
HAL Id: hal-04215272
https://amu.hal.science/hal-04215272

Preprint submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiscale cosimulation design template for neuroscience
applications

Lionel Kusch, Sandra Diaz, Wouter Klijn, Kim Sontheimer, Christophe
Bernard, Abigail Morrison, Viktor Jirsa

To cite this version:
Lionel Kusch, Sandra Diaz, Wouter Klijn, Kim Sontheimer, Christophe Bernard, et al.. Multiscale
cosimulation design template for neuroscience applications. 2023. �hal-04215272�

https://amu.hal.science/hal-04215272
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Multiscale cosimulation design template for

neuroscience applications

Kusch Lionel1, Diaz Sandra2, Klijn Wouter2, Sontheimer
Kim2, Bernard Christophe1, Morrison Abigail2,3,4 and Jirsa

Viktor1*

1*Institut de Neurosciences des Systèmes (INS) UMR1106,
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52425, Germany.
4Computer Science 3 - Software Engineering, RWTH Aachen

University, Aachen, 52062, Germany.

*Corresponding author(s). E-mail(s): viktor.jirsa@univ-amu.fr;
Contributing authors: lionel.kusch@univ-amu.fr; s.diaz@fz-
juelich.de; w.klijn@fz-juelich.de; k.sontheimer@fz-juelich.de;
christophe.bernard@univ-amu.fr; a.morrison@fz-juelich.de;

Abstract

Integration of information across heterogeneous sources creates added
scientific value. It is, however, a challenge to progress, often a barrier, to
interoperate data, tools and models across spatial and temporal scales.
Here we present a design template for coupling simulators operating at
different scales and enabling co-simulation. We illustrate its functioning
along a neuroscience example, in which individual regions of interest are
simulated on the cellular level to address mechanistic questions, while
the remaining network is efficiently simulated on the population level. A
workflow is illustrated for the use case of The Virtual Brain and NEST,
in which the cellular-level hippocampus of the mouse is embedded into
a full brain network involving micro and macro electrode recordings.
This new tool allows integrating knowledge across scales in the same
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simulation framework and validate them against multiscale experiments,
thereby largely widening the explanatory power of computational models.

Keywords: co-simulation, multi-scale, brain network model, spiking neural
network, mouse brain

Introduction

The brain is a complex system that includes billions of cells that interact with
each other in a nonlinear manner. As a result, even if we were able to measure
what all cells are doing simultaneously, we would not gain a deep understanding
on how the brain works. Theoretical models can account for nonlinearities and
emergent properties. Numerous models have been developed to study molecule
interactions inside cells, cell physiology, activity of cell populations, up to body
behaviour [1, 2]. It is currently impossible to model the brain with all its cellu-
lar and molecular constituents due to limitations in resolution, computational
resources, or available data from measurements. As a result, even if a given
physio/pathological process can be modeled at the macroscopic scale, the lack
of microscopic resolution at the molecular scale prevents obtaining mechanis-
tic insight [3]. It is therefore important to bridge different scales. In material
science, the study of composite materials requires the description of molecular
interactions of individual composites, and a global description for the analysis
of the subsequent deformation of the composite plate [4]. In biology, to under-
stand the effect of drugs on tumour growth, it is necessary to model the tissue
of cells around the tumour, the tumour cells, and the subcellular transduction
signalling pathways [5, 6]. In neuroscience, synaptic plasticity uses mechanisms
of spike timing on the millisecond scale but leads to the formation of long-term
memory evolving on the scale of minutes, days and weeks [7]. The goal of this
study is to provide a methodology to address scientific and technical problems
of multiscale co-simulation applied to the brain.
The main difficulty of multi-scale modelling is coupling the different scales.
This coupling cannot be generic because it depends on the model and the
properties of the data. For example, in the case of tumours, the tissue around
the tumours is represented by a continuum model (first scale), which interacts
with discrete tumour cells (second scale); while continuous signalling pathways
are modeled in cells (third scale). At present, it is not possible to create a com-
mon coupling function between these three scales.
Another difficulty lies in the fact that different simulator engines have been
developed to study a system at a given scale. In the case of tumours, a com-
mon approach is to use COMSOL Multiphysics [8] for the tissue simulation
and Matlab [9] for the cell and subcellular scales. Since most simulators do
not include external interactions, it is difficult to link them within a common
framework.
Furthermore, it is not possible to extend existing solutions developed in physics
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[10, 11] or in biology [12, 13], due to the specificity of the simulators, mod-
els and emergent properties at lower scales. In particular, neuroscience has
multiple models for describing neuronal activities, and each scales has mul-
tiple simulators for running these models (e.g. neuronal level: Neuron [14],
Arbor [15] Genesis [16]; network level: NEST [17], Brian [18]; system level:
The Virtual Brain (TVB) [19], Neurolib [20]). Some multiscale models using
co-simulation make use of the existing solutions [21–24] but there is no co-
simulator for point neuron network models and whole brain network models.
Such co-simulator would enable a better understanding of why individual neu-
rons fire action potentials given the state of whole brain activity. Such a
framework is important to interpret experimental data combining microscopic
Local Field Potential (LFP) and neuronal firing recordings, and macroscopic
electro-COrticoGraphy (ECOG) in mice [25].
Here, we present a methodology to address the problems of multiscale co-
simulation. The method is based on a generic design template which dictates
a separation of science and technical attributes, allowing these be addressed
in isolation where possible. This separation is based on transformer modules,
which are used for the synchronization and connecting simulators and they
also include the function for transforming data between scale. This method
is applied to construct a multiscale model from experimental data obtained
in the mouse brain with ECOG cortical signals and LFP signals in the CA1
region of the hippocampus. This model is running on a co-simulator proto-
type using the simulators TVB and NEST. Three sets of parameters of this
model, resulting in different network dynamics, are chosen in order to demon-
strate the feasibility and the limits of this modelling approach. The following
sections describe the technical details and the optimizations required for cou-
pling TVB and NEST as a way to illustrate one prototype implementation of
the template and to identify its technical limitations.
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Fig. 1 Multiscale co-simulation design template and example of application in
neuroscience

