2023.27
https://orcid.org/0000-0002-9444-2517
https://doi.org/10.4230/LIPIcs.CP.2023.20
https://orcid.org/0000-0001-7838-3548
https://doi.org/10.4230/LIPIcs.CP.2023.17
https://orcid.org/0000-0001-7810-8351
https://doi.org/10.4230/LIPIcs.CP.2023.11
https://orcid.org/0000-0003-3460-4251
https://doi.org/10.4230/LIPIcs.CP.2023.11
https://orcid.org/0009-0004-0306-1113
https://doi.org/10.4230/LIPIcs.CP.2023.46
https://doi.org/10.4230/LIPIcs.CP.2023.43
https://orcid.org/0000-0001-9338-2834
https://doi.org/10.4230/LIPIcs.CP.2023.44
https://orcid.org/0000-0003-1730-6922
https://doi.org/10.4230/LIPIcs.CP.2023.12
https://doi.org/10.4230/LIPIcs.CP.2023.41
https://orcid.org/0000-0002-8742-0774
https://doi.org/10.4230/LIPIcs.CP.2023.25
https://orcid.org/0000-0003-0581-5287
https://doi.org/10.4230/LIPIcs.CP.2023.32
https://orcid.org/0000-0002-2067-0568
https://doi.org/10.4230/LIPIcs.CP.2023.8
https://orcid.org/0000-0003-4681-7414
https://doi.org/10.4230/LIPIcs.CP.2023.12
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi

Authors

Eldan Cohen (33)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Manuel Combarro Simén (44)

University of Luxembourg, Luxembourg;
Interdisciplinary Centre for Security, Reliability
and Trust (SnT), Luxembourg

Vianney Coppé (13)
UCLouvain, Louvain-la-Neuve, Belgium

Kevin Dalmeijer (46)

H. Milton Stewart School of Industrial and
Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Grégoire Danoy (44)

University of Luxembourg, Luxembourg;
Interdisciplinary Centre for Security, Reliability
and Trust (SnT), Luxembourg

Thi-Bich-Hanh Dao (10)
University of Orléans, INSA Centre Val de Loire,
LIFO EA 4022, France

Frits de Nijs (21)

Department of Data Science and Al, Faculty of
IT, Monash University, Clayton, VIC, Australia;
ARC Industrial Training and Transformation
Centre OPTIMA, Carlton, VIC, Australia

Jo Devriendt (11)
DTAI, KU Leuven, Belgium

Arnaud Deza (14)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Frédéric Didier (3)

Google, Paris, France

Clémentin Tayou Djamegni (20)

Faculty of Sciences, Department of Mathematics
and Computer Science, University of Dschang,
Cameroon; UIT Fotso Victor of Bandjoun,
Department of Computer Engineering,
University of Dschang, Cameroon

Alexandre Dubray (15)

Institute of Information and Communication
Technologies, Electonics and Applied
Mathematics (ICTEAM), UCLouvain, Belgium

Yousra El Ghazi (16)
Aix Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Tristan Frangois (25)
Ecole Polytechnique, Palaiseau, France

Michel Gamache (6)

Département de mathématiques et de génie
industriel, Polytechnique Montréal, Québec,
Canada

Emilio Gamba (11)
Data Analytics Lab, VUB, Brussels, Belgium;
DTAI, KU Leuven, Belgium

Maria Garcia de la Banda (1, 21, 37)
Department of Data Science and Al, Faculty of
IT, Monash University, Clayton, Victoria,
Australia; ARC Industrial Training and
Transformation Centre OPTIMA, Carlton,
Victoria, Australia

Louis Gautier (25)
Ecole Polytechnique, Palaiseau, France

Steven Gay (3)
Google, Paris, France

Xavier Gillard (13, 45)
UCLouvain, Louvain-la-Neuve, Belgium

Ambros Gleixner (27)
HTW Berlin, Germany; Zuse Institute Berlin,
Germany

Gaél Glorian (29)
Huawei Technologies Ltd, CSI Paris,
Boulogne-Billancourt, France

Nicolas Golenvaux (45)

Institute for Information and Communication
Technologies, Electronics and Applied
Mathematics (ICTEAM), Université catholique
de Louvain, Louvain-la-Neuve, Belgium

Arnoosh Golestanian (17)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Carla P. Gomes (47)
Cornell University, Ithaca, NY, USA

Laura Greenstreet (47)
Cornell University, Ithaca, NY, USA

Marc Grimson (47)
Cornell University, Ithaca, NY, USA

Tias Guns (11, 36)
DTAI, KU Leuven, Belgium; Data Analytics
Lab, VUB, Brussels, Belgium

Djamal Habet (16)
Aix Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Emmanuel Hebrard (19)
LAAS-CNRS, Université de Toulouse, France

https://doi.org/10.4230/LIPIcs.CP.2023.33
https://orcid.org/0000-0002-2699-1397
https://doi.org/10.4230/LIPIcs.CP.2023.44
https://orcid.org/0000-0001-5050-0001
https://doi.org/10.4230/LIPIcs.CP.2023.13
https://orcid.org/0000-0002-4304-7517
https://doi.org/10.4230/LIPIcs.CP.2023.46
https://orcid.org/0000-0001-9419-4210
https://doi.org/10.4230/LIPIcs.CP.2023.44
https://orcid.org/0000-0002-2740-6954
https://doi.org/10.4230/LIPIcs.CP.2023.10
https://orcid.org/0000-0003-4466-2447
https://doi.org/10.4230/LIPIcs.CP.2023.21
https://orcid.org/0000-0002-6346-3665
https://doi.org/10.4230/LIPIcs.CP.2023.11
https://doi.org/10.4230/LIPIcs.CP.2023.14
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://orcid.org/0000-0002-2231-3281
https://doi.org/10.4230/LIPIcs.CP.2023.20
https://orcid.org/0000-0002-3302-870X
https://doi.org/10.4230/LIPIcs.CP.2023.15
https://orcid.org/0009-0003-4625-5762
https://doi.org/10.4230/LIPIcs.CP.2023.16
https://doi.org/10.4230/LIPIcs.CP.2023.25
https://doi.org/10.4230/LIPIcs.CP.2023.6
https://orcid.org/0000-0003-1720-9428
https://doi.org/10.4230/LIPIcs.CP.2023.11
https://orcid.org/0000-0002-6666-514X
https://doi.org/10.4230/LIPIcs.CP.2023.1
https://doi.org/10.4230/LIPIcs.CP.2023.21
https://doi.org/10.4230/LIPIcs.CP.2023.37
https://doi.org/10.4230/LIPIcs.CP.2023.25
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://orcid.org/0000-0002-4493-6041
https://doi.org/10.4230/LIPIcs.CP.2023.13
https://doi.org/10.4230/LIPIcs.CP.2023.45
https://orcid.org/0000-0003-0391-5903
https://doi.org/10.4230/LIPIcs.CP.2023.27
https://orcid.org/0000-0002-0843-5987
https://doi.org/10.4230/LIPIcs.CP.2023.29
https://orcid.org/0009-0009-4087-6246
https://doi.org/10.4230/LIPIcs.CP.2023.45
https://orcid.org/0009-0000-9309-7929
https://doi.org/10.4230/LIPIcs.CP.2023.17
https://doi.org/10.4230/LIPIcs.CP.2023.47
https://doi.org/10.4230/LIPIcs.CP.2023.47
https://doi.org/10.4230/LIPIcs.CP.2023.47
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2023.11
https://doi.org/10.4230/LIPIcs.CP.2023.36
https://orcid.org/0000-0002-2901-4954
https://doi.org/10.4230/LIPIcs.CP.2023.16
https://orcid.org/0000-0003-3131-0709
https://doi.org/10.4230/LIPIcs.CP.2023.19

Authors

Laurent Houssin (19)
ISAE-SUPAERQO, Université de Toulouse,
France

Tingting Hu (34)

University of Luxembourg, Luxembourg

Alexey Ignatiev (38)
Department of Data Science and AI, Monash
University, Clayton, Australia

Hannes Thalainen (18)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Peter J. Stuckey (42)

Monash University, Australia; the Australian
Research Council OPTIMA ITTC, Melbourne,
Australia

Christoph Jabs (18)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Mikol4s Janota (8)
Czech Technical University in Prague, Czech
Republic

Carla Juvin (19)
LAAS-CNRS, Université de Toulouse, France

Matti Jarvisalo (18)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Roger Kameugne (20)

Faculty of Sciences, Department of Mathematics
and Computer Science, University of Maroua,
Cameroon

Elias B. Khalil (14)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Matthias Klapperstueck (21)

Department of Human-Centred Computing,
Faculty of IT, Monash University, Clayton, VIC,
Australia

T. K. Satish Kumar (40)
University of Southern California, Los Angeles,
CA, USA

Ryo Kuroiwa (23)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Petr Kucera (22)

Department of Theoretical Computer Science
and Mathematical Logic, Faculty of
Mathematics and Physics, Charles University,
Prague, Czech Republic

Arnaud Lallouet (29)
Huawei Technologies Ltd, CSI Paris,
Boulogne-Billancourt, France

Christopher Leckie (42)
The University of Melbourne, Australia

Christophe Lecoutre (9)
CRIL, Univ. Artois & CNRS, France

Chungjae Lee (46)

H. Milton Stewart School of Industrial and
Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Jimmy H.M. Lee (2)

Department of Computer Science and
Engineering, The Chinese University of Hong
Kong, China

Jack Lee-Kopij (21)
Woodside Energy Ltd., Perth, Australia

Zhendong Lei (12)

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of
Sciences, Beijing, China

Ang Li (40)
University of Southern California, Los Angeles,
CA, USA

Chang Liu (14)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Pierre Lopez (19)
LAAS-CNRS, Université de Toulouse, France

Samir Loudni (10)
TASC (LS2N-CNRS), IMT Atlantique, France,
GREYC, University of Caen Normandy, France

Chuan Luo (12)
School of Software, Beihang University, Beijing,
China

Steve Malalel (24)
Université Cote d’Azur, CNRS, I3S, Nice,
France

Arnaud Malapert (24)
Université Cote d’Azur, CNRS, I3S, Nice,
France

0:xvii

CP 2023

https://orcid.org/0000-0001-5975-7639
https://doi.org/10.4230/LIPIcs.CP.2023.19
https://doi.org/10.4230/LIPIcs.CP.2023.34
https://orcid.org/0000-0002-4535-2902
https://doi.org/10.4230/LIPIcs.CP.2023.38
https://orcid.org/0000-0002-4608-7549
https://doi.org/10.4230/LIPIcs.CP.2023.18
https://orcid.org/0000-0003-2186-0459
https://doi.org/10.4230/LIPIcs.CP.2023.42
https://orcid.org/0000-0003-3532-696X
https://doi.org/10.4230/LIPIcs.CP.2023.18
https://orcid.org/0000-0003-3487-784X
https://doi.org/10.4230/LIPIcs.CP.2023.8
https://doi.org/10.4230/LIPIcs.CP.2023.19
https://orcid.org/0000-0003-2572-063X
https://doi.org/10.4230/LIPIcs.CP.2023.18
https://orcid.org/0000-0003-1809-9822
https://doi.org/10.4230/LIPIcs.CP.2023.20
https://doi.org/10.4230/LIPIcs.CP.2023.14
https://orcid.org/0000-0002-6759-7185
https://doi.org/10.4230/LIPIcs.CP.2023.21
https://doi.org/10.4230/LIPIcs.CP.2023.40
https://orcid.org/0000-0002-3753-1644
https://doi.org/10.4230/LIPIcs.CP.2023.23
https://orcid.org/0000-0002-7512-6260
https://doi.org/10.4230/LIPIcs.CP.2023.22
https://orcid.org/0000-0002-4318-356X
https://doi.org/10.4230/LIPIcs.CP.2023.29
https://orcid.org/0000-0002-4388-0517
https://doi.org/10.4230/LIPIcs.CP.2023.42
https://doi.org/10.4230/LIPIcs.CP.2023.9
https://orcid.org/0000-0002-9857-1789
https://doi.org/10.4230/LIPIcs.CP.2023.46
https://doi.org/10.4230/LIPIcs.CP.2023.2
https://doi.org/10.4230/LIPIcs.CP.2023.21
https://orcid.org/0000-0003-1893-4293
https://doi.org/10.4230/LIPIcs.CP.2023.12
https://doi.org/10.4230/LIPIcs.CP.2023.40
https://doi.org/10.4230/LIPIcs.CP.2023.14
https://orcid.org/0000-0003-0413-3188
https://doi.org/10.4230/LIPIcs.CP.2023.19
https://orcid.org/0000-0001-6245-7661
https://doi.org/10.4230/LIPIcs.CP.2023.10
https://orcid.org/0000-0001-5028-1064
https://doi.org/10.4230/LIPIcs.CP.2023.12
https://doi.org/10.4230/LIPIcs.CP.2023.24
https://doi.org/10.4230/LIPIcs.CP.2023.24

0:xviii

Authors

Tom Marty (25)
Polytechnique Montréal, Montreal, Canada;
Ecole Polytechnique, Palaiseau, France

Ciaran McCreesh (26)
University of Glasgow, UK

Sheila Mcllraith (33)

Department of Computer Science, University of
Toronto, Canada; Vector Institute, Toronto,
Canada

Matthew J. Mcllree (26)
University of Glasgow, UK

Gioni Mexi (27)
Zuse Institute Berlin, Germany

Renee Mirka (47)
Cornell University, Ithaca, NY, USA

Jedrzej Musial (44)
Poznan University of Technology, Poland

Sibylle Mohle (49)
Max Planck Institute for Informatics,
Saarbriicken, Germany

Nicolas Navet (34)
University of Luxembourg, Luxembourg

Siegfried Nijssen (15, 45)

Institute of Information and Communication
Technologies, Electonics and Applied
Mathematics (ICTEAM), UCLouvain, Belgium

Jakob Nordstrém (27)
University of Copenhagen, Denmark; Lund
University, Sweden

Thierry Noulamo (20)

UIT Fotso Victor of Bandjoun, Department of
Computer Engineering, University of Dschang,
Cameroon

Marie Pelleau (24)
Université Cote d’Azur, CNRS, 13S, Nice,
France

Cong Peng (12)
Finovation in CCBFT, Beijing, China

Xiao Peng (28)
Univ Lyon, INSA Lyon, Inria, CITI, EA3720,
69621 Villeurbanne, France

Guillaume Perez (29)
Huawei Technologies Ltd, CSI Paris,
Boulogne-Billancourt, France

Laurent Perron (3)
Google, Paris, France

Vaidyanathan Peruvemba Ramaswamy
(48)

Algorithms and Complexity Group, TU Wien,
Austria

Gilles Pesant (6)

Département de génie informatique et génie
logiciel, Polytechnique Montréal, Québec,
Canada

Andreas Plank (49)
Institute for Symbolic Artificial Intelligence,
JKU Linz, Austria

Nikolaos Ploskas (30)
University of Western Macedonia, Kozani,
Greece

Thomas Polacsek (32)
ONERA, ONERA DTIS, Toulouse, Université
de Toulouse, France

Guillaume Povéda (31)
Airbus (AI Research), Toulouse, France

Charles Prud’homme (9)
TASC, IMT-Atlantique, LS2N-CNRS, France

Louis-Martin Rousseau (25)
Polytechnique Montréal, Montreal, Canada

Stéphanie Roussel (32)
ONERA, ONERA DTIS, Toulouse, Université
de Toulouse, France

Jean-Charles Régin (24)
Université Cote d’Azur, CNRS, I3S, Nice,
France

Josep M. Salvia (7)
Logic & Optimization Group (LOG), University
of Lleida, Spain

Pierre Schaus (13, 15, 45)
UCLouvain, Louvain-la-Neuve, Belgium

Thomas Schiex 4)
Universite Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Martina Seidl (49)
Institute for Symbolic Artificial Intelligence,
JKU Linz, Austria

Ilankaikone Senthooran (21)

Department of Data Science and Al, Faculty of
IT, Monash University, Clayton, VIC, Australia;
ARC Industrial Training and Transformation
Centre OPTIMA, Carlton, VIC, Australia

https://orcid.org/0009-0001-3468-3327
https://doi.org/10.4230/LIPIcs.CP.2023.25
https://orcid.org/0000-0002-6106-4871
https://doi.org/10.4230/LIPIcs.CP.2023.26
https://doi.org/10.4230/LIPIcs.CP.2023.33
https://orcid.org/0009-0005-5042-0876
https://doi.org/10.4230/LIPIcs.CP.2023.26
https://orcid.org/0000-0003-0964-9802
https://doi.org/10.4230/LIPIcs.CP.2023.27
https://doi.org/10.4230/LIPIcs.CP.2023.47
https://orcid.org/0000-0003-3018-5010
https://doi.org/10.4230/LIPIcs.CP.2023.44
https://orcid.org/0000-0001-7883-7749
https://doi.org/10.4230/LIPIcs.CP.2023.49
https://orcid.org/0000-0002-6417-358X
https://doi.org/10.4230/LIPIcs.CP.2023.34
https://orcid.org/0000-0003-2678-1266
https://doi.org/10.4230/LIPIcs.CP.2023.15
https://doi.org/10.4230/LIPIcs.CP.2023.45
https://orcid.org/0000-0002-2700-4285
https://doi.org/10.4230/LIPIcs.CP.2023.27
https://orcid.org/0000-0003-0129-0727
https://doi.org/10.4230/LIPIcs.CP.2023.20
https://doi.org/10.4230/LIPIcs.CP.2023.24
https://orcid.org/0000-0001-8070-9092
https://doi.org/10.4230/LIPIcs.CP.2023.12
https://doi.org/10.4230/LIPIcs.CP.2023.28
https://orcid.org/0000-0001-6473-583X
https://doi.org/10.4230/LIPIcs.CP.2023.29
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://orcid.org/0000-0002-3101-2085
https://doi.org/10.4230/LIPIcs.CP.2023.48
https://doi.org/10.4230/LIPIcs.CP.2023.6
https://orcid.org/0000-0002-2653-0689
https://doi.org/10.4230/LIPIcs.CP.2023.49
https://orcid.org/0000-0001-5876-9945
https://doi.org/10.4230/LIPIcs.CP.2023.30
https://orcid.org/0000-0001-9139-7960
https://doi.org/10.4230/LIPIcs.CP.2023.32
https://orcid.org/0000-0001-9175-3240
https://doi.org/10.4230/LIPIcs.CP.2023.31
https://orcid.org/0000-0002-4546-9027
https://doi.org/10.4230/LIPIcs.CP.2023.9
https://orcid.org/0000-0001-6949-6014
https://doi.org/10.4230/LIPIcs.CP.2023.25
https://orcid.org/0000-0001-7033-555X
https://doi.org/10.4230/LIPIcs.CP.2023.32
https://doi.org/10.4230/LIPIcs.CP.2023.24
https://orcid.org/0000-0003-3387-2094
https://doi.org/10.4230/LIPIcs.CP.2023.7
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2023.13
https://doi.org/10.4230/LIPIcs.CP.2023.15
https://doi.org/10.4230/LIPIcs.CP.2023.45
https://orcid.org/0000-0003-3549-4592
https://doi.org/10.4230/LIPIcs.CP.2023.4
https://orcid.org/0000-0002-3267-4494
https://doi.org/10.4230/LIPIcs.CP.2023.49
https://orcid.org/0000-0001-6207-3780
https://doi.org/10.4230/LIPIcs.CP.2023.21

Authors

Pouya Shati (33)

Department of Computer Science, University of
Toronto, Canada; Vector Institute, Toronto,
Canada

Sylvain Soliman (35)
Lifeware team, Inria Saclay, Palaiseau, France

Christine Solnon (28)
Univ Lyon, INSA Lyon, Inria, CITI, EA3720,
69621 Villeurbanne, France

Kostas Stergiou (30)
University of Western Macedonia, Kozani,
Greece

Peter J. Stuckey (38)

Department of Data Science and AI, Monash
University, Clayton, Australia; Australian
Research Council OPTIMA ITTC, Clayton,
Australia

Wijnand Suijlen (29)
Huawei Technologies Ltd, CSI Paris,
Boulogne-Billancourt, France

Stefan Szeider (39, 48)
Algorithms and Complexity Group, TU Wien,
Austria

Guido Tack (37)

Department of Data Science and Al, Faculty of
IT, Monash University, Clayton, Australia; ARC
Industrial Training and Transformation Centre
OPTIMA, Clayton, Australia

Pierre Talbot (34, 44)

University of Luxembourg, Luxembourg;
Interdisciplinary Centre for Security, Reliability
and Trust (SnT), Luxembourg

Chengyu Tao (17)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Cyril Terrioux (16)
Aix Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Pierre Tessier (25)
Ecole Polytechnique, Palaiseau, France

Eduard Torres (7
Logic & Optimization Group (LOG), University
of Lleida, Spain

Van-Giang Trinh (35)
LIS, Aix-Marseille University, Marseille, France

Dimosthenis C. Tsouros
KU Leuven, Belgium

(30, 36)

Pashootan Vaezipoor (14)
Department of Computer Science, University of
Toronto, Canada

Pascal Van Hentenryck (46)

H. Milton Stewart School of Industrial and
Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Petr Vilim (5)
ScheduleOpt, Novy Knin, Czech Republic

Christel Vrain (10)
University of Orléans, INSA Centre Val de Loire,
LIFO EA 4022, France

Shimao Wang (41)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Xinyu Wang (41)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Yiyuan Wang (41)

School of Information Science and Technology,
Northeast Normal University, Changchun,
China; Key Laboratory of Applied Statistics of
MOE, Northeast Normal University, Changchun,
China

Sameela Suharshani Wijesundara (37)
Department of Data Science and Al, Faculty of
IT, Monash University, Clayton, Australia; ARC
Industrial Training and Transformation Centre
OPTIMA, Clayton, Australia

Michael Wybrow (21)

Department of Human-Centred Computing,
Faculty of IT, Monash University, Clayton, VIC,
Australia

Minghao Yin (41)

School of Information Science and Technology,
Northeast Normal University, Changchun,
China; Key Laboratory of Applied Statistics of
MOE, Northeast Normal University, Changchun,
China

Jinqiang Yu (38)

Department of Data Science and AI, Monash
University, Clayton, Australia; Australian
Research Council OPTIMA ITTC, Clayton,
Australia

Han Zhang (40)
University of Southern California, Los Angeles,
CA, USA

0:xix

CP 2023

https://doi.org/10.4230/LIPIcs.CP.2023.33
https://orcid.org/0000-0001-5525-7418
https://doi.org/10.4230/LIPIcs.CP.2023.35
https://doi.org/10.4230/LIPIcs.CP.2023.28
https://orcid.org/0000-0002-5702-9096
https://doi.org/10.4230/LIPIcs.CP.2023.30
https://orcid.org/0000-0003-2186-0459
https://doi.org/10.4230/LIPIcs.CP.2023.38
https://orcid.org/0000-0001-6450-5620
https://doi.org/10.4230/LIPIcs.CP.2023.29
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2023.39
https://doi.org/10.4230/LIPIcs.CP.2023.48
https://orcid.org/0000-0003-3357-6498
https://doi.org/10.4230/LIPIcs.CP.2023.37
https://orcid.org/0000-0001-9202-4541
https://doi.org/10.4230/LIPIcs.CP.2023.34
https://doi.org/10.4230/LIPIcs.CP.2023.44
https://orcid.org/0009-0008-2069-8967
https://doi.org/10.4230/LIPIcs.CP.2023.17
https://orcid.org/0000-0002-9779-9108
https://doi.org/10.4230/LIPIcs.CP.2023.16
https://doi.org/10.4230/LIPIcs.CP.2023.25
https://orcid.org/0000-0002-3136-7513
https://doi.org/10.4230/LIPIcs.CP.2023.7
https://orcid.org/0000-0001-6581-998X
https://doi.org/10.4230/LIPIcs.CP.2023.35
https://orcid.org/0000-0002-3040-0959
https://doi.org/10.4230/LIPIcs.CP.2023.30
https://doi.org/10.4230/LIPIcs.CP.2023.36
https://doi.org/10.4230/LIPIcs.CP.2023.14
https://orcid.org/0000-0001-7085-9994
https://doi.org/10.4230/LIPIcs.CP.2023.46
https://orcid.org/0000-0002-9758-2371
https://doi.org/10.4230/LIPIcs.CP.2023.5
https://orcid.org/0000-0003-3307-0753
https://doi.org/10.4230/LIPIcs.CP.2023.10
https://doi.org/10.4230/LIPIcs.CP.2023.41
https://doi.org/10.4230/LIPIcs.CP.2023.41
https://orcid.org/0000-0002-3071-3461
https://doi.org/10.4230/LIPIcs.CP.2023.41
https://orcid.org/0000-0002-7448-5536
https://doi.org/10.4230/LIPIcs.CP.2023.37
https://orcid.org/0000-0001-5536-7780
https://doi.org/10.4230/LIPIcs.CP.2023.21
https://orcid.org/0000-0002-6226-2394
https://doi.org/10.4230/LIPIcs.CP.2023.41
https://orcid.org/0000-0002-4376-7266
https://doi.org/10.4230/LIPIcs.CP.2023.38
https://doi.org/10.4230/LIPIcs.CP.2023.40

0:xx

Authors

Tianwei Zhang (39)
Algorithms and Complexity Group, TU Wien,
Austria

Yujiao Zhao (41)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Kexin Zheng (40)
University of Southern California, Los Angeles,
CA, USA

Wenbo Zhou (41)

School of Information Science and Technology,
Northeast Normal University, Changchun,
China; Key Laboratory of Applied Statistics of
MOE, Northeast Normal University, Changchun,
China; Key Laboratory of Symbolic
Computation and Knowledge Engineering of
MOE, Jilin University, Changchun, China

https://orcid.org/0009-0000-3745-5234
https://doi.org/10.4230/LIPIcs.CP.2023.39
https://orcid.org/0000-0001-9285-2793
https://doi.org/10.4230/LIPIcs.CP.2023.41
https://doi.org/10.4230/LIPIcs.CP.2023.40
https://orcid.org/0000-0002-1009-4544
https://doi.org/10.4230/LIPIcs.CP.2023.41

Beyond Optimal Solutions for Real-World Problems
Maria Garcia de la Banda &

Department of Data Science and Al, Faculty of IT, Monash University, Clayton, Victoria, Australia
ARC Industrial Training and Transformation Centre OPTIMA, Carlton, Victoria, Australia

—— Abstract

Combinatorial optimisation technology has come a long way. We now have mature high-level
modelling languages in which to specify a model of the particular problem of interest [18, 7, 24, 6];
robust complete solvers in each major constraint paradigm, including Constraint Programming
(CP) [1, 19], MaxSAT [5, 11], and Mixed Integer Programming (MIP) [2, 3]; effective incomplete
search techniques that can easily be combined with complete solvers to speed up the search such
as Large Neighbourhood Search [23]; and enough general knowledge about modelling techniques
to understand the need for our models to incorporate components such as global constraints [25],
symmetry constraints [8], and more. All this has significantly reduced the amount of knowledge
required to apply this technology successfully to the many different combinatorial optimisation
problems that permeate our society.

And yet, not many organisations use such advanced optimisation technology; instead, they often
rely on the solutions provided by problem-specific algorithms that are implemented in traditional
imperative languages and lack any of the above advances. Further, while advanced optimisation
technology is particularly suitable for the kind of complex human-in-the-loop decision-making
problems that occur in critical sectors of our society, including health, transport, energy, disaster
management, environment and finance, these decisions are often still made by people with little or
no technological support. In this extended abstract I argue that to change this state of affairs, our
research focus needs to change from improving the technology on its own, to improving it so that
users can better trust, use, and maintain the optimisation systems that we develop with it. The rest
of this extended abstract discusses my personal experiences and opinion on these three points.

Trust

I highlight trust (which focuses on the user’s point of view) rather than trustworthiness (which is a
characteristic of the software itself) because I think it is the former rather than the latter that is at
stake for the adoption of optimisation technology.

One of the biggest hurdles I have found for trust in the context of optimisation systems is for
the domain experts to (feel like they) understand the underlying model. While many users will never
do (or have to), I believe it is key for domain experts to have a high-level understanding of the
constraints in the model, since their (dis)trust will likely spread through the organisation, impacting
the adoption of the system. Thanks to the use of high-level modelling languages in CP, our group
has achieved this [13] by documenting the constraints in a language the user knows (mathematics)
and linking each constraint to the particular part of the model that implements it (via comments).
While domain experts do not completely understand the model, the similarity between the format
they understand (mathematics) and the model constraint has helped them verify our perception
of their problem and improved their trust in the model. However, more needs to be done in this
direction via the development of formal techniques. For example, our group is exploring the use of
domain-specific languages [10] as a bridge between domain experts and modellers that helps both
trust and maintenance (see later). This [27] and other approaches need to be explored.

A very significant source of trust for our domain experts (and of trustworthiness for the software)
has been the development of two different models implemented by two different people for the same
problem [13]. While this can be seen as a prohibitively expensive exercise, it did not take that long
once the first model was mature, is a good way to onboard new optimisation team members, and has
helped up detect not only bugs but also differences in the interpretation of domain expert information.
For optimisation problems where it is not possible to verify the optimality (or even correctness) of
the solution, we see such redundant modelling as the only solution for now. Interestingly, a significant

© Maria Garcia de la Banda;

37 licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 1; pp. 1:1-1:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:maria.garciadelabanda@monash.edu
https://orcid.org/0000-0002-6666-514X
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

Beyond Optimal Solutions

step forward in obtaining the trust of our domain experts has been the generation of an optimality
gap whenever an optimal solution could not be found due to time constraints. While explaining this
concept took time, once understood it has boosted their trust, particularly when tackling problems
where the solution is not easy verifiable or when approximated models/data are used (needed for
speed, see later). This makes it difficult to work with CP and SAT solvers, as they usually lack tight
lower bounds. Finally, trust is often developed through the use of the system, which I discuss below.

Use

Usability is known to be key for the deployment of software systems. By “system” in our context, I
refer to the combination of the problem model(s), the associated solver(s) and, importantly, the User
Interface (UI) that often integrates them and is fundamental to their success. In addition to the
traditional usability characteristics of software systems, I believe an optimisation system requires
particular care in the following areas. Interaction, i.e., the system must allow users to interact with
the Ul not only to provide and modify the input data, but also to modify the constraints (at the
very least by turning some on/off) as well as explore and compare solutions, as argued in [17, 15].
Incremental compilers and solvers would significantly help in making this easier, as well as generic
ways for the Uls to communicate with them. Conflict resolution, that is, ensuring the system can not
only detect infeasible instances, but also support users in understanding the data/constraints that
cause infeasibility and how to modify the instance to make it feasible. Any interactive optimisation
system that has users, will likely have conflicts. Thus, it is mandatory for CP to improve its conflict
resolution technology which, while existent [16, 14, 22], is not widespread and it is often still problem-
dependent, overwhelming (in the number of constraints shown to the user) and slow. Without it,
users will be “stumped” when (rather than if) infeasibility is reached. Solution diversity, that is,
supporting users in obtaining a diverse set of (close-to-optimal) solutions, where diversity is measured
by a user-provided metric modelled somehow. While some solver-independent technology has been
developed and implemented for this [9, 20, 12], it should be easier to use and more widespread.
Further, it requires sophisticated solution comparison capabilities and, importantly, for optimal
solutions to be found in seconds rather than hours. This brings me to speed, an area where CP
solvers are falling behind. Most of our research group applications now use MIP solvers due to the
need for floats (which precludes us from using learning solvers such as Chuffed [4]), but also to the
lack of effective warm-start processes that are available in MIP solvers. Interestingly, data and model
approximations have been proved to achieve orders of magnitude speedups with small reductions in
optimality [13]. Developing generic (i.e., problem independent) accurate approximations would be
extremely useful for complex decision systems. Other areas where I think generic CP methods are
worth investigating more include dealing with uncertainty and online problems, ensuring solution
fairness (even if it is over time), and studying predict + optimise approaches.

Maintain

I know very few papers devoted to the issue of maintenance in optimisation technology. While this
may be due to my lack of knowledge, I suspect it is also due to the limited adoption of optimisation
technology. While the issues in this area are again common to other software systems, I believe the
solutions for CP require special attention. For example, the issue of changes in user requirements
(that our research group calls problem drift) seems particularly prevalent in decision-making systems,
as such problems can evolve rapidly due to unforeseen circumstances. This can make optimisation
systems obsolete faster than expected. Our research group has proposed to tackle problem drift
by developing a requirements model implemented in the above-mentioned MDSLs and created
by both domain experts and modellers that, when modified re-generates parts of the model to
support the modifications [27]. This and other approaches such as the creation of reusable models
components [21, 26], or instantiatable classes for common problem domains, are worth investigating.

M. Garcia de la Banda

2012 ACM Subject Classification Theory of computation — Constraint and logic programming;

Theory of computation — Integer programming; Human-centered computing — Information visual-

ization

Keywords and phrases Combinatorial optimisation systems, usability, trust, maintenance

Digital Object Identifier 10.4230/LIPIcs.CP.2023.1

Category Invited Talk

Acknowledgements Any good idea here is the result of working in many different projects with

my colleagues at the Optimisation and at the Data Visualisation and Immersive Analytics research

groups in the Faculty of IT, Monash University. I have learned a lot from them.

—— References

1
2

10

11

12

13

GECODE - An open, free, efficient constraint solving toolkit. URL: https://www.gecode.org/.
Gurobi Optimizer Reference Manual. URL: https://www.gurobi.com/documentation/9.5/
refman/index.html.

IBM ILOG CPLEX optimizer. URL: https://www.ibm.com/products/ilog-cplex-optimi-
zation-studio/cplex-optimizer.

Geoffrey Chu. Improving combinatorial optimization - extended abstract. In Francesca
Rossi, editor, 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013,
pages 3116-3120. IJCAI/AAAI, 2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/
IJCAI13/paper/view/6687.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Jimmy Ho-Man Lee, editor, 17th International Conference on Principles and
Practice of Constraint Programming - CP 2011, Lecture Notes in Computer Science, pages
225-239. Springer, 2011. doi:10.1007/978-3-642-23786-7_19.

Robert Fourer, David M Gay, and Brian W Kernighan. A modeling language for mathematical
programming. Management Science, 36(5):519-554, 1990.

Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martinez-Herndndez, and Ian
Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,
13(3):268-306, September 2008. doi:10.1007/s10601-008-9047-y.

Jan P. Gent, Karen E. Petrie, and Jean-Francois Puget. Symmetry in constraint programming.
In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint Pro-
gramming, volume 2 of Foundations of Artificial Intelligence, pages 329-376. Elsevier, 2006.
d0i:10.1016/51574-6526(06)80014-3.

Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding diverse
and similar solutions in constraint programming. In Manuela M. Veloso and Subbarao
Kambhampati, editors, 20th National Conference on Artificial Intelligence, AAAI 2005, pages
372-377. AAAI Press / The MIT Press, 2005. URL: http://www.aaai.org/Library/AAAL/
2005/aaai05-059. php.

Paul Hudak. Domain-specific languages. Handbook of programming languages, 3(39-60):21,
1997.

Alexey Ignatiev, Anténio Morgado, and Jodo Marques-Silva. RC2: an efficient maxsat solver.
J. Satisf. Boolean Model. Comput., 11(1):53-64, 2019. doi:10.3233/SAT190116.

Linnea Ingmar, Maria Garcia de la Banda, Peter J. Stuckey, and Guido Tack. Modelling
diversity of solutions. In 34th Conference on Artificial Intelligence, AAAI 2020, pages 1528~
1535. AAAI Press, 2020. URL: https://ojs.aaai.org/index.php/AAAI/article/view/5512.
Matthias Klapperstueck, Frits de Nijs, Ilankaikone Senthooran, Jack Lee-Kopij, Maria Garcia
de la Banda, and Michael Wybrow. Exploring hydrogen supply/demand networks: Modeller
and domain expert views. In Roland Yap, editor, 29th International Conference on Principles
and Practice of Constraint Programming - CP23, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, to appear, 2023.

1:3

CP 2023

https://doi.org/10.4230/LIPIcs.CP.2023.1
https://www.gecode.org/
https://www.gurobi.com/documentation/9.5/refman/index.html
https://www.gurobi.com/documentation/9.5/refman/index.html
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6687
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6687
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/s10601-008-9047-y
https://doi.org/10.1016/S1574-6526(06)80014-3
http://www.aaai.org/Library/AAAI/2005/aaai05-059.php
http://www.aaai.org/Library/AAAI/2005/aaai05-059.php
https://doi.org/10.3233/SAT190116
https://ojs.aaai.org/index.php/AAAI/article/view/5512

1:4

Beyond Optimal Solutions

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Niklas Lauffer and Ufuk Topcu. Human-understandable explanations of infeasibility for
resource-constrained scheduling problems. In ICAPS 2019 Workshop XAIP, 2019.

Jie Liu, Tim Dwyer, Guido Tack, Samuel Gratzl, and Kim Marriott. Supporting the problem-
solving loop: Designing highly interactive optimisation systems. IEEE Trans. Vis. Comput.
Graph., 27(2):1764-1774, 2021. doi:10.1109/TVCG.2020.3030364.

Jodo Marques-Silva and Alessandro Previti. On computing preferred muses and mcses. In
Carsten Sinz and Uwe Egly, editors, 17th International Conference on Theory and Applications
of Satisfiability Testing - SAT 2014, Lecture Notes in Computer Science, pages 58-74. Springer,
2014. doi:10.1007/978-3-319-09284-3_6.

David Meignan, Sigrid Knust, Jean-Marc Frayret, Gilles Pesant, and Nicolas Gaud. A review
and taxonomy of interactive optimization methods in operations research. ACM Trans. Interact.
Intell. Syst., 5(3):17:1-17:43, 2015. doi:10.1145/2808234.

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack. MiniZinc: Towards a Standard CP Modelling Language. In Christian
Bessiere, editor, 13th International Conference on Principles and Practice of Constraint
Programming — CP 2007, Lecture Notes in Computer Science, pages 529-543. Springer, 2007.
doi:10.1007/978-3-540-74970-7_38.

Laurent Perron and Vincent Furnon. Or-tools. URL: https://developers.google.com/
optimization/.

Thierry Petit and Andrew C. Trapp. Finding diverse solutions of high quality to constraint
optimization problems. In Qiang Yang and Michael J. Wooldridge, editors, 24th International
Joint Conference on Artificial Intelligence, IJCAI 2015, pages 260—267. AAAI Press, 2015.
URL: http://ijcai.org/Abstract/15/043.

Sophia Saller and Jana Koehler. Easy, adaptable and high-quality modelling with domain-
specific constraint patterns. CoRR, abs/2206.02479, 2022. doi:10.48550/arXiv.2206.02479.
Tlankaikone Senthooran, Matthias Klapperstueck, Gleb Belov, Tobias Czauderna, Kevin Leo,
Mark Wallace, Michael Wybrow, and Maria Garcia de la Banda. Human-centred feasibility
restoration in practice. Constraints, to appear, 2023.

Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Michael J. Maher and Jean-Francois Puget, editors, 4th International Conference
on Principles and Practice of Constraint Programming - CP98, Lecture Notes in Computer
Science, pages 417-431. Springer, 1998. doi:10.1007/3-540-49481-2_30.

Pascal Van Hentenryck. The OPL optimization programming language. MIT Press, Cambridge,
MA, USA, 1999.

Willem-Jan van Hoeve and Irit Katriel. Global constraints. In Francesca Rossi, Peter van Beek,
and Toby Walsh, editors, Handbook of Constraint Programming, volume 2 of Foundations of
Artificial Intelligence, pages 169—208. Elsevier, 2006. doi:10.1016/S1574-6526(06)80010-6.
Toby Walsh. Constraint patterns. In Francesca Rossi, editor, 9th International Conference on
Principles and Practice of Constraint Programming - CP 2003, Lecture Notes in Computer
Science, pages 53—64. Springer, 2003. doi:10.1007/978-3-540-45193-8_4.

Sameela Suharshani Wijesundara, Maria Garcia de la Banda, and Guido Tack. Addressing
problem drift in UNHCR fund allocation. In Roland Yap, editor, 29th International Conference
on Principles and Practice of Constraint Programming - CP23, LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, to appear, 2023.

https://doi.org/10.1109/TVCG.2020.3030364
https://doi.org/10.1007/978-3-319-09284-3_6
https://doi.org/10.1145/2808234
https://doi.org/10.1007/978-3-540-74970-7_38
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://ijcai.org/Abstract/15/043
https://doi.org/10.48550/arXiv.2206.02479
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1016/S1574-6526(06)80010-6
https://doi.org/10.1007/978-3-540-45193-8_4

A Tale of Two Cities: Teaching CP with
Story-Telling
Jimmy H.M. Lee =

Department of Computer Science and Engineering, The Chinese University of Hong Kong, China

—— Abstract

This presentation is all about story-telling. It tells the story, the pedagogical innovations and

experience of the co-development of three MOOCSs on the subject of “Modeling and Solving Discrete
Optimization Problems” by The Chinese University of Hong Kong (CUHK) and the University of
Melbourne, each with unique culture and tradition. The MOOCs feature the Fable-based Learning
approach, which is a form of problem-based learning encapsulated in a story plot. Each MOOC
video begins with an animation that follows a story adapted from a Chinese classic. The heroes of
the story encounter various optimization problems requiring technical assistance from two professors
from modern time via a magical tablet granted to the heroes by a genie old man. The animation
thus sets the stage for lecturing modeling and solving techniques. The new pedagogy provides a
movie-like immersive experience to the learners, and aims at increasing learners’ motivation and
interests as well as situating them in a coherent learning context. In addition to scriptwriting,
animation production and embedding the teaching materials in the story plot, another challenge of
the project is the remote distance between the two institutions as well as the need to produce all
teaching materials in both (Mandarin) Chinese and English to cater for different geographic learning
needs. The project and production spanned across 2016 and 2017. The MOOCs have been running
recurrently on Coursera since January, 2017. We present learner statistics and feedback, and discuss
our experience and preliminary observations of adopting the online materials in a Flipped Classroom
setting at CUHK.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming
Keywords and phrases Constraint Programming, MOOCs, Fable-based Learning
Digital Object Identifier 10.4230/LIPIcs.CP.2023.2

Category Invited Talk

© Jimmy H.M. Lee;
37 licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 2; pp. 2:1-2:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jlee@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs.CP.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The CP-SAT-LP Solver

Laurent Perron &
Google, Paris, France

Frédéric Didier &
Google, Paris, France

Steven Gay &

Google, Paris, France

—— Abstract

The CP-SAT-LP solver is developed by the Operations Research team at Google and is part of
the OR-Tools [8] open-source optimization suite. It is an implementation of a purely integral
Constraint Programming solver on top of a SAT solver using Lazy Clause Generation [11]. It draws
its inspiration from the chuffed solver [4], and from the CP 2013 plenary by Peter Stuckey on Lazy
Clause Generation [12].

The CP-SAT-LP solver improves upon the chuffed solver [4] in two main directions. First, it uses
a simplex alongside the SAT engine. Second, it implements and relies upon a portfolio of diverse
workers for its search part.

The use of the simplex brings the obvious advantages of a linear relaxation on the linear part of
the full model. It also started the integration of MIP technology into CP-SAT-LP. This is a huge
endeavour, as MIP solvers are mature and complex. It includes presolve — which was already a
part of CP-SAT —, dual reductions, specific branching rules, cuts, reduced cost fixing, and more
advanced techniques. It also allows to integrate tightly the research from the Scheduling on MIP
community [3, 1, 9] along with the most advanced scheduling algorithms [13]. This has enabled
breakthroughs in solving and proving hard scheduling instances of the Job-Shop problems [5] and
Resource Constraint Project Scheduling Problems [6, 2].

Using a portfolio of different workers makes it easier to try new ideas and to incorporate
orthogonal techniques with little complication, except controlling the explosion of potential workers.
These workers can be categorized along multiple criteria like finding primal solutions — either using
complete solvers, Local Search [7] or Large Neighborhood Search [10] —, improving dual bounds,
trying to reduce the problem with the help of continuous probing. This diversity of behaviors has
increased the robustness of the solver, while the continuous sharing of information between workers
has produced massive speedups when running multiple workers in parallel.

All in all, CP-SAT-LP is a state-of-the-art solver, with unsurpassed performance in the Constraint
Programming community, breakthrough results on Scheduling benchmarks (with the closure of many
open problems), and competitive results with the best MIP solvers (on purely integral problems).

2012 ACM Subject Classification Applied computing — Operations research
Keywords and phrases Constraint Programming, Operations Research, Sat Solver

Digital Object Identifier 10.4230/LIPIcs.CP.2023.3

Category Invited Talk

—— References

1 David Applegate and William Cook. A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3(2):149-156, 1991. doi:10.1287/ijoc.3.2.149.

2 Christian Artigues, Sophie Demassey, and Emmanuel Neron. Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. ISTE/Wiley, 2008. URL:
https://hal.science/hal-00482946.

3 Egon Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimization
problems. STAM Journal on Algebraic Discrete Methods, 6(3):466-486, 1985.

© Laurent Perron, Frédéric Didier, and Steven Gay;

licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 3; pp. 3:1-3:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:lperron@google.com
mailto:fdid@google.com
mailto:stevengay@google.com
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://doi.org/10.1287/ijoc.3.2.149
https://hal.science/hal-00482946
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

The CP-SAT-LP Solver

10

11

12

13

Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. the chuffed solver, June 2023. URL: https://github.com/chuffed/chuffed.
Junwen Ding, Zhipeng Lii, Chu-Min Li, Liji Shen, Liping Xu, and Fred Glover. A two-
individual based evolutionary algorithm for the flexible job shop scheduling problem. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 22622271,
2019.

Rainer Kolisch and Arno Sprecher. Psplib - a project scheduling problem library: Or software
- orsep operations research software exchange program. Furopean Journal of Operational
Research, 96(1):20572167 1997. d0i:10.1016/50377-2217(96)00170-1.

Bjgrnar Luteberget and Giorgio Sartor. Feasibility jump: an Ip-free lagrangian mip
heuristic. =~ Mathematical Programming Computation, 15, March 2023. doi:10.1007/
512532-023-00234-8.

Laurent Perron and Vincent Furnon. Or-tools, March 2023. URL: https://developers.
google.com/optimization/.

Maurice Queyranne. Structure of a simple scheduling polyhedron. Math. Program., 58:263-285,
1993. doi:10.1007/BF01581271.

Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Michael J. Maher and Jean-Francois Puget, editors, Principles and Practice of
Constraint Programming - CP98, 4th International Conference, Pisa, Italy, October 26-30,
1998, Proceedings, volume 1520 of Lecture Notes in Computer Science, pages 417-431. Springer,
1998. doi:10.1007/3-540-49481-2_30.

Peter J. Stuckey. Lazy clause generation: Combining the power of sat and cp (and mip?)
solving. In Andrea Lodi, Michela Milano, and Paolo Toth, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 5-9,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Peter J. Stuckey. Those who cannot remember the past are condemned to repeat it. In
Christian Schulte, editor, Principles and Practice of Constraint Programming, pages 5—6,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Petr Vilim. Timetable edge finding filtering algorithm for discrete cumulative resources. In
Tobias Achterberg and J. Christopher Beck, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, pages 230-245, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

https://github.com/chuffed/chuffed
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1007/s12532-023-00234-8
https://doi.org/10.1007/s12532-023-00234-8
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1007/BF01581271
https://doi.org/10.1007/3-540-49481-2_30

Coupling CP with Deep Learning for Molecular
Design and SARS-CoV2 Variants Exploration

Thomas Schiex D4
Universite Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

—— Abstract

The use of discrete optimization, including Constraint Programming, for designing objects that we

completely understand is quite usual. In this talk, I’'ll show how designing specific biomolecules
(proteins) raises new challenges, requiring solving problems that combine precise design targets,
approximate laws, and design rules that can be deep-learned from data.

2012 ACM Subject Classification Computing methodologies — Artificial intelligence; Computing
methodologies — Machine learning; Theory of computation — Constraint and logic programming;
Computing methodologies — Learning in probabilistic graphical models

Keywords and phrases graphical models, deep learning, constraint programming, cost function
networks, random Markov fields, decision-focused learning, protein design

Digital Object Identifier 10.4230/LIPIcs.CP.2023.4

Category Invited Talk

1 Introduction

Proteins are biomolecules that support most mechanisms in living organisms, from viruses
to human beings. They already have major commercial applications in green chemistry (as
enzymes) but also in the health domain (e.g., the anti-CoViD Regeneron™ antibodies are
proteins). Most commercially used proteins are either natural proteins or engineered versions
of natural proteins. To go beyond the repertoire of natural proteins, it is important to be able
to reliably and efficiently design new proteins, with new capacities [9]. Proteins are defined
by their amino acid sequence, a discrete object defined over an alphabet of 20 characters.
Once the sequence of a protein is fixed, it can be encoded into a suitable microbe, enabling
the cheap manufacturing of these complex microscopic assemblies.

Optimization is often used to design objects such as schedules, assignments, time-tables
or packing, which we completely understand. Instead, proteins are tiny physical objects
that live in the realm of quantum physics. Their behavior is hard to formally, precisely and
concisely capture. Designing new proteins therefore requires to combine knowledge, expressed
as approximate laws of physics, with targeted design constraints and criteria, in the context
of large sets of data of past successful designs (natural proteins) that also embody the many
hidden laws which a successfully expressed protein must satisfy.

2 Designing proteins and SARS-CoV2 variants with CP

In this talk, we will see how Cost Function Networks (CFNs), a weighted variant of Constraint
Networks/CP) can help us design new proteins [1, 6]. Alone, CFNs can already capture
both logical information (constraints) and numerical information, enabling the simultaneous
representation of approximate laws of physics and design targets. By solving suitable instances
of Weighted Constraint Satisfaction Problems, one can already produce protein sequences
that can be tested in silico (with e.g., AlphaFold2 [7]), characterized experimentally, and
lead to successful designs [8].

© Thomas Schiex;
37 licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 4; pp.4:1-4:3

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:thomas.schiex@inrae.fr
http://miat.inrae.fr/tschiex
https://orcid.org/0000-0003-3549-4592
https://doi.org/10.4230/LIPIcs.CP.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Coupling CP with Deep Learning for Molecular Design

By leveraging the exhaustive enumeration capabilities of exact discrete solvers, it becomes
possible to tackle previously unsolvable questions. To infect us, the SARS-Cov2 virus
relies on its own spike protein, designed by evolution to be stable and efficiently bind to
the human ACE2 receptor. Using a protein structure produced in the early months of
2020, we exhaustively enumerated SARS-CoV2 variants that would, in theory, bind to
ACE2 and kept those that remained sufficiently stable. After a drastic selection among
tenths of millions of predicted variants, 59 sequences were tested experimentally for affinity,
infectivity, and resistance to antibodies, resulting in a list of non-yet-existing infectious
therapeutic-antibodies-resistant variants that could be used to design vaccines proactively [3].

3 Learning how to play the Protein Design and Sudoku games

Because the laws of physics and modeling assumptions used in such approaches lead to
approximate results, it becomes crucial to exploit the massive amount of data that has been
produced by experimentalists in terms of natural protein structures and sequences. This
raises the exciting question of learning CFNs describing the “quality” of sequences for a given
protein structure to eventually learn how to design proteins. This problem is reminiscent of
learning “how to reason” or “how to play Sudoku” which has been addressed by various recent
decision-focused learning architectures. By leveraging a usual probabilistic interpretation
of CFNs, we recently proposed a simple scalable learning architecture [4] that combines
Deep Learning with an exact CFN solver (toulbar2 [2]) to learn how to design proteins (or
how to play Sudoku) which outperforms existing architectures in terms of training time,
data-efficiency and accuracy. Because solving the WCSP is NP-hard, powerful polynomial
time relaxations then become handy [5].

—— References

1 David Allouche, Isabelle André, Sophie Barbe, Jessica Davies, Simon de Givry, George Kat-
sirelos, Barry O’Sullivan, Steve Prestwich, Thomas Schiex, and Seydou Traoré. Computational
protein design as an optimization problem. Artificial Intelligence, 212:59-79, 2014.

2 David Allouche, Simon De Givry, George Katsirelos, Thomas Schiex, and Matthias Zytnicki.
Anytime hybrid best-first search with tree decomposition for weighted CSP. In Principles and
Practice of Constraint Programming: 21st International Conference, CP 2015, Cork, Ireland,
August 31-September 4, 2015, Proceedings 21, pages 12—29. Springer, 2015.

3 Mireia Sola Colom, Jelena Vucinic, Jared Adolf-Bryfogle, James W Bowman, Sébastien
Verel, Isabelle Moczygemba, Thomas Schiex, David Simoncini, and Christopher D Bahl.
Deep evolutionary forecasting identifies highly-mutated SARS-CoV-2 variants via functional
sequence-landscape enumeration. Research Square, pages rs—3, 2022.

4 M. Defresne, S. Barbe, and T. Schiex. Scalable coupling of deep learning with logical reasoning.
In Proc. of the 32"* IJCAI Macau, A.S.R., China, 2023.

5 Valentin Durante, George Katsirelos, and Thomas Schiex. Efficient low rank convex bounds
for pairwise discrete graphical models. In International Conference on Machine Learning,
pages 5726-5741. PMLR, 2022.

6 Mark A Hallen and Bruce R Donald. Protein design by provable algorithms. Communications
of the ACM, 62(10):76-84, 2019.

7 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583-589, 2021.

T. Schiex 4:3

8 Hiroki Noguchi, Christine Addy, David Simoncini, Staf Wouters, Bram Mylemans, Luc
Van Meervelt, Thomas Schiex, Kam YJ Zhang, Jeremy RH Tame, and Arnout RD Voet.
Computational design of symmetrical eight-bladed B-propeller proteins. IUCrJ, 6(1):46-55,

2019.
9 Ilan Samish, editor. Computational Protein Design. Humana New York, NY, 2017. doi:

10.1007/978-1-4939-6637-0.

CP 2023

https://doi.org/10.1007/978-1-4939-6637-0
https://doi.org/10.1007/978-1-4939-6637-0

CP Solver Design for Maximum CPU Utilization

Petr Vilim &
ScheduleOpt, Novy Knin, Czech Republic

—— Abstract

In this talk, I explain how to improve the performance of a solver without focusing on algorithms,
search, propagation or parallelism. Performance is achieved instead with better CPU utilization,
efficient code and more precise design of the solver itself.

In the words of Fedor G. Pikus [1], the time of “performance taking care of itself” is over. In
today’s hardware the number of cores is increasing while the CPU clock speed has reached a plateau.
Main memory access is slow in comparison to the CPU. And despite multiple memory cache levels,
the CPU can easily become idle waiting for data from the memory, slowing down the computation
considerably. Unfortunately, those trends are probably not going to change in the near future.

For those reasons we are witnessing revived interest in efficient code and performance-centered
software design, especially in areas where the performance is critical: computer games, compilers,
internet browsers, language interpreters (e.g. JavaScript or Python), etc.

The good news is that many of the tricks used in the above-mentioned areas, can be used in
constraint programming as well. The bad news is that the performance has to be taken into account
from the very beginning of the design. It is not possible to add it easily later. Sometimes, better
performance can be achieved only by radical shifts in the design such as from object-oriented to
data-oriented programming.

The design of a CP solver is not an exception in this regard. Without the efficient core of the
CP solver, it is not possible to write truly efficient propagation or search algorithms. On the other
hand, all algorithms in the solver must take the design of the solver into account and leverage it.

In this talk, I will describe what I consider the most important aspects of the design of Schedule Opt
Optal solver. 1 will concentrate on the performance, but I will also mention other aspects such as
ease of use, maintainability, and testing.

2012 ACM Subject Classification Mathematics of computing — Solvers; Theory of computation —
Constraint and logic programming

Keywords and phrases Constraint Programming, Software Design, Efficient Code
Digital Object Identifier 10.4230/LIPIcs.CP.2023.5

Category Invited Talk

—— References

1 F.G. Pikus. The Art of Writing Efficient Programs: An advanced programmer’s guide to efficient
hardware utilization and compiler optimizations using C++ examples. Packt Publishing, 2021.

© Petr Vilim;
37 licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 5; pp. 5:1-5:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:pvilim@vilim.eu
https://orcid.org/0000-0002-9758-2371
https://doi.org/10.4230/LIPIcs.CP.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Optimization of Short-Term Underground Mine
Planning Using Constraint Programming

Younes Aalian G4
Département de mathématiques et de génie industriel, Polytechnique Montréal, Québec, Canada

Gilles Pesant &

Département de génie informatique et génie logiciel, Polytechnique Montréal, Québec, Canada
Michel Gamache &

Département de mathématiques et de génie industriel, Polytechnique Montréal, Québec, Canada

—— Abstract

Short-term underground mine planning problems are often difficult to solve due to the large number

of activities and diverse machine types to be scheduled, as well as multiple operational constraints.
This paper presents a Constraint Programming (CP) model to optimize short-term scheduling for
the Meliadine underground gold mine in Nunavut, Canada, taking into consideration operational
constraints and the daily development and production targets of the mine plan. To evaluate the
efficacy of the developed CP short-term planning model, we compare schedules generated by the
CP model with the ones created manually by the mine planner for two real data sets. Results
demonstrate that the CP model outperforms the manual approach by generating more efficient
schedules with lower makespans.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming;
Computing methodologies — Planning and scheduling

Keywords and phrases Mine planning, Constraint Programming, Short-term planning, Underground
mine, Scheduling

Digital Object Identifier 10.4230/LIPIcs.CP.2023.6

1 Introduction

The mining industry is an important component of Canada’s economic vitality. In 2019, its
economic contribution was estimated at $ 109 billion, or 5 % of Canada’s GDP [10]. Mining
projects involve a variety of operations that handle significant amounts of material and
require substantial investment. Even small reductions in costs or increases in ore yield can
have a considerable economic impact. These projects can generate significant profits when
they are managed efficiently. Furthermore, the mining industry is evolving and transitioning
towards automated mining. With the advent of new communication and data collection
tools, mining operation data is becoming more easily accessible. This creates opportunities
to develop new optimization tools that can use the available data to enhance the operational
efficiency in mines.

The model presented in this study is designed for an underground gold mine. The price
of gold is set by the market and the same for all mining companies. Among other things, 47
% of the gold produced in Canada is purchased by the London Bullion Market, which trades
gold worldwide. The only options for gold mines to increase their profits is to reduce their
operating costs. One way to reduce operating costs is to make better use of available resources.
Minimizing the makespan indirectly reduces operating costs by doing more activities with
the same equipment and reducing downtime.

Short-term planning in underground mines plays a crucial role in ensuring the profitability
and success of mining operations. It involves allocating resources to activities and determining
the sequence and start time of activities during each work shift over a planning horizon
?Younes Aalian, Gil.les Pesant, and'Michel Gamache;

5v icensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 6; pp.6:1-6:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:younes.aalian@polymtl.ca
http://www.myhomepage.edu
mailto:gilles.pesant@polymtl.ca
mailto:michel.gamache@polymtl.ca
https://doi.org/10.4230/LIPIcs.CP.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Short-Term Underground Mine Planning Using CP

ranging from one to two weeks [1, 3]. Currently, scheduling decisions in underground mines
are typically made manually based on the planner’s experience. Planning has been done
manually for several reasons. First, communication systems in the underground mines
were virtually non-existent. As a result, the exchange of information between the planning
teams was essentially done between shifts. In addition, the management systems are not yet
standardized in the mines, which means that information on geology, equipment maintenance
and production management are found in different systems and the transfer of one system to
another is not always trivial. However, manual planning is prone to errors and often results in
infeasible schedules with low accuracy and efficiency. Therefore, developing a decision tool to
optimize short-term scheduling in underground mines can help achieve high-quality schedules,
improve mine productivity, and reduce reliance on the planner’s experience, while ensuring
technical and safety requirements are met [17]. In this paper, a Constraint Programming (CP)
model is presented for the short-term scheduling of activities at the Meliadine underground
gold mine located in Nunavut, Canada. The model considers both operational constraints
and the mine’s development and production targets to generate more practical and reliable
schedules.

1.1 Why CP?

Previous research has shown that Constraint Programming is an effective and efficient method
for solving scheduling problems across various industries, including planning, scheduling,
transportation, and automated systems [9]. CP uses a wide variety of variable types, functions,
and global constraints to offer modeling at a high level of abstraction, making it a more
flexible and intuitive approach than other model-based methods such as Mixed Integer
Programming (MIP)[4]. Consequently CP models are more concise and require fewer decision
variables and constraints which makes them an attractive tool for addressing large-scale
scheduling problems. In the context of underground mining, the use of CP functions (as
described in detail in Section 3) makes it easier to model operational constraints in the
short-term scheduling problem, resulting in a more compact and efficient model.

1.2 Plan of the Paper

Section 2 describes the problem we address, Section 3 introduces the CP model we developed
to solve it, and Section 4 discusses the outcomes of implementing the presented model on
two actual data sets. Section 5 highlights the advantages of using CP for this short-term
underground mine planning problem. Section 6 presents an overview of related computational
approaches in the literature. Finally Section 7 concludes the paper.

2 Problem Description

Underground mining operations involve two primary categories of activities: development
and production. In order to access economically valuable ore deposits, development activities
are conducted in waste rocks that lack financial value. Production activities take place in
economically significant rocks located in areas referred to as stopes [5]. Mining activities
occur in a cycle at one of several sites that serve as a workplace to perform these activities.
Figures 1la and 1b show the development and production cycles with activities arranged in a
sequence-dependent order. Table 1 provides the description of activities in the cycle, along
with the required machine type. There are several machines available for each type of activity.

Y. Aalian, G. Pesant, and M. Gamache

Each machine can be viewed as a renewable unitary resource, limited to performing one
activity at a time. Short-term scheduling for underground mines includes assigning activities
in the cycle to eligible machines and determining the start and end times for each activity [1].

