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In brief

We developed an atlas of intergenic

transcription using RNAPII binding sites

to connect genomic and transcriptomic

data in normal tissues and cancer

samples. The atlas enables investigation

of tissue specificity and core regulatory

elements. Meta-clustering reveals shared

transcription patterns among tissues and

cancer types. We identified intergenic

markers that are associated with known

cancer genes and predictive of overall

survival. Our study demonstrates the

effectiveness of integrating diverse public

datasets to characterize intergenic

transcription in normal and cancer

tissues, addressing limitations of

previous techniques.
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SUMMARY
Intergenic transcription in normal and cancerous tissues is pervasive but incompletely understood. To inves-
tigate this, we constructed an atlas of over 180,000 consensus RNA polymerase II (RNAPII)-bound intergenic
regions from 900 RNAPII chromatin immunoprecipitation sequencing (ChIP-seq) experiments in normal and
cancer samples. Through unsupervised analysis, we identified 51 RNAPII consensus clusters, many of which
mapped to specific biotypes and revealed tissue-specific regulatory signatures. We developed a meta-clus-
tering methodology to integrate our RNAPII atlas with active transcription across 28,797 RNA sequencing
(RNA-seq) samples from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Ency-
clopedia of DNA Elements (ENCODE). This analysis revealed strong tissue- and disease-specific intercon-
nections between RNAPII occupancy and transcriptional activity. We demonstrate that intergenic transcrip-
tion at RNAPII-bound regions is a novel per-cancer and pan-cancer biomarker. This biomarker displays
genomic and clinically relevant characteristics, distinguishing cancer subtypes and linking to overall survival.
Our results demonstrate the effectiveness of coherent data integration to uncover intergenic transcriptional
activity in normal and cancer tissues.
INTRODUCTION

Transcription is a fundamental process in biology that tran-

scribes DNA into biologically active and cell-type-specific

RNA molecules. The majority of transcription is carried out

by RNA polymerase II (RNAPII), which generates mRNAs

that are subsequently translated into proteins. However, inter-

genic active regions have been shown to cover a much larger

fraction of the genome than expected.1 Indeed, RNAPII tran-

scribes a wide variety of intergenic active regions, such as

different types of non-coding RNAs (ncRNAs)2 or enhancer

RNAs (eRNAs) that have been found to be major sites of inter-

genic transcription.3

While genes and their protein products have been the main in-

terest in basic and cancer research, an increasing amount of

genomic data support the biological and clinical relevance of in-

tergenic transcription. Aberrant expression of ncRNAs has been

found in cancer4 and non-cancer disease,5 and a vast majority of

trait or disease-associated variants lie in non-coding regions of

the genome.6 Despite significant progress in describing

enhancer transcription,3,7–10 efforts to fully identify intergenic

transcription remain a challenge. This is primarily due to a limited

amount of sequencing assays like global run on sequencing

(GRO-seq)11 or its derivatives,12,13 impacting the discovery of a

broader intergenic transcription landscape.
C
This is an open access article und
In this study, we compiled each available RNAPII chromatin

immunoprecipitation sequencing (ChIP-seq) dataset from the

GEO14 and Encyclopedia of DNA Elements (ENCODE)1 to

construct an atlas of RNAPII-bound intergenic regions in the hu-

man genome. Our approach, which targets RNAPII binding

rather than the resulting ncRNA, aims to minimize the limitations

of RNA abundance and stability. This approach enables explora-

tion of active intergenic regions in a broad range of cell types and

tissues, which have not been extensively studied before.

Wehypothesize that intergenicRNAPII-bound regions of signif-

icance exhibit a biotype-specific signature, reflected in biotype-

specificRNAsequencing (RNA-seq) expression across resources

such as the Genotype-Tissue Expression (GTEx15), The Cancer

Genome Atlas (TCGA16) and The Encyclopedia of DNA Elements

(ENCODE1). In this study, we describe tissue-specific bindings by

creating an atlas of intergenic RNAPII-bound regions. By

analyzing the expression patterns of 28,797 RNA sequencing

samples,we identify intergenic transcriptiononRNAPII-bound re-

gions as a powerful indicator for characterizing tissue types. We

show that using intergenic transcription onRNAPII-bound regions

results in robust classification of cancer types and subtypes.

Taken together, our study indicates that intergenic transcrip-

tion at RNAPII binding sites is a powerful indicator for character-

izing normal and cancer tissues at the subtype level. While the

functional significance of intergenic regions remains an open
ell Genomics 3, 100411, October 11, 2023 ª 2023 The Authors. 1
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Figure 1. An atlas of intergenic RNAPII occupancy

(A) Overview of the RNAPII atlas pipeline; 23.1 million RNAPII-bound regions aggregated across 906 individual datasets jointly identify 181,547 intergenic RNAPII

consensus.

(B) Genomic example on chromosome 4, showing RNAPII raw ChIP-seq signals across THP-1 cell lines (leukemia, in blue) at the location of a RNAPII consensus

(gray bar), with ReMap TP ChIP-seq and ENCODE DNase I tracks.

(C) Distribution of the number of datasets across which RNAPII peaks are shared.

(D) Comparison of RNAPII consensus location with genomic resources of regulatory and non-coding elements; resources are grouped and colored by genomic

characteristics.

(E) Annotation of the RNAPII atlas according to genomic characteristics: regulatory like, enhancer like, long non-coding body, gene tail, promoter like, and

unannotated.
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question, our findings could significantly enhance our under-

standing of the regulatory programs and clinical relevance of

non-coding transcription in various cancers.

RESULTS

An atlas of intergenic RNAPII occupancy
To create an atlas of intergenic RNAPII binding in the human

genome, we collected all available ChIP-seq data targeting

RNAPII on a wide variety of cells and tissue biosamples from

public biological data warehouses1,14 (Figure 1A). The created

atlas aggregates 87% of non-ENCODE datasets and 13% of

ENCODE datasets (Figure 1A). This was accomplished through

standardized manual curation of sample metadata, uniform bio-

sample annotation, and consistent data processing and quality

screening, initiated from the raw sequencing files using the

ReMap pipeline (STAR Methods). We conservatively retained

906 RNAPII datasets from diverse cell or tissue types, utilizing

various antibodies targeting the POLR2A subunit (Figure S1A).

These datasets encompassed a wide range of samples,
2 Cell Genomics 3, 100411, October 11, 2023
including cancer cell lines (64%) and ‘‘normal’’ cell lines/tissues

(36%) (Figure 1A; STARMethods). In this study, we focused spe-

cifically on intergenic RNAPII-bound regions, preventing us from

detecting alternative promoters or any transcriptional events

occurring within gene bodies (STARMethods). We defined inter-

genic regions as all regions of the genome, excluding all GEN-

CODE transcripts (as well as known long ncRNAs [lncRNAs])

extended by 1 kb at the transcription start site (TSS) and tran-

scription end site (TES) and excluding ENCODE blacklisted re-

gions.17 We identified a total of 23,101,589 RNAPII binding

events across all 906 datasets, of which 2,525,886 (11.1%) are

localized within intergenic regions (averaging 2,787 intergenic

binding events per dataset; Figure S1B). A large fraction of

RNAPII intergenic binding events (91.7%) is shared across at

least two ChIP-seq datasets, suggesting similar occupancy pat-

terns across experiments (Figures 1B and S2). These binding

events are also found to be located on clusters of transcription

factor ChIP-seq peaks. We developed an aggregative approach

to identify across experiments what we refer to as ‘‘consensus

peaks’’ (Figures 1A and S3; STAR Methods). By applying this
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Figure 2. A normalized vocabulary captures biotype-specific intergenic RNAPII binding

(A) Distinct tissues and cell lines across 906 biosamples normalized into 16 biotypes.

(B) Intergenic RNAPII occupancy in 181,547 consensus regions across 906 biosamples displayed in a visually compressed matrix. The color code used for each

RNAPII consensus region corresponds to the biosample tissue of origin, with examples representing either biotype-specific or ubiquitous signatures. This color

scheme is consistently applied across all RNAPII consensus regions. Bottom: normalized contribution of a biotype, in terms of peaks, to each RNAPII consensus

(STAR Methods).

(C) Two-dimensional uniform manifold approximation and projection (UMAP) of all 906 RNAPII ChIP-seq datasets across intergenic RNAPII space, colored by

normalized biotype.

(D) UMAP representation of all intergenic RNAPII consensus organized by their binding patterns, colored by dominant biotype (STAR Methods; full UMAP

available in Zenodo).
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approach, we created an atlas of 181,547 intergenic RNAPII

consensus peaks, describing distinct genomic elements bound

by RNAPII across multiple biosamples. Our atlas of intergenic

RNAPII-bound regions, available on Zenodo,18 is based on

consensus peaks derived from an average of 13 datasets (Fig-

ure 1C), with each consensus having an average width of

410 bp (Figure S1C). Each peak and dataset in the ChIP-seq

data contributing to a representative RNAPII consensus can be

traced back to its corresponding biosample or cell type category

(Figures S1D and S3). We evaluated our created atlas against

reference databases of regulatory and non-coding genomic ele-

ments19–23 (Figures 1D, 1E, S4–, and S6). We found that the ma-

jority of RNAPII consensus peaks (87.9%) were categorized as

regulatory regions, with 65.9% showing an enhancer signature

(Figure S4A). Furthermore, we observed a concentration of
RNAPII consensus downstream of genes (17.4%), within

the +1- to +9-kb range (Figures S5A and S5B). Interestingly,

these regions exhibit characteristics of regulatory elements

and show a strong enrichment of CTCF and CTCFL (BORIS) mo-

tifs (Figure S5C). Our findings indicate that the atlas of intergenic

RNAPII consensus peaks is predominantly located over regula-

tory elements and potentially transcribed enhancer regions.

A normalized vocabulary captures biotype-specific
intergenic RNAPII binding
The RNAPII atlas covers a significant fraction of the human bio-

logical spectrum, including over 203 distinct tissues and cell

lines (Figure 2A; Table S1). To facilitate biological interpretation,

we grouped biosample annotations based on their tissue of

origin or similarity. We then further categorized similar tissues
Cell Genomics 3, 100411, October 11, 2023 3
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into 16 distinct biotypes to obtain a concise but meaningful high-

level annotation of our samples (Table S1; STAR Methods). To

simplify genomic interoperability across large resources, the

compendium of tissues and cell lines was harmonized using

Genotype-Tissue Expression (GTEx), The Cancer Genome Atlas

(TCGA), ENCODE biosample nomenclature, as well as cell ontol-

ogies.24 This results in the RNAPII consensus exhibiting a biolog-

ical context ranging from biotype-specific to ubiquitous signa-

tures (Figure 2B). Because intergenic RNAPII binding appears

to be shared extensively across biosamples (Figures 1B and

S2), we aimed to visualize RNAPII occupancy patterns across

biosamples and consensus by employing a hierarchical clus-

tering approach (Figure 2B; STAR Methods). Patterns of

RNAPII binding were structured into mostly biotype-specific

and a few ubiquitous occupancy clusters. We observed what

seemed to be a sparse distribution in the intergenic RNAPII atlas,

but upon further investigation, we identified diverse and intricate

binding patterns. To analyze these patterns, we utilized an unsu-

pervised dimensionality reduction technique (uniform manifold

approximation and projection [UMAP]25) on the 906 biosamples

(Figure 2C) and more than 180,000 RNAPII consensus peaks

(Figure 2D). The UMAP visualization across 906 ChIP-seq data-

sets revealed organized intergenic occupancy patterns across

similar biotypes (Figure 2C). Based on their intergenic occu-

pancy patterns, ChIP-seq datasets having similar biotypes of

origin were clustered together, while the center of the plot con-

tained datasets with ubiquitous biotype signatures. For example,

ChIP-seq datasets for digestive biosamples (represented by

brown dots, n = 126 samples) were predominantly clustered

together, suggesting that intergenic RNAPII occupancy is repre-

sentative of the sample biology but also that the biosample cura-

tion is coherent. Next, we visualized the 181,547 intergenic

RNAPII consensus peaks according to their binding patterns

and biotype labels (Figure 2D; STAR Methods). To facilitate bio-

logical interpretation of an RNAPII consensus, each consensus

was labeled with its most frequent biotype or labeled in gray

when ubiquitous. By visualizing the intergenic RNAPII atlas, we

were able to identify distinct occupancy patterns that are spe-

cific to certain biotypes. This framework was also applied to

890 H3K27ac datasets, successfully demonstrating its ability

to identify biotype-specific clusters of histonemodifications (Fig-

ure S7). The RNAPII atlas, generated by leveraging 906 ChIP-seq

datasets, provides a valuable biotype-specific summary of inter-

genic RNAPII binding. Its potential to uncover intergenic tran-

scriptional activities makes this atlas an innovative tool.