Top. Multiscale co-simulation design template between 2 simulators using transfer
modules for transformation and transfer of data between scale. Bottom. Applica-
tion of the co-simulation template for a neuroscience use case focusing on the CA1
region of mouse brain. The left panel shows a rendering of the mouse brain from
Allen Institute[26]. Blue spheres mark the centres of mouse brain regions and the red
spheres a subset of neurons of the CA1. The right panel illustrates the co-simulation
data flow between TVB and NEST showing the different functional modules. The
plots in the four corners illustrate the type of data exchanged in respective infor-
mation channels. The transfer modules exchange mean firing rate data with TVB
(module on the right) and exchange spike times with NEST (module on the left).
Each population has a specific module enabling transfer of data between populations
in different scales.
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Results

The multiscale co-simulation design template formalizes the interactions
between parallel simulations at different scales. The transformation of the data
among scales is performed during their transfer among simulators. This tem-
plate is composed of 5 modules (figure 1a): one launcher, two simulators, two
transfer modules. Each transfer module contains 3 components : one interface
for receiving data, one interface for sending data and a transformation process.
The launcher starts and handles the coordination of simulation parameters.
The simulators perform the scale specific simulations. The transfer modules
transfer the data from one simulator to another. During the transfer, the
transformation process transforms the incoming data for the simulator on the
receiver side.
In this study, the multiscale co-simulation template is applied to a virtual
experiment workflow between the in-silico mouse whole-brain dynamics and
the in-silico micro-scale network dynamics of the hippocampus CA1 region.
The recording of the virtual CA1 and virtual mouse brain as similar than
experiments[25] (see figure 1b). The Virtual Brain (TVB)[19], an open source
platform, has been used to simulate the mouse whole-brain network activ-
ity, while NEST[27], another open-source platform, has been employed for the
simulation of the CA1 neuronal network dynamics. This specific application
is used to illustrate the technical limitations of this novel design template and
to demonstrate the potential for a wider range of applications.
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Fig. 2 The virtual mouse brain experiment

a Cross section of the mouse brain with the position of the left implanted electrode. b
Position of the site layout of the polytrode (Neuronexus 32 models from MEAutility
library). c The position of the probe inside the neural network. The red neurons
are pyramidal neurons[28] and the blue neurons are basket cells[28]. d Mouse brain
of Allen Institute[26] with the position of the 2 polytrode electrodes and 16 ECOG
electrodes. The ECOG electrodes measure the neural field from the surface of the
electrode in blue for left hemisphere and yellow for the right hemisphere. Blue spheres
mark the centres of mouse brain regions and the red spheres a subset of neurons of
the CA1. e Representation of the connectome of the mouse brain[29]. The blue dots
are brain regions and the red ones are CA1 regions, whose neurons are simulated
with NEST. The strongest anatomical connections are highlighted by the grey links.
f The weights of the anatomical links in F are shown as an adjacency matrix. g The
tract lengths associated with F are shown as an adjacency matrix. The anatomical
connections are extracted from tracer data of the Allen Institute[29]. h example
of voltage recorded from 10 excitatory and 10 inhibitory neurons. i Example of
adaptation currents recorded from 10 inhibitory neurons and 10 excitatory neurons.
j Example of spike trains recording from the left CA1. k Example of local field
potential recorded from the poly-electrode which is generated from the spike trains
and the neuron mythologies. l Example of recording from the ECOG electrodes of
the left hemisphere. m Example of mean firing rate of excitatory and inhibitory
population each region of mouse brain
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Virtual experiment of hippocampal CA1 embedded in a
full mouse brain

The virtual experiment of the mouse brain is composed of an brain network
model, regional neuronal network models and electrophysiological sensors mod-
els.
The whole-brain animal model is a network comprised of nodes and edges,
where each node contains a neural-mass model to simulate the activity of
each region and where edges represent the anatomical connections among the
regions. The anatomical connections are defined by track lengths and an adja-
cency matrix representing the coupling strengths of connections between the
regions of the network, the ”connectome”, which are extracted from tracer
data from the Allen Institute[29] (figure 2f and 2g). The dynamic activity of
each brain region is obtained with the neural mass model described by Di Volo
et al. paper [30] (see Online Methods). The neuroinformatics platform The
Virtual Brain (TVB)[19] is able to perform the animal whole-brain simulation
by considering both the chosen neural-mass and the specific ”connectome”.
The dynamics of the two main brain regions of interest, the left and right hip-
pocampus CA1 (figure 2), are modelled as a separate neural network composed
of point neurons connected with static synapses. Each network is composed
of one inhibitory and one excitatory homogeneous population of adaptive
exponential integrate and fire neurons [31] (see Online Methods). In each
microcircuit, the populations of point neurons are taken to be homogeneous,
that is, neurons of the same population have the same parameter values. The
neuroinformatics platform NEST[27] is able to perform the regional neuronal
network simulation using the aforementioned description of the microcircuit
of point neurons.
In order to compare the simulations with empirical data, the virtual exper-
iment contains two models of electrophysiology sensors for probing neural
activity. The electrophysiological sensor models are two surface grids composed
of 8-channel electrocorticography arrays and two penetrating multi-electrode
arrays composed of 32 recording sites each. Their positions are illustrated by
the figure 2a. The figure 2e shows the position of the polytrodes in the mouse
brain, while the figure 2b and 2d depicts the position of the left probes in
a cross-section of the left hemisphere and the position of the point of the
polytrodes in the population of neurons, respectively. Figure 2c displays the
polytrodes with the 32 recording sites. The simulated signal from the ECOG
sensor is computing using the model of a point dipole in a homogeneous
space as described by Sanz-Leon et al. 2015[32] (see Online Methods) and the
hybridLFPy[33] software is used for computing the signal from the recording
site of the implanted probes (see Online Methods). The latter software uses
morphology and spatial position of neurons to generate the underlying local
field potential (LFP) for given spike trains of point neurons. The morphology
of the excitatory neurons is taken to be that of the morphology of pyramidal
cell from the model in Shuman et al. paper[28] (see Online Methods). From
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the same model, the morphology of a basket cell is taken for the morphology
of the inhibitory neurons.