: Production
Cleaning Charging Cabling

. Backfilling Charging
Bolting Blasting

(a) (b)

Figure 1 Typical development (a) and production (b) cycles in underground mining.

Table 1 Activities and the required machine type in the cycle.

Activity Machine Description

Drilling Drilling rigs Drilling blast holes in the rock face

Charging Anfo loader Charging drilled holes with explosives

Loading Scooptram Removing broken rocks after blasting

Bolting Bolter Stabilizing drifts by installing bolts into the rock mass

Cleaning Scooptram Removing small rocks from the site (the gallery)

Cabling Cabling machine | Reinforcing stope by installing steel cables into rock mass
Slot raising Raise borer Creating a vertical or inclined hole into the rock

There are several underground mining methods for extracting deep mineral deposits. The
Meliadine mine uses the long-hole stoping method, which is one of the most commonly-used
underground mining techniques that involve extracting a significant amount of material from
each stope (Figure 2). This method is particularly suitable for large-scale and steeply dipping
ore deposits with preferably tabular shapes. The long-hole stoping method begins with the
development of main shafts or declines for transportation and ventilation purposes. Next,
drill drives are excavated to access the intended location of the ore body and to create stopes.
In each stope, production holes are drilled and charged with explosives. Once the blasting is
completed, the fragmented rock is accessed through draw points developed at the bottom
level of the stope. Scoop trams and trucks are used to collect the broken ore and transport
it to the surface or other underground locations via drifts or ramps. In the final stage, the
evacuated space in the stope is filled with a mixture of waste rocks and concrete to provide
sufficient stability for the subsequent adjacent opening stopes [16].

At Meliadine work is organized into a succession of day and night shifts, each lasting 55
time units. Blasting activities are performed only during designated blast windows. A blast
window corresponds to the period between shifts in the morning, during which resources
cannot be used by operators due to safety regulations. The team rotation takes approximately
1 hour and 30 minutes, and the blast window requires roughly 4 hours and 30 minutes,
including the time needed for team rotation and gas clearance (18 working hours for both

6:3

CP 2023

6:4

Short-Term Underground Mine Planning Using CP

Long-hole
drilling and
blasting /

Blasted ore
& Undercut

me
o
&

-
Loadi n?‘&_‘;
crosscut

Figure 2 Typical representation of the long-hole stoping operation [8].

day and night shifts + 1 hour 30 minutes for team rotation at the end of day shift + 4 hours
30 minutes for blast window at the end of night shift = 24 hours). The shift at the end of
which team rotation occurs is referred to as the day shift, while the subsequent shift, which
includes the blasting window at the end, is known as the night shift. Figure 3 illustrates the
shift organization in the studied underground mine. Mining activities are preemptive as they
can be interrupted at the end of each shift and continue in the next shift.

Shift Organization
Team rotation Blast window
€ > e »]
‘ Day shift Night shift
110 time units --- Blast Window

(0 time unit)

Figure 3 Timeline of alternating day and night shifts including time to rotate the teams and to
perform blasting (above). Its representation in the CP model (below).

Short-term planning at the Meliadine mine incorporates several key performance indicators
(KPI) such as progress of development rounds in the drift, total length of production holes
drilled in the stope, and total amount of material mucked from the stope to meet the
medium-term planning goals. The KPI values vary monthly and are updated every three
months by the medium-term mine planner. Development and production constraints will be
introduced in our CP model to consider the defined KPIs in short-term scheduling.

Y. Aalian, G. Pesant, and M. Gamache

3 How our Problem is Modeled in CP

An optimization model is developed using Constraint Programming (CP) for short-term
underground mine scheduling, taking into account operational requirements of underground
mining operations. Additional constraints are introduced to ensure that the mine planning
development and production targets are met and that practical and reliable short-term
schedules are generated. In other words, the produced schedule determines the detailed
execution of mining activities in underground operations considering the required daily
rates of development and production. It is important to note that the same model can be
used for both development and production activities in underground mining, which ensures
consistency and accuracy in short-term scheduling.

CP Optimizer (CPO) from IBM ILOG Optimization Studio [9] was used to create
the model presented in this article. In this CPO model, interval variables are used to
represent activities, each with several related optional interval variables depicting the choice
of resource. Optional interval variables include a Boolean status reflecting the fact that the
corresponding activity is present or absent from the solution (i.e. not considered by the
constraints). The ordering of resources can be represented by a set of interval variables,
known as a sequence variable. This sequence variable is used in the scheduling model to
prevent activities in the sequence from overlapping in time. More formally, an interval
variable a is defined by a start time s and an end time e, which are non-negative integer
values, such that a € {[s,e) | s,e € N,e > s}. Optional interval variable b is presented such
that b € {0} U{[s,e) | s,e € N,e > s}. Additionally the developed CPO model uses various
functions and constraints that are described as follows [9]:

end0f: A function that provides the end value of an interval variable if it exists, or else
returns zero.

alternative: This constraint ensures that if a given interval variable is present, then
only one related optional interval variable is chosen with the same start and end values.

noOverlap: This constraint is used to ensure that a set of interval variables defined by a
sequence variable do not overlap, while maintaining a minimum distance between them
as specified by a transition distance matrix.

endBeforeStart: This constraint guarantees that if two interval variables are present,
then the first ends before the second starts, with an optional minimum delay between
them.

forbidExtent: This constraint makes sure that an interval variable cannot overlap with
a forbidden region where the value of the step function is zero. As a result, the interval
variable must either end before the forbidden region or start after it.

stepAtEnd: This step function returns an elementary cumulative function with a non-
negative integer value at the end of an interval variable. Such functions model a known
function of time, such as the resources used during a particular time period, by returning
a non-negative integer value (height of the elementary function) within the range of the
interval variable and zero outside of it.

cumulFunction: This expression models a known function of time, such as the cumulative
amount of resources used by an activity during a specific time period.

alwaysIn: This constraint restricts the potential values of a cumulative function to a
specific range during a time interval.

6:5

CP 2023

6:6 Short-Term Underground Mine Planning Using CP

Tables 2 and 3 present lists of sets, parameters, and variables used in the CP model,
along with their corresponding descriptions.

Table 2 Sets and parameters of the CP model.

Set Description
J Index set of activities
M Index set of all available equipment
M; Index set of eligible machines to perform activity j
Aj Index set of activities that must occur after activity j
B Index set of blast activities
T Index set of time windows (starting at 1)
Parameter Description
D Processing time of activity j
D Matrix of transition time between sites where the value of its
element is equal to 0 for the same site and greater than 0 otherwise
d; Development (meter) of activity j
h; Production hole drilling (meter) of activity j
0j Stope ore mucking (ton) of activity j
St Starting time of time window ¢
et Ending time of time window ¢
d Lower bound for daily development
d Upper bound for daily development
h Lower bound for daily hole drilling
h Upper bound for daily hole drilling
[2) Lower bound for daily ore mucking
o Upper bound for daily ore mucking
Blast__calendar The time periods during which only blasting activities are permitted (all
activities except blasting are forbidden to be performed during these periods

Table 3 Decision variables of the CP model.

Variable Description
Y; Interval variable for activity j
X; Optional interval variable to perform activity j using machine m
Sm Sequence variable for machine m (Sy, = {X;m | j € J})
Q¢ Integer variable for total development in drifts
Q" Integer variable for total amount of production hole drilling in stopes
Q° Integer variable for total amount of ore material mucked from stopes

Y. Aalian, G. Pesant, and M. Gamache

The CP model is given as (1)-(11):

Objective function

Minimize mgj((end(]f(Yj)) (1)
J
Constraints

alternative(Yj, X;,, | m € M;) Vield (2)

noOverlap(Sy,, D) VmeM (3)

endBeforeStart(Y;,Y;) Vied, ic€A; (4)

forbidExtent (Y}, Blast_calendar) VjeJ\B (5)

cumulFunction(Q?) = Z stepAtEnd (Y}, d;) (6)
JjeJ

alwaysIn(Q?, sy, et x d,t x d) VteT (7)

cumulFunction(Q") = Z stepAtEnd (Y}, h;) (8)
JjeJ

alwaysIn(Q", s, e;,t X h,t X h) VteT (9)

cumulFunction(Q’) = Z stepAtEnd (Y}, 0;) (10)
JjeJ

alwaysIn(Q°, s, e, t X 0,1 X 0) vteT (11)

Objective (1) of the CP model is to minimize the makespan. Constraint (2) ensures that
only one optional variable is chosen for an interval variable i.e. only one machine (with the
appropriate type) is used to perform a given activity. Constraint (3) prevents machines
from being used simultaneously, meaning that each machine can only be assigned to one
activity at a time. Constraint (4) takes into account the order in which activities must be

performed at a site, with most activities having only one predecessor and some having none.

It is important to note that the site where each activity must be carried out is predefined in
the input data. Therefore, all activities can be executed in their respective predetermined
sites.

Constraint (5) is used to ensure that only blasting activities occur during designated
blast windows. In order to model the blasting constraint in the CP model, the day and night
work shifts are compressed into a 110-time unit period (each shift consists of 55 time units),
where each time unit represents 10 minutes in the real world. This compression allows for
blasting activities with a length of zero time units to occur only at the end of compressed
periods, every 110 time units (see Figure 3). Multiple blasting activities can be performed at
the same time during each blasting window.

Constraints (6) and (7) are introduced to ensure that the progress of development
rounds each day (measured in meters per day) is maintained within specific limits based
on the defined development target. To model these development constraints, we define
time windows [s¢, e;) each representing a day in the schedule. For each time window, we
establish cumulative upper and lower bounds (based on daily bounds) for total development
in drifts (in meters) that must be achieved. Next, we use the cumulFunction to model the
cumulative amount of development per meter and apply the alwaysIn constraint to ensure
that the cumulative function stays within the target value bounds for each time window. The
function stepAtEnd(i,j) returns an elementary cumulative function with a step of height j
(a non-negative integer value) at the end of interval variable i. The presented development

6:7

CP 2023

6:8

Short-Term Underground Mine Planning Using CP

constraints aim to achieve the desired daily development target in the generated schedule.
Furthermore, by using the cumulFunction in this constraint, the model is able to flexibly
compensate in the following days for any shortfall in achieving the daily development goal
(see e.g. Figure 6a). This feature of the constraints closely resembles what is taken into
account in actual short-term underground mine planning, making the model more practical
for real-world operations.

Constraints (8) and (9) model the production drilling constraint to ensure that the
amount of production holes drilled in the stope per day (measured in meters per day)
is restricted within certain bounds, defined based on the production drilling objectives.
Furthermore, Constraints (10) and (11) are used to model the stope mucking constraint,
which ensures that the amount of ore material mucked from stopes each day (measured in
tons per day) is maintained within specific limits determined based on the production target.
These constraints (Constraints (8)-(11)) aim to achieve the production plan in the produced
schedule by controlling the daily amount of production holes drilled and ore mucked. Similar
to the development constraints, the production constraints also allow for making up for
shortfalls in meeting the daily production goal. An activity can perform either development
or production depending on the type of cycle. If the activity is part of a development cycle,
it can have development (d;), and if it is involved in a production cycle, it can have either
production hole drilling (k) or stope mucking (o0;). The development cycle includes activities
that are performed in waste rocks lacking financial value to access economically valuable
deposits, while the production cycle is conducted in valuable rocks to extract ore material
from the stope.

In the presented short-term mine planning model, operational development and production
targets (KPIs) are considered to achieve the tactical decisions made at the medium-term
planning level. Specifically, tactical decisions in underground mine planning are typically
associated with defining the extraction sequence over a planning horizon of one to three
months [7].

4 Implementation and Results

The experiments were conducted on a computer featuring an Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz and 16 GB of RAM. The CP models were solved using the Constraint
Programming Optimizer in IBM ILOG CPLEX Optimization Studio version 12.8.0.

The model was tested on two real data sets collected from the Meliadine underground
gold mine in Nunavut, Canada. Both data sets involve scheduling activities for a roughly
one-week planning horizon. The first data set (Instance 1) relates to development operations,
which consist of 15 machines and 291 activities to be performed across 18 sites. The total
advancement achieved by all available development rounds in this instance is equal to 188
meters. Specifically, each round (cycle) results in approximately 4 meters of advancement in
the development drift. The second data set (Instance 2) concerns production operations and
includes 27 machines, 185 activities, and 27 sites. In this instance, a total of 1500 meters of
production holes have been drilled across all accessible stopes, resulting in the extraction of
27,000 tons of ore material. The available resources are categorized into different equipment
types, and the number of each type is reported in Table 4. Although the developed CP
model takes into account both development and production activities, there was no data
available (in the mine) that included both activities together. Therefore, we applied our
model separately to two different datasets: one for development and another for production.

Y. Aalian, G. Pesant, and M. Gamache

Table 4 Number of machines per equipment type for Instances 1 and 2.

Equipment type Instance 1 | Instance 2
7

Scooptram
Bolter
Scooptram clean face
Jumbo
Anfo loader

Truck -
Raise borer -

W W = O N

Production drill rig -

T = 3 W

Cabling machine -

The results obtained by implementing the CP model on Instances 1 and 2 are presented
in the following subsections.

4.1 Instance 1

Table 5 presents the results of schedules generated for Instance 1 with different daily
development upper bounds (d) in the development constraint. All the models in the table are
solved to optimality in a short amount of time. As the primary objective of the scheduling
model is to minimize the makespan, the lower bound on daily development specified in
the development constraint is readily satisfied. Therefore to evaluate the effect of different
development targets on the resulting schedule, we only modify the upper bound value for

the total amount of development to be accomplished per day.

Table 5 Results of different CP models on Instance 1.

Model Development upper Makespan Solving time

bound (d)
1 24 882 12 sec
2 28 772 13 sec
3 32 678 12 sec
4 36 635 13 sec
5 40 600 11 sec
6 44 600 10 sec
7 00 600 10 sec

As can be seen from Table 5, increasing the upper bound in the development constraint
results in lower makespans in the produced schedule. Furthermore, the schedule makespan
remains unchanged for bounds greater than 40. Therefore, d = 40 can be considered a suitable
daily development target for generating a short-term schedule on Instance 1. Interestingly,
this value coincides with the daily development target employed by the human planner at
the mine — our model confirms this empirical choice. Figure 4 displays the location-based
Gantt chart for the short-term schedule generated on Instance 1 with d = 40.

The daily and cumulative development resulting from the schedule produced using Model
3 on Instance 1 with d = 32 are displayed in Figures 5a and 5b. As seen in Figure 5a, the
maximum daily development limit of 30 meters is respected, resulting in a total cumulative
development of 188 meters in six days (Figure 5b).

6:9

CP 2023

6:10

Short-Term Underground Mine Planning Using CP

Location-based Gantt chart

Location A NN DU DN NN . [[e ee
Bolter

weatons [I . [T T | B o

wionc [T 11| B oo

Location_D L [] | I | Anfo loader
M None

Location_E I Y N . N | I

Location_F [] L I J] I]|

Location_G N | [|]

] N - .

. EE I |
g tocation N | | [] [[[

Location_ [T 1] N |

Location_L N | N . | L]

Location 1 [] |] -

T | N |

tocation_0 [[.

Location_p N | N |

Location_a. [| [| [|] | I

Location_R .-I-

Time

Figure 4 Location-based Gantt chart for the generated schedule on Instance 1.

Development per day (m) Cumulative Development (m)
188 188
35 32 32 32 32 R g 20
30 28 g 175 160
5 2 £ 150 128
g 2 125
2 96
g 2 100
E 15 o 75 64
Q1o T 50 32
5 0 E
0 S 0
Dayl Day2 Day3 Day4 Day5 Day6 Day7 0 1 2 3 4 5 6 7
Period (Day) Period (Day)
(a) (b)

Figure 5 Daily (a) and cumulative (b) development in Model 3 (d = 32) on Instance 1.

Figures 6a and 6b show the daily and cumulative development obtained from Model 6 on
Instance 1 with d = 44. According to Figure 6a, 36 meters of development are achieved on
Day 2, which is lower than the maximum daily target of 44 meters. However, this shortfall is
made up on Day 3 by completing 48 meters of development, above the maximum daily target.
In other words, 48 meters of development are completed on Day 3 to compensate for the
shortfall on Day 2. After Day 3, it is not possible to meet the maximum daily goal due to the
limited number of drifts available. As shown in Figure 6b, the total cumulative development
of 188 meters is reached in five days. This feature of the development constraints in the CP
model can be practical for short-term planning in underground mines, where operational
restrictions or a relatively small number of accessible drifts (sites) prevent the achievement
of the development target on certain days.

Figure 7 shows the comparison of the average utilization rate of several machine types
in schedules produced using CP models on Instance 1 with different d for the development
constraint. The utilization rate of a machine is the total amount of time units during which
the machine was actively operating at the site relative to the total amount of time for which
it was available for use. As can be seen from this figure, increasing d results in a higher

Y. Aalian, G. Pesant, and M. Gamache

Development per day (m) Cumulative Development (m)

48 = 200 188 188
50 =
44 o 180
g 152
40 3 g 160
g 36 36 % 140 128
£ 3 5 120
5 24 a 100 20
2 - —)
<
- E
10 = 40
o 5 20
0 0
Day1l Day2 Day3 Day4 Day5 Day6 0 1 2 3 4 5 6
Period (Day) Period (Day)
(a) (b)

Figure 6 Daily (a) and cumulative (b) development in Model 6 (d = 44) on Instance 1.

average utilization rate of machines in the schedule. This is due to the fact that larger d
values lead to more compact schedules with lower makespans, which in turn, reduces waiting
time for machines.

Average Utilization Rate (%)

md=24 md=28 nd=32 d=36 md=40 ud=44
70 65.3365.33
61.73 62.6662.66
59.21
60 56.1356.14 782 55.46
3
< 53.04
o 49.68 50.77 48.705
= 50
& 43.63 44.44 263
g 38.18 75 40 40
540 354
<
N 31.09
= 30 2721
=] 5y 22222222
17271966 21
) ul I I I
0]
Bolter Jumbo Scooptram_ Cleanface Scooptram Anfo loader

Figure 7 Average utilization rate of machines in schedules with different development bounds (d)
on Instance 1.

4.2 Instance 2

Table 6 displays the makespan of schedules generated by implementing different models on
Instance 2, with distinct upper bounds for the daily production drilling (E) and stope mucking
(0) in production constraints. According to Table 6, reducing the upper bound values in
production constraints leads to longer makespans in the generated schedule. Specifically, for
the production drilling constraint, the suitable value is 400 meters, as it leads to the lowest
makespan value that remains unchanged for larger upper bounds. Similarly, for the stope
mucking constraint, 6 = 6,000 appears to be an appropriate stope mucking target for the
schedule generated on Instance 2. Figure 8 shows the location-based Gantt chart for the
created schedule on Instance 2 with o = 6, 000.

Figures 9a and 9b present the daily and cumulative production drilling rates in the
schedule generated using Model 5 with i = 500 on Instance 2. Figure 9a demonstrates that
the drilling rate exceeds the daily limit by reaching 600 meters on Day 2 to compensate for
the shortfall on Day 1. As depicted in Figure 9b, the total production drilling of 1500 meters
is achieved within four days.

6:11

CP 2023

6:12 Short-Term Underground Mine Planning Using CP

Table 6 Results of different CP models on Instance 2.

Model Production drilling Stope mucking Makespan Solving time
upper bound (k) upper bound (3)

1 00 o0 730 16 sec

2 200 - 1060 17 sec

3 300 - 840 16 sec

4 400 - 730 16 sec

5 500 — 730 16 sec

6 - 4000 881 17 sec

7 - 5000 771 16 sec

8 - 6000 730 17 sec

9 - 7000 730 17 sec

Location-based Gantt chart

Locaton_ I S Hcrine e
tocaton_5 I I Truck

Scooptram
Cable
Backfill
Driller

Anfo loader
None
SlotRaise

Location_c ' N S | S

Location_M I I

c
5
§ Location N P N I |
§ Loction_0 I [N N | —
Location_p I I I | R
Location_Q I — . ¥
Location_R | [N S —
Location S I I B D | —
Location_T I I I |
Location_U I . I R D | E—
Location_V I I I |
Location_w I | I S | S
Location_x L | I N
Location_Y - I R S |
Location_Z - I I |
Location_zz I I [| S

Figure 8 Location-based Gantt chart for the generated schedule on Instance 2.

Drilling per day (m) Cumulative drilling (m)
1500 1500
700 600 o 1600 1400
600 £ 1400
= T 1200 1obo
= 400 = o0
200 E 000 409
100 S 400
100 . 0 © 200
0 0
Day 1 Day2 Day3 Day4 Day5s 0 1 2 3 4 5
Period (Day) Period (Day)
(a) (b)

Figure 9 Daily (a) and cumulative (b) drilling in Model 5 (h = 500) on Instance 2.

Figures 10 and 11 compare the average utilization rate of several machine types in
schedules produced using CP models on Instance 2, with different values for h and o,
respectively. According to these figures, the average utilization rate of machines increases for
schedules with higher upper bounds in production constraints.

Y. Aalian, G. Pesant, and M. Gamache

Average Utilization Rate (%)

mh=200 mh=300 uh =400 h =500
70
60.9660.96
~ 60 56.5956.59
= 52.97
< 49.18
3 50
5] 41.97
i 40 36.4636.46 38.97
8 31.68
g 30 26.9126.91
= 23.39 2511
= 18.54
5 20 148817121712
11.79
10 545 679 781 7.81 l I
. —1 1|
Cabling machine Raise borer Production drill rig Truck Scooptram Anfo loader

Figure 10 Average utilization rates of machines in schedules with different production drilling

bounds (h) on Instance 2.

Average Utilization Rate (%)

5 =4000 5 =5000 5 =6000 0="7000
70
60.9660.96

60 SL.72 56.5956.59
e 53.58
= 50.51
5 50 46.89
g
= 40 34‘5236.4636.46
.8 30.2
g 30 25.4826.9126.91
N 223
B 17.1217.12
5 20 14191621

10 6.47 7.39 7.81 7.81 I l I

. mEN
Cabling machine Raise borer Production drill rig Truck Scooptram Anfo loader

Figure 11 Average utilization rates of machines in schedules with different stope mucking bounds
() on Instance 2.

5 Added Value of CP

Constraint Programming allowed us to efficiently address short-term underground mine
planning by quickly producing optimal schedules minimizing the makespan. Moreover the
model identifies d = 40 as the appropriate daily development target, which aligns with the
value selected by the mine planner and confirms the practice of setting the development upper
bound at 40. Additionally, the model can explore what-if scenarios by varying parameter
values, such as the impact of changing daily development or production targets in the
model on machine utilization rates in the generated schedule. These results demonstrate
the practicality and efficiency of using the CP model for short-term scheduling in real-world
underground mining operations.

5.1 Comparison of CP model and manual approach

In order to demonstrate the effectiveness of our optimization model, we compared the short-
term schedules produced by the CP model with those manually created by the mine planner
for the same instance. Since a detailed schedule of activities with similar time fidelity to
the schedule produced using the CP model was not provided in the studied mine, we only
compared the schedule makespan. In particular, we compared the number of shifts required
to complete all activities in the generated short-term schedule using the CP model and
manual approach for both Instances 1 and 2, as shown in Table 7. The development KPI
considered for scheduling activities in Instance 1 is 40 meters per day (m/day). In Instance

6:13

CP 2023

6:14

Short-Term Underground Mine Planning Using CP

2, the production drilling KPI is 400 m/day, and the stope mucking KPI is 6,000 tons per
day. As previously mentioned, each day consists of two working shifts, where each shift is
equivalent to 55 time units in the CP model.

Table 7 Comparison of schedule makespan between CP model and manual approach for Instances
1 and 2.

Instance | CP model | Manual approach
1 11 Shifts 14 Shifts
2 14 Shifts 16 Shifts

Table 7 shows that the CP approach outperforms the manual scheduling method on both
Instances 1 and 2 by creating more compact schedules with lower makespans (based on the
number of shifts) while satisfying the daily development and production targets (KPIs).
Additionally, the CP models are quickly solved to optimality, making it an efficient tool for
mine planners to rapidly generate updated short-term schedules whenever changes occur in
the underground mine plan.

The results of this study demonstrate advantages of the developed CP model for optimizing
short-term planning in underground mines and reducing the reliance on manual scheduling,
which is highly dependent on the planner’s experience. Moreover, the CP model can be
easily adjusted to accommodate or exclude additional activity types and related constraints
based on the specific requirements of underground mining operations.

6 Literature review

Short-term underground mine planning models are often difficult to solve (NP-hard) due to
various operational constraints to consider and to the large number of variables involved.
However there has been notable research interest in developing new mathematical models
and algorithms to optimize short-term scheduling in underground mines.

Nehring et al. (2010) designed a MIP model to optimize the short-term scheduling and
allocation of loader-trucks in sublevel stoping mines. The model allows for the reallocation
of equipment in response to changes in underground operations. The proposed model was
applied to a copper mine, demonstrating satisfactory results in terms of tonnage deviations
from predetermined amounts throughout the planning period [11]. O’Sullivan and Newman
(2015) introduced an Integer Programming (IP) model for scheduling activities in an Irish
lead and zinc underground mine to maximize the discounted amount of produced metal.
Both exact and heuristic solutions were used to reduce the number of variables in the model.
Additionally, an optimization-based decomposition heuristic was developed to generate feasible
schedules in less computation time for complicated problem instances [12]. Song et al. (2015)
developed a decision support tool to determine the scheduling of activities in underground
mines. The tool was tested on a real mine dataset in Finland and significantly decreased
the makespan compared to manual scheduling methods, thereby improving operational
performance. However, the proposed method did not take into account uncertainty related
to unexpected activities in underground operations [15].

Schulze and Zimmermann (2017) introduced a solution approach for short-term production
scheduling in underground mining. The developed approach assigns staff and machines to
mining activities while considering operational constraints with the goal of minimizing
deviations from targeted production in a potash mine. The method was tested on various
instances and demonstrated superior performance when compared to manual scheduling [13].
Seifi et al. (2019) proposed a two-stage solution approach for scheduling machines and staff
in an underground potash mine in Germany. The first step involves solving the relaxation

Y. Aalian, G. Pesant, and M. Gamache

of the MIP model, and in the second step, a heuristic algorithm is used to modify the
solutions obtained from the relaxation model to achieve feasible schedules. The experiments
conducted on real-word datasets show that the developed approach outperforms the heuristic
procedure presented by Schulze and Zimmermann (2017)[14]. Wang et al. (2020) utilized
a genetic algorithm (GA) for optimizing the scheduling of equipment used in underground
mining. A Non-Linear Programming (NLP) model is presented with a significant number of
decision variables associated with multiple mining sites and equipment types [17]. A MIP
model was presented by Campeau and Gamache (2020) to optimize short-term planning in
underground mines. The goal was to maximize material extraction while ensuring a minimum
ore production rate to keep the mill active. The model considers operational and resource
constraints to generate feasible schedules. When applied to a gold mine data set, the model
produced an optimal short-term schedule [5]. Campeau et al. (2022) introduced a novel
MIP model to address short- and medium-term planning in underground mines. The model
integrated continuous variables for time discretization, resulting in realistic schedules. The
effectiveness of the model was demonstrated by applying it to a dataset from a Canadian
gold mine, which produced promising results [7].

Over the last few years, several CP approaches have been proposed to tackle the short-
term underground mine planning problem. A model using CP was suggested by Astrand et al.
(2018) for scheduling a mobile fleet in underground operations, which was tested on data from
an actual underground mine [2]. Astrand et al. (2020) extended the previously developed CP
model by incorporating the time it takes for mobile machinery to travel between different sites
in an underground cut-and-fill mine. They also proposed a revised CP model with compressed
blasting time and post-processed solutions to obtain schedules for the primary problem.
In order to improve the quality of schedules and reduce computation time, a specialized
neighborhood definition was implemented in a Large Neighborhood Search (LNS) algorithm.
The effectiveness of this algorithm was assessed using several instances of an underground
mine in Sweden. The outcome showed that the suggested method successfully enhanced the
initial feasible solution and generated high-quality schedules [3]. Campeau and Gamache
(2022) presented a CP model for short- and medium-term planning in underground mining.
They evaluated the model’s ability to address long-term production planning objectives by
testing it on five data sets from a Canadian underground gold mine, considering a planning
horizon of up to one year. The outcomes revealed that the CP model was superior to the
equivalent MIP model in terms of computational efficiency and application [6].

These previous CP approaches for short-term underground mine planning exhibit a
limited ability to incorporate daily mine planning development and operational goals during
the short-term scheduling process. To overcome this limitation, this paper introduced a
CP model for the short-term scheduling of activities in underground mining that takes into
consideration operational constraints and the development and production targets of the
mine plan to generate more practical and reliable schedules.

7 Conclusion

This paper presented a CP model that takes into account various operational constraints
and daily development and production targets for short-term scheduling optimization in
underground mines. The model was tested on two data sets from the Meliadine gold mine
using the long-hole stoping mining method. We conducted a comparative analysis of the
schedules generated by our CP model and those created manually by the mine planner.
The experiments showed that the CP model outperforms the manual approach, resulting

6:15

CP 2023

6:16

Short-Term Underground Mine Planning Using CP

in more efficient schedules with lower makespans. Results highlight the potential benefits
of implementing the CP model in actual underground mining operations to improve both
development and production through optimized short-term mine planning. Underground
mines are somewhat unpredictable environments which may affect how long an activity

actually takes. For future work, it could be beneficial to incorporate uncertainty in activity

durations which would improve the robustness of the short-term schedule.

—— References

1

10

11

12

13

14

15

16

17

Max Astrand, Mikael Johansson, and Jenny Greberg. Underground mine scheduling modelled
as a flow shop: a review of relevant work and future challenges. Journal of the Southern
African Institute of Mining and Metallurgy, 118(12):1265-1276, 2018.

Max Astrand, Mikael Johansson, and Alessandro Zanarini. Fleet scheduling in underground
mines using constraint programming. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research: 15th International Conference, CPAIOR 2018, Delft,
The Netherlands, June 26-29, 2018, Proceedings 15, pages 605—-613. Springer, 2018.

Max Astrand, Mikael Johansson, and Alessandro Zanarini. Underground mine scheduling of
mobile machines using constraint programming and large neighborhood search. Computers &
Operations Research, 123:105036, 2020.

Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling: applying
constraint programming to scheduling problems, volume 39. Springer Science & Business Media,
2001.

Louis-Pierre Campeau and Michel Gamache. Short-term planning optimization model for
underground mines. Computers & Operations Research, 115:104642, 2020.

Louis-Pierre Campeau and Michel Gamache. Short-and medium-term optimization of under-
ground mine planning using constraint programming. Constraints, 27(4):414-431, 2022.
Louis-Pierre Campeau, Michel Gamache, and Rafael Martinelli. Integrated optimisation of
short-and medium-term planning in underground mines. International Journal of Mining,
Reclamation and Environment, 36(4):235-253, 2022.

Atlas Copco. Mining methods in underground mining. Atlas Copco: Nacka, Sweden, 2007.
Philippe Laborie, Jérome Rogerie, Paul Shaw, and Petr Vilim. Ibm ilog cp optimizer for
scheduling: 20+ years of scheduling with constraints at ibm/ilog. Constraints, 23:210-250,
2018.

B. Marshall. Facts and figures : The state of canada’s mining industry. Technical report, The
Mining Association of Canada, 2020.

Micah Nehring, Erkan Topal, and Peter Knights. Dynamic short term production scheduling
and machine allocation in underground mining using mathematical programming. Mining
Technology, 119(4):212-220, 2010.

Doénal O’Sullivan and Alexandra Newman. Optimization-based heuristics for underground
mine scheduling. European Journal of Operational Research, 241(1):248-259, 2015.

Marco Schulze and Jiirgen Zimmermann. Staff and machine shift scheduling in a german
potash mine. Journal of Scheduling, 20:635—-656, 2017.

Cinna Seifi, Marco Schulze, and Jiirgen Zimmermann. A two-stage solution approach for a
shift scheduling problem with a simultaneous assignment of machines and workers. In Mining
Goes Digital, pages 377-385. CRC Press, 2019.

Zhen Song, Hakan Schunnesson, Mikael Rinne, and John Sturgul. Intelligent scheduling for
underground mobile mining equipment. PloS one, 10(6):¢0131003, 2015.

Farzad Sotoudeh, Micah Nehring, Mehmet Kizil, Peter Knights, and Amin Mousavi. Production
scheduling optimisation for sublevel stoping mines using mathematical programming: A review
of literature and future directions. Resources Policy, 68:101809, 2020.

Hao Wang, Victor Tenorio, Guoqing Li, Jie Hou, and Nailian Hu. Optimization of trackless
equipment scheduling in underground mines using genetic algorithms. Mining, Metallurgy &
Ezploration, 37:1531-1544, 2020.

Exploiting Configurations of MaxSAT Solvers

Josep Alos =
Logic & Optimization Group (LOG), University of Lleida, Spain

Carlos Ansétegui &
Logic & Optimization Group (LOG), University of Lleida, Spain

Josep M. Salvia &
Logic & Optimization Group (LOG), University of Lleida, Spain

Eduard Torres &
Logic & Optimization Group (LOG), University of Lleida, Spain

—— Abstract

In this paper, we describe how we can effectively exploit alternative parameter configurations to a
MaxSAT solver. We describe how these configurations can be computed in the context of MaxSAT.
In particular, we experimentally show how to easily combine configurations of a non-competitive
solver to obtain a better solving approach.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming
Keywords and phrases maximum satisfiability, maxsat evaluation, automatic configuration
Digital Object Identifier 10.4230/LIPIcs.CP.2023.7

Funding This work was supported by MCIN/AEI/10.13039/501100011033 (Grant: PID2019-
109137GB-C21), Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR), Departament
d’Empresa i Coneixement de la Generalitat de Catalunya (Grant: 2022 FI_B 00010)

Acknowledgements We want to thank Alexander Nadel for sharing the solver TT-Open-WBO with

the configurable parameters exposed.

1 Introduction

Since 2006, the MaxSAT Evaluation (MSE) [5] has been held annually with the primary
objective of advancing MaxSAT technology and assessing its current state-of-the-art. The
evaluation consists of multiple solvers being tested on various benchmarks across different
evaluation tracks. This event has undeniably spurred the MaxSAT community to create
more cutting-edge solvers and enhance their competitiveness.

It is not surprising that solver performance depends on several factors, including the
power of the algorithm implemented by the solver, proper configuration of solver parameters
to unleash its full potential, and implementation issues. Therefore, we must interpret the
MaxSAT Evaluation ranking results carefully and derive conclusions according to the goal of
our analysis. For example, a similar or weaker algorithm could outperform other approaches
thanks to better implementation of data structures or a previous tuning process of its input
parameters.

From an industrial point of view, we mainly care about obtaining an effective solving
approach that is ready for deployment for a particular problem subject to available resources
(computing power, environment restrictions, licenses available, etc). From a research point of
view, we are more interested in identifying the potential of new solving approaches that lead
to further promising research avenues.

© Josep Alods, Carlos Ansétegui, Josep M. Salvia, and Eduard Torres;
37 licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).

Editor: Roland H. C. Yap; Article No. 7; pp. 7:1-7:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:josep.alos@udl.cat
https://orcid.org/0000-0002-7342-2701
mailto:carlos.ansotegui@udl.cat
https://orcid.org/0000-0001-7727-2766
mailto:josh.salvia@gmail.com
https://orcid.org/0000-0003-3387-2094
mailto:eduard.torres@udl.cat
https://orcid.org/0000-0002-3136-7513
https://doi.org/10.4230/LIPIcs.CP.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Exploiting Configurations of MaxSAT Solvers

Our aim is to satisfy both industrial and research perspectives by identifying the best
possible solving approach that can be achieved from a single solver while adhering to certain
restrictions. In particular, we treat the solver as a black box, meaning that we cannot access
its source code, nor do we have any domain knowledge of the problem to be solved, meaning
that we cannot utilize any specific structure feature.

Despite these constraints, our approach enables us to unleash the hidden potential of the
solver and avoid incorrect rankings of better algorithms that have not been appropriately
configured or restarted. Additionally, our study emphasizes the importance of being cautious
when interpreting rankings based on the MaxSAT Evaluation, as we mentioned previously.

In this paper, we first show how to effectively configure MaxSAT solvers using Automatic
Configuration (AC) tools (tuners), specifically GGA [4] and SMAC [14]. Then, we show
that we can take advantage of not only the best configuration returned by the tuners but
also a selection of the configurations seen by the tuner during the AC process. With these
configurations, we can then build a simple portfolio that runs in parallel these configurations
if enough computational resources are available.

We also demonstrate how to create a sequential portfolio that schedules the execution of
different parametrizations of a single MaxSAT solver on a given number of cores within a
specified timeout. This approach can be thought of as a restarting strategy, where a different
configuration of the solver parameters is selected at each restart.

It is worth mentioning that all these approaches are agnostic of the structure of the
instances. Otherwise, we should explore extending other approaches available in the literature
such as ISAC++ [13].

Finally, we integrate all these building processes in the OptiLog framework [1]. With the
new APIs, the user can provide an input MaxSAT solver and its parameters through the
BlackBox Module, and OptiLog automatically generates a new solving approach for a given
number of cores.

We conducted an extensive experimental investigation on the Weighted Incomplete track
of the MaxSAT Evaluation 2022, with a particular focus on the highly configurable MaxSAT
solver Loandra [6]. In this track, Loandra ranked sixth when restricted to a timeout of 60
seconds. Our approach involves the construction of parallel and sequential portfolios based
solely on Loandra, which significantly improves its performance.

2 Preliminaries

MaxSAT is the optimization variant of the SAT decision problem. While for SAT the goal
is to find an assignment to the Boolean variables (solution) that satisfies all the clauses
in the input CNF formula, in MaxSAT we look for a solution that satisfies the maximum
possible number of clauses. Since some of these clauses can be falsified we refer to them
as soft clauses. Within the MaxSAT community, it is typical to reformulate the problem
from a minimization perspective aiming to find a solution that falsifies the minimum possible
number of soft clauses.

There are several variants of the MaxSAT problem. We can add weights to the soft
clauses that represent the cost of falsifying the clause. In this case, we want to look for a
solution that minimizes the aggregated cost of the Weighted soft clauses. Additionally, we
can have hard clauses, i.e., clauses that cannot be falsified by the solution.

MaxSAT solvers have experimented a great success in the last decade. Among these
solvers, we find complete (or exact) solvers and incomplete solvers. Complete solvers provide
optimal solutions while incomplete solvers report solutions as good as possible, but are not

J. Alos, C. Ansétegui, J. M. Salvia, and E. Torres

required to guarantee their optimality. These solvers can either refine a lower bound (Ib) on
the cost of the optimal solutions or an upper bound (ub), or both. In particular, incomplete
solvers iteratively report (whenever possible) a better (smaller) upper bound on the optimal
solution.

3 The MaxSAT Evaluation

The MaxSAT Evaluation 2022 was structured into three tracks: main track complete
(unweighted and weighted variants), main track incomplete (unweighted and weighted
variants), and the special incremental MaxSAT track. In this paper, we focus on the
incomplete track for weighted MaxSAT instances with a timeout of 60 seconds.

The term incomplete refers to the type of MaxSAT solvers which are not required to
be exact, i.e., they do not need to certify the optimum. Their goal is to report the best
possible solution within a given timeout. The term weighted refers to the variant of MaxSAT
instances. The weighted MaxSAT variant allows integer weights for the soft clauses plus the
hard clauses.

We consider the timeout of 60 seconds useful for our study since it is a realistic scenario
of industrial applications where we require a suboptimal solution in a short time window
and because our automatic configuration process, given the computational resources we have
available, can be restricted to two days (see Section 5).

The MaxSAT Evaluation 2022 incomplete (weighted) track involved 197 MaxSAT instances
and 10 incomplete solvers: DT-HyWalk [18], noSAT-MaxSAT [15], NuWLS-c [7], Exact [8, 11],
Loandra [6], Open-WBO-inc (two variants) [12], and TT-Open-WBO-Inc (three variants) [16].

Each solver s was ranked according to the scoring function score(s) shown in Equation 1.

S score(s, i)

score(s) =
n

(1)
Given a set of n instances, the score(s) of a MaxSAT solver s is the average of the scores
for each instance, computed by score(s,) in Equation 2.

1 + best-known ub for instance ¢
1+ ub for ¢ found by s

score(s,i) = (2)

The score(s,) function computes the ratio between the best-known upper bound of an
instance 7 and the bound reported by the solver s on the same instance. Assuming that
(best-known ub) < ub (which is the case for the MaxSAT Evaluation), the computed value
ranges between 0 and 1, where higher values correspond to better upper bounds.

The competition has some specific rules about what is and is not allowed in the im-
plementation of the solvers. In particular, the solvers are not allowed to employ triggers
to modify their behavior, which is deemed to be specific to particular instances. However,
solvers can concatenate the usage of different solving techniques.

In the most recent competition, the MaxSAT solvers used a variety of strategies and
solvers. Some of these solvers are outlined below, along with the various approaches they
employ in order to find improved solutions.

1. NuWLS-c: This solver adopts two solvers, the NuWLS solver, which is an improvement
of SATLike, and the integration of TT-Open-WBO-Inc.

2. TT-Open-WBO-Inc: This solver uses four different strategies, including SATLike for
inprocessing, a modified version of Mrs. Beaver for unweighted instances, BMO-clustering
for weighted instances, and Polosat, a SAT-based local search method. This MaxSAT
solver has three different distributions:

7:3

CP 2023

7:4

Exploiting Configurations of MaxSAT Solvers

(g) Which incorporates the Glucose 4.1 SAT Solver.
(i) Which incorporates the new Intel SAT Solver.
(is) Which incorporates the new Intel SAT Solver and is tuned for short invocations.
3. DT-HyWalk: This solver employs three distinct strategies, including a direct call to a
SatSolver, the SATLike solver for local search, and the use of another MaxSAT solver,
TT-Open-WBO-Inc.
4. Loandra: This solver utilizes two core algorithms, namely a Core-Based algorithm and
a Linear algorithm.

Table 1, column “MSE”; shows the results of the MaxSAT Evaluation 2022 for the top
six solvers at the incomplete weighted track with 60 seconds timeout. As we can see, the
MaxSAT solver Loandra was not competitive within this category. In this paper, we propose
an approach that is agnostic of the structure of instances and only allows the usage of
alternative configurations of the same input MaxSAT solver. We experimentally show the
goodness of our approach on the MaxSAT solver Loandra.

3.1 Reproducing the MaxSAT Evaluation for the Incomplete track

All of our executions of the MaxSAT solvers are run on a computation cluster composed of
nodes with two AMD 7402 processors (each with 24 cores at 2.8 GHz) and 21 GB of RAM
per core, managed by Sun Grid Engine (SGE). All the experiments are managed using the
Running Module of the OptiLog framework.

Each execution is given 60s of CPU time and 32 GB of memory. As the memory
requirements exceed the memory per core available, two slots are reserved and an affinity
mask is set by SGE to restrict the execution to only one of the two cores. In contrast to the
MaxSAT evaluation, each solver was evaluated with 50 different random seeds and we report
results on the average score, and in some of the experiments, we also show the minimum and
maximum scores, and the standard deviation.

In the course of developing our experiments, we detected two problems with some
executions of the solvers: 1) some executions report a bound that does not correspond to the
real cost of the solution reported, and 2) some executions report a solution that does not
satisfy the hard clauses.

To address these issues we conduct a validation step executed after the solver exhausts
the 60s of CPU time. In particular:

For 1), we trust the cost we compute from the solution reported, ignoring the bound
reported by the solver.

For 2), we consider the solver was not able to find any solution at all.

This validation step is also conducted during the automatic configuration process when
we evaluate a particular configuration of the solver on a given instance (see Section 5).

The score for each solver is computed using the MaxSAT evaluation rules. In particular, it
is important to define which is the set of best-known upper bounds that we use to compute the
score. Table 1 shows in column “MSE 2022”7, the scores reported in the MaxSAT Evaluation
2022.

The rest of the columns present the results of the experimentation we conducted (in our
cluster) using different sets of best-known upper bounds. “V BS,” uses the upper bounds found
by the Virtual Best Solver of the solvers we executed, “M SFE,” uses the set of best-known
upper bounds provided by the MaxSAT Evaluation, and “LRUNS;” (Long Runs) uses a
set of new best-known upper bounds we computed by running Loandra and NuWLS-¢ (both
with the default parameters) with a timeout of 12 hours. We recall that the score presented

J. Alos, C. Ansétegui, J. M. Salvia, and E. Torres

is the average score on 50 seeds in contrast to the MSE results where only 1 seed is used.

As we can observe in Table 1, the relative ranking of the solvers is preserved although we
can observe variations in the scores reported. We will use in the rest of the paper the best
bounds from MSE, + VBS, + LRUN Sy.

Table 1 Results of the MaxSAT Evaluation 2022 on the incomplete weighted track (60 seconds
timeout) and reproduction of the Evaluation in our system with different sets of Best-Known Upper
Bounds.

| MSE 2022 | MSE 2022 on our system

Best-known UBs | MSE, | VBS, VBS,+MSE, VBS,+MSE,+LRUNS,
Solvers ‘ ‘

NuWLS-c 0.759 | 0.7831 0.7590 0.7524
DT-Hywalk 0.732 | 0.7625 0.7414 0.7351
TT-Open-WBO-inc (g) 0.728 | 0.7412 0.7221 0.7164
TT-Open-WBO-inc (is) 0.726 | 0.7354 0.7201 0.7141
TT-Open-WBO-inc (i) 0.720 | 0.7354 0.7178 0.7118

Loandra 0.693 | 0.7107 0.7003 0.6953

4 Automatic Configurators (AC)

In this section, we review the Automatic Configuration Problem and two state-of-the-art
automatic configuration algorithms or tuners.

4.1 The Automatic Configuration Problem

Given a target algorithm A with parameters {p1,...,p,} of domain d(p;). We define the

parameter space O of A as the subset d(p1) X ... x d(py) of valid parameter combinations.

Depending on the parameter, d(p;) can be categorical, a discrete domain of fixed values with
no predefined order, or numerical, which represent integer or real values. Then, we define
the Automatic Algorithm Configuration (AAC) problem as the optimization problem that
consists of exploring © to find a configuration § € © of A, which given a set of problem
instances II, minimizes a cost metric ¢ : ©® x II — R, without exceeding a configuration
budget B.

It is common for A to be a black box (target algorithm), meaning it accepts some
inputs (the parameters) and provides some output (e.g., &), but we cannot see its internal
functionality. This allows AAC to generalize to any type of algorithm but makes it more
challenging for algorithm tuners since they cannot use A to infer additional information
about ©. In practice, A is implemented as a binary file that outputs its results in a format
suitable for its domain but may not be suitable for the AAC tool. Moreover, it may be
necessary to limit the resources that A can use to solve an instance, such as memory or CPU
time. The standard way of addressing these issues in AAC tools is for the user to replace A
with a wrapper script that handles these and any other necessary aspects. Figure 1 describes
the automatic configuration process where the tuner is a solver for the AAC problem.

7:5

CP 2023

7:6

Exploiting Configurations of MaxSAT Solvers

g Target
! Algorithm

I Calls with different
parameters

1 setti
Best Tuner % - Zidl?r?;ances
configuration

t

Returns solution cost

Figure 1 Visualization of the Automatic Configuration process.

4.2 The GGA Automatic Configurator

The Gender-Based Genetic Automatic Algorithm Configuration (GGA) is a genetic algorithm
that was introduced in [4] to search for high-quality configurations. It was one of the pioneering
algorithms that supported continuous parameters and introduced the novel concept of gender
to apply diverse selection pressures to the population’s individuals.

Algorithm 1 GGA.

Input: Target Algorithm A, Parameter Space O, Instances I, Performance Metric é, # MiniTour-
naments N, Configuration Budget B
: function GGA(A4,0,11,¢, N, B)
pop « initPopulation(O)
ji=0
while B not exhausted and threshold not achieved do
J=Jj+1
IT; < selectInstances(II, j)
<wi,...,wn> < runMiniTournaments(A, pop.comp, I1;, ¢, pop.comp/N)
offspring «+— applyCrossoverAndMutate(pop.noncomp, <wi, ..., wn>, O)

pop < agingAndDeath(w1, pop) U offspring
return w;

Algorithm 1 shows the pseudocode of the GGA algorithm, which takes as input the target
algorithm A, its parameter space O, a set of training instances II, a performance metric ¢ to
optimize (e.g., time, accuracy, quality within a fixed timeout, etc), the number N of GGA
mini-tournaments (which will be explained shortly), and a configuration time budget B.

GGA starts by initializing a population (pop) of configurations (named genomes) as a
subset of © in line 2. This population is partitioned into a competitive group (pop.comp,
which is directly evaluated on the target algorithm) and non-competitive group (pop.noncomp,
which simply acts as a source of diversity).

The algorithm proceeds in a main loop that finishes when GGA reaches the configuration
budget B or a threshold on the performance (line 4). At each iteration (which we call
generation), GGA selects a subset of the instances II; to evaluate the genomes in line 6.
Then, in line 7, GGA evaluates the competitive genomes of the population over the selected
instances II; using a parallel racing scheme called mini-tournament. This procedure returns

L There are different policies that can be applied to select the instances at each generation, see [4].

J. Alos, C. Ansétegui, J. M. Salvia, and E. Torres

a set of N winners, <ws,...,wy>, which will be the only competitive genomes that will
generate new offspring in this generation (line 8). Finally, GGA applies an ageing policy
in line 9 that is used to prevent population growth. The only exception is the overall
best competitive genome (wy), which survives as long as it performs better than the other
mini-tournament winners. At the end of the main loop, GGA returns the best competitive
genome w; of the last generation.

For more details on the GGA algorithm, we refer the reader to [4].

4.3 The SMAC Automatic Configurator

Sequential Model-Based Algorithm Configuration (SMAC) is an automatic configuration
algorithm based on Bayesian optimization [10, 14]. In Bayesian optimization, we use a few
evaluations of the target algorithm to train a surrogate model that predicts the performance
of the algorithm for a given configuration. This fast-to-evaluate surrogate model is used to
search for promising new configurations that will be executed on the training instances.

Algorithm 2 SMAC.

Input: Target Algorithm A, Parameter Space ©, Instances II, Performance Metric ¢, Configuration
Budget B

1: function SMAC(A, 0,11, ¢, B)

2 [R, Oinc] + initialize(O, II)

3 while B not exhausted do
4: [M, tyi¢] « fitModel(R)
5 -
6

[Onew, tseiect] < selectConfigurations(M, ine, ©)
[R, Oinc] < intensify(A, Onew, Bine, R, II,)

return 6;,.

Algorithm 2 shows the pseudocode of SMAC. This algorithm receives as input the target
algorithm A, its parameter space O, a set of training instances II, a performance metric ¢ to
optimize and a configuration time budget B. First, SMAC initializes a best candidate config-
uration 6;,. and the history of conducted evaluations of different (configuration, instance)
pairs R (which might be empty) in line 2.

As in GGA (see Section 4.2), SMAC has a main loop defined in line 3 that proceeds
until the configuration budget B is reached. At each iteration, it fits a surrogate model
M using the information in R in line 4. Then, it uses M to select a new set of promising
candidate configurations @new in line 5. Finally, it evaluates énew and 6;,. on instances
from II to determine the next best candidate 6;,., according to ¢ in line 6. Similar to the
GGA algorithm, SMAC returns the best candidate configuration ;. .

4.4 Support for Tuning into the OptiLog framework

In this section, we present an excerpt of the code that uses the OptiLog framework to
generate the configuration environment (from now on Tuning Scenario) of the solver Loandra
for GGA and SMAC tuners.

1# example_ac.py

2

3 from optilog.blackbox import x

4 from optilog.running import ParsingInfo
5 from optilog.tuning import =

6

7:7

CP 2023

7:8

7
8
9
10
11
12
13

1
2
3
4
5
6
7
8
9
10
11
12

Exploiting Configurations of MaxSAT Solvers

class LoandraBB(SystemBlackBox):

config = {
"weight—strategy": Int(0, 2, default=2),
"preprocess": Bool(default=True),
C...)

}

C...)

Listing 1 Sample code to wrap the solver Loandra into an OptiLog BlackBox.

Listing 1 defines a custom BlackBox class named LoandraBB that inherits from System-
BlackBox. This class represents the binary that we want to optimize. The config dictionary
defines the parameters of this binary that can be tuned by the optimization algorithm. We
show the parameters “weight-strategy” and “preprocess”, with their respective types and
default values. In particular, we need 18 lines of code to wrap Loandra, with 40 additional
lines defining the parameters.

scenario__gga .py
from optilog.tuning.configurators import
from example_ac import LoandraBB
if __name__ == "__main__":
configurator = GGAConfigurator(
LoandraBB (),
input_data="/path/to/instances/x",
)
configurator.generate_scenario("./scenario")

Listing 2 Sample code to create a Tuning Scenario for the solver defined in Listing 1.

Listing 2 is a definition of a Tuning Scenario for the solver Loandra. It imports the
custom LoandraBB class defined in Listing 1, and sets up a tuner (in this case GGA) to
optimize the parameters of LoandraBB. The input_data parameter specifies the path to the
instances used during the optimization process. Lastly, the generate_scenario method is
called with the desired output path for the scenario that is being created.

Similar code to Listing 2 could be used to define a Tuning Scenario to be used with the
SMAC AC tool, as OptiLog supports both GGA and SMAC.

5 Configuring MaxSAT Solvers

Although the AC tools (tuners) presented in the previous section have also parameters that
impact the effectiveness of the configuration process, tuning the tuner is out of reach in this
paper and we focus on providing a good cost function to be used during the tuning process.

Ideally, we would use the score(s, i) function from the MaxSAT Evaluation (Equation 2).
Notice though that in the MaxSAT Evaluation we are trying to maximize this scoring
function, whereas tuners minimize a cost (see Section 4). Therefore, we have to convert
the score function to a cost function. Additionally, it is not guaranteed that the bounds
found are equal or worse than the previously best-known upper bounds (see Section 3), and
we cannot update the best-known upper bounds sets during the tuning process (otherwise
previous results computed in the same tuning process would not be comparable).

J. Alos, C. Ansétegui, J. M. Salvia, and E. Torres

We define the cost,.(s,?) function, shown in Equation 3, as follows. First, we split the
function in two cases: 1) the reported bound is worse (or equal) than the previous best-known
upper bound, and 2) the bound reported is better.

For 1), we compute 1 — score(s,i) to obtain a value in the range [0,1), where better
bounds are closer to 0.

For 2), notice that we are breaking the assumption (best-known ub) < ub, which may
lead to unbounded values that tend to co. To restrict the values to the range (—1,0), we use
the inverse of the score(s,i) function, and then subtract 1.

The costq.(s,1) function returns values between (—1,1), where better bounds correspond
to values closer to —1.

, 1 — score(s,i), if ub for i found by s > best-known ub for ¢
coStae(8,1) = L

score(s,i)

3)

1, otherwise

As stated in Section 3.1, some executions might report a bound that does not match the
reported solution. Thus, we integrate a validation step (see Figure 2) that certifies the real
cost of the solution returned by the solver and reports it to the tuner.

Regarding the tuning environment, all experiments are conducted on the same computation
cluster. Each tuning process is given a wall-time tuning budget of 48 hours, a memory limit
of 32G per worker, and is allowed to use up to 50 parallel workers unless otherwise specified.
Each configuration instance is given a CPU time limit of 60 seconds for the solver, and then
a validation step is executed. As training instances for the tuning process, we will use the
197 instances from the MaxSAT Evaluation 2021 (incomplete weighted track, 60 seconds)
and we will test the best configuration returned by GGA and SMAC (see Section 4) on the
151 instances from the MaxSAT Evaluation 2022.

GGA allows for the selection of how many instances are used in each generation. Incre-
mentally increasing the training set across generations till including the whole set of available
instances is often recommended, as it facilitates discarding bad configurations with less effort,
therefore more generations can be reached within the tuning budget. However, as discussed
in Section 6, prioritizing the evaluation of more configurations on the whole training set
within the same tuning budget may be preferable over having more generations. GGA also
can preserve a set of elite configurations that are run at every generation. We define as an
elite the default configuration of Loandra. Finally, we use the PyDGGA [2] (version 1.7.0)
distribution of GGA which has support for distributed execution. The following non-default
parameters were used for GGA: cost tolerance set to 0, population set to 100, generations
set to 300, and minimum generations set to 50.

Regarding SMAC, although it can be executed in parallel, it does not report an overall
winner in contrast to GGA. Instead, it reports as many winners as computation cores
were used since it basically runs several sequential SMACs in parallel. Thus, after SMAC
completes, we have to take all the winners from each SMAC sequential execution, which
may not have been evaluated on all training instances, and perform the missing evaluations.
Then, the winner with the best performance on the training set is selected to be the overall
winner. We use the SMAC3 [14] (version 1.4.0) implementation of the algorithm.

As we have described earlier, the cost function used during the tuning process is not
strictly the minimization version of the score we maximize according to the MSE 2022 (see
Section 3). Therefore, one may argue that it would be better to return a winner for the
training set with respect to the score function computed by the MSE. This is easy to do if
the tuner provides the logs of each evaluation so, in the case of incomplete MaxSAT solvers,
we can retrieve the best bound found by the solver on a given instance.

7:9

CP 2023

7:10

Exploiting Configurations of MaxSAT Solvers

Therefore, we add a selection phase (see Figure 2) after the tuning phase that recomputes
the scores (according to the MSE) of the configurations traversed by the tool during the
tuning process.

Validator

. Target
Algorithm
P

1
1 Calls with different
I parameters
I settings
and instances

‘ Selected Selection
configuration phase

Explored
Configurations

Returns validated solution cost

Figure 2 Visualization of the Automatic Configuration process extended with the validator and
a selection phase over the explored configurations.

In particular, for SMAC, we compute the MSE score of the 50 winners reported by the
tuner on the training set and select the one with the highest score. Even though we have
access to the logs of the evaluations of SMAC and could use those scores to select the winning
configuration, we need to make sure that all the configurations are evaluated with all the
instances.

For GGA, we order the configurations first by their ranking in a generation (according to
the cost function in Equation 5), and within the same rank, we order by the most recent
generation. Then, we select the first 50 distinct configurations. We look into their logs,

recompute their MSE score according to Section 3, and report the winner?.

Table 2 Comparison using GGA and SMAC to tune the Loandra solver (using VBS, + MSE;, +
LRUNS,, bounds).

‘ Mean Median Min Max Std

NuWLS-c 0.7524 0.7522 0.7484 0.7560 0.0017
Loa (GGA, all-i) 0.7393 0.7391 0.7313 0.7475 0.0037
Loa (GGA, incremental) | 0.7353 0.7354 0.7275 0.7433 0.0038
DT-Hywalk 0.7351 0.7355 0.7288 0.7415 0.0030
Loa (SMAC) 0.7237 0.7234 0.7149 0.7355 0.0048

TT-Open-WBO-inc (g) 0.7164 0.7165 0.7128 0.7194 0.0015
TT-Open-WBO-inc (i) 0.7141 0.7142 0.7093 0.7188 0.0020
TT-Open-WBO-inc (is) 0.7118 0.7117 0.7098 0.7145 0.0008
Loandra 0.6953 0.6957 0.6872 0.7036 0.0037

Table 2 shows the result of the best configurations provided by GGA using all the
instances from the first generation (“Loa (GGA, all-i)”), or adding them incrementally at
each step (“Loa (GGA, incremental)”) and the best configuration provided by SMAC (see

2 In our experiments, the winner reported by GGA was the same configuration as the best one found in
the selection phase.

J. Alos, C. Ansétegui, J. M. Salvia, and E. Torres

“Loa (SMAC)”) after the additional selections process described in the paragraph above.
For the incremental approach of GGA, we use 20% of instances at the first generation and
instruct GGA to use all the instances on generation 25. Those values were selected based
on preliminary experiments taking into account the number of generations that GGA can
do in the given time. It is clear by the results that the usage of all the instances from the
beginning benefits GGA, allowing it to lift Loandra from the sixth position to the second
one. In the next section, we will focus on the variant of GGA “Loa (GGA, all-i)”.

We also ran the variants “Loa (GGA, all-i)” and “Loandra” on another set of benchmarks,
the MSE 2020 instances. The default parameters variant achieves a score of 0.755, and the
tuned version a score of 0.777.

6 Exploiting Configurations Discarded by the Tuner

As it has been shown in the literature [9, 17], from the most pragmatic point of view, we can
obtain an efficient parallel approach by just running the same non-deterministic solver with
different seeds in parallel, or we can also run in parallel different configurations of the same
solver.

In case resources are limited, we can also schedule the execution of different configurations
of the same solver. In this section, we concrete and study these different approaches. We use
OptiLog [1] to generate all the portfolios, as we explain in Section 6.3.

6.1 Parallel Portfolios of seeds and configurations

As we have already explained, tuners report the best configuration they have found. However,
many other potentially good configurations are also explored and discarded during the
automatic configuration process with respect to their performance on the particular training
set. These configurations may exhibit good performance in different kinds of instances. As
observed in [3] on SAT benchmarks, superior performance can be achieved by combining
these complementary configurations.

The first approach we explored is the parallel execution of N different random seeds over
a given MaxSAT solver. This approach can be applied to both the default MaxSAT solver
and the best configuration obtained in the tuner.

Another approach is to extract N configurations of a MaxSAT solver from the ones
traversed by the tuner and execute them in parallel. There are many strategies that we
could follow to extract these configurations from the tuner. In particular, we use the set
of configurations considered during the selection phase (after the tuning phase) process as
explained in Section 5. Notice that we do not analyze any structure of the instances and we
only incorporate configurations of the same solver.