Revealing tissue-specific regulatory signatures
We next aimed to retrieve and annotate each consensus group to

capture its biological identity. Using an unsupervised graph clus-

tering approach,we identified 51RNAPII consensus clusters (Fig-

ure 3A), each harboring its ownbiotype specificity (Figures 3Band

S8; Table S1). To independently validate their biological

signatures, we compared the clusters against the biological clas-

sification of the human index of DNase I hypersensitive sites26

(DHSs) (Figure 3C). The defined RNAPII clusters showed a

coherent enrichment with the DHS regulatory vocabulary (Fig-

ure S9). For instance, ‘‘brain/nervous’’ RNAPII cluster 31 (light

green) was enriched in neural DHSs. To capture the genomic sig-
4 Cell Genomics 3, 100411, October 11, 2023
natures of these groups, we examined the epigenetic state for

each RNAPII cluster, particularly focusing on its chromatin state

specificity. As an example, we selected RNAPII cluster 4, which

exhibited a distinct ‘‘embryonic’’ signature, and analyzed the

Roadmap ChromHMM (software for learning and characterizing

chromatin states) epigenetic states of embryonic stem cells (Fig-

ure 3D). We observed a strong enrichment of ‘‘active’’ epigenetic

states, including enhancers, TSSs, and transcribed regions,

within the RNAPII embryonic cluster compared with the other

RNAPII clusters (Figure S10A; STAR Methods). Conversely, we

observed a depletion of ‘‘inactive’’ epigenetic states, such as

quiescent or Polycomb-repressed states. This finding suggests

thatRNAPII occupies intergenic spaceat key regulatoryelements,

as demonstrated previously27 (Figures 1D and 1E). To explore the

tissue specificity of RNAPII clusters, we analyzed enhancer-like

histone marks and open chromatin profiles (H3K27ac, ATAC-

seq; Table S2). The results revealed that RNAPII cluster-tissue

pairs with matching tissues (e.g., heart-cardiovascular) exhibited

the strongest activity, while non-matching pairs (e.g., lymphoid-

liver) displayed a weaker signal (Figure S10B).

To further confirm the biological identity of defined clusters, we

investigated the enrichment of SNP-based trait heritability from a

UKBiobankgenome-wide association study24 (GWAS), transcrip-

tion factor binding regions (TFBRs) fromReMap,19GeneOntology

(GO) terms,andHOMER28DNAmotifs (Figures3EandS9). ‘‘brain/

nervous’’ cluster 31 exhibited enrichment of TFBRs for transcrip-

tion factors known to be involved in neural development or dis-

eases, such as TCF12, PITX3, and TWIST1. Similarly, at the

sequence level, the embryonic RNAPII cluster exhibits enrich-

ments of meaningful transcription factor motifs, specifically

OCT4-Sox-NANOG motifs. ‘‘Cardiovascular’’ cluster 10 showed

enrichments in multiple heart-related traits, such as intra-corneal

pressure, pulse rate, and coronary heart disease. Similarly,

blood/immune cluster 5 included an RNAPII consensus located

near genes linked to immune response GO terms, consistent

with their assigned biotypes. Our study accurately distinguishes

intergenic RNAPII occupancy based on its biotype specificity,

revealing tissue-specific regulatory signatures across multiple in-

dependent genomic resources. These resources range fromopen

chromatin occupancy maps to transcription factor binding,

providing comprehensive insights into the regulatory landscape.

Systematic transcription captured in the intergenic
RNAPII atlas
We developed the RNAPII atlas as an innovative tool for indirectly

identifying intergenic regulatory regions that are active or poised

for transcription. To quantify intergenic transcription and gain a

better understanding of transcriptional patterns, we utilized the

RNAPII atlas to analyze transcriptional signals in three major

expression resources. These resources include samples from

normal and cancer cell lines: GTEx, TCGA, and the ENCODE

consortium.Bycombining these,weconductedanextensiveanal-

ysis of intergenic expression across the RNAPII atlas, leveraging

data from 28,767 RNA-seq samples (Figure 4A). To quantify

intergenic transcription, we first standardized each RNAPII

consensus sequence to a 1-kb RNAPII-bound region. We then

counted the number of reads that overlapped with these RNAPII

-bound regions, generating a count table similar to conventional
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Figure 3. Revealing tissue-specific regulatory signatures

(A) Unsupervised graph clustering identifies 51 RNAPII consensus clusters. Four clusters (4, 5, 10, and 31) are highlighted across panels (A)–(C) to illustrate the

analysis.

(B) The fraction of biotypes within each cluster is shown, indicating tissue-specific or ubiquitous signatures.

(C) Enrichment of DNase I hypersensitive site (DHS) biological classification in each cluster. Arrows and colored rectangles highlight correspondence between

clusters and DHS categories.

(D) Enrichment of ChromHMM epigenetic states of ‘‘embryonic stem sell,’’ sampled at the RNAPII genomic location of cluster 4, against the non-cluster 4 RNAPII

consensus. Active states: active TSS transcription states (TssA and TssAFlnk), transcribed promoter and enhancer signatures (TxFlnk), actively transcribed

states (Tx and TxWk), enhancer states (Enh and EnhG), zinc-finger protein gene state (ZNF/Rpts). Inactive states: heterochromatin (Het), bivalent regulatory

states (TssBiv, BivFlnk, and EnhBiv), repressed Polycomb states (ReprPC and ReprPCWk), and quiescent state (Quies).

(E) Top 10 transcription factor enrichments from the ReMap database in cluster 31, top 10 UK Biobank GWAS trait heritability enrichment in cluster 10, and top 10

GO enrichment of nearby genes in cluster 5. All results shown are statistically significant. Each cluster’s biotype distribution is shown as a stacked bar plot.
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gene-centric RNA-seq count tables (Figure 4A). Our analysis re-

vealed that the intergenic RNAPII atlas captured approximately

60% of intergenic reads (Figures S11A and S11B). Moreover,

these RNAPII-bound intergenic regions captured significantly

higher read counts compared with the rest of the intergenic

genome. On average, RNAPII -bound regions had 7.13 times

more transcriptional signal compared with the remaining inter-

genic genome (Figures 4B and S11C). By visualizing the spatial

distributionof transcriptional signalswithinRNAPII-boundregions,

we discovered two distinct types of transcriptional patterns: one

displaying amono-modal signal with a short peak and the second
showcasing a broader peak spanning the entire 1-kb probe (Fig-

ure S12). Altogether, the RNAPII atlas is strongly enriched in tran-

scriptional activity, and thus it could serve as a powerful tool for

investigating intergenic transcription in normal and cancer tissues.

Intergenic transcription on the RNAPII atlas is a
powerful indicator for characterizing tissues
To determine whether intergenic transcription at RNAPII-bound

regions could characterize tissue specificity, we analyzed

expression data from 54 non-diseased tissues, comprising a

total of 17,345 samples from the GTEx project. Intergenic
Cell Genomics 3, 100411, October 11, 2023 5
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Figure 4. Intergenic transcription on the RNAPII atlas is a powerful indicator for characterizing tissues

(A) Number of RNA-seq samples from three expression resources (GTEx, TCGA, and ENCODE) and schematic depicting the standardization of RNAPII

consensus to 1-kb RNAPII-bound regions to obtain read counts.

(B) Violin plots comparing transcriptional signals at intergenic RNAPII-bound regions versus non-RNAPII random intergenic regions across the three expression

resources.

(C) Two-dimensional UMAP projection of 17,345 GTEx RNA-seq signals across the intergenic RNAPII atlas, with colors representing 54 tissue types, including 11

distinct brain regions (yellow) and two cell lines (light blue).

(D) Magnified view of tissue-specific expression patterns observed in similar tissues, such as different types of artery (e.g., aorta, coronary, and tibial).
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transcription has been utilized previously as a marker of

enhancer activity, as demonstrated in the Functional Annotation

of the Mammalian Genome (FANTOM) project,7 and across

various experimental assays focused on capped and nascent

RNAs.3,10,12,13 In this study, we developed a pipeline based on

single-cell RNA-seq (scRNA-seq)methods, which are commonly

employed for analyzing weak signals in datasets with large sam-

ple sizes. By considering signals only within RNAPII -bound re-

gions, we were able to extract valuable biological information

from read count tables (Figure S13; STAR Methods). We used

UMAP to analyze and visualize similarity between the expression

levels sampled at RNAPII-bound regions of each GTEx bio-

sample. This analysis revealed a clear distinction between tis-

sues because biosamples originating from the same sampling

site are clustered together (Figure 4C). These tissue-specific

expression patterns are observed not only between similar tis-

sues, such as artery (aorta, coronary, and tibial) but also between

tissues with similar histological features, like adipose tissue

(visceral, subcutaneous, and mammary tissue). Additionally,

these patterns are observed between tissues located in different
6 Cell Genomics 3, 100411, October 11, 2023
body regions, such as the digestive tract (colon and small intes-

tine) (Figure 4D). To test whether intergenic transcription could

accurately discriminate the 54 GTEx tissues accurately, we em-

ployed a k-nearest neighbor algorithm (KNN classifier) to classify

the tissues based on expression of RNAPII-bound regions. This

showed that RNAPII-bound regions could predict tissue types

with a high level of accuracy, with only a slight decrease in accu-

racy compared with gene-centric RNA-seq counts processed

using the same methods (87.1% against 90.0% balanced accu-

racy across 54 tissues; Figure S14). Next, we identified overex-

pressed intergenic RNAPII-bound regions in the GTEx tissues

with an average of 4,236 regions per tissue (Figure S15A;

STAR Methods). Our analysis revealed a significant association

between RNAPII-bound regions with tissue-specific overexpres-

sion and tissue-specific GTEx eQTLs (Figures S15B and S15C;

STARMethods), providing evidence that these regions can serve

as indicators of transcribed intergenic enhancers. Interestingly,

we also detected transcriptional signals at RNAPII-bound re-

gions located downstreamof genes (>1 kb), suggesting the pres-

ence of transient RNA downstream of the polyadenylation site
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Figure 5. Meta-analysis reveals tissue- and disease-specific connections between RNAPII occupancy and transcription

(A) Association between RNAPII occupancy biotype and transcription biotype from ENCODE. The heatmap depicts log2 of ENCODE RNA-seq dataset

expression fold change in each biotype (rows) between RNAPII-bound regions with biotype-specific RNAPII ChIP-seq occupancy (columns) against non-specific

RNAPII-bound regions.

(B) Heatmap showing the association between biotype-specific intergenic RNAPII occupancy and biotype-specific RNAPII overexpression across four re-

sources. A hierarchically clustered heatmap reveals the correct grouping by tissue of origin rather than data source, with each possible biotype-dataset pair

represented. Yule distance between a pair of dataset-biotype lists of overexpressed RNAPII markers is indicated.

(C) Magnified view revealing meta-clusters of tissue-specific correlation between intergenic RNAPII regions and their transcription in different resources.

(D) Distributions of tissue-matching (i.e., RNAPII-liver vs. TCGA-liver) and non-matching (i.e., RNAPII-liver vs. GTEx-heart). Yule distance between two intergenic

RNAPII marker sets (p = 1.4e�64) is indicated.
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(Figures S5A and S5B), which is consistent with previous

studies.29 To further investigate the impact of these downstream

signals, we conducted additional analyses excluding RNAPII-

bound regions located up to 9 kb downstream of genes. Our

findings demonstrate that RNAPII consensus peaks located

within the 1- to 9-kb region downstream of genes do not drive

classification of GTEx tissues (Figure S16). Furthermore, we

show that our approach is applicable to smaller RNA-seq data-

sets (Figure S17). By comparing the expression levels in three

samples of two types of heart tissues from GTEx biosamples,

we identified 195 RNAPII-bound regions located near genes

related to heart function, despite limited statistical power (Fig-

ure S17; STAR Methods). Here, we provide evidence that inter-

genic transcription detected at RNAPII-bound regions is a strong

indicator of tissue specificity and can be used effectively for ac-

curate tissue type prediction. These findings may have implica-

tions for understanding tissue-specific gene regulation.

