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Abstract

Survey data are known for under-reporting rich households while
providing large information on contextual variables. Tax data provide
a better representation of top incomes at the expense of lacking any
contextual variables. So the literature has developed several methods
to combine the two sources of information. For Pareto imputation,
the question is how to chose the Pareto model for the right tail of
the income distribution. The Pareto I model has the advantage of
simplicity. But Jenkins (2017) promoted the use of the Pareto II for
its nicer properties, reviewing three different approaches to correct for
missing top incomes. In this paper, we propose a Bayesian approach
to combine tax and survey data, using a Pareto II tail. We build on
the extreme value literature to develop a compound model where the
lower part of the income distribution is approximated with a Bernstein
polynomial truncated density estimate while the upper part is repre-
sented by a Pareto II. This provides a way to estimate the threshold
where to start the Pareto II. Then WID tax data are used to build up
a prior information for the Pareto coefficient in the form of a gamma
prior density to be combined with the likelihood function. We apply
the methodology to the EU-SILC data set to decompose the Gini in-
dex. We finally analyse the impact of top income correction on the
Growth Incidence Curve between 2008 and 2018 for a group of 23
European countries.
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1 Introduction

Pareto models are convenient for modelling the right tail of an income distri-
bution, for generating missing rich and for interpolating empirical quantiles
when grouped data are used. The Pareto I model as been widely used in
the literature (Atkinson 2005, Atkinson 2007, Cowell and Flachaire 2007,
Bartels and Metzing 2019 to quote just a few) as it is easy to estimate when
the threshold parameter is known and because Pareto interpolation is linear.
However the Pareto I model is known to be rather restrictive as discussed
for instance in Jenkins (2017). It leads to biased estimates if the truncation
point is too low. The Generalised Pareto Distribution (GPD) introduced by
Pickands (1975) or the Pareto II (the useful restriction of the GPD for income
distributions) appears as an interesting alternative, obtained by adding just
one parameter. In particular is leads to estimates that are less sensitive to
the choice of the truncation point, but at the expense of a larger variance (see
e.g. Jenkins 2017 or Charpentier and Flachaire 2022), at least in a classical
framework. It covers the Pareto I as a particular case. Jenkins (2017) found
that it was sometimes difficult to differentiate the two models for a given
data set in term of fit, but let us note that the two models can be compared
by testing for a parametric restriction. In this paper, we shall use the Pareto
II for modelling the right tail of the income distribution.1

The next question is to know on which type of data to adjust a Pareto
tail. Survey data, either raw or tabulated, are well-known for not reporting
properly high incomes, either because of under-sampling which is a default
of the sampling scheme itself (not enough rich households are included in
the sampling design) or because of under-reporting when rich households are
sampled but, either refuse to provide their true income, or report a lower
value than their actual income. Tax data are most of the time tabulated
and report more precisely rich households because it is difficult to escape
the tax authorities even if tax avoidance and tax evasion are well-known
phenomenons. However, if tax records are better equipped for reporting
high incomes, they neglect low income holders who anyway do not pay taxes.
This question is illustrated in Atkinson (2005) who makes use of the supertax
data for the UK over the 20th century. One of the problems he had to face
was to reconstruct the uncovered lower incomes as he wanted to compute the

1The Pareto family also includes the Pareto III and Pareto IV which are all particular
cases of the Feller-Pareto distribution detailed in Arnold (2008). Note also that other mod-
els corresponding to a Pareto tail have been proposed in the literature such as the extended
Pareto distribution of Beirlant et al. (2009) used in Charpentier and Flachaire (2022) or
the Pareto-Lognormal or double Pareto-Lognormal distributions of Reed and Jorgensen
(2004) used in Hajargasht and Griffiths (2013).
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top 1% income share. So it is a problem to match exactly the two types of
data sources.

Modelling the right tail of an income distribution using a Pareto model
appears as one solution among others to the the question of under-sampling
of rich households in sample surveys. This is what Jenkins (2017) call method
A when his methods B and method C rely on the use of external information
provided by administrative or tax data. With method A, when modelling
the right tail of the income distribution, extreme observations are no longer
considered as outliers, but as observations belonging to an under-sampled
tail. However, Jenkins (2017) notes that using only one source of information
is not enough and that tax return data are a precious external source of
information that should not be neglected to correct for under-reporting. So,
we have to find a way to combine these two sources of information with an
appropriate matching device. The first aim of this paper is to propose a
Bayesian approach to combine the two sources of information. We first use
tax records to build up a prior information on a Pareto coefficient. We then
model the right tail of survey data for the income distribution with a Pareto
II model and use an informative prior on the Pareto coefficient.

An important question discussed amply in Jenkins (2017) is the determi-
nation of the threshold at which to start correcting for missing rich and use
a Pareto tail. The economic literature is rather scarce and contradictory on
the question. Bartels and Metzing (2019) opt for top 1% on the ground that
it is the level at which survey and tax data start to diverge in their estima-
tion of income shares in Germany. Jenkins (2017) performs some sensitivity
analysis on the range 10% till 1%. On the contrary, but still confronting
survey and administrative data, both Flachaire et al. (2022) (for Uruguay)
and Angel et al. (2019) (for Austria) found that the correction should start
at a much lower value, around the median, but this time independently of the
question of estimating a Pareto tail. It is hard to find explanations to this
puzzle, except that we have to be very careful on the data sources that we are
comparing. A fact remains, the threshold h has two meanings. An optimal h
can first correspond to the level at which a correction has to be done. It can
be rather low or high depending on the quality of the survey (for instance if
the source used for income is administrative or results from a simple inter-
view). A second meaning is at which level a Pareto model best fits the data.
A statistical approach defines h according to an optimal fit, an approach
that we shall adopt here. Jenkins (2017) quotes several graphical methods
such as Pareto plots, mean excess plots or Zenga curves to which we can
add Hill plots. These methods are not very precise according to the survey
of Scarrott and MacDonald (2012). The extreme value literature provides
more convincing methods with parametric and semi-parametric bulk mod-
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els, where the lower part of the distribution follows for instance a parametric
lognormal distribution when the upper part is modelled according to a Gener-
alised Pareto. In this model, the threshold becomes a parameter to estimate
and the uncertainty associated to its estimation can be measured. In order to
limit the bias when estimating the threshold, Cabras and Castellanos (2011)
propose to use a semi-parametric estimator for the lower part when the upper
part is represented by a Generalised Pareto. A second aim of this paper is
to use a semi-parametric bulk model, based on a Bernstein polynomial, to
determine the value of h that leads to the best fit.

The third aim of the present paper is to combine the bulk model from
the extreme value theory with the approach developed in Jenkins (2017)
to correct inequality measures such as the Gini index in a Bayesian frame-
work to finally explore the consequences of these corrections on the shape
of the Growth incidence curves using EU-SILC data for a group of 23 Eu-
ropean countries. We shall adopt one specific bulk model of the extreme
value literature, more specifically a variant of one of the model detailed
in Cabras and Castellanos (2011). In order to remove the constraint im-
posed by the lognormal for modelling the bulk of the income distribution,
Cabras and Castellanos (2011) use a profile likelihood based on the method
of Lindsey (1974) which proposes to approximate a truncated distribution
(the bulk of the distribution below the threshold) by a polynomial. While
Cabras and Castellanos (2011) use orthogonal polynomials, we propose in
this paper to use a Bernstein polynomial approximation that we think is
more adapted for future Bayesian developments and for which we have the
experience acquired in Fourrier-Nicolai and Lubrano (2023). For the upper
part, we adopt the the Pareto II. With this model, we will be able to make
inference on the value of the threshold, using survey data. But the resulting
value will correspond to the point where the survey data actually follow a
Pareto tail, independently of the point where survey data need to be cor-
rected because of under-sampling or under-reporting.

Adopting a Bayesian approach will be fruitful for three reasons. In a bulk
model, the likelihood function is numerically intractable because it not dif-
ferentiable and because imposing differentiability would result in a too much
restricted model. It would be very difficult to provide an efficient method of
maximum likelihood in this context. The second reason is that with Bayesian
inference it is easy to obtain posterior confidence intervals. Finally and most
importantly, Bayesian inference is the natural way of incorporating extra in-
formation when this information is scarce and uncertain. The main source of
tax data is provided by the World Inequality Data base (WID). However, this
information (the variable fiinc in the WID data base) is not available for
every country and every year. Nevertheless, we can construct for each coun-
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try a prior information on the Pareto coefficient computed from top income
shares (the variable scainc in the WID data base) in order to determine
the parameters of a gamma prior on the Pareto coefficient. This is a new
way of combining two sources of information. From a bulk model estimated
on EU-SILC data, incorporating prior information coming from the WID,
we shall propose a Bayesian counterpart to the decomposition of the Gini
index adopted in Jenkins (2017) in order to provide a new estimation of in-
equality in Europe. As a by-product we also obtain a corrected evaluation of
a Growth Incidence Curve (GIC) to visualise which quantiles profited from
growth between 2008 and 2018 and what is the impact of the missing rich
on the shape of the GIC.