Table 3 shows the results of the parallel portfolios that we explained. We tested parallel
portfolios with 25, 30, 35, 40, 45, and 50 parallel executions. Each row shows the results of a
parallel portfolio (rows marked with (Seeds) refer to a parallel portfolio of seeds, whereas the
row marked with (Configs) refer to a parallel portfolio of configurations). We show the score
as computed in the MaxSAT evaluation using the V BS, + M SE, + LRU N S, upper bounds
and the rank of each portfolio with respect to the others.

As we can observe, the portfolio over different seeds for the default Loandra (“(Seeds)
Loandra” in Table 3) is not competitive while the portfolio of different seeds for the best
configuration of Loandra computed by GGA (column “(Seeds) Loa (GGA, all-i)”) already
outperforms NuWLS-c. Additionally, a portfolio of the best configurations provided by the
selection phase (column “(Configs) Loa (GGA, all-i)”) systematically outperforms the rest
of the approaches. These observations hold almost for any number of parallel executions.

7:11

CP 2023

7:12

Exploiting Configurations of MaxSAT Solvers

Table 3 Score and rank (#) for each parallel portfolio, given N parallel processes (using
VBSy + MSE, + LRUN S, bounds).

N 25 30 35 40 45 50
score # score # score # score # score # score
(Configs) Loa (GGA, all-i) 1 0813592 1 0818663 1 0.82398 1 0.825208 1 0.826448 1 0.827105
(Seeds) Loa (GGA, all-i) 2 0.806889 2 0.808078 2 0.809922 2 0.812589 2 0.813007 2 0.815263
(Seeds) NuWLS-c 3 0.768409 3 0.769302 3 0.769785 3 0.770293 3 0.771219 3 0.771263
(Seeds) DT-Hywalk 4 0.759271 4 0.764688 4 0.765736 4 0.765764 4 0.765862 4 0.766397
(Seeds) TT-Open-WBO-inc (g) | 5 0.728901 5 0.728903 5 0.729766 5 0.729902 5 0.730165 5 0.730235
(Seeds) TT-Open-WBO-inc (i) 6 0.725971 6 0.726171 6 0.726253 6 0.726315 6 0.726510 6 0.727468
(Seeds) Loandra 8 0.717788 8 0.722663 7 0.723954 7 0.723996 7 0.724521 7 0.724648
(Seeds) TT-Open-WBO-inc (is) | 7 0.722672 7 0.722704 8 0.722918 8 0.723174 8 0.723324 8 0.723489

6.2 Sequential Portfolios of configurations

In some settings, we will not have enough resources to run a parallel portfolio as described
in Section 6.1. Potentially, we can have just one computation core available. In this case, we
can schedule the sequential execution of different configurations of Loandra within the given
timeout.

Let us describe how we construct this sequential portfolio. We assume we have a sequence
of solvers (or configurations of a solver) (5) that iteratively report better solutions, a time
budget (T'O), and a maximum time budget a solver can exhaust between two consecutive
reported solutions (M T BS). The solvers are executed according to their order in the sequence
until the time consumed globally by all the solvers exceeds TO.

Each solver is run as follows: first, we wait for the first solution reported by the solver.
Once this first solution is reported, we start a timer of MT B.S seconds. If the solver reports
a new solution before this timer expires, we reset the timer and wait for a new solution. This
is repeated until the solver is unable to report a new solution before the timer is consumed.
At that point in time, the solver is stopped and the next one in the ordered list of solvers is
executed. Note that, at any point in this process, a solver can also be stopped if the global
time budget of T'O seconds gets exhausted. A special case is the last solver of the sequence,
which is allowed to run until the time budget expires (i.e. it is not stopped even if it took
more than MTBS seconds to find a new solution). Obviously, we keep track of the best
overall solution seen so far.

To identify which sequence of solvers S and MT BS value the portfolio should use, we
carry out a simulation of sequential portfolios with the configurations provided by the
selection phase (see Section 5) and their respective logs on the training instances computed
during the tuning phase. In particular, we explore all sequences of up to size 3 and MTBS
values of {2,3,5,10,15, 20, 25,30, 35,40, 45,50} seconds. Once we identify the best virtual
sequential portfolio for the training instances, we simulate again the execution of this virtual
sequential portfolio on the test set. In Table 4 we present the results of this simulation.

To implement this virtual sequential portfolio we would need to take into account an
additional thread that keeps track of the evolution of the solvers in the sequence, which may
decrease the overall performance. Therefore, we see this wvirtual sequential portfolio as a
restarting policy that MaxSAT developers could integrate into their solvers, with the added
benefit that they may be able to reuse information computed by each solver in the sequence.

Table 4 shows the results of the virtual sequential portfolios (rows prefixed with “Virtual
portfolio”), compared to the results that obtained the solvers from the competition with the
default parameters, and with the best approach obtained using a tuner (“Loa (GGA, all-i)”).
As in the MSE we run each solver with the same seed, except for NuWLS-c for which we also

J. Alos, C. Ansétegui, J. M. Salvia, and E. Torres

Table 4 Score of the virtual sequential portfolio compared with the single-execution approach
(using VBS, + MSE, + LRUN S, bounds).

‘ Score
Virtual sequential portfolio (N=2) - Loa (gga, all-i) | 0.7642
Virtual sequential portfolio (N=3) - Loa (gga, all-i) | 0.7642
NuWLS-c (max score on 50 seeds) 0.7560
NuWLS-c 0.7554
Loa (gga, all-i) 0.7513
DT-Hywalk 0.7432
TT-Open-WBO-inc (g) 0.7214
TT-Open-WBO-inc (i) 0.7180
TT-Open-WBO-inc (is) 0.7180
Loandra 0.6965

report on the best score value from 50 seeds. The N value shown in the virtual sequential
portfolios rows indicates the length of the solvers’ sequence. The portfolios are built on top
of the configurations obtained after the selection phase with (“Loa (GGA, all-i)”).

We notice that virtual sequential portfolios do perform better than NuWLS-c, and a
selection of two configurations suffices to that end. Interestingly, if we build the wvirtual
sequential portfolio on the test instances from the MSE 2022, then we get a better portfolio
using three configurations that achieves a score of 0.7689, however, we cannot predict this
portfolio based on the analysis we perform on the training instances from the MSE 2021.

Additionally, we conducted experiments to analyze the potential of combining solvers. In
particular, we used the solver TT-Open-WBO?3. We tuned this solver, and generated a virtual
sequential portfolio combining the best configurations of TT-Open-WBO and Loandra. The
virtual sequential portfolio (based on the analysis of the performance on the MSE 2021)
obtained a score of 0.779 on the MSE 2022, which is the best score obtained for single-core
evaluations. In comparison, the individual performance of Loandra and TT-Open-WBO
after tuning is 0.747 and 0.751 respectively.

6.3 OptiLog Portfolio Generator

To facilitate the creation of the parallel and virtual sequential portfolios, we added support
to compute them using the OptiLog framework.

1 from optilog.portfolio import get_parallel_portfolio
2
3 get_parallel_portfolio(

4 gga_scenario=’./tuning—scenario’,
5 n_solvers=10,

6 save_to='./parallel—portfolio’

7)

Listing 3 Computing a parallel portfolio with OptiLog.

3 A version provided by the author of the solver with the parameters exposed.

7:13

CP 2023

7:14

1
2
3
4

S © 00 O Ot

Exploiting Configurations of MaxSAT Solvers

Listing 3 shows how we can generate and save a parallel portfolio with OptiLog. This
portfolio is built by selecting N configurations as explained in Section 5, thus requir-
ing a Tuning Scenario (generated with OptiLog as seen in Section 6.3). The function
get_parallel_portfolio receives as parameters the Tuning Scenario that contains the
results of the tuning process (gga_scenario), the number of solvers that will compose the
parallel portfolio (n_solvers), and the directory where the scripts to launch each individual
solver that composes the portfolio will be saved (save_to).

from optilog.portfolio import get_sequential_portfolio

get_sequential_portfolio(
path_scenario="./running—scenario",
n_solvers=2,
solution_regex=r"Ao\s(\d+)",
save_to="./sequential—portfolio",
score_fn=-maxsat_score_fn,
max_time_between_solutions=[5, 15, 25, 35]

)

Listing 4 Computing a sequential portfolio with OptiLog.

Listing 4 shows how we are generating a sequential portfolio with the results of a Running
Scenario. Note that to generate the virtual sequential portfolio we require the full trace of
the solvers (in particular for the incomplete MaxSAT case, we need the evolution of the best
bound over time), so we cannot build it from a Tuning Scenario directly. The parameters
gga_scenario, save_to, and n_solvers mean the same as in the function to compute a
parallel portfolio. Additionally, we have to specify the following parameters: score_fn is
used to transform the lines matched by solution_regex to a score that the portfolio will
try to maximize (in this example the score function is score(s) defined in Section 3), and
max_time_between_solutions contains the possible values that the portfolio can choose
from when selecting the parameter MTBS.

7 Conclusions

Given a target solver, we have presented an approach to easily generate a potentially much
better solving approach. To this end, we exploit a set of alternative configurations of the
same target solver coming from the residues of a tuning process. It is important to notice
that we do not exploit any structure feature of the input problem or instance since in some
domains these features are not easy to compute. In particular, we have shown how from a
MaxSAT solver with a low ranking in one of the tracks of the MSE 2022 we can obtain a
more competitive approach.

Our sequential portfolio generation approach can be seen as a first attempt to come up
with effective restarting policies for MaxSAT solvers, something that has not been studied in
depth in the literature.

Finally, the approach described has been integrated into the OptiLog framework avoiding
the tedious process of setting up tuning environments and generating portfolios. Moreover,
the API is general enough to be applied not only to MaxSAT solvers but to other solving
approaches.

J. Alos, C. Ansétegui, J. M. Salvia, and E. Torres

—— References

1

10

11
12

13

14

15

16

Josep Alos, Carlos Ansoétegui, Josep M. Salvia, and Eduard Torres. OptiLog V2: Model,
Solve, Tune and Run. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2022), volume 236
of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1-25:16, Dagstuhl,
Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. ISSN: 1868-8969. doi:
10.4230/LIPIcs.SAT.2022.25.

Carlos Ansétegui, Josep Pon, and Meinolf Sellmann. Boosting evolutionary algorithm
configuration. Annals of Mathematics and Artificial Intelligence, 2021. doi:10.1007/
s10472-020-09726-7y.

Carlos Ansétegui, Josep Pon, and Meinolf Sellmann. Boosting evolutionary algorithm config-
uration. Annals of Mathematics and Artificial Intelligence, 90(7-9):715-734, 2022. Publisher:
Springer.

Carlos Ansoétegui, Meinolf Sellmann, and Kevin Tierney. A Gender-based Genetic Algorithm
for the Automatic Configuration of Algorithms. In Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, CP’09, pages 142-157.
Springer-Verlag, 2009. tex.acmid: 1789011 tex.numpages: 16 tex.year: 2009 event-place:
Lisbon, Portugal. URL: http://dl.acm.org/citation.cfm?id=1788994.1789011.

Fahiem Bacchus, Jeremias Berg, Matti Jarvisalo, Ruben Martins, and Andreas Niskanen.
MaxSAT Evaluation 2022 : Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, B-2022-2, 2022. Accepted: 2022-08-25T10:09:01Z Publisher:

Department of Computer Science, University of Helsinki. URL: https://helda.helsinki.

fi/handle/10138/347396.

Jeremias Berg, Emir Demirovic, and Peter Stuckey. Core-boosted linear search for incom-
plete maxsat. Integration of Constraint Programming, Artificial Intelligence, and Operations
Research: 16th International Conference, CPAIOR 2019, 2019.

Yi Chu, Shaowei Cai, Zhendong Lei, and Xiang He. Nuwls-c: Solver description. MaxSAT
Evaluation 2022, page 28, 2022.

Jan Elffers and Jakob Nordstrom. Divide and conquer: Towards faster pseudo-boolean solving.
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
pages 1291-1299, 2018. URL: https://www.ijcai.org/Proceedings/2018/180.

Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a parallel SAT solver. JSAT,
6:245-262, June 2009. doi:10.3233/SAT190070.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential Model-Based Optimization
for General Algorithm Configuration (extended version). International Conference on Learning
and Intelligent Optimization, 2011.

Jo Devriendt. Exact Solver Repository, April 2023. URL: https://gitlab.com/JoD/exact.
Saurabh Joshi, Prateek Kumar, Sukrut Rao, and Ruben Martins. Open-wbo-inc: Approxima-
tion strategies for incomplete weighted maxsat. J. Satisf. Boolean Model. Comput., 11(1):73-97,
2019. doi:10.3233/SAT190118.

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC — Instance-
Specific Algorithm Configuration. In ECAI 2010, pages 751-756. I0S Press, 2010. doi:
10.3233/978-1-60750-606-5-751.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A Versatile Bayesian
Optimization Package for Hyperparameter Optimization. In ArXiv: 2109.09831, 2021. URL:
https://arxiv.org/abs/2109.09831.

Ole Libke and Sibylle Schupp. nosat-maxsat. In MazSAT Evaluation 2022, pages 29-30.
Department of Computer Science, University of Helsinki, 2022.

Alexander Nadel. Polarity and Variable Selection Heuristics for SAT-Based Anytime MaxSAT:
System Description. Journal on Satisfiability, Boolean Modeling and Computation, 12(1):17-22,
September 2020. doi:10.3233/SAT-200126.

7:15

CP 2023

https://doi.org/10.4230/LIPIcs.SAT.2022.25
https://doi.org/10.4230/LIPIcs.SAT.2022.25
https://doi.org/10.1007/s10472-020-09726-y
https://doi.org/10.1007/s10472-020-09726-y
http://dl.acm.org/citation.cfm?id=1788994.1789011
https://helda.helsinki.fi/handle/10138/347396
https://helda.helsinki.fi/handle/10138/347396
https://www.ijcai.org/Proceedings/2018/180
https://doi.org/10.3233/SAT190070
https://gitlab.com/JoD/exact
https://doi.org/10.3233/SAT190118
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.3233/978-1-60750-606-5-751
https://arxiv.org/abs/2109.09831
https://doi.org/10.3233/SAT-200126

7:16 Exploiting Configurations of MaxSAT Solvers

17 Olivier Roussel. Description of ppfolio 2012. In Proceedings of SAT Challenge 2012: Solver
and Benchmark Descriptions, 2012.

18 Jiongzhi Zheng, Kun He, Zhuo Chen, Jianrong Zhou, and Chu-Min Li. Decision tree based
hybrid walking strategies. MazSAT FEvaluation 2022, page 24, 2022.

Symmetries for Cube-And-Conquer
in Finite Model Finding

Joao Araiijo 24
Universidade Nova de Lisboa, Lisbon, Portugal

Choiwah Chow &

Universidade Aberta, Lisbon, Portugal

Mikolas Janota =2 &
Czech Technical University in Prague, Czech Republic

—— Abstract

The cube-and-conquer paradigm enables massive parallelization of SAT solvers, which has proven
to be crucial in solving highly combinatorial problems. In this paper, we apply the paradigm in
the context of finite model finding, where we show that isomorphic cubes can be discarded since
they lead to isomorphic models. However, we are faced with the complication that a well-known
technique, the Least Number Heuristic (LNH), already exists in finite model finders to effectively
prune (some) isomorphic models from the search. Therefore, it needs to be shown that isomorphic
cubes still can be discarded when the LNH is used. The presented ideas are incorporated into the
finite model finder Mace4, where we demonstrate significant improvements in model enumeration.

2012 ACM Subject Classification Computing methodologies; Theory of computation — Constraint
and logic programming

Keywords and phrases finite model enumeration, cube-and-conquer, symmetry-breaking, parallel
algorithm, least number heuristic

Digital Object Identifier 10.4230/LIPIcs.CP.2023.8

Supplementary Material Software (Source Code): https://github.com/ChoiwahChow/public/
tree/main/CP_2023_Supplement_2.zip
archived at swh:1:cnt:69e6b145a05d29726512c0605cfb027¢17c98dd3

Funding Jodo Araijo: Fundacdo para a Ciéncia e a Tecnologia, through the projects UIDB/00297-
/2020 (CMA), PTDC/MAT-PUR/31174/2017, UIDB/04621/2020 and UIDP/04621/2020.

Mikolas Janota: The results were supported by the Ministry of Education, Youth and Sports within
the dedicated program ERC CZ under the project POSTMAN no. LL1902. This article is part of
the RICAIP project that has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 857306.

1 Introduction

An important tool that working algebraists need in their research is libraries of the algebras
they are interested in. These libraries allow them to get intuitions, test or refute hypotheses
and conjectures, and gain insights into the properties of the algebras (see examples on p. 2891
of [30]). Many libraries of algebraic models of small orders, such as the smallsemi package [14]
for semigroups and the loops package [36] for quasigroups, are available in the GAP [16]
system. A lot more such libraries are needed, but they often take an inordinate amount of
time and computing resources to generate.

First-order logic (FOL) has been the most popular language to define algebras. There are
two major resource-intensive steps in generating non-isomorphic models from FOL [27]. The
first step is to generate models according to the laws specified by the FOL formula. This
step often generates a huge number of isomorphic models. For example, given the first-order

© Jodo Aratijo, Choiwah Chow, and Mikolds Janota;

licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 8; pp. 8:1-8:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jj.araujo@fct.unl.pt
https://docentes.fct.unl.pt/jj-araujo
https://orcid.org/0000-0001-6655-2172
mailto:1702603@estudante.uab.pt
https://orcid.org/0000-0002-2067-0568
mailto:mikolas.janota@cvut.cz
http://people.ciirc.cvut.cz/~janotmik/
https://orcid.org/0000-0003-3487-784X
https://doi.org/10.4230/LIPIcs.CP.2023.8
https://github.com/ChoiwahChow/public/tree/main/CP_2023_Supplement_2.zip
https://github.com/ChoiwahChow/public/tree/main/CP_2023_Supplement_2.zip
https://archive.softwareheritage.org/swh:1:cnt:69e6b145a05d29726512c0605cfb027c17c98dd3;origin=https://github.com/ChoiwahChow/public;visit=swh:1:snp:413272fb527649be4ce86d019177af2b75e11647;anchor=swh:1:rev:3f0c15b51fff71987d62603fb38f1206ea13ce56;path=CP_2023_Supplement_2.zip
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Symmetries for Cube-And-Conquer in Finite Model Finding

formula for semigroups, which is (z % y) * z = z * (y * z), Mace4 [35] generates 1,021,120,198
models of order 7, out of which only 1,627,672 (= 0.16%) [44] are pairwise non-isomorphic.
The second step is to eliminate the isomorphic models generated in the first step. In this
paper, we propose a novel efficient and scalable parallel algorithm that not only speeds up
the first step but also generates fewer isomorphic models. Suppressing the generation of
isomorphic models in the first step reduces the workloads of both the first and the second
steps. Not only does it make the whole process much faster, but the required computing
resources (disk space, etc.) are also reduced.

While modern-day general-purpose computers are predominantly multi-core, harnessing
parallelism for combinatorial search is surprisingly difficult. Consequently, there are few
parallel algorithms in constraints programming in general, and in finite model enumeration
in particular. Indeed, in satisfiability modulo theories (SMT), even negative results are
concluded for cube-and-conquer [23]. A recent literature review concludes that “there is little
overall guidance that can be given on how best to exploit multi-core computers to speed up
constraint solving” [18]. We aim to help close this gap by devising new parallel algorithms
for finite model enumeration.

This paper advances finite model enumerators toward the following two objectives:

1. Mathematicians can use the tool to quickly generate all models (up to isomorphism) of
the classes of algebras of their interests on their multi-core computers.

2. The tool can also take advantage of massively parallel computing architectures to pre-
generate models (up to isomorphism) of the classes of algebras of general interest.

We find inspiration in the well-established cube-and-conquer approach introduced for
SAT [20]. In SAT this means splitting the search space by mutually exclusive conjunctions of
propositional literals (cubes). In the context of finite model finding, the structure is richer — a
decision of the solver corresponds to inserting a point into the graph of one of the considered
functions, e.g., f(0,1) = 3. We comment on cube-and-conquer in more detail in Section 6.

We show that a cube can be excluded from the search if it is isomorphic to an existing one.
Effectively, this is breaking symmetries in the search space. However, the task is nontrivial
because finite model finders already contain a technique, called the least number heuristic
(LNH), to exclude some isomorphic models. The LNH! enables the solver to consider only
certain values from the co-domain for a given decision point. Therefore, we show that
isomorphic cubes can be pruned in the presence of the LNH. Like so, we can take advantage
of the two powerful and complementary techniques and ultimately suppress the generation
of a large number of isomorphic models.

This paper’s contributions are the following:

1. Devise a low runtime overhead parallel algorithm based on the cube-and-conquer approach
for finite model enumeration. This scalable algorithm divides finite model enumeration
into many independent non-overlapping search jobs to make full use of the available
resources.

2. We show that isomorphic cubes can be discarded without losing isomorphic models even
in the presence of the well established symmetry breaking technique already present in
finite model finders — the least number heuristic (LNH).

3. We extend the model finder Mace4 with the proposed techniques and evaluate it on a
large number of problems, where significant speed-up is observed.

! Despite the technique being called a heuristic, it does not sacrifice the completeness of the solver.

J. Araijo, C. Chow, and M. Janota

2 Preliminaries

Familiarity with the general notions of abstract algebra such as groups, semigroups, and
quasigroups is assumed, and so is general knowledge about functions and isomorphisms. A
good reference is Chapters 2 and 5 of [9].

In this paper, the domain of the search space is denoted by the set D = {0,...,n — 1},
where n > 2, That is, we exclude the trivial case of searching on domains of size 1.

Let 7 denote an arbitrary permutation on D, m;q denote the identity permutation, and

T(a,p) denote the permutation cycle (a,b). For example, 7(g 1) is the permutation cycle (0, 1).

2.1 Finite Model Enumeration

For a signature 3 and a FOL formula F on X, a traditional finite model finder first expands
the FOL formula to its ground representation by its domain elements in D, then searches for
models by backtracking to exhaustively explore the search space [49]. The domain elements
in D are seen as special constants not appearing in the original F, c.f. [40].

Following the terminology of [49], a value assignment (VA) clause is a term f(aq,...,ax) =
v, where f is a k-ary function symbol in ¥ and a;,v € D. We refer to the term f(aq,...,ax)
as the cell term (or simply cell) since conceptually the search fills the operation table of f.

To search for finite models in F, the finite model finder employs a cell selection strategy
to pick cell terms successively, without duplicates, to assign values from D to form VA
clauses. If a newly formed VA clause causes any failure in the axioms in F, then a new
value will be tried for that cell term. If no value can be assigned to that cell term without
failing the axioms in F, then the model finder backtracks to the previous cell term to try to
assign another value to it. When all cell terms in F are assigned values without violating
the axioms in F, a model, as represented by its VA clauses, is found. After a model is found,
the process can continue with backtracking to find more models.

A set of models can be partitioned into equivalence classes by isomorphisms. Intuitively,
a model can be transformed into any other model in the same equivalence class by renaming
its domain elements. Two models are said to be isomorphic to each other if an isomorphism
exists from one model to the other.

The search space can be organized as a search tree in which nodes are VA clauses and
edges join successive nodes with cell terms in the search order. The root node is an empty
VA clause. The cell term in each node is selected by the cell selection strategy. A search path
in a search tree is a path from the root to a node in the search tree. It can be represented by
a sequence of VA clauses (g = vo;t; = v1;---), where t; is the cell term in the i*"
of the sequence and v; € D, and t; # t; when ¢ # j. Furthermore, a search path will be
terminated at the first VA clause that results in a violation of any axiom of F.

position

If the length of a search path is the same as the total number of cell terms in F, then it is
a complete search path and its VA clauses represent a model. Otherwise, it is an incomplete
search path representing partial assignments of cell values in F.

The backtracking algorithm in its simplest form is to try every possible value assignment
for every cell. For example, to search an FOL formula F with just one binary operation,
there are n"’ possible combinations (n? cells with n possible values each). Even the very
small domain size of 4 gives over 4 billion combinations of cell values. However, in practice,
the number of viable combinations to check is much smaller than the theoretically maximum
number because of the constraints imposed by F. Furthermore, a finite model finder may
infer new VA clauses from existing ones by propagation.

8:3

CP 2023

8:4

Symmetries for Cube-And-Conquer in Finite Model Finding

» Example 1. Suppose the FOL formula contains only the equation f(z,y) = f(y,z), that
is, the operation f is commutative. After the assignment f(0,1) = 0, the finite model finder
can infer f(1,0) = 0. This is referred to as positive propagation.

On the other hand, if the FOL formula contains the inequality f(x,y) # f(y,x), then
after the assignment f(0,1) = 0, the finite model finder can exclude 0 from the list of possible
values for the cell f(1,0). This is referred to as negative propagation. |

2.2 Least Number Heuristic

The least number heuristic (LNH) [4,50,51] is a very effective symmetry-breaking algorithm
widely implemented in model finders/enumerators such as Mace4. The main idea of the LNH
is that all domain elements that have not yet appeared in any VA clauses and the current
cell term in the search are indistinguishable to each other and therefore only one of them,
say, the smallest one, needs to be considered in a cell value assignment.

To ease discussions of the LNH, we introduce the notation Vals(P) to denote the set of all
domain elements appearing in P, where P can be a search path, a VA clause, or a cell term.

» Example 2. For the cell term f(1,1): Vals(f(1,1)) = {1}. For the VA clause f(1,1) = 0:
Vals(f(1,1) = 0) = {0,1}. For the partial search path S = (f(0,0) = 0; f(1,1) = 0):
Vals(S) = {0, 1}. <

The LNH can now be stated precisely: In adding a VA clause, t = v, to extend a search
path S, the possible choices of v allowed under the LNH are Vals(S) U Vals(t) U{s} where s is
the smallest domain element in D\ (Vals(S)UVals(t)), and they are D if Vals(S)UVals(t) = D.
Strictly speaking, it is not necessary to set s to be the smallest domain element not seen
so far, it could as well be the biggest one, for example. But the rule to set s must be
unambiguous - only one value is consistently picked by the rule each time. In this paper, we
always set s to be the the smallest domain element not seen so far.

Furthermore, we say a search path is LNH-compliant if it respects the LNH restrictions
on the choices of values assigned to its VA clauses.

» Example 3. Suppose the domain size, |D|, is 4. Then the complete search path (f(1) =
0; f(0) = 3; f(3) =1; f(2) = 1) is not LNH-compliant.

For the first VA clause in the search path, S = and ¢t = f(1). So, Vals(S) U Vals(t) =
PuU{1} = {1}, and therefore D \ (Vals(S) U Vals(t)) = {0,2,3}. Thus, s = min({0,2,3}) = 0.
The LNH limits the choices of the value for f(1) to Vals(S) U Vals(t) U {s} = {0,1}. So
the first VA clause f(1) = 0 is LNH-compliant. However, for the second VA clause in the
search path, S = {f(1) = 0} and ¢t = f(0). So, Vals(S) U Vals(t) = {0,1} U {0} = {0,1}, and
therefore D \ (Vals(S) U Vals(t)) = {2,3}. Thus, s = min({2,3}) = 2. The LNH limits the
choices of the value for f(0) to Vals(S) U Vals(t) U {s} = {0,1, 2}, so f(0) = 3 is not allowed
under the LNH. Therefore, the whole search path is not LNH-compliant. |

The LNH does not impose any restrictions on the order of the cell terms in the search
path?. It speeds up the search by limiting the choices of the values for the cell terms.
Therefore, its effectiveness decreases with the increase in the length of the search path as
more domain elements are used when more VA clauses are added to the search path.

2 In practice, a number called the mazimal designated number (mdn) is often used to partition the domain
into 2 subsets so that {0, ..., mdn} are domain elements already seen, and {mdn + 1,...,n — 1} are
domain elements not seen so far [49]. In this case, cell selection strategies that keep the mdn small are
preferred because the search tree will be kept narrower.

J. Araijo, C. Chow, and M. Janota

» Example 4. The concentric cell selection strategy is a simple cell selection strategy to
minimize the growth of choices of values in the finite model search with the LNH. This
strategy picks the cell f(ag,...,ar—1) with the least » = max(ay, ..., ar—1) from all available
cells. Any fixed tie-breaker can be used in case of a tie. For example, one of the possible
orders of the cells by this cell selection strategy for a binary operation is f(ag,a1) < f(bo, b1)
if ag = a1 Vag+ay <bg+b1V(ag+as =by+b1 Aag < by). This gives the sequence f(0,0),
f(la 1)) f(07 1)7 f<170)7 f(272), f(072)’ f(2’0)a f(2> 1)7 f(172)7 f(3a3) <

2.3 Cube

A cube is a prefix of a search path, and as such, it can be specified by a sequence of VA
clauses. Permutations and isomorphisms can be applied to a cube by applying them to
its VA clauses. Specifically, if 7 is a permutation on D and B is a cube, then 7(B) =
{f(r(a1),...,m(ar)) = w(v) | f(a1,...,a;) = v is a VA clause in B}. Observe that m;q(B)
is the (unordered) set of all individual VA clauses in the cube B.

Note that predicates in an FOL formula can be implemented as functions with two values,
T (true) and F' (false), which do not affect the LNH because they are not domain elements.
For convenience, we consider I(T') = T and I(F) = F for any isomorphism I so that the
same terminology is used for both relations and functions.

Cubes are said to be isomorphic if their VA clauses are isomorphic. In particular, two

cubes By and Bj are isomorphic if there is a permutation 7 on D such that 7(By) = m;q4(B1).

1;9(0,0) = 1; f(1) = 1;9(1,1) = 1), then By and B; are isomorphic because 7 1)(Bo) =

» Example 5. If By = (f(0) = 0;¢(0,0) = 0; f(1) = 0;¢(1,1) = 0) and B; = (f(0)
1 1
{f(l) = 1’9(171) = ,f(O) = 179(0’0) = 1} = 7"-id(Bl)'

A

3 Isomorphic Cubes Redundancy

The main objective of this section is to show that isomorphic cubes can be removed from
the search. More formally, if cubes By and B are isomorphic, then it is sufficient to explore
assignments extending By and ignore all assignments extending B;. We need to prove that
any model lost by discarding B; must necessarily be isomorphic to some model obtained
from extending By under the LNH. This statement is intuitive, but the proof requires some
care as effectively, we are dealing with a combination of two symmetry-breaking techniques:
LNH and isomorphic cube pruning, under an arbitrary search strategy.

As a motivational example, consider the cube (f(0,0) = 0), which states that f is
idempotent in 0. But because 0 does not appear in the original FOL formula, intuitively, the
constant 0 cannot play a special role in the formula. Consequently, this cube searches all
interpretations of f that have at least one idempotent. For instance, the cube (f(1,1) = 1)
will search the same interpretations, up to isomorphism. Now, we need to show this property
formally and that it holds when the solver searches with the LNH restriction.

The key idea of the proof is that given a model B; with VA clauses A, any cube that is
isomorphic to a subset of A can be gradually extended to be a model isomorphic to By. Each
extension step of the cube must uphold the following properties: (1) The cube is isomorphic
to some subset of A. (2) The cube is LNH-compliant. The extension step is illustrated
in Figure 1. We are given a cube By that is isomorphic to an Ag C A. When the finite
model finder decides on some empty cell ¢, we need to show that it is possible to find a
value according to the LNH such that the extended cube is isomorphic to some subset of A
containing Ay.

8:5

CP 2023

8:6

Symmetries for Cube-And-Conquer in Finite Model Finding

Bo| t5 = vy i
AO A\AO
tm:vm_/
t=1 f

Figure 1 Extension of a cube according to the VA clauses A.

» Notation 1. For a mapping R from D to D and a value d € D we write E& for a mapping

that maps d to R(d) if d € dom(R) and otherwise maps d to min(D \ rng(R)). We further

write Egl’”"d’“ for successive extensions by dy,...,dg, i.e. Egl’dQ = 5531 etc. |
R

» Example 6. Suppose D = {1,2,3} and R : {1} — {2} s.t. R(1) =2 and R7!(2) =1
(so, R is a bijection). Then £% s.t. R(2) = £%(2) = 1 is a valid extension of R because
min(D \ {2}) = 1. Furthermore, 5}2%’1 s.t. 512%’1(1) = 2 is a valid (but trivial) extension of
&, <

» Lemma 7. If R is a bijection between some Dy, D1 C D and d € D then 51% is well-defined
and also a bijection.

Proof. If d € Dy, then Eld% = R and there is nothing to proof. If d € D\ Dy, then by
definition, €4 = R U {(d,p)} for some p € D\ D;. Since R is a bijection from Dy to D1,
d ¢ dom(R), and p ¢ mg(R), so 4 is well-defined, one-one, and onto. That is, it is a
bijection. |

» Notation 2. B & (t = u) is the new cube formed by extending the cube B with the VA
clause t = u. <

The following lemma is the core of our proof. We have a cube B isomorphic to some
partial assignment Ag and now we need to prove that for any model A completing Ag and any
search strategy, we are able to extend B while observing the LNH. Then, the lemma is used
to prove that isomorphic cubes can be discarded by induction on cube length (Theorem 9).

» Lemma 8. Let B be an LNH-compliant cube and A a model s.t. B is isomorphic to some
Ag C A. Then for any cell term t not appearing in B, there ezists a value u and a VA clause
t'=u € A\ Ay, s.t. B® (t = u) is LNH-compliant and isomorphic to Ao U {t' =u'}.

Proof. Let R be an isomorphism mapping B to Ag and let ¢t be a cell term f(aq,...,ax).
Define Ry as £, and let ¢’ denote the cell term f(Ri(a1),...,Ri(ag)), i.e., map the
cell that the solver searches on into a cell in the prescribed model A.

Since A is a model, there must exist a value v’ € D with (¢ = ') € A, i.e. v’ can be
found by a lookup of ¢ in A. Since t is not a cell term in B and R is a bijection, so ¢’ is not
a cell term in Ag and must therefore be in A\ Ag. Thus, ¢ = v is a VA clause in A\ Ay.

To obtain u (a value for cell t), define Ry as 51‘%}1, i.e. map u’ back into the search by
extending the inverse. Then, set u = Ro(u'). By Lemma 7, Rs is bijection and it is therefore
an isomorphism from Ao U {t' = '} to B® (t =). Finally, by definition of Ry, u either
already appears in B or otherwise is the smallest domain element not in B. Therefore, the
extension of the cube B by the VA clause t = u is LNH-compliant. |

» Theorem 9. Suppose we are searching under the LNH with any cell selection strategy on
a signature 3 and a FOL formula, F, on 3. If By and By, of length | > 0, are isomorphic
cubes, and if My is a model obtained by completing (not necessarily under the LNH) the
search path in By, then By can be extended by a search path S under the said LNH and cell
selection strategy to a model My which is isomorphic to M.

J. Araijo, C. Chow, and M. Janota

Proof. We will use mathematical induction on the length of the extension, m, on S to prove
the theorem. Let A denote the VA clauses of M7, and Ay denote the VA clauses of Bj.

Base case is trivial as By and Bj are given as isomorphic when m = 0.

Induction step: Suppose the search path S is extended m times, where m > 1, so that
S is LNH-compliant and isomorphic to a subset A,, C A. Then by Lemma 8, S,,, can be
extended by one VA clause with the cell term ¢,,41, chosen by the said cell selection strategy,
to Si+1 which is LNH-compliant and isomorphic to A4,,4+1 C A.

Note that a model finder may do propagations after a cell value assignment. That is,
some cell terms can be assigned values inferred from existing VA clauses. Propagations can
be viewed as part of the cell selection strategy and be handled the same way as regular cell
value assignments.

We can therefore conclude by mathematical induction that S can be extended to a
complete search path when all cell terms in F are filled with values such that S represents
the model My, is LNH-compliant, and is isomorphic to Ay C A. Since My and M; are of
the same size, so Ay and A must necessarily be of the same size and hence must be equal.
Therefore, My is isomorphic to Mj. <

Theorem 9 shows that isomorphic cubes always extend to isomorphic models. So, one of the
isomorphic cubes may be discarded without losing any non-isomorphic model.

» Corollary 10. On searching under the LNH with any cell selection strategy on a signature
Y and an FOL formula F on X, if My is a model in F, then there is a complete search path
S under the said LNH that results in a model My which is isomorphic to M.

Corollary 10 proves the completeness of the LNH in that every model in any search is
isomorphic to some model found by searching under the LNH. An alternative proof of the
corollary is given in [50].

4 Searching with Cubes

Cubes can be constructed to partition the search space into non-overlapping subtrees that
can be processed in parallel. It is not necessary to search all the subtrees that originate
from the collection of cubes that span the entire search space because isomorphic cubes in
the same collection can be eliminated without losing non-isomorphic models. For example,
suppose we want to search for models of order 3 or more on a function f: D? — D under
the LNH with a cell selection strategy that selects f(0,0) then f(1,1) as the first 2 cell terms
in the search process. There are at most 6 cubes of length 2 (listed below) under the said
LNH and cell selection strategy, so together they must span the whole search space in the
sense that every search path that starts with the cell terms f(0,0) then f(1,1) in the search
tree must include one of the 6 cubes in it.

1. (f(0,0) =0; f(1,1) = 0).
2. (f(0,0) =0; f(1,1) = 1).
3. (f(0,0) =0; f(1,1) = 2).
4. (f(0,0) =1; f(1,1) = 0).
5. (f(0,0) =1; f(1,1) = 1).
6. (f(0,0) =1;f(1,1) = 2).

Since m,1)(Cube 1) = {f(1,1) = 1, f(0,0) = 1} = mq(Cube 5), so Cubes 1 and 5 are
isomorphic and one of them can thus be discarded without losing non-isomorphic models per
Theorem 9. This example demonstrates the importance of keeping the LNH in the search —

8:7

CP 2023

8:8

Symmetries for Cube-And-Conquer in Finite Model Finding

(6 =0][6 = 1][6 = 2] I Ch S

Note: to denotes f(0,0) and ¢; denotes f(1,1). A dotted line with a cross is a branch
pruned by the LNH, except for the branch ending on the VA clause ¢; = 1 (the shaded
node), which is pruned by the isomorphic cubes removal algorithm.

Figure 2 Partial Search Tree Showing Cubes of Length 2.

it cuts the search space from potentially n? cubes down to 6. Theorem 9 allows us to further
cut the number of cubes down to 5 (see Figure 2 for illustration). More isomorphic cubes
can be removed with longer cubes (see Table 2).

The procedure of removing isomorphic cubes starts with generating a set of short cubes
(typically of length 2 for a binary operation) that spans the entire search space. The model
finder takes short cubes as inputs and runs with them as if they are generated by itself to
generate longer cubes of predefined length [. Specifically, the model finder runs as usual,
except that it emits the cubes of length [when the depth of the search tree reaches [. After
outputting the cube, the model finder backtracks as if it has reached the bottom of the search
tree, and runs on a new branch as usual until all cubes of length [are generated. Some
models may be generated in this process due to propagation, and they are kept as part of
the final outputs. Next, the cubes are compared for isomorphism and only one of any pair of
isomorphic cubes is kept. This new set of non-isomorphic cubes of length [will be used as
inputs to the model finder in the next round of generation of longer cubes. The process is
repeated until the desired length of cubes is reached.

For searching models defined by one operation of arity k, we use the sequence of lengths
I: k,2% 3% 4F . .. This is to match the concentric cell selection strategy (see Example 4 for
its definition) of the finite model finder such as Mace4. We will discuss the best cube length
to use in Section 5.3.

Finally, non-isomorphic cubes of the target length can then be processed independently
in parallel and their output models collected separately.

4.1 Invariants

To speed up the isomorphic cubes removal process, the same invariant-based algorithm
described in [2] to remove isomorphic models can be applied to cubes. Invariants, such
as number of distinct domain elements, are properties that must be identical for cubes to
be isomorphic. For example, the cubes 4 = (f(2,2) = 2; f(2,3) = 4) and B = (f(3,3) =
2; f(1,2) = 2) cannot be isomorphic because A contains an idempotent 2 but B does not.
Powerful and inexpensive invariants for binary operations include:

(S

. Aragjo, C. Chow, and M. Janota 8:9

Number of y such that = (x * y) * .

Number of y such that y = z % z for all z € D.
Number of y such that y = z %y for all z € D.

Number of idempotents z (i.e. x * 2 = z) for all z € D.

LAl ol o

Number of y such that y *x y = z for each x € D.

First, invariant vectors (i.e. ordered lists of invariants) for cubes are calculated and used
as hash keys to group cubes having the same invariant vectors into hash buckets. Then, cubes
within the same bucket are tested for isomorphism. There is no need to test for isomorphism
across buckets because isomorphic cubes must have the same invariant vectors. This saves
tremendous amounts of testing time. Furthermore, buckets can be processed independently
and in parallel to further speed up the process.

4.2 Work Stealing

In the basic form of this cube-based parallel algorithm, cubes are statically generated before
the model enumeration process begins. It has the advantage of low runtime overheads as no
synchronization among running finite model finders is needed. The preprocessing time for
generating the cubes is also small for short to medium-length cubes. The disadvantage is
that the workload may be uneven among the parallel processes. Some jobs may take a long
time to finish when free workers sitting idle after finishing their jobs.

This problem can be solved with work stealing algorithms (also used in SAT [26]) in
which a busy finite model searcher releases cubes that are not currently being worked on.
For example, suppose a running model searcher is working on a cube By = (f(0,0) = 0), and
its cell selection strategy picks the cell f(1,1) to assign value next. Under the LNH, f(1,1)
may be assigned a value from {0,1,2}. If the model searcher is requested to spin out some
work for other free workers, then it generates three cubes, By = (f(0,0) = 1; f(1,1) = 0),
By = (f(0,0) =1; f(1,1) = 1), and By = (f(0,0) = 1; f(1,1) = 2). It continues to work on
the cube By and releases B; and By to other free workers.

5 Experimental Results

We integrate the cube-based algorithms into the finite model enumerator Mace4, which sup-
ports searching on FOL with the LNH and many cell selection strategies [35]. Parallelization
is controlled outside Mace4. Only minor changes are made to Mace4 to

1. Accept cubes as inputs and continue searching for longer cubes or models from them.
2. Periodically check for signal for work stealing to spin off cubes for other workers.

The model searching logic in Mace4 remains intact. The concentric cell selection strategy
(see Example 4 for its definition) is used in the experiments. A separate program removes
isomorphic cubes by separating the cubes with equal invariants then check for isomorphisms
(two cubes are isomorphic if one can be transformed to the other by a permutation).

We run the experiments on an Intel® Xeon®Silver 4110 CPU 2.0 GHz x32 computer,
with 64 GB of random access memory (RAM), using 30 parallel processes unless otherwise
stated. All times reported are wall clock times.

We pick many disparate and challenging problems from the MarcieX database [3], which
contains a collection of 158 most popular algebras. We also draw an example of semigroup
subvariety from [1]. The definitions of the algebras used in the experiments in this section
are listed in Table 1, in which all clauses are implicitly universally quantified.

CP 2023

8:10 Symmetries for Cube-And-Conquer in Finite Model Finding

Table 1 Definitions of Algebras Used in Experiments.

Algebra FOL Definition
Semigroups xx(y*z)=(z*y)*2.
Loops TxYy=T¥xz>y=2 yYyxr=zxxr—-y==2 xx0=z. 0xzx=u2x.

var{NaN [z2 = ¢?]} zx(yx2)=(z*y) %z (THT)*¥T =T *T. THY=Y*T. THT =7y%*y.
Tarski Algebras (zxy)xy=(yxx)*xz. xx*x(y*xz)=yx*x(rxz). (r*xy)*xz=uz.
Quasi-ordered Set r<yhy<z—ozxz<z xz<u
Involutive Lattices (zxy)*xz=ax*(y*2). zxy=y*z. (x+y)+z=z+ (y+ 2).
z+y=y+z (zxy)t+z=z (x4+y)*xz==zx.
—(z4y) =—-z*x—-y ——z=u

In the tables showing experimental results in this section, the rows with cube length 0
show the results of running Mace4 in a single thread without the cube-based algorithms.

Table 2 shows the results of applying Theorem 9 to remove isomorphic cubes for the
binary operation of the semigroups of order 7. Observe that the percentage reduction of
the number of cubes increases as the cube length increases. The isomorphic cubes removal
algorithm is therefore complementary to the LNH because the LNH removes a lot of short
cubes but loses its effectiveness as the length of the cubes grows.

Table 2 #Cubes for Semigroups of Order 7.

Cubes
Cube w/o Removal of w/ Isomorphic Reduction
Length Isomorphic Cubes Cubes Removed (%)
2 6 5 16.7
4 34 28 17.6
9 1,568 888 43.4
16 56,206 12,036 78.2
25 1,028,171 59,056 94.3

We run Mace4 to enumerate semigroups defined by a single binary operation. The results
show a speedup of over 100 times when cubes of length 25 are used, with over 96% of the
isomorphic models suppressed (see Table 3). The results on semigroups are indicative of
the algorithm’s usefulness in general to the computational algebraists because algebraic
structures related to semigroups are ubiquitous in algebra. Not only are there many well-
known semigroup-related algebras, but also many semigroup varieties and subvarieties that
are of high research interests [1].

Table 4 shows the results for loops (a quasigroup-related class of algebra) defined by a
single non-associative binary operation. Here the reduction in the number of the output
isomorphic models is not as pronounced. This is expected because the LNH works very well
with the Latin square and removes a high percentage of the isomorphic models [48] before the
isomorphic cubes removal takes place. For example, while only 0.16% of semigroups of order
7 generated by the LNH are non-isomorphic, 8.7% (106,228,849 out of 1,216,226,816) of the
models generated for the loops of order 8 under the LNH are non-isomorphic. Nevertheless,
the parallel algorithm provides 15 times improvement in speed for cube length of 16.

J. Araijo, C. Chow, and M. Janota

Table 5 shows the results of running the algorithms on the semigroup subvariety var{ Njn
[#2 = 9%} (see p. 40 of [1] for its definition and discussions). With longer cubes, the
algorithms speed up the process by 26 times with 30 threads. The results confirm that the
proposed algorithms work remarkably well with semigroup-related algebras.

The Tarski algebras are unlike both the semigroups and the quasigroups in that its
multiplication table is not associative and is not a Latin square [3]. It shows the cube-based
algorithms perform better and better as the length of the cube increases (see Table 6).

The quasi-ordered set is defined by one binary relation. The isomorphic cubes algorithms
work well on relations just as it works well on functions. As shown in Table 7, when cubes
of length 36 are used, over 99% of the isomorphic models are suppressed, and the search
process is sped up by over 200 times.

As an example to demonstrate the effectiveness of the algorithms on more complex
algebras, consider the Involutive Lattice [3], which is defined by two associative binary
operations and one unary operation. For Involutive Lattices of order 13, the search tree has
a maximum depth of 351. Using cubes of length of 105, we obtain a speedup of 300 times,
with almost 98% of the isomorphic cubes suppressed (see Table 8). The results show that
the isomorphic cubes algorithms are highly effective for both simple and complex algebras.

Table 3 Running Cubes on Semigroups of
Order 7. 8.

Table 4 Running Cubes on Loops of Order

Time in min.

Time in min.

Cube #Cubes #Models Gen. Total Cube #Cubes #Models Gen. Total
Length (Millions) Cubes Length (Millions) Cubes
0 1,021.1 235.2 0 1,216 564.0
2 5 7177 0.0 12.5 2 1,216 0.0 474
4 28 611.1 0.1 9.4 4 2 1,216 0.1 47.3
9 888 360.2 0.1 5.2 9 18 1,216 0.1 46.2
16 12,036 158.2 0.2 2.8 16 3,583 1,214 0.1 45.3
25 59,056 39.5 0.9 1.7

Table 5 Running Cubes on var{ N3N [z® =
y?]} of Order 9.

Table 6 Running Cubes on Tarski Algeb-
ras of Order 13.

Time in min.

Time in min.

Cube #Cubes #Models Gen. Total Cube #Cubes #Models Gen. Total
Length (Millions) Cubes Length (Millions) Cubes

0 313.0 72.0 0 379.6 1,949.9

2 1 156.5 0.0 2.9 2 189.8 0.0 70.2
4 1 156.5 0.1 2.8 4 1 189.8 0.1 69.9
9 2 156.5 0.1 2.8 9 183.3 0.1 67.7

16 5 120.9 0.1 2.3 16 11 158.8 0.1 58.1
25 16 55.5 0.2 1.3 25 55 111.9 0.2 40.1
36 70 13.0 0.3 0.8 36 157 62.1 0.2 21.8
49 331 1.5 1.0 1.1 49 174 24.9 0.5 8.8
64 171 6.6 1.0 3.7

8:11

CP 2023

8:12 Symmetries for Cube-And-Conquer in Finite Model Finding

Table 7 Running Cubes on Quasi-ordered Table 8 Running Cubes on Involutive Lat-
Set of Order 8. tices of Order 13.

Time in min. Time in min.

Cube #Cubes #Models Gen. Total Cube #Cubes #Models Gen. Total

Length (Millions) Cubes Length (Millions) Cubes

0 642.8 59.9 0 423.0 4,719.7

2 1 642.8 0.0 4.2 3 2 423.0 0.0 432.5

4 3 474.6 0.1 3.2 6 3 423.0 0.1 432.8

9 9 209.5 0.1 1.7 10 6 263.9 0.1 270.0

16 33 61.3 0.1 0.8 21 23 178.6 0.1 180.9
25 139 126 0.2 0.3 36 108 84.9 0.2 88.3
36 713 2.0 0.3 0.3 55 555 46.0 0.3 46.2
78 1,710 19.8 0.5 20.6

105 5,048 8.7 4.9 14.3

The reductions in time and number of models (on top of the LNH) are summarized in
Figures 3 and 4. Note that the reduction in total time is over 90% even for short cubes.
However, the biggest gain in both reduction in time and in isomorphic models is when
longer cubes are used. Reduction in isomorphic models also helps tremendously in the post
processing step to extract non-isomorphic models.

100 — 4—;\‘/@ 100 T —x
" / - B A B
S 4 —~ |
[} — a
R ;
f 60 | = N
2 E
= 50 - /=
o B
£ 40 —&— Semigroups H = o4l —— Semigroups L
= —&— Tarski Algebra E —&— Tarski Algebra
-2 30 —e— Loops [3 —&— Loops
= . Nlﬂ[,z, 2]} 73 ,,r(]\y\m[,Q,,Z]}
S 9l var{NyN [z? = y?]} || = gl var{N,N [2* = y°|} ||
= —&— Quasi Ordered —&— Quasi Ordered
10 Involutary Lattices || Involutary Lattices
Ty L1 I ! ! ! o0 L1 1 T R ! I ! !
0246 9 16 21 25 30 36 49 55 64 0246 9 16 21 25 30 36 49 55 64
Cube Length Cube Length
Figure 3 Reduction in Number of Output Figure 4 Reduction in Total Time with
Models. 30 Parallel Processes.

5.1 Speedup of Finite Model Enumeration with Parallelization

As discussed, the cubes algorithms allow low-cost parallelization of the finite model enumera-
tion process. Figure 5 and Table 9 show the performance of the parallel cubes algorithms with
1 to 16 parallel processes. Here, the reported times do not include isomorphic mode filtering;
they are for Mace4 to generate models only. Note that when many processes compete for
limited amount of RAM, swapping could slow down the processes substantially. This helps
to explain why larger algebras, such as the Involutive Lattice of order 13, have their curves
flattened out much faster than small algebras, such as the Semigroups of order 7. More
processes also mean more work-stealing and higher overheads.

J. Araijo, C. Chow, and M. Janota

Table 9 Performance w/ Multiprocessing.

Time in seconds

Algebra Order Cube 1 2 4 8 16

Length Process Processes Processes Processes Processes
Semigroups 7 25 6,626 3,397 1,757 940 425
Loops 7 16 202 108 50 35 21
Tarski algebras 13 64 1,766 973 552 273 250
var{Nan [z =¢%]} 9 49 130 84 80 57 53
Quasi Ordered 8 36 123 7 51 37 25
Involutive Lattices 12 105 1,496 794 480 378 320

1038 1= —a— Semigroups
—&— Loops
—&— Tarski Algebra

var{ N3N [2? = y?|}
—&— Quasi Ordered
Involutary Lattices [

1035 |-

<
T

(s) in Log Scale
S
[
T

Time
-
S

T
T

<
T

1 | | | |
R R 8 16

#Parallel Processes

Figure 5 Performance w/ Multiprocessing.

5.2 Isomorphic Cubes Removal Speeds up Isomorphic Models Filtering

As pointed out Section 1, reducing the number of Mace4 outputs also reduces the efforts
needed to filter out isomorphic models. Table 10 shows, using involutive lattices as an
example, the out-sized effect of the reduction of Mace4 outputs on the time to filter out the
isomorphic models using the invariant-based isomorphic model filtering algorithm [2], with
30 parallel processes. With the reduction in number of Mace4 models, the isomorphic model
filtering process is sped up by 2 orders of magnitude. The improvement in speed is observed
to be better with models of higher orders. We would also point out that the isomorphic

model filter generates the same non-isomorphic models with or without the cubes algorithms.

Table 10 Running Invariant-based Isomorphic Models Filter on Involutive Lattices.

w/o Cubes w/ Cubes
Order #Non-iso #Maced Isomorphic Model Cube #Maced Isomorphic Model
Models Output Filter Time (s) Length Output Filter Time (s)
9 122 72,470 29 78 3,670 1
10 389 575,463 496 105 13,789 4
11 906 4,771,035 28,424 105 97,680 135
12 3,047 43,851,030 N/A 105 971,416 2,802

8:13

CP 2023

8:14

Symmetries for Cube-And-Conquer in Finite Model Finding

5.3 Optimal Cube Length

In general, the search process using longer cubes finishes earlier with fewer isomorphic models.
However, we observe that there are three limiting factors on the lengths of the cubes.

First, as the length of the cubes gets longer, more and more models are generated as a
result of propagations. This reduces the impact of removing isomorphic cubes because they
represent a progressively smaller proportion of the isomorphic models. It is observed that
when more than n — 2 symbols out of the n domain elements are used in the cell terms, the
number of (isomorphic) models will be substantial and extending the cube length does not
bring enough reduction in isomorphic models to justify the increase in processing time.

Second, the isomorphic cubes removal time grows quite fast as the length of the cube
grows. When the isomorphic cubes removal process takes more than a few minutes, further
lengthening of the cubes will result in prohibitive overheads in the search process.

Lastly, when the final number of cubes is more than tens of thousands, the overheads
in processing them becomes so high that the search becomes slower. This factor depends
heavily on the number of processors available. More processors mean more parallel processes
can be run without slowing down the whole search process.

One heuristic is to run cube generation until the number of cubes reaches some threshold
or the runtime exceeds some threshold, then switch to model generation. The thresholds are
system-dependent and can further be fine-tuned by experiments with algebras of interest.

6 Related Work

There is extensive research on paralyzing SAT solving, where the predominant approaches are
search space partitioning and portfolios, c.f. [33]. We find inspiration in the cube-and-conquer
approach proposed by Heule and colleagues [20-22], where the search space is partitioned
by a lookahead solver into (many) cubes and then each subspace is solved by a CDCL
SAT solver. In SAT, partitioning by a CDCL solver is nontrivial [32] and that is why the
lookahead solver is useful for this task. Nevertheless, the use of the lookahead solver is not
seen as an indispensable feature of the cube-and-conquer, as noted by Subercaseaux and
Heule [46]. In our approach, we have a tight control over the decisions of the solver and we
do not need a separate solver to perform the splitting. Additionally, we invest extra effort
into search space splitting by identifying symmetries in the cubes.

The adaptive prefiz-assignment technique [25] is a symmetry reduction algorithm used
in SAT. The prefix is equivalent to a propositional cube, and the algorithm also tries to
eliminate isomorphic cubes. In our case, we exploit symmetries specific to FOL — LNH and
isomorphism at FOL level, which is absent in their algorithm (and in SAT in general).

Parallel algorithms can be characterized by how the search is done. There are two main
search methods: embarrassingly parallel search (EPS) and work stealing search [7,10,26, 33,
41,42]. In the former method, the task is decomposed into many sub-tasks that are queued
up to be processed by free worker threads/processes. In the latter method, when a worker
completes its task, it asks other workers for more work. The busy workers may split their
tasks into smaller sub-tasks and pass some of them to the free workers. The main focus of
this method is to keep all the CPUs running until all jobs are done, although for some cases,
the work stealing scheme can affect efficiency [10]. The EPS method is a natural choice for
the cube-based parallelization scheme because preprocessing can be performed to generate
numerous non-isomorphic cubes by splitting the search space. However, a work-stealing
procedure is essential in supplementing the EPS to balance uneven workloads [33].

J. Araijo, C. Chow, and M. Janota

Parallel algorithms can also help select the best strategy in solving a problem with the
EPS method [39]. After a problem is decomposed into a large number of sub-tasks, a small
number (e.g., 1%) of these sub-tasks are run in parallel using different strategies of the same
solver or different solvers. The strategy that gives the best performance on the subset of
sub-tasks will be used to run all sub-tasks. The same idea is used in the invariant-based
isomorphic models removal algorithm [2]: it randomly generates a large number of invariants,
then applies them to a small percentage of models to pick the best performing random
invariants to apply to the whole set of models. This idea can be applied to the finite model
finders that support multiple cell selection strategies to pick the best function order and cell
selection strategy for any specific problem.

Finite model enumeration can be posed as a constraint programming (CP) task [27].
Some CP solvers, e.g., Minion [17] and Gecode [37], support parallelization [31]. In CP, the
search space can be partitioned by adding constraints to rule in and/or out partitions. Each
partition can be processed by a separate worker thread/process. Minion further implements
a work stealing search scheme that also partitions the search space dynamically by splitting
the existing constraint model after the search has started [15,29]. However, to effectively
add symmetry-breaking constraints such as lex-leaders to a CP solver often requires deep
knowledge of the solver and the problem at hand (e.g., the semigroups in [15]) which may
not be available when mathematicians first define and study a new algebraic structure.

Moreover, to use traditional CP solvers for finite model enumerations, mathematicians
need to learn a new CP-specific language such as CHR [45] and Savile Row [38]. It is possible
to use a translator to translate between languages, but that adds uncertainties to the fidelity
and the optimality of the translated specifications. FOL remains one of the most popular
languages among mathematicians due to its simple and intuitive syntax. Moreover, a popular
automatic theorem prover, Prover9 [34], shares the same input language with Mace4. This
adds more than just convenience to the process, as it also reduces the chances of discrepancies
between Prover9 and Mace4 on the same problem.

A well-known issue with enumerating models defined with FOL are the isomorphic
models included in the outputs. This is an inherent symmetry property of FOL [40]. There is
extensive research on symmetry-breaking [4,11-13,28,40,43,47]. Although complete symmetry-
breaking is known to be computationally challenging [13,47], many useful algorithms, such
as the LNH and the XLNH [4,5], have emerged in partial symmetry-breaking. The LNH can
be considered a symmetry-breaking with interchangeable values in constraint satisfaction
problems (CSP) [19]. The XLNH is more restrictive as it only works on unary operations.
The LNH is implemented in many systems such as Falcon [50], SEM [51], FMSET [6], and
Mace4. The isomorphic cubes algorithm, which removes more cubes as the cube length
grows, complements the LNH.

Another important symmetry-breaking strategy is to steer the search engine away from the
fruitless exploration of sub-search space by adding symmetry-breaking input clauses [13,47].
The cube-based parallel algorithms are compatible with algorithms of this kind of strategy
as long as they do not break the LNH.

Some finite model finders, such as SEMK [8] and SEMD [24], try to completely suppress
isomorphic models in the search process. However, these isomorph-free algorithms are not
easy to parallelize as global information is generated and consumed in many steps, requiring
high-cost synchronizations between cooperating workers, especially when they run on different
computers. The cube-based parallel algorithm, on the other hand, is an EPS method that
requires no synchronizations between workers. The static removal of isomorphic cubes done
in a preprocessing step is shown to be effective in suppressing isomorphic models even

8:15

CP 2023

8:16

Symmetries for Cube-And-Conquer in Finite Model Finding

before the actual search begins. The augmented work stealing algorithm is not high in
synchronization costs because it does not involve communications between running jobs. The
remaining isomorphic models from the cube-based algorithms can be efficiently removed by
the invariant-based isomorphic model filtering algorithm as a postprocessing step.

Another algorithm, DSYM [4], exploits local symmetries by finding symmetries (synonym
to isomorphisms in their terminology) under invariant partial interpretations (which are
invariant cubes) and without parallelism. It also works with the LNH and XLNH. DSYM is
a predictive algorithm that works at the parent level and predicts which of its immediate
children will be isomorphic cubes. It can be seen as a special case of the isomorphic cube
algorithm because it removes isomorphic cubes having the same immediate parents, while
the isomorphic cube algorithm removes all isomorphic cubes, irrespective of their parents.
Nevertheless, for the cases that DSYM covers, it does so right before the cubes are generated,
while the isomorphic cube algorithm only detects the symmetries right after the cubes are
generated. A disadvantage of DSYM is that it is not clear how it can be effectively parallelized.
Furthermore, DSYM only detects symmetries under the same subtree. The isomorphic cubes
removal algorithm, on the other hand, detects both global and local symmetries the same
way, and hence detects and removes more symmetries than DSYM. Moreover, DSYM uses
only two invariants in testing isomorphism between cubes, while we use many invariants
that are proven successful in the invariant-based isomorphic model removal algorithm in
our isomorphic cubes removal process. Nevertheless, DSYM can be applied to the cube
generation process as well as the final model generation process. That is, the isomorphic
cube removal algorithm is compatible with DSYM, as with any other symmetry-breaking
algorithm that works with the LNH.