Meta-analysis reveals tissue- and disease-specific
connections between RNAPII occupancy and
transcription
We examined the relationship between biotype-specific RNAPII

occupancy and biotype-specific transcription by comparing the
observed intergenic signal across all expression datasets, which

combined 28,787 RNA-seq samples despite use of different

sequencing samples and protocols. We first conducted an anal-

ysis to investigate the association between biotype-specific

RNAPII occupancy in ChIP-seq and transcription in ENCODE

RNA-seq biotypes by comparing biotypes pairwise (Figure 5A).

This analysis revealed a significant enrichment of biotype-spe-

cific transcription in the ENCODE dataset at RNAPII probes

with ChIP-seq occupancy specific to the corresponding biotype,

even when considering different samples and protocols.

Conversely, non-matching biotype pairs did not exhibit tran-

scriptional signal enrichments. These findings underscore a

strong link between RNAPII occupancy and effective transcrip-

tion as well as the effectiveness of our biosample annotation

for comparing varied data sources. Furthermore, we conducted

a meta-analysis that integrated every dataset and biotype to

obtain a comprehensive and interconnected view of intergenic

transcription across nearly 30,000 biosamples from diverse

data sources (Figure 5B). In brief, we extracted intergenic

RNAPII markers (only considering up-regulated RNAPII -bound

regions; STAR Methods) for each possible biotype-dataset

pair (i.e., RNAPII-liver, GTEx-heart, and ENCODE-liver) and

quantified pairwise similarity between marker lists for every
Cell Genomics 3, 100411, October 11, 2023 7
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biotype-dataset combination, assuming that a marker list is

characteristic of a specific biotype. We then applied hierarchical

clustering to generate ameta-clustering that revealed similarities

between tissues across all resources (Figure 5B; STAR

Methods). This meta-analysis highlighted that the association

between intergenic RNAPII occupancy and intergenic transcrip-

tion is biotype specific, consistently observed across biotypes

and independent of dataset origins or protocols used. Our

approach effectively grouped similar biotypes together, inde-

pendent of the data source (Figure 5B). For instance, ‘‘adipose

tissue’’ and ‘‘Breast’’ tissues clustered together across re-

sources, reflecting the presence of adipose cells in breast tissue

(Figure 5C). Moreover, identical biotypes exhibited much greater

similarity in markers across data sources than non-identical bio-

types (Figure 5D). To ensure robustness, we extracted markers

that were supported by at least half of the data sources for

each biotype. These markers demonstrated a strong enrichment

of heritability in biotype-related traits, confirming their biological

relevance (Figure S18). For instance, markers associated with

the ‘‘reproductive female’’ biotype showed a strong correlation

with heritability of the ‘‘birth weight of first child’’ trait, while

markers associated with the ‘‘liver’’ exhibited enrichment in her-

itability for ‘‘high cholesterol.’’ In summary, our meta-analysis re-

vealed a tissue-specific correlation between intergenic tran-

scription and RNAPII occupancy, which carries biological

significance. Furthermore, we observed a remarkable consis-

tency across diverse data sources and protocols.

Cancer type and subtype classification by intergenic
transcription at RNAPII binding sites
Wehave shown that intergenic transcription can reliably differen-

tiate between various tissues and biological conditions. Expand-

ing on this understanding, we explored direct applications of our

RNAPII atlas and its potential implications in human cancers. We

analyzed expression data from 32 cancer types, encompassing

10,912 RNA-seq samples obtained from the TCGA cohort, to

identify clinically relevant intergenic transcription patterns and

potential therapeutic targets (Figure 6A). Using UMAP, we

analyzed and visualized the similarity in expression profiles

among biosamples, revealing an initial separation between can-

cer types and subsequently between normal or tumoral tissue

states, suggesting that certain RNAPII-bound regions are differ-

entially expressed in these contexts (Figure 6B). For example, in

the case of brain cancers, lower-grade glioma (LGG) and Glio-

blastoma multiforme (GBM) display close clustering, whereas

kidney tumor samples (kidney renal clear cell carcinoma

[KIRC], kidney chromophobe carcinoma [KICH], and KIRP)

exhibit distinct expression profiles despite the similarity

observed in normal kidney samples. Interestingly, breast cancer

(BRCA) samples form two distinct clusters based on expression

of intergenic RNAPII-bound regions. These clusters correspond

to distinct BRCA subtypes, with the basal-like subtype (triple-

negative BRCA [TNBC]) being the most distinct and the luminal

A, luminal B, and HER2-positive subtypes forming a separate,

larger group (Figure 6C). We identified intergenic transcriptional

markers specific to the basal-like/TNBC subtype, which are

associated with 10 dual-specificity phosphatase genes (e.g.,

DUSP1, DUSP5, and DUSP7), involved in mitogen-activated
8 Cell Genomics 3, 100411, October 11, 2023
protein kinase (MAPK) phosphatase activity. MAPK cascades

play a central role in cell proliferation and apoptosis, and

DUSP1 may contribute to development of chemoresistance in

TNBC.30,31 TNBC accounts for approximately 15%–20% of all

BRCA cases, is most prevalent in women under 40,32 and pre-

sents aggressive behavior.33 Similar to BRCA, intergenic tran-

scription in thyroid carcinomas (THCA) facilitated the identifica-

tion of different subtypes of THCAs (Figure 6D). By using a

heatmap representation of the differentially expressed RNAPII-

bound regions in KICH samples, we observed distinct clusters

of up-regulated and down-regulated RNAPII -bound regions.

These clusters indicate potential tumor subtypes with unique in-

tergenic expression patterns (Figure S19A). Identification of sub-

type-specific intergenic transcription sheds light on cancer

biology by revealing active regulatory elements and potentially

actionable nearby genes with clinical significance.

Identification of per-cancer and pan-cancer intergenic
transcriptional markers
We identified tumor-specific RNAPII-bound regions differentially

expressed in tumors compared with normal tissues for 16 cancer

types, ranging from 65,050 regions for KIRC to 6,458 regions for

ESCA (esophageal carcinoma) (Figure 6E). These numbers align

with previously identified active enhancers in TCGA cancers.34

The predictive power of these regions was confirmed as we

accurately separated tumors from normal tissues in most can-

cers using a machine learning classifier (Figure 6F; STAR

Methods). To uncover pan-cancer intergenic transcriptional

markers that could contribute to tumorigenesis across multiple

cancer types, we identified RNAPII-bound regions differentially

expressed in a substantial number of cancers (7 or more of 16;

Figure S19B; STAR Methods). We observed a large number of

RNAPII-bound regions that did not appear to be differentially ex-

pressed in any specific type of cancer. However, on the other end

of the spectrum, we observed a significant number of RNAPII-

bound regions that exhibited differential expression in a greater

number of cancers than expected. Specifically, we found

10,940 RNAPII-bound regions to be differentially expressed in

more than seven cancers, with some expressed in each of the

16 cancers that had corresponding normal tissue samples avail-

able.Within this set of 10,940 pan-cancer differentially expressed

RNAPII-bound regions, we identified previously known regions

implicated in cancer as well as new loci (Figures 6G and 6H).

For example, we identified two pan-cancer differentially ex-

pressed RNAPII-bound regions on enhancers located 10 kb up-

stream of the MDM4 gene (Figure 6G). This protein is involved

in repression of the tumor suppressor TP53 and represents a po-

tential therapeutic target in liver cancer35 and lymphomas36 and

overall in anticancer therapy.37 Additionally, we highlighted a

group of pan-cancer RNAPII-bound regions that overlapped a

known, frequently mutated38 FOXA1 enhancer region involved

in proliferation of prostate cancer cells (Figure 6H). This region

has been identified as one of six cis-regulatory elements in the

FOXA1 regulatory plexus harboring somatic single-nucleotide

variants in primary prostate tumors.38 FOXA1 acts as a pioneer

factor in prostate cancer and governs expression of cell cycle

regulatory genes in prostate cancer. Overall, these 10,940 re-

gions appear to be located near cancer hallmark genes
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Figure 6. Cancer type and subtype classification by intergenic transcription at RNAPII binding sites

(A) A total of 10,912 TCGA RNA-seq samples were leveraged to capture intergenic signals at standardized RNAPII 1-kb bound regions.

(B) A two-dimensional UMAP of 10,912 TCGA patients based on intergenic RNAPII transcriptional signals. Each dot represents a TCGA cancer patient or normal

sample, with the colors representing the cancer type. White circles highlight breast cancer (BRCA) and thyroid carcinoma (THCA) samples.

(C and D) Magnified projections of distinct BRCA and THCA patients (dots) colored by subtype categories based on intergenic transcriptional signals. Normal

samples have larger solid black outlines.

(E) Number of tumor-specific intergenic RNAPII-bound regions differentially expressed in tumors compared with normal samples.

(F) Machine learning classification performance (balanced accuracy) between normal and tumor samples for each cancer type.

(G) Genomic view of a pan-cancer intergenic RNAPII-bound region differentially expressed in seven or more cancers. Two pan-cancer markers are located on

enhancers (enhancer distal, cCREs) near the MDM4 gene with ChIP-seq bindings.

(H) The brown bar represents a published cis-regulatory element of FOXA1 harboring somatic variants in primary prostate tumors.38 ChIP-seq ReMap tracks are

filtered to show transcription factor (TF) binding specifically in liver or prostate cell lines.
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(Figure S19C). Our analysis revealed differentially expressed in-

tergenic markers in tumors or tumors subtypes compared with

normal tissues, which may directly or indirectly contribute to

tumorigenesis. By identifying potential intergenic transcriptional

markers, our findings could pave the way for novel therapeutic

strategies targeting clinically actionable genes.
Intergenic transcriptional markers showing clinical
relevance in cancer
To examine the clinical relevance of intergenic transcriptional

markers, we investigated the association between expression

of RNAPII-bound regions and overall survival per cancer and

pan cancer using a Cox proportional hazard model (per- and
Cell Genomics 3, 100411, October 11, 2023 9
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Figure 7. Intergenic transcriptional markers showing clinical relevance in cancer

(A) Heatmap of 145 transcribed RNAPII-bound regions identified as prognostic markers in multiple cancers. A color scale depicts log2(hazard ratios) of strong

expression associatedwith a good (blue) or bad (red) prognosis. Black rectangles highlight two intergenic prognosticmarkers (RNAPII-bound regions in B andC).

A dashed-line rectangle highlights a prognostic marker shown in the supplementary.

(B) Genomic landscape of identified multi-cancer prognostic markers (blue bars) at chr2:171,271,474–171,271,711 located 40 kb downstream of the TLK1 gene

and 44 kb upstream of the METTL8 gene. Yellow bars indicate candidate cis-regulatory elements (cCREs, enhancer distal) and ChIP-seq binding from ReMap.

(C) Genomic view of the multicancer prognostic markers (chr2:171,271,474–171,271,711) located 83 kb downstream of the PTPN20 gene and 145/196 kb

downstream of the GDF10 and GDF2 genes as well as 53 kb downstream of a, lncRNA gene, ENSG00000289299. A light blue bar indicates a cCRE CTCF region.

(D) Kaplan-Meier survival analysis of kidney cancer (papillary and clear), leukemia, and lung cancer patients with high (red) and low (blue) expression from the

intergenic RNAPII-bound region in (B).