Output signal from the virtual experiment

This section describes the co-simulation results at different scales by describ-
ing the possible recording physiological signals of the virtual CA1 in full-mouse
brain. The Discussion section will provide interpretation of these results for
describing the advantages and the limitations of the multiscale co-simulation
template. As described in figure 2, the output modalities of one virtual exper-
iment are comparable to the outputs of a real experiment which are the local
field potential measure at each thirty-two sites of each polytrode electrodes
(figure 2j) and from the sixteen electrocorticography channels of each hemi-
sphere (figure 2k). Moreover the simulation gives access directly to the voltage
membranes of the CA1 neurons (figure 2h), adaptive current of the CA1 neu-
rons (figure 2g), spike times (figure 2i) and the mean firing rate of the different
regions of the mouse brain (figure 2m). For an illustration of the possibility, a
set of three different parameters of CA1 is chosen. Each parameter represents
one of three dynamic regimes of the CA1. This results are separated between
micro (figure 3) and macro (figure 4) scale but they are the output of the sim-
ulation workflow between TVB and NEST. In particular, figure 3 reports the
mean voltage membrane, mean adaptive current, instantaneous firing rate and
the signal of 12 central sites from the 32 electrode sites of the specific CA1
network. Figure 4 displays the results on the whole brain level: the mean firing
rate of each brain region, the signal of the 16 electrocorticography channels
and the transferring mean firing rate from the spiking neural network.

The figures 3 and 4 are separated into three different panels, which cor-
respond to the three sets of parameters representative of the different types
of dynamics exhibited by spiking neural networks (see online method for the
choice of these parameters). Panel a represent an asynchronous (A) state,
which is characterized by a constant (flat line) the mean firing rate (see figure
3a top-right). Panel b represents an irregular synchronous (IS) state which
reflects large irregular variation of the mean firing rate (see figure 3b top-
right). Panel c represents regular bursting (RB) reflecting regular oscillations
(see figure 3c top-right) and a second dominant high frequency (see figure 3c
bottom-right).
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Fig. 3 Spiking neural network in 3 different states of the left CA1

The parameterization of the spiking neural network of CA1 is chosen such
that the dynamics are in a asynchronous state (a), irregular synchronization
state (b) and regular bursting (c). top-left Voltage membrane of 20 adap-
tive exponential leaky and integrator neurons and the mean of them in thick
line. The red (blue) lines are excitatory (inhibitory) neurons. middle-left The
adaptation currents of 10 neurons are shown and the mean of them in thick
line. bottom-left Local field potential from the 12 sites of in the middle line
of the polytrode. The local field potential is computed from the spike trains
of all neurons by the software HybridLFPY[34]. top-right Spike trains of
10000 neurons for 11s. middle-right instantaneous firing rate of the excita-
tory (inhibitory) population above in red (blue). bottom-right Spectrogram
and power spectrum example of the instantaneous firing rate for 10s.
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Results at microscale

The top left of the panel a, b and c of figure 3 show the membrane voltages
for ten excitatory neurons (thin red curves) and ten inhibitory neurons (thin
blue curves) and mean membrane voltage of these neurons (thick curves). The
middle left of the panel a, b and c of the figure 3 represent the adaptive
currents from the same ensemble of neuron (thin curves) and mean adaptive
current of these neurons (thick curves). The third biological observable from
the simulation is the Local Field Potential which differs among panels (see
bottom left of panel a, b and c of figure 3). The top right of panel a, b and
c of figure 3 display spike raster plots of the excitatory population, in red,
and the inhibitory population, in blue, of the left CA1. The spiking activity is
homogeneously distributed between neurons and time frames for the A state,
while the other two states show co-activation of neurons with different periods.
The associated instantaneous firing rate is shown in middle right of panel a, b
and c of figure 3. The spectral analysis of the instantaneous firing rate displays
a peak around 3 Hz for the IS state (bottom left of panel b of figure 3), no peaks
for the A state (bottom left of panel a of figure 3). and two peaks (around 6
Hz and 160Hz) for the RB state (bottom left of panel c of figure 3). For the
RS state, the frequency of the first peak, 6Hz, is also present in the mean of
the adaptive currents while the second peak is associated with the burst time,
as shown with further detailed in the Supplementary Figure 1.