The paper is organised as follows. In section 2, we review the properties
of the Pareto I and II models and classical inference including weights. We
introduce the class of compound lognormal-Pareto II models and review other
options for imbedding a Pareto tail in a general model. We finally compare
the performance of the two models for estimating inequality in a small Monte
Carlo experiment to justify the choice of a Pareto II tail. With section 3, we
detail Bayesian inference for the Pareto II with an informative prior on the
Pareto coefficient when h is known. We then introduce a profile likelihood
based on Bernstein polynomials to make inference on h and present a general
algorithm for inference. We finally detail how to decompose the Gini in a
Bayesian framework when h is random. In section 4, we apply the method on
the EU-SILC data. We show how to build a prior information, using the WID
data. With section 5, we extend the method so as to consider the Growth
Incidence Curve, based on the quantile function of the compound model. We
present the GIC for a group of 23 European countries and analyse the impact
of the correction on the general shape of this curve. Section 6 concludes.

2 Pareto models

Two main models are commonly used in the empirical literature for modelling
high incomes: the simple Pareto I and the Pareto II which was progressively
introduced (see e.g. Jenkins 2017) because of the limitations of the Pareto I.
The Generalised Pareto model of Pickands (1975) appears now and then. It
is slightly more general than the Pareto II as its exponent ξ ∈ [−1,+∞[. The
Pareto II corresponds to ξ > 0, the exponential to ξ = 0 and the uniform to
ξ = −1. The Pareto II is recovered after a re-parameterisation (see Appendix
B).
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2.1 Pareto I

The well-known Pareto I is a good starting point to explain the need of a
more general model for high incomes. For 0 < h ≤ x, its cdf and pdf are:

F (x) = 1− (x/h)−α, f(x) = αhαx−α−1.

Taking logs and rearranging terms of F (x), we get the expression of a linear
expression:

log(1− F (x)) = −α log x+ α log h,

a fundamental characteristics of the Pareto I process. Plotting log(1− F̂ (x))
against log x, we get the Pareto diagram as named by Cowell (2011). It
should produce a straight line with a negative slope if the data follow a
Pareto I distribution.

Example 1 Let us check this using the French EU-SILC data for 2018. Fig-
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Figure 1: Pareto plot for French incomes in 2018

ure 1 shows that the Pareto assumption can be assumed for high incomes,
gross and disposable, starting over their respective medians. However, things
are not so clear for very top incomes. Charpentier and Flachaire (2022)
would interpret the last points as true outliers (see their Figure 7). However,
we should note that the interpretation of the Pareto plot relies strictly on a
Pareto I assumption. Taking the logs and rearranging the terms of F (x) for
the Pareto II does not lead to a linear relation. We shall detail this point
later.
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The Pareto I process is constrained because its conditional expectation
is:

E(x|X > h′) = h′ α

α− 1
, (1)

whatever the value of h′ > h. This means that the average income over h′

divided by h′ is constant and equal to b = α/(α − 1), a number called the
inverted Pareto coefficient in the literature (Atkinson 2017). This means that
inequality among the rich is constant, whatever the value of h′. The Gini
coefficient depends solely on the value of α with:

G =
1

2α− 1
. (2)

The Generalised Pareto curve, detailed in Blanchet et al. (2022), shows that
the assumption of a constant inequality over the quantiles is not empirically
tenable, which justifies the need for a more complex model, the Pareto II
being one of them.

2.2 Pareto II

Following Arnold (2008), the Pareto II process is built from taking h as a
location parameter and introducing a separate scale parameter β, leading to:

F (x) = 1−
(

1 +
x− h

β

)−α

, f(x) =
α

β

(

1 +
x− h

β

)−α−1

, 0 ≤ h ≤ x.

The Pareto I corresponds to the restriction h = β. Additionally, the Pareto I
models the distribution of relative excesses x/h whereas the Pareto II models
the distribution of absolute excesses x−h (see e.g. Charpentier and Flachaire
2022). The scaled conditional expectation is no longer constant as:

E(x|x > h′) =
β − h

α− 1
+

α

α− 1
h′.

It depends on both h and h′ as documented e.g. in Charpentier and Flachaire
(2022). They conclude that while the Pareto I model implies a constant
inequality among the rich, the Pareto II allows for a varying inequality among
the rich.

Let us now give some complementary results for this interesting model
that can be found in Arnold (2008). The mean is:

E(x) = h +
β

α− 1
.
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The Gini has a quite complex expression in the general case. Arnold (2008,
page 135) gives the Gini for the Pareto IV. The Gini for the Pareto II is
found by imposing a restriction which leads to (3):

G(x) = 1− h+ 2αβB(2α− 1, 2)

h+ αβB(α− 1, 2)
, (3)

where B(, ) is the Beta function.2 When the data are translated, which means
that we subtract their minimum to the original data, the expression of the
Gini is very much simplified as indicated in Arnold (2008, p. 135). In this
case, we impose h = 0 and the above formula is simplified into:

G(x) =
α

2α− 1
. (4)

Consequently, the Pareto I and Pareto II measure inequality in a quite dif-
ferent way for a given value of the Pareto coefficient α. This is well depicted
in Figure 2.

Example 2 For a given value of α = 1.7 and β = 5, we let h vary between
0 and 10. The Gini of the Pareto I corresponds to the particular case h = β.
Depending on the value of h, compared to that of β, the Pareto II process can
display either more or less inequality than the Pareto I process. Maximum
inequality is obtained for h = 0 and is equal to (4) in this case. This behaviour
is related to the fact that the Gini is invariant by scaling (i.e. change in a
monetary unit), but not invariant by translation (when the same sum is given
to or taken from everybody).

2.3 Classical inference for Pareto II using weights

For classical inference, Arnold (2008) considers estimating the threshold by
ĥ = x[1] and then solving numerically the normal equations of the likelihood
function. Using exogenous weights wi summing to n, the full likelihood is:

L(x; θ) =

n∏

i=1

f(xi; h, β, α)
wi,

and the log-likelihood:

l(x; θ) =
n∑

i=1

wi log f(xi; h, β, α) (5)

= −(α + 1)
n∑

i=1

wi log

(

1 +
xi − h

β

)

− n log β + n logα, (6)

2Jenkins (2017) provides a similar formula, but for a different parameterisation.
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Figure 2: Gini constellation, varying h for a given β = 5 and α = 1.7

leading to the normal equations:

β̂ =
α̂ + 1

n

∑

wi(xi − x[1])

[

1 +
xi − x[1]

β̂

]−1

, (7)

α̂ =

[
1

n

∑

wi log

(

1 +
xi − x[1]

β̂

)]−1

. (8)

A method of moments can also be implemented, using the translated raw
moments m1 and m2 and equating them to their theoretical counterparts.
We start from the definition of the weighted sampling moments:

mr =
1

n

n∑

i=1

wi(Xi −X[1])
r , r = 1, 2,

Arnold (2015, page 255) proposes the following estimator for β:

β̂ = m1m2/(m2 − 2m2
1), (9)

from which we can deduce an estimator for α, using the normal equation:

α̂ = n/
n∑

i=1

wi log(1 + (xi − x[1])/β̂). (10)

Finally, let us recall that the MLE estimate of the Pareto coefficient in the
Pareto I process is simply given by:

α̂PI = n/

n∑

i=1

wi log(xi/x[1]). (11)
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2.4 The class of compound lognormal-Pareto II distri-

butions

We have understood that deciding at which point should start the Pareto tail
is a problem that we have skipped for the while, following the literature that
considers h as fixed. So many authors had the idea of imbedding the Pareto
model in a more general framework (see section 2.5). The framework of
compound models provided by the extreme value theory is particularly useful
for this purpose, due to its large flexibility, at least in the forms developed in
the recent literature. The composite lognormal-Pareto model was introduced
by Cooray and Ananda (2005) and Scollnik (2007). The lower part of a
sample is modelled as a truncated lognormal while the upper part of the
sample follows a Pareto I, a Pareto II or a Generalised Pareto distribution.
This model was found useful to model extreme events in insurance claims,
ecology and many other topics (see e.g. the references provided in Scollnik
2007, Cabras and Castellanos 2011 or Nadarajah and Bakar 2013). Some
applications exist for modelling the income distribution with for instance
Safari et al. (2018) or Abdul-Majid and Ibrahim (2021).

As the initial compound model of Cooray and Ananda (2005) and Scollnik
(2007) was too restricted, it was later generalised to include more parame-
ters so that Abdul-Majid and Ibrahim (2021) consider as a starting point the
following model:

f(x|θ) =







(1− ρ)
fΛ(x|µ, σ2)
FΛ(h|µ, σ2)

, 0 < x < h,

ρfP2(x|α, β, h), x ≥ h.