7 Conclusions and Future Work

In this paper, we introduce an efficient parallel algorithm together with a novel symmetry-
removal mechanism for enumerating finite models. The approach is inspired by the cube-and-
conquer paradigm, successfully used in SAT solving, which partitions the search space into
cubes and then massively paralyzes. In contrast, our approach applies symmetries specific to
finite model finding.

In conclusion, this paper fulfills an important unmet need for an efficient algorithm for
enumerating finite algebraic models in computational algebra by enhancing the existing
finite model enumeration process with the parallel cubes algorithm and the isomorphic cubes
removal algorithm that reduce both the runtime and the number of output isomorphic models.
These new algorithms are so scalable that they can be used on a laptop as well as on a cluster
of powerful computers, and they require minimal efforts to safely integrate into existing
finite model finders. Very importantly, these algorithms can be used as a black-box without
requiring the users to have any knowledge about the way they work.

Future research will focus on improving isomorphic cube removal, on best cell selection
strategy, and on predicting of optimal cube length.

—— References

1 Jodo Araijo, Jodo Pedro Aratjo, Peter J. Cameron, Edmond W. H. Lee, and Jorge Raminhos.
A survey on varieties generated by small semigroups and a companion website, 2019. arXiv:
1911.05817.

2 Joao Aratjo, Choiwah Chow, and Mikolas Janota. Boosting isomorphic model filtering with
invariants. Constraints, 27(3):360-379, July 2022. doi:10.1007/s10601-022-09336-x.

https://arxiv.org/abs/1911.05817
https://arxiv.org/abs/1911.05817
https://doi.org/10.1007/s10601-022-09336-x

J. Araijo, C. Chow, and M. Janota

10

11

12

13

14

15

16

17

18

Jodo Aratjo, David Matos, and Jodo Ramires. MarcieDB: a model and theory database.
https://marciedb.pythonanywhere.com, 2022.

Gilles Audemard, Belaid Benhamou, and Laurent Henocque. Predicting and detect-
ing symmetries in FOL finite model search. J. Autom. Reason., 36(3):177-212, 2006.
d0i:10.1007/s10817-006-9040-3.

Gilles Audemard and Laurent Henocque. The eXtended least number heuristic. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Automated Reasoning, First International
Joint Conference, IJCAR, volume 2083 of Lecture Notes in Computer Science, pages 427442,
Berlin, Heidelberg, 2001. Springer. doi:10.1007/3-540-45744-5_35.

Belaid Benhamou and Laurent Henocque. A hybrid method for finite model search in equational
theories. Fundam. Informaticae, 39(1-2):21-38, 1999. doi:10.3233/FI-1999-391202.

R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work stealing.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 356-368,
1994. doi:10.1109/SFCS.1994.365680.

Thierry Boy de la Tour and Prakash Countcham. An isomorph-free SEM-like enumeration of
models. Electronic Notes in Theoretical Computer Science, 125(2):91-113, 2005. Proceedings
of the 5th International Workshop on Strategies in Automated Deduction (Strategies 2004).
doi:10.1016/j.entcs.2005.01.003.

Stanley Burris and Hanamantagouda P. Sankappanavar. A course in universal algebra,
volume 78 of Graduate texts in mathematics. Springer, New York, NY, 1981.

Geoffrey Chu, Christian Schulte, and Peter J. Stuckey. Confidence-based work stealing
in parallel constraint programming. In Ian P. Gent, editor, Principles and Practice of
Constraint Programming - CP, volume 5732, pages 226—241. Springer, 2009. doi:10.1007/
978-3-642-04244-7_20.

Koen Claessen and Niklas Sorensson. New techniques that improve MACE-style finite model
finding. In Proceedings of the CADE-19 Workshop: Model Computation - Principles, Al-
gorithms, Applications, 2003.

Michael Codish, Alice Miller, Patrick Prosser, and Peter James Stuckey. Breaking symmetries
in graph representation. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, pages 510-516. IJCAI/AAAI, 2013.
URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480.

James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C.
Shapiro, editors, Proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 148-159. Morgan Kaufmann, 1996.

A. Distler and J. Mitchell. Smallsemi, a library of small semigroups in GAP, Version 0.6.12.
https://gap-packages.github.io/smallsemi/, 2019. GAP package.

Andreas Distler, Christopher Jefferson, Tom Kelsey, and Lars Kotthoff. The semigroups of
order 10. In Michela Milano, editor, Principles and Practice of Constraint Programming - CP,
volume 7514, pages 883-899. Springer, 2012. doi:10.1007/978-3-642-33558-7_63.

The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.11.1, 2021. URL:
https://www.gap-system.org.

Tan P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver.
In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors, ECAI,
17th European Conference on Artificial Intelligence, Including Prestigious Applications of
Intelligent Systems (PAIS), Proceedings, volume 141 of Frontiers in Artificial Intelligence
and Applications, pages 98-102, Amsterdam, Netherlands, 2006. IOS Press. URL: http:
//www.booksonline.iospress.nl/Content/View.aspx?piid=1654.

Tan P. Gent, Ian Miguel, Peter Nightingale, Ciaran McCreesh, Patrick Prosser, Neil C. A.
Moore, and Chris Unsworth. A review of literature on parallel constraint solving. Theory
Pract. Log. Program., 18(5-6):725-758, 2018. doi:10.1017/51471068418000340.

8:17

CP 2023

https://marciedb.pythonanywhere.com
https://doi.org/10.1007/s10817-006-9040-3
https://doi.org/10.1007/3-540-45744-5_35
https://doi.org/10.3233/FI-1999-391202
https://doi.org/10.1109/SFCS.1994.365680
https://doi.org/10.1016/j.entcs.2005.01.003
https://doi.org/10.1007/978-3-642-04244-7_20
https://doi.org/10.1007/978-3-642-04244-7_20
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480
https://doi.org/10.1007/978-3-642-33558-7_63
https://www.gap-system.org
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1654
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1654
https://doi.org/10.1017/S1471068418000340

8:18

Symmetries for Cube-And-Conquer in Finite Model Finding

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
35

36

37

Pascal Van Hentenryck, Pierre Flener, Justin Pearson, and Magnus Agren. Tractable sym-
metry breaking for CSPs with interchangeable values. In Georg Gottlob and Toby Walsh,
editors, IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, pages 277-284. Morgan Kaufmann, 2003. URL: http://ijcai.org/Proceedings/
03/Papers/041.pdf.

Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In Kerstin Eder, Jodo Lourengo, and Onn
Shehory, editors, Hardware and Software: Verification and Testing - 7th International Haifa
Verification Conference, HVC, Revised Selected Papers, volume 7261, pages 50-65. Springer,
2011. doi:10.1007/978-3-642-34188-5_8.

Marijn J. H. Heule, Oliver Kullmann, and Armin Biere. Cube-and-conquer for satisfiability.
In Youssef Hamadi and Lakhdar Sais, editors, Handbook of Parallel Constraint Reasoning,
pages 31-59. Springer, 2018. doi:10.1007/978-3-319-63516-3_2.

Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In Theory and Applications of Satisfiability
Testing (SAT), 2016. doi:10.1007/978-3-319-40970-2_15.

Antti E. J. Hyvéarinen, Matteo Marescotti, and Natasha Sharygina. Lookahead in partitioning
SMT. In Formal Methods in Computer Aided Design, FMCAD, pages 271-279. IEEE, 2021.
doi:10.34727/2021/isbn.978-3-85448-046-4_37.

Xiangxue Jia and Jian Zhang. A powerful technique to eliminate isomorphism in finite model
search. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning, pages
318-331, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Tommi Junttila, Matti Karppa, Petteri Kaski, and Jukka Kohonen. An adaptive prefix-
assignment technique for symmetry reduction. Journal of Symbolic Computation, 99:21-49,
2020. doi:10.1016/j.jsc.2019.03.002.

Bernard Jurkowiak, Chu Min Li, and Gil Utard. A parallelization scheme based on work
stealing for a class of SAT solvers. J. Autom. Reason., 34(1):73-101, 2005. doi:10.1007/
s10817-005-1970-7.

Majid Ali Khan. Efficient enumeration of higher order algebraic structures. IEEE Access,
8:41309-41324, 2020. doi:10.1109/ACCESS.2020.2976876.

Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation. In
Laurent D. Michel, editor, 27th International Conference on Principles and Practice of
Constraint Programming, CP, volume 210 of LIPIcs, pages 34:1-34:16. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.34.

Lars Kotthoff and Neil C. A. Moore. Distributed solving through model splitting. ArXiv,
abs/1008.4328, 2010.

Kenneth Kunen. The structure of conjugacy closed loops. Transactions of the American
Mathematical Society, 352(6):2889-2911, 2000.

Arnaud Malapert, Jean-Charles Régin, and Mohamed Rezgui. Embarrassingly parallel search
in constraint programming. J. Artif. Intell. Res., 57:421-464, 2016. doi:10.1613/jair.5247.
Ruben Martins, Vasco M. Manquinho, and Inés Lynce. Improving search space splitting
for parallel SAT solving. In 22nd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI IEEE Computer Society, 2010. doi:10.1109/ICTAI.2010.56.

Ruben Martins, Vasco M. Manquinho, and Inés Lynce. An overview of parallel SAT solving.
Constraints An Int. J., 17(3):304-347, 2012. doi:10.1007/s10601-012-9121-3.

W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005-2010.
William McCune. Mace4 reference manual and guide, August 2003. URL: https://www.cs.
unm.edu/~mccune/prover9/mace4.pdf.

Géabor Nagy and Petr Vojtéchovsky. LOOPS, computing with quasigroups and loops in GAP,
Version 3.4.1. https://gap-packages.github.io/loops/, November 2018. Refereed GAP package.
Morten Nielsen. Parallel search in gecode. Technical Report, Gecode, 2006.

http://ijcai.org/Proceedings/03/Papers/041.pdf
http://ijcai.org/Proceedings/03/Papers/041.pdf
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-319-63516-3_2
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_37
https://doi.org/10.1016/j.jsc.2019.03.002
https://doi.org/10.1007/s10817-005-1970-7
https://doi.org/10.1007/s10817-005-1970-7
https://doi.org/10.1109/ACCESS.2020.2976876
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.1613/jair.5247
https://doi.org/10.1109/ICTAI.2010.56
https://doi.org/10.1007/s10601-012-9121-3
https://www.cs.unm.edu/~mccune/prover9/mace4.pdf
https://www.cs.unm.edu/~mccune/prover9/mace4.pdf

J. Araijo, C. Chow, and M. Janota

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Peter Nightingale, Ozgiir Akgiin, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in savile row. Artificial Intelligence,
251:35-61, 2017. doi:10.1016/j.artint.2017.07.001.

Anthony Palmieri, Jean-Charles Régin, and Pierre Schaus. Parallel strategies selection. CoRR,
abs/1604.06484, 2016. arXiv:1604.06484.

Giles Reger, Martin Riener, and Martin Suda. Symmetry avoidance in MACE-style finite
model finding. In Andreas Herzig and Andrei Popescu, editors, Frontiers of Combining
Systems FroCoS, volume 11715, pages 3-21, Switzerland AG, 2019. Springer. doi:10.1007/
978-3-030-29007-8_1.

Jean-Charles Régin and Arnaud Malapert. Parallel constraint programming. In Youssef
Hamadi and Lakhdar Sais, editors, Handbook of Parallel Constraint Reasoning, pages 337-379.
Springer, 2018. doi:10.1007/978-3-319-63516-3_9.

Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Embarrassingly parallel search.
In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th
International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
volume 8124 of Lecture Notes in Computer Science, pages 596610, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-40627-0_45.

Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. FElsevier, 2006. URL:
https://www.sciencedirect.com/science/bookseries/15746526/2.

Neil J. A. Sloane and The OEIS Foundation Inc. The on-line encyclopedia of integer sequences,
2020. URL: http://oeis.org/?language=english.

Jon Sneyers, Peter van Weert, Tom Schrijvers, and Leslie de Koninck. As time goes by:
Constraint handling rules: A survey of chr research from 1998 to 2007. Theory and Practice
of Logic Programming, 10(1):1-47, 2010. doi:10.1017/S1471068409990123.

Bernardo Subercaseaux and Marijn Heule. Toward optimal radio colorings of hypercubes via
SAT-solving. In Ruzica Piskac and Andrei Voronkov, editors, Proceedings of 24th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 94 of
EPiC Series in Computing, pages 386—404. EasyChair, 2023. doi:10.29007/qrmp.

Toby Walsh. Symmetry breaking constraints: Recent results. In Jérg Hoffmann and Bart
Selman, editors, Proceedings of the Twenty-Sizth AAAI Conference on Artificial Intelligence,
July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press, 2012. URL: http://www.aaai.org/
ocs/index.php/AAAT/AAAT12/paper/view/4974.

H. Zhang. Combinatorial designs by SAT solvers. Handbook of Satisfiability, pages 533-568,
2009. URL: https://cir.nii.ac.jp/crid/1571980076163512448.

Hantao Zhang and Jian Zhang. MACE4 and SEM: A comparison of finite model generators.
In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics
- Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in Computer
Science, pages 101-130. Springer, 2013. doi:10.1007/978-3-642-36675-8_5.

Jian Zhang. Constructing finite algebras with FALCON. Journal of Automated Reasoning,
17:1-22, August 1996. doi:10.1007/BF00247667.

Jian Zhang and Hantao Zhang. SEM: a system for enumerating models. In IJCAI, pages
298-303, 1995. URL: http://ijcai.org/Proceedings/95-1/Papers/039.pdf.

8:19

CP 2023

https://doi.org/10.1016/j.artint.2017.07.001
https://arxiv.org/abs/1604.06484
https://doi.org/10.1007/978-3-030-29007-8_1
https://doi.org/10.1007/978-3-030-29007-8_1
https://doi.org/10.1007/978-3-319-63516-3_9
https://doi.org/10.1007/978-3-642-40627-0_45
https://www.sciencedirect.com/science/bookseries/15746526/2
http://oeis.org/?language=english
https://doi.org/10.1017/S1471068409990123
https://doi.org/10.29007/qrmp
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4974
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4974
https://cir.nii.ac.jp/crid/1571980076163512448
https://doi.org/10.1007/978-3-642-36675-8_5
https://doi.org/10.1007/BF00247667
http://ijcai.org/Proceedings/95-1/Papers/039.pdf

Guiding Backtrack Search by Tracking Variables
During Constraint Propagation
Gilles Audemard =

CRIL, Univ. Artois & CNRS, France

Christophe Lecoutre =
CRIL, Univ. Artois & CNRS, France

Charles Prud’homme &
TASC, IMT-Atlantique, LS2N-CNRS, France

—— Abstract
It is well-known that variable ordering heuristics play a central role in solving efficiently Constraint
Satisfaction Problem (CSP) instances. From the early 80’s, and during more than two decades,
the dynamic variable ordering heuristic selecting the variable with the smallest domain was clearly
prevailing. Then, from the mid 2000’s, some adaptive heuristics have been introduced: their principle
is to collect some useful information during the search process in order to take better informed
decisions. Among those adaptive heuristics, wdeg/dom (and its variants) remains particularly robust.
In this paper, we introduce an original heuristic based on the midway processing of failing executions
of constraint propagation: this heuristic called pick/dom tracks the variables that are directly
involved in the process of constraint propagation, when ending with a conflict. The robustness
of this new heuristic is demonstrated from a large experimentation conducted with the constraint
solver ACE. Interestingly enough, one can observe some complementary between the early, midway
and late forms of processing of conflicts.

2012 ACM Subject Classification Computing methodologies — Discrete space search
Keywords and phrases Variable Ordering Heuristics, Variable Weighting

Digital Object Identifier 10.4230/LIPIcs.CP.2023.9

Funding This work has benefited from the support of the National Research Agency under France
2030, MATA Project ANR-22-EXES-0009.

1 Introduction

Backtrack search remains a classical approach for solving instances of the Constraint Satis-
faction Problem (CSP), and the related Constraint Optimization Problem (COP). It is based
on depth-first exploration, which is conducted by instantiating variables in sequence and
backtracking when dead-ends occur. For efficiently exploring the search space, a filtering
process is performed at each step of the search so as to reduce the domains of the variables;
typically most of the constraints guarantee the property known as (generalized) arc consist-
ency [5, 1, 26, 14]. The order in which variables are chosen during the depth-first traversal
of the search space is decided by a wvariable ordering heuristic H. At each internal node of
the search tree built by the backtrack search algorithm, the next variable x is selected by
H, and a value is assigned to x according to a value ordering heuristic. Choosing the right
heuristics for solving a given constraint network is a key issue since different heuristics can
lead to drastically different search trees.

In modern constraint solvers, three main principles are considered for guiding search (i.e.,
performing depth-first exploration):

First, one should start by assigning variables that belong to the most difficult part(s)

of the problem instance. This principle is derived from the recognition that there is no

point in traversing the easy part(s) of an instance and then backtracking repeatedly when
? Gilles Audemard, Qhristophe Leco'utre, and Charles Prud’homme;

5v icensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No.9; pp.9:1-9:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:audemard@cril.fr
https://orcid.org/0000-0003-2604-9657
mailto:lecoutre@cril.fr
mailto:charles.prudhomme@imt-atlantique.fr
https://orcid.org/0000-0002-4546-9027
https://doi.org/10.4230/LIPIcs.CP.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

it turns out that the first choices are incompatible with the remaining difficult part(s).
Here the underlying fail-first principle is [13]: “To succeed, try first where you are most
likely to fail”.

Second, value selection should be based on the succeed-first or promise principle, which
comes from the simple observation that to find a solution quickly, it is better to move at
each step to the most promising subtree, primarily by selecting a value that is most likely
to participate in a solution.

Third, when starting to build the search tree, one should pay attention to the initial
variable/value choices that are particularly important. Indeed, bad choices near the root
of the search tree may turn out to be disastrous because they lead to exploration of
very large fruitless subtrees. To make good initial choices, one strategy is to select the
first branching decisions with special care, perhaps calling sophisticated and expensive
procedures for this purpose. Another relevant strategy is to restart search several times,
ideally learning some information each time in order to refine search guidance.

The current response (in solvers) to following these principles is as follows:

Generic adaptive variable ordering heuristics that learn from conflicts during exploration
are usually employed; a classical such heuristic being wdeg/dom [3], possibly combined
with a mechanism, called last-conflict reasoning (1c) simulating a certain form of intelligent
backjumps [18].

Promising attempts to select values (or pairs variable-value) according to some elegant
mechanisms such as Belief Propagation [23] have been introduced, but, unfortunately,
we are not aware of any generic robust value ordering heuristic. One exception may be
BIVS (Bound-Impact Value Selector) [8], but controlling its computation cost remains
a difficult question. Consequently, it is rather frequent that the first (smallest) value
be the default choice. Interestingly, for optimization, it is highly recommended to use
in priority the value present in the last found solution, which is a technique known as
solution(-based phase) saving [27, 7], clearly in concordance with the promise principle
(as initially mentioned in [6, 10]).

To address the issue of heavy-tailed runtime distributions [11], the search is restarted
regularly, following a geometric progression (or the Luby sequence). Besides, by collecting
nogoods [17] along the leftmost branch of the search tree at the end of each run (i.e.,
just before restarting), we have the guarantee of never exploring again the same parts of
the search space (which is a nice feature when exhibiting all distinct solutions of a CSP
instance).

This is the context of our contribution. More specifically, we focus our interest on the
first crucial component: variable ordering heuristics. Indeed, in this paper, we introduce
an original heuristic called pick/dom that learns from conflicts by identifying the variables
that are directly involved in the process of constraint propagation (when failing). We show
how to implement it in the variable-oriented propagation scheme. The robustness of this
new heuristic is demonstrated by conducting a large experimentation with the well-known
constraint solver ACE [15].

2 Preliminaries

A Constraint Network (CN) is composed of a finite set of n variables X, and a finite set of e
constraints C. Fach variable x must be assigned a value from its current domain, denoted by
dom(z). Each constraint ¢ represents a mathematical relation over an ordered set of variables,

G. Audemard, C. Lecoutre, and C. Prud’homme

called the scope of ¢, and denoted by scp(c). The arity of a constraint c is the size of its
scope. The degree of a variable x is the number of constraints of C involving z. A solution to
a CN P = (X, () is the assignment of a value to each variable of X’ such that all constraints
of C are satisfied. A constraint network is satisfiable iff it admits at least one solution. The
Constraint Satisfaction Problem (CSP) is to determine whether a given constraint network is
satisfiable, or not. A classical approach for solving this NP-complete problem is to perform
a depth-first search with backtracking, while filtering domains after each taken decision.
This procedure builds a binary search tree T: for each internal node v of T, a pair (x,v) is
selected where z is a variable and v is a value in dom(x). Then, two cases are considered:
the assignment & = v (positive decision) and the refutation x # v (negative decision). The
future variables of a constraint ¢, denoted by fut(c), are the variables in scp(c) at a given
node of the search tree that have not been explicitly assigned by the search algorithm.

When an objective function (integer or real-valued function defined on a subset of
variables of X) is added to the constraint network, we obtain an instance of the Constraint
Optimization Problem (COP). Backtrack search for COP relies on an optimization strategy
based on decreasingly updating the maximal bound (assuming minimization) whenever a
solution is found; this is a kind of ramp-down strategy (related to Branch and Bound), whose
principle is equivalent (still assuming a minimization problem) to adding a special objective
constraint obj < oo to the constraint network (although it is initially trivially satisfied), and
to update the limit of this constraint whenever a new solution is found.

3 Variable Ordering Heuristics

We provide in this section a quick overview of popular general-purpose search heuristics. The
simple variable ordering heuristic dom [13], which selects variables in sequence of increasing
size of domain, has long been considered as the most robust backtrack search heuristic.
However, twenty years ago, adaptive heuristics were introduced: they take into account
information collected along the part of the search space (tree) already explored.

In this paper, we shall mainly focus our attention to the popular adaptive heuristics

based on constraint weighting (wdeg, wdeg/dom, cacd, chs), and failure rating (frba/dom).

We will also refer to impact, activity and counting-based heuristics, which are defined as
follows:

impact, or ibs (Impact-Based Search), selects in priority the variable with the highest
impact. The impact of a variable x gives a measure about the importance of x in reducing
the search space [25]. The size of the search space of a CN P is the product of all current
domain sizes:

size(P) = [] |dom()|

reX

The impact I of a variable assignment x = a on P is computed as follows:

I(iE _ a) —1_ size(P')

size(P)

where P’ = ¢(P|,—,) denotes the CN obtained after assigning x to a and running the
filtering process ¢ (e.g., enforcing arc consistency). Note that if P’ leads to a failure, then

I(x = a) = 1. It is easy to see that this heuristic can be used for value selection as well.

activity, or abs (Activity-Based Search), selects in priority the variable with the highest
activity. The activity of a variable x is roughly measured by the number of times the
domain of z is reduced during search [22]. This heuristic is motivated by the key role of
propagation in constraint programming and relies on a decaying sum to forget the oldest
statistics progressively. More formally, the activity A(z) of a variable x is updated at

9:3

CP 2023

9:4

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

each (new) node of the search tree (after a decision has been taken by the solver followed
by constraint propagation) regardless of the outcome (success or failure) by the following
two rules:

A(x) = A(x) x v, where 0 < v < 1 is an age decay parameter, if the domain of = has

not been affected (i.e., has not been reduced)

A(z) = A(z) + 1 otherwise
The activities are initialized by making random probing in the search space.
Counting-based search relies on computing the solution density of each variable-value
assignment for a constraint in order to build an integrated variable-selection and value-
selection heuristic [24]. Depending on the constraints, computing such information can
carry a high computational cost although some mechanisms have been proposed to
accelerate it [9].

Now, to introduce wdeg and wdeg/dom, we need to describe the way constraint propagation
is run each time a decision is taken by the backtrack search algorithm. Algorithm 1 describes
the constraint-oriented propagation scheme, which uses of a set of constraints for piloting
propagation. This simplifies the presentation here, whereas later, we will introduce the
new heuristic pick/dom in the context of the variable-oriented scheme. Initially, the set @
contains the whole set of constraints of the constraint network. Then, each constraint c in
Q is picked in turn and a filtering process is applied from c: typically, this is for enforcing
arc-consistency (or a partial form) by calling filter(c) at Line 4. The call to this function
returns a subset of variables involved in ¢, denoted by X, whose domains have been modified
(i.e., such that at least one value has been removed from each of these domains). By means
of X, we can update @) so as to ensure constraint propagation is run until a fixed point is
reached. If ever the domain of one variable of X is empty, it simply means that a conflict
occurred (a dead-end has been identified) and so, a backtrack is required. This is triggered
by the returned Boolean value false, after having called the function incrementWeight
with the culprit constraint (responsible for the domain wipeout) passed as a parameter. In
the initial paper [3], the principle of constraint weighing is very simple: the weight of the
culprit constraint c is incremented by 1.

Algorithm 1 propagate((X,C): CN): Boolean.

Q<+ C
while Q # () do
pick and delete ¢ from Q
X < filter(c¢c) // X are variables in scp(c) with reduced domains
if 3z € X | dom(z) = () then
incrementWeight(c)

RON- N, Y R CR

return false // detected inconsistency

foreach ¢ € C | ¢ # ¢ A X Nscp(c) # 0 do
o | | Qe Quidh

®

10 return true

To summarize, each constraint ¢ admits a weight, initially set to 1, which is incremented
whenever a domain wipeout occurs while filtering ¢. Importantly, it was observed experi-
mentally that it was more effective to consider only the future variables involved in a culprit
constraint. Technically, instead of associating a global weight c.weight with each constraint

G. Audemard, C. Lecoutre, and C. Prud’homme

¢, one can introduce a local weight c.weight[z] to be associated with each variable z in
scp(c). Hence, when a conflict occurs, instead of incrementing the weight c.weight of the
culprit constraint, one can decide to increment the local weight c.weight|z] of each future
variable involved in scp(c).
The heuristics wdeg and wdeg/dom are defined as follows:
wdeg selects in priority the future variable with the highest “weighted degree”. Each
variable x is given a weighted degree, which is the sum of the weights over all constraints
involving x and at least another future variable. For each future variable x, the score of
x according to wdeg is:

Z c.weight|x]
ceC:x€scp(c)Alfut(c)|>1
wdeg/dom selects in priority the future variable with the highest ratio “weighted degree to

current domain size”. For each future variable x, the score of x according to wdeg/dom is:

ZCGC sx€scp(c)Alfut(c)[>1 c.weight [X]
|dom(z)]

In classical forms of wdeg and wdeg/dom, counters are incremented by 1., which remains
very simplistic and does not differentiate between constraints. This is why constraint
weighting, in the so-called variant cacd [28], has been refined by exploiting as information
both the “current arity” of the culprit constraint (i.e., the number of future variables) and
the size of the current domains of the future variables. The increment values computed for
the classical and cacd variants are precisely shown in Algorithm 2.

Algorithm 2 incrementWeight(c: Constraint).

1 foreach z € fut(c) do

2 if variant cacd then

3 ‘ cweights[x] «+ c.weights[x] + \fut(c)\x(%+|dom(z)|)
4 else

5 L cweights[x] + c.weights(x] + 1

Note that to break ties, which correspond to sets of variables that are considered as
equivalent by the heuristic, one can use a second criterion. However, for adaptive heuristics,
it is usual that the first encountered variable with the best score is selected.

Finally, we introduce two recent heuristics: the former, chs [12], exploits the history of
search failures, while the latter, frba/dom [20], computes the proportion of failing assignments
for each variable.

chs (Conflict-History Search), selects in priority variables appearing in recent failures.
All failures are registered with a timestamp. More precisely, chs maintains for each
constraint ¢, a score ¢(c¢) and updates it at every domain wipeout with an exponential
recency weighted average:

q(c) = (1 —a) xg(¢) + axr(c)

where oo = 0.4 (decreasing as time goes by) and r(c) is the reward given when a domain
wipeout occurred. The reward is higher when the constraint frequently enters in conflict:

1
r(c) = . .
#Conflicts — Conflict(c) +1

9:5

CP 2023

9:6

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

where #Conflicts is the total number of conflicts and Conflict(c) stores the last value
of #Conflicts when c led to a failure. The conflict history score of a variable x which
will be used in selecting the branching variable is given by:

ZCGC sx€scp(c)Alfut(c)[>1 q(c) +9
|dom(z))|

where d is a positive real number close to 0 that avoids random selection at the beginning
of search.

frba/dom (Failure Rate Based Search), selects in priority the variables that most often lead
to a conflict when assigning them. For this purpose, two counters are associated with each
variable x: the former, #Conflicts(x), records the number of times a failure has been
observed just by propagating an assignment involving x, and the latter, #Assigns(x),
the number of times the variable x was assigned. The failure rate of a variable z is then:

_ #Conflicts(x)

friz) = #Assigns(x)

In addition, similarly to the factor used for chs, we compute:

1
~ #Conflicts — Conflict(x) + 1

a(x)

where #Conflicts is the total number of conflicts and Conflict(x) stores the last value
of #Conflicts when z being assigned led to a failure.
The failure rate score of a variable « by frba/dom is then:

fr(a) + a(a)
don(a),

4 Variable Tracking in Conflicting Propagation

In this section, we introduce the principle of Variable Tracking in Conflicting Propagation
(VTCP). More specifically, we introduce a new variable ordering heuristic called pick/dom,
whose principle is to track the variables that are used to trigger filtering operations during
constraint propagation. However, it is important to note that this tracking is only used to
update counters (called “pick degrees”) associated with variables when constraint propagation
ends with a conflict. We show how to implement such variable tracking within the variable-
oriented propagation scheme.

To record information about tracked variables, we just need to associate a counter pick[z]
with each variable x of the CN. Initially, this counter (“pick degree”) is set to 0. According
to the selected mode (see below) used to update these counters, recorded values may be in
real or integer forms. The heuristic pick/dom is simply defined as follows:

pick/dom selects in priority the future variable with the highest ratio “pick degree to

current domain size”. For each future variable x, the score of z according to pick/dom is:

pick[x]
|dom(x)]
In the rest of this section, we show how pick degrees are computed.

In ACE, constraint propagation follows the variable-oriented scheme (as initially intro-
duced in [21]): the set @ contains variables. The principle is that whenever a value is removed

G. Audemard, C. Lecoutre, and C. Prud’homme

from the domain of a variable x, this variable is added to Q. In a first step, by ignoring
any statement related to L and A,, we can rather easily recognize the variable-oriented
propagation scheme in Algorithm 3: as long as there is a variable in @, one of them, x is
picked, and we execute the filtering algorithms (propagators) attached to all constraints
involving x, while updating ¢ when necessary.

Algorithm 3 propagate((X,C): CN): Boolean.

L= ()

2 Q+ X

3 while Q # 0 do

4 pick and delete = from @

5 A, 0

6 for ce C |z € sep(c) do

7 X « filter(c,A;) // A, is updated during call
8 if Jy € X | dom(y) = @ then

9 append (x,A,) to L

10 incrementPick(L)

11 return false // detected inconsistency
12 Q+—QUX
13 if A, > 0 then

14 L append (z,A,) to L

15 return true

Algorithm 4 incrementPick(L: Sequence).

1 foreach i ranging from 1 to |L| do
2 (23, Ag,) + L]
3 switch VARIANT do
4 case (0 do
5 L increment < 1
case I do
7 L increment « A,
8 case 2 do
9 increment < 100 X ‘LA‘#
Il By
10 case 3 do
11 increment + Z=9PHR o 100 x Ea—
" X551 Aay
12 pick[x;] + pick[x;] + increment

Now, let us consider first the structure L, which is a list, initially empty, keeping track of
any variable x that plays a role (i.e., triggers some effective filtering) during propagation,
together with an information indicating the degree A, of this role. Notice that, since L is
a list, the same variable may occur several times. Concerning the local variable A,, it is
initialized to 0 in Line 5. When the loop starting at Line 6 ends, A, indicates how many

9:7

CP 2023

9:8

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

values have been deleted from the domain of = in the different calls to Function filter at
Line 7. In practice, it is possible to handle A, in a non-intrusive way by introducing a global
variable whose value is incremented whenever a value is deleted (whatever the domain is). If
at Line 13, the value of A, is 0, it means that no filtering/reduction was performed at all
since the time x was picked. This is then a useless “pick”, which is the reason why we do
not update the structure L at Line 14. Importantly, the list L is only exploited if Algorithm
3 returns false (because a conflict is detected). Before returning false, the last picked
variable is added to L (because we have the guarantee of some filtering) and the function
incrementPick is called in order to update some picked degrees.

The way picked degrees are updated is shown in Algorithm 4. Four modes (denoted by
values ranging from 0 to 3) are possible. In mode 0, the picked degree of any occurrence
of a variable present in L is incremented by 1. In mode 1, the increment is given by A,
the impact of x after having been picked. In mode 2, each time constraint propagation is
run, 100 points are shared according to the relative impacts of the variables present in L. In
mode 3, a coefficient is applied to 100, depending on the current depth of the solver. As a
first extreme case, the current depth is 0, which means that we are at the root node, and so,
100 points are spread. As a second extreme case, the current depth is n, meaning that we
are a leaf, and 0 point is shared. The rationale is that we give more importance to nodes
near the top of the search tree.

5 Experimental Results

In our experiments, we have compared general-purpose variable ordering heuristics based
on constraint weighting, failure rating and variable tracking during conflicting propagation,
with the constraint solver ACE [15]. More specifically, we have compared the four variants of
pick/dom with wdeg-cacd [28], wdeg/dom [3] and chs [12], as well as the recently introduced
frba/dom. From now on, for simplicity, pick/dom, wdeg-cacd and frba/dom will be referred
as pick (while appending the mode in subscript text), cacd and frba, respectively. Note
that ibs and abs are not retained in our experiments because they are usually outperformed
when used in ACE. Concerning the value ordering heuristic, it systematically chooses the
smallest value in domains.

We have considered two benchmarks, denoted by xcsp-csp and xcsp-cop, which are
respectively composed of all CSP and COP instances selected for the main tracks of the
XCSP? competitions (In 2019, instances were randomly selected from existing series, and
there were no competitions held in 2020 and 2021) organized in 2017, 2018 [16] and 2022
[2] (most of them generated by the Python library PyCSP? [19]). They correspond to two
full sets of 942 and 1,034 instances in format XCSP? [4], for exactly 77 and 50 problems,
respectively. A time limit of 1,200 seconds was given per instance.

Ranking. Results will be partly analyzed from the scoring function used for the 2022 XCSP3
competition. For self-containedness, we recall it now. The number of points won by a solver
S is decided as follows:
for CSP, this is the number of times S is able to solve an instance, i.e., to decide the
satisfiability of an instance (either exhibiting a solution, or indicating that the instance is
unsatisfiable)
for COP, this is, roughly speaking, the number of times S gives the best known result,
compared to its competitors. More specifically, for each instance I:

G. Audemard, C. Lecoutre, and C. Prud’homme

if I is unsatisfiable, 1 point is won by S if S indicates that the instance I is unsatisfiable,
0 otherwise,

if S provides a solution whose bound is less good than another one (found by another
competing solver), 0 point is won by S,

if S provides an optimal solution, while indicating that it is indeed the optimality, 1
point is won by S,

if S provides (a solution with) the best found bound among all competitors, this
being possibly shared by some other solver(s), while indicating no information about
optimality: 1 point is won by S if no other solver proved that this bound was optimal,
0.5 otherwise.

5.1 Global Overview of Results

We start this experimental section with a global overview of the obtained results. The scores
of tested heuristics on xcsp-csp and xcsp-cop are given in Table 1 and Table 2. First, let
us make some comments on CSP. Here, the default version of ACE is the best one (cacd).
The heuristics are relatively close, and the differences mainly come from the number of
(solved) SAT instances. On our benchmark, the heuristic frba appears to be the worst one.
Concerning the pick variants, they are quite close, even if picks is the one that is most
often the fastest heuristic.

Table 1 Ranking on xcsp-csp. For each heuristic, we report the number of SAT/UNSAT
instances, the total number of solved instances and the number of times a heuristic is the fastest for
solving an instance. We also report the result for the virtual best solver/heuristic (VBS).

Heuristic Solved SAT UNSAT Fastest

VBS 676 481 195 676
cacd 646 457 189 411
chs 636 449 187 390
picks 632 441 189 442
pickg 631 442 188 439
pick: 630 441 189 427
wdeg/dom 626 442 183 377
picks 625 437 188 434
frba 618 431 187 391

For COP, all pick variants are the most efficient heuristics: indeed, the gap with the other
heuristics is significant. The variant picks is the best one in terms of the number of proved
optima and the number of found best bounds. The heuristics based on constraint weighting
got quite similar results, and even if the heuristic frba appears to be also outperformed, it
is important to report that this heuristic is very good in proving optima.

In order to provide a deeper analysis of the results of our experiments, we propose, in the
next section, to focus only on the following three heuristics:

cacd as a robust representative of the heuristics based on constraint weighting. The
results of cacd, wdeg/dom and chs are quite similar on COP but cacd appears to be the
most efficient heuristic on CSP. In addition, this is the default search strategy of ACE.

frba as a recent proposed heuristic based on failure rating.

9:9

CP 2023

9:10

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

Table 2 Ranking on xcsp-cop. For each heuristic, we report the number of proved optima, the
number of times the best bound has been found and the score as computed for the 2022 XCSP3
competition. We also report the results for the virtual best solver/heuristic (VBS).

Heuristic Score Optimum Best Bound
VBS 959.00 372 956
picks 624.50 347 627
picks 618.00 343 621
pick: 617.50 336 621
picko 612.50 341 617
wdeg/dom 569.50 312 583
cacd 557.50 315 570
frba 557.00 341 560
chs 554.50 324 563

picks as the best variant of variable tracking in conflict propagation. Actually, it is the
best heuristic on COP, able to find, most often, best bounds and also to prove them. On
CSP, it is also the most efficient variant of VITCP and the fastest one.

5.2 Comparing Best Heuristics

In this section, we compare the three selected heuristics, namely, cacd, frba and picks. We
start this comparison on the xcsp-csp benchmark with Figure 1, which shows some classical
scatter plots (permitting to compare two algorithms with rather good precision).

10?4 10? 1024

frba
picks
picks

cacd cacd frba

(a) cacd vs frba. (b) cacd vs picks. (c) frba vs picks.

Figure 1 Scatter plots for CSP instances. Each dot represents an instance: its value on the z-axis
(resp. y-axis) represents the time needed by the heuristic labelling the z-axis (resp. y-axis) to solve
it. Blue (resp. Orange) dots corresponds to SAT (resp. UNSAT) instances. The dots below the
diagonal represent then the instances where the y-axis heuristic is faster than the xz-axis one.

Here, it is clear that frba is less efficient than cacd and picks. Even if cacd is the best
heuristic on CSP (see Table 1), notably on the hardest instances, an instance-by-instance
comparison between cacd and picks looks less obvious, as the dots are uniformly distributed
over both parts separated by the diagonal.

As an alternative for visualizing these results, a Venn diagram is depicted in Figure 4a.
In such a diagram, each circle represents the instances solved by a heuristic. An overlapping
region represents a set of instances solved in an equivalent manner by two heuristics, or

G. Audemard, C. Lecoutre, and C. Prud’homme

three in the case of the central region. For CSP, two heuristics are equivalent if they require
the same amount of time (with a tolerance of one second) to find the same result (SAT or
UNSAT). A region with no overlap emphasizes the instances that are better solved by a
single heuristic. Here, the ranking is clear: picks is the winner, followed by cacd and finally
frba. To summarize the results for CSP: although cacd is the most robust heuristic when
considering the number of solved instance (with a timeout set to 1,200 seconds), picks is
usually the fastest heuristic.

Next, we consider the xcsp-cop benchmark. A first analysis can be made from the scatter
plots in Figure 2. Each plot is based only on the instances whose optimality has been proved
by at least one of the two compared heuristics. On the one hand, one can see in Figure 2a
and Figure 2b that frba and picks are better at proving optimality than cacd. On the
other hand, Figure 2c¢ does not show any dominance between frba and picks.

102 4 102 102

frba
picks
picks

10° 10° T T T 10°

cacd cacd frba

(a) cacd vs frba. (b) cacd vs picks. (c) frba vs picks.
Figure 2 Scatter plots for COP instances. Each dot represents an instance: its value on the
x-axis (resp. y-axis) represents the time needed by the heuristic labelling the z-axis (resp. y-axis)

to prove its optimum. The dots below the diagonal represent then the instances where the y-axis
heuristic is faster than the z-axis one.

cacd vs frba (932/1034) cacd vs pick; (940/1034) frba vs picks (932/1034)

1200 cacd is better 1200 cacd s better 1200 frbais better
frba is better picks is better picks is better

1000 1000 1000

800 800

600 600

Time differences in seconds
191321
.=52.63%
172199
perc.=47.37%
116580
34.83%

218137
65.17%
95010
30.79%
213599
.=69.21%

&

400 400

Time differences in seconds

Time differences in

vol
perc.
vol. =

vol. =
perc.

vol. =
perc.=
vol. =
perc.=
vol. =
perc.

200 200

, [. [. I

[200 400 600 800 o 200 400 600 800 o 200 400 600 800
#instances #instances #instances

(a) cacd vs frba. (b) cacd vs picks. (c) frba vs picks.

Figure 3 Plots for COP Instances. Above each figure, the number of instances (partially) solved
by at least one of the two heuristics as well as the total number of instances is indicated. When a
heuristic is better than the other, this contributes to its area, representing the difference in resolution
time. The vol. value indicates the volume of this surface, the perc. value indicates the ratio of the
volume to the sum of the two volumes. The difference between two heuristics takes into account the
best bounds found and possibly the proof of optimality.

Figure 3 allows a complementary analysis. Fach graphics shows a pairwise comparison
with two areas. When a heuristic is better than the other, the difference in solving time is

9:11

CP 2023

9:12

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

computed. An heuristic a is better than a heuristic b if it proves optimality whereas b does
not, or if it finds a better bound than b, or, finally, if they find the same bound and it is
faster than b. In the two first cases, the resolution time of b is set to the time limit, namely
1,200. Each computed time difference contributes to the area of the best heuristic. Hence, a
larger area means that the attached heuristic offers better performances than the other one.
Each area is annotated with vol. and perc. which respectively denote the volume of the area
and the ratio, in percentage, of the volume to the sum of the two volumes. Finally, strictly
equivalent instances are indicated between the 2 vertical bars. In Figure 3a, one can observe
that cacd is slightly more robust than frba. Interestingly, in Figure 3b and Figure 3c, the
competitiveness of picks is clearly visible: the area of picks is almost twice as large as that
of cacd or frba.

cacd frba cacd frba

N
)

picks picks

(a) Venn Diagram on CSP Instances. (b) Venn Diagram on COP Instances.

Figure 4 Venn diagrams for cacd, frba and picks on CSP and COP instances. Each circle
represents the instances solved by a heuristic. An overlapping region represents a set of instances
solved in an equivalent manner by two heuristics, or three in the case of the central region. Two
heuristics are considered as being equivalent if they found the same result in the same amount of
time. For CSP, this is the time for proving (un)satisfiability. For COP, this is for getting the best
bound or proving optimality. A region not overlapped emphasizes the instances that are better
solved by a single heuristic.

These results are confirmed by the Venn diagram in Figure 4b. The circles, and especially
the one for picks, stand out from the centre. This Venn diagram also suggests that each
heuristic would be more suitable for certain problems. This is confirmed in Table 3. First,
frba performs particularly well on five problems, namely Cutstock, DC, ItemsetMining
OpenStacks and TravelingSalesman. Indeed, it is able to close more instances and provides
better bounds than cacd and picks. In turn, cacd behaves better on six problems: Cyc-
licBandwith, Ramsey, StillLife and Taillard, and to a lesser extent PseudoBoolean and
QueenAttacking. As for picks, the set of problems where it dominates is clearly larger:
Auction, BinPacking, ChessBoardColoration, CoinsGrid, EchelonStock2, FAPP, GraphColor-
ing, MultiAgentPathFinding, NurseRostering, OPD, QuadraticAssignment, RCPSP, RLFAP,
Spot, SteelMillSlab, SumColoring TAL, TravelingTournament, Triangular and Warehouse.
This is just under half of the problems. For some problems the gap is quite large, namely
BinPacking, FAPP or RCPSP.

Finally, we show in Table 4 some details for some chosen (representative and singular)

G. Audemard, C. Lecoutre, and C. Prud’homme

instances of some problems. This may be helpful for testing and reproducing the results we
have obtained.

Table 3 Details per problem (COP). For each problem, the number of instances is displayed, and
for each heuristic, the couple 'number of proved optima : number of best bounds found’ is provided.

Best results are highlighted (when at least one heuristic is outperformed by the other(s)).

Problem cacd frba picks Problem cacd frba picks
AirCraft (13) 4:10 5:6 4:10 NursingWork (12) 1:2 1:4 1:4
Auction (16) 2:6 2:4 2:14 OPD (17) 8:9 9:14 9:15
BACP (24) 4:24 4:24 4:24 OpenStacks (16) 12:16 14:16 12:16
BinPacking (51) 1:17 0:25 2:33 PeacableA (14) 4:9 4:9 4:8
BusScheduling (10) 1:5 1:5 1:8 PizzaVoucher (10) 4:7 6:8 5:10
CVRP (10) 0:2 0:2 0:8 PseudoB (30) 13:23 13:18 13:22
ChessBoard (17) 3:13 2:13 3:14 Quadratic (36) 6:26 6:14 6:27
ClockTriplet (10) 2:9 2:6 2:9 QueenAtt (17) 7:11 5:3 8:6
CoinsGrid (10) 2:7 2:4 3:9 Rack (4) 2:4 3:4 3:4
CrosswordDes (13) 3:5 3:3 3:5 Ramsey (17) 5:17 4:16 5:14
CutStock (17) 6:9 8:9 7:9 RCPSP (43 31:34 34:35 35:43
CyclicBand (12) 4:9 2:3 2:6 RLFAP (50 10:22 12:32 12:48
DC (26) 714 10:25 12:18 Spot (10) 27 26 2.8
EchelonStock2 (10) 0:9 0:7 0:10 SteelMill (17) 2:2 2:2 2:7
FAPP (18) 2:2 2:7 3:13 StillLife (47) 15:46 14:21 13:29
FastFood (17) 1717 17:17 1717 SumColoring (14) 4:8 4:7 4:10
Filters (8) 8:8 8:8 8:8 Taillard (51) 5:17 5:6 5:13
GolombRuler (47) 19:31 18:27 18:35 TAL (20) 9:16 10:15 10:18
GraphCol (28) 14:24 15:23 17:24 TemplateDes (15) 12:13 12:1 11:12
ItemsetMining (15) 3:10 7:12 6:10 TravelingTour (14) 2:7 2:2 2:10
Knapsack (31) 22:31 26:31 26:31 TravelingSale (29) 3:16 3:17 3:15
LowAuto (31) 12:21 12:23 14:19 Triangular (10) 0:3 1:5 1:9
Mario (10) 10:10 10:10 10:10 VRP (17) 0:9 0:1 0:9
MultiAgentP (20) 4:6 8:9 9:17 WarOrPeace (10) 6:10 6:10 6:10
NurseRost (41 2:16 3:3 3:29 WareHouse (9) 0:3 0:0 0:9

6 Discussion

The three different ways of exploiting conflicts for guiding search, as experimented in the
last section, show somewhat complementary behaviors. This can be explained by the fact
that information is extracted at different moments: at the very beginning of the process
conducting to a conflict (i.e., at the time of the decision), during constraint propagation,
or at the time the last propagator (filtering algorithm) is solicited. One can then refer to
such approaches as early (E), midway (M) and late (L) operational treatment of conflicts.
This is illustrated in Figure 5 where a new decision x = a is taken, when solving a CN P, in
the continuity of two previously taken decisions v = a and w # b. In our scenario, running
constraint propagation ¢ on (the current state of) P after having assigned the value a to
x, i.e., ¢(Plz = a), reveals a new conflicting (dead-end) situation (denoted by L). The
early processing of this new conflict consists in considering the variable x involved in the
decision as the main culprit. This is the principle behind the heuristic frba/dom. The
midway processing of this conflict consists in considering all variables having played a role
(i-e., having been picked) during propagation as having contributed to the failure. This is
the principle underlying the heuristic pick/dom. The late processing of this conflict consists
in considering the last constraint (here, c¢2)) provoking a domain-wipeout (i.e., removing the
last value of a domain) as the object of interest. This is the principle of constraint weighting,
as in wdeg/dom.

One related heuristic, which is based on some form of midway strategy, is abs. However,
VTCP and abs collect information according to different strategies. abs updates activity

9:13

CP 2023

9:14

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

M

v |

05 C

IS

Figure 5 Illustration of pivotal moments for collecting information about conflicts: this correspond
to early (E), midway (M) and late (L) processing of conflicts.

counters at each node, whereas VT'CP only considers conflicting nodes. abs systematically
updates the activity counters of each variable, whereas VTCP only increments the counters
of variables at the origin of calls to effective propagators.

Importantly, we do believe that the experimental results we have obtained are significant,
for several reasons. First, they can be reproduced in an open-source constraint solver (with
a repository available in GitHub). Second, the number of models and instances used for
our experiments is very large, involving more than 120 problems of various nature. Third,
ACE is a competitive constraint solver and (although not officially engaged) showed good
performances in (notably the COP main track) of the 2022 XCSP? competition.

Finally, it is true that the importance of variable tracking in conflicting propagation looks
more limited when solving CSP instances. Actually, solving a (satisfiable) CSP instance
involves one single phase: finding a solution, whereas solving a COP instance involves two
subsequent phases: moving down towards an optimal solution, and proving optimality. We
believe that pick/dom is rather efficient for the first phase of COP solving (for the second
phase, a learning mechanism like in Picat [29] or OR-Tools becomes central).

7 Conclusion

In this paper, we have introduced a new way of exploiting conflicts during backtrack search so
as to build a well-informed variable ordering heuristic. In contrast to existing heuristics relying
on the early and late treatments of failing nodes, this new heuristic, pick/dom, consists
in a midway processing of conflicts by tracking variables during constraint propagation.
The robustness of pick/dom has been demonstrated from a vast experimentation campaign
involving more than 120 problems (and around 2,000 instances). Interestingly, the three
different forms of exploiting conflicts, based on different moments when to collect information,
entail somewhat complementary behaviours of the solver. This opens some perspectives for
building a still more robust solver by combining these conflict-based heuristics in a clever
way. Identifying features or properties of problem instances (e.g., tree width, backbone size,
presence of strong communities, structure of variable arrays, etc.) which are favorable for a
certain form of conflict processing is an issue which would deserve to be addressed.

G. Audemard, C. Lecoutre, and C. Prud’homme

Table 4 Details per instance. For each selected instance and each heuristic, the best bound,
the time (in seconds) to find it (TB) and the time (in seconds) to prove the optimum (TO, if
proven) are provided. Best results are highlighted. DC-A, DC-B, DC-C and DC-D stands for
DC-midori-xor4-d1-t0-r05-v128, DC-midori-xor4-d1-t0-r08-v128, DC-skinny-xor0-d0-t0-r09-v64-z0,
and DC-midori-xor4-d1-t0-r09-v128, respectively. Some other names have been shortened for more

visibility.
cacd frba picks
Instance Bound TB TO Bound TB TO Bound TB TO
DC-A 5 733 739 5 9 23 5 21 28
DC-B 41 59 - 8 174 - 316 484
DC-C 41 5 - 41 9 - 41 3 1,087
DC-D 53 753 - 9 699 - 43 179 -
Fapp-m2s-21-0500 180,499K 1,195 - 63,832K 870 881 177,187TK 1,008 -
Fapp-m2s-02-0250 221,762K 1,191 - 221,520K 1,158 - 221,591K 1,197 -
Fapp-m2s-test03-0400 453,213K 1,199 - 449,289K 1,192 - 450,098K 1,200 -
QueenAttacking-09 0 94 98 1 119 - 0 439 442
QueenAttacking-11 2 245 - - - - 1 708 736
QueenAttacking-13 11 158 - - - - - - -
StillLife-11-14 81 264 - 79 652 - 81 625 -
StillLife-wastage-12 76 12 872 76 23 - 76 549 -
StillLife-wastage-37 681 1,189 - 619 1,182 - 585 398 -
Auction-cnt-d100 829K 200 - 825K 1,099 - 849K 1,197 -
Auction-sum-d100 840K 69 - 824K 7 - 854K 102 -
Auction-sum-d500 3,368K 186 - 3,264K 224 - 3,344K 89 -
CVRP-A-n32-k5 1,095 15 - 1,006 257 - 835 492 -
CVRP-A-n36-k5 1,050 Yt - 1,039 1,112 - 892 74 -
CVRP-A-n34-k5 - - - 915 57 - 813 385 -
NurseRostering-01 607 1 - 607 1 11 607 1 10
NurseRostering-02 1,024 5 - 928 62 - 833 383 -
NurseRostering-19 68,621 1,200 - - - - 60,805 1,197 -
Rlfap-graph-05-opt 2,882 883 - 221 2 10 221 62 70
Rlfap-graph-06-opt 46,647 1,198 - 34,004 1,198 - 8,882 769 -
Rlfap-scen-06-opt 11,211 1,166 - 10,102 491 - 3,389 124 -
Triangular-10 20 89 - 20 4 138 20 0 142
Triangular-22 50 46 - 50 161 - 52 167 -
Triangular-38 95 10 - 97 224 - 97 337 -
SteelMillSlab-m2s-3-0 68 1,059 - - - - 43 995 -
SteelMillSlab-m2s-3-2 306 794 - - - - 171 1,177 -
SteelMillSlab-m2s-4-0 161 1,109 - - - - 94 1,186 -

9:15

CP 2023

9:16

Guiding Backtrack Search by Tracking Variables During Constraint Propagation

—— References

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

K.R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

G. Audemard, C. Lecoutre, and E. Lonca. Proceedings of the 2022 XCSP3 competition. CoRR,
abs/2209.00917, 2022. doi:10.48550/arXiv.2209.00917.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’0/, pages 146—-150, 2004.

F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3: an integrated format
for benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016. URL:
http://arxiv.org/abs/1611.03398, arXiv:1611.03398.

R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. Artificial
Intelligence, 34(1):1-38, 1988.

E. Demirovic, G. Chu, and P. Stuckey. Solution-based phase saving for CP: A value-selection
heuristic to simulate local search behavior in complete solvers. In Proceedings of CP’18, pages
99-108, 2018.

J.-G. Fages and C. Prud’homme. Making the first solution good! In Proceedings of ICTAI’17,
pages 1073-1077, 2017.

S. Gagnon and G. Pesant. Accelerating counting-based search. In Proceedings of CPAIOR’18,
pages 245-253, 2018.

P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In
Proceedings of ECAI’92, pages 31-35, 1992.

C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. Journal of Automated Reasoning, 24:67—-100, 2000.

D. Habet and C. Terrioux. Conflict history based heuristic for constraint satisfaction problem
solving. Journal of Heuristics, 27(6):951-990, 2021.

R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-313, 1980.

C. Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 20009.

C. Lecoutre. ACE, a generic constraint solver. CoRR, abs/2302.05405, 2023. doi:10.48550/
arXiv.2302.05405.

C. Lecoutre and O. Roussel. Proceedings of the 2018 XCSP3 competition. CoRR,
abs/1901.01830, 2019. arXiv:1901.01830.

C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Recording and minimizing nogoods from restarts.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 1:147-167, 2007.

C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Reasonning from last conflict(s) in constraint
programming. Artificial Intelligence, 173(18):1592-1614, 2009.

C. Lecoutre and N. Szczepanski. PyCSP3: modeling combinatorial constrained problems in
Python. CoRR, abs/2009.00326, 2020. arXiv:2009.00326.

H. Li, M. Yin, and Z. Li. Failure based variable ordering heuristics for solving CSPs. In
Proceedings of CP’21, 2021.

J.J. McGregor. Relational consistency algorithms and their application in finding subgraph
and graph isomorphisms. Information Sciences, 19:229-250, 1979.

L. Michel and P. Van Hentenryck. Activity-based search for black-box constraint programming
solvers. In Proceedings of CPAIOR’12, pages 228-243, 2012.

G. Pesant. From support propagation to belief propagation in constraint programming. Journal
of Artificial Intelligence Research, 66:123—-150, 2019.

G. Pesant, C.-G. Quimper, and A. Zanarini. Counting-based search: Branching heuristics for
constraint satisfaction problems. Journal of Artificial Intelligence Research, 43:173-210, 2012.
P. Refalo. Impact-based search strategies for constraint programming. In Proceedings of CP’04,
pages 557-571, 2004.

F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,
2006.

https://doi.org/10.48550/arXiv.2209.00917
http://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://doi.org/10.48550/arXiv.2302.05405
https://doi.org/10.48550/arXiv.2302.05405
https://arxiv.org/abs/1901.01830
https://arxiv.org/abs/2009.00326

G. Audemard, C. Lecoutre, and C. Prud’homme 9:17

27 J. Vion and S. Piechowiak. Une simple heuristique pour rapprocher DFS et LNS pour les
COP. In Proceedings of JEPC’17, pages 39-45, 2017.

28 H. Wattez, C. Lecoutre, A. Paparrizou, and S. Tabary. Refining constraint weighting. In
Proceedings of ICTAI’19, pages 71-77, 2019.

29 N.-F. Zhou. An XCSP3 Solver in Picat. In XCSP3 Competition 2022 Proceedings, 2022.

CP 2023

Incremental Constrained Clustering by Minimal
Weighted Maodification

Aymeric Beauchamp &
University of Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

Thi-Bich-Hanh Dao 24
University of Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

Samir Loudni &4
TASC (LS2N-CNRS), IMT Atlantique, France
GREYC, University of Caen Normandy, France

Christel Vrain 2 4&
University of Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

—— Abstract

Clustering is a well-known task in Data Mining that aims at grouping data instances according to
their similarity. It is an exploratory and unsupervised task whose results depend on many parameters,
often requiring the expert to iterate several times before satisfaction. Constrained clustering has been
introduced for better modeling the expectations of the expert. Nevertheless constrained clustering is
not yet sufficient since it usually requires the constraints to be given before the clustering process.
In this paper we address a more general problem that aims at modeling the exploratory clustering
process, through a sequence of clustering modifications where expert constraints are added on the
fly. We present an incremental constrained clustering framework integrating active query strategies
and a Constraint Programming model to fit the expert expectations while preserving the stability of
the partition, so that the expert can understand the process and apprehend its impact. Our model
supports instance and group-level constraints, which can be relaxed. Experiments on reference
datasets and a case study related to the analysis of satellite image time series show the relevance of
our framework.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming;
Computing methodologies — Semi-supervised learning settings

Keywords and phrases Incremental constrained clustering, Constrained optimization problem, User
feedback

Digital Object Identifier 10.4230/LIPIcs.CP.2023.10
Related Version FExtended Version: hal-04158825

Supplementary Material Software (Source Code): https://github.com/aymericb213/IAC
archived at swh:1:dir:8f611496af5ad016912ca3d55379b50b36541£89

Funding This work was supported by the French national research project HERELLES under grant
agreement ANR-20-CE23-0022.

Acknowledgements The authors want to thank the anonymous reviewers for their comments and

suggestions which helped to improve this paper.

1 Introduction

Clustering is a popular task in Data Mining in which data instances (i.e. points of a dataset)
are grouped into distinct clusters according to their similarity. Over time, many strategies
have been explored to compute data partitions, each of them having their own strengths and
biases. Constrained clustering [16] aims to find relevant clusters by stating some desired
properties in the form of constraints, thus alleviating the aforementioned biases. The most
© Aymeric Beauchamp, Thi-Bich-Hanh Dao, Samir Loudni, and Christel Vrain;

37 licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 10; pp. 10:1-10:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:aymeric.beauchamp@univ-orleans.fr
https://orcid.org/0000-0001-9894-7056
mailto:thi-bich-hanh.dao@univ-orleans.fr
http://www.univ-orleans.fr/lifo/Members/dao
https://orcid.org/0000-0002-2740-6954
mailto:samir.loudni@imt-atlantique.fr
https://loudni.users.greyc.fr/
https://orcid.org/0000-0001-6245-7661
mailto:christel.vrain@univ-orleans.fr
http://www.univ-orleans.fr/lifo/Members/vrain
https://orcid.org/0000-0003-3307-0753
https://doi.org/10.4230/LIPIcs.CP.2023.10
https://hal.science/hal-04158825
https://github.com/aymericb213/IAC
https://archive.softwareheritage.org/swh:1:dir:8f611496af5ad016912ca3d55379b50b36541f89;origin=https://github.com/aymericb213/IAC;visit=swh:1:snp:91f1f1b21a62d5fb209ca82661fd2af41e1de1ca;anchor=swh:1:rev:2e5ed052eadbefdfbd032b7e35250e8ccc585858
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Incremental Constrained Clustering by Minimal Weighted Modification

commonly used constraints for clustering state that two points must be clustered together
(must-link) or apart (cannot-link) [32]. Other constraints exist as for instance limiting the
size or the diameter of the clusters [1]. They are usually given by a subject matter expert
(SME) that possesses domain knowledge on the data; they model his/her knowledge and
expectations about the result by expert constraints.

In practice, it may be difficult for an expert to express constraints solely on the basis
of the data. It is usually easier to him/her to provide feedback on the current partition
to refine it. This leads to a human-in-the-loop clustering process, where new constraints
given or validated by the expert are incrementally integrated, modifying the result until
user satisfaction. However, this raises several non trivial questions such as how to elicit the
constraints, how to integrate them, or how to further exploit them. By incorporating human
feedback and domain knowledge, the resulting clusters are more likely to align with the
expert expectations while making them more intuitive and interpretable. This incremental
setting mimics the natural step-by-step progression of an exploratory task such as clustering,
where the user needs to iterate several times before satisfaction. In such a process, the result
at each step should (1) be computed fast enough, (2) exploit the expert constraints efficiently
(3) be similar to the result of the previous step, in order not to disturb the expert.