(E) Kaplan-Meier survival analysis of kidney, pancreatic, stomach, and mesothelioma TCGA cancer patients with high (red) and low (blue) expression from the

intergenic RNAPII-bound region in (C).
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pan-cancer marker lists and count tables are available at Zen-

odo18). At the per-cancer level, our results showed a smaller

number of RNAPII-bound regions associated with overall sur-

vival compared with previous analyses of differentially ex-

pressed RNAPII regions. The largest number of associated re-

gions was observed in LGG (n = 18,380), with an average of

2,002 regions per cancer (Figure S20A). At the pan-cancer level,

we identified a set of 145 RNAPII-bound regions associated with

overall survival in five or more cancer types. Most of these re-

gions showed a positive association between overexpression

and poor survival (hazard ratio > 1; Figure 7A). The 145

RNAPII-bound regions identified were found to be in close prox-

imity to genes involved in the cell cycle, DNA metabolism and

repair, and muscle development as well as hallmark genes of

genome instability and mutation (Figures S20B and S20C).

Perturbation and acceleration of the cell cycle are hallmarks of

cancer and play a role in tumor progression and prognosis. As

examples, we highlight two RNAPII-bound regions associated

with overall survival (OS) and located near known cancer-asso-
10 Cell Genomics 3, 100411, October 11, 2023
ciated genes and candidate regulatory elements (Figures 7B,

7C, and S21).

The first RNAPII-bound region is located between the genes

TLK1 and METTL8 at 40 kb and 44 kb, respectively (Figure 7B).

TLK1 has been linked to poor patient outcomes in multiple can-

cer types, including GBM39 and prostate cancer metastasis,40,41

and it is involved in DNA replication and chromatin assembly.39

METTL8 has been identified as a potential biomarker in hepato-

cellular carcinoma,42 and high levels have been associated with

improved patient survival in pancreatic cancer.42 We observed

that high expression of the pan-cancer RNAPII-bound region de-

picted in Figure 7B is strongly linked to survival in leukemia and

kidney (KIRP and KIRC) and lung cancers (Figure 7D).

The second region is located between three genes: down-

stream of a protein tyrosine phosphatase non-receptor

(PTPN20) at 83 kb and upstream of two growth differentiation

factors, GDF10 and GDF2, at 145 kb and 196 kb, respec-

tively (Figure 7C). GDF10 and GDF2 belong to the transforming

growth factor b (TGF-b) superfamily and are considered tumor
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suppressors43 in certain cancers. Studies have demonstrated

that GDF10 expression is an independent prognostic factor

for OS of patients with oral squamous cell carcinoma.44 Addi-

tionally, GDF10 inhibits cell proliferation and epithelial-mesen-

chymal transition in nasopharyngeal carcinoma.45 On the other

hand, GDF2 exhibits pleiotropic effects in tumorigenesis, pro-

moting ovarian cancer cell growth46 while suppressing breast

tumorigenesis47 and increasing hepatocellular carcinoma cell

growth.48 It also plays a role in suppressing cell death in ovarian

and breast epithelia.49 Furthermore, numerous protein tyrosine

phosphatases have been shown to regulate essential cellular

processes, with several mutations associated with human dis-

eases.50 This pan-cancer RNAPII-bound region demonstrates

not only a previously established correlation with mesothelioma

cancers but also a new correlation between its expression and

survival rates in kidney, pancreatic, and stomach cancers (Fig-

ure 7E). Taken together, these analyses suggest that these tran-

scribed RNAPII regions, which are mostly unreferenced and un-

detected, may have clinically relevant roles in cancer and could

serve as potential markers for OS. Additional studies are needed

to fully understand the potential clinical implications of these

observations.

DISCUSSION

We constructed an atlas of intergenic transcription at RNAPII

binding sites to connect genomic, transcriptomic, and clinical

data across normal tissues and cancer samples. Our approach

utilizes a normalized vocabulary for cell lines and tissue types

and integrates a compendium of 906 publicly available RNAPII

ChIP-seq profiles, enabling comprehensive exploration of inter-

genic transcription across 28,000 expression samples. The atlas

provides an efficient means to investigate tissue specificity and

the activity of core regulatory elements in various tissues. Our

meta-clustering approach reveals that transcription of intergenic

regions is shared among similar tissues and across multiple in-

dependent resources. We identified per-cancer and pan-cancer

intergenic transcriptional markers associated with known cancer

genes and prognostic intergenic markers that predict overall pa-

tient survival. Additionally, we discovered that intergenic tran-

scriptional markers can effectively discriminate between sub-

types of breast and thyroid cancers.

Our mapping of intergenic transcription stands out from prior

efforts to characterize enhancer activities because we directly

target the RNAPII transcriptional machinery. Traditionally,

studies have relied on single resources, such as histone signa-

tures from ENCODE or Cap Analysis of Gene Expression

(CAGE) transcripts from FANTOM, to identify non-coding ele-

ments. However, our study demonstrates the effectiveness of

robust data integration using diverse public RNAPII ChIP-seq

datasets, providing a coherentmethod to characterize intergenic

transcriptional activity in normal and cancer tissues. To detect

non-coding transcription, previous investigations3,8,27,51 have

utilized techniques such asGRO-seq or its derivatives to capture

nascent transcripts. However, these techniques have limitations

in terms of coverage and representation of normal tissues and

cancer types. In our study, we address these limitations by inte-

grating GTEx, TCGA, and ENCODE RNA-seq data, offering new
insights into intergenic activity across cell lines, normal tissues,

and cancer types.

The intergenic RNAPII consensus peaks observed in our study

exhibit characteristics suggestive of enhancers, potential TSSs,

or potential transcription termination sites (TTSs) that have yet

to be described. The majority of identified intergenic RNAPII

consensus peaks were classified as regulatory regions, with

65.9% displaying an enhancer signature and 17.4% located

downstream of genes. These findings align with the current un-

derstanding of the non-coding genome, where enhancers and

other regulatory elements are known to recruit RNAPII. In this

study, we annotate all 181,547 intergenic RNAPII consensus

with genomic characteristics and biotype signatures. Our large-

scale integration approach enabled comprehensive exploration

of intergenic transcription in normal tissues and cancer types.

Using signals from cancer transcriptomes (TCGA), we identi-

fied differentially expressed RNAPII intergenic regions and mo-

lecular subtypes of breast and thyroid cancers. For example, in

TNBC, we showed that certain differentially expressed RNAPII

regions are located near DUSP genes involved in the MAPK

signaling pathway. This pathway plays a crucial role in regulating

cell proliferation and apoptosis, and DUSP1 in particular may

contribute to chemoresistance in TNBC.30,31 While we demon-

strated that RNAPII consensus targets intergenic enhancer ele-

ments or proximal enhancers upstream of genes, we also

observed RNAPII consensus located downstream of gene

TTSs. Future investigations may help identify new sites of tran-

scription termination across our biotype panel.

Transcription of non-coding regions is a fundamental charac-

teristic captured by our RNAPII intergenic map across cell lines,

normal tissues, and cancer samples. This significantly expands

the analysis horizon beyond gene-centric annotations. Our inte-

gration framework symbolizes a transition from exploratory

studies centered around uncovering new regulatory elements

to a map-focused phase that prioritizes identification of active

transcribed elements within specific biological contexts. The sig-

nificance of our study lies in its ability to enhance our under-

standing of the activity of non-coding regions in cancer biology

and disease development, potentially guiding therapeutic ap-

proaches and ultimately improving patient outcomes.

Limitations of the study
Despite the valuable insights gained from our study, there are

some limitations that should be considered. One limitation is

the reliance on publicly available RNAPII ChIP-seq datasets,

which may introduce potential biases and variations in experi-

mental conditions. Additionally, the analysis focused on

RNAPII-bound regions and their transcriptional activity, but the

nature of the produced transcripts or other factors, such as chro-

matin conformation, were not directly addressed. Moreover, the

use of transcriptomic data from public databases may not fully

represent all tissue types and cancer subtypes, potentially

limiting the generalizability of our findings. While our meta-clus-

tering approach allowed us to integrate diverse datasets, some

tissues or cell types may still have limited representation,

affecting the accuracy of tissue-specific classifications. Future

experiments with larger and more diverse datasets would be

necessary to validate and expand the conclusions drawn from
Cell Genomics 3, 100411, October 11, 2023 11
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this study. Nonetheless, our atlas of intergenic transcription at

RNAPII binding sites offers a valuable resource for investigating

tissue-specific regulatory elements and holds promise for

advancing our understanding of non-coding transcription in

normal and cancer tissues.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK Biobank UK Biobank67 https://www.ukbiobank.ac.uk/

UK Biobank GWAS summary statistics UK Biobank67 http://www.nealelab.is/uk-biobank

UK Biobank GWAS summary statistics UK Biobank67,68 https://pan.ukbb.broadinstitute.org

RNAPII ChIP-seq summary This paper Table S1

Tissue-wide RNA-seq expression GTEx project15 https://gtexportal.org/home/datasets

Cell lines RNA-seq expression ENCODE project1,20 https://www.encodeproject.org/

Cancer samples RNA-seq expression TCGA project16 http://gdc.cancer.gov

Tissue specific eQTL v8 GTEx project15 https://gtexportal.org/home/datasets

Human genome annotation v38 GENCODE project56 https://www.gencodegenes.org/

Human ChIP-seq peaks ReMap project19 http://remap.univ-amu.fr/

ENCODE backlisted regions Amemiya et al.17 https://github.com/Boyle-Lab/Blacklist/

Human candidate Cis Regulatory Elements ENCODE project1,20 https://www.encodeproject.org/

DNase I hypersensitive Meuleman et al.26 https://doi.org/10.1038/s41586-020-2559-3

Long non-coding RNA encyclopedia v5 LNCipedia23 https://lncipedia.org/

Transcribed Enhancers CAGE eRNAs FANTOM5 project21,22 https://fantom.gsc.riken.jp/

ENCODE STARR-seq ENCODE project1,20 https://www.encodeproject.org/

Repeat elements UCSC Genome Browser57 https://genome.ucsc.edu/

H3K27Ac ChIP-seq experiments ENCODE project1,20 Accession IDs are in Table S2

ATAC-seq experiments ENCODE project1,20 Accession IDs are in Table S2

Epigenome states (Core 15-states model) ROADMAP project63 https://egg2.wustl.edu/roadmap/web_portal/

chr_state_learning.html

Cancer Hallmarks Genes database CHG database http://www.bio-bigdata.com/CHG/

Software and algorithms

Bowtie2 (2.4.2) Langmead and Salzberg53 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Samtools (1.11) Li et al.74 http://samtools.sourceforge.net/

DESeq2 (1.40.2) Love et al.73 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

ReMap ChIP-seq pipeline (2022) Hammal et al.19 https://github.com/benoitballester/

Trim Galore (0.6.5) Babraham Bioinformatics https://github.com/FelixKrueger/TrimGalore

MACS2 (v2.1.2) Zhang et al.55 https://github.com/macs3-project/MACS

Python (3.6.12) Python Core Team https://www.python.org/

Python PyRanges library (0.0.129) Stovner and Saestrom58 https://pypi.org/project/pyranges/

Python fastcluster library (1.2.6) M€ullner, D.60 https://pypi.org/project/fastcluster/

Python Pynndescent library (0.5.10) Dong et al.61 https://pypi.org/project/pynndescent/

Python Statsmodels library (0.14.0) Python Package Index (PyPI) https://pypi.org/project/statsmodels/

Python Lifelines library (0.27.7) Python Package Index (PyPI) https://pypi.org/project/lifelines/

Python kaplanmeier library (0.1.9) Python Package Index (PyPI) https://pypi.org/project/kaplanmeier/

Pandas https://pandas.pydata.org RRID:SCR_018214

Numpy http://www.numpy.org RRID:SCR_008633

Scipy https://www.scipy.org RRID:SCR_008058

scikit-learn http://scikit-learn.org RRID:SCR_002577

R (4.0.5) R Core Team https://www.R-project.org

R maxstat library (0.7–25) CRAN project https://cran.r-project.org/package = maxstat

deepTools (3.5.2) Ramirez et al.64 https://github.com/deeptools/deepTools
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REAGENT or RESOURCE SOURCE IDENTIFIER

GREAT (v4.0.4) Mc Lean et al.65 http://great.stanford.edu/public/html/

HOMER (v4.11) Heinz et al.28 http://homer.ucsd.edu/homer/

Stratified LD-Score Regression Finucane et al.66 https://doi.org/10.1038/ng.3404

featureCounts Liao et al.69 https://doi.org/10.1093/bioinformatics/btt656

SCTransform Choudhary et al.71 https://doi.org/10.1186/s13059-021-02584-9

Other

Code for main figures and analysis This paper; Github https://github.com/benoitballester/Pol2Atlas

Intergenic RNAPII Atlas: input data This paper; Zenodo https://zenodo.org/record/7785393

Intergenic RNAPII Atlas: output data This paper; Zenodo https://zenodo.org/record/8091826

Intergenic RNAPII Atlas: annotated consensus This paper Data S1
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Benoit Ballester (benoit.

ballester@inserm.fr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA polymerase II ChIP-seq data are publicly available in NCBI-GEO, and data accessions for ChIP-seq are listed in Table S1. The

GTEx15 eQTL data were obtained from GTEx v8. Human regulatory TF catalog was obtained from ReMap 2022 release.19 ENCODE

RNA-seq raw sequencing data (Accession IDs in Table S4) are available at https://www.encodeproject.org/. TCGA and GTEx RNA-

seq raw sequencing data are available under controlled access to ensure appropriate data usage. Access to these protected data

must be requested through the dbGaP portal. The Cancer GenomeAtlas16 (TCGA) RNA-seq BAMfiles are accessible through dbGaP

under accession no. phs000178.v11.p8.c1 (TCGA) and at NCI’s Genomic Data Commons (http://gdc.cancer.gov) under project

TCGA. Genotype-Tissue Expression (GTEx) RNA-seq BAM files are accessible through dbGaP under accession no.

phs000424.v8.p2.c1 (GTEx) and at the GTEx portal (https://gtexportal.org/home/). Identified and annotated RNAPII consensus

are available in Data S1.