Results at macroscale

The top left of the panel a, b and c of figure 4 display the instantaneous firing
rate (light red) of the spiking neural network with the associated transferred
mean firing rate of the left region of CA1 (thick red line). The ECOG signals
are affected by the different states of the neural network, as shown in the
bottom left of panel a, b and c of figure 4. The mean firing rate of excitatory
(blue) and inhibitory (red) population of each brain region are plotted in the
graph on the right part of panel a, b and c of figure 4).
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Fig. 4 Three different states of CA1 in mouse brain

The parameterization of the CA1 spiking neural network is defined to obtain
asynchronous state (a), irregular synchronization state (b) and regular burst-
ing (c). top-left Instantaneous firing rate of spiking neural networks in light
red for 11 second time span. The thick line shows the sliding window mean fir-
ing rate. bottom-left (bottom-right) Signal from ECOG sensors, the figure
is for recording of the 8 electrodes on the top of the left (right) hemisphere.
right part Full region overview of the mean firing rates of excitatory, in red,
and inhibitory, in blue, population from the model of Mean Adaptive Expo-
nential. The 2 black curves are the mean firing rate of the 2 population of
excitatory neurons simulated with NEST[27].
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Workflow between NEST and TVB

The previous multiscale example uses the workflow between TVB and NEST
for the co-simulation. This workflow, as an implementation of the design tem-
plate, is composed of five modules : two simulators (TVB and NEST), one
launcher and two transfer modules. All these modules built with the capabil-
ity to be repurposed or replaced allowing for adjustments of components of
transfer module or communication protocols (see Discussion). For demonstrat-
ing the possibility of reusability of the components, two additional proofs of
concept were implemented. The first one replaces NEST by NEURON and the
second one replaces TVB by Neurolib (see Supplementary Figure ??). More-
over, without extra development, we get a proof of concept of co-simulation
between NEURON and Neurolib.

The simulators perform the actual integration of the dynamics in time and
require two properties to be integrated within one optimized and coherent
workflow. The first property is the time delay equation management which
is essential for reducing data transfer overhead. The second property is the
presence of a high bandwidth Input/Output (I/O) interface that facilitates the
efficient exchange of data and parallel execution of the simulators. Since TVB
and NEST did not have generic high bandwidth I/O interfaces by default, these
had to be implemented for each simulator. Details of how these I/O interfaces
were created are reported in the Supplementary Note 1. Briefly, the NEST
interface uses the device nodes with a specific back-end, while TVB uses proxy
nodes which are proxy nodes used for the interface with the external software.

The launcher prepares the environment for the simulation and initiates all
the other modules, as shown in the figure 5a (see details in the Supplementary
Figure ??). The preparation consists of the creation of folders for the differ-
ent modules as well as for the logger files and the common file with all the
parameters of the co-simulation. The creation of the parameters file provides
the functionality to enforce consistent constraints on the parameters which are
to be shared between the modules, such as ensuring the use of the same inte-
gration step in both simulators, which is needed for correct synchronization
between modules.

The transfer modules are connecting simulators by transferring data
between scales and by adapting the delay of communication throughout the
simulation. Each module is comprised of three components : two interfaces and
one transformer (see Figure 1a and Supplementary Figure ??). These com-
ponents are implemented in different files for reusability and modularity and
are tested independently to ensure robustness (see Supplementary figure ??).
The interfaces are specific to each simulator while the transformation can be
extended, modified or reused since the transformation function is implemented
as an independent process (see Supplementary Note 2).
The different components use a simple Application Programming Interface
(API) for the exchange of data between them. The API is implemented with
two different technologies depending on the nature of the parallelization of
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the components (multiprocessing or multithreading). In the case of multipro-
cessing, each component runs in an individual process and a Message Passing
Interface (MPI) is used for the transfer of data. In the case of multi-threading,
each component runs in an individual thread in a shared process and the data
is transferred using shared memory. The multithreading uses less computa-
tional resources (see Performance section) though it is not practical, specially
on super computer, due to the global interpreter lock of python (for more
details see Online Methods).
The transformation function provides mean field firing rate values by using a
sliding window, shown in figure 5e. The panel also illustrates the inverse trans-
formation from the mean firing rates to spike trains using a multiple interaction
process[34].

The modular workflow execution is composed of three main blocks:
start-up, simulation-loop and termination (see Figure 5a and details in the
Supplementary Figure ??).
The start-up procedure allocates a logger for each components facilitating easy
debugging of the co-simulation. Subsequently, the modules and their commu-
nication channels are configured according to parameters file. At this stage a
number of initialisation files are generated with simulation parameters only
available after instantiation of the model (e.g. id of NEST devices and MPI
port description).
Once the simulation is launched, the simulator time clocks are synchronized
using asynchronous message passing: At each synchronization step, simulators
receive input data after which the next step is simulated. The transfer modules
can buffer data for one synchronization step until the the receiving simulator
is available for receiving. Each simulator requires an initial condition (NEST :
initial voltage membrane and adaptation current and TVB: state of the node
during the previous seconds) and an initial message. For TVB, this starting
message is sent by the transformer processes while, for NEST, it is produced
by transforming the initial condition of TVB.
Ultimately, the termination occurs at the end of the simulation by the
simulators themselves (see Online Methods for details).
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Fig. 5 Architecture and performance of the co-simulation

a The interaction among the modules and data exchanges during co-simulation exe-
cution. The boxes in yellow mark start-up:initialization and configuration, the boxes
in red the termination of the simulation and the boxes in white for the simulation
phase. b,c,d Performance of the workflow is obtained for 1 second of simulated bio-
logical time (see Online Method for more details). The reference implementation use
1 MPI process, 6 virtual processes/threads, a synchronization time step of 2.0 ms,
and simulates 20000 neurons. b The wall clock time of the simulators as a function of
the number of neurons. The total time of the co-simulation is represented in yellow.
The ”wait”, ”simulation” and ”IO” times of NEST are represented in red surface
with respectively hatches with big circles, small circles and points. The ”simulation”
and ”IO” times of TVB[19] are represented in the blue surface with respectively
hatches horizontal lines and oblique lines. c Simulation time depending on the syn-
chronized time between simulator. The colour code is the same as the panel B. d
Wall clock time depending on the number of virtual process used by NEST. The
green, blue, purple, red curves are associated with different parallelization strategy
of NEST, respectively, only multithreading, 2 MPI processes with threads, 4 MPI
processes with thread and only MPI processes. The vertical blue line represents the
number of cores of the computer. e The ‘transform between spikes to rate’ and
‘transform between rates to spikes’ blocks are displayed with the different steps for
transformation of data between TVB and NEST.
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Performance