A naive way to integrate new expert constraints is to restart a constrained clustering
algorithm. However, this presents at least two weaknesses: it starts from scratch without
ever considering intermediate results and the new constraints can lead to a partition very
different from the one previously shown to the expert. To cope with this problem, we propose
a first generic framework that allows for truly interactive and iterative constrained clustering
that fulfills the conditions mentioned above. Our main contributions are :

an incremental constrained clustering framework designed for human interaction, combin-

ing active constraint selection and clustering modification;

a new constraint programming model for minimal clustering modification, which ensures

the stability of the partition.

The paper is organized as follows. We review in Section 2 related work on incremental
constrained clustering and minimal clustering modification and present our method in Section
3. Experiments on reference and satellite image time series datasets are presented in Section
4 and perspectives are discussed in Section 5.

2 Related Work

The first works on using constraints in clustering are extensions of classic algorithms for
handling must-link/cannot-link constraints [33, 10, 35]. They either search for a solution
satisfying all the constraints [33] or a compromise between constraint satisfaction and
clustering quality [6]. Thereafter methods allowing to integrate more general constraints,
using declarative frameworks such as SAT [12], ILP [29] or CP [9] have been proposed. When
new constraints are given by the user, all these methods require to restart from scratch,
without any guarantee that the new partition will be similar to the previous one. Therefore
they are not suited for an incremental setting.

There is a growing body of works related to incremental constrained clustering. In [7], the
idea of gathering feedback from an existing result rather than expecting the user to provide
insightful constraints by themselves is demonstrated. Later, the authors of [11] studied the
problem of adding or removing a constraint from a constraint set satisfied by a partition.
They described conditions under which the problem is easy to solve and an algorithm working
under these conditions. In [26], a cluster refinement framework uses subclustering to find

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

representatives to present to the user before learning an embedding using the feedback.
More recently, [21] proposed an incremental variant of a collaborative constrained clustering
system that integrates constraint satisfaction in its objective function. Among declarative
approaches, an ILP model for minimal clustering modification (MCM) is proposed in [20].
It constrains cluster diameters with the objective of removing undesirable properties from
a partition. Another ILP model [28] computes a membership score for each point to each
cluster and optimizes a criterion based on this score. It can modify the assignment of points
to clusters, even if they are not involved in constraints. However those models are restrictive
since they cannot handle conflicting constraints, which make the problem unsolvable.

Our approach seeks to preserve the general cluster structure of an existing partition while
satisfying new constraints. To the best of our knowledge, this is the first approach explicitly
tackling both quality and stability. It is based on CP, therefore it can integrate different kinds
of constraints that can be either soft or hard, with some control over constraint relaxation
and the ability to handle conflicting constraints. We use subclustering in a similar way to
[26], albeit for a different purpose as it allows generalizing the changes decided by our CP
model as well as finding cluster representatives used in our objective function.

3 Incremental and Active Clustering Framework

Initial
partition

Final Yes Is the user No
partition satisfied ?

Clustering

Can the

user give
constraints ?
Yes l Active
Manual constraint
< Modified) e selection
partition input
Minimal -
Weighted w
Clustering
Modification

Figure 1 Schematic view of the incremental clustering cycle.

In this section, we describe our proposed incremental and active clustering (IAC) frame-
work. Figure 1 gives a general overview of IAC. The incremental constrained clustering
loop starts from an initial partition computed by any clustering algorithm. This partition
is then shown to the user to collect his/her general feedback (satisfied or not). If he/she is
not satisfied, he/she can modify this partition in two ways: by manually providing a set of
constraints and/or by inferring it through an active constraint selection method. He/she can
also set the proportion of constraints to satisfy as well as the scope of modifications. The
clustering modification step updates the current partition according to these new constraints,
optionally generalizing modifications to unconstrained data instances. The output is a new
partition satisfying the constraints while preserving its stability, i.e. similar to the previous
one. This process is repeated until the user is satisfied by the resulting partition. It is
noteworthy that our framework is generic as any active constraint selection method and

10:3

CP 2023

10:4

Incremental Constrained Clustering by Minimal Weighted Modification

any modification algorithm could be used as long as the constraints generated match the
constraints handled in modification. We formulate the problem of clustering modification in
a declarative way and present a CP model. This has the benefit of being able to integrate
several types of constraints for the user feedback.

3.1 Minimal Weighted Clustering Modification

We consider the minimal weighted clustering modification (MWCM) problem: given a
partition P of N data instances (numbered from 1 to N) into a number K of clusters, and a
set of user constraints C, the objective is to find a new partition P’ such that the constraints
are satisfied while minimizing some function f modeling the difference between P and P’.
For solving this problem, Algorithm 1 shows the different steps that are detailed below.

Algorithm 1 Minimal Weighted Clustering Modification.

Input: Dataset X, partition P, constraints C, anchor generation rate «, super-instance rate g,
constraint satisfaction rate &
Output: modified partition P’

1: anchors <~ COMPUTEREPRESENTATIVES(X, P, o) > See section 3.1.1
2: X + CoMPUTECOPINSTANCES(X, P,C, 8) > Instances used in COP (Section 3.1.2)
3: D <— DISTANCEMATRIX(X, anchors) > See section 3.1.1
4: p + GETCONSTRAINEDPARTITION(X,P) 1 Cluster membership of the constrained instances
5: mods - SOLVEMODEL(D, p, C, §) > Solves the COP in Section 3.2
6: return ApPLYMODIFICATIONS(mods, P) > Updates P and generalizes modifications

3.1.1 Objective function and anchors

A straightforward candidate for f is to count the number of instances that have changed
their cluster membership between P and P’ [20]:

arg minz I(P[i] # P'[i]) (1)

where P[i] denotes the number ¢ € [1, K]! of the cluster containing instance i € [1, N] and
I the indicator function that returns 1 if the expression given as argument is true, and 0
otherwise. The main drawback of Equation (1) is that it does not take into account the
structure of the clusters. For example, it is reasonable to consider that putting two instances
in a nearby cluster is more akin to the idea of minimal modification than putting one instance
into a faraway cluster. Therefore we propose an alternate objective function that integrates
a distance-based weighting of the modifications:

arg minZH(P[i] # P'[i]) DJi, P'[i]] (2)

where D is a distance matrix of dimensions N x K such that D[i,] is the distance of instance
1 to cluster c¢. This objective function measures the changes between P and P’ and keeps the
cumulative distances resulting from these changes small. This objective function is integrated
into the model for MWCM that will be presented in Section 3.2.

L We use the notation [1, K] for the set {1,.., K}.

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

A simple way to compute DJi,] is to set DJi,c] = d(i, pc), where . is the representative
(medoid or centroid) of ¢ and d is a distance measure, typically the Euclidean distance. This
has however a known limitation: the modifications made by the model implicitly treat all
clusters as spherical. It can be counterproductive if the user seeks more complex shaped
clusters. To overcome this, we use anchors [17] such that each cluster will be represented by
a subset of its instances, in order to better represent its structure. Anchors are computed
by dividing each cluster ¢ of the input partition into smaller sub-clusters using Single-Link
hierarchical clustering. For each of these sub-clusters, an anchor is defined as the instance
minimizing the sum of its distances with the other instances of the sub-cluster. Using anchors,
Dli, c] represents the distance of instance ¢ to its closest anchor belonging to cluster c. A
parameter « defining the proportion of instances per cluster (in percentage) that will become
anchors is used. For example, a rate of 0% means that we only use medoids, while at a rate
of 100%, all instances are anchors (cf. Figure 2).

(a) a = 0% (medoids). (b) o =5%. (c) a =20%.

Figure 2 Anchor positions for different values of o computed from the partition generated by
Kmeans on 1sun dataset. The anchors are represented bigger than normal instances.

3.1.2 Generalizing constraints with super-instances

In a real use case, we assume that the expert will only react on a small number of instances
per iteration. As a result, the clustering modification could become unnoticeable when the
dataset size is large compared to the number of constraints, which is a fairly common case.
Hence, exploiting expert feedback to gemeralize the modifications to relevant unconstrained
instances is an important issue w.r.t. the challenge of asking a reasonable number of queries.
This issue has been highlighted in [34], and is especially relevant in our incremental setting.
Furthermore, this generalization must be controlled to ensure the expert can grasp the scope
of potential modifications. We assume that, in most cases, the expert will want to modify
a zone around the selected instances and not only the instances themselves. Bearing this
intuition in mind, making use of nearest neighbors or a proximity radius seem adequate, but
these methods lack predictability: if an instance is within the radius of two constrained points
who were reassigned to different clusters, determining how to resolve the generalization is
not obvious.

We propose to use super-instances, i.e. virtual instances grouping several real data points,
to generalize the modifications. Note that generalization does not mean that new constraints
are generated, rather that the super-instances are passed directly to the model instead of
the data instances (see Appendix C). Thus any modification in the cluster membership of a
super-instance amounts to changing the membership of every real data instance that compose
it. The generalization scope is controlled as follows: the less a cluster is divided, the stronger
the impact of a modification. Thus the scope depends on the number of super-instances,
determined by a rate 8 proportional to the cluster size. As such, setting g to e.g. 10%

10:5

CP 2023

10:6

Incremental Constrained Clustering by Minimal Weighted Modification

means that each cluster will be split into a number of super-instances equal to 10% of its
size, with 1 being equivalent to not generalizing at all. Super-instances are determined by
sub-clustering each cluster of the current partition into small groups, each group representing
a super-instance. We empirically found that complete-link hierarchical clustering is adequate,
despite its memory usage which makes it unsuitable on large datasets. Other alternatives
include the density-based OPTICS as in [26], or the Furthest Point First (FPF) algorithm
[15]. However, user constraints defined on instances need to be transferred to super-instances.
This may raise potential conflicts. To avoid this pitfall, we ensure that every super-instance
contains no more than one constrained data point. If this is not the case, we split the
super-instance using the constrained instances as centers of the new split super-instances.
An illustrative case is given in Appendix A.

3.2 Constraint Optimization Problem Formulation

Taking advantage of declarative approaches, we formulate the problem of finding a similar
partition satisfying user constraints as a Constraint Optimization Problem (COP). In the
following, we use the term instance to denote a data instance or a super-instance if it is used.

Variables and Objective Function. Only instances that are subject to the constraints will
be concerned by the COP. Function GETCONSTRAINEDPARTITION in Algorithm 1 produces
the subset X containing the constrained instances. For each instance in i € X, we define a
variable G; with the domain [1, K], where G; = ¢ means instance 7 is assigned to cluster ¢ in
the new partition P’. Using Eq. (2), the objective function is:

arg min Z I(G; # Pli]) D[i, G;] (3)

ieX

User constraints. Several instance-level and group-level constraints can be expressed in
our model, as below. Must-link (ML)/cannot-link (CL) constraints on two instances i, j
stating that the instances must/cannot be in the same cluster, can be expressed by G; = G;
for ML and G; # G; for CL. We also compute the transitive closure on ML/CL constraints
[25], which derives supplementary constraints according to three rules : (i) if M L(a,b) and
ML(b,c), then ML(a,c); (ii) similarly M L(a,b) and CL(b,c) imply CL(a,c) ; (iii) in a
binary clustering case (K = 2), CL(a,b) and CL(b, ¢) imply M L(a, c).

Triplet constraint (a,p,n) [23] states that a reference instance a is more similar to instance
p than to instance n. Instance p is therefore called positive instance and n negative. This
constraint can be expressed using an implication constraint as follows:

Go=Gn = Go=0G, (4)

Span-limited constraints [27] restricting the span of a set of instances S C X. A specific
span-limited constraint states that the instances of S must be assigned only to clusters from
a given subset C' C [1, K|. It can be expressed using the count global constraint?:

count(c,[G; |1 € S],=,0) Vec¢C (5)

A generic span-limited constraint specifies that the instances of S must be assigned to at
most a number v of clusters. It can be expressed using the constraint atmost_nvalue?® [5]:

atmost_nvalue(v, [G; | i € S]) (6)

2 https://sofdem.github.io/gccat/gecat/Ceount . html
3 https://sofdem.github.io/gccat/gccat/Catmost_nvalue.html

https://sofdem.github.io/gccat/gccat/Ccount.html
https://sofdem.github.io/gccat/gccat/Catmost_nvalue.html

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

More thematic expert feedback can also be integrated as implication constraints. In our
model, they are of the form P = (@, where P and @ are conjunctions of simpler constraints
such as ML/CL.

Cluster creation. Our model allows P’ to have more clusters than P, by defining the domain
of G; as [1, K'], with K’ > K. This enables assigning an instance to a new cluster if some
constraints are unsatisfied. For example, if K = 2 and the expert states three constraints
G; # Gj,G; # Gy and G; # Gj, then it is necessary to create a new cluster. Given its
conditions of apparition, it will typically be very small. In order to prevent the model from
creating clusters because it would be optimal to do so w.r.t. the objective function, we set
the distance D[i, k'] to a value greater than all other distances for K < k¥’ < K.

Relaxing constraints. During the incremental process, the expert could make mistakes
when trying to improve the partition, which would result in adding conflicting constraints,
thus leading to an over-constrained CP model. We reify the user constraints to gain control
over constraint satisfaction. Each constraint ¢ € C is associated with a Boolean variable S,
such that S, = 1 iff ¢ is satisfied. The satisfaction rate ¢ sets a lower/upper bound or the
exact value of the number of constraints the model must satisfy:

s,

ceC

AV

J-|C| (7)

Constraint relaxation can both solve problems with conflicting constraints and ignore - or warn
the user about - constraints that would modify instances far from their new cluster. Relaxation
however increases runtime due to the additional Boolean variables. As is, our framework
automatically detects ML/CL conflicts and reduces the satisfaction rate accordingly.

Managing the constraint store. Algorithm 1 solves this COP with the user constraints
collected at each iteration. The incremental setting raises the issue of managing the constraints
between iterations. It is possible to store every constraint received since the beginning of
the process to ensure that all expert feedbacks are respected. In the experiments, we choose
instead to treat the constraint set given at each iteration independently. In this way, if the
expert adds a constraint in conflict with another one given previously, we consider that the
user is simply rescinding some of his/her feedback. The expert can also mark some constraints
as mandatory so that they are kept satisfied throughout the process. Appropriately managing
the constraint store is a potential future research lead.

3.3 Active Constraint Selection

Obtaining constraints manually can be costly. This motivates active constraint selection
methods [2, 25, 37], which select the most informative constraints to query. To evaluate
the interest of exploiting an active constraint selection approach within our framework,
we use NPU [37], a neighborhood-based sampling strategy. Neighborhoods A are groups
of instances whose cluster assignment is certain, they represent the underlying clusters.
NPU iteratively builds the neighborhoods by selecting the most informative instance z*
and querying its relation with respect to existing neighborhoods. The informativeness of an
instance z is defined by the ratio H(N|z)/E[q(x)], where H(N|z) is the entropy measure of
the uncertainty to assign z to a neighborhood in N, and E[g(z)] the expected number of
queries needed to discover its neighborhood.

10:7

CP 2023

10:8

Incremental Constrained Clustering by Minimal Weighted Modification

Exploiting this informativeness, we adapt the NPU framework to the incremental setting.
The neighborhoods A/, which are initially empty, are constructed and kept throughout the
iterations. For each informative instance x*, queries are put on the membership relation
between x* and each neighborhood N € N. Once the user answers favorably, a ML constraint
is created with the queried neighborhood, otherwise a CL is created. If no ML is achieved, a
new neighborhood is created for 2* (see the detailed algorithm in Appendix B). In relation
to constraint management between iterations, it must be pointed out that the preservation
of the neighborhoods between iterations prevents selecting constraints conflicting with those
selected in earlier iterations. Indeed, an instance stored in a neighborhood is never picked
again by NPU, and is only used to generate constraints with an instance that has not
been presented to the user before. The only factor that could cause previous constraints
to be involuntarily relaxed is a high generalization scope. We found no such occurences in
our experiments with the values we tested for 8 (see Section 4.2.1). Fig. 3 illustrates the
framework walkthrough on a toy example, with noticeable separation between non-spherical
clusters that KMEANS is unable to recover.

.'.'
PP LAyt
i 2 .. LRV L

(@) t=0,ARI = 0.44. (b)) t=4, ARI =0.66. (c)t=7, ARI=0.94. (d)t=10, ARI =1.

Figure 3 Illustration of TAC with (o = 20%, 8 = 30%) over 10 iterations on 1sun dataset, starting
from a KMEANS partition (Fig. 3a). Subsequent figures show the evolution of the partition after ¢
iterations of IAC with NPU. Adjusted Rand Index with ground truth is reported on each figure.

4 Experiments

In this section, the experiments aim to answer the following research questions (RQ):

1. What effect do TAC parameters (o and /) have on clustering results 7 (Section 4.2.1)

2. How does our CP model scale with the number and type of constraints ? (Section 4.2.2)

3. How does the constraint relaxation of IAC compare with other methods that use soft
constraints ? (Section 4.2.3)

4. How effective is IAC in an active constraint selection context ? (Section 4.2.4)

5. What is the performance of our framework in terms of clustering quality, partition
similarity and runtime when compared to state of the art methods ? (Section 4.2.4)

6. How effective is our framework on a real use case with human feedback ? (Section 4.3)

4.1 Experimental Methodology

Evaluation measures. For all experiments we use datasets for which a ground-truth labeling
is known. The produced partition is then compared to the known partition using an
external measure. A high value of the measure indicates a good partition, meaning that the
clustering algorithm has successfully identified the already known structure. We consider
three measures: Adjusted Rand Index (ARI) [19], Adjusted Mutual Information (AMI) [31]
and Folkes-Mallows Index (FMI) [13]. ARI measure is defined by:

2(ab — cd)
(a+d)(d+b) + (a+c)(c+D)

ARI(P,P') = (8)

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

where a (resp. b) is the number of instances pairs clustered together (resp. apart) in P and
P’, and ¢ (resp. d) is the number of pairs clustered together (resp. apart) in P and apart
(resp. together) in P’. AMI is a variation of Normalized Mutual Information corrected for
chance:

MI(P,P")— E(MI(P,P"))

AMI(P,P,) = max(H(P)7H(P/)) — E(MI(P,P/))

(9)

where MI is the measure of mutual information, H the entropy of a partition, and E the
expected mutual information if the partitions are random. Finally FMI is the geometric
mean of precision and recall, using one partition as a reference for the other:

TP TP
TP+ FP TP+ FN

FMI(P,P') = \/ (10)
We also measure the runtime of the modification step (reclustering or MWCM) since it is
crucial to take it into account in the incremental setting. We set a timeout after 1 hour of
modification time.

Experimental protocol. We have implemented our CP model in Python 3.11 using the
CPMpy library [18], interfacing with CP-SAT solver from or-tools*. We chose this library
because it allows to easily use landmark ML libraries such as scikit-learn together
with CP. Code for reproducing the experiments is available at the repository given at
the summary of this paper. The implementation of NPU and all clustering algorithms
we considered for comparison (COPKMeans, PCKMeans and MPCKMeans) are from the
active-semi-supervised-clustering® library. All experiments were run on a computer

with two 48-core Intel Xeon processors at 4 GHz and 64 GB of RAM running Ubuntu 20.04.

For each dataset, we first generate an initial partition with KMEANS [24] with K set to
the true number of clusters. Queries correspond to pairwise constraints. We emulate user
feedback using the ground truth labeling of the data as an oracle i.e. a must-link constraint is
added if the selected pair of instances belong to the same class, and a cannot-link otherwise.
For RQs 1, 4 and 5, we perform 10 iterations of selection-modification loop. At each
iteration, we use the current partition to select a batch of 10 queries with NPU, get feedback
from the oracle, and apply either a constrained clustering algorithm to the full dataset or our
CP model for cluster modification. In order to smooth out the random effects occurring in
the partition initialisation and in constraint selection, we repeat each experiment 90 times.

To evaluate the overall performance over the 11 successive partitions (including the initial
partition) obtained for each run, we compute for each metric the area under the budget
curve (AUBC) [38]) for different fixed budgets of queries to ask the user. Given the budget
curve, the AUBC is calculated by the trapezoid method, and the higher value reflects better
performance of the evaluated method under varying budgets. For each metric, we compute
two types of AUBC: AUBCyq1ity when comparing the successive partitions to the ground

truth partition, and AU BCgimitarity When comparing two consecutive intermediate partitions.

Since AUBCgimiiarity values are defined over the interval [0,0.9], we perform a min-max
normalization so that all metrics are defined over the [0, 1] range. To statistically compare the
performance of different algorithms and/or configurations of the same algorithm for different
parameter settings on multiple data sets, we resort to Bayesian pairwise comparison [4] using

4 https://developers.google.com/optimization
5 https://github.com/datamole-ai/active-semi-supervised-clustering

10:9

CP 2023

https://developers.google.com/optimization
https://github.com/datamole-ai/active-semi-supervised-clustering

10:10

Incremental Constrained Clustering by Minimal Weighted Modification

Table 1 Dataset Characteristics, with N the number of instances, A the number of features and
K the number of clusters or classes.

UCL FCPS
Name (N, A, K) Name (N, A, K) Name (N, A, K) Name (N, A, K)
iris (150, 4,3) ionosphere (351, 34, 2) lsun (400, 2, 3) chainlink (1000, 3, 2)
wine (178,13,3) yeast (1484, 8, 10) target (770, 2,6) wingnut (1016, 2, 2)
sonar (208, 60, 2) statlog (2310, 19, 7) atom (800, 3,2) engytime (4096, 2, 2)
glass (214,9,6) Letters (20000, 16, 26)
ecoli (336,7,8) MNIST (70000, 784, 10)

baycomp® library. The principle is to use Bayes’ rule to update a prior statistical distribution
representing the null hypothesis (both compared algorithms have the same performance),
with a likelihood function modeling the experimental observations. We then get a posterior
distribution, reflecting how the prior belief has changed, taking the observations into account.
Using the Markov chain Monte Carlo method, the posterior is sampled 50,000 times to
estimate the probability of one algorithm being better than the other as well as the probability
of being in the region of practical equivalence (or rope). In practice, querying the posterior
distribution allows to simulate repeating the whole experimental process and to quantify the
likelihood of our results. We choose to fix to 1% the difference of performance between the
methods as the rope.

4.2 UCI and FCPS Datasets

In this section, we report experimental results on ten real-world datasets from the UCI
repository” and on six synthetic datasets from the FCPS [30] suite designed to address
specific challenges to the clustering algorithms such as lack of linear separability, classes
defined by data density rather than data spacing, no cluster structure at all, etc. A summary
of the basic characteristics is given in Table 1. We used the versions of datasets available
under the library clustering-benchmarks® [14].

4.2.1 Parameter Settings of I1AC

To answer RQ1, we evaluate the effects of different parameter settings of the clustering
modification step of our IAC framework: the anchor generation rate o € {0%,5%,20%}
and the super-instance generation rate 5 € {10%, 30%, 50%, 100%}. This makes a total
of 12 configurations of parameter combinations to evaluate. Recall that o = 0% means
that we only compute the cluster medoids, while 8 = 100% means no generalization by
super-instances is performed. For each configuration and each metric, we perform Bayesian
pairwise comparison according to AUBCgyqiity and AU BCjsimiiarity values for each of the
three metrics ARI, AMI and FMI over all the datasets and count the number of wins. More
precisely, given a pairwise comparison between two configurations conf; and confs, using a
Bayesian hierarchical model [8], we get three probabilities: the probability that conf; has
higher scores than con fs, the probability that differences are within the region of practical
equivalence (rope), or that conf, has higher scores. If (Deonp, > Peonfs + Prope), then we
count this comparison as winning for confi.

5 https://baycomp.readthedocs.io/en/latest/index.html
" https://archive.ics.uci.edu/ml/index.php
8 https://clustering-benchmarks.gagolewski.com/weave/suite-v1.html

https://baycomp.readthedocs.io/en/latest/index.html
https://archive.ics.uci.edu/ml/index.php
https://clustering-benchmarks.gagolewski.com/weave/suite-v1.html

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

[] L] []
8 (20,100) 8 (20,100) 8 (20,100)
z z z
S 6{ e @ ° S 6{ @ e o S 6 °
£ £ £
@ @ 7]
§ 4 ° § 4 ° S 4| o o
2 ° (20,30) 2 (20,30) 2 .
2 2 2 2 ° = 2 (20,30)
(20410) .
o o (20,10) 0 ° o] o (20,10)
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Wins on quality Wins on quality Wins on quality
(a) ARIL (b) AML. (c) FML

Figure 4 Pairwise plot comparing the number of wins for each configuration (o,) using a

Bayesian hierarchical model, according to AU BCyuaiity (horizontal) or AUBCyimiiarity (vertical).

Best values are close to the top left, with configurations on the Pareto front in orange.

The table of wins is available in Appendix D. Configurations using anchors (i.e. « # 0)
ensure the highest AUBCyyaiity values in almost all configurations. Additionally, the best
values are obtained with o = 20%. For a fixed value of o, AUBCya1ity values increase
significantly with the decrease of 8, 10% being the best value. This result suggests that
a large scope of generalization does not strongly impact the modification of the clustering
and thus its quality. AUBCsimiiarity values have the opposite behavior: § = 10% is the
worst setting for similarity. Note that the impact of o seems negligible compared to 5. It
slightly improves similarity when S is low, while its contribution seems negligible in the
absence of generalization. Generalizing modifications understandably degrades similarity,
albeit not dramatically. A Pareto front made of three configurations on every metric (see
Fig. 4) emerges from the results: one best in quality (20%, 10%), another best in similarity
(20%, 100%), and a compromise setup (20%, 30%).

Figure 5 plots the posterior distribution of pairwise comparison of configurations in a
simplex. The distribution is shown as a triangle with regions corresponding to different
samples of the distribution, e.g. Figure 5a compares the posterior distribution obtained with
a = 0% (medoids only) and 8 = 10% with the one obtained without generalization. This
indicates that there is a 88.9% probability that using medoids combined with SI for this
value of 3 is better than using medoids without SI.

plrope) = 0.000 plrope) = 0.998 plrope) = 0.001

p(IAC(0, 0.1)) = 0.889 p(1IAC(0, 1)) = 0.111 p(IAC(0.05, 1)) = 0.000 P(IAC(0.2, 1)) = 0.001 p(IAC(0.2, 0.3)) = 0.725 p(IAC(0.2, 1)) = 0.274

(@) (0%, 10%) vs. (0%,100%). (b) (5%,100%) vs. (20%,100%). (c) (20%,30%) vs. (20%, 100%).

Figure 5 Simplex view of Bayesian comparison of two configurations w.r.t AUBCquaiity of ARL

Each sample is plotted according to probabilities peony, (left), prope (top) and peong, (right).

4.2.2 Impact of Number and Types of User Constraints on Runtime

In this section, we answer RQ2 by studying two points: the computational efficiency of our
CP model and the expressiveness of our approach (see Sect. 3.2). For these experiments, we
consider 3 sizes of constraint set (10, 100, 1000). For each test case, we randomly generate sets
of four types of constraints (pairwise, triplet, span-limited specific and generic). We compute
an initial KMeans partition and run our CP model only once for each set of constraints and

10:11

CP 2023

10:12

Incremental Constrained Clustering by Minimal Weighted Modification

Type of constraint

2 all

-+ micl+triplet
span-generic

-¥- span-specific

- triplet

-®-micl

Type of constraint|

100 -all

<+ micl+triplet
span-generic

-¥-span-specific

- triplet

-®-micl

CPU time (s)
CPU time (s)

N e b oume®

10 100 1000 10 100 1000
Number of constraints Number of constraints

(a) letters. (b) MNIST.

Figure 6 Evolution of running time of our CP model for the two largest datasets when varying
the number and type of constraints, with 95% confidence interval. CPU times are in log-scale.

we report the average CPU times over 90 runs. For pairwise constraints, we disable the
computation of transitive closure to keep the number of constraints unchanged. Span-limited
constraints are created by randomly choosing 10 instances and finding the ground truth set
of clusters - or number of clusters, in the generic case - to which the group belongs.

Runtime analysis. Figure 6 shows the results we obtained for letters and MNIST datasets
with o = 0% and § = 100%. Our CP model can process 10 ML/CL constraints in less than
0.05 seconds, while for triplet and specific span-limited constraints the runtime reaches 0.035
and 0.15 seconds respectively. This seems very reasonable in an incremental context. For the
yeast dataset, with 100 pairwise constraints, it takes 0.35 seconds, whereas for triplet and
span-limited constraints the runtime increases up to 1.36 seconds. With 1000 constraints,
the runtime is more than 44s for specific span-limited, 67s for ML /CL, and over 180s for
triplet; generic span-limited constraints took up too much memory to finish. However, in
practice, the number of constraints expected from the user is in the tens rather than the
hundreds or thousands. Triplet and span-limited constraints show a substantial increase in
runtime compared to ML/CL constraints.

Mixed constraint types. One of the advantages of our approach is its ability to easily
combine different types of constraints without the need to create a specialized algorithm. To
demonstrate this ability, we compared two composite settings:

mlcl+triplet: generate pairwise and triplet constraints in equal proportions, e.g. 50
ML/CL and 50 triplet constraints for the 100 constraints case.

all: similar to mlcl4triplet, except a pairwise (resp. triplet) constraint is replaced by a

specific (resp. generic) span-limited constraint.
As far as we are aware, such problems cannot be solved by any existing techniques. Problems
with ML/CL and triplet constraints take much less time to solve than those involving the
three types of constraints, the latter being much more time-consuming. Surprisingly, with
1000 constraints, the ML/CL+Triplet combination takes less time compared to the case
where only triplet constraints are involved. All these results underline the relevance of
carefully selecting a small number of constraints to guarantee a good compromise between
efficiency and quality of the final clustering.

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

Table 2 Comparative study for clustering with pairwise constraints relaxation for the mk2 dataset.
Metrics are ARI with ground truth (Quality), ARI with unconstrained KMeans (Similarity), runtime
and number of constraints relaxed in the solution (n.).

Test case with conflicts Test case with § = 94%

Quality Similarity Time Ny Quality Similarity Time n,

IAC+Anchors 0.576 0.075 5.262 49.7 0.309 0.177 3.051 60.1
TAC+Anchors+SI 0.760 0.024 4.868 49.83 0.393 0.108 2972 60.1
PCK-Means 0.081 0.051 3.639 1493 0.375 0.045 2.834 66.5
MPCK-Means 0.078 0.017 29.27 159.9 0.406 0.019 26.98 61.2

4.2.3 Relaxing Constraints

We address the research question RQ3 by comparing TAC with existing constrained clustering
methods for constraint relaxation. We selected two methods: Pairwise Constrained K-
Means (PCK-Means) [3] allows the violation of ML and CL constraints, and Metric PCK-
Means (MPCK-Means) [6] combines PCK-Means with distance-metric learning [36]. As the
alternatives only support pairwise constraints, we compare performance for problems that
involve only ML/CL constraints. To that end, we consider two settings: in the first one,
we generate 950 constraints at random based on the ground truth and add 50 conflicting
constraints so that some constraints must be relaxed to solve the problem; in the second,
we generate 1000 constraints at random without any explicit conflict constraint and set the
satisfaction rate § of IAC to the mean satisfaction rate of PCK-Means and MPCK-Means.
We run two variants of IAC: TAC+Anchors (a = 20%, 8 = 100%) and TAC+ Anchors+SI
(a = 20%, S = 30%). Table 2 shows the performance of the different approaches for the
mk2 dataset, measured by ARI, runtime and number of constraints relaxed. Each value
in the table is the average of 90 runs with different sets of constraints. As previously, for
each run, we compute an initial KMeans partition and run our CP model only once for
each set of constraints. Results show that in the presence of conflicts, our method violates
fewer constraints than the other methods. Furthermore, the runtimes of IAC are comparable
to those of PCK-Means. In contrast, MPCK-Means is significantly more expensive. In
terms of clustering accuracy (measured by ARI), our approach clearly outperforms the
compared to the alternatives. When imposing a satisfaction rate to the model, PCK-Means
and MPCK-Means achieve comparable or better quality than TAC, but similarity stays low.
However, IAC achieves again better performance in number of constraints relaxed.

4.2.4 Comparing IAC with alternatives in the incremental setting

In this section, we address research questions RQ4 and RQ5, and conduct experiments to
evaluate the interest and performance of our IAC framework for active constraint section
context. NPU can be used in combination with any semi-supervised clustering algorithm,
we use the same ones as in the previous section, including COPK-Means algorithm [33].
This leads to several combinations, and for each combination we perform 10 iterations of
selection-modification loop. For each iteration, we use the current partition to select a batch
of 10 queries with NPU and at random, get feedback from the user, and perform either a
reclustering or MCM. In this experiment, queries correspond to pairwise constraints. In light
of the results of Section 4.2.1, we choose the compromise configuration between quality and
similarity (a = 20%, 8 = 30%) for this experiment.

10:13

CP 2023

10:14

Incremental Constrained Clustering by Minimal Weighted Modification

Method
—+ IAC+Rand
IAC+NPU 0.9
e~ COP+Rand
~s- COP+NPU
= PCK+Rand
—— PCK+NPU
MPCK+Rand
—— MPCK+NPU

\V"""*’*;‘

0.35

0.3

ARI

0.6

05
0 10 20 30 40 50 60 70 80 9 100 0 10 20 30 40 50 60 70 80 90 100
Number of queries Number of queries

(a) Comparison to the ground truth. (b) Comparison to the previous partition.

Figure 7 ARI scores of the partition at each iteration of selection-modification, compared to
ground truth (left) or to the previous partition (right), for the glass dataset. All ARI scores are
the mean and 95% confidence interval over 90 runs. Higher is better.

Clustering quality comparison. Figure 7 shows the evolution of the ARI scores over 10
iterations of incremental and active clustering modification for the glass dataset. IAC+NPU
produces increasingly better clusterings as more iterations are given (cf. Fig. 7a), while
keeping a high similarity throughout the iterations (cf. Fig. 7b). None of the competitors
produces a clustering with a high ARI. Interestingly, both PCK-Means and COPK-Means
with NPU are able to find good clusterings while MPCK-Means is not, even after a relatively
large number of iterations. However, the behaviour of the competitors are more chaotic in
terms of similarity. We observe similar results for the other datasets (due to lack of space,
all other results are available via our link in the summary). These results also show that
methods with a random selection of constraints produce typically worse results. We validate
these observations by Bayesian comparison w.r.t. AUBCgyq1ity and AU BCgimitarity values
for each metric. Fig. 8 show that TAC has a high probability to perform better than the
alternatives on ARI ; we have similar results for AMI and FMI. Interestingly, using NPU
leads to better similarity (see Fig. 9). This suggests that the use of an active constraint
selection strategy brings another advantage besides improving the quality of the clustering.
However, in an online context, runtime is particularly important as it requires user interaction
and selecting the next query can be very costly, superseding the time taken for modification.
For the biggest datasets (Letters and MNIST), only methods using random selection finish
before timeout. We can conclude from these results that our model for minimal clustering
modification is effectively a better way for active incremental constrained clustering compared
to the naive approach to incrementality.

p(rope) = 0.000 p(rope) = 0.000 p(rope) = 0.000

. . o

P(IAC+NPU) = 0.999 p(COPK+NPU) = 0.001 P(IAC+NPU) = 0.999 p(PCK+NPU) = 0.001 p(IAC+NPU) = 0.897 p(MPCK+NPU) = 0.103

(a) IAC vs. COPK-Means. (b) IAC vs. PCK-Means. (c) IAC vs. MPCK-Means.

Figure 8 Bayesian comparisons with IAC using NPU w.r.t. AUBCquaity values for ARIL

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

plrope) = 0.044 plrope) = 0.020 plrope) = 0.058

p(IAC+Rand) = 0.140 p(IAC+NPU) = 0.816 p(IAC+Rand) = 0.194 P(IAC+NPU) = 0.786 p(IAC+Rand) = 0.076 P(IAC+NPU) = 0.865

(a) ARL (b) AMIL (c) FML

Figure 9 Bayesian comparison of IAC with or without NPU w.r.t AUBCyimiiarity for all metrics.

Runtime comparison. In Fig. 10, the runtime of modification (reclustering or MWCM) is
shown for each dataset. The runtime of our model is comparable to those of the competitors,
although it seems to have better scaling on the largest datasets. Empirically, IAC is an order
of magnitude faster on yeast, statlog and letters datasets that have a large number of
clusters. It is also noteworthy that MPCK-Means is much slower than other methods due to
metric learning, yet this increase does not translate into better quality or similarity than
TAC. The limiting factor for the modification step of TAC is the computation of anchors and
super-instances, whose scaling is worse than solving the COP in itself.

Methods ® IAC+Rand » IAC+NPU ® COP+Rand ® COP+NPU ® PCK+Rand = PCK+NPU ® MPCK+Rand = MPCK+NPU

1000

CPU time (s)

i
1 4
¥ 4 1
Y 4
4 4
/] ‘ v

1
7.

|

|

| 1

| |

| | i
v i |
1 HA 1]

1 i]

| |

{ | |

|

! A b
B! N |
| a0

iris wine sonar glass ecoli ionosphere Isun target atom chainlink wingnut yeast statlog engytime letters digits
Dataset

Figure 10 Evolution of the runtime of tested methods on our benchmark datasets, in seconds
(log scale). Methods using NPU are hatched.

4.3 Tree Cut Data

Introducing the data. Our case study for research question RQ6 concerns the analysis of
satellite image time series (SITS) composed of 11 images of dimensions 724 x 337 of a zone
of the Vosges mountains in eastern France, taken irregularly on the span of 3 years from
2016 to 2018. Each pixel is associated to a series of NDVI (Normalized Difference Vegetation
Index) values denoting the level of vegetation at each timestamp. At our disposition are
labels that separate the SITS into three classes: vegetation, artificial structures, and tree
cut zones. This last class has several properties: it was precisely labeled by domain experts,
whereas the two other classes are more approximately defined. It is also a very small class as
shown in Fig. 11a, containing only 639 instances (less than 0.3% of the data), which makes
it hard to detect with unsupervised learning. Image-wise, 10 zones have been identified as
places where trees have been cut within the time interval. Lastly, the evolution of these

10:15

CP 2023

10:16

Incremental Constrained Clustering by Minimal Weighted Modification

zones (a sharp decrease of NDVI value followed by a slow return to normal) is similar to that
of field harvesting or grassland mowing, which complicates the problem further. In these
conditions, expert intervention is paramount.

Problem definition. A set of 179 ML/CL constraints has been collected in [21] from domain
experts, focused on the two largest tree cut zones (204 and 147 instances, i.e. more than
half of tree cuts) as shown in Fig.11b. We define the problem as recovering these areas with
binary constrained clustering. Following [22], we clustered the dataset with K-Means and
K =15, only retaining the cluster covering the areas the most as the “positive” cluster of
our problem. In Fig. 11c, this cluster is displayed in colors, while the “negative” cluster is
composed of all pixels not colored. We then used this binary partition as input of TAC, and
selected the unsatisfied user constraints in the partition to improve it. In our experiments,
79 constraints were unsatisfied. TAC was set to iterate until all constraints are satisfied. We
set 8 to 100% as the large dataset size means that super-instance computation takes hours
to complete, which is not compatible with a real life setting.

(a) Original image with highlighted tree cuts (
SR -7 % L) a? 555 "‘ "s_ e v
: '} i : '&{&”'_{‘gj

- T
e 1
]

3!

(c) Initial partition (with inset). (d) Modified partition (with inset).

Figure 11 Some views of the use case ; pictures (c¢) and (d) show the “positive” cluster, before
and after modification. Highlighted therein are the true positives (green), false negatives (yellow),
and false positives (purple). Best viewed in colors.

Results. The modified clear cut cluster is displayed in Fig. 11d. The recovering of tree
cut can be observed as the green zone of true positives enlarges in this figure : the left area
progressed from 37 to 92 true positives, covering almost half the area. The right area gained
10 true positives. The modification was made within 22 seconds.

5 Conclusion

We have developed TAC, a framework for clustering modification that can be used in an
incremental setting where an expert iteratively adds constraints, either manually or using
an active method. A CP model for minimal weighted clustering modification ensures that
the general cluster structure is preserved to maintain some continuity between iterations, as

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

shown in experiments on reference datasets and on a real use case. It can also efficiently
exploit an active query strategy to converge faster, and handle contradictory constraints
that the user may give as input. The runtime of TAC is dependent of the constraint selection
step, which requires further experiments with more active methods and/or to develop a
new one suited for the incremental setting. It would also be interesting to explore the
use of multiple CP models for modification, such as [20] for minimal modification with
cluster-level constraints. Lastly, there remain open questions about the potential reuse of
relaxed constraints at a later iteration : What constraints to choose 7 When to propose
them to the user 7 The conception of a strategy answering these interrogations is worth
considering.

—— References

1 Arindam Banerjee and Joydeep Ghosh. Scalable clustering algorithms with balancing con-
straints. Data Min. Knowl. Discov., 13(3):365-395, 2006.

2 Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-supervision for pairwise
constrained clustering. In Proceedings of the Fourth SIAM International Conference on Data
Mining, pages 333-344. SIAM, 2004. doi:10.1137/1.9781611972740.31.

3 Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active Semi-Supervision for
Pairwise Constrained Clustering. In ICDM, pages 333344, 2004.

4 Alessio Benavoli, Giorgio Corani, Janez Demsar, and Marco Zaffalon. Time for a change: A
tutorial for comparing multiple classifiers through Bayesian analysis, 2017.

5 Christian Bessiere, Emmanuel Hébrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh.
Filtering Algorithms for the NValue Constraint. Constraints, 11(4):271-293, 2006.

6 Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating constraints and metric
learning in semi-supervised clustering. In Proceedings of the 21st International Conference on
Machine Learning, pages 11-18, 2004.

7 David Cohn, Rich Caruana, and Andrew Mccallum. Semi-Supervised Clustering with User
Feedback. Technical report, Cornell University, 2001. doi:10.1201/9781584889977.ch2.

8 Giorgio Corani, Alessio Benavoli, Janez Demsar, Francesca Mangili, and Marco Zaffalon.
Statistical comparison of classifiers through Bayesian hierarchical modelling. Machine Learning,
106(11):1817-1837, November 2017. doi:10.1007/s10994-017-5641-9.

9 Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Constrained clustering by
constraint programming. Artificial Intelligence, 244:70-94, 2017.

10 Tan Davidson and S. S. Ravi. Agglomerative Hierarchical Clustering with Constraints: Theor-
etical and Empirical Results. In Knowledge Discovery in Databases: PKDD 2005, Lecture
Notes in Computer Science, pages 59-70, 2005.

11 Tan Davidson, S. S. Ravi, and Martin Ester. Efficient incremental constrained clustering. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 240-249, 2007.

12 Tan Davidson, S. S. Ravi, and Leonid Shamis. A SAT-based Framework for Efficient Constrained
Clustering. In Proceedings of the 2010 SIAM International Conference on Data Mining, pages
94-105, 2010.

13 E. B. Fowlkes and C. L. Mallows. A Method for Comparing Two Hierarchical Clusterings.
Journal of the American Statistical Association, 78(383):553-569, 1983.

14 Marek Gagolewski. A Framework for Benchmarking Clustering Algorithms, 2022.

15 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293-306, 1985.

16 German Gonzalez-Almagro, Daniel Peralta, Eli De Poorter, José-Ramén Cano, and Salvador
Garcia. Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions, 2023.

10:17

CP 2023

https://doi.org/10.1137/1.9781611972740.31
https://doi.org/10.1201/9781584889977.ch2
https://doi.org/10.1007/s10994-017-5641-9

10:18

Incremental Constrained Clustering by Minimal Weighted Modification

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Mathieu Guilbert, Christel Vrain, Thi-Bich-Hanh Dao, and Marcilio C. P. de Souto. Anchored
Constrained Clustering Ensemble. In International Joint Conference on Neural Networks,
TJCNN, 2022.

Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Modref, volume 19, 2019.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193—
218, 1985.

Chia-Tung Kuo, S. S. Ravi, Thi-Bich-Hanh Dao, Christel Vrain, and Ian Davidson. A
framework for minimal clustering modification via constraint programming. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, AAAT’17, pages 1389-1395, 2017.
Baptiste Lafabregue, Pierre Gancarski, Jonathan Weber, and Germain Forestier. Incremental
constrained clustering with application to remote sensing images time series. In 2022 IEEE
International Conference on Data Mining Workshops (ICDMW), 2022.

Thomas Lampert, Baptiste Lafabregue, Thi-Bich-Hanh Dao, Nicolas Serrette, Christel Vrain,
and Pierre Gancarski. Constrained Distance-Based Clustering for Satellite Image Time-
Series. IEEFE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
12(11):4606-4621, 2019.

Eric Yi Liu, Zhaojun Zhang, and Wei Wang. Clustering with relative constraints. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 11, pages 947-955, New York, NY, USA, August 2011. Association for Computing
Machinery. doi:10.1145/2020408.2020564.

James MacQueen. Some Methods For Classification And Analysis Of Multivariate Observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,,
volume 1, pages 281-297, 1967.

Pavan Kumar Mallapragada, Rong Jin, and Anil K. Jain. Active query selection for semi-
supervised clustering. In 19th International Conference on Pattern Recognition, pages 1-4,
2008.

Logan Adam Mitchell. INCREMENT - Interactive Cluster Refinement. PhD thesis, Brigham
Young University, 2016.

Nguyen-Viet-Dung Nghiem, Christel Vrain, and Thi-Bich-Hanh Dao. Knowledge integration
in deep clustering. In Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2022, Proceedings, Part I, volume 13713 of Lecture Notes in
Computer Science, pages 174—190. Springer, 2022. doi:10.1007/978-3-031-26387-3_11.
Nguyen-Viet-Dung Nghiem, Christel Vrain, Thi-Bich-Hanh Dao, and Ian Davidson. Con-
strained Clustering via Post-processing. In Discovery Science, Lecture Notes in Computer
Science, pages 53—67, 2020.

Abdelkader Ouali, Samir Loudni, Yahia Lebbah, Patrice Boizumault, Albrecht Zimmermann,
and Lakhdar Loukil. Efficiently finding conceptual clustering models with integer linear
programming. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, pages 647—-654, 2016.

Alfred Ultsch and Jorn Lotsch. The Fundamental Clustering and Projection Suite (FCPS): A
Dataset Collection to Test the Performance of Clustering and Data Projection Algorithms.
Data, 5(1):13, 2020.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Is a correction for chance necessary? In Proceedings of the 26th
Annual International Conference on Machine Learning, 2009.

Kiri Wagstaff and Claire Cardie. Clustering with instance-level constraints. In Proceedings of
the Seventeenth International Conference on Machine Learning, ICML ’00, pages 11031110,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrodl. Constrained k-means clustering
with background knowledge. In Proceedings of the Fighteenth International Conference on
Machine Learning (ICML 2001), pages 577-584, 2001.

https://doi.org/10.1145/2020408.2020564
https://doi.org/10.1007/978-3-031-26387-3_11

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain

34

35

36

37

38

Kiri L. Wagstaff. Value, Cost, and Sharing: Open Issues in Constrained Clustering. In
Knowledge Discovery in Inductive Databases, pages 1-10, 2007.

Xiang Wang and Ian Davidson. Flexible constrained spectral clustering. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD
’10, pages 563-572, 2010.

Eric Xing, Michael Jordan, Stuart J Russell, and Andrew Ng. Distance metric learning with
application to clustering with side-information. In Advances in Neural Information Processing
Systems, volume 15. MIT Press, 2002.

Sicheng Xiong, Javad Azimi, and Xiaoli Z. Fern. Active Learning of Constraints for Semi-
Supervised Clustering. IEEE Trans. on Knowledge and Data Engineering, 26(1):43-54, 2014.
Xueying Zhan, Huan Liu, Qing Li, and Antoni B. Chan. A Comparative Survey: Benchmarking
for Pool-based Active Learning. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, volume 5, pages 4679-4686, August 2021.

10:19

CP 2023

10:20 Incremental Constrained Clustering by Minimal Weighted Modification

A Super-instances generation

This is an example case of generating super-instances and splitting to prevent emergent
conflicts. In Fig. 12a, the clusters of the partition in Fig. 2 are divided into super-instances.
However, some super-instances contain multiple constrained instances, e.g. the green one in
the bottom left, which could lead to conflicts. In Fig. 12b, these super-instances have been
splitted.

(b) Final super-instances after splitting. Greyed instances are unconstrained and not used in the CSP.

Figure 12 Exemple preprocessing for super-instance generation on lsun dataset. Instances
sharing a color are represented by the same super-instance. ML constraints are in red, CL constraints
in dashed blue.

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:21

B Incremental NPU

This is the variant of NPU we use in the selection step of IAC. In Algorithm 2, the main
modifications are the removal of the reclustering step of the original NPU, and the output
of the set of constraints obtained from the queries for the modification step. Algorithm 3 is
unchanged and is shown to give a complete view of the algorithm.

Algorithm 2 Incremental NPU.

Input : Dataset D, partition P, oracle
Output : constraint set C
C+0;1+1; N« Ny | N ={random(D)}
x* + MostInformative(D,P,N)
for each N; € N in decreasing order of P(z* € N;) do
Query z* against any z; € N; to the oracle
if (z*,2;, ML) then
C«+ (z*,2;, ML)
break
else
10 C« (z*,2;,CL)
11: if no ML is returned then

12: I++; Ny=a*; N NUN,
return C

Algorithm 3 MostInformative.

Input : Dataset D, partition P, set of neighborhoods N
Output : most informative data point x*

1: Learn a random forest classifier using P as labels

2: Compute the similarity matrix M s.t. M[i, j] is the number of leaves where i and j are
together normalized by the number of trees of the RF

3: for each z e Y =D\ N do

4: fori=1to!l do
T D M@e))
5: zeN;) = AL
nl) > T L M@as)
szNp
6: HWNz)=—Y_ pla € N;)logy p(z € N;)
!

7: E(z)= > ixp(x € N;)
i=1
return arg max ngfml;v)
zeU

CP 2023

10:22 Incremental Constrained Clustering by Minimal Weighted Modification

C Moadifications and generalization

For each modified instance (or super-instance), we store its initial cluster membership and its
new cluster membership. This allows the framework to keep a history of modifications and
to easily retrieve the partition at any given iteration. Considering generalization, we also
keep track of the composition of each constrained super-instance. When the COP produces
a solution, Algorithm 4 transmits the modifications from the super-instance to the real data.

Algorithm 4 ApPLYMODIFICATIONS.

Input : dataset X, super-instances .S, modifications M, partition P
Output : modified partition P’

P« P

: for each sp € S do

points < {x € X | x € sp}

for each p € points do

Update the membership of p in P’ with the corresponding value in M
return P’

AN

D Bayesian pairwise comparison of IAC configurations

Table 3 Number of wins for each configuration («, 8) using a Bayesian hierarchical model. Values
in parentheses indicate the number of cases where the probability that a configuration has a higher
score is greater than 95%. Values of a and 8 are in percentage (%).

AUBOquality AUBCsimilarity
(o, B) ARI AMI FMI ARI AMI FMI
(0,100 9(1) 10(1) 9(1) © 0 0
(0,30) 2(0) 1(0) 1(0) 3(1) 2(0) 1(1)
(0,50) 0 0 0 6(3) 62 4(2
(0, 100) 0 4(1) 3 9(9 9(9 9(9
(5,10) 10(3) 10(3) 10(3) 1(0) 1(0) 1(0)
(5,30) 7(3) 5(3) T(3) 4(2) 4(1) 3(1)
(5,50) 1(0) 200 10 6(4) 6(3) 4(2
(5,100) 5(2) 4(0) 5(1) 9(9) 9(9) 9(9)
(20,10) 10 (7) 10(6) 10(6) 1(1) 2(1) 1(0)
(20,30) 8(3) 6(3) 7(3) 4(2) 4(2) 3(1)
(20,50) 4(1) 3(1) 4(1) 6(5) 6(4) 6(4)
(20,100) 5(2) 7(3) 5(1) 9(9 9(9) 9(9)

Simplifying Step-Wise Explanation Sequences

Ignace Bleukx &
DTAI, KU Leuven, Belgium

Jo Devriendt &
DTAI, KU Leuven, Belgium

Emilio Gamba =
Data Analytics Lab, VUB, Brussels, Belgium
DTAI, KU Leuven, Belgium

Bart Bogaerts &
Artificial Intelligence Lab, VUB, Brussels, Belgium

Tias Guns &
DTAI, KU Leuven, Belgium
Data Analytics Lab, VUB, Brussels, Belgium

—— Abstract

Explaining constraint programs is useful for debugging an unsatisfiable program, to understand why

a given solution is optimal, or to understand how to find a unique solution. A recently proposed
framework for explaining constraint programs works well to explain the unique solution to a problem
step by step. It can also be used to step-wise explain why a model is unsatisfiable, but this may
create redundant steps and introduce superfluous information into the explanation sequence. This
paper proposes methods to simplify a (step-wise) explanation sequence, to generate simple steps
that together form a short, interpretable sequence. We propose an algorithm to greedily construct
an initial sequence and two filtering algorithms that eliminate redundant steps and unnecessarily
complex parts of explanation sequences. Experiments on diverse benchmark instances show that our
techniques can significantly simplify step-wise explanation sequences.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming
Keywords and phrases explanation, deduction, constraint programming, propagation
Digital Object Identifier 10.4230/LIPIcs.CP.2023.11

Supplementary Material Software (Source code): https://github.com/ML-KULeuven/SimplifySeq
archived at swh:1:dir:a0de0a65a6c2c3a69d84al1de4047a360d8854195

Funding This research was partly funded by the Flemish Government (AI Research Program), the
Research Foundation - Flanders (FWO) project G070521N; the European Research Council (ERC)
under the EU Horizon 2020 research and innovation programme (Grant No 101002802, CHAT-Opt)
and the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 101070149, project Tuples.

1 Introduction

As AT agents become more expressive and powerful, a growing need arises for explainable
AT: methods that can explain the decisions of an automated agent. Such explanations can
be needed for legal reasons,! but are also essential to provide trust to users. Considerable
research has gone into developing explanation techniques for black-box machine learning
methods [17, 27|, including techniques based on formal models [33].

! E.g., the GDPR - https://gdpr.eu

© Ignace Bleukx, Jo Devriendt, Emilio Gamba, Bart Bogaerts, and Tias Guns;

37 licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 11; pp.11:1-11:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ignace.bleukx@kuleuven.be
https://orcid.org/0000-0001-7810-8351
mailto:jo.devriendt@kuleuven.be
https://orcid.org/0000-0002-6346-3665
mailto:emilio.gamba@vub.be
https://orcid.org/0000-0003-1720-9428
mailto:bart.bogaerts@vub.be
https://orcid.org/0000-0003-3460-4251
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2023.11
https://github.com/ML-KULeuven/SimplifySeq
https://archive.softwareheritage.org/swh:1:dir:a0de0a65a6c2c3a69d84a1de4047a360d8854195;origin=https://github.com/ML-KULeuven/SimplifySeq;visit=swh:1:snp:04feb689eaad7168ba98bc2ab9df8b3392cd3b5b;anchor=swh:1:rev:f2ccfc28035cab807f4551b7453f38d9a5e982f6
https://gdpr.eu
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Simplifying Step-Wise Explanation Sequences

But also explaining formal models themselves, such as constraint programs and satisfiab-
ility problems [37], is of high importance. Although individual constraints typically have
a clear meaning, their interaction can be highly non-trivial, which led to the development
of explanation methods for constraint programs [21]. A prominent branch of exzplainable
constraint solving is occupied with explaining why a set of constraints is unsatisfiable. Most
of these methods [30, 32, 26, 28, 31, 25, 29] extract a minimal unsatisfiable subset (MUS):
a (minimal) subset of the constraints that renders the problem unsatisfiable. Such a MUS
provides a user with a (potentially large) subset of constraints that yield inconsistency.
Recently, there has been work on guiding users with respect to what can be done to restore
feasibility [22, 39], but there is a lack of tools to better explain why a problem is inconsistent.

In a sense, traces or proof-logs of a solver (as common in SAT [24] and recently also
finding its way into richer formalisms [2, 18, 3, 8, 4]) provide an explanation of why a model
is unsatisfiable. Still, they would quickly overwhelm a user, as it involves constraint reformu-
lations, auxiliary variables, and branching decisions. Other solver-generated explanations can
be extracted from highly effective Lazy Clause Generation solvers [34] combining constraint
propagation and SAT solving. In this setting, every propagation is explained by adding a
clause to the SAT solver. However, these kinds of explanations are by nature restricted to
explaining the propagation of a single constraint. Instead, we start from step-wise explana-
tions [7, 15] where each explanation step in a sequence refines a partial assignment, using a
minimal set of constraints as well as facts derived in previous steps.

These step-wise approaches were developed in the context of explaining the unique solution
of satisfiable logic puzzles. Each step explains why a certain variable in the unique solution
took that specific value. An example is explaining how to solve a Sudoku-puzzle [13, 20]
where each step derives the value of a cell in the solution. In this context, the number of
explanation steps is at most the number of variables in the problem.

But this explanation framework can be applied more broadly to constraint satisfaction
problems (CSPs), in particular also to those that are unsatisfiable. A step-wise explanation
of an over-constraint model allows to debug it, by listing steps similar to a debugger for
programming languages. Each step shows a (preferably small) subset of constraints causing
the removal of allowed values in variables domains, up to where a conflict is derived.

In contrast to explanation sequences for satisfiable problems, in the unsatisfiable case, only
a subset of the variables and derived values contribute to the conflict and should therefore
be explained. Therefore, directly applying the step-wise explanations framework to this new
setting results in overly complex explanations.

Furthermore, finding the shortest sequence of explanations is a hard problem. A recent
paper [6] touches upon the complexity of finding the shortest sequence of arc-consistency
propagations steps. In that setting, the goal is to explain the full result of the arc-consistency
algorithm. In the general case, where other/stronger propagation algorithms are used to find
propagation steps, the problem may become even harder.

In this paper, we do not consider finding the best explanation sequence. Instead, we
investigate how to find good — interpreted here as short and with small steps — step-wise
explanations in the context of explaining why a CSP is unsatisfiable. The proposed techniques
also apply to explaining the objective value of an optimization problem, explaining the
solution(s) of constraint problems, and can be of use in interactive configuration problems
[23].

For this, we contribute the following:

1. For the first time, we consider the quality of explanation sequences as a whole;

2. We formalize the properties that good explanation sequences, and explanation steps from
which they are built, should adhere to;

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

3. We propose a new normal form for explanation sequences;

-

In sections 5 and 6 we propose new algorithms to simplify sequences in this normal form;
5. We show our methods significantly simplify explanation steps and sequences compared to
current approaches.

2 Preliminaries

We now formalize constraint satisfaction problems and step-wise explanation sequences as
used throughout this paper.

2.1 Constraint Satisfaction Problems (CSPs)

» Definition 1 (CSP). A CSP is a triple (X,D,C) [37] with
X a set of variables;
D a set of domains D, of allowed values for each variable x of X, i.e., D ={D, |z € X'};
C a set of constraints, each over a subset of the variables.

A full assignment to a CSP (X, D,C) is a mapping such that each variable takes a value
from its domain. A constraint is a function mapping full assignments to true or false, typically
described by a formula (e.g., z +y > 1). A constraint is satisfied by a full assignment if
it maps the constraint to true. A solution to a CSP is a full assignment satisfying all
constraints in C. A CSP is unsatisfiable if it has no solution. A set of constraints S is a
logical consequence of another set S’ if all solutions to &’ are solutions to S — written as
&’ = 8. Constraints can be arranged in a constraint graph where nodes represent variables
that are connected by an edge if they co-occur in a constraint.

For the remainder of this paper, we assume the set of variables and their domains are
known. A positive literal is an equality x = v and a negative literal is an inequality x # v for
variable x and value v. Negative literals represent the constraint that a variable cannot be
assigned to some value from its domain. We will often employ sets of negative literals, where
we use € R as a shorthand for {x # v |v € D, \ R}. For example, with D, = {0,1,2, 3},
x € {1,2} means the negative literals { # 0,2 # 3}. In other words, z € R denotes a set of
negative literals enforcing that x can only take values remaining in R. Note that a positive
literal = v is equivalent to the set of negative literals « € {v}. For the remainder of this
paper, literals are assumed to be negative unless explicitly mentioned otherwise. With L
we denote the trivial inconsistency, i.e., the singleton set containing the literal false.

For simplicity, this paper only uses integer domains for variables. An integer domain is
represented as either a finite range with a lower and upper bound, or an enumerated set.
E.g., the range [0..3] and the set {0,1,2, 3} are identical. All ideas and algorithms in this
paper apply to non-integer finite domains as well.

Given a set of constraints partitioned in soft constraints and a set of hard constraints, a
minimal unsatisfiable subset (MUS) is a subset of the soft constraints that is unsatisfiable
in conjunction with the hard constraints, and for which all strict subsets are satisfiable in
conjunction with these hard constraints. MUS-calculation techniques are a well-studied
research field and several algorithms for this exist [25, 32]

2.2 Step-wise explanations

The step-wise explanation framework was introduced in the context of first-order logic
and Boolean satisfiability [10, 9, 7, 15]. We here reinterpret it from a finite-domain CSP
perspective.

11:3

CP 2023

11:4

Simplifying Step-Wise Explanation Sequences

Given a CSP (X, D,C), an ezplanation step is a triple (£,S,N), where the input £ and
the output N are disjoint sets of literals, and S C C is the constraint subset, such that
EUS = N. Informally, an explanation step consists of a subset of constraints which, together
with some input literals, imply “new” output literals.