We deposited the codes and bioinformatics environments in GitHub at https://github.com/benoitballester/Pol2Atlas. The pro-

cessed data matrices and files can be accessed on Zenodo.18,52 Both data and codes are publicly available for the replication of

the whole study.

METHOD DETAILS

RNAPII ChIP-seq data processing
We recovered from NCBI-GEO all existing RNA Polymerase II (RNAPII) ChIP-seq experiments targeting the POLR2A subunit (n =

1,135) in human, following the ReMap procedures and pipeline.19 Briefly, we manually annotated and standardised the cell line

and tissue of origin names (Table S1). Every experiment was downloaded and processed uniformly starting from the fastq files, to

quality checks, up to the peak calling stage using the ReMap pipeline. In more detail, ChIP-seq experiments were retrieved from

the NCBI Gene Expression Omnibus (GEO) and ENCODE databases. For GEO, the query ‘Genome binding/occupancy profiling

by high-throughput sequencing’ AND ‘homo sapiens’[organism] ANDNOT ‘ENCODE’[project]’ was used to return a list of all potential

studies. The selected experiments metadata are then manually curated and annotated with official nomenclatures for target names

and biotypes. For incomplete metadata, the materials and methods of associated and published papers are often examined to com-

plete the curation. We used the BRENDA Tissue Ontologies for cell lines at the EBI Ontology Lookup Service (www.ebi.ac.uk/ols/

ontologies/bto) as well as the Cellosaurus database to homogenize cell and tissue names (e.g., MCF-7 not MCF7, Hep-G2, not

HepG2, Hepg2 etc.). We define a dataset as a DNA-binding experiment in a given GEO/ENCODE series (e.g., GSE37345), for a given

RNA Polymerase II subunit (e.g., POLR2A), and in a particular biotype (e.g., LNCaP, MCF-7) in a given biological condition. Datasets

are labeled with the concatenation of these information (e.g., GSE37345.POLR2A.LNCAP_45min-DMSO). All data were re-analysed

starting from raw FASTQ files. Both GEO and ENCODE datasets were manually curated, processed and analyzed in the same way.

Bowtie 253 (version 2.2.9) with options -end-to-end -sensitive was used to align all reads on the human genome GRCh38/hg38 as-

sembly. Trim Galore (https://github.com/FelixKrueger/TrimGalore) was used to remove adapters, trimming reads up to 30 bp. Trim
e2 Cell Genomics 3, 100411, October 11, 2023

mailto:benoit.ballester@inserm.fr
mailto:benoit.ballester@inserm.fr
https://www.encodeproject.org/
http://gdc.cancer.gov
https://gtexportal.org/home/
https://github.com/benoitballester/Pol2Atlas
http://www.ebi.ac.uk/ols/ontologies/bto
http://www.ebi.ac.uk/ols/ontologies/bto
https://github.com/FelixKrueger/TrimGalore
http://great.stanford.edu/public/html/
http://homer.ucsd.edu/homer/
https://doi.org/10.1038/ng.3404
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1186/s13059-021-02584-9
https://github.com/benoitballester/Pol2Atlas
https://zenodo.org/record/7785393
https://zenodo.org/record/8091826


Please cite this article in press as: de Langen et al., Characterizing intergenic transcription at RNA polymerase II binding sites in normal and cancer
tissues, Cell Genomics (2023), https://doi.org/10.1016/j.xgen.2023.100411

Article
ll

OPEN ACCESS
Galore is a wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming to FastQ files. With samtools

rmdup polymerase chain reaction duplicates were removed from the alignments. Following the ENCODE ChIP-seq guidelines54 we

used the MACS255 peak-calling tool (version 2.1.1.2) to identify the RNAPII-bound regions. For all the datasets, the corresponding

bed file is available for download. In order to study only the intergenic part of the genome, we filtered out peaks overlapping

GENCODE56 v38 transcripts ±1kb. We also excluded ENCODE blacklisted regions.17 We retained peaks with a MACS2 q-value un-

der 10�5, and removed uninformative datasets with less than 100 intergenic peaks. In the end, we conserved 906 out of 1,135 data-

sets after all Quality Checks (Figures S1B and S1D). Finally we investigated the distribution of antibody usage across the 906 datasets

(Figure S1A). The Table S1 includes standardised antibody information, which was manually curated from ENCODE, GEO or the

associated paper methods.

High level biosample annotation
Due to the very large biological diversity of the experiments, it is necessary to have a high level annotation to make the interpretation

of the results easier, as well as comparing results between datasets. We annotated samples according to their tissue of origin, with

the simplified GTEx tissue (30 tissues) annotation as a baseline, to which we added additional tissues: bone, eye, embryo and tra-

chea. Tomake some resultsmore interpretable, we grouped similar tissues (e.g., various brain tissues into ‘Brain’) obtaining an anno-

tation with 18 categories (Table S3). A full sample-annotation table is available in Table S1.

Construction of the intergenic RNAPII atlas
A naive approach to delineate groups of RNAPII peaks corresponding to a similar biological signal across experiments would be to

merge overlapping peaks. However, when the number of experiments is large, the entire genome becomes coveredwith peakswhich

makes this approach impractical. To create consensus RNAPII peaks, we first computed the density function of the peak summits

(the single base pair genomic location with the maximum signal of the peak) across each chromosome. Due to the inherent inaccu-

racy on the summit position of these sequencing techniques and the undersampling, this estimate is extremely noisy. To reduce the

amount of noise, we applied a Gaussian filter to this density function across the genome (Figure 1A). Consensus peaks were defined

at each local minima of the smoothed density function. A peak belongs to a consensus if its peak summit falls in between the iden-

tified flanking local minimas. The boundaries of the defined consensus peak were reduced to the ones of the farthests peaks. By

default 1/8th of the average peak size was used as the standard deviation of the Gaussian kernel, and to be valid each consensus

was required to contain at least 2 peaks from different experiments. Consensus peaks centroid were defined as the mean position of

the peak summits. The middle of the peak was used, if a summit coordinate was not available. A binary data matrix was generated to

summarise all datasets. For each consensus peak, this matrix stores if a biosample has a RNAPII peak that belongs to it, similar to the

DNAse 1 binarymatrix fromENCODE.26 A schematic of thewhole approach is available in Figure S1. Identified and annotated RNAPII

consensus are available in Data S1.

Comparison with reference databases from other large-scale efforts
The RNAPII atlas was intersected against GENCODE56 v38, LNCipedia23 v5, FANTOM5,21,22 ReMap25 2022, ENCODE cCREs,20

ENCODE STARR-seq and Repeat elements downloaded from UCSC57 (hg38). Intersections are computed using the centroid of

RNAPII consensus (1bp) against the whole genomic features. The PyRanges python library58 was used to compute intersections be-

tween genomic features.We computed overlap enrichments for thewhole dataset using a binomial test where: n, the number of trials,

is the number of RNAPII consensus; p, the probability of intersection, is the base pair coverage of the feature of interest divided by the

coverage of the intergenic regions (+-1kb from genes, excluding ENCODEblacklisted regions); k, the observed number of successes,

is the number of RNAPII consensus intersecting the feature of interest; The fold change is computed as k=n
p . We computed overlap

enrichments for subsets of the whole RNAPII atlas using a hypergeometric test, which removes the RNAPII-specific intersection bias:

where N, the population size, is the number of RNAPII consensus; K, the number of successes in the population, is the number of

RNAPII consensus intersecting the feature of interest; n, the number of draws, is the number of RNAPII consensus of the subset

of interest; k, the number of observed successes, is the number of RNAPII consensus of the subset of interest intersecting the feature

of interest.

Annotation of RNAPII consensus
We performed functional annotation of the 181,547 RNAPII consensus using a simplified approach, where each RNAPII consensus

can overlap multiple categories such as Promoter-like, LNC-body, Enhancer-like, Regulatory-like, Gene-tail, Unannotated (Fig-

ure S4A). In the following analyses, genomic intersections are performed at the RNAPII consensus centroid against the whole

genomic feature. Promoter-like: RNAPII consensuswere annotated as promoter-like if theymet any of the following criteria: presence

of cCREs PLS (Promoter-like Sequence) or cCREs H3K4Me3 (histone H3 lysine 4 trimethylation) or F5 TSS (FANTOM5 Transcription

Start Site) or if they overlapped with a LNCipedia promoter, a comprehensive database of long non-coding RNA transcripts. Here,

LNCipedia promoters are defined as ±1kb regions around their promoter. LNC-body (potential LNC RNA transcripts): RNAPII

consensus were annotated as LNCipedia transcripts if they matched any of the transcripts present in the LNCipedia database,

excluding those already annotated as Promoter-like. Here LNCipedia transcripts are extended by 1kb. Enhancer-like: RNAPII

consensus were classified as Enhancer-like if they fulfilled the following criteria: presence of cCREs ELS (Enhancer-like Sequence)
Cell Genomics 3, 100411, October 11, 2023 e3
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or F5 Enhancer (FANTOM5 Enhancers) or if they showed overlap with enhancer regions identified by ENCODE STARR-seq. RNAPII

consensus that were already annotated as Promoter-like were excluded from this category. Regulatory-like: RNAPII consensus were

labeled as unannotated regulatory if they met the criteria of being present in ReMap CRM or ENCODE DNase (DNase I hypersensi-

tivity sites) datasets. Additionally, they were excluded if they were already classified as Promoter-like, Enhancer-like, or LNC-like.

Gene-tail: RNAPII consensus were labeled as gene-tail if they were located +1kb to +9kb downstream of a GENCODE gene. Unan-

notated: RNAPII consensus that did not fulfill any of the aforementioned criteria were considered unannotated. By applying these

specific criteria, we were able to assign functional annotations to 90.9% RNAPII consensus, enabling us to gain insights into their

putative regulatory roles and characterising their potential functional significance within the context of our study. In addition, we

compared the RNAPII consensus to reference databases through a more detailed and non-exclusive analysis (Figure S6). Identified

and annotated RNAPII consensus are available in Data S1.