(12)

In this writing, fΛ(x|µ, σ2) is the lognormal pdf with parameters µ and σ2,
FΛ(h|µ, σ2) the corresponding CDF, fP2(x|h, α, β) is the pdf of the Pareto II
with parameters α, β and h, the latter representing the cutting point between
the two parts of the sample, while 0 < ρ < 1 is the proportion of data coming
from the Pareto II distribution. Without further restrictions, the overall pdf
f(x|θ) presents an evident discontinuity at x = h. It can be made continuous
by imposing a parametric restriction on ρ:

ρ(θ) =
βfΛ(h|µ, σ2)

βfΛ(h|µ, σ2) + αFΛ(h|µ, σ2)
. (13)

An alternative version of this model was first considered by Behrens et al.
(2004). It corresponds to introducing the following simplifying assumption:

ρ = 1− FΛ(h|µ, σ2), (14)
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leading to the following data density:

f(x|θ) = fΛ(x|µ, σ2)1(x < h)+(1−FΛ(h|µ, σ2))fP2(x|h, α, β)1(x ≥ h), (15)

where 1(·) is the indicator function. The CDF is given by (see e.g. Villa
2017):

F (x|θ) = FΛ(x|µ, σ2)1(x < h) + FΛ(h|µ, σ2)1(x ≥ h)

+ (1− FΛ(h|µ, σ2)FP2(x|h, α, β)1(x ≥ h). (16)

This model is no longer exactly a mixture model as it is not the weighted
sum of two densities, but a truncated lognormal distribution, the right tail
of which has been replaced by a Pareto II. This model is called the bulk
model. It is used in the extreme value literature with the aim of making
inference for top quantiles and for h (see e.g. Cabras and Castellanos 2011,
do Nascimento et al. 2012 or Villa 2017), using most of the time a Bayesian
approach. Continuity is usually not imposed as this would mean a restriction
on the Pareto II parameters. Nevertheless, we can note that the continuity
restriction is, as indicated in Abdul-Majid and Ibrahim (2021):

β = α
1− FΛ(h|µ, σ2)

fΛ(h|µ, σ2)
. (17)

So we have five parameters without the continuity restriction and a Pareto II
tail (this number is reduced by one if we impose a continuity restriction). To
summarise, with the compound Pareto model, we have a framework where
we are free to choose the shape of the bulk of the distribution (here the
lognormal for a simplified exposition) and the shape of the tail which can be
Pareto I, Pareto II or Generalised Pareto. The threshold parameter h can be
estimated in this framework.

Example 3 Let us give now an idea of the shape of the bulk model with
Figure 3. In this example, the parameters of the lognormal component are
µ = 0.5 and σ = 0.5. We have then added the Pareto II component with h =
2.0, α = 1.7 and β = 3. The Pareto II right tail is well above the lognormal
tail. But imposing continuity would mean β = 1.605324, a restriction that
lowers the position of the Pareto II tail.

2.5 Other imbedding models

Several other models are said to have a Pareto-like tail. Limiting ourselves
to three parameter distributions, the first candidate is of course the famous
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Singh and Maddala (1976) distribution with:

F (x) = 1− 1

(1 + (x/b)a)q
, f(x) =

aq

b

(x/b)a−1

(1 + (x/b)a)q+1
.

For a = 1, we have the Pareto II distribution. The Gini coefficient is given
by:

G = 1− B(q, 2q − 1/a)

B(q − 1/a, 2q)
,

where B(a, b) is the incomplete Beta function. The success of the Singh-
Maddala distribution is explained by the possibility of a Pareto II tail. But
the latter is obtained by imposing a parametric restriction. So there is a
strict dependence between the shape of the bulk of the distribution and the
shape of the tail. With the compound Pareto II distribution, we do not have
such a restriction.

The properties of the Pareto-lognormal distribution of Reed and Jorgensen
(2004) were amply discussed in Hajargasht and Griffiths (2013) as well as es-
timation procedures for grouped data. Let us define the transformed variable
z = (log x−m)/σ and let Φ and φ be the CDF and pdf of the Gaussian dis-
tribution. Let us also define the function R(t) = [1 − Φ(t)]/φ(t). Then the
Pareto-lognormal distribution is:

F (x) = Φ(z)− φ(z)R(ασ − z), f(x) =
α

x
φ(z)R(ασ − z).
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It has a Pareto I tail of the form x−α−1 for x → ∞ (see e.g. Reed 2003). It
was found to provide a very good fit by Hajargasht and Griffiths (2013) and
totaly comparable to those of the double Pareto-lognormal or of the GB2.
The Gini coefficient is:

G =
2 exp(α(α− 1)σ2)

2α− 1
Φ

(
(1− 2α)σ√

2

)

+ 2Φ(σ/
√
2)− 1.

The right tail of the Pareto-lognormal distribution is directly a Pareto I,
without a parametric restriction, but only for very large values of x. So we
do not know where the Pareto tail starts exactly.

Recently, the Kaniadakis distribution, or κ-Generalised Distribution (see
e.g. Clementi and Gallegati 2016 for details and complementary references)
has gained the reputation of fitting the income data better than the Singh-
Maddala distribution while keeping the same advantages of analytical results,
a Pareto-like tail and the possibility of a zero-mode (see the empirical results
in Clementi et al. 2012 using the GSOEP, BHPS and PSID data sets). Let
us first define generalised exponential and logarithmic functions as expκ(x) =
(
√
1 + κ2x2 + κx)1/κ and logκ(x) = (xκ − x−κ)/(2κ) with κ > 0. Then, the

CDF and the pdf are:

F (x) = 1− expκ −(x/β)α, f(x) =
ξ

β

(
x

β

)α−1
expκ(−(x/β)α)
√

1 + κ2(x/β)2α
.

There is one scale parameter (β > 0) and two shape parameters, α > 0
and κ > 0. The shape of the lower tail is governed by α with a zero-mode
obtained when 0 < α ≤ 1. The shape of the upper tail is governed by both α
and κ. The Gini coefficient, as given in Clementi and Gallegati (2016, page
29) is:

G = 1− 2α + 2κΓ( 1
κ
− 1

2α
)Γ( 1

2κ
+ 1

2α
)

2α+ κΓ( 1
κ
+ 1

2α
)Γ( 1

2κ
− 1

2α
)
.

We can add for further use the quantile function:

Q(p) = β

[

logκ

(
1

1− p

)]1/α

.

We compare these three distributions in Figure 4.

Example 4 We first draw a Pareto-lognormal, using the estimated param-
eters obtained for urban India in Hajargasht and Griffiths (2013). We then
obtain the parameters for the Sing-Maddala and the Kaniadakis distributions
by minimising their distance to the Pareto-lognormal. The estimated Gini
coefficients are 0.388 for the Pareto-lognormal, 0.458 for the Singh-Maddala
and 0.370 for the Kaniadakis distributions. The Kaniadakis distribution has
the fatter tail and the Pareto-lognormal the thinnest tail.

13



0 50 100 150 200 250

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

Expenditure per capita

D
e
n
s
it
y

Pareto−lognormal

Singh−Maddala

Kaniadakis

Figure 4: Comparing three distributions with Pareto tails

2.6 Comparing Pareto I and Pareto II tails

Jenkins (2017) discuss the difficulty of empirically distinguishing between
the two Pareto processes, leading eventually to the question: Is a Pareto II
model really needed to fit the data? To answer briefly this question, we have
run a small Monte Carlo experiment.

Example 5 The Kaniadakis distribution, as described above, seems to be the
best candidate for simulating random numbers as it has the fattest tail and an
analytical quantile function. We have generated m = 1, 000 samples of size
n = 1, 000 with parameters α = 1 to obtain a zero mode compatible with a
Pareto shape and κ = 0.6. We have then estimated the sample Gini, the MLE
estimate of the Pareto I coefficient with (11) and the same parameter for the
Pareto II, using the moment estimators (9)-(10). From these estimates, we
deduce the corresponding Gini with (2) and (4). The results are impressive
as displayed in Figure 5. The data being generated with a zero-mode distribu-
tion, the parameters of the two Pareto processes could in theory be estimated
using the whole sample. With the Pareto II, the estimated inequality with on
average 0.621 is slightly lower than the sample inequality which is 0.642 on
average. To get sensible results with the Pareto I, we had to estimate the
Pareto parameter with the top 40% of the sample (the quantile 0.60 is on
average the point at which a Pareto plot produces a straight line). We get an
average Gini of 0.697. Otherwise, the obtained estimates of α are much lower
than 0.5, which is the lower bound for computing the corresponding Gini. So
the Pareto I model can greatly over-estimate inequality while the Pareto II
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Figure 5: Measuring inequality with two different Pareto models, data gen-
erated with Kaniadakis distribution (1.0,1.0,0.6)

slightly under-estimate it, at least in this example. The second result is that
the empirical distribution of the Gini is very concentrated for the Pareto II
and very dispersed for the Pareto I model. These results militate in favour of
using the Pareto II model for adjusting the right tail of income distributions.