Given a CSP (X, D, (), a target set of literals T and a given set of literals G, an explanation
sequence of length n from G to T is a sequence ((&;, S;, N;))1<i<n of explanation steps where
& CGgu U1§j<i/\/} and T C GU Ulgjgn-/\[j- Informally, an explanation sequence is a
sequence of explanation steps where each step derives some new literals and can do so using
G as well as previously derived outputs. Eventually, the sequence should derive all literals in
T. As a whole, an explanation sequence explains how a target set is entailed by the union of
a given set and the constraints of a CSP.

For satisfiable CSPs with a unique solution, we can let 7 be a unique variables assignment.
In general, we can set 7 to the intersection of all solutions. An explanation sequence where
G =0 and T is inconsistent explains a CSP’s unsatisfiability.

We say an explanation step derives or explains a literal [if [€ A/, and a sequence derives
or explains a literal if one of its steps does.

The mazimal output for an input £ and constraint subset S is the set of all literals
implied by £ US, minus €. The maximal output can be calculated using a FULLPROPAGATE
algorithm which finds the set of literals that are true in all solutions to the constraints.
Such a FULLPROPAGATE function is implemented in multiple systems such as the Answer
Set Programming system Clasp [16], the IDP system [11], and more recently in the pseudo-
Boolean solver Exact [12, 14].

» Definition 2 (Maximal sequence). An ezplanation step (&;,S;, N;) in a sequence is maximal
if (1) &; is the union of all previously derived literals and the given set, i.e., & = GU Uj<i./\fj,
and (2) N; is the mazimal output of & and S;. An explanation sequence where all steps are
maximal is ¢ maximal sequence.

Given a sequence of constraint sets (S;)1<i<n and a given set G, the mazimal step-
wise explanation sequence is the unique sequence ((&;, S;, NV;))1<i<n where all explanation
steps are maximal. Clearly, maximal sequences contain much more input/output literals
than a user would care about. Moreover, calculating the maximal output of a step using
FULLPROPAGATE is an expensive operation. In the general case, any sound propagation
algorithm can be used to calculate the output of a step, but using a maximal one will provide
us with a useful normal form.

» Example 3. Consider the following unsatisfiable CSP and explanation sequences which we
will use as a running example:
X ={z,y,z,v,w}
D={D,=D,=11.3],D,=D, =D, =[0.3]}
C={x+y+z>Tx+y+w<4dz<v,v+z<3}

3 Greedy initial sequence construction

Naively, generating explanation sequences involves constructing sequences of explanation
steps that neatly match each other’s input and output. In existing work [7, 15], explanation
sequences are constructed using an iterative loop that greedily searches for the best next
explanation step to add. Each individual step in the explanation sequence is optimal with
respect to an assumed cost function or heuristic. This cost function for example takes into
account the number of constraints and the number of input literals used for each step.

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

Table 1 Two explanation sequences for the same unsatisfiability for G = 0 and 7 = L.

(a) (b)
1 & S N 7 & S N
>

1 0 T+y+z>7 2#0 0 z+y+2z>7 2 e (3.3
) 0 zH+y+z>7 z€[3.3 z+ytw<4

r+y+w<d w#3 2 0 z<w v € [1..3]

z<w v € [1..3]
. - <

3 ze€([3.3 viz<3 L 3 2 c (3.3 v+2z<3 €

To find a set of constraints and literals that explains a new literal n, given a sequence of
i — 1 previous steps, we can extract an unsatisfiable subset from CUG U ;_; N; U {-n}.
This is precisely what is done in the algorithms presented in [7], by enumerating subsets S of
increasing size and finding a small MUS in this way for each literal to explain.

Such a construction method works well for explaining unique solutions, where the target
contains all consequences of the CSP. However, for arbitrary target set, a literal might be
derivable with a simple step, but deriving that literal doesn’t bring us any closer to explaining
the target. Nevertheless, literals that do not appear in the target may well be useful to build
other intermediate steps with. Balancing which literals (and their associated explanation
steps) to include in the sequence, or to exclude, will be a crucial theme in the next sections.

We propose a greedy sequence construction algorithm inspired by [7]. Given a CSP
(X,D,C), a given set G and a target set 7, Algorithm 1 CONSTRUCT-GREEDY describes
our construction algorithm. It keeps track of an input set £ that contains the union of
G and all literals explained so far. Using this set of input literals, it iteratively tests if
constraint subsets S C C of growing size |S| =4 can produce an explanation step. For this,
the algorithm calculates the maximal output A for £US for which EUS E N and NNE =0
using a FULLPROPAGATE routine. If this output set A/ is not empty, i.e., a new literal could
be derived, it adds the step (£,S,N) to the sequence, extends £ with N and resets the
constraint subset size 7. This process is repeated until the target has been explained (7 C N)
and the sequence is finished.

Notice the algorithm is guaranteed to terminate as S grows in every iteration. Eventually,
S will be equal to C if no smaller subset was able to derive a new literal. Of course, we here

assume GUC = T.

» Example 4. The table below shows a maximal explanation sequence with given set G = ()
and target set 7 = L for the following unsatisfiable CSP:

X ={p.qr s}

D={D,=D,=D, =D,=10.3]}

C={p+q¢<1,q+2r <4,3s+p+r <1,aldiff(p,q,7,9)}

3.1 Properties

» Lemma 5. For each step (£,S,N) in a sequence generated by CONSTRUCT-GREEDY, and
for each 8’ C S, the maximal output for 8" and £ is empty.

Otherwise CONSTRUCT-GREEDY would have picked S’ to form a step with £. A direct
consequence of this is that the sequences constructed by CONSTRUCT-GREEDY are atomic:

» Property 1 (Atomic). An explanation step (£,S,N') is atomic if no explanation sequence
from € to N exists in which each step uses a strict subset of S. An explanation sequence is
atomic if all its steps are.

11:5

CP 2023

11:6

Simplifying Step-Wise Explanation Sequences

Algorithm 1 CONSTRUCT-GREEDY .

Input: CSP (X,D,C), given G, target T
1 Seq < empty sequence
28+ G, i+ 0
3 while true do

4 forall S C C where |S| =i and CONNECTED(S) do
5 N + FULLPROPAGATE(E US) \ €
6 if N'# () then
7 extend Seq with (€, S, N)
8 E—EUN,i+0
9 if T C & then
10 ‘ return Seq
11 break
12 1+—1+1

Table 2 A maximal sequence that could have been constructed by CONSTRUCT-GREEDY.

i & S N
L PraS Geio
2 ’q’ggﬂ g+2r<4 r#3
5y ep[(i[ﬁ'}l];é g dstpArslo 27['50.2.0]
4 PE [0-1] ¢ € [0.1] alldiff(p, ¢, r, s) €

r € [0..1] s € [0..0]

The third step of the first sequence of Example 3 is not atomic: it can be split into two
steps over x < v and v + z < 3 each, as is done in the second sequence of the same example.

We believe this property is desirable for easy-to-understand explanation sequences as it
requires each explanation step to be as small as possible. Note that explanation sequences
generated by the literature [7, 15] also exhibit atomicity.

3.2 Efficiency optimizations

The two main bottlenecks in this algorithm are enumerating large subsets of constraints and
calculating the maximal output N for a given £ and S. To improve runtime, we employ
two efficiency optimizations. First, we cache calls to the FULLPROPAGATE routine. When
a maximal output call for some £ and § is repeated, the output is just taken from the
cache. This is useful as the domains of many variables are unchanged between calls and the
propagation only considers the literals from £ with regard to the variables occurring in S.
A second optimization inspects the constraint graph of each enumerated subset S using
the CONNECTED function call on line 4 in the algorithm. This function checks if the constraint
graph is connected. If not, the graph can be split up into two or more components S, and
the maximal output A for S and £ is exactly the union of the maximal outputs N; for each
component S, and input £. By Lemma 5, all smaller S, did not imply any new literal, so S
cannot imply any either. Naturally, this means CONSTRUCT-GREEDY can skip subset S.

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

3.3 Comparison to literature

The idea of CONSTRUCT-GREEDY is similar to the first literature approach [7]: iterate over
increasingly larger subsets S C C and check whether an explanation step (£, S, N) exists.
In contrast to [7], CONSTRUCT-GREEDY always greedily picks the first explanation step
that can derive at least one unexplained literal to add to the explanation sequence, instead
of generating multiple candidates and picking the optimal one under some quality function.
The reasons for this difference are twofold: a simpler algorithm and less computational effort
per step. Compared to logic puzzles, which are aimed to be solved by humans and contain
at most hundreds of literals, for arbitrary CSPs the literals can easily grow into the millions
(e.g., for large integer domains), so efficiency is more of a concern here. This is also the
reason we do not employ the second literature approach [15], whose algorithm computes the
optimal next explanation step according to a linear cost function directly, without explicit
enumeration, by exploiting the hitting set duality between MUS’s and correction subsets.
Still, by iterating over small constraint subsets first, CONSTRUCT-GREEDY adds steps that

employ a small set of constraints, which is preferred to easily understand the explanation [7].

Note that CONSTRUCT-GREEDY constructs mazimal sequences. This contrasts with the
literature approaches which minimize the input literals for each step during construction.
The motivation for this difference is that we first want to minimize the number of steps and
the number of constraints for each step. The more literals are derived by a step, the more
literals future steps can use as input. Thereby potentially needing fewer constraints to derive
new literals. Moreover, by deriving more literals in a single step, the quicker we might reach
the target set.

One can also minimize the number of input literals for each step in the sequence during
post-processing of the sequence, thereby simulating the sequences produced by literature
approaches in terms of input literals [7, 15]. In Section 7, this is precisely what is denoted as
Filter simple.

4 Simple post-processing

In this section, we consider two straightforward ways to simplify explanation sequences
requiring little to no computational effort.

4.1 Looseness

For an explanation sequence to be interpretable, we deem the length of the sequence to be an
important metric. Each step in an explanation sequence requires effort by a user to process
and understand. Naturally, this means no loose steps should be part of the sequence:

» Property 2 (Loose). Given an explanation sequence ((&;,Si,Ni))1<i<n of T from G, the
step (5,8, Nj) is called loose if ((E;,8:,N;))izj still forms an explanation sequence of T
from G. An explanation sequence is loose if one of its steps is loose.

A step is loose if it can be left out of the sequence. This is the case for instance when
none of a step’s output literals is used as input for later steps or is part of the target set.

The first step in the sequence 1la of Example 3 is loose, as it can just be removed without
impacting the sequence. In sequence 1b of that same example, no loose steps are present as
at least one output of each step is used later on.

Existing approaches [7, 15] focused mostly on explaining a unique solution of a CSP,
where every step derives at least one yet unexplained literal of that unique solution. This
means every step is guaranteed to derive a literal in the target set. However, [7] also describes

11:7

CP 2023

11:8

Simplifying Step-Wise Explanation Sequences

nested explanations. These clarify a single explanation step (£,8,N) by creating a new
explanation sequence from S with £ and the negation of N as the given set, and L as target
set. The construction of nested explanations in [7] may lead to loose steps.

Loose steps are easy to detect in a sequence and can simply be removed from the
explanation sequence until none remain.

4.2 Pertinence

After constructing a sequence and filtering out loose steps, the output of a step may still
contain irrelevant literals as not all output literals have to be used later in the sequence.
This requires a user to “waste” effort in understanding why useless literals are implied by
the step. Clearly, this is undesired, motivating the following definition.

» Property 3 (Pertinent). An ezplanation sequence is pertinent if (i) G and the N; are
pairwise disjoint, and (i) all output literals are part of the target or the input of some
following step.

The first condition states that each literal should only be derived once (and obviously,
given literals should not be rederived). The second condition states that everything we
derived should be used. To transform an explanation sequence into a pertinent one, we can
simply loop over the sequence and remove any outputs not satisfying any of the conditions
in the definition. Removing loose steps from a pertinent sequence corresponds to removing
steps with an empty output set. In Example 3, the first step of sequence la is not pertinent,
as the literal w # 3 in its output is not part of any input or of the target. For satisfiable
CSPs, the algorithms described in the literature [7] are guaranteed to produce a pertinent
explanation sequence, but not so for unsatisfiable CSPs.

5 Relaxation-based filtering

Informally, a sequence is pertinent if it derives only those literals that are (indirectly) needed
for the target. However, a step in a sequence may also contain input literals that are not
needed to derive its output. Naturally, this is an undesired property of explanation steps as
it requires the user to process more literals than needed.

» Property 4 (Sparse). An explanation step (€£,S,N) is sparse if no step (£',S,N') with
E' C & exists. An explanation sequence is sparse if all its steps are.

The sequence of Example 4 contains non-sparse steps, e.g., the second step does not need
the literals p € [0..1] as input to derive z # 3. The sequences in Example 7 are both sparse.

Previous approaches [7, 15] construct explanation steps by minimizing the input £, making
the resulting steps and sequences sparse. In contrast, CONSTRUCT-GREEDY constructs a
maximal sequence which typically has non-sparse steps due to non-useful output literals of
previous steps. We address this by a relazation-based filtering algorithm, which calculates a
so-called relazation for each step.

» Definition 6 (Relaxation). A relaxation of a step (£,S,N) is a step (£',S,N) with &' C &.

An explanation step is sparse if and only if it allows no strict relaxations. Given a set
of implied literals A/, let =N\ be the constraint denoting that at least one of the literals in
N is false, i.e., "N = Vastven © = v. Then, (€,8,N) is sparse if for every subset £ C £ it
holds that & US U {-N} is satisfiable, as in that case, &’ US £ N and &' cannot form a
relaxation for (£,8,N).

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

Algorithm 2 RELAXATION-BASED FILTERING.

Input: Explanation sequence Seq, given set G, target set T
1 Req+T\G
2 for (&;,S;, N;) € reverse(Seq) do
N < Reg N N;
if \; is empty then
‘ drop (&;,S;, NV;) from Seq
else
& + MUS(soft: &;, hard: S; U {-N;})
N; < FULLPROPAGATE(E; U S;)
Req + ((Reg \ N;) U&)\ G

© 0 N O o~ W

To calculate sparse steps, we need to find a relaxation for each step. For this, we can
calculate a MUS with £ as soft constraints and S U {-A} as hard constraints. This MUS is
a subset of £ that yields a sparse step.

A straightforward algorithm to make all steps sparse would be to iterate over the steps
and calculate such a MUS. However, the disadvantage of this is that sequences may no longer
be pertinent: if the input of some step is reduced, then the output of a previous step may
no longer be needed. And conversely, naively making a sequence pertinent may make it no

longer sparse, as a smaller output for a step may reduce the number of input literals needed.

Instead, we propose a method that makes a sequence sparse by relaxing its steps from
back to front. Additionally, this will make some steps loose, allowing the method to remove
these steps. Hence, we call it RELAXATION-BASED FILTERING.

Algorithm 2 shows the pseudocode. It loops from back to front over the sequence and
keeps a set of required literals Req that still need to be explained by some step earlier in the
sequence. Req is initialized as the target set 7. For each step in the sequence, the algorithm
first keeps only those output literals that are also in Regq, since keeping more would make the
sequence non-pertinent (they are not required for the rest of the sequence). Next, it relaxes
the step by calculating a MUS.

In the general case, many such MUSes may exist, and choosing one MUS over the other
can have a profound impact on the sequence. This is clearly visible in Example 7 where the

difference between both sequences arises from choosing a different MUS to relax the last step.

In this setting, we want a MUS allowing us to keep the set of required literals Req as
small as possible. The reason for this is twofold: we want to keep future relaxations as small
as possible and increase the number of detected loose steps. To compute a MUS satisfying
this preference, we can split the calculation into two parts: first, minimize the extra input
literals needed, and next minimize the subset of Req. Other techniques for this exist and
include the OCUS-algorithm from [15].

The above process yields a sparse step deriving all required literals the step originally
derived. However, the sparse input and constraints may imply more output literals than the
originally new literals. To detect this, we make A/ maximal in line 8 of the algorithm. Any
output this step can derive in this way can be removed from Req. But any input the step
uses should be added to Req. This is what happens in the last line.

RELAXATION-BASED FILTERING guarantees sparsity by design since the input of each
step is generated by a MUS call. Transforming the sequence into a pertinent one can be
done trivially by removing literals from each A if they are not used later in the sequence or
if they are derived as well at some point earlier in the sequence, as argued in Section 4.2.

11:9

CP 2023

11:10

Simplifying Step-Wise Explanation Sequences

Ensuring pertinence of this sequence in this way will not break sparsity in case the original
sequence was maximal (which is guaranteed by our construction). To see this note that by
definition in a maximal sequence, each literal is derived as soon as it can possibly be derived.
Hence, any literal in A after Line 3 of the algorithm will not be derived at any earlier point
in the sequence. Since these literals are required, they are part of some later input, and
hence will not be removed from the output. For this reason, the step will stay sparse after
making the sequence pertinent.

If the input sequence was maximal, then after RELAXATION-BASED FILTERING and
making the sequence pertinent, there will also be no loose steps. To see this, note if
RELAXATION-BASED FILTERING keeps a step, it is because some of its newly derived literals
were required. If the input sequence is maximal, all literals are derived as early in the
sequence as possible, meaning that this literal will not be derived earlier (and hence the
pertinence making of the sequence will never remove it).

» Example 7. Below are two filtered versions of the maximal sequence in Example 4

Table 3 Two sparse explanation sequences that could be produced using
RELAXATION-BASED FILTERING by filtering the maximal sequence of example 4.

i & S N i E S N
p € [0..1] p € [0..1]
' / pra=l q€[0.1] 1 0 3s+p+r<1 rel0.l]
2 0 3s+p+r<1 r#2,r#3 s €[0..1]
p € [0..1] p € [0..1]
3 qe€(0.1] alldiff(p,q,r7,s) 1 2 rel0.1] alldiff(p,q,r,s) €L
r €10..1] s €[0..1]

6 Deletion-based filtering

The techniques proposed so far are essential to make explanation sequences more easily
understandable by users. The experiments in Section 7 will show that RELAXATION-BASED
FILTERING significantly reduces the number of steps for many sequences. However, more
steps could be removed if we allow to change the input and output of other, later steps.
In the left sequence of Example 7, step 1 can be omitted from the sequence, as shown
on the right in that same example. However, depending on the exact MUSes (and hence,
relaxations) calculated by RELAXATION-BASED FILTERING, it may miss this, and the step
remains redundant.

» Property 5 (Redundant). Given an explanation sequence ((&;, S, Ni))1<i<n of T from G,
the step (€, S;,Nj) is redundant if the mazimal explanation sequence arising from G and
(Si)istj is an explanation sequence of T. An explanation sequence is redundant if one of its
steps is redundant.

Intuitively, a redundant step is a step for which all useful literals it derives could also
be derived by later steps in the sequence. The first and second steps in Example 4 are
redundant, as there exists a maximal sequence with the constraints of steps three and four:
it is exactly the right sequence of Example 7.

The literature approaches [7, 15] may very well lead to redundant sequences, as once a
step is added to the sequence under construction, no check is later made whether the step
could be subsumed by one added later. Notice this also holds for the application of explaining
the unique solution of a logic puzzle, whereas loose steps could not occur in that setting.

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

Algorithm 3 DELETION-BASED FILTERING.

Input: Explanation sequence Seq with maximal inputs and outputs, given set G,
target set T

1 for (&;,S;,N;) € reverse(Seq) do

2 let Sub be a copy of Seq from i + 1 to end
3 if TRYDELETION(E;, Sub) then

4 shrink Seq to size i — 1

5 append Sub to Seq

6 Function TRYDELETION(E;, Sub):

7 N, 0

8 for (¢;,S;,N;) € Sub do

9 Ejeguéj_l U./\/'j_l

10 N <~ FULLPROPAGATE(E; U S;)
11 if 7 C Nj then

12 ‘ return True
13 return False

Algorithm DELETION-BASED FILTERING filters redundant steps. For this, it assumes a
maximal sequence as input — if not, the sequence can be made maximal by a linear iteration
over all steps from front to back. Next, DELETION-BASED FILTERING iterates over the
sequence from back to front. In every iteration, it leaves out the current step, calculates the
resulting maximal explanation sequence, and checks if it still explains the target. Calculating
the resulting maximal sequence requires a call to a full propagation routine for £ U S for each
later step to derive the new outputs.

In the worst case where no step can be removed from a sequence of length n, this results
in n(n — 1)/2 calls to a full propagation routine. Although the pseudo-Boolean solver Exact
allows for stateful computation of these maximal outputs, this remains a computationally
expensive task and several optimizations are needed to make the algorithm work in practice,
as we now explain.

6.1 Necessary condition on the existence of a sequence

For a maximal sequence with given set G and target set 7, DELETION-BASED FILTERING has
to check for a step (&;,S;,N;) whether the maximal sequence determined by (S;)i<j<, and
&; as given set, still derives 7. A necessary condition is that & U |J,_ i<n S, =T —ifnot, T
cannot be explained with just the constraints from the remaining steps in the sequence. This
can be checked via a simple solve call with the constraints & U J S; U~T. In case this
returns a solution, step ¢ cannot be dropped from the sequence.

i<j<n

6.2 Partial propagation

Full propagation — calculating the maximal output of a step — is an expensive operation.
However, weaker and more efficient propagation algorithms are researched [5, 38] and are im-
plemented in several state-of-the-art constraint solvers. When DELETION-BASED FILTERING
has to check whether a target set T can be derived by the maximal sequence arising from
(Si)j<i<n and given set &;, it can first compute a “partial maximal” sequence using a com-
putationally cheaper propagation algorithm. If the target set is explained according to this
weaker sequence, it also will be explained by the maximal sequence, so the step can be
dropped and DELETION-BASED FILTERING can continue to the next iteration.

11:11

CP 2023

11:12

Simplifying Step-Wise Explanation Sequences

6.3 Caching

As explained in Section 3.2, we can cache the result of calls to a full propagation algorithm.
In addition, we can cache the result of computing a maximal sequence (containing multiple
maximal outputs), and we can cache the result of checking the necessary condition for a
maximal sequence as described in Section 6.1. These caching strategies become particularly
useful given the monotonicity of entailment, as formalized in the following lemma.

» Lemma 8. For any set of constraints S and any two sets of literals E CE', if EUS EN
then &' US E N.

This entails that if a maximal sequence determined by (S;)i<j<n With given set &; entails
a target set T, so will the maximal sequence using the same constraints with a superset of &;.
Conversely, if that maximal sequence does not entail 7T, neither will the maximal sequence
with any subset of &;.

We propose to generate explanation sequences using CONSTRUCT-GREEDY and filter these
sequences using DELETION-BASED FILTERING so no redundant steps remain. Lastly, these
non-redundant sequences need to undergo RELAXATION-BASED FILTERING so all steps are
made sparse and can be made pertinent. In Appendix A, we construct a formal argument
to prove why this pipeline ensures atomicity, sparsity, pertinence and non-redundancy for
general explanation sequences.

Notice that filtering explanation sequences using DELETION-BASED FILTERING can po-
tentially filter more steps compared to RELAXATION-BASED FILTERING but may increase the
complexity of individual steps as more literals are used/explained at a time. Nevertheless,
the constraint sets of each step are not altered by any of the algorithms we proposed. These
are entirely determined by the construction algorithm.

7 Experimental results

We evaluate and review the algorithms and ideas presented in previous sections using three
benchmark sets consisting of unsatisfiable CSP instances.

Sudoku. 50 9x9 sudoku instances in which an empty cell is given a wrong value, such that
this variable assignment is non-trivial, i.e., it does not directly falsify any constraint. The
original puzzles were generated by the QQwing [35] tool using the “Intermediate” difficulty
setting. The sudoku constraints are modelled with A11Different global constraints.

Jobshop. 50 jobshop instances generated by the approach in [40] with 5 machines and 5
tasks per job. The time horizon is equal to 50 units. Unsatisfiability arises from restricting
the makespan to a better-than-optimal value. All instances are modelled using Cumulative
constraints [1] as is usual in scheduling problems.

Debug. Using the diverse set of CSP models from Hikan Kjellerstrand,? we construct a set
of 202 unsatisfiable CSPs by introducing artificial errors in the models to mimic a modelling
error by a user — an unsatisfiability bug. We follow a similar approach to [29]. The errors are
introduced such that each constraint separately remains satisfiable.

2 http://www.hakank.org/cpmpy/

http://www.hakank.org/cpmpy/

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

These three benchmark families correspond to three use cases where step-wise explanations
can be of help. Sudoku simulates the counterfactual explanation provided during an
interactive collaboration (e.g., [23]) by a human agent and an automated system. Here the
user wants to know why the system derived that a certain value was no longer possible for a
certain value. Jobshop corresponds to explaining to a user why an inferred objective value
is optimal for some optimization problem. Debug simulates the situation where a user is
modelling a CSP but discovers the model has no solutions and the user needs to “debug” it.

For every instance, we compute three explanation sequences using different random seeds.
As metrics, we consider the number of steps in sequences, as well as the complexity of
individual steps. This first metric is different from what literature approaches consider [7, 15]
as in their use-case of explaining a unique solution, they focus only on the complexity of
individual steps.

RQ1. How many redundant steps do explanation sequences of unsatisfiable CSPs contain?
RQ2. How well can the proposed filtering techniques simplify explanation sequences?
RQ3. How much time do the proposed algorithms take to run?

RQ4. How does simplifying the set of input constraints affect the explanation sequence?

7.1 Experimental setup

All experiments were run on a single core of an Intel(R) Xeon(R) Silver 4214 CPU with 128GB
of RAM. FULLPROPAGATE is handled by the stateful pruneDomains functionality of the Exact
solver [12, 14] v1.0.0.3 Partial propagation is calculated with OR-Tools [36] v9.6 presolve
routine. All algorithms are implemented using a custom branch of CPMpy [19] v0.9.12,
embedded in Python v3.10.9. To calculate MUSes we employ the mus tool provided by CPMpy
. Cardinal-minimal MUSes are computed using the hitting-set approach of [25]. All code and
benchmarks are available on GitHub: https://github.com/ML-KULeuven/SimplifySeq

7.2 Approaches under investigation

Throughout this section, we investigate all algorithms and combinations of them presented in
this paper. All sequences are generated using CONSTRUCT-GREEDY and are indicated using
Original in each of the plots. By making each step sparse, we can mimic the explanation
sequences generated by approaches described in the literature [7, 15]. This can simply be
done by finding a minimal unsatisfiable subset with hard constraints S U {-~A} and soft
constraints £. Afterwards filtering loose steps and making the sequence pertinent using
the approach described in Section 4 is denoted as Filter simple and is considered current
state-of-the-art. We consider two versions of RELAXATION-BASED FILTERING differing in
the type of MUS extracted: a MUS and a smallest MUS (SMUS), shown as MUS Relax
resp. SMUS Relax. Lastly, we investigate sequences exposed to the entire pipeline using
DELETION-BASED FILTERING and both versions of RELAXATION-BASED FILTERING. These
are shown as Del + MUS Relax and Del + SMUS Relax.

7.3 Redundant steps

The first research question is straightforward: how many redundant steps are there in naively
generated sequences, and how many can we filter using our proposed techniques? From
Figure 1 it is clear greedy explanation sequences contain a lot of redundant steps. For all

3 nttps://gitlab.com/JoD/exact git commit 34c4fad6

11:13

CP 2023

https://github.com/ML-KULeuven/SimplifySeq
https://gitlab.com/JoD/exact

11:14

Simplifying Step-Wise Explanation Sequences

Original O b] i b | e
Filter simple{ +—— [N ——————+ — IR o » oo ¢
Mus Relax| NI —— - i oo wmmrnm
smus Relax| Hi—————— — v e-ouns o
Deletion &—-—4 &—-—4 o &—-—Mm " - .
Del + MUS Relax{ +IN——— Il e v -
Del + SMUS Relax{ HIJ—— sudoku HEEE— e jobshop t——[[I]—fsw ¢ 6. wos 0 debug
20 40 60 80 100 120 20 40 60 80 100 120 140 160 180 10° 10t 102
#steps in the sequence #steps in the sequence Log #steps in the sequence

Figure 1 Comparison of different filter algorithms in terms of number of steps in the sequence.

benchmarks, the deletion-based method leads the way in terms of the number of steps filtered
from the sequence. The price to be paid is a significant increase in computational effort for
some benchmarks and more complex individual steps as outlined in the next sections. Simple
filtering of loose steps as described in Section 4 is able to reduce the number of steps, but falls
short compared to fully-fledged relaxation-based methods. This is most prominently visible in
the Jobshop benchmark set. Interestingly, both variants of RELAXATION-BASED FILTERING
(MUS Relax and SMUS Relax) show similar performance in terms of steps left in the
sequence after filtering.

7.4 Complexity of individual steps

sudoku jobshop debug
Filter simple &—_—4 &—-—4 &—-—wmnmmwo .
SMUS Relax{ T 1 i — T I —vesomew w00 '
Del + MUS Relax{ RN i b 11 i e aweeeres
Del + SMUS Relax{ ——— {0} i b 1T 1 i T fwew e vsaree '
3 4 5 6 7 8 9 10 10 15 20 25 30 35 10° 10! 102
#input literals #input literals Log #input literals

(a) Comparison in terms of average number of input literals for each step in an explanation sequence.

sudoku jobshop debug
Filter simple . &—-—4 " &—.—4 -—40 0 e beem e .
MUs Relax| « ——[II—— * . T [| KTy B
smus Relax| « ———[I——— —a— [RER R .
Del + MUS Relax{ ————— [N —————— —,— - [RER TN .
Del + SMUS Relax{ ——— 0 ——— — I e [T ¢ ¢ oo ware wme .
3 4 5 6 7 10 15 20 25 30 35 100 10! 102
#output literals #output literals Log #output literals

(b) Comparison in terms of average number of output literals for each step in an explanation sequence.

Figure 2 Complexity of individual steps in terms of literals, algorithms producing maximal
sequences are omitted from these plots.

Next, we investigate how different filtering methods compare in terms of input and output
literals for each step. The simple filtering method is able to keep the number of input literals
relatively low. As expected, it again falls short compared to relaxation-based methods as
Filter simple does not modify the set of input literals based on the output literals that are
actually useful. While the deletion-based methods are able to remove more steps, it increases
the number of input literals for the remaining steps compared to relaxation-based methods.
This is similar to the number of output literals, shown in Figure 2b. Deletion-based methods
require steps to derive more output while relaxation-based methods work better for this
metric. We argue this larger number of output literals is less of a concern compared to the
increase of input literals as steps can be split up so they derive fewer literals at a time.

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

The left-hand side of Table 4 shows that the number of constraints is low for each
individual step, ranging from 1 to a few constraints propagated at a time. Notice how during
filtering, some steps occupying little constraints are deleted, while the largest step for each
sequence is always present after filtering still.

7.5 Explaining a MUS

Table 4 Effect of explaining a MUS of the unsatisfiable problem instead of all constraints in the
problem. Metrics are shown before filtering — after filtering using DELETION-BASED FILTERING.

Explaining all constraints Explaining a MUS
#steps Max [S| Avg |S] #steps Max [S| Avg |S]
Sudoku 79.62 — 26.33 1.00 — 1.00 1.00 —1.00 | 46.10 — 27.87 2.04 —2.04 1.07 — 1.08
Jobshop | 118.03 — 35.69 1.02 —1.02 1.00 — 1.00 | 96.55 — 38.10 1.35 —1.35 1.01 — 1.01
Debug 18.70 — 5.91 132 - 1.32 1.10—1.17 6.86 — 5.51 1.48 -+ 148 1.20 — 1.26

In the literature, the most common way to explain why a model is unsatisfiable is to first
extract a MUS. What happens to step-wise explanations when we first extract a MUS and
build the explanation sequence from that MUS?

The result of this experiment is summarized in Table 4. Here we observe that when
extracting a MUS, the explanation sequence is much shorter before any filtering is applied.
Interestingly, explaining the full CSP may actually lead to shorter sequences after filtering, as
observed for Sudoku and Jobshop. Equally remarkable, limiting the explanation sequence
to a MUS increases the number of constraints used in individual steps. This is most clear from
Sudoku where the maximal number of constraints in a step increases from 1 constraint to 2.04
constraints on average. Intuitively, limiting the constraints with which to build an explanation
sequence to a smaller unsatisfiable subset reduces the ease with which explanations can be
built. E.g., the Sudoku problem contains many redundant constraints that are implied by
some subset of other constraints. Nevertheless, these redundant constraints can be very
useful to elegantly explain something to a user.

7.6 Runtime and optimizations

Figure 3 displays the runtime for each of the filtering algorithms for all benchmark sets. For
Jobshop, the deletion-based method is computationally more expensive compared to any of
the relaxation-based variants. This is not the case for Sudoku and Debug. As Cumulative
constraints are harder to fully propagate compared to Al1Different constraints, the quad-
ratic number of full-propagation calls is much more prominent for the Jobshop benchmark.
For all benchmarks, calculating a smallest-minimal MUS requires more computational effort
while not impacting the sequence enough to justify this extra cost.

The optimizations implemented for DELETION-BASED FILTERING as described at the end
of Section 6 are most effective with the Debug benchmark, where only 7% of the theoretic
number of full-propagation calls are executed. For Sudoku and Jobshop, this is 19% resp.
34%. Overall, the proposed optimizations are necessary to reach the observed performance.

8 Conclusion and Future work

We investigated the problem of step-wise explaining unsatisfiable problems, with applica-
tions in debugging unsatisfiability, explaining optimality, and explanations in interactive
configuration. To ensure a simple step-wise explanation, both the number of steps and the

11:15

CP 2023

11:16

Simplifying Step-Wise Explanation Sequences

2 10 — Deletion — Deletion — Deletion -

>08 MUS Relax MUS Relax MUS Relax

3 — SMUS Relax — SMUS Relax — SMUS Relax

306

o

[=4

Soa4

£

%50.2

x sudoku jobshop debug
0.0 10° 10t 102 10?2 103 1072 107' 10° 10t 102 103

Log runtime in seconds Log runtime in seconds Log runtime in seconds

Figure 3 ECDF plot relating solved instances to runtime for different filtering algorithms.

number of constraints and literals in each explanation step must be kept low. We proposed
the formal properties of atomicity, pertinence, sparsity, and (ir)redundancy, to which an
explanation sequence should strive to adhere. For this, we proposed a workflow combining
greedy construction, deletion-based filtering and relaxation-based filtering that guarantees
all properties are satisfied.

We presented extensive experimental results comparing current approaches to our proposed
techniques. This showed filtering of explanation sequences is especially essential in the
challenging setting of explaining unsatisfiability and is key in creating easy-to-understand
explanation sequences. Our methods are able to considerably shorten explanation sequences
with deletion-based filtering leading to sequences without any redundant steps. Compared
to relaxation-based techniques which may produce longer sequences, deletion-based methods
may lead to more complex steps after filtering.

For future work, observe that none of the filtering algorithms considered in this paper
alter the set of constraints for explanation steps, nor the order of explanation steps. These
are entirely determined by the construction algorithm. Changing either of these aspects
might further simplify an explanation sequence. We leave these areas for future work, where
both new sequence construction methods and more elaborate post-processing are viable
options to explore.

Finally, the small number of constraints in most explanation steps shows that computing
explanation sequences seem a worthwhile approach to help a user understand unsatisfiable
constraints. Still, the expressivity of explanation steps deserves further study with our results
opening the door for further investigation into what domain experts perceive as “simple”
explanation sequences. User studies or learning techniques can investigate how it helps them
to understand the interplay of complex constraints.

—— References

1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. In Jean-Paul Delahaye, Philippe Devienne, Philippe
Mathieu, and Pascal Yim, editors, JFPL’92, 1¢7®% Journées Francophones de Programmation
Logique, 25-27 Mai 1992, Lille, France, page 51, 1992.

2 Mario Alviano, Carmine Dodaro, Johannes Klaus Fichte, Markus Hecher, Tobias Philipp, and
Jakob Rath. Inconsistency proofs for ASP: the ASP - DRUPE format. Theory Pract. Log.
Program., 19(5-6):891-907, 2019. doi:10.1017/51471068419000255.

3 Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres
Notzli, Alex Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott Viteri, Yoni Zohar, Cesare
Tinelli, and Clark W. Barrett. Flexible proof production in an industrial-strength SMT solver.
In Jasmin Blanchette, Laura Kovécs, and Dirk Pattinson, editors, Automated Reasoning - 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings,

https://doi.org/10.1017/S1471068419000255

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

10

11

12
13

14

15

16

volume 13385 of Lecture Notes in Computer Science, pages 15-35. Springer, 2022. doi:
10.1007/978-3-031-10769-6_3.

Jeremias Berg, Bart Bogaerts, Jakob Nordstrom, Andy Oertel, and Dieter. Vandesande.
Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on
Automated Deduction (CADE), 2023. Accepted for publication.

Christian Bessiere. Constraint propagation. In Francesca Rossi, Peter van Beek, and Toby
Walsh, editors, Handbook of Constraint Programming, volume 2 of Foundations of Artificial
Intelligence, pages 29-83. Elsevier, 2006. doi:10.1016/S1574-6526(06)80007-6.

Christian Bessiere, Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard. Com-
plexity of Minimum-Size Arc-Inconsistency Explanations. In Christine Solnon, editor,
28th International Conference on Principles and Practice of Constraint Programming (CP
2022), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages
9:1-9:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi:10.4230/LIPIcs.CP.2022.9.

Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining how

to solve constraint satisfaction problems. Artif. Intell., 300:103550, 2021. doi:10.1016/j.

artint.2021.103550.

Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordstréom. Certified symmetry
and dominance breaking for combinatorial optimisation. In Thirty-Sizth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 3698-3707.
AAALI Press, 2022. URL: https://ojs.aaai.org/index.php/AAAI/article/view/20283.
Jens Claes, Bart Bogaerts, Rocsildes Canoy, Emilio Gamba, and Tias Guns. Zebratutor:
Explaining how to solve logic grid puzzles. In Katrien Beuls, Bart Bogaerts, Gianluca Bontempi,
Pierre Geurts, Nick Harley, Bertrand Lebichot, Tom Lenaerts, Gilles Louppe, and Paul Van
Eecke, editors, Proceedings of the 31st Beneluxr Conference on Artificial Intelligence (BNAIC
2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels,
Belgium, November 6-8, 2019, volume 2491 of CEUR Workshop Proceedings. CEUR-WS.org,
2019. URL: http://ceur-ws.org/Vol-2491/demo96 . pdf.

Jens Claes, Bart Bogaerts, Emilio Gamba, Rocsildes Canoy, and Tias Guns. Human-oriented
solving and explaining of logic grid puzzles, November 2019. BNAIC 2019 ; Conference date:
07-11-2019 Through 08-11-2019.

Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker.
Declarative logic programming. In Michael Kifer and Yanhong Annie Liu, editors, Declarative
Logic Programming: Theory, Systems, and Applications, chapter Predicate Logic As a Modeling
Language: The IDP System, pages 279-323. Association for Computing Machinery and Morgan
& Claypool, New York, NY, USA, 2018. doi:10.1145/3191315.3191321.

Jo Devriendt. Exact solver, 2023. URL: https://gitlab.com/JoD/exact.

William Dumez, Simon Vandevelde, and Joost Vennekens. Step-wise explanations of sudokus
using IDP. In BNAIC/BeNeLearn, November 2022.

Jan Elffers and Jakob Nordstrém. Divide and conquer: Towards faster pseudo-Boolean solving.
In Jérome Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1291-1299.
ijcai.org, 2018. doi:10.24963/ijcai.2018/180.

Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining CSPs with unsatisfiable
subset optimization. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21, pages 1381-1388. International Joint
Conferences on Artificial Intelligence Organization, August 2021. Main Track. doi:10.24963/
ijcai.2021/191.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187:52-89, 2012. doi:10.1016/j.artint.2012.04.001.

11:17

CP 2023

https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1016/S1574-6526(06)80007-6
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://doi.org/10.1016/j.artint.2021.103550
https://doi.org/10.1016/j.artint.2021.103550
https://ojs.aaai.org/index.php/AAAI/article/view/20283
http://ceur-ws.org/Vol-2491/demo96.pdf
https://doi.org/10.1145/3191315.3191321
https://gitlab.com/JoD/exact
https://doi.org/10.24963/ijcai.2018/180
https://doi.org/10.24963/ijcai.2021/191
https://doi.org/10.24963/ijcai.2021/191
https://doi.org/10.1016/j.artint.2012.04.001

11:18

Simplifying Step-Wise Explanation Sequences

17

18

19

20

21

22

23

24

25

26

27

28

29

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter, and Lalana
Kagal. Explaining explanations: An overview of interpretability of machine learning. In
Francesco Bonchi, Foster J. Provost, Tina Eliassi-Rad, Wei Wang, Ciro Cattuto, and Rayid
Ghani, editors, 5th IEEE International Conference on Data Science and Advanced Analytics,
DSAA 2018, Turin, Italy, October 1-3, 2018, pages 80-89. IEEE, 2018. doi:10.1109/DSAA.
2018.00018.

Stephan Gocht, Ciaran McCreesh, and Jakob Nordstréom. An auditable constraint programming
solver. In Christine Solnon, editor, 28th International Conference on Principles and Practice
of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume
235 of LIPIcs, pages 25:1-25:18. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2022.
doi:10.4230/LIPIcs.CP.2022.25.

Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

Tias Guns, Milan Pesa, Maxime Mulamba, Ignace Bleukx, Emilio Gamba, and Senne Berden.
Sudoku assistant — an Al-powered app to help solve pen-and-paper sudokus, 2022.

Sharmi Dev Gupta, Begum Genc, and Barry O’Sullivan. Explanation in constraint satisfaction:
A survey. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021,
pages 4400-4407. ijcai.org, 2021. doi:10.24963/ijcai.2021/601.

Sharmi Dev Gupta, Begum Genc, and Barry O’Sullivan. Finding counterfactual explanations
through constraint relaxations. CoRR, abs/2204.03429, 2022. doi:10.48550/arXiv.2204.
03429.

Pieter Van Hertum, Ingmar Dasseville, Gerda Janssens, and Marc Denecker. The KB paradigm
and its application to interactive configuration. Theory Pract. Log. Program., 17(1):91-117,
2017. doi:10.1017/51471068416000156.

Marijn J. H. Heule. Proofs of unsatisfiability. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336
of Frontiers in Artificial Intelligence and Applications, pages 635-668. 10S Press, 2021.
doi:10.3233/FAIA200998.

Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and Joao Marques-Silva. Smallest
MUS extraction with minimal hitting set dualization. In Gilles Pesant, editor, Principles and
Practice of Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 81 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science,
pages 173-182. Springer, 2015. doi:10.1007/978-3-319-23219-5_13.

Ulrich Junker. Quickxplain: Conflict detection for arbitrary constraint propagation algorithms.
In IJCAI’01 Workshop on Modelling and Solving problems with constraints, volume 4. Citeseer,
2001.

Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu Choi. Explainable agency for
intelligent autonomous systems. In Satinder Singh and Shaul Markovitch, editors, Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA, pages 4762-4764. AAAI Press, 2017. URL: http://aaai.org/
ocs/index.php/IAAI/IAATI17/paper/view/15046.

Niklas Lauffer and Ufuk Topcu. Human-understandable explanations of infeasibility for
resource-constrained scheduling problems. In ICAPS 2019 Workshop XAIP, 2019.

Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Domenico Sal-
vagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Constraint
Programming - 14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017,
Proceedings, volume 10335 of Lecture Notes in Computer Science, pages 77-93. Springer, 2017.
doi:10.1007/978-3-319-59776-8_7.

https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.24963/ijcai.2021/601
https://doi.org/10.48550/arXiv.2204.03429
https://doi.org/10.48550/arXiv.2204.03429
https://doi.org/10.1017/S1471068416000156
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1007/978-3-319-23219-5_13
http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/15046
http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/15046
https://doi.org/10.1007/978-3-319-59776-8_7

l. Bleukx, J. Devriendt, E. Gamba, B. Bogaerts, and T. Guns

30 Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Jodo Marques-Silva. Fast,
flexible MUS enumeration. Constraints An Int. J., 21(2):223-250, 2016. doi:10.1007/
s10601-015-9183-0.

31 Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal unsatisfiable sub-
sets of constraints. J. Autom. Reason., 40(1):1-33, 2008. doi:10.1007/s10817-007-9084~-z.

32 Joao Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications (invited
paper). In 40th IEEE International Symposium on Multiple- Valued Logic, ISMVL 2010,
Barcelona, Spain, 26-28 May 2010, pages 9—14. IEEE Computer Society, 2010. doi:10.1109/
ISMVL.2010.11.

33 Jodo Marques-Silva. Logic-based explainability in machine learning. In Leopoldo E. Bertossi
and Guohui Xiao, editors, Reasoning Web. Causality, Explanations and Declarative Knowledge
- 18th International Summer School 2022, Berlin, Germany, September 27-30, 2022, Tutorial
Lectures, volume 13759 of Lecture Notes in Computer Science, pages 24—104. Springer, 2022.
doi:10.1007/978-3-031-31414-8_2.

34 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints An Int. J., 14(3):357-391, 2009. doi:10.1007/s10601-008-9064-x.

35 Stephen Ostermiller. QQwing. URL: https://qqwing.com/.

36 Laurent Perron and Vincent Furnon. Or-tools, November 2022. URL: https://developers.

google.com/optimization/.

37 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. URL:
https://www.sciencedirect.com/science/bookseries/15746526/2.

38 Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst., 31(1):2:1-2:43, 2008. doi:10.1145/1452044.1452046.

39 Ilankaikone Senthooran, Matthias Klapperstiick, Gleb Belov, Tobias Czauderna, Kevin Leo,
Mark Wallace, Michael Wybrow, and Maria Garcia de la Banda. Human-centred feasibility
restoration. In Laurent D. Michel, editor, 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference),
October 25-29, 2021, volume 210 of LIPIcs, pages 49:1-49:18. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.49.

40 Eric Taillard. Benchmarks for basic scheduling problems. FEuropean journal of operational
research, 64(2):278-285, 1993.

A Satisfying all desirable properties

To transform a maximal sequence generated by CONSTRUCT-GREEDY to one that is sparse,
pertinent, atomic and contains no redundant (and hence no loose) steps, we propose to generate
sequences with CONSTRUCT-GREEDY, then filter those with DELETION-BASED FILTERING,
finally followed by RELAXATION-BASED FILTERING.

The application of RELAXATION-BASED FILTERING in the last step guarantees sparsity.
Modifying the output of steps to guarantee pertinence will not break sparsity as the output
of DELETION-BASED FILTERING is maximal (see the argument of Section 5).

After the application of DELETION-BASED FILTERING, all redundant steps have been
removed. In other words, for any %, there exists no strict subsequence (S;)1<;<n,i; for which
its maximal sequence with the same given set G explains the same target set 7. Hence,
RELAXATION-BASED FILTERING will not actually filter any more steps, as also shown in the ex-
periments in Section 7. Moreover, RELAXATION-BASED FILTERING does not change any of the
constraint subsets S;, so the maximal sequence after RELAXATION-BASED FILTERING is equal
to the one after DELETION-BASED FILTERING. Therefore, RELAXATION-BASED FILTERING
preserves the guarantee of DELETION-BASED FILTERING that no redundant steps exist.

To argue atomicity, we will consider three sequences

11:19

CP 2023

https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1109/ISMVL.2010.11
https://doi.org/10.1109/ISMVL.2010.11
https://doi.org/10.1007/978-3-031-31414-8_2
https://doi.org/10.1007/s10601-008-9064-x
https://qqwing.com/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.sciencedirect.com/science/bookseries/15746526/2
https://doi.org/10.1145/1452044.1452046
https://doi.org/10.4230/LIPIcs.CP.2021.49

11:20

Simplifying Step-Wise Explanation Sequences

((&:,8i,Ni))1<i<n denotes the sequence obtained after construction,

((E1,8i, N!))i not deleted the sequence obtained after DELETION-BASED FILTERING, and
(&, Sis N!"))i not deleted the sequence obtained after RELAXATION-BASED FILTERING.
Moreover, we will write Z; (vesp. Z;, Z;') for G U J; ;N (resp. GUU; ; NV}, GUU,; Nj").
Intuitively, Z; represents the set of all facts available prior to step i. By definition of an

explanation sequence, we have that £ C Z; (and similar for the other two sequences).

To argue that (€,
1. 7, 27, O IV
N/ CZipy and N C Ty
3. For each literal [in N; \ Z; (i.e., every newly derived literal in step 7), and every subset

SgSl,IZUSb&l,

4. 1If step 7 is not deleted, then M) N (N;\ Z;) # 0 and N/ N (N; \ Z;) # 0, i.e., at least one

literal that was newly derived at step ¢ is still derived at that step.

Claim 1 follows from the fact that, by construction, the first two sequences are maximal
(in their inputs as well as outputs), and hence derive everything that is derivable at each
point. Since the constraint sets in the three sequences are the same, nothing extra can then
be derived in the trimmed sequences. Claim 2 again follows directly from the fact that the
initial sequence is maximal: what is derived at step 7 can be at most Z; UN;, which equals
Zi+1. Claim 3 holds by construction: our greedy construction algorithm only generates steps
for which there is no smaller set of constraints that can derive something. Claim 4 holds
since, using Claim 2, if that intersection would be empty, N would consist only of literals of
Z;, in which case DELETION-BASED FILTERING would clearly delete this step.

Now, take any 7. We continue to show that (£, S;, /') is in fact atomic. Using Claim 4,
NN (N;\Z;) # 0. From Claim 2 it follows that A}’ is the union of two sets: O := N/ NZ;
and D := N/ N (N; \ Z;), where O is the set of literals that were originally “old” at step i
(derived before i) and D are those that were actually derived at step i. By Claim 4, D is
non-empty. Now assume towards contradiction that our step (£/,S;, /') is not atomic. In
that case, there is an explanation sequence that derives A from &/ in which each step uses a
strict subset of S;. From that sequence, consider the first step that derives an element from D.
By definition, the input of that step can consist at most of £ UO. Since /U0 C &;, we find
an explanation step that violates Claim 3, and we can conclude our proof by contradiction.

S;, N!') is still atomic, we first prove four claims.

N

Towards More Efficient Local Search for
Pseudo-Boolean Optimization

Yi Chu &

Institute of Software, Chinese Academy of Sciences, Beijing, China

Shaowei Cai! &
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

Chuan Luo &
School of Software, Beihang University, Beijing, China

Zhendong Lei &
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

Cong Peng =
Finovation in CCBFT, Beijing, China

—— Abstract

Pseudo-Boolean (PB) constraints are highly expressive, and many combinatorial optimization
problems can be modeled using pseudo-Boolean optimization (PBO). It is recognized that stochastic
local search (SLS) is a powerful paradigm for solving combinatorial optimization problems, but the
development of SLS for solving PBO is still in its infancy. In this paper, we develop an effective
SLS algorithm for solving PBO, dubbed NuPBOQO, which introduces a novel scoring function for
PB constraints and a new weighting scheme. We conduct experiments on a broad range of six
public benchmarks, including three real-world benchmarks, a benchmark from PB competition,
an integer linear programming optimization benchmark, and a crafted combinatorial benchmark,
to compare NuPBO against five state-of-the-art competitors, including a recently-proposed SLS
PBO solver LS-PBO, two complete PB solvers PBO-IHS and RoundingSat, and two mixed integer
programming (MIP) solvers Gurobi and SCIP. NuPBO has been exhibited to perform best on
these three real-world benchmarks. On the other three benchmarks, NuPBO shows competitive
performance compared to state-of-the-art competitors, and it significantly outperforms LS-PBO,
indicating that NuPBO greatly advances the state of the art in SLS for solving PBO.

2012 ACM Subject Classification Theory of computation — Randomized local search

Keywords and phrases Pseudo-Boolean Optimization, Stochastic Local Search, Scoring Function,
Weighting Scheme

Digital Object Identifier 10.4230/LIPIcs.CP.2023.12
Supplementary Material Software (Source Code): https://github.com/filyouzicha/NuPB0

Funding This work is supported by the Strategic Priority Research Program of the Chinese Academy
of Sciences, Grant No. XDA0320000 and XDA0320300, the National Natural Science Foundation of
China under Grant 62302492, and Grant 62202025, the Research Program of CCBFT, Grant No.
KT2100040, and CCF-Huawei Populus Grove Fund under Grant CCF-HuaweiSY20231.

! Corresponding author.

© Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng;

37 licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 12; pp. 12:1-12:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:chuyi2020@iscas.ac.cn
https://orcid.org/0000-0003-4681-7414
mailto:caisw@ios.ac.cn
https://orcid.org/0000-0003-1730-6922
mailto:chuanluo@buaa.edu.cn
https://orcid.org/0000-0001-5028-1064
mailto:leizd@ios.ac.cn
https://orcid.org/0000-0003-1893-4293
mailto:pengcong.zb@ccbft.com
https://orcid.org/0000-0001-8070-9092
https://doi.org/10.4230/LIPIcs.CP.2023.12
https://github.com/filyouzicha/NuPBO
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Towards More Efficient Local Search for Pseudo-Boolean Optimization

1 Introduction

Recent progress in the theory and application of the Boolean satisfiability (SAT) and maximum
satisfiability (MaxSAT) problems has led to the development of high-performance complete
solvers [11, 23, 1, 32, 2, 4, 31] and stochastic local search (SLS) solvers [8, 28, 7, 6, 27, 25, 5, 45].
SAT and MaxSAT solvers can address challenging problems in a wide variety of fields, and
they are usually designed to deal with formulas encoded in conjunctive normal form (CNF).

For problems involving cardinality constraints, CNF solvers usually become ineffective,
since expressing such constraints in CNF would dramatically increase the size of the formula
and introduce many auxiliary variables and clauses [30]. Linear pseudo-Boolean (PB)
constraints provide a more natural and direct way to express cardinality constraints than
CNF. Meanwhile, linear PB constraints stay close to CNF and can benefit from advancements
in SAT solving [33]. In practice, PB constraints occur in many areas, including VLSI design,
economics, computer vision, and manufacturing [43, 44, 33]. The pseudo-Boolean optimization
(PBO) problem is to find a satisfying assignment to a set of PB constraints that minimizes a
given objective function.

1.1 Related Work

Existing pseudo-Boolean solvers are primarily based on complete methods. A number of
PB solvers are based on resolution: they express the PB constraints in CNF and then call
conflict-driven clause learning (CDCL) solvers, such as MINISAT+[13], Open-WBO[29], and
NaPS [34]; alternatively, they deal with the PB constraints but derive new information
only in the form of clauses [17]. CDCL is somewhat limited in its reasoning in that it is
based on a resolution-proof system, for which exponential lower bounds are known for simple
combinatorial principles [20, 15]. Another method requires going beyond resolution and using
cutting planes, which can be found in recent PB solvers such as Sat4j [24], RoundingSat
[14, 12] and RoundingSat-Card [15]. The success of the implicit hitting set (IHS) method
in MaxSAT motivates another work, i.e., the implementation of the PBO-IHS solver for
solving PBO [36, 37]. In addition, since PB constraints can be considered as 0-1 linear
constraints, mixed integer programming (MIP) solvers can be directly applied to solving
PBO. Representative and high-performance MIP solvers include SCIP [16] - one of the fastest
non-commercial solvers, and Gurobi [19] - one of the most powerful commercial solvers.
Stochastic local search (SLS) is recognized to be one of the most powerful techniques
for solving computationally hard problems in many areas of computer science, operations
research, and engineering, and it has shown great success in solving SAT and MaxSAT [22].
In the book [21], a model for local search to solve constraint problems is presented. Somewhat
surprisingly, there are only a few research works on using SLS for solving PBO [3, 39, 26].
Since the introduction of dynamic local search (DLS) methods [35, 9, 40, 41], weighting
schemes play critical roles in the development of high-performance SLS algorithms. Modern
SLS solvers for MaxSAT employ a scoring function defined as the weighted cost of unsatisfied
clauses and incorporate a clause weighting scheme to adjust the weights during the search.
In particular, most SLS solvers for MaxSAT focus on improving the scoring function through
carefully designed weighting schemes. In recent years, the introduction of new weighting
schemes has led to breakthroughs in the SLS algorithms for the (weighted) partial MaxSAT
((W)PMS) problem. The newly proposed weighting scheme, Weighting-PMS, in the SATLike
[25] algorithm significantly improves the performance of SLS for (W)PMS. Currently, the
state-of-the-art SLS algorithms for (W)PMS all employ the Weighting-PMS technique [5, 45].

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

It is intuitive that the scoring function commonly used in SLS algorithms for MaxSAT
(i.e., measuring the total weight of all unsatisfied clauses) does not work well for the PBO
problem, because it does not take into account the unsatisfied degree of PB constraints.
Indeed, this issue has already attracted attention in the literature, and a scoring function
that considers the unsatisfied degree of PB constraints is proposed in [42] and can effectively
handle linear PB-constrained problems.

A recent SLS solver called LS-PBO [26] has been proposed for PBO and currently
represents the state of the art in SLS for PBO. For LS-PBO, its scoring function measures
the sum of the product between the degree of violation of all unsatisfied constraints and the
weights of the constraints. However, such scoring function does not consider the balance
between the degree of violation among different constraints. In addition, weighting schemes
have not been applied to PBO until the introduction of LS-PBO. The weighting scheme
in LS-PBO resembles the existing one named Weighting-PMS, which aims to increase the
weights of unsatisfied constraints and the objective function when the algorithm falls into a
local optimum, and to set an upper bound on the weight of the objective function. However,
in the context of PBO solving, the research of designing weighting schemes is still in its
infancy, which urgently calls for more powerful weighting schemes for PBO.

1.2 Contributions

In this work, we focus on improving the performance of SLS for solving PBO. In particular, we
propose two main ideas. The first idea is a novel scoring function that considers the violation
degree of unsatisfied constraints and utilizes a smooth function to balance the violation
degree of different constraints. For each constraint, its smooth function is instantiated as
the average of the coefficients of all variables appearing in the corresponding constraint.
Since our scoring function is equipped with a weighting scheme, our second idea is a novel
weighting scheme for PBO. Rather than setting an upper bound on the weight of the objective
function, we adopt a weighting scheme with a stricter condition for updating the weight of
the objective function.

On the basis of these two ideas, we develop a new SLS algorithm, named NuPBO. We
conduct experiments on 6 benchmarks, which include 3 benchmarks encoded from real-world
applications, and 3 standard benchmarks. On these 6 benchmarks, NuPBO is compared to
5 solvers, including LS-PBO [26], PBO-IHS [37], RoundingSat [12], Gurobi [19], and SCIP
[16]. On the 3 application benchmarks, NuPBO achieves improvement over LS-PBO, and
significantly outperforms other competitors. On the other 3 benchmarks, NuPBO exhibits

competitive performance compared to its competitors, including the commercial solver Gurobi.

This represents a significant advance in the research of SLS solvers for PBO. In addition, we
evaluate the effectiveness of the underlying ideas on all benchmarks.

2 Preliminaries

Given a set of n Boolean variables V = {x1,2a,...,2,}, a literal is either a variable z; or
., Vi;, , where k
denotes the length of clause ¢;. A CNF formula F' is a conjunction of clauses. An assignment

its negation —z;. A clause is a disjunction of literals, i.e., ¢; = l;, Vi, ..
is a mapping that assigns a Boolean value (True (i.e., 1) or False (i.e., 0)) to each variable.
Given an assignment «, a clause c is satisfied if at least one literal in ¢ is True; otherwise,
¢ is unsatisfied. Given a CNF formula F, the Boolean satisfiability (SAT) problem is to
decide whether an assignment exists such that all clauses are satisfied, and the maximum
satisfiability (MaxSAT) problem is to find an assignment that maximizes the number of
satisfied clauses.

12:3

CP 2023

12:4

Towards More Efficient Local Search for Pseudo-Boolean Optimization

A linear pseudo-Boolean constraint (LPB constraint, PB constraint for short) has the
following form:

Zajljbb, aj,bEZ (1)

j=1

where b is called the degree of the constraint, [; is a literal, a; is the coefficient of /;, n is the
length of the constraint, > is one of the classical relational operators (=, >, >, < or <), and
Z is the integer set.

For each Boolean variable, x; = 1 — —x;. It is important to note that for an equality
constraint, there need to be two normalized constraints to represent it. Therefore, all PB
constraints can be normalized into the following form:

Za]‘lj Z b, aj,b S NS_ (2)

Jj=1

where N is the non-negative integer set [33].

In the following sections, we assume that the PB constraints are of the normalized form.
A PB formula F' is a conjunction of PB constraints. An assignment is a mapping that assigns
a Boolean value to each variable. Given an assignment «, a PB constraint c is satisfied if
the corresponding inequality holds under «; otherwise, ¢ is unsatisfied. If an assignment «
satisfies all constraints in F', then we say « is a feasible solution (or solution for short).

A pseudo-Boolean optimization (PBO) instance consists of a PB formula F' and a linear
Boolean objective function Y77, e;l; +d, e; € N*,d € Z, and the task is to find an
assignment that satisfies all PB constraints in ' and minimizes the objective function. Given
an assignment «, we use obj(«) to denote the value of the objective function. Given a
solution «, the cost of the solution « is equal to obj(«). We say a solution « is better than
another solution s, if 0bj(ay) < obj(as).

The average coeflicient of a PB constraint ¢ is denoted as avgeee(c) = (Z;;l a;)/n. The
average coefficient of an objective function o is denoted as avgeee(0) = (Z?Zl e;)/n. Because
PB constraints must be satisfied in a PBO problem, the PB constraints are referred to as
hard constraints.