RNAPII atlas visualisation and clustering
To visualise the similarity between datasets, we applied UMAP with the Yule similarity, with 30 neighbors and the minimum distance

set to 0.5. To visualise the similarity between RNAPII consensus, we use the Sorensen-Dice similarity, 30 neighbors and theminimum

distance is set to 0. Other parameters were left to default. For the consensus peaks UMAP, to highlight consensus peaks specific to a

biotype annotation, each consensus peak was colored by its most frequent biotype annotation. To do so, we compute the sum of the

number of peaks per dataset of each annotation at each consensus (si;jÞ, which is then normalised by the total number of peaks for

each annotation (ni;j): si;j =
PN

k = 1Mk e ai ;j and ni;j =
si;jP
si;�
, where ai is a set storing the index of each datasets belonging to annotation i,

M is the dataset binary matrix, N the number of experiments, and j the consensus index. This prevents over-represented annotations

or annotations with some datasets with a large number of peaks to annotate most of the consensus peaks. We chose as represen-

tative for consensus j the annotation i for which ni;j is the largest.

Finally, to identify consensus peaks that are not condition specific, each one is linearly grayed according to its Gini-Simpson index:

lj = 1� PR
i = 1p

2
i;j, where R is the number of annotations, and pi;j =

ni;jP
n�;j
. The Gini-Simpson index is a measure of diversity: in this

study, it tends toward one if the annotations are equidistributed, and is equal to zero if the consensus only has peaks belonging

to datasets with the same annotation.

A three steps Hierarchical Clustering (HC) approach was used to order datasets and RNAPII consensus peaks. First, we performed

a UMAP dimensionality reduction to 10 dimensions, and used the samemetric as the 2DUMAP transform. This step allows the use of

any metric, as UMAP optimises to a lower dimensional space using the euclidean distance, which is used by k-means andWard HC,

and also improves k-means and HC quality. Second, we reduced the effective number of points using k-means clustering and group-

ed very similar points into 50,000 clusters (step performed only when >50,000 points). This approach is documented and allows to

scale Ward HC to very large datasets.59 Third, we performed Ward HC on the k-means clusters centroids using the fastcluster li-

brary.60 The bottom part of the heatmap displays each pi;j as defined in the previous section as a stacked barplot.

A Shared Nearest Neighbor (SNN) Graph Clustering approach was used to identify clusters of RNAPII consensus peaks. This

approach is common in single-cell RNA sequencing (scRNA-seq) analyses to identify clusters of cells without a priori on the number

of clusters. To scale to a large number of points to cluster, we used an Approximate Nearest Neighbor (ANN) method to build the NN

graph (python library pynndescent61). This approach avoids the quadratic time complexity of building exact nearest neighbors, can

use any metric and runs in an almost linear time complexity. The Sorensen-Dice coefficients were used to measure distances be-

tween points. In the SNN graph, vertices are weighted by the number of shared nearest neighbors between the two nodes. To identify

communities in the SNN graph, we used the Leiden graph clustering algorithm implemented in the python leidenalg62 library.

Extending the integrative approach to H3K27ac ChIP-seq
We collected all H3K27ac ChIP-seq experiments from ENCODE, retrieved processed files in bed narrowPeak format, mapped for

hg38, and without audit error appearing on the sample metadata (n = 890 samples). Each sample was annotated with the same

biotype methodology as our RNAPII consensus. The same integrative approach and settings as the RNAPII atlas presented above

were run on this dataset.

Epigenetic enrichments
We downloaded every 15 states epigenome available from ROADMAP63 (hg38). We intersected (consensus centroid only) each

consensus peak with each epigenome to get the epigenetic state of each consensus in each epigenome. We computed the propor-

tion of epigenetic states for the subsets/clusters of RNAPII consensus of interest for each epigenome (i.e., the sum of the epigenetic

states proportions is equal to one in an epigenome). We used the ‘‘GROUP’’ column of the epigenome metadata to annotate and

group epigenomes. We used a paired t-test to statistically assess the difference in proportions between subsets of RNAPII

consensus across epigenomes. We downloaded H3K27ac ChIP-seq and ATAC-seq processed bam files from ENCODE for Heart,

Liver and T cells samples (Table S2). We used deepTools64 to compute the mean profiles at each RNAPII consensus of the studied

clusters (+-5kb from centroid).
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Gene Ontology enrichments of nearby genes
To assign consensus peaks to genes, we used a similar heuristic as GREAT65 at default settings: a basal domain of 5kb upstream and

1kb downstream, extended in both directions up to 1Mb or the nearest basal domain (whichever is the closest). For each gene we

obtained the number of consensus peaks in its regulatory region, for all the consensus peaks (n) and its subset of interest (k). To

compute Gene Set enrichments, we used a Negative Binomial GLM: lnðmÞ = b0 + b1 3 G+E. Where G is equal to 1 if the studied

gene belongs to the Gene Set of interest and 0 otherwise. The term E corrects for the intersection bias of the background regions,

with E being the expected number of hits for a particular gene: E = n � K
N, with K being the number of query regions, andN the number

of background regions. We tested whether b1 is greater than zero using a Wald Test. The model is fitted using the python statsmo-

dels53 library. We considered GO terms with more than 3 genes and less than 1,000, and applied the Benjamini-Hochberg FDR

correction. The approach is similar to Chip-Enrich and Poly-Enrich, which has shown that gene-wise modeling is required to reduce

false discoveries, but these two methods do not offer a model for our case, where the query regions are a subset of a set of back-

ground regions. To improve the readability of the GO enrichments, we identified clusters of GO terms given to similar genes using a

graph clustering approach to reduce term redundancy. Starting from a binary matrix with genes as columns and significant (5% FDR)

GO terms as rows, we built a nearest neighbor graph of GO terms using the Yule metric. We performed graph clustering on this NN

graph and chose the GO term with the smallest p-Value as the cluster representative for each cluster.

TF motifs identification
We employed HOMER28 4.11 to identify TF motifs within the HOMER database designed for the hg38 genome. For each of the 51

RNAPII clusters, we conducted a systematic search for knownmotifs (default parameters), leveraging the extensive collection of mo-

tifs available within the HOMER database. The HOMER database encompasses a diverse range of experimentally validated motifs,

which have been curated and annotated to provide reliable and accurate motif predictions.

GWAS traits and summary statistics
We used Stratified LD-Score Regression66 (S-LDSR) to compute enrichments of heritability phenotypes for subgroups of consensus

peaks. We downloaded all available GWAS summary statistics files from UK Biobank67,68 (http://www.nealelab.is/uk-biobank), and

only kept traits with strong heritability (noted ‘‘z7’’, as recommended by the documentation for this kind of analysis). RNAPII

consensus coordinates were lifted to hg19 (UCSC liftover) which caused 873 RNAPII consensus to be removed. An SNP was as-

signed to a RNAPII consensus if it overlaps any part of the RNAPII consensus. The LDSC pipeline was run at default settings and

Bonferroni correction was applied on the obtained p values. Heritability enrichments are defined as: Proportion of h2

Proportion of intersected SNPs, where

h2 is the SNP-based heritability (see LD-Score paper66).

RNA-seq expression quantification of RNAPII-bound regions
We quantified RNA-seq expression on RNAPII-bound regions using featureCounts69 similar to RNA-seq gene quantification. Instead

of genes as sampling points, RNAPII-bound regions were used and standardised to 1kb long, centered on the consensus centroids

(±500bp). Multi-mapping reads were excluded. Given the similarities of our data with scRNA-seq datasets, we employed several

methods commonly used in the scRNA-seq field. Our data has a large number of samples (equivalent to cells) with much lower

read counts compared to traditional gene-centric RNA-seq experiments. Before conducting each analysis, we preprocessed the

data by filtering out RNAP2-bound regions that did not have at least one read count in three samples. This filtering step helped to

remove noise and increase the quality of the data. The ‘‘gene-centric’’ GTEx count table was retrieved from GTEx.15

Count normalisation and transformation
An overview of our count processing is available in Figure S14. Counts were normalised using the scran pooling and deconvolution70

approaches, as RNAPII-bound region counts have a large fraction of zeroes causing issues on approaches such as DESeq2’s me-

dian of ratios. A small modification of the method was used to compute the size factors only using the top 5% ‘‘most detectable’’

bound regions. We defined detectability as the number of samples that have at least one read at an RNAPII-bound region. To break

ties, we computed detectability at 2 reads, 3 reads. up to 5 reads, which is sufficient to break most ties. This helped to reduce the

number of non-expressed RNAPII-bound regions or RNAPII-bound regions that are expressed in a single condition only, which

should not be considered for an optimal normalisation. This can be seen as something analogous to the use of the geometric

mean in DESeq2’smedian of ratios, which considers only genes with at least 1 read in each sample. RNAPII counts were transformed

using the Pearson residuals of a regularised Negative Binomial (NB) model, similarly to what is used in SCTransform.71 This kind of

transform has been shown to better discriminate between biological conditions in scRNA-seq experiments, aswell as reducing batch

effects caused by differences in sequencing depths at small counts. The model for a gene/RNAPII-bound region expression is:

lnðmÞ = bX + lnðsÞ. Where m are the predicted means for a bound region/gene for each sample, b are the fitted model coefficients,

X is the designmatrix, and s are the count normalisation factors for each sample. In this work we use a simple intercept but themodel

allowsmore complex experimental designs. We use the following NB(m, a) variance formulation: VðmÞ = m+a m2. We fitted a trendline

of the overdispersion parameter a as a function of themean, so we obtain a regularised estimate of the variance that only depends on

the mean. To do so, we binned genes/RNAPII-bound regions into 20 groups according to their quantile of mean expression, evalu-

ated each gene/bound region overdispersion parameter, find the modal value of overdispersion within a group using a kernel density
Cell Genomics 3, 100411, October 11, 2023 e5
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estimate (with Silverman’s rule to estimate bandwidth), and linearly interpolate results between each group/quantile of mean expres-

sion. We only used up to 5000 RNAPII-bound regions/genes to fit the mean/overdispersion relationship to speed up computations.

The python statsmodels library was used to fit theNBmodels with themore robust Nelder-Mead solver instead of BFGS. The pearson

residuals are then computed as following: = x�mffiffiffiffiffiffiffi
VðmÞ

p , where x is the count value. A custom python implementation was employed as the

SCTransform package failed to run on the RNAPII count matrices, possibly due to much larger counts than UMI scRNA-seq exper-

iments, causing numerical instability when fitting the models. The original implementation clips the pearson residuals at ±
ffiffiffiffiffiffiffiffi
n=4

p
by

default, where n is the number of cells/samples, in order to reduce the influence of outliers. We found these bounds to be quite small

when dealing with smaller sample sizes, which can remove biological signals. Instead, we clipped values at ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9+n=4

p
, creating

larger bounds for small sample sizes without changing the large sample size behavior.

Reads distribution on standardised RNAPII consensus
To visualise the read profiles, we employed the following methodology. Initially, we sampled the RNA-seq signal within 10-base pair

(bp) windows, which were positioned within the standardised 1-kilobase (kb) RNAPII consensus regions. To integrate the data from

multiple samples, we generated a pooled "meta-sample" by summing the number of reads of each sample. Furthermore, we normal-

ised the read counts for each sample by dividing them by the total number of reads, ensuring accurate comparisons across samples.

To standardise the windowed signal of each RNAPII consensus region, we normalised it by dividing by the maximum pooled signal

across all 10bp windows within that specific RNAPII consensus region. This normalisation step allowed us to eliminate any potential

bias and enabled fair comparisons between different regions and datasets. Next, we applied ward hierarchical clustering to arrange

the rows of the heatmap for each dataset. This clustering approach facilitated the identification of similar transcriptional patterns.

Finally, to generate an overall profile for each dataset, we calculated the mean value of the pooled, maximum normalised transcrip-

tional signal across all RNAPII consensus regions.

Unsupervised feature selection, dimensionality reduction and predictive models
Feature selection in scRNA-seq is a common step that allows to remove a large fraction of potentially uninformative bound regions/

genes (i.e., those with very low expression or those with ubiquitous expression, which are not informative of the sample/cell biology).