The evaluation of the performance is against a fictitious workflow with
optimal performance, a co-simulation with instantaneous communications
between simulators. The reason for this evaluation is due to the novelty of
the multiscale co-simulation template stems from the presence of the transfer
module that ensure coherence exchange between micro-scale and macro-scale.
As all the modules are designed to run in parallel, the co-simulation time for
each module is identical and equal to the total running time. The focus is only
on the simulator timers because the time of the transformer components is
dominated by waiting time of data (see Supplementary Figure ??). The total
running time of the simulators is divided in 5 parts. The ”initialisation” time
is the time of the configuration of the simulators and the creations of connec-
tions. The ”ending” time is the time for simulators to close the connections,
stop the simulator engine and terminate the processes. The ”simulation” time
is the total duration of the internal computation of simulator engines. The
”wait” time is the total duration of waiting time for access to the data to
transfer by the simulator interface of the transformer module. The ”IO” time
is the total duration of function for exchanging data between simulator and
the transfer modules minus the ”wait” time.
A perfect co-simulator has the time of the slowest simulator X, thus ”wait”
and ”IO” times equal to zero. From the figure 5b and the Supplementary
figure ??, the actual implementation is closed to ideal when the number of
neurons simulated by NEST is lower than 1000. In this case, TVB is the slower
simulator and NEST spends most of the time waiting for data from TVB.
When the number of simulated neurons is between 1000 and 20000 neurons,
”simulation” time of TVB is approximately the same as the sum of ”sim-
ulation” time and ”IO” time of NEST. In this condition, each simulator is
waiting for the transformation of the data among scales.
When the number of simulated neurons is higher than 20000, NEST is the
slowest simulator. In this case, the co-simulation time is determined by the
”simulation” time and the ”IO” of NEST. The ”wait” time is set to zeros
and the ”IO” time is higher than the ”simulation” time (see Supplementary
Figure ?? and Supplementary Figure ??). The two principal causes are that
the communication between modules is slower than inside the modules and
the increase in size of the neural spike data with the increasing number of
neurons (each neuron in NEST receive an individual spike train). With a
closer look at the performance, we can see that the communication spends
the majority of time on sending individual spike trains to NEST (see Supple-
mentary Figures ??). However, the size of data is related to the model chosen
and can be reduced.
As displayed by the figure 5c and 5d, some optimizations can be implemented
to reduce the problem of overhead time of communication. Figure 5c and
Supplementary figure ?? represents the time delay between brain region
when delayed data is aggregate to reduce the ”IO” time and, hence, the
co-simulation time. In this case, the simulators are not synchronized at each
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time step but at n time steps (limited by the model of connection). This
aggregation can reduce co-simulation time by a factor 6 (see Supplementary
Figure ?? and Supplementary Figure ??). Figure 5d and Supplementary
figure ?? represents a reduction of co-simulation time per reduction of the
”simulation” time of one simulator. The increase of the resources used by
NEST does not modify the ”IO” time until the resource is available. Since
the tests are running on one computer, the increase of resources for NEST
increases the ”simulation” time of TVB and reduces the ”simulation” time of
NEST. However, by deploying the workflow on high-performance computing
facilities, the latter result does not replicate and the simulation time gives
similar a result with an increase in ”IO” and ”simulation” time because the
communication between nodes is slower (see Supplementary Figures ??).

Discussion

The paper presented co-simulation technology linking two simulators operating
on two different scales together with minimal requirements and modifications.
This workflow is based on cyclic coupling topology of modules[35] with generic
coupling function for each scale. Nevertheless, the simulator of specific scale
are interchangeable due to the modularity of the transfer module and the
design of the template (for more characterization of the workflow, see the Sup-
plementary Note 3). The interfaces of the simulators and other modules can
be reused in other studies involving co-simulations. In comparison, MUSIC[24]
requires extensive interface integration for communication with an orchestra-
tion and the standard like High Level Architecture[36] and Functional Mock-up
Interface[37] does not accommodate the introduction of transformation mod-
ules. One important point is the integration of previously developed tools at
different scales in the same workflow, which is essential for the validation of
simulations against experimentation and the robustness of these future results.

Our current design template separates the theoretical problems of coupling
models from different scales and the technical problems of coupling simula-
tors. In addition, the template gives solution to other technical aspects such as
the synchronization of simulators. Syntactic, semantic, and conceptual issues
remain to be solved[44]. The design template allows communities working
on different scales to work together for further evolutions of co-simulation
models. The implementation of the template for a particular problems is
a starting point to capture the interest of both communities by creating
examples and to discuss the scientific part without being bogged down in tech-
nical details. However, the template doesn’t provide technical guidelines for
the robustness, the management and the maintenance of the co-simulation.
These challenges are the focus of the closely related staged deployment
and support software for multi-scale simulations developed in EBRAINS (
https://juser.fz-juelich.de/record/850819). Nevertheless, common mistakes in
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multiscale modeling are of conceptual nature, this paper contains two mis-
takes. The first mistake is not to apply the model following its definition. By
definition, the neural mass model used in this paper cannot capture the fast
scale, in particular, the fast regimes of regular burst state[38]. The second
mistake is the non-respect of the assumption of the model. The neural mass
model considers that the excitatory input firing rate of neurons is an adiabatic
process. This hypothesis is broken in the irregular synchronous state due to
the presence of rapid transition between low and high firing rates. Responsi-
ble use of multiscale models thus requires an understanding of models when
operating the simulation engines. Numerical errors constitute another issue.
As these errors cannot be estimated analytically, the solution is to perform a
sensitivity analysis or uncertainty quantification to determine whether or not
the simulation result is reliable[39][40].