Let us now come back to the interpretation of the Pareto plot in Figure
1 obtained for French incomes in 2018, especially the meaning of the ex-
treme points which are over the straight line. Again, a small Monte Carlo
experiment provides a nice answer.

Example 6 We have generated two series of Pareto II random numbers with
α = 2.5 and β = 5. One is obtained with h = 2.5 so with h < β and the
other with h = 10, so with h > β. For each of these two samples we draw
the corresponding Pareto plot in Figure 6. With h > β, extreme points are
located above the Pareto line, a configuration that was qualified of outliers
in Charpentier and Flachaire (2022, Figure 7). With h < β, we have the
reverse situation. These two plots depict average situations, which can be
repeated with the same final configuration, by running the same experiment
several times.
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Figure 6: Comparing Pareto tails obtained from the Pareto II

3 Bayesian inference with a Pareto II tail

In order to cope with the missing rich, the economic literature has focussed
on imputing Pareto top quantiles, but has given very little clues about how
to select the truncation point. For instance Bartels and Metzing (2019) de-
cided for all EU-SILC countries to replace the top 1% income by a Pareto
I imputed income using the external information provided in the WID data
set. Their choice for 1% was based on the fact that for Germany survey and
tax income shares start to differ for the 1% income shares, but are quite sim-
ilar below that threshold. Jenkins (2017) performed a sensitivity analysis,
using different values for the threshold, between top 10% and top 1%. In
this section, we will show how to correct for the missing rich in a Bayesian
framework, when assuming that the top of the income distribution has a
Pareto II tail. The correction will be operated by introducing an informative
prior on the Pareto coefficient, building our prior information using the WID
data base. We shall see how to make inference on h. The optimal h will
correspond to a notion of best fit under the assumption of a Pareto II tail.
We finally detail how to operate the decomposition of the Gini index in a
Bayesian framework in order to measure the impact of our procedure on the
measurement of inequality.

3.1 A Gibbs sampler when the threshold is known

We first present Bayesian inference for the Pareto II model when the thresh-
old is known. The complete likelihood of the Pareto II using exogenous
weights can be expressed as:

L(x; h, β, α) = β−nαn exp−(α + 1)
∑

wi log

(

1 +
xi − h

β

)

1(xi ≥ h).
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Bayesian inference for the Pareto II model started with Arnold and Press
(1983) who proposed an empirical Bayes approach, assuming that h = x[1],
then translating the data defining x̃ = x−x[1] and finally considering a model
for x̃, assuming as a consequence that h = 0 in the original model. All pa-
pers in the following literature (Castellanos and Cabras 2007, Mokrani et al.
2016, Hu and Gui 2018, to quote a few) assume that h is known and fixed,
reducing inference to a two parameter problem on the process for x̃. With
this simplifying assumption, the posterior density of (α, β) does not belong
to a known family, but the conditional posterior density of α is a gamma
density. This suggests a Gibbs sampler with a Metropolis step and the pos-
sibility of a natural conjugate gamma informative prior on α. Let us note
our informative prior as:

ϕ(α|ν0, s0) ∝ αν0−1 exp(−αs0),

with prior expectation E(α) = ν0/s0. It is with this informative prior density
that we shall introduce our prior information coming from the WID data set.
A non-informative prior would correspond to ν = 0 and s0 = 0 leading to
ϕ(α) ∝ 1/α. We have chosen a non-informative prior for β with:

ϕ(β) ∝ 1

β
.

With our partially informative prior, the joint posterior density is propor-
tional to:

ϕ(α, β|x, w) ∝ αn+ν0−1β−n−1

exp
(

−α[s0 +
∑

wi log(1 + x̃/β)] +
∑

wi log(1 + x̃/β)
)

.

The two conditional distributions are found by discarding alternatively the
proportional terms on which we condition. We get:

ϕ(α|β, x, w) ∝ αn+ν0−1 exp
(

−α[s0 +
∑

wi log(1 + x̃i/β)]
)

= fG

(

α|ν0 + n, s0 +
∑

wi log(1 + x̃i/β)
)

, (18)

ϕ(β|α, x, w) ∝ β−n−1 exp
(

−(α + 1)
∑

wi log(1 + x̃i/β)
)

. (19)

We can draw directly from the conditional ϕ(α|β, x). The question is to de-
cide how to draw from ϕ(β|α, x). The literature is opting for a Metropolis
step (Gilks et al. 1995) with different choices for the proposal. In fact, a
Metropolis step is interesting when the density to simulate is multivariate.
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Here, β is one-dimensional. So a either a rejection technique or the numer-
ical inverse transformation method are well adapted. The former requires
determining an envelope, the later requires determining an exploration grid.

We propose to implement an enriched version of the Griddy-Gibbs of
Bauwens and Lubrano (1998). We use moment estimators to determine an
initial value β(0) and a grid bp of k points on the range [β(0)/2, 2β(0)]. The
moment estimator (9) serves to determine a plausible starting value β(0).
Conditionally on β(0), we draw a first value α(1) from the conditional pos-
terior gamma density. Conditionally on α(1), we evaluate ϕ(β|α, x) on the
predetermined grid and derive a normalised empirical CDF. Then a sample
from this empirical CDF is obtained in the logic of the inverse transforma-
tion method. For this purpose, we sample a random value from a uniform
distribution over [0, 1], determine its position in the CDF and then proceed
by linear interpolation to determine the corresponding value β(1) on the pre-
defined grid of k points. We regroup these results in Algorithm 1.

Algorithm 1 A Griddy-Gibbs algorithm for Bayesian inference on Pareto
II models with fixed threshold h
1: Translate the data, subtracting the minimum and set h = 0
2: Initialise β(0) with a moment estimator
3: Determine an initial grid bp of np points b1, · · · , bnp for β with unit in-

terval dt
4: for j = 1, . . . , m do

5: Sample α(j) from fG(α|n+ ν0, s0 +
∑

wi log(1 + x̃i/β
(j−1))

6: Evaluate the conditional posterior density

ϕ(β|α(j), x) ∝ β−n−1 exp(−(α(j) + 1)
∑

wi log(1 + x̃i/β))

for β on the k points of the grid
7: Cumulate ϕ(β|α(j), x) using the Trapezoidal rule to obtain the cdf
8: Normalise the cdf by its integral
9: Draw u ∼ U(0, 1)

10: Find the rank i of the first occurrence of cdf > u
11: Using linear interpolation, deliver β(j) = bp[i − 1] + (u− cdf [i− 1])×

dt/(cdf [i]− cdf [i− 1])
12: end for

13: Discard the initial draws for computing posterior moments and posterior
densities

As in every integration problem, scaling is of primary importance. The
log of the conditional posterior of β is evaluated over the grid, scaled by sub-
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tracting its maximum value on the grid, before taking the exponential. To be
operational, the starting values for the grid have to be carefully chosen. The
algorithm can be enriched by introducing a variable grid for β. After a period
of initial burn-in draws, the mean and standard deviation of sampled β(j) val-
ues can be computed to adjust the grid. The grid is updated as an interval
around the current mean of the already sampled β(j) plus or minus three
times its standard deviation. This updating has to be done a limited number
of times (say twice) and the draws used for the updating have to be discarded.
Convergence can be checked using the normalised version of the CUMSUM
plot of Yu and Mykland (1998) suggested in Bauwens and Lubrano (1998).

Remark 1 We can note that for a given and fixed h, the posterior density
of α in the Pareto I process would be also a gamma density with:

ϕ(α|x, h) ∝ αν0+n−1 exp−α(s0 +
∑

wi log xi/h)

= fG(α|ν0 + n, s0 +
∑

wi log xi/h), (20)

to be compared to (18).

3.2 A profile likelihood for making inference on h

Let us now turn to the case where we want to make inference on h, instead
of working conditionally on it. For this purpose, we have introduced in
section 2.4 the class of compound lognormal-Pareto II model, which consists
in imbedding the Pareto II model in a more general model that also copes
with the lower part of the sample. A simplified version of this general model
is the bulk model (15) for which we shall now detail Bayesian inference,
building on some of the solutions proposed in Cabras and Castellanos (2011).
The likelihood function, when adding weights, is:

L(x; θ) =
∏

i,xi≤h

fΛ(xi|µ, σ2)wi

∏

i,x>h

(1− FΛ(h|µ, σ2)fP2(x|α, β, h)wi.

However, because the assumption of a truncated lognormal might be too
restrictive, Cabras and Castellanos (2011) consider estimating the lower part
of the density in a semi-parametric way, conditionally on h, leading to a
profile likelihood function. This means that the parameter space is reduced
to (α, β, h) and the profile likelihood is:

Lp(x; h, α, β) =
∏

i,xi≤h

f̂h(xi)
wiF̂ (h)

∏

i,x>h

(1− F̂ (h))fP2(x|α, β, h)wi, (21)
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where f̂h(xi) is a semi-parametric estimate of the truncated distribution, say
f(·)1(x ≤ h)/F̂ (h) and F̂ (h) the value of the estimated CDF at h, using the
lower data points {xi : xi ≤ h}.