Typically, around 2000 to 3000 genes are kept in scRNA-seq experiments, but this number is generally tuned for each experiment. To

automatically select ‘‘highly variable’’ features for each dataset, we computed the sum of the squared pearson residuals, which are

asymptotically following a c2 distribution with n - p degrees of freedom, n being the number of samples, and p the number of param-

eters of the model (1 in our case). We performed an upper tail test for each gene/bound region and kept bound regions at an FDR of

5%. This selects only sufficiently expressed genes above the mean-variance trendline, and due to the clipping of the pearson resid-

uals also removes outliers with an extreme variance (Figure S22A). We performed PCA on the Pearson Residuals of these highly var-

iable features. To automatically identify the optimal number of Principal Components, we used Horn’s Permutation Parallel Analysis,

which has been found to be one of the most effective approaches to identify the number of components in factor analysis72 (cit). This

approach generates row–wise permutations for each feature, computes PCA on these permuted datasets, then the selected number

of components is the threshold at which the eigenvalues from the randomised dataset are larger than the real dataset. We performed

3 permutations due to the computational cost of this approach, which is acceptable as the randomised eigenvalues are very stable on

large matrices (Figure S22B). We used the fast ‘‘randomised’’ solver from the python sklearn59 library to compute PCAs.

For UMAP visualisation, we used 30 neighbors, a min_dist parameter of 0.5, Pearson correlation as the metric and use data in PCA

space as input. For heatmaps, we used a similar approach as the RNAPII heatmap, except that the data was used in PCA space as

input to the UMAP pass for the samples, and used Pearson correlation as the metric for both samples and RNAPII-bound regions.

The predictive model uses a Catboost gradient boosted decision tree model that takes as input the data in PCA space. Default set-

tings were used with the exception of balanced class weights (where each sample is reweighted by class proportion). We used

balanced accuracy (where each sample is reweighted by class proportion) as the main metric to evaluate the model over a stratified

10–Fold Cross Validation.

Identification of per tissue markers and ‘‘meta-clustering’’
For each dataset (TCGA, ENCODE, GTEx, RNAPII), we identified markers for each annotation (i.e., Pol2+Liver, GTEx+Blood). To

identify markers in the three RNA-seq datasets, we performed a group-versus-rest, one sided t-test on the Pearson Residuals.

We kept over-expressed bound regions with log2 Fold Change above 0.25, and detectable in at least 10% or 2+ samples (whichever

is the largest). For the RNAPII dataset, we performed an hypergeometric test for each RNAPII consensus, where: N, the population

size, is the number of peaks across all experiments; K, the number of successes in the population, is the number of peaks across all

experiments with the annotation of interest; n, the number of draws, is the number of experiments that has a peak at the studied

consensus peak; k, the number of observed successes, is the number of experiments with the annotation of interest that has a

peak at the studied consensus peak. We used a BH FDR cutoff of 5% in both cases. This yields a binary vector which indicates

whether a RNAPII-bound region is a marker or not for each dataset+annotation. We removed RNAPII-bound regions which are

markers in more than 10%of the dataset+annotation combinations or in less than two dataset+annotation. An Average Linkage clus-

tering using the Yule binary metric was performed, which we found to be less sensitive to the number of identified markers.
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Tissue specific eQTL enrichments
We downloaded per tissue eQTL data from GTEx ‘‘GTEx_Analysis_v8_eQTL.tar’’ and used the list of significant eQTL-gene pairs for

each tissue. For each SNP listed as an eQTL we stored whether it is listed as an eQTL or not in each tissue. SNPs listed as eQTLs in

more than 10% of the tissues (6 or more) were removed to keep variants that are likely located in tissue specific regulatory regions.

Using the list of per dataset, per tissue marker RNAPII-bound regions, we kept RNAPII-bound regions that are markers in less than

10% of the tissues in a dataset (6 or less) and removed non-marker RNAPII-bound regions. We removed tissues having less than 50

markers left after this step. We computed pairwise intersection enrichment p values between the tissue-specific eQTLs and the

marker RNAPII-bound regions (SNP intersection against whole bound region). We computed an hypergeometric enrichment p value

for each of these intersections as following: N, the population size, is the number of RNAPII-bound regions (after filtering); K, the num-

ber of successes in the population, is the number of RNAPII-bound regions intersecting an eQTL from the eQTL-wise tissue of inter-

est; n, the number of draws, is the number of marker RNAPII-bound regions of the second tissue of interest; k, the number of

observed successes, is the number of marker RNAPII-bound regions of the second tissue of interest intersecting an eQTL from

the eQTL-wise tissue of interest.

Differential expression
To identify differentially expressed (DE) RNAPII-bound regions between tumor and normal tissues, we performed a t-test on the Pear-

son Residuals with an FDR cutoff of 5%. We constrained DE RNAPII-bound regions to have an absolute log2 Fold Change above

0.25, and to be detectable in at least 10% or 2+ samples (whichever is the largest) of either class (normal/tumor). For the detection

of Tumor Subtype specificmarkers, we compared the expression of samples of a subtype to reference normal samples. We used the

same significance cutoffs. We considered a marker to be subtype-specific only if it appeared for this subtype. Linear modeling

methods such as DESeq2 ran out of memory on large datasets and required an excessive computation time. A t-test was used to

accommodate large datasets (100+ samples x 180 000 bound regions in most datasets) and to keep an uniform processing for

each dataset for our cross-dataset analyses. With sufficiently large sample sizes, the t-test yields robust markers, although with

less statistical power (Figures S22C and S22D). To evaluate our approach on a much smaller dataset with less statistical power,

we selected samples from two similar types of heart tissues from GTEx and downsampled to obtain an n = 3 comparison. Here,

we used DESeq273 to maximise statistical power. We performed 100 random sampling iterations to obtain 3 samples for each tissue,

evaluated DE in each iteration, then kept bound regions supported as DE in at least half of the downsampling iterations. To evaluate

the relationship between sample size and statistical power, we performed 10 downsampling iterations for each sample size.

GREAT65 v4.0.4 analyses were performed on BRCA TNBC specific RNAPII-bound regions, identifying enrichment of the ‘‘MAP ki-

nase tyrosine/serine/threonine phosphatase activity’’ GO:0017017 term (Binom FDR Q-Val 1.34e-14), with TNBC specific RNAPII-

bound regions associated with 10 DUSPs genes.

Using GTEx normal tissues instead of TCGA normal tissue
We evaluated the variation of cancer-specific intergenic RNAPII markers when using GTEx normal tissues instead of TCGA normal

tissues. We selected tumor samples from TCGA and utilised GTEx normal samples as the reference group (Figure S23). Differential

expression analysis was performed between these two groups, employing the samemethodology as in the primary TCGA cancer vs.

TCGA normal analysis. The RNAPII consensus regions were then ranked based on their p values, and an equal number of markers

were retained as in the main analysis. To evaluate the overlap between the TCGA normal vs. GTEx normal analyses, we computed

two statistics: A) the recall, which represents the fraction of sharedmarkers, and B) the fold change of the observed number of shared

markers compared to the expected value if theywere chosen randomly. It is important to note that the original TCGA normal vs. TCGA

tumor samples were not paired in the analysis (there are, in fact, more cancer samples than normal ones). Additionally, GTEx and

TCGA employ different protocols for tissue sampling, conservation, and sequencing, which introduces a noticeable batch effect.

Our findings indicate a substantial and statistically significant overlap between the two analyses, with the exception of ESCA (Esoph-

ageal carcinoma) cancer, which also exhibited lower classification accuracy in machine learning.

Identification of pan-cancer markers
To identify RNAPII-bound regions whose expression is associated with survival or DE (separately) in tumor tissues inmultiple cancers

(‘‘pan-cancer markers’’), we randomly selected for each cancer the same number of marker bound regions as observed in this can-

cer. This process was repeated 100 times to obtain the expected distribution of the number of cancers in which a bound region is a

marker. We identified the ‘‘pan-cancer threshold’’ as the threshold where less than 5% of the observed markers are expected to

belong to the null distribution (equivalent to 5% FDR, see Figure S24). This approach allowed us to set a statistically meaningful

threshold to identify bound regions that are markers in more cancers than expected at random, instead of an arbitrary threshold.

Survival analysis
For survival analysis, we fit a linear Cox Proportional Hazards regression model on the Pearson residuals using the Python Lifelines

library, and use a 5% FDR threshold. Kaplan-meier survival curves were created using the kaplanmeier python library. Themaxstat R

library was used to obtain the optimal expression cutpoint as well as the associated maximally selected log -rank statistic p value

(using the most accurate ‘‘condMC’’0 method with 100 000 samples to compute the p value).
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Enrichment of cancer hallmark-related genes
To investigate the enrichment of cancer hallmark-related genes, we utilised a gene set enrichment analysis (GSEA) approach. The list

of candidate genes associated with specific cancer hallmarks was obtained from the CHG database (http://www.bio-bigdata.com/

CHG/) which provides a comprehensive collection of genes with verified and putative links in various cancer-associated biological

processes. We conducted GSEA analysis on RNAPII markers genomic regions. However, instead of utilising Gene Ontology (GO)

terms, we employed the cancer hallmarks as defined in the CHG database. Cancer hallmarks encompass key biological processes

and pathways that contribute to tumorigenesis and cancer progression. We assessed the enrichment of cancer hallmark-related

genes nearby the pan-cancer RNAPII markers. This analysis allowed us to identify potential associations between the RNAPII marker

and specific cancer hallmarks, providing insights into the functional relevance of these regions in cancer biology.
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Figure S1 : Characteristics of the RNAPII atlas, related to STAR Methods, related to STAR
Methods
A. Number of RNAPII ChIP-seq experiments in which each antibody is used. B. Histogram of the
distribution of the number of Intergenic RNAPII peaks per dataset, average 2,787 intergenic binding
events per dataset. Red line indicates minimal cutoff for a dataset to be retained. C. Histogram of the
distribution of the intergenic consensus peaks sizes, with an average consensus width of 410bp (red
line). D. Detectability of RNAPII consensus peaks per sample category ; Cancer cell lines, Cell lines
and Tissues.
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Figure S2 : Examples of intergenic RNAPII occupancy in MCF-7 and HEK293 cells, related to
Figure 1
A. Genomic example on chr1:31170514-31171424, displaying RNAPII raw ChIP-seq signals across
MCF-7 cell lines (Blue) at the location of a RNAPII consensus region (grey bar), with GENCODE.
ReMap TF ChIP-seq and ENCODE cCREs tracks. B. Similarly, a second example of RNAPII
ChIP-seq signals at chr12:8023634-8024204 with HEK293 cell lines.
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Figure S3 : Large scale integration methodology of RNAPII ChIP-seq, related to STAR Methods
Schematic of our post peak-calling integration methodology : A. Identification of consensus peaks via
a peak density-based approach. Naive approach refers to a simple merge on overlap. B.
Summarization of all datasets / consensus peaks in a binary matrix storing the presence or absence
of RNAPII at each consensus peak in each experiment.

A
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Figure S4 : Intergenic RNAPII bound regions are co-localizing with regulatory elements, related
to Figure 1
A. UpSet plot of putative functional annotations of intergenic RNAPII consensus, derived from
reference databases (see methods for details). Rare combinations with intersection sizes smaller than
0.1% of all intergenic RNAPII consensus have been removed for clarity. B. Fraction of consensus
peaks intersected for the top ten most intersected repeat families. FC corresponds to fold change
enrichment versus random regions. All Fold Changes are statistically significant (FDR < 0.05) unless
otherwise mentioned (hypergeometric test, see methods, p < 1e-100).
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Figure S5 : Intergenic RNAPII bound regions are enriched in end of gene regulatory elements,
related to STAR Methods
A. Distributions of RNAPII consensus centroids relative to protein coding genes (gene length
standardised to 10kb), red line indicates 9kb after Transcription End Site (TES). B. Distribution of
RNAPII consensus counts by 5kb windows relative to TSS of and TES of protein coding genes (red),
in narrower genomic coordinates. C. HOMER top 10 known motif enrichment -log10(p-values) for
RNAPII consensus within 9kb of a TES. The top 2 TFs are CTCF and CTCFL (BORIS).