For the validation of the co-simulation, it is important to generate data that
can be related to real-world observations, as is the case here with the model of
the two types of electrodes. An second important properties is the repeatability
and reproducibility of the simulations. Repeatability is ensured by manag-
ing all the random generators in each simulator and using a single parameter
file for the co-simulation setup. For reproducibility, due to the complexity of
the network, a table is proposed where the configuration of each simulator
is reported with their version and also the description of the transformation
modules (see Supplementary Table 1). An important property of this design
template is the independence of the modules and components. This indepen-
dence allows unit tests to be performed for each of them, which is important for
maintenance, debugging and robustness of the simulation. The actual workflow
TVB-NEST provide a minimal approach for these three properties, which are
essential for the long term development of the co-simulation framework. Our
design model pushes developers to create a minimal interface of a simulator
for its interaction with another one, because most of the time, simulators are
meant to be run in isolation[41]. This interface must be reusable, to increase
the number of users, which is important for its maintainability. This interface
can be retrofitted to standards such as High Level Architecture[36], Functional
Mock-up Interface[37], CAPE-OPEN Interface[42] or a future standard.

The workflow between TVB and NEST provides a new approach to address
multi-scale problems. This workflow includes a direct link to experimentation,
such as Opto-E-Dura[25] and in future work will be extended with function-
ality to directly analyse data recorded and compare them with experiment
data. This workflow allows simulation of microcircuits while considering the
interconnection with the rest of the brain. Furthermore, one advantage of
this method in comparison with top-down or bottom-up approaches, it is the
reduction of ambiguity when we change scale due to the explicit definition of
transformation functions[1, 3].

In summary, we have presented a new template for coupling simulators
with a transformation module. This template provides the first step for the
development of platforms using transitional scaling models and structure the
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future syntactic, semantic and conceptual issues induced by multi-scale prob-
lems. One optimization performed for this specific workflow is based on the
communication delay between scales. It is not generalized for all cases but
it is recommended for models with transmission line element method[43] or
waveform relaxation method[44].
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September 20-24, 2021, 17–26 (2021). URL https://ecp.ep.liu.se/index.
php/modelica/article/view/178.

[38] Boustani, S. E. & Destexhe, A. A master equation formalism for
macroscopic modeling of asynchronous irregular activity states. Neural
computation21 46-100 (2009) .

[39] Coveney, P. V., Groen, D. & Hoekstra, A. G. Reliability and repro-
ducibility in computational science: implementing validation, verification
and uncertainty quantification in silico. Philosophical Transactions

http://www.physiology.org/doi/10.1152/jn.00686.2005
http://www.physiology.org/doi/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005
http://www.sciencedirect.com/science/article/pii/S1053811915000051
http://www.sciencedirect.com/science/article/pii/S1053811915000051
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://academic.oup.com/cercor/article/26/12/4461/2333943
https://doi.org/10.1093/cercor/bhw237
https://doi.org/10.1093/cercor/bhw237
http://www.mitpressjournals.org/doi/10.1162/089976603321043702
http://www.mitpressjournals.org/doi/10.1162/089976603321043702
https://doi.org/10.1162/089976603321043702
https://doi.org/10.1162/089976603321043702
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2013.0378
https://doi.org/10.1098/rsta.2013.0378
https://doi.org/10.1109/IEEESTD.2010.5553440
https://ecp.ep.liu.se/index.php/modelica/article/view/178
https://ecp.ep.liu.se/index.php/modelica/article/view/178


Springer Nature 2021 LATEX template

Multiscale cosimulation design template for neuroscience applications 23

of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 379 (2197), 20200409 (2021). URL https://royalsocietypublishing.
org/doi/10.1098/rsta.2020.0409. https://doi.org/10.1098/rsta.2020.0409,
publisher: Royal Society .

[40] Coveney, P. V. & Highfield, R. R. When we can trust computers (and
when we can’t). Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 379 (2197), 20200067
(2021). URL https://royalsocietypublishing.org/doi/10.1098/rsta.2020.
0067. https://doi.org/10.1098/rsta.2020.0067, publisher: Royal Society .

[41] Taveres-Cachat, E., Favoino, F., Loonen, R. & Goia, F. Ten questions
concerning co-simulation for performance prediction of advanced building
envelopes. Building and Environment 191, 107570 (2021). URL https:
//www.sciencedirect.com/science/article/pii/S0360132320309379. https:
//doi.org/10.1016/j.buildenv.2020.107570 .

[42] Belaud, J.-P. & Pons, M. in Open software architecture for process simu-
lation: The current status of CAPE-OPEN standard (eds Grievink, J. &
van Schijndel, J.) Computer Aided Chemical Engineering, Vol. 10 of Euro-
pean Symposium on Computer Aided Process Engineering-12 847–852
(Elsevier, 2002). URL https://www.sciencedirect.com/science/article/
pii/S1570794602801699.

[43] Braun, R. & Krus, P. Multi-threaded distributed system simulations
using the transmission line element method. SIMULATION 92 (10),
921–930 (2016). URL https://doi.org/10.1177/0037549716667243. https:
//doi.org/10.1177/0037549716667243, publisher: SAGE Publications Ltd
STM .