For making inference on h, we have to specify a prior density ϕ(h). We
have chosen for simplicity a uniform prior between bounds:

ϕ(h) ∝ 1, h ∈ [h, h].

This prior has been amply discussed in Abdul-Majid and Ibrahim (2021). In
the Bulk model, there is a one-to-one relation between h and ρ with:

ρ = 1− F̂ (h).

So, a prior on h can be translated into a prior on ρ, with the advantage
that the latter is scaled-free and consequently is much easier to interpret.
However, as noted in Abdul-Majid and Ibrahim (2021), a uniform prior on
h does not mean a uniform prior on ρ.

We have to estimate f(x) and F (x), conditionally on the maximum a
priori range, that is [0, h], h being the upper bound of the prior. There
are several ways of estimating a truncated density. Cabras and Castellanos
(2011) have chosen orthogonal polynomials. We have preferred to rely on
our experience with Bernstein polynomials which provide a simple solution
in the case of further developments (see a use of Bernstein polynomials in
Fourrier-Nicolai and Lubrano 2023). A kernel estimate using a lognormal
kernel could be an alternative. But remember that kernel estimators (even
with a lognormal kernel) are not very precise for estimating the right tail
of a distribution. And also they are not designed to estimate a density on
a truncated range. We present in Appendix C an implementation of the
method. The estimated density is noted f̂k(x) and the corresponding CDF
F̂k(x), k being the degree of the Bernstein polynomial.

The conditional posterior distribution of α is just an extension of (18) to
include h and thus corresponds again to a gamma density with:

ϕ(α|h, β, x, w) = fG(α|n+ ν0, s0 +
∑

i,xi≥h

wi log(1 + (xi − h)/β)). (22)

The conditional posterior distribution of β is an extension of (19) with:

ϕ(β|h, α, x, w) ∝ β−n−1 exp(−(α + 1)
∑

wi log(1 + (xi − h)/β)), (23)

and can be simulated using the same procedure as in Algorithm 1. These
two densities are evaluated on a sub-sample of x, conditionally on the drawn
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value of h. The conditional distribution of h, on the contrary, depends on
the whole sample with:

ϕ(h|α, β, x, w) ∝
∏

i,xi≤h

F̂ (h)f̂h(xi)
wi × (24)

∏

i,x>h

(1− F̂ (h))

[
α

β
(1 + (xi − h)/β)−α−1

]wi

× ϕ(h).

We use a Griddy Gibbs to draw from this distribution, in the same spirit as
the one used for drawing from the conditional posterior density of β.

Let us now regroup these results into Algorithm 2 to propose a Gibbs
sampler for making inference on α, β and h. The update of the initial grids
for β has to be done in the same cautious way as before.

Algorithm 2 Bayesian inference for α, β and h using a profile likelihood

1: Choose a prior range for h as a function of a prior range for ρ
2: Choose an initial h, e.g. h(0) = quantile(x, 0.90)
3: Build the initial grid hp of np points h1, · · · , hnp for h
4: Compute an initial estimate of α and β, conditionally on h(0), using a

method of moments
5: Determine an initial grid bp of np points b1, · · · , bnp for β
6: Select a value k for the degree of the Bernstein polynomial
7: Estimate the CDF of x, F̂k(x), limited to the range corresponding to

ρ ∈ [0, 0.995].
8: Estimate the pdf of x, f̂k(x), limited to the same range.
9: for j = 1, . . . , m do

10: Select y = x[x > h(j−1)]− h(j−1)

11: Sample α(j) from fG(α|n+ ν0, s0 +
∑

wi log(1 + yi/β
(j−1))

12: Draw β(j) ∼ ϕ(β|h(j−1), y), using a Griddy Gibbs
13: Draw h(j) ∼ ϕ(h|α(j), β(j), x), using a Griddy Gibbs
14: Update the grid of β
15: end for

16: Discard the initial draws for computing posterior moments and posterior
densities

3.3 Gini decomposition using the Pareto II

The aim of modelling the right tail of the income distribution by a Pareto II
is to obtain a better representation of the rich and the missing rich, treating
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outliers as regular observations and treating under-reporting by an informa-
tive prior on the Pareto coefficient.

Jenkins (2017) has proposed to decompose the Gini index in a classi-
cal framework between observed low incomes, corresponding to the lower p
quantiles (those corresponding to x < h) and upper incomes modelled with a
Pareto II. The population shares are πu for the upper quantiles and πl = 1−πu

for the lower quantiles. Corresponding income shares are su = πux̄u/x̄,
sl = 1 − su. Alvaredo (2011) has shown that the between groups inequality
can be simplified to su − πu leading to the decomposition formula:

G = πl × sl ×Gl + πu × su ×Gu + su − πu, (25)

where the Gini of the two groups are Gu and Gl. Gl is the empirical Gini for
the lower group while Gu is the parametric Gini given by the Pareto tail.

We have now to investigate how this approach is modified when the infor-
mation coming from the upper group is provided by draws from the param-
eters of the Pareto II model, namely θ(j) = (α(j), β(j), h(j)), that weights are
introduced and that the bulk of the distribution is smoothed using a Bern-
stein polynomial of degree k, noted F̂k(x|h(j)). Conditionally on a value of
h(j), let us call xl(h) the lower part of the complete observed sample x, and
xu(h) its upper part. Changes are as follows. First, because h is random, the
population shares become random and have to be computed for each draw of
θ(j). Second, the value of the Gini coefficient for the lower part of the sample
becomes also random and has also to be computed for each value of h(j).
Third, Bernstein smoothing provides a continuity between the sparse sample
points of F (x) so that the Gini coefficient can be advantageously computed

as G = x̄l(h)
−1

∫ h

0
F̂k(x|h(j))[1− F̂k(x|h(j))] dx.

These remarks being made, we arrive finally at the following algorithm
(Algorithm 3), assuming that the weights sum to n and the we have stored
the draws θ(j).

Remark 2 The decomposition of the Gini relies on the computation of in-
come shares and consequently on the existence of the means. This implies
the supplementary condition that α(j) > 1, a condition that is not formally
needed to compute the Gini coefficients (2) or (4).

Remark 3

The above decomposition can be applied to the Pareto I model. We just have
to change the following expressions:

E(xu|α(j)) = h(j) α(j)

α(j) − 1
,

Gu(α
(j)) =

1

2α(j) − 1
.
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Algorithm 3 Bayesian decomposition of the Gini

1: From the stored values of θ(j) = (α(j), β(j), h(j))
2: for j = 1, m do

3: n(h(j)) =
∑

i,xi≤h(j) wi

4: πu(h
(j)) = 1− n(h(j))/n

5: πl(h
(j)) = n(h(j))/n

6: x̄l(h
(j)) =

∑

i,x≤h(j) wixi/n(h
(j))

7: E(xu|θ(j)) = h(j) + β(j)/(α(j) − 1)
8: E(x|θ(j)) = πl(h

(j)) x̄l(h
(j)) + πu(h

(j)) E(xu|θ(j))
9: su(θ

(j)) = πu(h
(j)) E(xu|θ(j))/E(x|θ(j))

10: sl(θ
(j)) = 1− su(θ

(j))

11: Gu(θ
(j)) = 1− h(j)+2α(j)β(j)B(2α(j)−1,2)

h(j)+α(j)β(j)B(α(j)−1,2)

12: Gl(h
(j), k) = 1

x̄l(h(j))

∫ h(j)

0
F̂k(x|h(j))[1− F̂k(x|h(j))] dx

13: G(θ(j)) = πl(h
(j)) sl(θ

(j))Gl(h
(j), k) + πu(h

(j)) su(θ
(j))Gu(θ

(j)) +
su(θ

(j))− πu(h
(j)).

14: end for

4 Top income correction for EU-SILC data

The European Community Statistics on Income and Living Conditions (EU-
SILC) aims at collecting comparable data on income, poverty and living
conditions at the European level. Income data can have alternative sources
depending on the way they are collected. The first source comes from survey,
which means that the respondent provides her income. The second source
comes from administrative data, covering various sources such as social secu-
rity or fiscal declarations, which are supposed to be of a better quality, not
suffering from under-reporting. It means that when a respondent is surveyed,
her income is taken from the administrative source, under the condition that
this respondent accepts to be surveyed. So these data can suffer from under-
sampling in a similar way as usual survey data, but less from under-reporting.
The source can be also mixed, which means that the source, survey or admin-
istrative, depends on the year of collection, most of the time without further
precision.