6/25



SUPPORTING ONLINE MATERIAL de Langen P., et al. | Intergenic RNAPII transcription

Figure S6 : Comparison of intergenic RNAPII consensus with genomic resources, related to
Figure 1
A. Comparison of RNAPII consensus location with major genomic resources of regulatory and
non-coding elements. B. Distribution of candidate cis-Regulatory Elements (cCREs) derived from
ENCODE compared to the RNAPII atlas. FC denotes fold change versus random intergenic regions;
all results are strongly statistically significant (hypergeometric test, see methods, p < 1e-300).
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Figure S7 : Genome-wide large scale integration of 890 Human H3K27Ac Histone ChIP-seq
experiments, related to STAR Methods
A. H3K27Ac occupancy in 1,238,750 consensus regions across 890 biosamples. Lower panel
indicates the normalised contribution of a biotype, in terms of peaks, to each consensus. B.
Two-dimensional Uniform Manifold Approximation and Projection (UMAP) projection of all 890
H3K27Ac ChIP-seq datasets. C. UMAP projection of all H3K27Ac consensus according to their
binding patterns, coloured by dominant biotype.
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Figure S8 : RNAPII occupancy clustering and cluster annotation statistics, related to STAR
Methods
A. Number of clusters by level of annotation confidence (High, Medium, Low), derived with
concordance with biological enrichments. B. Annotation confidence by cluster (dark = selected
annotation). C. Number of RNAPII consensus peaks within one of the 51 clusters of annotation D.
Number of RNAPII consensus peaks across the three levels of annotation confidence.
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Figure S9 : Tissue-specific biological characteristics of RNAPII consensus, related to Figure 3
Detailed characteristics of three selected RNAPII clusters (#31, #4, #5) compared to the biological
classification of the human index of DNase I hypersensitive sites (DHSs) (A,B,C) and HOMER top 8
known DNA motifs enrichments. A. RNAPII cluster #31 defined as Brain/Nervous biotype is enriched
in Neural, Stromal B and Cardiac DHS. B. RNAPII cluster #4 defined as Embryonic biotype is
enriched in Primitive/Embryonic DHSs. C. RNAPII cluster #5 defined as Blood/Immune biotpype is
enriched in Lymphoid DHSs. D. The HOMER top 8 DNA motifs for the RNAPII cluster #31 defined as
Brain/Nervous biotype contains Fox and Jun. E. The RNAPII cluster #4 defined as Embryonic biotype
is enriched in Oct4, Sox2 and Nanog DNA motifs. F. The RNAPII cluster #5 defined as Blood/Immune
biotpype is enriched in IRF8, Pu.1 DNA motifs.
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Figure S10 : Tissue-specific epigenetic states of RNAPII consensus, related to Figure 3
A. Proportions of ChromHMM epigenetic states in the “Embryonic” cluster against other Intergenic
RNAPII consensus. (* : p < 0.05, ** : p < 0.01, *** : p < 0.001, **** : p < 0.0001; + or - indicate sign of
mean difference; two-sided paired t-test). Blue boxes correspond to RNAPII peaks not included in the
Embryonic cluster #4, but overlapping ESC epigenomes. Orange boxes correspond to RNAPII peaks
forming the Embryonic cluster #4, and overlapping ESC epigenomes. B. H3K27Ac ChIP-seq and
ATAC-seq profiles at clusters of RNAPII consensus. Selected clusters are respectively #5, #10 and
#20 for “Cardiovascular”, “Hepatic” and “Lymphoid” (largest representative clusters, see
supplementary data).
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Figure S11 : RNAPII-bound regions captures a majority of intergenic transcriptional signal,
related to Figure 4
A. Distribution as violin plots of the fraction of intergenic reads captured by RNAPII-bound regions
across samples. Dashed line indicates expected value due to RNAPII-bound regions coverage. From
top to bottom : ENCODE, GTEx, TCGA RNA-seq datasets. B. Distristribution of the percentage of
mapped reads captured by RNAPII-bound regions. C. Distribution of the average number of reads per
RNAPII-bound region (blue) or control regions (orange) (non RNAPII-bound region, all 1kb binned
intergenic regions), across samples (p-values from Mann-Whitney U-test).

12/25



SUPPORTING ONLINE MATERIAL de Langen P., et al. | Intergenic RNAPII transcription

Figure S12 : Transcriptional profiles of intergenic RNAPII-bound regions, related to STAR
Methods
A. Pooled, normalised, and averaged transcriptional profiles of intergenic RNAPII-bound regions
(methods). B. Pooled, normalised, and clustered heatmaps depicting the transcriptional profiles of the
184,547 intergenic RNAPII-bound regions. Each heatmap clustering is performed independently for
TCGA, ENCODE, and GTEx datasets.
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Figure S13 : Flowchart of the RNA-seq pipeline, related to STAR Methods
Simplified schematic of the RNA-seq processing pipeline. See methods for additional details.
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Figure S14 : Intergenic transcription by itself is sufficient to characterise biological conditions,
related to STAR Methods
A. UMAP of ENCODE total RNA-seq samples using RNA-seq signal at RNAPII-bound regions. B.
KNN (5 NN, Pearson correlation as metric) classification balanced accuracy using either Gene
expression or RNAPII signal as input. C. UMAP of GTEx RNA-seq samples using RNA-seq signal at
genes exons. Displayed colours correspond to the official GTEx Tissue colouring conventions.
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Figure S15 : Tissue-specific regulatory variants are enriched within tissue-specific Intergenic
transcripts, related to STAR Methods
A. Number of overexpressed RNAPII-bound regions per GTEX tissue. B. Intersection enrichment
heatmap between tissue-specific eQTLs (rows) and tissue-specific RNA-seq over-expressed marker
RNAPII-bound regions. C. Distributions of tissue-matching (i.e. “Artery - Aorta” vs “Artery - Aorta”) and
non-matching (i.e. “Artery - Aorta” vs “Artery - Coronary”,“Liver”...) enrichment p-values between
tissue-specific eQTLs (rows) and tissue-specific RNA-seq over-expressed markers.
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Figure S16 : The intergenic transcriptional signal is not driven by end-of-gene transcription,
related to STAR Methods
A. KNN (5 NN, Pearson correlation as metric) classification balanced accuracy using different subsets
of intergenic RNAPII-bound regions for classification. B. UMAP of GTEx RNA-seq samples using
RNA-seq signal at intergenic RNAPII, excluding those located at less than 9,000bp of a Transcription
End Site. Displayed colours correspond to the official GTEx Tissue colouring conventions.
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Figure S17 : Differentially expressed RNAPII-bound regions can be detected at smaller sample
sizes, related to STAR Methods
A. Clustered GO terms enrichments for genes nearby RNAPII-bound regions differentially expressed
between 'Heart - Atrial Appendage' and 'Heart - Left Ventricle' tissues from GTEx in a downsampled
n=3 comparison (methods). B. First two principal components of RNAPII-bound region expression in
a downsampled n=3 comparison. C. Heatmap of the Pearson residuals of DE RNAPII-bound regions
in a n=3 comparison.
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Figure S18 : Per-biotype robustly over-expressed markers display meaningful
disease-associated heritability enrichments, related to Figure 5
Top 5 heritability enrichment over robust tissue-specific over-expressed markers (Methods), for 4
disease-associated UK Biobank GWAS traits. Benjamini-Hochberg corrected LD-score regression
p-values are indicated and detailed for each trait - marker group pair.
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Figure S19 : Non coding transcription captured at RNAPII-bound regions discriminates normal
and tumour tissues, related to Figure 6
A. Heatmap of Pearson residuals (clipped at +-3) of DE RNAPII-bound regions in the Kidney
Chromophobe Carcinoma dataset (KICH). Red = strongly expressed. Bottom part of the heatmap
represents the fraction of normalised reads belonging to either class in each RNAPII-bound region
(weighted by class imbalance). B. Clustered GO terms enrichments for genes nearby RNAPII-bound
regions DE in 7 or more cancers (see methods). All enriched terms are statistically significant (FDR <
0.05, Wald test, see Star Methods). C. Gene set enrichment of cancer hallmark genes for genes
nearby RNAPII-bound regions DE in 7 or more cancers (see methods). Red dashed line indicates
0.05 p-value threshold.
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Figure S20: Non coding transcription captured at RNAPII-bound regions is prognostic of the
patient's survival, related to Figure 7
A. Number of OS-associated RNAPII-bound regions for each TCGA cancer. B. Clustered GO terms
enrichments for genes nearby RNAPII-bound regions OS-associated in 5 or more cancers (see
methods). C. Gene set enrichment of cancer hallmark genes for genes nearby RNAPII-bound regions
OS-associated in 5 or more cancers (see Methods). Red line indicates 0.05 p-value threshold.
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Figure S21: Supplementary multi-cancer prognostic marker, related to Figure 7
A. Genomic landscape of an identified multi-cancer prognostic marker blue bar at
chr11:130737791-130738240, located upstream (21kb min) and downstream (33kb min) of
non-coding and coding genes. Yellow bars indicate candidate Cis Regulatory Elements (cCREs,
Enhancer distal) and ChIP-seq binding from ReMap. This region is located between two non-coding
LincRNAs (LINC02873 and ENSG00000288013) at 21kb and 33kb respectively. It is closest to the
coding gene SNX19, which encodes a sorting nexin located at 128kb. SNX19 has not been directly
linked to cancer survival, other SNXs family members have shown potential prognostic value in
various cancers. Decreased expression of SNX1 has been associated with overall survival in
colorectal cancer, and down-regulation of SNX2 leads to drug resistance in lung cancer. B.
Kaplan-Meier survival analysis of Cervical, Uterine, Bladder and Kidney TCGA cancer patients with
high (red) and low (blue) expression from the intergenic RNAPII bound region in A. This
RNAPII-bound region reveals a previously unknown correlation between its expression and survival in
cervical, uterine, and breast cancers (Figure 7D).

22/25



SUPPORTING ONLINE MATERIAL de Langen P., et al. | Intergenic RNAPII transcription

A B

C D

Figure S22 : Mean-variance trendline, Feature selection and PCA Permutation Parallel analysis,
related to STAR Methods
A. Scatterplot of the mean and variance of the normalised counts of the 181,547 RNAPII-bound
regions in the ENCODE RNA-seq dataset. Red dots are selected “highly variable” RNAPII-bound
regions, green dots represent the fitted mean-variance trendline. Blue line is a Poisson mean-variance
relationship. B. Observed eigenvalues (or explained variance) for each component of the PCA
performed on the pearson residuals of selected RNAPII-bound regions in the ENCODE RNA-seq
dataset. 100 thinner lines (stacked on the graph) are corresponding to the PCA eigenvalues of each
of the 100 permutations of the dataset. Here, only the 102 first components are retained. C. Average
(over 10 downsampling iterations) number of detected DE RNAPII-bound regions between the two
heart tissues in function of the number of samples per group. D. Average (over 10 downsampling
iterations) precision and recall of the t-test in function of the sample size, using DESeq2 DE-bound
regions as a reference.
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C
TCGA Cancer Reference GTEx tissue
TCGA-BLCA Bladder
TCGA-BRCA Breast
TCGA-COAD Colon
TCGA-ESCA Esophagus
TCGA-KICH Kidney
TCGA-KIRC Kidney
TCGA-KIRP Kidney
TCGA-LIHC Liver
TCGA-LUAD Lung
TCGA-LUSC Lung
TCGA-PRAD Prostate
TCGA-READ Colon
TCGA-STAD Stomach
TCGA-THCA Thyroid
TCGA-UCEC Uterus
TCGA-HNSC N/A

Figure S23 : Using GTEx normal tissues instead of TCGA normal tissue, related to STAR
Methods
The predictive power of per-cancers markers was confirmed as we accurately separated tumours
from normal GTEx tissues (instead of TCGA normal tissues) using a machine learning classifier A.
Recall statistics, the fraction of shared markers between markers identified from TCGA normal or
GTEx normal. B. The Fold Change analysis corresponding to the observed number of shared markers
against the expected value if they were chosen at random. All fold changes are statistically significant
(hypergeometric test, p<1e-300) except for TCGA-ESCA. C. Table showing GTEx normal tissue to
TCGA cancer matching.
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Figure S24 : Distribution of differentially expressed RNAPII-bound regions in cancers, related
to STAR Methods
Distributions of the number of cancers of RNAPII-bound region is DE in, as observed in the TCGA
dataset, and by cancer-wise random permutations. Red dashed line indicates the threshold at which
less than 5% of observed DE RNAPII-bound regions are DE in more cancer than expected by chance.
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