Given an assignment o, we define the value of violation of a hard constraint c as

viol(c) = max | 0,b — Z a;l;
j=1

In other words, if the hard constraint c is satisfied under «, then viol(c) = 0; otherwise (i.e.,
¢ is unsatisfied), viol(c) is the integer distance of ¢ from being satisfied. In a PBO instance,
a solution is an assignment, under which all hard constraints are satisfied.

The SLS algorithms that employ constraint weighting schemes usually maintain weight
for each constraint. We use w(c) to represent the weight of each hard constraint ¢, and w(o)
to represent the weight of the objective function o.

3 Main ldeas

In general, the search directions of SLS algorithms are guided by the scoring function. It is
recognized that the effectiveness of the scoring function could be enhanced through working
with a weighting scheme. In this section, we first propose a new scoring function, and then
design a new weighting scheme to work with it.

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

Table 1 The violation and objective value under all assignments of the PBO instance I; in
Example 3.1.

Assignment (z1, 22, z3)

viol /obj

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
viol(c1) 0 0 0 0 1 3 3 2
viol(c2) 1 0 0 0 4 2 3 1
viol(cs) 29 13 14 0 0 0 0 0
obj(a 1 1 0 0 2 2 1 1

3.1 A New Scoring Function

Given a PBO instance, which consists of n PB constraints (hard constraints) and one objective
function, we assume that the current assignment is .

Scoring Function in LS-PBO. Before introducing our new scoring function, we first describe
the existing scoring function proposed in LS-PBO [26], which is presented as follows.
For a hard constraint ¢, the penalty function is defined as penalty(c) = w(c) x viol(c);
then the hard score of a variable z is defined as the decrement of the sum of the penalty
function values of all hard constraints caused by flipping x, which is denoted by hscore(z).
For the objective function o, the value of the objective function is obj(«), and the penalty
function is defined as penalty(o) = w(o) X obj(a); then the soft score of a variable x is
defined as the decrement of the penalty function value of the objective function caused
by flipping x, which is denoted by sscore(z).
The score of a variable x is defined as score(x) = hscore(x) + sscore(x).

An Intuitive View. The above scoring function has a drawback, which is due to its underlying
penalty function. The penalty function above considers the weights and viol (resp. obj)
values of hard (resp. soft) constraints. In this way, it measures the importance of a variable
in a constraint ¢ by the coefficient of the corresponding variable in ¢. Nevertheless, it should
be noted that, as the value of score(x) is determined by all hard constraints and the objective
function involving z, the above penalty function may overemphasize the importance of x in
constraints with relatively large coefficients, resulting in an unreasonable value of its score.
In the following, we illustrate our intuition through a simple PBO instance.

» Example 3.1. Let us consider a PBO instance I, which consists of three hard constraints
and an objective function: ¢; : 4—x1 + o + x3 > 4, o @ 3—x1 + T2 + 223 > 4, c3 :
29z1 + 1525 + 16x3 > 29, minimize: x; + —x3. The values of viol of hard constraints and
the value of obj of the objective function under all assignments are presented in Table 1.
Solutions for I; are those resulting in the zero value of viol for all hard constraints. From
Table 1, the optimal solution is o* = (0,1, 1), and obj(a*) is 0.

Given instance I7, consider a scoring function without any weighting scheme, or equival-
ently, the weight of each constraint is 1, i.e., w(c1) = 1, w(ez) = 1, w(ez) = 1, w(o) = 1; the
initial assignment o = (0,0,0). In accordance with the definition of the scoring function in
LS-PBO, score(x1) = 21, score(xe) = 17, and score(zs) = 17. Actually, in order to optimize
the assignment, SLS algorithms tend to select the variable to be flipped as the one with the
largest score, so in this situation, x; is picked. After flipping x1, the assignment becomes
a = (1,0,0), and the score value of each variable becomes score(xy) = —21, score(zy) = 3,
score(xs) = 3. Then, no matter whether x5 or 3 is flipped, the Hamming distance between

12:5

CP 2023

12:6

Towards More Efficient Local Search for Pseudo-Boolean Optimization

the current assignment and the optimal solution is the same as that between the initial
assignment and the optimal solution, which is two. The search is not progressing in the
direction towards the optimal solution.

In practice, PBO instances encoded from real-world problems are much more complex
than the given illustrative example. If SLS algorithms conduct the search in incorrect
directions, it would be difficult to identify a promising search space that is more likely to
contain the optimal solution or those close to optimality.

As presented in Table 1, when we focus on the value of viol(cs), for those cases where
the value of viol(c3) is not 0, its value is much larger than the wviol value of other hard
constraints. Considering that each hard constraint has a penalty value directly proportional
to its viol value, utilizing scoring function aims to guide the search towards the area with a
lower sum of penalty values. Consequently, through making use of such scoring function,
the algorithms would prefer the falsified literal with the largest coefficient to be True (in
instance I, under the assumption that the current assignment is (0,0, 0), this falsified literal
is #7 in the hard constraint cs).

Our New Scoring Function. In our opinion, a good scoring function for PBO should balance
the viol values of different constraints. To this end, we propose to smooth the penalty values
of constraints. For simplicity, we denote the smoothing function of a hard constraint c as
smooth(c), and the smoothing function of the objective function o as smooth(o). Based on
the idea of balancing the viol value, we propose the following, new scoring function:

For a hard constraint ¢, the penalty function is defined as penalty(c) =
% ; then the hard score of a variable z is defined as the decrement of the
sum of the penalty function values of all hard constraints caused by flipping z, which is

denoted by hscore(zx).

For the objective function o, the value of the objective function is obj(a), and
the penalty function is defined as penalty(o) = %‘m; then the soft score
of a variable x is defined as the decrement of the penalty function value of the objective

function caused by flipping x, which is denoted by sscore(z).

The score of a variable z is defined as score(x) = hscore(x) + sscore(z).

In order to instantiate the above scoring function, we propose to use a method for smooth-
ing by using the average of the constraint coefficients, i.e., smooth(c) = round(avgeoe(c)),
smooth(o) = round(avgeoe(0)) (round is a rounding function). Consider the PBO instance
I in Example 3.1, which has smooth(c;) = 2, smooth(ca) = 2, smooth(cs) = 20, and
smooth(o) = 1. Assume that each hard constraint and the objective function have a
weight of 1 and the current assignment o = (0,0,0). Based on the new scoring function,
score(x1) = —3.05, score(xs) = 2.25, and score(zs) = 1.3. Hence, SLS algorithms would
select variable x5 to be flipped. Flipping x5 would change the current assignment « to (0,1,0),
and the score value of each variable would become score(x;) = —3.3, score(xz) = —2.25,
score(xs) = 0.7. Afterward, SLS algorithms would select variable x3 to be flipped. If x3 is
flipped, assignment a becomes (0,1, 1), which is the optimal solution of instance I;.

According to this illustrative example, it can be observed that, by using the average of
constraint coeflicients to smooth the penalty value, the issue of the large difference among
coeflicients of a variable in various constraints can be alleviated, resulting in a more effective
scoring function.

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

3.2 A New Weighting Scheme

Combinatorial optimization problems with both hard and soft constraints require effective
weighting schemes that balance the weights of hard and soft constraints. A potential problem
was pointed out in a previous study [10]: the excessive weight given to soft constraints
may make it difficult to satisfy all the hard constraints, thereby hindering the algorithm’s
capability of finding solutions. Moreover, an existing study [38] demonstrates that designing
a weighting scheme for problems with hard constraints is challenging as it requires weighting
unsatisfied constraints while maintaining the distinction between hard and soft constraints.

To alleviate the above problem, the weighting scheme proposed in LS-PBO sets an upper
bound ¢ (an integer parameter) to the maximum value of the objective function weight. We
use unsat_hard_set to denote the set of unsatisfied hard constraints. For a PBO instance
I, the average of the product of the avgeo.(c) and w(c) of all constraints ¢ is denoted as
wWavgeoe(I), that is, wavgeee(I) = (Y iv (avgeoe(c;) X w(c;)))/m. Assuming that the current
assignment is «, the best solution that has been found is a*, and its corresponding objective
function value is obj(a*).

The weighting scheme adopted in LS-PBO is described as follows:

Initialization phase: at the start of the local search process, the weight of each hard
constraint c¢ is initialized as 1, i.e., w(c) := 1; the weight of the objective function o is
also initialized as 1, i.e., w(o) := 1.

Update phase: when the search is trapped in a local optimum (i.e., there is no variable
whose score value is greater than 0), for each ¢ in unsat_hard_set, w(c) := w(c) + 1; if
obj(a) > obj(a*) and w(0) X avgcee(0) — WavGeoe(I) < ¢, w(o) := w(o) + 1, where (is a
parameter introduced by LS-PBO.

In fact, the setting of (greatly affects the performance of LS-PBO, and if the average of
the coefficients of the objective function is much greater than the average of the coefficients
of the hard constraints, the weight of the objective function basically would not be updated.
In addition, varying the timing of weighting constraints could be a promising strategy to
improve the performance of the weighting scheme.

We propose to deal with these problems by modifying the condition of updating weights.
Specifically, we propose a stricter condition for increasing objective function weight. Our
proposed weighting scheme is as follows:

Initialization phase: at the start of the local search process, the weight of each hard
constraint c is initialized as 1, i.e., w(c) := 1; the weight of the objective function o
is initialized as 0, i.e., w(o) := 0.

Update phase: when the search is trapped in a local optimum (i.e., there is no variable
whose score value is greater than 0), for each ¢ in unsat_hard_set, w(c) := w(c) + 1; if
unsat_hard_set is empty, w(o) := w(o) + 1.

In the beginning, the weight of the objective function is initialized as 0, so that the
algorithm would first focus on finding solutions. If the search is trapped in a local optimum,
the weight of the objective function is increased only when the current assignment « is a
solution (all hard constraints are satisfied under «). Accordingly, if the algorithm frequently
visits solutions, then the objective function would have a greater chance to increase its weight.
Otherwise, there would be limited opportunities to increase the objective function weight.

12:7

CP 2023

12:8 Towards More Efficient Local Search for Pseudo-Boolean Optimization

Algorithm 1 The NuPBO Algorithm.

Input: A PBO instance I, cutoff time.
Output: The best solution (a*) found and its objective function value obj*, or “No
solution found”.
1 o = J; obj* := +o0;
2 while no terminating criteria are met do

3 « := an initial assignment;

4 for each c in hard constraints do

5 L w(c):=1,;

6 for the objective function o, w(0):=0;

7 L=10000000;

8 for step=0; step<L; step++ do

9 if « is feasible and obj* >obj(a) then

10 L o™ :=a; obj*:=0bj(a); L=step+10000000;

11 if D := {z|score(z) > 0} # & then

12 L v:=a variable in D with the highest score;

13 else

14 update constraints weights by the new weighting scheme described in Section 3.2;
15 if 3 unsatisfied hard constraints then

16 c:=a random unsatisfied hard constraint;

17 v:=the variable whose literal is false with highest score in c;
18 else

19 L v:=a randomly chosen variable with sscore > 0;
20 | a:=a with v flipped;

21 if a® # @ then return o* and obj™;
22 else return No solution found;

4 The NuPBO Algorithm

In this section, we develop a new SLS algorithm named NuPBOQO, which is based on the main
ideas proposed in Section 3. NuPBO adopts the Dynamic Local Search (DLS) framework as
does LS-PBO. The pseudo-code of NuPBO is outlined in Algorithm 1. We use o and obj*
to denote the best-found solution and the corresponding objective function value (i.e., the
cost of the best-found solution), while « denotes the current assignment which is maintained
during the search.

*

In the beginning, o* is initialized as an empty set, and obj* is initialized as +oo (Line 1).
NuPBO then iteratively calls the local search process until reaching a terminating criterion
(e.g., reaching a preset cutoff time, or achieving a feasible assignment « whose corresponding
obj value is equal to 0) (Lines 2-20).

In the local search process, an initial assignment is generated by assigning each Boolean
variable to a default value 0 (as in LS-PBO) (Line 3). NuPBO then initializes the weights
of all hard constraints as 1, and sets the weight of objective function to 0 according to our
proposed weighting scheme. After initialization, NuPBO conducts the search process (Lines
8-20). During the search process, whenever NuPBO finds a solution whose obj is lower than
obj*, then a* and obj* are updated accordingly.

In each search step, NuPBO selects a variable and flips it based on two situations: (I)
If the set D of decreasing variables (i.e., the variable x with score(z) > 0) is not empty, a
variable with the highest score is selected from D, breaking ties by preferring the variable

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

that has been flipped least recently. (II) When D is empty, which indicates that the search
is trapped in a local optimum, then NuPBO updates the weights of constraints according to
our new weighting scheme. Then, if there exist unsatisfied hard constraints, an unsatisfied
hard constraint ¢ is randomly picked. As we know, for a MaxSAT instance, if a clause cm is
unsatisfied, then it would become satisfied after flipping any variables in ¢m. For a PBO
instance, if a hard constraint cp is unsatisfied (i.e., viol(cp) > 0), only flipping variables
whose literals are False under the current assignment can reduce viol(cp) (Assuming under
the current assignment o, 1 is 1, then the literal x; is True, while the literal -z is False).
Therefore, NuPBO picks the variable whose literal is False with the highest score in c.
Otherwise (i.e., all the hard constraints are satisfied), NuPBO randomly chooses a variable
whose sscore is greater than 0.

Finally, when any terminating criterion is met, NuPBO stops and reports the best solution
a* and obj* if a solution is found; otherwise, it reports “No solution found”.

5 Experimental Evaluations

In this section, we introduce experimental preliminaries and then conduct extensive exper-
iments on 6 PBO benchmarks. First, we compare NuPBO with 5 state-of-the-art PBO
solvers. Second, we conduct experiments to show that combining NuPBO with complete
solvers can lead to better portfolios. Third, we report experimental results to demonstrate
the effectiveness of our main ideas. Finally, we examine the stability of the SLS solvers by
running each SLS solver 10 times with seeds ranging from 1 to 10.

5.1 Experimental Preliminaries

Benchmarks. We evaluate NuPBO on 6 benchmarks, which are described as follows:
PB16: the OPT-SMALLINT-LIN benchmark from the latest 2016 pseudo-Boolean com-
petition. As a mainstream benchmark for evaluating the performance of PBO solvers, it
consists of 1600 instances of various categories.?

MIPLIB: 0-1 integer linear programming optimization problems. This benchmark contains
291 instances of various categories, provided in the literature [12].3

CRAFT: crafted combinatorial benchmarks whose coefficients are small integers. This
benchmark contains 955 instances of various categories, provided in the literature [12].
MWCB: the Minimum-Width Confidence Band Problem. This benchmark contains 24
instances.

SAP: the Seating Arrangements Problem. This benchmark contains 21 instances.

WSNO: the Wireless Sensor Network Optimization Problem. This benchmark consists of
18 instances.

For the benchmarks of MWCB, SAP, and WSNO, the descriptions, the downloading websites,
and the methods of converting the real-world applications into PBO instances and the
encoded PBO instances are presented in the literature [26].°

http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://zenodo.org/record/3870965
https://zenodo.org/record/4036016
https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/

(S V)

12:9

CP 2023

http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://zenodo.org/record/3870965
https://zenodo.org/record/4036016
https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/

12:10

Towards More Efficient Local Search for Pseudo-Boolean Optimization

State-of-the-Art Competitors. We compare NuPBO with 5 state-of-the-art solvers, includ-
ing one SLS solver (i.e., LS-PBO) and 4 complete solvers. The 4 complete solvers include 2
PB solvers (i.e., PBO-IHS and RoundingSat) and 2 MIP solvers (i.e., Gurobi and SCIP):
LS-PBO [26]: the state-of-the-art SLS algorithm for solving PBO. Adopt the parameter
setting recommended by its authors. It outperforms Gurobi and RoundingSat on many
real-world application benchmarks.®
PBO-IHS [37]: a recent IHS PBO solver building upon RoundingSat [14].°
RoundingSat [12]: a recent PBO solver combining core-guided search with cutting planes
reasoning.”
Gurobi [19]: one of the most powerful commercial MIP solvers (Version 9.1.2). The
default configuration is used, along with a single thread.®
SCIP [16]: one of the fastest non-commercial solvers for MIP (Version 7.0.3, using SoPlex
5.0.2 as its internal LP solver).?

Experimental Setup. LS-PBO and NuPBO are implemented in C++, and compiled with
g++ (version 8.5.0) using the option “-O3”. Installation procedures for other solvers follow
their detailed guidelines. All the experiments are carried out on a workstation under the
operating system CentOS, with the AMD EPYC7702 2.0GHz CPU.

In these experiments, we adopt two cutoff times of 300 CPU seconds (300s) and 3600
CPU seconds (1h). Each solver performs one run within a given cutoff time on each instance,
and we record the cost of the best solution found by solver S; on instance I, denoted as
sols,1,- The cost of the best solution found among all solvers in the same table within the
same cutoff time on instance Iy is denoted as besty, . For each solver S solving a benchmark
B; within a cutoff time, we use 3 metrics to evaluate the performance of S.

#win.: the number of instances where the corresponding best;, can be obtained by solver

S on B (i.e., the number of winning instances).

aVgscore: iN our experiments, the competition score of solver S; on instance Ij, is repres-
bestIk +1

ented by scores,r, = sols, 1, +1°
iTh

which measures the gap between solg;r, and besty, . If
solver S; could not report a solution on instance Iy, then scoreg,,, = 0. We use avgscore
to denote the average competition score of a solver on a benchmark. The competition
score of each solver on each instance is the metric to measure the performance of solvers
in the incomplete track of recent MaxSAT Evaluations (2017-2023).

feas.: the number of instances where solver S obtains solutions on B;.

In our experiments, avgscore is calculated by ignoring the instances that are proven
to have no solution by the complete solvers. Based on the preliminary experiments, we
conclude that at least 123 instances in the PB16 benchmark and at least 17 instances in the
MIPLIB benchmark do not have solutions. All instances in the CRAFT, MWCB, SAP, and WSNO
benchmarks have solutions.!?

The number of instances in each benchmark is indicated by ‘#inst.. For each of the
above three metrics, if a solver obtains a larger metric value on a benchmark, then the solver
exhibits better performance on the benchmark. The results highlighted in bold indicate the

best performance for the corresponding metric.

5 https://bitbucket.org/coreo-group/pbo-ihs-solver/

" https://doi.org/10.5281/zenodo . 4043124

8 https://www.gurobi.com/products/gurobi-optimizer/

9 https://www.scipopt.org/index.php#download

10Note that the definition of the competition score (metric) in this subsection has no relationship to the
definition of the score in the scoring function in subsection 3.1.

https://bitbucket.org/ coreo-group/pbo-ihs-solver/
https://doi.org/10.5281/zenodo.4043124
https://www.gurobi.com/products/gurobi-optimizer/
https://www.scipopt.org/index.php#download

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng 12:11

Table 2 Experimental results of NuPBO and all the competitors on all the benchmarks (top:
cutoff 300s, bottom: cutoff 1h) (Benc, i.e., Benchmark. avgs, i.e., avgscore)-

‘ SLS solvers PB solvers MIP solvers
Benc #inst.‘ NuPBO LS-PBO PBO-IHS RoundingSat Gurobi SCIP
o g on [F2 o[£ w27 v [.
cutoff 300s
PB16 1600 12;? 0.8800 1710803 0.7516 1%13(?1 0.8712 1936942 0.8916 11;)258 0.9011 1828474 0.7918
MIPLIB 291 ;ig 0.8480 27252 0.7375 28340 0.7350 22195 0.7855 ;gg 0.8013 é;l 0.7360
CRAFT 955 32; 0.9868 S;g 0.9682 Sgg 0.9433 S;Z 0.9639 sgi 0.9961 ;gzll 0.9583
MWCB 24 ;: 1.0000 204 0.9448 109 0.4496) 204 0.6247] 102 0.4004 g 0.0761
SAP 21 ;i 1.0000 201 0.9750 8 0.0000 8 0.0000 (1) 0.0395 8 0.0000
WSNO 18 12 1.0000 i; 0.9026 g 0.1738 148 0.6624 g 0.2431 g 0.1631
cutoff 1h
PB16 1600 1223 0.8897 1821748 0.8164 1igloz 0.8875 12(13 0.9100 :ggg 0.9354 123?1 0.8565
MIPLIB 291 ;i; 0.8519 28331 0.7673 ;gg 0.7903 28477 0.8099 ;gg 0.9023 ;gz 0.8104
CRAFT 955 gzé 0.9992 3;3 0.9714 3481(7; 0.9841 S;i 0.9902 ggg 0.9987 S;g 0.9704
MWCB 24 ;i 0.9998 214 0.9690 204 0.5620 204 0.7116 204 0.7437 107 0.5058
SAP 21 ;i 1.0000 201 0.9785 8 0.0000 8 0.0000 (1) 0.0451 8 0.0000
WSNO 18 12 1.0000 158) 0.9985 154 0.5989 i; 0.8660 143 0.4904 2 0.0842

5.2 Comparisons with State-of-the-Art Solvers

The comparative results of NuPBO and all the competitors on all the benchmarks are shown
in Table 2. We first analyze the results with a cutoff time of 300s.

In terms of the number of winning instances, NuPBO gives the best performance on 4
benchmarks, including CRAFT and the 3 real-world application benchmarks, and ranked
second on the PB16 and MIPLIB benchmarks (with Gurobi being the best).

In terms of avgscore, NuPBO outperforms all the competitors on 4 benchmarks, including
MIPLIB and the 3 real-world application benchmarks. On the PB16 benchmark, its
aVgscore Tanks third after Gurobi and RoundingSat. The avgscore value of NuPBO ranks
second on the CRAFT benchmark behind Gurobi.

In terms # feas., NuPBO and LS-PBO find solutions for all instances in the 3 real-world
application benchmarks, while PBO-IHS, RoundingSat, and Gurobi are respectively the
best for finding solutions on PB16, MIPLIB, and CRAFT. Although the value of # feas.
of NuPBO ranks second on MIPLIB and CRAFT benchmarks, and ranks fourth on PB16
benchmark, NuPBO performs considerably better than LS-PBO, an SLS solver for PBO.

CP 2023

12:12

Towards More Efficient Local Search for Pseudo-Boolean Optimization

Table 3 Experimental results of VBSa., VBScaciude ispbo, and VBSeaciude nupbo 0N all the
benchmarks (top: cutoff 300s, bottom: cutoff 1h).

Benchmark #inst ‘ VBSau VBSeactude_ispbo VBS cxctude_nupbo

‘#win. AVGscore #feasl‘#win. AVGscore #feas.‘#win. avgscore #Hfeas.

cutoff 300s
PB16 1600 | 1434 0.9709 1434 | 1430 0.9703 1434 | 1356 0.9690 1433
MIPLIB 291 254 0.9270 254 254 0.9270 254 218 09119 254
CRAFT 955 955 1.0000 955 955 1.0000 955 939 0.9999 955
MWCB 24 24 1.0000 24 24 1.0000 24 0 0.9448 24
SAP 21 21 1.0000 21 21 1.0000 21 0 0.9750 21
WSNO 18 18 1.0000 18 18 1.0000 18 11 0.9032 18
cutoff 1h
PB16 1600 | 1440 0.9749 1440 | 1438 0.9747 1440 | 1394 0.9730 1438
MIPLIB 291 262 0.9562 262 262 0.9562 262 238 0.9492 262
CRAFT 955 955 1.0000 955 955 1.0000 955 953 >0.9999 955
MWCB 24 24 1.0000 24 23 0.9998 24 1 0.9690 24
SAP 21 21 1.0000 21 21 1.0000 21 0 0.9785 21
WSNO 18 18 1.0000 18 18 1.0000 18 15 0.9985 18

With the cutoff time of 1h, NuPBO outperforms LS-PBO on the 3 real-world application
benchmarks. On the other 3 benchmarks, NuPBO shows competitive performance compared
to Gurobi, and significantly outperforms the state-of-the-art SLS solver LS-PBO in terms of
all metrics of #win., avgscore, and # feas..

5.3 Complementarity between SLS Solvers and Complete Solvers

In this subsection, we conduct experiments to investigate the complementarity between SLS
solvers and complete solvers when solving PBO.

To investigate the complementarity between SLS solvers and complete solvers, we construct
three perfect portfolio selectors: given a set of base solvers O, for each instance, the solution
of the perfect portfolio selector constructed on © is the best among the entire collection of
solutions reported by all solvers in ©. These three perfect portfolio selectors are built based on
©,={LS-PBO, NuPBO, PBO-IHS, RoundingSat, Gurobi, SCIP }, ©:={NuPBO, PBO-IHS,
RoundingSat, Gurobi, SCIP }, and ©3={LS-PBO, PBO-IHS, RoundingSat, Gurobi, SCIP
} dubbed VBSau, VBSecuciude isppo a0d VBSeqciude nupbo, respectively. Then we conduct
experiments to evaluate the performance of these three perfect portfolio selectors on all
benchmarks. The related results are presented in Table 3.

The comparison between VBS,; and VBSezciude 1sppo reveals the number of instances
where only the LS-PBO solver can achieve the optimal solution among all solvers. Similarly,
comparing VBSq.; and VBSczciude nupbo Shows the number of instances where only the
NuPBO solver can obtain the optimal solution among all solvers. As shown in Table 3,
taking the PB16 benchmark with a cutoff time of 300 seconds as an example, out of the
1600 instances, there are 4 instances where only LS-PBO can achieve the optimal solution
among all solvers, and there are 78 instances where only NuPBO can obtain the optimal
solution among all solvers. Additionally, in 1 instance, only NuPBO was able to find a
feasible solution. The results in Table 3 demonstrate that, compared to the state-of-the-art
SLS solver LS-PBO, NuPBQO is able to enhance the complementarity between SLS solvers
and complete solvers, which indicates that a portfolio selector, which combines NuPBO and
complete solvers, could advance the state of the art in PBO solving.

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

Table 4 Experimental results of NuPBO, NuPBO-alt(s), and NuPBO-alt(w) on all the benchmarks
(top: cutoff 300s, bottom: cutoff 1h).

Benchmark #inst ‘ NuPBO NuPBO-alt(s) NuPBO-alt(w)
nchmar inst.

‘#win. AUGscore #feas.‘#win AVGscore #feas.‘#win. avgscore Ffeas.

cutoff 300s
PB16 1600 | 1141 0.9026 1351 | 1024 0.8288 1253 | 1034 0.8822 1323
MIPLIB 291 182 0.8687 242 147 0.8347 242 112 0.8312 239
CRAFT 955 941 0.9874 943 | 941 0.9864 942 848 0.9648 925
MWCB 24 24 1.0000 24 0 0.9466 24 0 0.9700 24
SAP 21 13 0.9990 21 9 0.9974 21 0 0.9782 21
WSNO 18 17 0.9995 18 18 1.0000 18 15 0.9704 18
cutoff 1h
PB16 1600 | 1170 0.9076 1360 | 1113 0.8842 1329 | 1090 0.8911 1336
MIPLIB 291 188 0.8754 243 149 0.8520 244 121 0.8620 245
CRAFT 955 953 >0.9999 955 | 953 >0.9999 955 864 0.9683 926
MWCB 24 24 1.0000 24 0 0.9459 24 0 0.9655 24
SAP 21 11 0.9986 21 13 0.9988 21 0 0.9824 21
WSNO 18 18 1.0000 18 18 1.0000 18 18 1.0000 18

5.4 Analysis on the Underlying Ideas

In order to demonstrate the effectiveness of our two main ideas in our NuPBO solver, we
conduct comparative experiments on 3 solvers. We develop two alternative versions of
NuPBO, by replacing its scoring function and weighting scheme with the ones proposed in
LS-PBO, dubbed NuPBO-alt(s) and NuPBO-alt(w), respectively. The weighting scheme
proposed in LS-PBO introduces a parameter ¢ for NuPBO-alt(w), which is set to 100 as
recommended by LS-PBO’s authors [26].

The comparative results of the cutoff time of 300 seconds and 1 hour are shown in Table 4.

From Table 4, NuPBO outperforms its alternative versions on the majority of instances. We
first discuss the effectiveness of the new scoring function.

Regarding the New Scoring Function. With the cutoff time of 300s, in terms of the metrics
of #win. and avgscore, NuPBO exhibits the best performance on 5 benchmarks. In terms of
the metric of # feas., NuPBO performs better than NuPBO-alt(s) on the PB16 benchmark
and CRAFT benchmark. On the remaining 4 benchmarks, the number of feasible solutions
obtained by NuPBO is equal to that obtained by NuPBO-alt(s).

With the cutoff time of 1h, NuPBO exhibits significantly better performance than
NuPBO-alt(s) on 3 benchmarks including PB16, MIPLIB, and MWCB. On the remaining 3
benchmarks, namely CRAFT, SAP and WSNO, the performance of NuPBO is comparable to
that of NuPBO-alt(s).

To examine the intuition in Section 3.1, we conduct an experiment to analyze the
relationship between the instance feature and the performance difference between NuPBO
and NuPBO-alt(s). Due to the difficulty of counting the coefficients of all variables in
different constraints within an instance, we use the Gini coefficient [18] of the degree of hard
constraints as the instance feature, denoted by Ginigy. For a PBO instance Iy, if the degree
values of all hard constraints in I; are arranged in ascending order, Giniy can be calculated
as follows: Ginig = % S, i(d; — d), where n is the number of hard constraints, i is the

12:13

CP 2023

12:14

Towards More Efficient Local Search for Pseudo-Boolean Optimization

52 %3 ~ i —
ge | X
ECD X X XX %
il x x X% X X o
605 « [X X ><‘><< X%
83 e K x
e L
< X
68 % Xg: Y :)
o5 gini<0.5 %170.5=gini<0.9 ,0.9<gini
2 83 L X X XX U | i
T . . . A o -

0 500 1000 1500 2000 2500 3000

Instances from all the 6 benchmarks

Figure 1 The ratio of the score metric of NuPBO and NuPBO-alt(s) on instances from all the 6
benchmarks (cutoff 300s).

rank of degree values in ascending order, d; is the degree of i-th hard constraint (d; values
are in ascending order), and d is the mean value.!! The greater Giniy(I1), the greater the
inequality between the degrees of constraints in instance I;. In those instances whose Ginig is
large, the coefficient of a variable may differ greatly between constraints. For an instance I,
we use scorenyppor, to represent the competition score of NuPBO, and score yyppo-alt(s)1,

to represent the competition score of NuPBO-alt(s). R(I1) = SCZ:Z;E:IZZBZI(I)?H is used to
u. -alt(s)Iq

denote the performance difference between NuPBO and NuPBO-alt(s). Thus, if NuPBO
finds a solution while NuPBO-alt(s) does not, R = 2 (on the contrary, R =0.5). If R=1,
NuPBO and NuPBO-alt(s) obtained the same competition score (or no solution has been
found).

We conduct an experiment on all 6 benchmarks with a cutoff time of 300s. The related
results are presented in Figure 1. According to Figure 1, the x-axis represents 2909 instances
of the 6 benchmarks, sorted by Giniy in ascending order, and the y-axis represents the
corresponding R values.

Results in Figure 1 demonstrate that NuPBO outperforms NuPBO-alt(s), as the number
of instances with R > 1 exceeds those with R < 1. In addition, on instances with Ginig > 0.9,
NuPBO exhibits a significant performance advantage over NuPBO-alt(s), and many instances
in this category have an R value of 2, which indicates that NuPBO performs much better

in terms of the metric of # feas.. On instances with Ginigq > 0.5, NuPBO also shows
performance improvement over NuPBO-alt(s).

Regarding the New Weighting Scheme. With the cutoff time of 300s, in terms of the
metrics of #win. and avgscore, NuPBO outperforms NuPBO-alt(w) on all the benchmarks.
In terms of the metric of # feas., NuPBO achieves better performance than NuPBO-alt(w)
on 3 benchmarks. On the other 3 benchmarks, the value of # feas. achieved by NuPBO is
equal to that obtained by NuPBO-alt(w).

With the cutoff time of 1h, regarding the metrics of #win. and avgscore, NuPBO outper-
forms NuPBO-alt(w) on 5 out of 6 benchmarks, and achieves the same performance on the
WSNO benchmark. Regarding the metric of # feas., NuPBO demonstrates better performance
than NuPBO-alt(w) on 2 benchmarks. On the MIPLIB benchmark, the performance of
NuPBO-alt(w) is only slightly better than that of NuPBO. On the 2 real-world application
benchmarks, these SLS solvers achieve the same performance. The experimental results
clearly indicate the effectiveness of our proposed new weighting scheme.

Unttps://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm

https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

Table 5 Experimental results of NuPBO, LS-PBO, NuPBO-alt(s), and NuPBO-alt(w) with seeds
ranging from 1 to 10 on all the benchmarks (left: cutoff 300s, right: cutoff 1h).

Benchmark #inst.‘ cutoff 300s ‘ cutoff 1h

AVGavgsol AVGstdev % AVGavgsol AUGstdev %

NuPBO
PB16 1600 34567.32 259.79 0.75% 34721.64 123.30 0.36%
CRAFT 955 3035410.02 0.10 <0.01%| 3000465.70 0.09 <0.01%
MIPLIB 291 59271045.04 240944.55 0.41% |58116554.74 299542.17 0.52%
MWCB 24 197890.62 1504.80 0.76% 193513.34 888.91 0.46%
SAP 21 1039.04 3.74 0.36% 1033.64 3.00 0.29%
WSNO 18 1301.21 225.55 17.33% 1158.61 0.00 0.00%
LS-PBO
PB16 1600 30844.62 143.86 0.47% 34305.81 213.45 0.62%
CRAFT 955 3074484.99 1.69 <0.01%| 3071190.03 1.11 <0.01%
MIPLIB 291 53327323.12 1262751.16 2.37% |50874231.31 924287.05 1.82%
MWCB 24 209821.48 1582.87 0.75%| 201482.90 1525.52 0.76%
SAP 21 1066.74 4.61 0.43% 1059.17 3.43 0.32%
WSNO 18 1448.88 299.06 20.64% 1174.76 44.64 3.80%
NuPBO-alt(s)
PB16 1600 36842.12 112.50 0.31% 35779.84 129.39 0.36%
CRAFT 955 3038627.52 0.10 <0.01%| 3000465.70 0.10 <0.01%
MIPLIB 291 65612369.74 911077.41 1.39%|63282671.88 90491.84 0.14%
MWCB 24 210377.43 1688.62 0.80%| 205368.10 1267.23 0.62%
SAP 21 1039.50 3.49 0.34% 1034.15 2.68 0.26%
WSNO 18 1295.50 192.98 14.90% 1158.65 0.12 0.01%
NuPBO-alt(w)

PB16 1600 34535.79 312.20 0.90% 34594.61 214.89 0.62%
CRAFT 955 3094400.67 1.45 <0.01%| 3094398.61 1.15 <0.01%
MIPLIB 291 59063484.68 259177.44 0.44% |57971941.39 350572.11 0.60%
MWCB 24 205188.29 1467.44 0.72%| 201127.28 929.57 0.46%
SAP 21 1061.47 4.08 0.38% 1054.01 3.41 0.32%
WSNO 18 1293.97 143.69 11.10% 1159.25 2.02 0.17%

5.5 Stability of Local Search Solvers

In order to examine the stability of all four SLS solvers adopted in our experiments, each of
the four SLS solvers runs 10 times with seeds ranging from 1 to 10 on all instances from all 6
benchmarks.

For a given solver S and an instance I: solgy; denotes the cost of the best solution found
by solver S with seed J on instance I, avgsol denotes the average cost of best solutions
obtained by solver S over all 10 runs on instance I, while stdev denotes the standard deviation
of the cost of the best solutions obtained by solver S over all 10 runs on instance 7. On
a benchmark B consisting of multiple instances: avgqygs01 Tepresents the average value of
avgsol obtained by solver S over all instances where solutions are obtained, while avgstgey
stands for the average value of stdev obtained by solver S over all instances where solutions
are found. The calculation of avgsugsor is based on instances where solutions are found,

12:15

CP 2023

12:16

Towards More Efficient Local Search for Pseudo-Boolean Optimization

different solvers may find solutions on different subsets of instances for a given benchmark
and cutoff time. In addition, for a given benchmark, it is possible that a solver finds solutions
on more instances within a cutoff time of 1h than adopting a cutoff time of 300s. Moreover,
according to the above definition of avgaugsor, We note that the value of avgavgsor cannot be
used to compare the performance of different solvers.

The experimental results presented in Table 5 demonstrate that, with the cutoff time
of 300s, all four SLS solvers exhibit stable performance on 5 out of 6 benchmarks, while on
the WSNO benchmark, the performance is less stable compared to the other benchmarks. In
addition, the values of % for NuPBO are less than 1% on all 5 benchmarks, which
clearly indicates that NuPBO can achieve stable performance. With the cutoff time of 1h,
all four SLS solvers perform stably on the 6 benchmarks.

6 Conclusions and Future Work

This paper is devoted to improving the performance of SLS solvers for solving the PBO
problem via a new scoring function and a new weighting scheme. First, we introduced our
new scoring function. Furthermore, we proposed a new weighting scheme that effectively
determines when to increase the weight of the objective function. Based on these two
main ideas, we developed a new SLS solver named NuPBO. Extensive experimental results
demonstrate that NuPBO significantly outperforms LS-PBO on all testing benchmarks.
NuPBO outperforms all its competitors on 3 real-world application benchmarks and shows
competitive performance compared to state-of-the-art competitors on solving PB16, MIPLIB,
and CRAFT benchmarks. In addition, NuPBO enhances the complementarity between SLS
solvers and complete solvers on all testing benchmarks.

For future work, we would like to develop more efficient heuristic strategies and explore
the effect of instance features on the performances of different categories of PBO solvers.

—— References

1 Carlos Ansétegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77-105, 2013.

2 Carlos Ansétegui and Joel Gabas. WPM3: An (in)complete algorithm for weighted partial
MaxSAT. Artificial Intelligence, 250:37-57, 2017.

3 VL Beresnev, EN Goncharov, and AA Mel’nikov. Local search with a generalized neighborhood
in the optimization problem for pseudo-boolean functions. Journal of Applied and Industrial
Mathematics, 6:22-30, 2012.

4 Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete
MaxSAT. In Proceedings of CPAIOR 2019, pages 39-56, 2019.

5 Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation
and hybridization for maximum satisfiability. Artificial Intelligence, 287:103354, 2020.

6 Shaowei Cai, Chuan Luo, Jinkun Lin, and Kaile Su. New local search methods for partial
MaxSAT. Artificial Intelligence, 240:1-18, 2016.

7 Shaowei Cai, Chuan Luo, and Kaile Su. Scoring functions based on second level score for k-sat
with long clauses. J. Artif. Intell. Res., 51:413-441, 2014. doi:10.1613/jair.4480.

8 Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local search for partial
maxsat. In Proceedings of AAAI 201/, pages 2623-2629, 2014.

9 Byungki Cha and Kazuo Iwama. Performance test of local search algorithms using new types
of random CNF formulas. In Proceedings of IJCAI 1995, pages 304-311, 1995.

10 Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and Shuichi Miyazaki. Local search
algorithms for partial MAXSAT. In Proceedings of AAAI 1997, pages 263-268, 1997.

https://doi.org/10.1613/jair.4480

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Proceedings of CP 2011, pages 225-239, 2011.

Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordstrém, and Peter J. Stuckey.
Cutting to the core of pseudo-boolean optimization: Combining core-guided search with
cutting planes reasoning. In Proceedings of AAAI 2021, pages 3750-3758, 2021.

Niklas Eén and Niklas Soérensson. Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006.

Jan Elffers and Jakob Nordstrom. Divide and conquer: Towards faster pseudo-boolean solving.
In Jérome Lang, editor, Proceedings of IJCAI 2018, pages 1291-1299, 2018.

Jan Elffers and Jakob Nordstrém. A cardinal improvement to pseudo-Boolean solving. In
Proceedings of AAAI 2020, pages 1495-1503, 2020.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mithmer, Benjamin Miiller, Marc E. Pfetsch, Franziska Schlosser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization

Online, March 2020. URL: http://www.optimization-online.org/DB_HTML/2020/03/7705.

html.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence, 187:52-89, 2012.

Corrado Gini. Concentration and dependency ratios. Rivista di politica economica, pages
769-792, 1997.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL: https://www.

gurobi.com.

Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,
1985.

Pascal Van Hentenryck and Laurent Michel. Constraint-based local search. The MIT press,
20009.

Holger H. Hoos, Laetitia Jourdan, Marie-Eléonore Kessaci, Thomas Stiitzle, and Nadara-
jen Veerapen. Special issue on "stochastic local search: Recent developments and trends".
International Transactions in Operational Research, 27(1):697-698, 2020.

Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A partial
Max-SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 8(1-2):95-100,
2012.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7(2-3):59-64, 2010.

Zhendong Lei and Shaowei Cai. Solving (weighted) partial MaxSAT by dynamic local search
for SAT. In Proceedings of IJCAI 2018, pages 1346-1352, 2018.

Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger H. Hoos. Efficient local search for pseudo
boolean optimization. In Proceedings of SAT 2021, pages 332-348, 2021.

Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: An efficient local search
algorithm for weighted partial maximum satisfiability. Artificial Intelligence, 243:26-44, 2017.
Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, and Kaile Su. CCLS: An efficient local
search algorithm for weighted maximum satisfiability. [EEE Transactions on Computers,
64(7):1830-1843, 2015.

Ruben Martins, Vasco M. Manquinho, and Inés Lynce. Open-WBO: A modular maxsat solver,.
In Proceedings of SAT 2014, pages 438-445, 2014.

Rafig Muhammad and Peter J. Stuckey. A stochastic non-CNF SAT solver. In Proceedings of
PRICAI 2006, pages 120-129, 2006.

Alexander Nadel. Anytime weighted MaxSAT with improved polarity selection and bit-vector
optimization. In Proceedings of FMCAD 2019, pages 193-202, 2019.

12:17

CP 2023

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://www.gurobi.com
https://www.gurobi.com

12:18

Towards More Efficient Local Search for Pseudo-Boolean Optimization

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT
resolution. In Proceedings of AAAI 2014, pages 2717-2723, 2014.

Olivier Roussel and Vasco Manquinho. Pseudo-boolean and cardinality constraints. In
Handbook of satisfiability, pages 1087-1129. IOS Press, 2021.

Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint
in band form and related techniques for pb-solvers. IEICE Transactions on Information €
Systems, 98-D(6):1121-1127, 2015.

Bart Selman and Henry Kautz. Domain-independent extensions to GSAT: solving large
structured satisfiability problems. In Proceedings of IJCAI 1993, pages 290-295, 1993.

Pavel Smirnov, Jeremias Berg, and Matti Jarvisalo. Pseudo-boolean optimization by implicit
hitting sets. In Proceedings of CP 2021, pages 51:1-51:20, 2021.

Pavel Smirnov, Jeremias Berg, and Matti Jarvisalo. Improvements to the implicit hitting set
approach to pseudo-boolean optimization. In Proceedings of SAT 2022, pages 13:1-13:18, 2022.
John Thornton and Abdul Sattar. Dynamic constraint weighting for over-constrained problems.
In Proceedings of PRICAI 1998, pages 377388, 1998.

Renato Tinés, Michal W Przewozniczek, and Darrell Whitley. Iterated local search with
perturbation based on variables interaction for pseudo-boolean optimization. In Proceedings
of GECCO 2022, pages 296-304, 2022.

Chris Voudouris and Edward Tsang. Partial constraint satisfaction problems and guided local
search. Proc., Practical Application of Constraint Technology (PACT’96), London, pages
337-356, 1996.

Christos Voudouris, Edward PK Tsang, and Abdullah Alsheddy. Guided local search. In
Handbook of metaheuristics, pages 321-361. Springer, 2010.

Joachim P. Walser. Solving linear pseudo-boolean constraint problems with local search. In
Proceedings of AAAI 1997, pages 269-274, 1997.

Robert Wille, Hongyan Zhang, and Rolf Drechsler. ATPG for reversible circuits using
simulation, boolean satisfiability, and pseudo boolean optimization. In Proceedings of ISVLSI
2011, pages 120-125, 2011.

Yuhang Zhang, Richard Hartley, John Mashford, and Stewart Burn. Superpixels via pseudo-
boolean optimization. In Proceedings of ICCV 2011, pages 1387-1394, 2011.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, Chu-Min Li, and Felip Manya. BandMaxSAT:
A local search maxsat solver with multi-armed bandit. In Proceedings of IJCAI 2022, pages
1901-1907, 2022.

Boosting Decision Diagram-Based
Branch-And-Bound by Pre-Solving with Aggregate
Dynamic Programming

Vianney Coppé =

UCLouvain, Louvain-la-Neuve, Belgium

Xavier Gillard =

UCLouvain, Louvain-la-Neuve, Belgium
Pierre Schaus &

UCLouvain, Louvain-la-Neuve, Belgium

—— Abstract

Discrete optimization problems expressible as dynamic programs can be solved by branch-and-bound

with decision diagrams. This approach dynamically compiles bounded-width decision diagrams to
derive both lower and upper bounds on unexplored parts of the search space, until they are all
enumerated or discarded. Assuming a minimization problem, relaxed decision diagrams provide
lower bounds through state merging while restricted decision diagrams obtain upper bounds by
excluding states to limit their size. As the selection of states to merge or delete is done locally, it
is very myopic to the global problem structure. In this paper, we propose a novel way to proceed
that is based on pre-solving a so-called aggregate version of the problem with a limited number of
states. The compiled decision diagram of this aggregate problem is tractable and can fit in memory.
It can then be exploited by the original branch-and-bound to generate additional pruning and guide
the compilation of restricted decision diagrams toward good solutions. The results of the numerical
study we conducted on three combinatorial optimization problems show a clear improvement in the
performance of DD-based solvers when blended with the proposed techniques. These results also
suggest an approach where the aggregate dynamic programming model could be used in replacement
of the relaxed decision diagrams altogether.

2012 ACM Subject Classification Mathematics of computing — Combinatorial optimization
Keywords and phrases Discrete Optimization, Decision Diagrams, Aggregate Dynamic Programming

Digital Object Identifier 10.4230/LIPIcs.CP.2023.13

1 Introduction

On top of their use for Boolean encodings [27], formal verification [25], model checking
[15], computer-aided design [29] and much more, decision diagrams (DDs) have recently
emerged as a tool for discrete optimization. They provide a compact way to encode a set
of solutions to a problem. Still, for large problems, DDs representing the whole solution
space — called exact DDs — can quickly become intractable to compute. Two variants of
DDs can be used instead: restricted [10] and relazed [1, 8] DDs that respectively encode a
subset and superset of the set of solutions. When compiled based on a dynamic programming
(DP) model, these approximate DDs allow to compute bounds on the objective function for
any subproblem while controlling the size of the DD compiled. Restricted DDs aim to find
good admissible solutions by iteratively extending a bounded set of promising candidates
while dropping others, in a beam search fashion. On the other hand, relaxed DDs rely
on a problem-dependent state merging scheme to maintain an acceptable DD size while
preserving all solutions of the problem. In [9], Bergman et al. presented a branch-and-bound
algorithm solely based on these two ingredients, thus introducing a new general-purpose
discrete optimization framework and solver.
? Vianney Coppé, X?vier Gillard, a,I'ld Pierre Schaus;

5v icensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 13; pp. 13:1-13:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:vianney.coppe@uclouvain.be
https://orcid.org/0000-0001-5050-0001
mailto:xavier.gillard@uclouvain.be
https://orcid.org/0000-0002-4493-6041
mailto:pierre.schaus@uclouvain.be
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2

Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

In addition to exploiting the compactness of DP models, the main novelty of this
approach is its unique way of deriving lower and upper bounds. In the last few years, some
algorithmic improvements have been suggested to further strengthen these bounds. Assuming
a minimization problem, Gillard et al. [19] showed how user-defined lower bound formulas
can be integrated to prune DDs during their compilation and thus concentrate the search
on promising parts of the search space. They also proposed a way to compute tighter lower
bounds for all nodes contained in a relaxed DD through local bounds. Rudich et al. [30]
introduced a peeling operator that splits a relaxed DD in two: one part containing all paths
traversing a selected exact node and the other containing all remaining paths. It allows both
to warm-start the compilation of subsequent relaxed DDs and to strengthen the bounds of
the nodes inside the relaxed DD on which the peeling has been performed. More recently, [16]
generalized the ideas of [19] and introduced the use of a cache storing new thresholds that
further enhance the pruning power of the solver. Other factors impacting the quality of the
bounds provided by relaxed DDs have been studied, including variable orderings [7, 11, 26]
and alternative compilation schemes [24]. Yet, all these approaches rely on a problem-specific
state merging operator at the heart of the relaxation, which does not yield tight relaxations
for all problems, as our computational experiments show.

After covering the necessary background about DD-based optimization, this paper presents
an alternate relaxation scheme for deriving good bounds by incorporating ideas from aggregate
dynamic programming [2, 3] to the DD-based discrete optimization framework. The underlying
idea of the approach is to deduce information about an original problem instance by creating
and solving an aggregate — relaxed — version of it. This is achieved by aggregating the
states of the DP model as to obtain a much smaller DP state space. If this aggregation is
adequately specified, one can compute a lower bound for any original subproblem by finding
the optimal solution of its aggregate version. Furthermore, this optimal aggregate solution
can be disaggregated and transposed in the original problem to find good heuristic solutions.
In practice, the aggregation-based lower bounds are used as additional pruning within the
compilation of relaxed and restricted DDs. Moreover, aggregate solutions are translated
into node selection heuristics to steer the compilation of restricted DDs toward resembling
solutions to the original problem, which are thus expected to be good.

Throughout the paper, the framework is illustrated on three different combinatorial
problems: the Talent Scheduling Problem, the Pigment Sequencing Problem and the Aircraft
Landing Problem. They are then used for the experimental evaluation of the framework,
the results of which show that the aggregation-based bound brings additional pruning and
enables solving more instances. Furthermore, the aggregation-based node selection heuristic
improves the quality of the solutions found early in the search and thus contributes to
speeding up the overall resolution. Finally, we show that a DD-based solver using only the
aggregation-based bound as relaxation performs almost equally well, which is a promising
direction for problems for which defining a merging operator is difficult or inefficient.

Although this paper is — to the best of our knowledge — the first to combine aggregate
dynamic programming with the DD-based branch-and-bound paradigm proposed by Bergman
et al, there has already been some hybridization work to combine discrete optimization with
DDs and other methods. For instance, in [12], Cappart et al. propose to use reinforcement
learning to guess the variable ordering that should be used to derive the best possible bounds
from the compiled approximate DDs. Other attempts combined DDs with Lagrangian
relaxation [13, 23] or MIP [5, 22, 31, 32]. On a slightly different note, a method has
been proposed where restricted DDs are used to generate good neighborhoods in a large
neighborhood search framework [20].

V. Coppé, X. Gillard, and P. Schaus

2 Preliminaries

2.1 Discrete Optimization

A discrete optimization problem P involves finding the best possible solution z* from a
finite set of feasible solutions Sol(P) = D N C. This set is determined by the domain
D =Dy x -+ x D,_; from which the variables x = (xy,...,x,_1) each take on a value, i.e.
x; € Dj, and by a set of constraints C' imposed on the value assignments. The quality of
the solutions is evaluated according to an objective function f(z) that must be minimized.
Formally, the problem is defined as min {f(z) | z € D N C} and any optimal solution * must
satisfy z* € Sol(P) and Vx € Sol(P) : f(z*) < f(z). We describe below three optimization
problems that will be utilized in the paper as illustrations for the aggregation-based framework.

Talent Scheduling Problem. The Talent Scheduling Problem (TalentSched) is a film shoot
scheduling problem that considers a set N = {0,...,n — 1} of scenes and a set A =
{0,...,m — 1} of actors. Each scene ¢ € N involves a required set R; C A of actors for
a duration D; € N. Moreover, each actor k € M has a pay rate Cy and is paid without
interruption from their first to their last scheduled scene. The objective of TalentSched is to
find a permutation of the scenes that minimizes the total cost of the film shoot.

Pigment Sequencing Problem. The Pigment Sequencing Problem (PSP) is a single-machine
production planning problem that aims to minimize the stocking and changeover costs while
satisfying a set of orders. There are different item types I = {0,...,n — 1} with a given
stocking cost S; to pay for each time period between the production and the deadline of
an order. For each pair 4,5 € I of item types, a changeover cost C;; is incurred whenever
the machine switches the production from item type i to j. Finally, the demand matrix @
contains all the orders: @}, € {0,1} indicates whether there is an order for item type i € I at
time period p with 0 < p < H and H the time horizon.

Aircraft Landing Problem. The Aircraft Landing Problem (ALP) requires to schedule the
landing of a set of aircrafts N = {0,...,n — 1} on a set of runways R = {0,...,r — 1}.
The aircrafts have a target T; and latest L; landing time. Moreover, the set of aircrafts
is partitioned in disjoint sets Ag,...,A._1 corresponding to different aircraft classes in
C ={0,...,c—1}. For each pair of aircraft classes a,b € C, a minimum separation time
Sa,bp between the landings is given. The goal is to find the schedule that minimizes the total
waiting time of the aircrafts — the delay between their target time and scheduled landing
time — while respecting their latest landing time.

2.2 Dynamic Programming

Dynamic programming (DP) is a divide-and-conquer strategy introduced by Bellman [4]
for solving discrete optimization problems with an inherent recursive structure. It works
by recursively decomposing the problem in smaller and overlapping subproblems. The
cornerstone of the approach is the caching of intermediate results that allows each distinct
subproblem to be solved only once. A DP model of a discrete optimization problem P can
be defined as a labeled transition system consisting of:

the control variables x; € D with j € {0,...,n —1}.

a set of state-spaces S = {Sy,...,Sn} among which one distinguishes the initial state r,

the terminal state t and the infeasible state 0.

13:3

CP 2023

13:4

Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

a set ¢ of transition functions s.t. t; : S; x Dj — S;j11 for 7 =0,...,n — 1 taking the
system from one state s7 to the next state s’*! based on the value d assigned to variable
xj, or to L if assigning x; = d is infeasible. These functions should never allow one to
recover from infeasibility, i.e. ¢;(0,d) = 0 for any d € D;.
a set h of transition value functions s.t. h; : S; x D;j — R representing the immediate
reward of assigning some value d € D; to the variable z; for j =0,...,n — 1.
a root value v,.

On that basis, the objective function f(x) of P is formulated as follows:

n—1
minimize f(z) = v, + Z hj(s?, x;)
§=0
subject to /! = tj(sj,mj), forall j =0,...,n—1, with z; € D;
s’ €8;,j=0,...,nand z € C. (1)

TalentSched. A DP model for TalentSched was introduced in [17] that we slightly adapt
here to make it suitable for the relaxation discussed in Section 2.3.1. States of this model
are pairs (M, P) where M and P are disjoint sets of scenes that respectively must or might
still be scheduled. The only case where P is non-empty happens when a state is relaxed.
Control variables: z; € N with 0 < j < n decides which scene is shot in j-th position.
State spaces: S = {(M,P) | M,P C N,M NP =0}. The root state is r = (N,) and
the terminal states are of the form (0, P).
Transition functions:

(7. M\ A{z;},s7.P\ {z;}) ifz; € s9.M,
ti(sh,x;) =4 (.M \ {x;},s.P\{x;}), ifz;€s’.Pand|s/.M|<n-—j,
0, otherwise.

A scene from P can only be selected if there are more spots left than scenes in M.

Transition value functions: let a(Q) = U;cqR; be the required set of actors for a set
of scenes Q). Given a state s = (M, P), the set of actors that are guaranteed to be
on-location is computed as o(s) = a(s.M)Na(N \ (s.M Us.P)) because they are required
both for a scene that must still be scheduled and for another that is guaranteed to be
scheduled. In the transition value functions, we add all the actors from R, to this set

and sum the individual costs: h;(s?,2;) = Da; > kco(siyur, Ck-
@

Root value: v, = 0.

PSP. The PSP was already tackled with a DD-based approach in [16, 20]. We hereby recall
the DP model from [16] that allows the machine to be idle at some time periods. In this
model, the decisions are made backwards — this allows to define transition functions that only
lead to feasible production schedules. If variable x; decides the type of item to produce at
period j, the reverse variable ordering xg_1,...,xq is thus used. To simplify the transition
functions, let us denote by P! the time period at which the r-th item of type i must be
delivered, i.e. P/ =min{0 < ¢ < H |[}! Q) >r}forallie N,0<r <> Q.
Moreover, we define a dummy item type L used for idle periods and N’ = N U {L}.

States are pairs (¢, R) with ¢ the item type that the machine is currently set to produce
and R a vector that gives the remaining number R; of demands to satisfy for each type 3.

Control variables: z; € N” with 0 < j < H decides the item type to produce at period j.

V. Coppé, X. Gillard, and P. Schaus

State space: S = {s|s.i€ N',Vie NJO<s.R; <> oy Q%}. The root state is given
by r = (L, (X o<p<n Q... Cs D2 0<p<H Qp~')) and the terminal states are of the form
(i, (0,...,0)) with i € N".

Transition functions:

<t§»(sj,xj),tf(sj,wj)>, if z; # 1 and sj.sz >0and j < Rfjj_ij,

ti(s% @) = 0 (ti(s?2p), (s ay)), ifay = Land Yoy 87 Ry <G+ 1,
0, otherwise.
where

T ifa; # L

(87, x5 = 7o J

() { s.4, otherwise.

tR(s1, 2;) = (SJ.Rowu,SJ.sz —1,...,8.Ry_1), ifx; #L

! Y s.R, otherwise.

In the transition function, the first condition ensures that there remains at least one
item to produce for the chosen type and that the current time period j is earlier than its
deadline. The second condition ensures that idle periods cannot be scheduled when the
remaining quantity to produce is equal to the number of periods left.

Transition value functions: the changeover and stocking costs are computed as:

Cu,;s9.45 iij#J_andsj.i#J_}+{ ij'(j—P:j{ij)a ifzj# L }
0,

hj(sj)xj) = { 0

otherwise. otherwise.

Root value: v, = 0.

ALP. We reproduce here the DP model presented in [28] where states are pairs (Q, ROP),
with @ a vector that gives the remaining number of aircrafts of each class to schedule and
ROP a runway occupation profile: a vector containing pairs (I, ¢) that respectively give the
time and aircraft class of the latest landing scheduled on each runway. Similarly to the PSP
modeling, we denote by L either a dummy aircraft class or a dummy runway.

Control variables: we use pairs of variables (z;,y;) € (C' x R)U{(L, L)} with0<j<n
that represent the decision to place an aircraft of class z; on runway y;, or to schedule
nothing at all in case of (L, 1).

State spaces:

S ={(Q,ROP)|VieC:Q;>0,Vk € R: ROP;.l > 0,ROP;.c€ CU{L}}. The root
state is r = ((JAol,--.,|Ac=1]),{(0,L1),...,(0,1))) and the terminal states are of the
form ({0,...,0), ROP).

Transition functions: if AF gives the aircraft from class i that must be scheduled when
there are k aircrafts left from this class, we can define the function computing the earliest
landing time given a state s, a class and a runway y:

T,s.Qus if s. ROPy.l =0 and s. ROPy.c =1,
max(s.ROPy.l + miniec Si,e, Tys.0.), if s$.ROPy.0>0and s.ROPy.c = 1,

max(s.ROPy.l + Ss. ropy .z, T ys.Qz)5

E(s,z,y) =
otherwise.

This allows us to define the transition functions as:

0 ROP, ifz; # 1L and sj.Q_z]. >0
; (tj (5' 7xjayj)7tj (5' ,xjvyj))7 and E(s],xj,yj) < LASj'Q’“”J s
ti(s? x;,y;) = s
(87, x5,95) (tQ(sj 25.7) tROP(i). ifz; = 1 and 5 0r—0 J
7 yLjrYi) J 5§ %5,Y5)), W T; = an Ziec‘s 'Ql — Y%

A

, otherwise.

13:5

CP 2023

13:6 Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

where

j j. j. —1,... j, _ if . 1L
t?(5~771'j,yj) :{ <S QOa ;S Qx] s , S Qc 1>’ i .13375

$7.Q, otherwise.
{ROP(gi oy) — <§J.ROP0,...,(E(sj,zj,yj),:zrj),...,SJ.ROP,>_1>, ifx; # L
J I s/.ROP, otherwise.

The first condition of the transition function ensures that there remains at least one
aircraft of the chosen class and that its earliest landing time is not greater its latest
landing time. The second condition only allows us to schedule dummy aircrafts when
there are no aircrafts left to schedule.

Transition value functions: the waiting time of the aircraft is computed as:

E(s?, x;,y;) =T if x; £ L
)= | T e T
0, otherwise.
Root value: v, = 0.
Because the runways are identical and independent, there are many symmetries in this model.
This can be mitigated by sorting the ROP of every state by increasing latest landing time,
breaking ties according to the previous aircraft class scheduled.

2.3 Decision Diagrams

When used to manipulate the DP model of a discrete optimization problem P, DDs are
graphical encodings that represent a set of solutions of the problem. More precisely, a
DD B = (U, A,o0,l,v) is a layered directed acyclic graph composed of a set of nodes U
interconnected by a set of arcs A. Starting from a single node u,. corresponding to a DP state
given by the function o(u,.), the process of iteratively extending a set of partial solutions is
called the compilation of a DD and is described by Algorithm 1. Note that the highlighted
portions concern the ingredients introduced in Section 3 and can be ignored for now. The
algorithm begins by initializing a layer L; that only contains the root node u,, assuming its
state o(u,) belongs to the i-th stage of the DP model. The subsequent layers of the DD are
then constructed sequentially by applying each valid transition of the DP model to every
node of the last completed layer at lines 8-16. Each layer thus corresponds to a stage of
the DP model and contains a single node for each state reached in order to preserve the
compactness of the model. The arcs a € A materialize the transitions that exist between
the states of consecutive stages. In particular, the arc a = (u LN,) connecting nodes
uw € Lj,u’ € Lj;; represents the transition between o(u) and o(u'). The decision associated
with this transition is stored by the label l[(a) = d € D; and the transition value is given by
the arc value v(a).