4.1 The need for correction

We use the income variable HX090 with weights DB090. We report in Tables
1 and 2 the Pareto coefficient, using the top 5% income EU-SILC data for
the EU-15 and the NMS for 2008 and 2018, indicating the source of the data
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(survey, mixed or administrative). In the second part of Tables 1 and 2,
we report the same Pareto coefficients, but this time using the tax data of
the WID, when available (fiinc, in WID coding). Available countries are:
Denmark, France, Germany, Ireland, Italy, the Netherlands, Spain, Sweden,
and the United Kingdom, while the periods covered after the year 2000 vary
greatly. This means that external fiscal data information is available for 9
members only of the EU-15 and for none of the NMS. For countries without
available tax data, we use available disposable income shares from the WID
(scainc, in WID coding) instead. This latter income distribution might not
necessarily be of better representativeness of high incomes than that on EU-
SILC samples but are still object to several corrections for data issues (see
Alvaredo et al. 2016 for details).3 In the last columns of Tables 1 and 2,
we provide the Gini decomposition (25) for these two sets of α estimates.
The WID estimates always provide a larger estimate of inequality (lower

Table 1: The impact of a classical correction on inequality measurement:
EU-15

EU-SILC α WID α Gini SILC Gini WID
Country 2008 2018 2008 2018 2008 2018 2008 2018
DK (Register) 3.43 2.78 1.51 1.49 0.24 0.27 0.33 0.36
FI (Register) 3.29 3.16 1.77 1.84 0.27 0.26 0.33 0.31
SE (Register) 3.86 3.86 1.73 1.79 0.25 0.27 0.31 0.32
IE (Register) 2.90 3.03 1.98 1.46 0.31 0.30 0.34 0.40
UK (Survey) 2.64 2.97 1.61 1.68 0.34 0.33 0.40 0.39
AT (Mixed) 3.44 3.64 2.23 1.84 0.28 0.27 0.31 0.32
BE (Mixed) 3.18 3.70 2.54 2.67 0.27 0.26 0.28 0.27
DE (Survey) 2.94 3.07 1.54 1.62 0.31 0.30 0.39 0.37
FR (Mixed) 2.84 2.76 1.87 2.02 0.29 0.28 0.33 0.31
LU (Mixed) 3.31 3.48 1.53 2.27 0.28 0.31 0.37 0.33
NL (Register) 3.04 3.06 2.50 2.45 0.26 0.28 0.28 0.29
EL (Survey) 2.94 3.04 2.34 1.94 0.32 0.31 0.34 0.34
ES (Mixed) 3.46 3.83 1.87 1.70 0.32 0.32 0.37 0.39
IT (Mixed) 3.27 2.88 2.11 1.57 0.31 0.33 0.34 0.40
PT (Survey) 2.85 3.39 3.54 2.39 0.36 0.33 0.35 0.35

Means, quantiles and Gini were computed using the R package DescTools. We se-
lected p = 0.95 in order to have enough observations for every country. Total Gini are
corrected with a Pareto I assumption for the tail, using either SILC or WID estimates
for α together with (25).

Pareto coefficient), except for Portugal in 2008. The trend in inequality

3When micro-data are available, the Pareto coefficient can be estimated as the inverse of
the mean of log x/h, where h is the 5% quantile and x the part of the sample corresponding
to the 5% upper tail. When tabulated data are available, α is estimated using the two top
income shares, using the formula given for instance in Atkinson (2007).
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is not changed for Nordic countries which all have register incomes when
passing from SILC to WID data. This is not the case for the other groups of
countries, and that independently of the sources used for income.

Table 2: The impact of a classical correction on inequality measurement:
NMS

EU-SILC α WID α Gini SILC Gini WID
Country 2008 2018 2008 2018 2008 2018 2008 2018
EE (Survey) 4.03 10.84 1.76 1.58 0.32 0.32 0.39 0.43
LT (Mixed) 2.73 2.81 2.04 2.02 0.35 0.39 0.38 0.42
LV (Mixed) 3.02 3.01 2.43 2.41 0.40 0.38 0.41 0.39
CZ (Survey) 3.41 4.14 1.44 1.64 0.25 0.25 0.36 0.33
HU (Survey) 3.38 2.90 2.06 1.92 0.25 0.29 0.28 0.32
PL (Survey) 2.94 3.99 1.54 1.66 0.32 0.29 0.40 0.37
SI (Register) 4.59 4.21 2.67 2.36 0.25 0.25 0.27 0.28
SK (Survey) 3.76 6.28 1.98 2.09 0.24 0.20 0.28 0.25

The income distribution of Estonia (EE) in 2018 displays some unexpected features
when compared to 2008, indicating a possible unadapted type of correction for the
higher quantiles. Means, quantiles and Gini were computed using the R package
DescTools. We selected p = 0.95 in order to have enough observations for every
country. Total Gini are corrected with a Pareto I assumption for the tail, using either
SILC or WID estimates for α together with (25).

Corrections brought by the WID are mild for Baltic countries. But they
are quite important for the Czech republic, Hungary, Poland that use survey
incomes. They are mild for Slovenia (register) and also for Slovakia (survey).

The main message of these two tables is that the WID data provide
on average a much important evaluation of inequality than the EU-SILC,
justifying the need of extra information for correcting for top incomes, even
for countries that are using administrative data for reporting incomes.

4.2 Building prior information from the WID

Let us now see how to build prior information for our Pareto II process. We
shall propose for each country a prior mean, using Tables 1-2 which report
the estimated values for α using the WID data. A gamma prior has two
parameters, ν0 and s0 with E(α) = ν0/s0. The estimated values of α provide
information on the ratio ν0/s0. We have now to decide for a value for ν0
which represents the degrees of freedom or in a natural conjugate framework
the size of the hypothetical sample on which the prior information is built.
In ϕ(α|β, x), ν0 is added to the sample size, more precisely the size of the
sub-sample representing the top quantile determined by h. We can decide
for a rule saying that the size hypothetical sample represents 10% of the size
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of the top 0.10 quantile or 1% of the total sample size. Let us summarise
this prior information in Table 3.

Table 3: Prior information derived from the WID data
2008 2018 2008 2018

Cty E(α) ν0 E(α) ν0 Cty E(α) ν0 E(α) ν0

DK 1.51 60 1.49 60 EE 1.76 50 1.58 60
FI 1.77 100 1.84 100 LT 2.05 50 2.03 50
SE 1.73 75 1.79 60 LV 2.43 50 2.41 60

AT 2.23 60 1.84 60 CZ 1.44 110 1.64 90
BE 2.55 60 2.67 60 HU 2.06 90 1.92 75
DE 1.54 120 1.62 120 PL 1.54 140 1.66 150
FR 1.87 100 2.02 100 SI 2.67 90 2.36 90
LU 1.53 40 2.28 40 SK 1.98 55 2.09 55
NL 2.50 100 2.45 120

IE 1.98 50 1.46 50
UK 1.61 90 1.68 170

EL 2.34 60 1.94 240
ES 1.87 130 1.70 130
IT 2.11 200 1.57 200
PT 3.54 50 2.39 140

Source: Own calculation from WID.
Note: ν0 represents the degrees of freedom for the gamma prior and s0
is the scale parameter. The prior expectation of α was computed using
WID data of Tables 1-2 with a Pareto I assumption. The prior value for
ν0 was chosen so as to represent 1% of the total sample size. Once ν0 is
chosen, the value of s0 is given by s0 = ν0/E(α).

4.3 A Pareto II for Gini correction with a random h

We can now propose a Bayesian correction for the measurement of inequality,
using a Pareto II tail, an estimated value for h and the prior information given
by the WID data base. We use for h a uniform prior corresponding to the
range ρ ∈ [0.650, 0.995]. The statistical model is the bulk model (15) with a
profile likelihood, based on the Bernstein approximation, with k = 6 for the
CDF and the pdf and using weights. The CDF and the pdf are estimated
on the range corresponding to ρ ≤ 0.995, the upper bound of the uniform
prior. As a lower bound for the prior, we took 0.650, so allowing for a quite
large prior range for h. We use m = 5, 000 draws plus 500 draws to warm up
the chain. The grid for β was adjusted twice on the next 1,500 draws, which
were then discarded to report posterior moments. For ease of presentation,
we report the results without standard deviations in Table 4 for EU-15 and

26



in Table 5 for the New Member States. Later down, we shall provide plots of
the posterior density of the corrected Gini. Several salient facts appear from

Table 4: Gini correction using Pareto II tail, prior information from the WID
and Bernstein smoothing: EU-15

2008 2018
Gini y Gini ∆ % Pr(∆ > 0) p Gini y Gini ∆ % Pr(∆ > 0) p

DK 0.234 0.231 -1.32 0.108 0.888 0.314 0.272 -13.27 0.000 0.893
FI 0.269 0.274 1.77 0.983 0.908 0.255 0.258 1.43 0.954 0.919
SE 0.273 0.262 -4.21 0.001 0.872 0.287 0.267 -7.01 0.000 0.862
IE 0.301 0.353 17.01 1.000 0.744 0.312 0.339 8.58 1.000 0.734
UK 0.345 0.384 11.10 1.000 0.883 0.339 0.365 7.67 1.000 0.918
AT 0.293 0.310 6.01 1.000 0.828 0.279 0.293 4.71 1.000 0.820
BE 0.285 0.292 2.44 0.957 0.833 0.263 0.285 8.15 1.000 0.819
DE 0.333 0.341 2.54 0.986 0.909 0.318 0.338 6.09 1.000 0.902
FR 0.286 0.320 11.68 1.000 0.903 0.282 0.304 7.78 1.000 0.904
LU 0.270 0.313 16.11 1.000 0.687 0.321 0.329 2.53 0.959 0.734
NL 0.273 0.272 -0.43 0.364 0.906 0.295 0.296 0.32 0.611 0.917
EL 0.320 0.365 14.04 1.000 0.845 0.324 0.357 10.04 1.000 0.943
ES 0.328 0.367 11.77 1.000 0.883 0.332 0.362 9.01 1.000 0.896
IT 0.314 0.341 8.55 1.000 0.939 0.338 0.360 6.52 1.000 0.930
PT 0.355 0.390 9.83 1.000 0.683 0.330 0.382 15.67 1.000 0.879

Simulation with 5,000 draws+500 for warming up the chain. Extra 1,500 draws were discarded
due to the updating of β. Convergence was checked, using CUMSUM plots. The value of k for the
Bernstein polynomials was equal to 6. Sensitivity analysis with k = 3 and k = 12 shows that the
results are not very much changed.