[44] Nguyen, V. H., Besanger, Y., Tran, Q. T. & Nguyen, T. L. On con-
ceptual structuration and coupling methods of co-simulation frameworks
in cyber-physical energy system validation. Energies 10 (12), 1977
(2007). URL https://www.mdpi.com/1996-1073/10/12/1977. https:
//doi.org/10.3390/en10121977, number: 12 Publisher: Multidisciplinary
Digital Publishing Institute .

[45] Nordlie, E., Gewaltig, M.-O. & Plesser, H. E. Towards repro-
ducible descriptions of neuronal network models. PLOS Computa-
tional Biology 5 (8), e1000456 (2009). URL https://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1000456. https://doi.org/
10.1371/journal.pcbi.1000456, publisher: Public Library of Science .

[46] Melozzi, F., Woodman, M. M., Jirsa, V. K. & Bernard, C. The vir-
tual mouse brain: A computational neuroinformatics platform to study
whole mouse brain dynamics. eNeuro 4 (3), ENEURO.0111–17.2017
(2017). URL http://www.eneuro.org/content/4/3/ENEURO.0111-17.

https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0409
https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0409
https://doi.org/10.1098/rsta.2020.0409
https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0067
https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0067
https://doi.org/10.1098/rsta.2020.0067
https://www.sciencedirect.com/science/article/pii/S0360132320309379
https://www.sciencedirect.com/science/article/pii/S0360132320309379
https://doi.org/10.1016/j.buildenv.2020.107570
https://doi.org/10.1016/j.buildenv.2020.107570
https://www.sciencedirect.com/science/article/pii/S1570794602801699
https://www.sciencedirect.com/science/article/pii/S1570794602801699
https://doi.org/10.1177/0037549716667243
https://doi.org/10.1177/0037549716667243
https://doi.org/10.1177/0037549716667243
https://www.mdpi.com/1996-1073/10/12/1977
https://doi.org/10.3390/en10121977
https://doi.org/10.3390/en10121977
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000456
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000456
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.1371/journal.pcbi.1000456
http://www.eneuro.org/content/4/3/ENEURO.0111-17.2017
http://www.eneuro.org/content/4/3/ENEURO.0111-17.2017


Springer Nature 2021 LATEX template

24 Multiscale cosimulation design template for neuroscience applications

2017. https://doi.org/10.1523/ENEURO.0111-17.2017 .

http://www.eneuro.org/content/4/3/ENEURO.0111-17.2017
http://www.eneuro.org/content/4/3/ENEURO.0111-17.2017
https://doi.org/10.1523/ENEURO.0111-17.2017


Springer Nature 2021 LATEX template

Multiscale cosimulation design template for neuroscience applications 25

Online Method

The details of the simulation and parametrization of the models can be found in
the Supplementary Table 1. The format of this table is drawn from the propo-
sition of Nordlie et al. 2009[1]. The proposition of Nordlie et al. is for spiking
neural networks. This new format includes the description of brain network
modelling, the description of the coupling between scale and the description of
the measurements of the simulation. This format contains more details than
the proposition of Nordlie et al. because it contains all the parameters for the
co-simulations.
The following text provides an overview of the models, communication between
modules, details of the performance tests and implementation details.

Models

CA1 model

The spiking neural network of CA1 is comprised of two regions (left and right),
which contains two populations, 8000 excitatory neurons and 2000 inhibitory
neurons. This network is simulated by NEST[2], a neuro-informatics plat-
form for spiking neural networks. The adaptive exponential integrate and fire
neurons[4] are connected by exponential conductance-based synapses with a
connection probability of 5% in side the region. The excitatory population
establishes connections among regions in fixed amounts defined by the mouse
connectivity atlas and the fixed number of synapses received by each neuron
from other regions. The delay of transmission between regions is defined as
the ratio of distance between the regions and the speed of transmission. The
calculation of these ratios are part of the configuration of The Virtual Brain
(TVB)[19] because the data required by TVB is the track lengths between
regions and the speed of the transmission. Within a region, the synaptic trans-
mission delay is instantaneous. In addition, the neurons can receive external
noise input modeled as an independent Poisson process in addition to the
external stimuli received from other regions through the transfer of mean firing
rates as transformed spike trains.

Mouse Brain model

The mouse brain model is simulated using The Virtual Brain[19] which is a
neuro-informatics platform for connectome-based whole-brain network mod-
eling. The ”connectome” used here is extracted from Allen Mouse Brain
Connectivity Atlas[6] in 2017. The large-scale brain network is comprised of
linearly coupled neural mass models. Specifically, the model representing each
region is a second order Mean Ad Ex[7] with adaptation, which represents
the mean firing rate for an ensemble of one excitatory and one inhibitory
population neurons.
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Electrophysiological monitoring model

The electrophysiological monitoring variable are computed using 2 models, rep-
resenting the cortical and implanted sensors. The electrocorticography model
is a forward solution of a dipole at the region level. Each of the brain region is
reduced to its centre and the dipole is considered in a homogeneous space[8].
The implanted sensors signal are computed from point-neuron activities using
a hybrid scheme for modelling local field potentials (LFP). Specifically, each
potential is simulated using hybridLFPy[9] which incorporates the recorded
spike from the network and the morphology of the pyramidal and basket cells.