The algorithm completes when the last layer L,, is generated, constituted by a single
node ¢ called the terminal node. The DD thus constructed contains a set of u, ~» t
paths that can be combined with any previously discovered r ~- w, path, connecting
the root of the problem to u,. Any r ~» t path p = (ag,...,a,—1) represents a solution
given by z(p) = (l(ao),.-.,l(an—1)). The objective value of such solution can also be
retrieved from the sequence of arcs by accumulating their values, and adding the root
value: v(p) = v, + E;:_Ol v(a;). The set of solutions contained in the DD is denoted as
Sol(B) = {xz(p) | Ip:r~t,pe B}. A DD rooted at a node u, is ezact if it perfectly
represents the set of solutions of the corresponding subproblem P|, ., i.e. Sol(B) = Sol(P|.,)
and v(p) = f(x(p)),Vp € B. The best value among the u; ~» ug paths in B is denoted
v*(uy ~ ug | B), and in particular v*(u | B) = v*(r ~ u | B).

V. Coppé, X. Gillard, and P. Schaus

Algorithm 1 Compilation of DD B rooted at node u, with maximum width W.

1: i < index of the layer containing u,

2. L; {u,«}

3: P+ A(p) with p the optimal solution for 7(o(u,)) // retrieve disaggregate solution
4: for j=iton—1do

5. if |L;| > W then

6: restrict or relax the layer to get W nodes with Algorithm 2

7 Lj+1 — 0

8: for allu e L; do

9: V(0 (1)) = max {v,44(0(w)), v,g,(7(0(u)))} // inject aggregation-based bound
10: if v*(u | B) + v, (0(v)) > v then // rough lower bound pruning w.r.t. incumbent
11: continue

12: for all d € D; do

13: create node u' with state o(u’) = t;(o(u),d) or retrieve it from L;q

14: create arc a = (u 4, u') with v(a) = h;(o(u),d) and l(a) = d

15: score(a) « 1if l(a) € 15]-, 0 otherwise

16: add v’ to Lj1; and add a to A

» Example 1. Let us define a TalentSched instance with 4 scenes with durations D =
(3,5,2,4) and 4 actors with pay rates C' = (10, 20, 30,40). The actor requirements for each
scene are given by R = ({0,3},{0,1,3},{0,2,3},{0,1,2,3}). Figure 1 shows the exact DD
compiled for this instance with the DP model recalled in Section 2.2. Note that for each
state s = (M, P) corresponding to a node in the DD, we only show the set M since P is
always empty in exact nodes. An optimal solution of the problem is (0,2, 3, 1), which gives
an objective value of 106.

As the reader might have guessed, the compilation of an exact DD for a combinatorial
optimization problem suffers from the curse of dimensionality as much as the corresponding
DP model. This is why DD-based discrete optimization rarely relies on exact DDs but rather
on restricted and relaxed DDs. These two variants follow two distinct compilation schemes
that allow to maintain the number of nodes of each layer — called the width — under a given
parameter W. In Algorithm 1, this logic is performed at line 5 where the width of the current
layer is compared with W. If needed, the layer is then either restricted or relaxed at line 6
by calling Algorithm 2.

2.3.1 Approximate Decision Diagrams

As stated by Algorithm 2, restricted DDs simply remove surplus nodes from the layer until it
is reduced to W nodes. A heuristic is used to evaluate the nodes and drop the least promising
ones. Restricted DDs thus generate a subset of the solutions of the corresponding problem,
i.e. Sol(B) C Sol(P) and v(p) = f(x(p)),Vp € B for a restricted DD B. They thus provide
upper bounds on the objective value.

As opposed to restricted DDs, a relaxed DD B yields lower bounds by representing
a superset of the solutions of the corresponding problem: Sol(B) D Sol(P) and v(p) <
f(z(p)),Vp € B. This is achieved through a problem-specific state merging operator &(o(M))
that defines an approximate representation that includes all states o(M) = {o(u) | u € M}
corresponding to the merged nodes M and preserves all their outgoing transitions, although

13:7

CP 2023

13:8

Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

o @TZEN(P)

50 @3

Figure 1 The exact DD for the TalentSched instance given in Example 1. Nodes are annotated
with their state and the best prefix value. Arcs are labeled with the associated decision in bold and
transition value. The arcs constituting one of the optimal solutions are highlighted in bold.

Algorithm 2 Restriction or relaxation of layer L; with maximum width W.
1: while |L;| > W do
2: M < select nodes from L; according to their score
33 Lj«+ L;\M
4: create node p with state o(y) = ®&(0(M)) and add it to L; // for relaxation only
5
6

for all u € M and arc a = (v 4 u) incident to u do

replace a by o' = (v 4 p) and set v(a') = Ty (v(a), u)

it may also introduce infeasible transitions. In Algorithm 2, a meta-node is created for this
merged state at line 4 and the arcs pointing to the deleted nodes are redirected to this
merged node at line 6. The operator 'y, permits to adjust the value of these arcs if needed.
In all three formulations given below, this operator is the identity function.

TalentSched. The merging operator is defined by &(M) = (& (M), ®p(M)) where
O M) = Nyen8-M and ©p(M) = (U epq5-M Us.P)\ (Nyenq 5-M). The definition of
®p(M) ensures that the resulting set of scenes that might be scheduled contains any scene
that must or might be scheduled in any of the states, except those that still must be scheduled
for all states.

PSP. A valid merging operator is ®(M) = (L, (mingep $.Ro, . . ., mingep $.Rp—1)). The
configuration of the machine is always reset to the dummy item type L as there is little chance
that merged states agree on it. For each item type, the remaining number of demands is
computed by taking the minimum value among all merged states, meaning that any demand
satisfied by at least one state is considered satisfied in the merged state.

V. Coppé, X. Gillard, and P. Schaus

o @1Z3D(T) o @1z (7)

55 @ 23D

[

Figure 2 Respectively on the left and the right, a restricted and relaxed DD for the TalentSched
instance given in Example 1, compiled with W set to 3 and 4. Merged nodes are circled twice.

ALP. The merging operator is again defined separately for each component of

the states: @&WM) = (Bg(M),Bropr(M)). First, the minimum remaining
quantity of aircrafts for each class is stored in the merged state: @g(M) =
(minge p $.Qo, - - ., minge pq 8.Qc—1). For the ROP, the minimum latest landing time on

each runway is kept and the last aircraft classes scheduled are reset to L: ®rop(M) =
((mingepm . ROPy.l, L), ..., (mingep S.ROP,_1.1, 1)).

» Example 2. Figure 2 shows approximate DDs for the TalentSched instance introduced
in Example 1. Despite having a maximum width of 3, the best solution contained in the
restricted DD is the optimal solution previously found. With a maximum width of 4, the
relaxed DD provides a global lower bound of 86. The path corresponding to this lower bound
is given by the assignment (0,2, 3, 0), which is infeasible because scene 0 is scheduled twice.

2.3.2 Branch-and-Bound

In [9], a branch-and-bound algorithm based only on restricted and relaxed DDs was introduced.
It maintains a queue of open nodes that represent the set of subproblems that remain to
process. For each of them, a restricted DD is compiled in an attempt to improve the
incumbent solution. Then, a relaxed DD is constructed in order to both decompose the given
subproblem into even smaller ones and to compute a lower bound for each of them. These
nodes are then added to the branch-and-bound queue for further exploration, unless the
lower bound permits their direct elimination. Ultimately, the optimality of the best solution
discovered during the search is confirmed once the queue has been emptied.

13:9

CP 2023

13:10

Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

2.3.3 Rough Lower Bound

The rough lower bound (RLB) [19] is an additional optional modeling component that can
be specified to speed up the resolution of any optimization problem. For any node wu, the
RLB gives a lower bound on the best value one can obtain when solving the corresponding
subproblem o (u), i.e. v,;(0(w)) < v*(u~> t| B) with B the exact DD for the problem. It is
used at line 10 of Algorithm 1 to filter nodes a priori by comparing this lower bound with
the incumbent value . Since the RLB is computed for each node of the approximate DDs
compiled throughout the branch-and-bound, it needs to be computationally cheap.

The RLB has the potential both to focus the compilation of restricted DDs on promising
parts of the search space and to strengthen the bounds obtained through relaxed DDs.
Furthermore, the branch-and-bound algorithm uses the RLB to make pruning decisions, if it
happens to be tighter than the bound obtained with relaxed DDs.

Example problems. In our computational experiments, we use the lower bound given by
Theorem 1 in [17] for TalentSched and the same RLB as in [20] for the PSP. We do not detail
them in this article for the sake of conciseness.

3 Aggregate Dynamic Programming for Decision Diagrams

As stated in the introduction, optimizations techniques based on DP and DDs can prove
highly effective [6, 13, 14, 18, 19]. In some cases, however, the state space of the DP models
is simply too large and the bounds derived from restricted and relaxed DDs are of little
to no use. This can be imputed either to the node selection heuristic or to the relaxation
scheme. The MinLP heuristic traditionally used favors keeping nodes with the best prefix
values. This locally-optimal selection policy may result in the elimination of all nodes that
lead to the optimal solution, or even to any feasible solution, particularly in cases of highly
constrained problems. In the latter case, the compilation of a restricted DD is a pure waste
of time: no feasible solution is found at the end of the compilation, and not even a bound on
the objective value can be exploited to reduce the optimality gap. The same phenomenon
is detrimental to the usefulness of compiled relaxed DDs whose bounds might be of low
quality when the node selection heuristic is oblivious to the global structure of the problem.
Indeed, the merging operator yields a loose representation when applied to an arbitrary set
of nodes for most problems. In the absence of a perfect heuristic, this situation will occur
under certain conditions. It inspired our pursuit of a more globally-focused approach that
could enhance the usefulness of the compiled DDs. This section presents a framework for
integrating aggregate dynamic programming ideas with DD-based optimization that aims to
address some of these shortcomings. Instead of relaxing the original problem by reasoning
on merged states, it proposes to use problem instance and state aggregation operators that
yield a simpler and relaxed version of the problem, which can be solved exactly. Solutions
of the aggregated problem can provide bounds that capture the global problem structure,
as well as guidance for the compilation of restricted DDs. This section details the role and
meaning of the components of the framework one by one.

3.1 Preprocessing: Problem Instance Aggregation

The goal of this preprocessing step is to create an aggregate and simpler problem instance by
reducing one or more dimensions of the problem. The instance aggregation operator 11 must
be defined such that the aggregate problem instance P’ = II(P) is a relaxation of the original

V. Coppé, X. Gillard, and P. Schaus

problem instance P. In practice, assuming the problem reasons over a set of elements, a
clustering algorithm can be used to create clusters of such elements. Then, the aggregate
problem instance can be obtained by considering aggregate elements that encompass all
elements in a given cluster and by adapting the instance data accordingly. Formally, if a
set F of elements is clustered into K clusters, we define two mapping functions: ¢ : £ —
{0,..., K — 1} that gives the cluster for each original element and ®~! : {0,..., K — 1} — 2F
that gives the set of original elements for a given cluster.

TalentSched. 1In [17], it is proved that there always exists an optimal solution to the
problem in which scenes with the same set of actors are scheduled together. This gives us the
opportunity to aggregate the problem by creating K clusters of scenes that require a similar set
of actors, which is plausible to occur in real film shoots. Scenes belonging to the same clusters
can then be aggregated by taking the intersection of their actor requirements and adding up
their durations. Formally, we write II(P = (N, A, R, D,C)) = (IIn(N), A, IIg(R),Ip(D),C)
with Iy (N) = {0,..., K — 1}. The aggregate actor requirements are computed as IIr(R) =
R' with R} = Njcg-1(;yR; for all i € IIx(N) and the aggregate durations as IIp(D) = D’
with D} = Zje@_l(i) D; for all i € IIx(N).

PSP. The number of item types considered in a PSP instance dramatically impacts the
size of the state space — for instance, the case with only one item type can be solved
greedily. Therefore, and because it is not unlikely that the machine will produce several
sets of similar items, we propose to cluster item types that have similar stocking and
changeover costs. The instance aggregation operator is thus II(P = (1,5,C, H,Q)) =
(I1; (1), IIg(S), I (C), H,I1o(Q)), where the aggregate set of item types is given by II;(I) =
{0,..., K —1}. Their stocking costs are computed as Ilg(S) = S’ with S} = min;cqp-1(x) S;
for all k& € TI;(I) and the changeover costs as II¢(C) = € with Cp; = min;cg-1(x),jea-10) Cij
for all k,l € ‘HI (I). The aggregate demand matrix is defined as IIg(Q) = Q' with Q;’f =
ZiGCD,l(k) Q,- However, as the demand matrix is only supposed to contain unit demands,
one must redistribute surplus demands in @’ to the left.

ALP. Similarly to the item types of the PSP, the aircraft classes can be aggregated to
reduce the complexity of the problem. We thus propose to cluster them based on their
minimum separation time with other classes and define the instance aggregation operator as
I(P=(N,R,C,A,S,T,L)) = (N,R, 11 (C),TM4(A),Is(S), T, 11 (L)). The set of aircrafts,
their target landing time and the number of runways is kept. The aggregate set of classes is
given by IIo(C) = {0,..., K — 1} and their corresponding set of aircrafts is computed as
4(A) = A" with A} = Ujcqp-1(;)A; for all i € IIo(C). The smallest separation times between
aggregate classes are kept, as formalized by Ils(S) = S’ with S}; = min;ce-1() jea—1() Sij
for all k,l € I (C). Finally, the aggregation operator adapts the latest landing times of all
the aircrafts so that any aircraft with a given target landing time has a greater latest landing
time than all other aircrafts of the same class with a smaller target landing time: II; (L) = L'
with L} = max{L; | ®(i) = ®(j),T; < T} for all ¢ € A. This property is assumed to hold
for the original problem instance, and must be preserved so that aircrafts from the same
class can be scheduled sequentially in the DP model.

» Example 3. Let us apply the problem instance aggregation to our running example by
creating K = 2 aggregate scenes. Assuming the following clustering is found: ®(0) =0, ®(1) =
1,®(2) = 0,9(3) = 1 or equivalently ®~1(0) = {0,2},®71(1) = {1,3}. We thus compute
the aggregate scene durations as: D' = (Dg + Do, D1 + D3) = (5,9) and the aggregate actor
requirements as: R = ({0,3} n{0,2,3},{0,1,3} n{0,1,2,3}) = ({0,3},{0,1,3}).

13:11

CP 2023

13:12

Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

3.2 State Aggregation and Lower Bound

A second mapping function accompanies the problem instance aggregation operator: the
state aggregation operator m : S — S’ that projects each state of the state space S of the
original problem in the aggregate state space S’. The role of this operator is to translate each
original state to its aggregate version by adapting the state information to fit the aggregate
problem data. Let us denote by B and B’ the exact DD for problem P and II(P), respectively.
If the aggregation operators II and 7 are defined such that v*(u ~>t | B) > v* (v ~ t' | B)
for all w € B,u' € B’ with n(c(u)) = o(v') and w(o(t)) = o(t'), then v*(u' ~ t' | B') can be
used as a lower bound in the original problem, which we will denote by v, (7(o(u))).

Assuming the aggregate problem can be pre-solved exactly and the solution of each
subproblem is stored, this aggregation-based lower bound can be retrieved very quickly. One
way to exploit it is to incorporate it in the RLB as shown at line 9 of Algorithm 1 so that it
is used as often as possible. Another possibility would be to use the aggregate state space to
replace the state merging scheme in relaxed DDs. Once a layer with greater width than W is
reached, all the states contained in the nodes of the layer could be mapped to the aggregate
state space to pursue the compilation in a lower dimensional space.

TalentSched. The state compression operator for TalentSched is somewhat complex because
we can only map to states where complete aggregate scenes have yet to be scheduled. As a
result, if a state s contains scenes in s.P that can optionally be scheduled, we map it to a
dummy aggregated state. The same logic is applied when s.M only contains a subset of the
scenes that compose an aggregate scene.

©,0), ifs.P#0,
m(s) =2 (0,0), ifFeln(N): (@@ NsM)#DNP (i) s.M,
(M',0), otherwise, with M’ = {i € IIx(N) | ©71(i) C 5. M }.

PSP. If we extend the definition of ® such that ®(L) = L, the state aggregation operator
can be defined as 7(s) = (®(s.i), R) with R; =3, c4-1(; s-It; for all i € 1I;(I). The item
type is projected to its corresponding aggregate type, and the remaining number of items to
produce for each type is separately accumulated within each cluster.

ALP. Again, assuming ®(L) = L, the state aggregation operator is defined by 7(s) =
(Q', ROP’) with the remaining quantities of aircrafts aggregated as @} = Zjequ(i) 5.Q; for
all i € II¢(C). For the ROP, one only needs to adapt the class of the last aircraft scheduled
on each runway ROP] = (s.ROPy.l, ®(s.ROP;.c)) for all i € R.

If lower bounds for original states are obtained only by pre-solving the aggregate problem,
it is unlikely that the solution of an aggregate subproblem mapped with the state aggregation
operator will be available, since the aggregate separation times between aircraft classes lead to
very different landing times. However, a lower bound for an aggregate state s* = (Q!, ROP?)
can be provided by the solution of any state s> = (Q?, ROP?) such that Q' = Q% and
ROP!.c = ROP?.c and ROPL.l > ROP2.l for all i € R.

» Example 4. Let us compute the aggregation-based lower bound for the root state of
the running example r = ({0,1,2,3},0) given its aggregate version w(r) = ({0,1},0) and
the clustering performed in Example 3. The aggregate version is trivial to solve since the
objective function is symmetrical and there are only two scenes to schedule. We thus have
Vagg() = Dy x (Co +C3) + D7 x (Co+C1 +C3) =5 x (1+4) +9 x (1 +2+4) =88, which
is a slightly better lower bound than the one obtained with the relaxed DD of Example 2.

V. Coppé, X. Gillard, and P. Schaus

3.3 Solution Disaggregation and Node Selection Heuristic

In order to exploit the solution of the aggregate version of a subproblem to find good heuristic
solutions for the original subproblem, we need to specify the correspondence between decisions
in the aggregate problem with decisions in the original problem. We therefore define a last
modeling component, called the decision disaggregation operator &(d) : Dj, — 2P x ... x 2P
that maps the instantiation of a variable x}, in the aggregate problem to a vector of possible
corresponding assignments for variables x;,...,z; in the original problem.

Finally, we define the path disaggregation operator that transforms a sequence of decisions
in the aggregate problem to a sequence of sets of possible decisions in the original problem:
Alp = (ak,-..,an—1)) = 0(l(ar)) - ... - 6(l(an—1)) where n' is the supposed number of
aggregate variables and - denotes the concatenation of two vectors. Using this operator,
we can compute a score for each decision made during the compilation of restricted DDs.
At line 3 of Algorithm 1, we first retrieve the optimal value assignment of the aggregate
subproblem and apply the path disaggregation operator on it. Then, a binary score is
attributed to each arc at line 15, depending on its compatibility with the disaggregated
solution. At line 2 of Algorithm 2, the maximum score obtained along any path up to each
node can then be used to order nodes from most to least promising, favoring nodes with
incoming paths that are highly compatible with the disaggregated solution. By doing so, the
width of restricted DDs is controlled in the same way as before, enabling the preference of
solutions even when no feasible solution with the maximum possible score is available.

TalentSched. Each aggregate scene corresponds to a set of original scenes, we thus need to
map each aggregate decision to a sequence of original decisions: §(i) = V where V; = ®71(i)
for all 0 < j < |®1(7)|. It corresponds to any of the scenes from the cluster 4, duplicated
|®~1(i)| times so that they are all scheduled one after another, preferably.

PSP. The operator is much simpler to define for the PSP, since each decision concerns the
production of one unit of a chosen aggregate item type. It can thus be interpreted as the

decision of producing one unit of any item type in the corresponding cluster: §(i) = (®71(4)).

ALP. The only difference with the PSP is that decisions also contain the runway on which

the aircraft is scheduled to land, which remains the same: §(a,r) = ({(a/,r) |’ € @7*(a)}).

» Example 5. As computed in Example 4, the schedule (0,1) is optimal for the aggregate
problem. By disaggregating this solution, we get ({0,2},{0,2},{1,3},{1,3}). We can notice
that the optimal schedule (0, 2,3, 1) found in Example 1 is compatible with the disaggregated
solution and would thus be favored by the aggregation-based node selection heuristic.

4 Computational Experiments

The impact of the aggregation-based bounds and heuristics was evaluated experimentally by
extending the generic DD-based solver DDO [21] and injecting the modeling of the three
discrete optimization problems presented throughout the paper. The version of DDO used
includes the improvements introduced in [16, 19]. For each problem, random instances were
generated with the following main parameters:
TalentSched: number of scenes n € {20, 22,24, 26,28}, number of actors m € {10,15}
and average fraction of actors required for each scene p € {0.3,0.4}.

13:13

CP 2023

13:14

Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

TALENTSCHED

o
=3
S

w
=}
S

w

=}

S}
L
N
%
o

L

w
o
=}

N
=}
S

N
o
S}
w
1=}
S

w

=3

Is)
!

=
o
S}
N
o
o

N
=}
S}
u
o
L

N
=}
S

instances solved to optimality

instances solved to optimality
&
o

instances solved to optimality

o
L

—
o
S}

- T T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

time (s) time (s) time (s)
X DDO DDO+AggB + DDO+AggB+AggH » rDDO A rDDO+AggB + rDDO+AggB+AggH

Figure 3 Number of instances solved over time for each configuration and problem studied.

PSP: number of item types n = 10, horizon H € {100, 150,200} and fraction of time

periods with a demand p € {0.9,0.95,1}.

ALP: number of aircrafts n € {25,50, 75,100}, number of runways r € {1, 2,3, 4}, number

of aircraft classes ¢ = 4 and mean inter-arrival time 40/ for generating the target landing

times according to a Poisson arrival process.

Furthermore, the instance generation tries to emulate an increasing number of groups of actor
requirements, item types and aircraft classes that lend themselves more or less to aggregation.
Each instance was presolved in its aggregate state space after aggregating its data according
to k-means clustering for PSP and ALP and a custom hierarchical clustering for TalentSched
that tries to maximize the remaining costs induced by the actor requirements. TalentSched
instances can be presolved exactly with 20 aggregate scenes and PSP instances similarly with
5 aggregate item types. On the other hand, not all ALP instances reduced to 2 aggregate
aircraft have a reasonable number of states so we employ a relaxed DD with maximum width
10000 for the presolving part instead. Note that the present approach does not compete
with the state-of-the-art for TalentSched as it lacks much of the custom symmetry-breaking
logic introduced in [17] and similarly for ALP regarding the dominance-breaking constraints
presented in [28]. Six different configurations were created by combining the default DD-based
solved DDO on one hand and a version using only restricted DDs and no relaxed DDs,
denoted rDDO, on the other hand, with the aggregation-based bounds (AggB) and heuristics
(AggH). Ten minutes were allotted for each configuration to solve each instance.

Figure 3 presents the cumulative number of instances solved with respect to the solving
time. For TalentSched, it appears that any configuration of rDDO performs better than any
of DDO. This suggests that the bounds provided by the relaxed DDs are looser than the RLB
while being more expensive to compute. It confirms our intuition that the state merging
scheme yields bounds with a limited impact for some problems, probably because the state
information gets very dilute when many states are merged together. In this case, the RLB
computation is also quite involved — see [17]. Still, adding the AggB and the AggH to either
configurations improves the results by a small margin, although not that significant. This
can be contrasted with the results obtained for the two other problems, which show a clear
improvement when the AggB and the AggH are added to either configurations. Furthermore,
in cases where rDDO alone yields the worst results, incorporating AggB leads to results that
are similar to or better than those achieved by DDO. Combining it with the AggH performs
better than DDO in both cases and almost equally well than DDO+AggB+AggH.

The impact of the AggB and the AggH can also be measured in terms of end gap %.
Figure 4 compares the end gap obtained for each instance by DDO and DDO+AggB+AggH.
It shows that except for a few instances, DDO+AggB+AggH is always closer to terminating
the search than DDO, especially for PSP. To validate the relevance of the AggH, we also

V. Coppé, X. Gillard, and P. Schaus

TALENTSCHED PSP ALP
0.25 1 7 % 7
A 1.0 o 1.0 J
4 /. 7’
5 020 P % 0.8 < 5 0.8 P
3 2 3 3
& 0154 + 061 L | & 06 A
) Y %) K
< 0.10 < 0.4 7 < 0.4 K
il S TR 1 5 R
goosy gozy gozy
000 X 001 X X X 0.0 %

0.0 0.1 0.2 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
DbDO

Figure 4 Comparison of the end gap obtained for each instance by DDO and DDO+AggB+AggH.

(a) Value of first sol. (b) Iteration of first sol.
TALENTSCHED 1e7 PSP ALP ALP
100000 f v 1e6 7
ot w 1% X
I, 80000 - -4 s S5 ~
= = ’ j=J ’
5 5 21 -~ $ 121 -~
60000 + o RS o
5 S , 5 ,
< 40000 < 7 g %97 7
1 7’ 7’
& &1 / & 061 ~
8 20000 2 /& 803{ .7~
a 25 . . e
o 04 "‘& 0.0 | M0 X
0 25000 50000 75000 100000 0 1 2 3 0 10000 20000 © 0.0 0.3 0.6 0.9 1.2 15 «
DDO DDO le7 DDO DDO 1e6

Figure 5 Comparison of the value of the first solution found by DDO and DDO+AggB+AggH,
and of the iteration at which the solution is found for ALP.

compare the value of the first solution found by DDO and DDO+AggB+AggH on Figure 5(a).
For TalentSched and PSP, the quality of the first solution is always better when using the
AggH. However, there is no clear trend for the ALP. Unlike TalentSched and PSP, for which
a solution is always found at the first iteration, the landing time windows of ALP make it
difficult to find a feasible solution. This explains both the end gaps close to one in Figure 4
and the oo values in Figure 5(a), which represent the absence of a feasible solution. We thus
compare on Figure 5(b) the iteration at which the first solution is found. We observe that
DDO+AggB+AggH finds a feasible solution much earlier than DDO in most cases. This
showcases well the benefits of a node selection heuristic with a more global awareness.

5 Conclusion

This paper explained how ideas from aggregate dynamic programming can be incorporated
in DD-based optimization solvers. We proposed to derive lower bounds and node selection
heuristics from a pre-solved aggregate version of the original problem at hand, and explained
how these can be seamlessly added to the DD-based optimization framework. Computational
experiments on three different problems showed that they provide lower bounds that further
strengthen the current approach, and that could even be used as a replacement for relaxed
DDs in some cases. Furthermore, the aggregation-based node selection heuristics were shown
very valuable as they manage to steer the compilation of relaxed DDs toward better solutions
earlier in the search. When applying this idea to a highly constrained problem, the heuristics
proved to quickly lead to feasible solutions that were hard to find otherwise. These results
suggest that aggregation-based bounds and heuristics capture global problem structures well,
as opposed to the greedy MinLP heuristic traditionally used to compile approximate DDs.

13:15

CP 2023

13:16

Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

—— References

1

10

11

12

13

14

15

16

17

Henrik Reif Andersen, Tarik Hadzic, John N Hooker, and Peter Tiedemann. A constraint
store based on multivalued decision diagrams. In International Conference on Principles and
Practice of Constraint Programming, pages 118—132. Springer, 2007.

Sven Axséiter. State aggregation in dynamic programming—an application to scheduling of
independent jobs on parallel processors. Operations Research Letters, 2(4):171-176, 1983.
James C Bean, John R Birge, and Robert L Smith. Aggregation in dynamic programming.
Operations Research, 35(2):215-220, 1987.

Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60(6):503-515, November 1954. URL: https://projecteuclid.org:443/euclid.
bams/1183519147.

David Bergman and Andre A. Cire. On finding the optimal bdd relaxation. In Domenico
Salvagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Constraint
Programming, volume 10335 of LNCS, pages 41-50. Springer, 2017.

David Bergman, Andre A Cire, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, and
Willem-Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. In Integ-
ration of Al and OR Techniques in Constraint Programming: 11th International Conference,
CPAIOR 2014, Cork, Ireland, May 19-23, 201/. Proceedings 11, pages 351-367. Springer,
2014.

David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Variable ordering
for the application of bdds to the maximum independent set problem. In International
conference on integration of artificial intelligence (AI) and operations research (OR) techniques
in constraint programming, pages 34-49. Springer, 2012.

David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Optimization
bounds from binary decision diagrams. INFORMS Journal on Computing, 26(2):253-268,
2014.

David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Discrete
optimization with decision diagrams. INFORMS Journal on Computing, 28(1):47-66, 2016.
David Bergman, Andre A Cire, Willem-Jan van Hoeve, and Tallys Yunes. Bdd-based heuristics
for binary optimization. Journal of Heuristics, 20(2):211-234, 2014.

Quentin Cappart, David Bergman, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Augustin Parjadis. Improving variable orderings of approximate decision diagrams using
reinforcement learning. INFORMS Journal on Computing, 34(5):2552-2570, 2022.

Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improv-
ing optimization bounds using machine learning: Decision diagrams meet deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1443-1451, 2019.

Margarita P Castro, Andre A Cire, and J Christopher Beck. An mdd-based lagrangian
approach to the multicommodity pickup-and-delivery tsp. INFORMS Journal on Computing,
32(2):263-278, 2020.

Margarita P Castro, Chiara Piacentini, Andre Augusto Cire, and J Christopher Beck. Solving
delete free planning with relaxed decision diagram based heuristics. Journal of Artificial
Intelligence Research, 67:607-651, 2020.

Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstraction.
ACM transactions on Programming Languages and Systems (TOPLAS), 16(5):1512-1542,
1994.

Vianney Coppé, Xavier Gillard, and Pierre Schaus. Decision diagram-based branch-and-bound
with caching for dominance and suboptimality detection, 2023. arXiv:2211.13118.

Maria Garcia de la Banda, Peter J Stuckey, and Geoffrey Chu. Solving talent scheduling with
dynamic programming. INFORMS Journal on Computing, 23(1):120-137, 2011.

https://projecteuclid.org:443/euclid.bams/1183519147
https://projecteuclid.org:443/euclid.bams/1183519147
https://arxiv.org/abs/2211.13118

V. Coppé, X. Gillard, and P. Schaus

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Xavier Gillard. Discrete optimization with decision diagrams: design of a generic solver,
improved bounding techniques, and discovery of good feasible solutions with large neighborhood
search. PhD thesis, UCL-Université Catholique de Louvain, 2022.

Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto Cire. Improving the filtering
of branch-and-bound mdd solver. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 231-247. Springer, 2021.
Xavier Gillard and Pierre Schaus. Large neighborhood search with decision diagrams. In
International Joint Conference on Artificial Intelligence, 2022.

Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and efficient framework
for mdd-based optimization. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 5243-5245, 2021.

Jaime E Gonzalez, Andre A Cire, Andrea Lodi, and Louis-Martin Rousseau. Integrated
integer programming and decision diagram search tree with an application to the maximum
independent set problem. Constraints, pages 1-24, 2020.

John N. Hooker. Improved job sequencing bounds from decision diagrams. In Thomas Schiex
and Simon de Givry, editors, Principles and Practice of Constraint Programming, volume
11802 of LNCS, pages 268-283. Springer, 2019.

Matthias Horn, Johannes Maschler, Giinther R Raidl, and Elina Ronnberg. A*-based construc-
tion of decision diagrams for a prize-collecting scheduling problem. Computers & Operations
Research, 126:105125, 2021.

Alan J. Hu. Techniques for efficient formal verification using binary decision diagrams. PhD
thesis, Stanford University, Department of Computer Science, 1995.

Anthony Karahalios and Willem-Jan van Hoeve. Variable ordering for decision diagrams: A
portfolio approach. Constraints, 27(1):116-133, 2022.

C.-Y. Lee. Representation of switching circuits by binary-decision programs. The Bell System
Technical Journal, 38(4):985-999, 1959.

Alexander Lieder, Dirk Briskorn, and Raik Stolletz. A dynamic programming approach for
the aircraft landing problem with aircraft classes. Furopean Journal of Operational Research,
243(1):61-69, 2015.

Shin-ichi Minato. Binary decision diagrams and applications for VLSI CAD, volume 342.
Springer Science & Business Media, 1995.

Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Peel-And-Bound: Generating
Stronger Relaxed Bounds with Multivalued Decision Diagrams. In Christine Solnon, editor,
28th International Conference on Principles and Practice of Constraint Programming (CP
2022), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1—
35:20. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.

Christian Tjandraatmadja. Decision Diagram Relazations for Integer Programming. PhD
thesis, Carnegie Mellon University Tepper School of Business, 2018.

Christian Tjandraatmadja and Willem-Jan van Hoeve. Target cuts from relaxed decision

diagrams. INFORMS Journal on Computing, 31(2):285-301, 2019. doi:10.1287/ijoc.2018.

0830.

13:17

CP 2023

https://doi.org/10.1287/ijoc.2018.0830
https://doi.org/10.1287/ijoc.2018.0830

Fast Matrix Multiplication Without Tears:
A Constraint Programming Approach

Arnaud Deza! &

Department of Mechanical and Industrial Engineering, University of Toronto, Canada
Chang Liu' &

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Pashootan Vaezipoor =
Department of Computer Science, University of Toronto, Canada

Elias B. Khalil &

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

—— Abstract

It is known that the multiplication of an N X M matrix with an M x P matrix can be performed using

fewer multiplications than what the naive NM P approach suggests. The most famous instance of
this is Strassen’s algorithm for multiplying 2 X 2 matrices in 7 instead of 8 multiplications. This gives
rise to the constraint satisfaction problem of fast matrix multiplication, where a set of R < NM P
multiplication terms must be chosen and combined such that they satisfy correctness constraints on
the output matrix. Despite its highly combinatorial nature, this problem has not been exhaustively
examined from that perspective, as evidenced for example by the recent deep reinforcement learning
approach of AlphaTensor. In this work, we propose a simple yet novel Constraint Programming
approach to find algorithms for fast matrix multiplication or provide proof of infeasibility otherwise.
We propose a set of symmetry-breaking constraints and valid inequalities that are particularly helpful
in proving infeasibility. On the feasible side, we find that exploiting solver performance variability
in conjunction with a sparsity-based problem decomposition enables finding solutions for larger
(feasible) instances of fast matrix multiplication. Our experimental results using CP Optimizer
demonstrate that we can find fast matrix multiplication algorithms for matrices up to 3 x 3 with
R = 23 in a short amount of time.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases fast matrix multiplication, computer-assisted proofs, constraint programming,
constraint satisfaction problem

Digital Object Identifier 10.4230/LIPIcs.CP.2023.14

Supplementary Material
Software (Source Code): https://github.com/khalil-research/Matrix-Mult-CP/tree/main

1 Introduction

Matrix multiplication is a fundamental operation in linear algebra with applications in
virtually every computational domain. As a result, extensive research has been dedicated to
the development of faster matrix multiplication algorithms.

The elementary way of multiplying two N x N matrices requires N3 multiplications. For
example, multiplying two 2 x 2 matrices naively requires a total of 23 = 8 multiplications. In
1969, Strassen [16] constructed an algorithm that finds the product of two 2 x 2 matrices
in only 7 multiplications. This discovery has had significant implications as it opened up

1 These authors contributed equally.

© Arnaud Deza, Chang Liu, Pashootan Vaezipoor, and Elias B. Khalil;
37 licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).

Editor: Roland H. C. Yap; Article No. 14; pp. 14:1-14:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:arnaud.deza@mail.utoronto.ca
mailto:changy.liu@mail.utoronto.ca
mailto:pashootan@cs.toronto.edu
mailto:khalil@mie.utoronto.ca
https://doi.org/10.4230/LIPIcs.CP.2023.14
https://github.com/khalil-research/Matrix-Mult-CP/tree/main
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2

Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

the door for potentially faster algorithms for large-scale matrix or tensor computations.
Strassen’s algorithm has later been proved to be both canonical [4] (no smaller rank exists)
and essentially unique [6] (all other solutions of the same rank are equivalent up to symmetry).

Currently, the best-known algorithm for multiplying 3 x 3 matrices requires R = 23
multiplications, compared to the naive elementary method that requires 27 multiplications.
A known theoretical lower bound of R = 19 exists [2], however, it remains unclear whether
19 < R < 22 is truly attainable. This is a testament to the difficulty of the fast matriz
multiplication (FMM) problem, which has been intractable for existing methods even for tiny
matrices.

In the literature, the general approach to finding FMM algorithms starts by representing
matrix multiplication as a tensor operation using the multiplication tensor T followed by
finding exact or approximate low-rank decompositions that represent 7. The factor matrices
that are used in the low-rank decomposition encode FMM algorithms. A rank-7 decomposition
(i.e., a multiplication algorithm that uses 7 multiplication operations) of a 2 x 2 matrix
multiplication using Strassen’s algorithm is shown in Figure 1. Existing methods for finding
such factor matrices have several limitations. The most successful and common methods
include local search [13] techniques for low-rank approximation, which cannot guarantee
optimality. A more recent successful approach [7] searches for low-rank decomposition using
reinforcement learning (RL) and was successful in finding faster algorithms for N = 4.
However, this method is not exhaustive and hence cannot prove the infeasibility of a given
rank.

In this work, we propose a novel approach to finding FMM algorithms by formulating the
tensor decomposition problem, for the first time, as a constraint satisfaction problem (CSP)
that is solved using Constraint Programming (CP). We believe that this is a very natural
formulation of this highly combinatorial problem. CP is advantageous for FMM in that it
is a flexible framework that can bring to bear a wide range of search and logical inference
techniques that have been developed over the last few decades. It provides the ability to
prove infeasibility when it is not possible to multiply two matrices using a given number of
multiplications.

Besides a base CP formulation for FMM, we propose a set of symmetry-breaking con-
straints and valid inequalities that are useful for infeasibility proofs. On the feasible side,
we show that “performance variability” w.r.t. solver random seeds can be exploited in con-
junction with a sparsity-based decomposition of FMM for faster solving. Our experimental
results, while limited to matrices of size up to 3 x 3, demonstrate the effectiveness of the
aforementioned constraints and techniques. The CP approach to FMM is uniquely positioned
to close open questions such as whether it is possible to multiply two 3 x 3 matrices in 19
to 22 multiplications. While we do not yet resolve this or other open questions, our work
opens up the potential for further enhancements to the CP formulation and search such as
customized branching strategies and CP-based heuristics.

2 Fast Matrix Multiplication: Problem Statement

The multiplication of two matrices A and B of sizes N x M and M x P, respectively, results in
a product matrix C of size NV x P. This operation can be represented by a binary third-order
tensor Ty aprp (Tv for square matrices A and B of size N x N). An entry T; ; of this tensor
is equal to 1 if and only if the k' entry in the output matrix C uses the scalar product of
the i** entry of A and the j* entry of B. Here, i, j, and k are indices of a matrix entry
starting with 1 in the first row and column; and proceeding entry by entry, left to right, top

A. Deza, C. Liu, P. Vaezipoor, and E. B. Khalil

to bottom. For example, for N = M = P = 2, it must be that 753 = 1 since the first entry
of C, ¢, is equal to a1b; + agbg. Similarly, T 21 = 0 must hold since a;by is not part of c;.
Figures 1a and 1b show a complete example of the indexing and tensor representation.

The FMM problem for a given tensor Ty p, rank R € Z*1, and field F (e.g., F =
{-=1,0,1}) asks: can each entry T; jx of Tnarp be expressed as the sum of exactly R trilinear
terms involving the factor matrices U € FN-MxE 7 ¢ FM-PXR and W e FN-PXE a5
follows:

R
Tijk =Y Uip Vip Wir Vie{l,...,N-M}je{l,....M-P}ke{l,....N P}

r=1

Note that we use the notation FXX to refer to the set of matrices of dimension L x @ and
entries in F. The CSP is to find factor matrices with entries in [F that produce the tensor
Tnyp for a given rank R.

This decomposition is also referred to as the polyadic decomposition and its associated
rank is the minimal R needed. The rank can be interpreted as the number of multiplica-
tions required to compute the product. For example, for 2 x 2 matrices, the rank of the
decomposition using Strassen’s algorithm is 7. Figure 1 walks through an example of the
low-rank decomposition of a 2 x 2 matrix multiplication using Strassen’s algorithm. The
matrix multiplication of the two 2 x 2 matrices can be seen in Figure 1a, its associated tensor
representation T in Figure 1b, the low-rank decomposition in Figure 1c, and the factor
matrices U, V, and W in Figure 1d.

3 Related Work

Since Strassen’s discovery [16], there has been substantial research on finding faster algorithms
for matrix multiplication. Mathematicians have discovered such algorithms manually over
the years for a variety of matrix dimensions and ranks. In this section, however, we will
focus on automated methods for discovering such algorithms and briefly discuss some of the
existing methods. A recent survey on the topic can be found in [3].

3.1 Continuous Local Search Methods

The most common approach in the literature to compute the factor matrices U, V', and W is to
use (heuristic, continuous) local search methods for low-rank tensor decomposition. The state-
of-the-art local method [13] uses alternating least squares with regularization. This method
has been the most successful in finding fast algorithms whilst remaining computationally
tractable and has been scaled up to N = M = P = 4, R = 49%. However, this approach has
limitations which include getting stuck at local minima, facing ill-conditioned linear least-
squares problems, and solutions being only adequate up to machine precision. Additionally,
these methods are not exhaustive and hence cannot be used to provide a proof of infeasibility
for a given rank R.

3.2 AlphaTensor

More recently, DeepMind released AlphaTensor [7], a deep RL method that searches this
large combinatorial space by playing a single-player game, the TensorGame, formulated as
a Markov decision process (MDP). At every step t of this MDP, the state is characterized

2 Note that this particular result is not very useful as an R = 49 solution can be obtained by applying
Strassen’s R = 7 algorithm for 2 x 2 matrices on the four 2 x 2 blocks of the 4 x 4 matrices.

14:3

CP 2023

14:4

Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

C1 Ca - a; a bl b2
C3 C4 az Qa4 b3 b4
(a) Multiplication of two 2 x 2 matrices. We highlight the term ¢1 = a1b1 + a2bs.

0010 0001 0000 0000

—[(o0010 = = =
T,.1 = 0000 T..2={0000 T..3={1000 T.a={0100
0000 0000 0010 0001

(b) Tensor representation of the 2 x 2 matrix multiplication operation. 7.1 represents ci, the entry T 3,1
(in yellow) is set to 1 because the product azbs is required to compute ¢1 (similarly for 71,1,1 in red).

mi1 = (a1 + aa)(b1 + ba) ms = (a1 + az)(bs)
mz = (as + aa)(b1) me = (as — a1)(by + b2)
ms = (a1)(b2 — ba) mr = (a2 — as)(bs + bs)

ma = (aa)(bs — b1)

c1 = M1 +m4—ms+msz
= (a1 + a4)(bs 4 bsa) + (aa)(bs — b1) — (a1 + az2)(ba) + (a2 — a4)(b3 + bs)
= a1by + grbi + 9T + 0l + 0l — adbl — axbi — g1 + azbs + 92b1 — 0l — aabl
= ai1bi + a2b3

Cc2 = m3 + ms

c3 = M2 + My

c4s =m1 —mz+m3+meg

(c) A low-rank decomposition of the 2 x 2 matrix multiplication using Strassen’s algorithm. The m
terms are the multiplication terms and the ¢ terms represent the entries in the product matrix. Here
c1 =m1 + ma —ms + my gives ¢c1 = a1b1 + a2b3 after expansion.

my mg Mg My M5 Mg MMy

1 0 1 0 1 -1 o0 ay
[— o o o 0 1 o 1 ag
- o 1 0 0 0 1 0 ag

1 1 0 1 0 0 -1 a,

1 1 0 -1 0 1 0 by

v o 0o 1 0 0 1 o0 bs
- o o0 o0 1 0 0 1 bs

1 0 -1 0 1 0 1 b,

1 0 0 1 -1 o0 1 ¢y

B 0O 0o 1 0 1 0 0 o
W= o 1 0 1 0 0 0 csy
1 -1 1 0 0 1 0 ¢,

(d) The factor matrices U, V, and W for Strassen’s algorithm. The columns in U and V represent the
coefficient of the a and b terms in each m. Each row in W represents the coefficient of the m terms in one
¢ term.

Figure 1 A low-rank decomposition of a 2 X 2 matrix multiplication using Strassen’s algorithm.

A. Deza, C. Liu, P. Vaezipoor, and E. B. Khalil

by a tensor S; which is initially set to the target multiplication tensor, i.e., So = Ty. An
action a; at iteration ¢ corresponds to the player selecting a triplet of vectors (u(t), v®), w(t))
which in turn will provide the next state S; = S;_1 — u® @ v(¥) @ w®) where ® denotes
the outer tensor product. The goal of the player is to reach the zero tensor S; = 0 in the
fewest number of steps possible. This is done by providing a reward of —1 to the player after
every non-terminal state whereas a large negative reward —v(Sg,,,...) is given to the player
if the number of steps Rjimit is met, where v(Sg,,,..,,) upper bounds the rank of the tensor
at iteration Rjmit. If the agent successfully reaches the zero tensor, the sequence of actions
taken constitutes a valid low-rank decomposition of T, and hence an FMM algorithm is
found with the rank R corresponding to the number of steps taken by the agent.

This approach is the first to directly incorporate learning into the search which resulted
in the discovery of new minimal ranks for certain non-trivial cases. The largest case tackled
by this method is N = M = P =5, R = 98. The sole focus of this purely heuristic method
is to find lower ranks than currently best-known ranks but it cannot prove the infeasibility of
a given rank. Additionally, rather complex architectures and multiple training phases were
required for successful learning. It is worth noting that AlphaTensor was trained for one
week on 64 Tensor Processing Units (TPUs), Google’s proprietary chip. The paper [7] does
not provide any estimates of the amount of computation required to produce the reported
results, namely how long the trained “agent” must be run to discover FMM algorithms. Our
CP runs use much fewer resources while leveraging thread parallelism in the CP solver on
readily-available CPU machines.

3.3 Integer Programming

The work that is the most related to our approach tackles this problem through a mized-
integer linear program (MILP) formulation in an unpublished technical report [14]. The goal
of this methodology is to linearize the trilinear products in the low-rank decomposition of Ty
to a MILP that aims to 1) maximize the sparsity of the integer decision variables representing
factor matrices U, V, and W and 2) minimize the reconstruction loss (L1 norm) from
the input Ty and the multiplication tensor attained by the decision variables representing
factor matrices. The report [14] focuses solely on presenting the MILP formulation for
square matrices but does not include any computational experiments. However, the MILP
formulations for N € {2,3} are benchmark problems in MIPLIB 2017 [9]®. The linearization
of the trilinear products likely leads to a weak linear programming relaxation as well as an
explosion in the number of integer variables and constraints, which might explain why the
MILP approach to FMM has not picked up significant interest. A CP formulation is more
natural and compact, as we will show in this paper.

3.4 Classical Al Planning

Very recently, Al planning techniques were used for FMM [15]. They use a similar state
space as AlphaTensor but use various planning tools (with and without exhaustive search) to
solve this problem. They compared a number of heuristic and exact planning methods from
the literature on matrices of size up to 3 x 3. However, the experiments show that planning
approaches are severely limited, even failing to find Strassen’s algorithm for the 2 x 2 case
(see Table 1 in [15]). We will show that our CP approach is significantly more effective as we
are able to attack the 3 x 3 case with R = 23, matching the known upper bound from the
literature.

3 See https://miplib.zib.de/instance_details_fastxgemm-n3r21s3t6.html for example.

14:5

CP 2023

https://miplib.zib.de/instance_details_fastxgemm-n3r21s3t6.html

14:6

Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

3.5 Boolean Satisfiability-based Approaches

Boolean Satisfiability (SAT) formulations to solve the FMM problem were first proposed
in 2011 [5]. More specifically, the authors studied the multiplication of 3 x 3 matrices and
were able to find a new general algorithm with rank 23 with help from SAT solver tweaks
and improvements in a few days with one CPU. More recently, Heule et al. improved on
the SAT-based methods for the multiplication of 3 x 3 matrices and have successfully found
many thousands new general algorithms with rank 23 [10, 11]. In their SAT-formulation,
the authors transformed the multiplication to ‘and’ clauses and the addition to ‘xor’ clauses,
then a Tseistin transformation is performed to formulate the algebraic FMM problem into a
SAT problem.

The authors propose a random pairing method where value assignments are initialized
based on observed results from previously known solutions with streamlining constraints
to find new general solutions; then local search is used to find additional solutions. The
SAT-based formulations of the FMM problem demonstrates to be very difficult for complete
SAT solvers, thus making it difficult to provide proof of infeasibility.

4 Constraint Programming for Fast Matrix Multiplication

In the FMM problem, all variables have the same domain F = {—1,0,1}*. Since the variable
domains are small and this problem is highly structured, CP is a promising solution paradigm.

The base CP model for FMM is given in Equation (1). Let &/ denote the set {1,..., N-M},
V denote the set {1,...,M - P}, W denote the set {1,...,N - P}, and R denote the
set {1,...,R}. The CP model uses three sets of variables: w;, where i € U, v;, where j € V,
and wy , where k € W; r € R in all three cases. Each variable u; ,, v;, and wy, , represents
the value of the i/j/k*® row and r*® column of the matrices U, V, and W. The domain of all
variables is {—1,0,1}. The set of constraints presented here requires that the decomposition
algorithm’s output matches the original tensor multiplication Ty s p. Therefore the input to
the CSP model is 4 integers: (N, M, P) and R. The model then reads as:

> (i vjp - wiy) = Tijins ViceU,jeV,keWw
reR
WUir, Vs Wi € {—1,0,1}, VieUu,jeV,keW,reR (1)

The search space for this (NP-complete) problem grows very quickly with increasing
matrix sizes N, M, P and rank R. With only one set of equality constraints, a CP solver may
struggle with constraint propagation, thus failing to scale with increasing N, M, P. To that
end, we will introduce additional valid constraints to help CP prune and propagate more
efficiently.

4.1 Symmetry Breaking

There are many symmetric solutions to the FMM problem. We can reduce the search space
of our problem significantly by prohibiting symmetries.

4 One can consider bigger fields such as {—2,—1,0, 1,2} but the bulk of the work in the literature has
been with {—1,0,1}.

A. Deza, C. Liu, P. Vaezipoor, and E. B. Khalil

4.1.1 Permutation Symmetry

Since addition is commutative, i.e., (a1 +as) = (a2 + a1), there are many equivalent solutions
to the tensor decomposition problem. Therefore, any permutation of the columns of matrices
U, V, and W produces an equivalent solution. If we consider Strassen’s solution for the 2 x 2
case, Figure 2 provides an example of two equivalent solutions.

1010 1-10 110-1010 100 1-101
. _(0000101 _(0010010 _ [0010100
soll: U = 01000T10 V= 0001001 W= 0001000
11010 0-1 10-1 0101 1-1 10010
(RERREE EEREEE RERREE
S0121U:<1010000>V:<0101000>VV:(Olloooo)
011-1010 000 1-1 11 10-1 0110

Figure 2 Two equivalent solutions for Strassen’s solution of 2 X 2 matrix multiplication. sol2 is
the lexicographic-strict presentation of this solution.

In order to break this symmetry, we introduce a lexicographic-strict® constraint on
the u;, and v;, variables. When applied to two variable arrays = and y, the lexicographic

ordering constraint enforces that x is strictly less than y in the defined lexicographic order.

Because of the strictness, this also enforces that the two variable arrays must be different.
This set of symmetry-breaking constraints is modelled as follows:

lexicographic-strict([u. »;v.], [U: r4150:r41]), VreR

where [u. ,;v.] represents the vector concatenating the r*® column of the matrix U and V.

In Figure 2, sol2 satisfies the lexicographic-strict constraint.

4.1.2 Sign Symmetry

For the multiplicative m; terms, one can easily see that multiplying both sets of terms
from A and B by —1 will result in the same solution. For example, (a1 + a4)(b1 + bs) =
(—a1 — aq)(—b1 — by), where we could multiply any subset of columns of U and V by —1 to
achieve the same solution. We call this symmetry the sign symmetry. In order to break it,
we introduce the following constraints:

U1, S 0
1—1
ui,r§2|ui’,r‘ VTER,i>1,i€Z/[
i'=1
The main idea of these constraints is to enforce that the first non-zero entry in a column

of U can only take on the value of —1, enforcing that the first entry of the columns is either 0
or —1. The subsequent constraints ensure that for any column r, an entry in row 7 > 1 can

only be 1 if there has been an entry in the same column in an earlier row with value —1.

This set of constraints applies to the concatenation of the columns in U and V', however, in
modelling, it only needs to be applied to the columns of the U matrix as none of the columns
can be zero, so the leading —1 must appear in the U matrix. By applying these constraints,
we make sure that {—u; .} is infeasible for any feasible {u;,}. Employing this sign symmetry
breaking constraint to sol2 from Figure 2, we arrive at sol3 shown in Figure 3.

5 https://www.ibm.com/docs/en/icos/22.1.07topic=variables-lexicographic-constraint

14:7

CP 2023

https://www.ibm.com/docs/en/icos/22.1.0?topic=variables-lexicographic-constraint

14:8

Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

-1 00 0-1-1-1 1 1-1 00-10 010101-1
. _ 00 0-10 0-1 _ 100 0-10 0 _ 0000111
S013-U—<10-10000> V—<0-10-1000> W—(0110000)
0-1-1 1 0-1 0 00 0-11-1-1 10-10110

Figure 3 sol3 is the solution derived from enforcing the sign symmetry constraints on sol2.

Similarly, the same type of sign symmetry-breaking constraints can be applied to the W
factor matrix as follows:

w1,y S 0
k-1

Wi, < Z [wr | Vre R, k>1,keW.
k'=1

The interpretation is as follows. In Figure lc, consider ¢4 = my — mg + ms + mg, and notice
that one can redefine mg = (ag — a1)(b1 + bz) to become mg = (az — a1)(—b1 — b2) and then
rewrite ¢4 as ¢4 = m1 — ma + m3 — mg. Recall that the coefficients of the m terms in an
output entry ¢, are the entries of row k of factor matrix W. The transformation we just
performed produces two equivalent solutions and is an instance of “value symmetry” that is
broken by the above constraint set as it forces the first non-zero entry of a column of W to
be —1.

4.2 Valid Inequalities

Based on the structure of this problem, we can also introduce a series of valid inequalities
that could potentially help a CP solver with propagation.

First, for the W matrix, we know that each multiplicative term m, must be used at
least once for sufficiently small R (i.e., for non-trivial cases of the FMM problem where
R < NMP). This means that the sum of each column in W must be at least one:

7wkl > 1, Vre R.
kew

Each result term ¢; must use at least M terms. This is due to a basic fact in algebraic
complexity theory which states that the dot-product of two vectors of size M requires at
least M multiplications [17]. This means that the sum of each row of W must be greater or
equal to M:

> lwie| = M, VkeW.

reR

Each result term ¢; must differ in at least two m,. terms; a simple proof by contradiction
is omitted for brevity. This can be modelled as follows:

> wi — wie | > 2, VEk #£ K € W.

reR

Each term in the A and B matrices must appear in at least one of the multiplicative
terms m,.. This translates to each row of U and V having at least one non-zero term as
shown in the constraints below:

> il > 1, Vieu

reER

> 1o

reR

) VjeV.

>1

A. Deza, C. Liu, P. Vaezipoor, and E. B. Khalil

Furthermore, each valid product of two terms from the A and B matrices, e.g., asb3 for
2 x 2 matrices, must appear in at least one of the R multiplication terms. For asbs appears
in ¢; and cs, see Figure la. This can be modelled as follows:

Z |ui,7' : Uj,7'| > 17 V valid 7,,]
r€ER

4.3 Full CP Model

Finally, the full CP model is presented in Figure 4. The constraints in Equation (2)
ensure that the output matches the original multiplication tensor and thus the validity of an
assignment as a matrix multiplication algorithm. We enforce permutation symmetry-breaking
with Equation (3) and sign symmetry-breaking with Equations (4)—(7). The valid inequalities
are modelled through Equations (8)—(13).

Z (Wi - Vi - W) = Ti ks VieU,jeV,keWw (2)

reR

lexicographic-strict([u. ,; v.], [t rq1;0: r11]), Vr e R (3)

ur,r <0 VreR (4)
i—1

Ui < Z|ui',r\7 VreR,i>1iclU (5)
=1

wy,r <0 VreR (6)
k—1

e <Y [wps VreREk>LEkeW (7)
k=1

> fwel > 1, Vre R (8)

keEW

> fwe| = M, VEew (9)

reR

> wkr — wie | > 2, VE£K eW (10)

reR

> luig] > 1, Vieu (11)

reR

D vl > 1, Vviev (12)

rerR

> iy v 21, Vvalidi,j (13)

reR

Figure 4 Full CP Model with symmetry-breaking constraints and valid inequalities.

4.4 Sparsity-based Problem Decomposition

Given that the factor matrices that have been found for known decompositions tend to
be sparse, we introduce some inexact inequalities to induce sparsity and trim candidate
assignments that have a high likelihood to be infeasible or that are unnecessarily dense. For
example, observe that Strassen’s solution in Figure 1lc leads to many zeros in the factor

14:9

CP 2023

14:10

Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

matrices; no m term uses more than 2 out of 4 of the a or b terms, no ¢ term uses more
than 4 out of the 7 m terms. It has been observed that as the matrix sizes grow, the best
solutions become even sparser.

We first introduce a constraint limiting the number of active (i.e., nonzero) terms in each
column r (i.e., multiplication term) of U and V. This constraint is written as:

Z|Uz’,r|+2|vg‘,r| < Ki, Vre R.

= JjEV

A similar constraint can be imposed on W, by restricting that each output must use at most
K5 multiplication terms. This constraint is written as:

3" fwn| < Ko, Vk € W.
reR

Based on these constraints, K7 has an upper bound of (NM + M P) and K5 is upper bounded
by R. By observing decompositions for small to medium-scale matrices, we can estimate K3
and Ks. For example, for 3 x 3 matrices with R = 23, we observe that K; =9 and Ky = 10
is the safest estimate possible compared to the upper bounds of 18 and 23, respectively,
which could restrict the CP search dramatically. Note that one could start with any such
estimates of the decomposition parameters K; and Ks, iteratively increasing them if the
restricted instances are found to be infeasible by the CP solver, eventually resulting in a
complete resolution of the original problem.

4.5 Cyclic Invariant Formulation

In contrast to the symmetries of the factor matrices discussed in Section 4.1, there exists
well-known cyclic symmetry for the multiplication tensors T of square matrices. More
precisely, it is known that T; j s = Tjx; = Tk,,;. The authors in [1] proposed to leverage
this cyclic symmetry property and parameterize FMM algorithms with cyclic invariant
factor matrices: U = [ABCD], V = [ADBC|, W = [ACDB] with A € {-1,0, 1}N2XS and
B,C,D e {-1,0, 1}N2XT corresponding to a rank R = S + 3T

Although this parametrization reduces the number of integer variables by a factor of
three, helping with the combinatorial nature of the problem, there is no guarantee that
the minimal rank decomposition corresponds to solutions that exhibit cyclic symmetry.
That being said, Strassen’s solution of R = 7 for N = 2, which is optimal, exhibits such
a symmetry (S € {1,4}), as does the best-known rank of 23 for N = 3 (S € {2,5,11}).
Performing two steps of Strassen’s algorithm for N = 2 yields a rank 49 cyclic invariant
solution for N = 4. It is currently unknown whether a solution of rank less than 49 exists for
N =4, let alone one exhibiting cyclic invariance.

We implement Ballard and Benson’s cyclic invariant reduction [1] of the FMM problem
for square matrices by reducing the decision variables of our CP formulation as required and
imposing the invariant structure on the factor matrices.

5 Experiments

In this section, we present our experimental results starting by showing how our CP approach
can recover the best-known upper bounds on the rank in a small amount of time on
multiplication problems ranging from the trivial (N, M, P) = (1,1,1) case all the way up to
the much harder (2,2,4) and (3,3, 3) cases. We then present results for the infeasible cases

A. Deza, C. Liu, P. Vaezipoor, and E. B. Khalil

for (2,2,2). We used IBM’s CP Optimizer (CPO) 22.1.0° to solve our CP models. We ran
our experiments on a compute cluster of AMD Ryzen Threadripper 2990WX cores with 128
GB of RAM per node.

5.1 Experimental Setup

To ensure the reproducibility and robustness of our results, all our experiments are run
with multiple random seeds. This accounts for the often observed performance variability in
combinatorial search; this is documented for example in MILP [12]. To that end, we ran
each experiment with 10 different seeds. We assigned 8 cores (CPO’s Workers parameter) to
the solver for each run (except for more compute-intensive experiments in Section 5.4 where
we assigned 20 cores) and timed out the experiments after 2 hours.

5.2 Evaluation Metrics

We will report the solver runtime and the number of branches during the solution process
for completed runs (i.e., runs that returned a feasible solution or a proof of infeasibility).
Given that each problem is attempted with multiple random seeds, the shifted geometric
mean with a shift of 0.00017, median, minimum, and maximum of the time in seconds and
the number of branches will be reported for a complete picture of the results. Runs that
terminated due to the time or memory limits will be discussed where applicable.

Table 1 Runtime results for the base CP model on various matrix dimensions. “geo mean”
refers to the shifted geometric mean as described in Section 5.2; “med” refers to the median and
“min”/“max” to the minimum and maximum, respectively.

Time (sec) Num Branches

N M P R geomean (min, med, max) geo mean (min, med, max)

1 1 1 1 0.00(0.00,0.00,0.01) 5.05x