Table 4.

1. First, the Pareto tail is estimated on a quite large range, from the last
32% for Luxembourg and Portugal to the last 6% for Greece and Italy.
There is thus much variation, either over time or between countries.
This variety motivates the interest in estimating h instead of fixing it at
the same value for each country. This variety is due to the capabilities
of the Pareto II, compared to the Pareto I, as shown in section 2.6.

2. Second the correction is either zero or very small (Denmark, Finland,
Sweden, the Netherlands) for some countries using register data for
income.

3. Third, the correction can be quite important (Ireland, Luxembourg,
Greece in 2008, 16% for Portugal in 2018), but can vary a lot for the
same country, depending on the year (Luxembourg, Portugal).

4. Finally, using register data is not a guaranty for a small correction,
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witness the case Ireland which experience a correction of 17% in 2008,
despite the use of register data.

Table 5: Gini correction using Pareto II tails and prior information from the
WID and Bernstein smoothing: NMS

2008 2018
Gini y Gini ∆ % Pr(∆ > 0) p Gini y Gini ∆ % Pr(∆ > 0) p

EE 0.341 0.373 9.54 1.000 0.714 0.335 0.368 9.68 1.000 0.661
LT 0.367 0.389 6.17 1.000 0.801 0.408 0.417 2.19 0.950 0.750
LV 0.392 0.454 15.76 1.000 0.723 0.376 0.431 14.70 1.000 0.735
CZ 0.276 0.308 11.74 1.000 0.889 0.251 0.295 17.46 1.000 0.828
HU 0.253 0.277 9.45 1.000 0.871 0.312 0.342 9.79 1.000 0.848
PL 0.333 0.384 15.32 1.000 0.895 0.294 0.353 20.09 1.000 0.882
SI 0.266 0.269 0.99 0.887 0.849 0.275 0.268 -2.27 0.011 0.835
SK 0.261 0.262 0.47 0.589 0.797 0.212 0.227 7.31 1.000 0.784

Simulation with 5,000 draws+500 for warming up the chain. Extra 1,500 draws were discarded
due to the updating of β. Convergence was checked, using CUMSUM plots. The value of k for the
Bernstein polynomials was equal to 6. Sensitivity analysis with k = 3 and k = 12 shows that the
results are not very much changed.

Table 5 depict a less contrasted situation for New Member States. The
estimated value of p is still varying among the countries, corresponding to a
range between 0.66 and 0.90. The correction for the Gini is significant for
all countries and more important than for the EUR-15. The exception is
Slovenia with a correction that can be zero, perhaps due to the fact that this
country is using registered data.

4.4 Posterior densities for the corrected Gini

In this section, we provide the posterior density of the corrected Gini indices.
We have regrouped the countries into categories. The plots are given, using
the same scale for ease of comparison. On each plot, we have indicated with a
vertical dashed line the value of the sample Gini without correction, in order
to visualise the importance of the correction brought by our calculations.

Nordic countries (Figure 7) are typical of the use of registered data. For
Denmark, the vertical line is at the very end of each posterior density. For
Sweden, the vertical line is within the range of the posterior density of the
Gini. For these two countries, we can accept the fact that there is no need
for correction, a configuration that has to be contrasted with Finland, where
a correction is needed, however small. The trend in inequality can be clearly
identified and is significant for the Nordic countries, increasing for Denmark
and Sweden, decreasing for Finland. On average the range of the posterior
corrected Gini is from 0.23 (Denmark) to 0.31 (Finland).
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Figure 7: Posterior densities of corrected Gini for Nordic countries
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Figure 8: Posterior densities of corrected Gini for Anglo-Saxon countries

For Anglo-Saxon countries (Figure 8), the Gini has been significantly
corrected, irrespective of the origin of the data, register for Ireland and survey
for the UK. There is a decreasing trend in inequality, significant for the
UK, but more hazardous for Ireland as its two posterior densities overlap.
Inequality is much more important (0.35, Ireland to 0.38, the UK) than in
the Nordic countries.

For Northern European countries (Figure 9), the correction can lead some
paradoxical results. For instance it is important for Luxembourg in 2008, not
significant in 2018, so that finally the two posterior densities overlap. Finally
the corrected measure has not changed over time. In the Netherlands, there
is no correction for 2008, a mild correction for 2018, but it amplifies the
increase of inequality over time. For the other countries, the correction can
be important (France) and inequality is decreasing over time. On average,
the range of the Gini is between 0.26 (the Netherlands) and 0.35 (Germany),
a range even greater than that of Anglo-Saxon countries.

For Southern European countries (Figure 10), the case of Spain is inter-
esting. The correction is important, but the posterior densities of the two
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Figure 9: Posterior densities of corrected Gini for Northern European coun-
tries

Gini for 2008 and 2018 strictly coincide. For Greece the correction strongly
amplifies the decrease in inequality. In Italy, on the contrary, the correction
reduces the increase in inequality over time. In Portugal, the strong correc-
tion preserves the trend for decreasing inequality. The range of the corrected
Gini is even greater than in Northern European countries with 0.33 (Greece)
to 0.43 (Portugal).

The case of Baltic and Eastern countries (Figures 11 and 12) is exem-
plary for the need of corrections. The corrections are quite important except
for Slovenia (register). They however introduce no major reversal in the
evolution of inequality: increasing for Lithuania and Hungary, stationary for
Estonia, Czech Republic and Slovenia, decreasing for Latvia, Poland and
Slovakia. The range of the posterior corrected is between 0.22 (Slovakia)
and 0.46 (Latvia), so the much larger of all the group of European countries,
mainly due to the Baltic countries. Without the correction, the Czech Re-
public, Hungary and Slovakia have a level of inequality lower than that of
the Nordic countries. With the correction, they reach a level of inequality
comparable to that of Northern European countries.
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Figure 10: Posterior densities of corrected Gini for Southern European coun-
tries
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Figure 11: Posterior densities of corrected Gini for Baltic countries

4.5 The impact of adopting a Bayesian compound model

What is brought in by adopting our Bayesian modelling of the income dis-
tribution compared to the simple classical calculations based on a Pareto I
assumption (instead of a Pareto II), a fixed value for h as reported in Table
1? Most of the time, the Bayesian correction is slightly lower than that re-
ported in Table 1. But in few cases, the Bayesian correction can be either the
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Figure 12: Posterior densities of corrected Gini for other eastern countries

same or greater (see Tables 6 and 7). In fact the individual survey data do
not bring exactly the same message as the grouped WID data. For instance,
we have used weights when these of course are not available in grouped data.
And a sample Gini using weights is usual smaller than a Gini without weights,
at least in the EU-SILC data sets. On the other side, computing the Gini
for the lower sample as:

Gl(h, k) =
1

x̄l(h)

∫ h

0

F̂k(x)[1 − F̂k(x)] dx,

provides usually a slightly larger value that that obtained using directly the
truncated sample. Finally, h is estimated and might thus be different both
over time and between countries. And as underlined in Jenkins (2017), the
lower h, the higher the correction. So the differences comes from a bunch of
different reasons. The corrections provided by the Bayesian approach seem
in total fairly reasonable.