Choice of three set of parameters

The parameters for Irregular Synchronous state are chosen based on Di Volo et
al. paper[7]. The coupling between region and the noise was define after empir-
ical exploration in order to get a fluctuation of the firing rate in each regions.
Based on these parameters, the Asynchronous state was defined by chang-
ing empirical parameters in order to get not fluctuation in the brain regions.
The result is a reduction of the spike-triggered adaptation of the excitatory
neurons, a reduction of the number of connection between the regions, an aug-
mentation of the inhibitory synaptic weights, a reduction of the variance of the
noise and the addition of Poisson generator for the spiking neural network.
Based on the parameters of the Irregular Synchronous state, the parameters
for the Regular Bursting state are chosen by changing the type of the neurons
from regular spiking to regular burst neurons. This modification was done by
changing the voltage reset of the membrane and the leak of the reversal poten-
tial of the excitatory and inhibitory neurons, the spike-triggered adaptation
and time constant of the adaptation current of excitatory neurons. An empiri-
cal exploration of the models are done in order to get a balanced of the spiking
neural network and the brain dynamic wanted. The result of this exploration
is a reduction of the connection between regions and a reduction of the connec-
tion between excitatory and inhibitory neurons, a reduction of the number of
connection between brain regions and a reduction of the variance of the noise.
All the numerical values of the parameters are in the Supplementary Table 1.

Communication between modules

Initialization of communication

During the initialization of the simulation, the launcher creates a specific folder
for each module and an extra folder for the logger file of all components. The
launcher creates a file with all the parameters. This file contains parameters
for the simulation with dedicated sections for each module. The parameters
shared between modules are duplicated by the launcher in each section to
ensure there are the same.
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Synchronization between modules

The transfer modules synchronize the simulation by managing the access to
its internal buffer and receiving status messages from the simulators. The
receiver process receives the data and aggregates them in a buffer. Rate data
do not need to be buffered when use MPI communication, they are send or
received directly to the transformer process. This buffer is transferred to the
transformation function when the previous data are transformed and trans-
ferred to the sender process. The sender process gets the data after sending
the previous data to the simulator. It can only send the data to the simulator
when the simulator itself is ready. In addition, the simulator needs to await
data for the next step of the simulation. The transfer module assures correct
transport given all these constraints and keeps the components synchronized.
If needed the transfer module buffers data for a simulation step. The transfer
module can receive and send data concurrently and translation can be per-
formed while waiting for the the slowest simulator.

Performance test

The performance test is done by integrating recording of time at a specific
place of the code. These times are aggregate duration to evaluate the run-
ning time of the co-simulation in each section. This allows evaluating the time
of ”simulation”, ”IO” and ”wait” time. Each test is done for 10 trails of a 1
biological second for asynchronous configurations with one or two parameters
which vary per trial. Results of the trials are averaged to reduce the variabil-
ity of the measurements. The varied parameters of the tests are the number of
spiking neurons, synchronized time between simulators and the configuration
of MPI and thread of NEST.
Figure 2 and supplementary figure ??, ?? and ?? show the result of the
performance test done on DELL Precision-7540 (Intel Xeon(R) E-2286M
CPU 2.40 GHz * 8 cores * 2 threads, 64 GB of Ram with Ubuntu
18.04.5). The communication between components in the transfer mod-
ule was performed with the multithreading approach. Supplementary figure
??, ?? and ?? are generated using the Jusuf system (https://apps.fz-
juelich.de/jsc/hps/jusuf/cluster/configuration.html) which is composed of
nodes with 2 AMD EPYC 7742 2.25 GHz * 64 cores * 2 threads, 256 (16 16)
GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6).
In this second case, the transfer module uses MPI protocol for communication
between components.

Implementation details

The source code of the co-simulation is open-source and contains Python
script and C++ files. A singularity and a docker image are also available
on singularity-hubs for the replication of the figures as in the performance
test. The activity diagram (see Supplementary Figure ??) describes in detail
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the interaction between each module and components for this specific virtual
experimentation.
The implementation details for the creation of the Input and Output for NEST
is described in Supplementary Note 1. In addition to this note, an activity
diagram (see Supplementary Figure ??) describes the communication protocol
with NEST back-end. For this specific example, the states of the wrapper of
NEST and the states of transfer components which communicate with NEST
are described respectively by the Supplementary Figure ?? and ??.
In the same way, the description of the creation of the Input and Output for
TVB is described in Supplementary Note 1. In addition to this note, an activity
diagram (see Supplementary Figure ??) describes the communication protocol
with the TVB wrapper. For this specific example, the states of the wrapper
of TVB and the states of transfer components which communicate with the
wrapper of TVB are described respectively by the Supplementary Figures ??
and ??.
The description of the transfer modules is partially described in the Supple-
mentary Note 2 which focus only on the interface with simulators. In addition
to this note, the state of the different components are described in the Sup-
plementary Figure ??, ?? and ??. For a better understanding between the
different instances and classes of this module, the Supplementary Figure ??
describes all the instances and their role and the Supplementary Figure ??
describes the composition of the abstract class and the simple API for commu-
nication. The communication protocol for data exchange between component
of the transfer modules are different depending on whether the parallelization
strategy is multithreading or multiprocessing. In the case of multiprocessing,
MPI protocol is used for data exchange. The communication protocol differs
depending on the type of data as shown by the panel A of the Supplemen-
tary Figure ??. The spike trains data are variable in size and rather large
(more than 1 Megabit). The shared memory is chosen in this case. For the
mean rate data, the size of data is rather constant and small (few Kilobits).
Send and Receive function of MPI protocol is chosen in this case. In case of
multi-threading, only shared buffer is used between thread.

Dead lock due to the global interpreter of python

In the case of the transfer modules use multithreading for internal com-
munication, it can happen that the program is in deadlock because the
interface with a simulator does not receive a signal of a message. As it
is explained on the global interpreter lock documentation, ”The GIL(global
interpreter lock) can cause I/O-bound threads to be scheduled ahead
of CPU-bound threads, and it prevents signals from being delivered.”
(https://wiki.python.org/moin/GlobalInterpreterLock). The consequence of
it, that some signals used by MPI are not delivered, which create a situation
where a simulator and a transformer are waiting a MPI message from the other
one, this message will never arrive.
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