We present in Appendix D the need for a Pareto II by testing the re-
striction β = h. Most of the time this restriction is rejected by the sample,
confirming the need for a Pareto II model.
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Table 6: Bayesian versus classical Gini using the WID: EUR-15
2008 2018 2008 2018

Cty Bayes WID Bayes WID
DK 0.231 0.33 0.272 0.36 B < W B < W
FI 0.274 0.33 0.258 0.31 B < W B < W
SE 0.262 0.31 0.267 0.32 B < W B < W
IE 0.353 0.34 0.339 0.40 B > W B < W
UK 0.384 0.40 0.365 0.39 B < W B < W
AT 0.310 0.31 0.293 0.32 B = W B < W
BE 0.292 0.28 0.285 0.27 B > W B > W
DE 0.341 0.39 0.338 0.37 B < W B < W
FR 0.320 0.33 0.304 0.31 B = W B = W
LU 0.313 0.37 0.329 0.33 B < W B = W
NL 0.272 0.28 0.296 0.29 B = W B = W
EL 0.365 0.34 0.357 0.34 B > W B > W
ES 0.367 0.37 0.362 0.39 B = W B < W
IT 0.341 0.34 0.360 0.40 B = W B < W
PT 0.390 0.35 0.382 0.35 B > W B > W

The columns Bayes correspond to the values of the corrected Gini
obtained in Table 4, using a Pareto II tail and a prior information
coming from the WID data base. The columns WID corresponds
to the values reported in Table 1, using a Pareto I tail.

Table 7: Bayesian versus classical Gini using the WID: NMS
2008 2018 2008 2018

Cty Bayes WID Bayes WID
EE 0.373 0.39 0.368 0.43 B < W B < W
LT 0.389 0.38 0.417 0.42 B > W B = W
LV 0.454 0.41 0.431 0.39 B > W B > W
CZ 0.308 0.36 0.295 0.33 B < W B < W
HU 0.277 0.28 0.342 0.32 B = W B > W
PL 0.384 0.40 0.353 0.37 B < W B < W
SI 0.269 0.27 0.268 0.28 B = W B < W
SK 0.262 0.28 0.227 0.25 B < W B < W

The columns Bayes correspond to the values of the corrected Gini
obtained in Table 4, using a Pareto II tail and a prior information
coming from the WID data base. The columns WID corresponds
to the values reported in Table 1, using a Pareto I tail.

5 The impact of the correction on inequality

dynamics

The Growth Incidence Curve (GIC) of Ravallion and Chen (2003) provides
a tool to measure how growth has benefited to the different quantiles of
an income distribution. Its level indicates the average growth rate. If it is
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downward slopping, inequality has decreased over the period, which means
that lower quantiles have benefited more from economic growth than higher
quantiles. And the reverse if it is upward slopping. The GIC is obtained sim-
ply by computing the difference between the logs of two quantiles functions
computed at two different points in time. By considering a compound model
and prior information on the shape of the Pareto II tail, we have introduced
a correction for potentially missing rich, which means that the original data
gave a biased representation of the very top quantiles, and thus potentially
introducing a deformation of the GIC. What is the impact of this correction
on the shape of the GIC? We try to answer to this question in this last section
of the paper.

5.1 Quantile function for the compound model

We have first to derive the quantile function for our compound model. Let
us consider the log-normal-Pareto II compound model as a simplification.
The CDF was in given in (16). Due to the very particular structure of the
bulk model, the quantile function can be easily derived. There is a one-to-
one correspondence between ρ (the proportion of observations below h) and
the value of h with ρ = 1 − FΛ(h|µ, σ2). Let us define the cutting point
ρh = FΛ(h|µ, σ2). We can express the overall quantile function for p ∈ [0, 1]
as:

Q(p|θ) = QΛ(p|µ, σ2)1(p ≤ ρh) +QΛ(ρh|µ, σ2)1(p > ρh)

+ (1− ρh)QP2(p|h, α, β)1(p > ρh), (26)

where the quantile function for the lognormal and the Pareto II are:

QΛ(p|µ, σ2) = exp(µ+ σΦ−1(p)) (27)

QP2(p|h, α, β) = h− β + β(1− p)−1/α. (28)

The GIC is obtained as the difference of the log of two quantiles functions,
each computed at two points in time. Given a draw θ(j) from the posterior
density of the parameters, a draw from the posterior density of the GIC is
given by:

gt(p|θ(j)) = logQt(p|θ(j)t )− logQt−1(p|θ(j)t−1). (29)

Remark 4 In section 3.2, we have replaced the lognormal distribution by a
Bernstein polynomial approximation. A direct approximation exist also for
the quantile function of the lower part of the distribution as was used for
instance in Fourrier-Nicolai and Lubrano (2023). The case is quite simple
as we have simply to smooth the empirical quantile function which is naturally
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defined on [0,1]. Let us partition the vector p into p = [pl, pu] where pl ∈ [0, τ [
and pu ∈ [τ, 1] and τ is the limit between the two components. We then build
the n× (k + 1) matrix Z:

Zk(p) = [Bk(p, 0), · · · , Bk(p, k)],

An estimate of the lower quantile function is obtained from the regression

Qs = Zk(p)δ + u, (30)

where Qs is the vector of empirical quantiles of x. The smoothed lower quan-
tile function is given by Zk(pl)δ̂.

Let us now suppose that we have obtained m draws from the posterior
density of δ in regression (30), using a non-informative prior and m draws
for the parameters α, β and h of the Pareto II model. A posterior draw from
the quantile function of the compound model is given by:

Q(p|θ(j)) = [Zk(pl)δ
(j), (1− ρ(h(j)))(h(j) − β(j) + β(j)(1− pu)

−1/α(j)

)], (31)

where we have chosen a fixed grid for p for ease of presentation. This ex-
tension will be used in a future version of the paper. However, the empirical
results should not be too much altered.

5.2 GIC for a group of countries

Finding the GIC for a group of countries is a specific problem. We have
to estimate the income distribution for this group as a mixture of country
income distributions. It is usual very easy to find the corresponding CDF,
as the CDF of a mixture is just the mixture of the member CDFs. The same
property however does not hold for the quantile function which has to be
derived numerically, by solving for each draw a one variable equation. The
method is detailed in Fourrier-Nicoläı and Lubrano (2021). Let Popi be the
population of country i in percentage of the total population of the group
and Fi(x|θ) the CDF of country i. The CDF of a group of countries is given
by:

F (x|θ(j)) =
∑

i

PopiFi(x|θ(j)i ).

For each draw of the parameters, Fi(x|θ(j)i ) can be deduced from (16) to give:

Fi(x|θ(j)i ) = FΛ(x|µ̂i, σ̂
2
i )1(x ≤ h

(j)
i )

+ 1(x > h
(j)
i )[FΛ(h

(j)
i |µ̂i, σ̂

2
i ) + (1− FΛ(h

(j)
i |µ̂i, σ̂

2
i )FP2(x|h(j)

i , α
(j)
i , β

(j)
i )],
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with:

FP2(x|h(j)
i , α

(j)
i , β

(j)
i ) = 1−

(

1 +
x− h(j)

β(j)

)−α(j)

.

The corresponding quantile function for each draw of the parameters has to
be found by solving in x the equation:

F (x|θ(j))− p = 0.

This equation can be solved, using Brent (1973) algorithm, programmed in R

with the uniroot function. As this algorithm does not use derivatives, there
is in general no problem of convergence. The execution time is rather quick.

5.3 Is there an Elephant curve in Europe?

Lakner and Milanovic (2016) have shown that when plotting the GIC of the
world income distribution, the latter had the shape of an elephant. This
means that, economic growth has benefited a lot to the world middle class,
not at all to the world upper middle class and a lot to the world very rich
households (assuming that the elephant is raising its trump). The last part of
the plot is especially amplified when correcting for missing rich. At the world
level, the middle class corresponds to the emergence of China, which is both
one of the largest populated country and has benefited of a huge economic
growth. Do we find the same type of phenomenon at the European level?
The 8 new member states have experienced between 2008 and 2018 of a large
economic growth, much more important than that of the initial 15 member
states, as we can see by comparing the GIC plots in Figure 13 corresponding
to these two groups of countries. Average growth is around 36% over the
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Figure 13: Comparing GICs for EUR-15 and NMS based on a lognormal
assumption and a Pareto II tail
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period for the NMS against a mere 10% for the EUR-15. However, the NMS
are very small countries with a total population of 71.8 millions against
the 410.6 millions of the EUR-15. The distribution of inequality over the
quantiles is also very different. For the NMS, all quantiles seem to have
benefited from growth and our Pareto tail correction indicates a sharp decline
in the growth rate for top quantiles. On the contrary, for the EUR-15,
the extreme low quantiles have lost, while the top quantiles have gained.
However, the Pareto tail correction indicates a large uncertainty.

Mixing those two groups of countries produces the GIC displayed in Fig-
ure 14. The mixing of different groups of countries changes completely the
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Figure 14: GIC for 23 European states based on a lognormal assumption

lower part of the global Gic. When lower quantiles of the EUR-15 countries
were the losers of economic growth, at the complete group of countries, the
lower quantiles were the net beneficiaries of growth up to the 0.15 quantile.
Then, the Pareto tail correction has an impact starting very early around
the 0.20 quantile. The GIC issued from a simple lognormal assumption is
lowered between quantiles 0.30 and 0.60. Finally the uncertainty at the level
of top quantiles remains the same as that depicted in Figure 13 for EUR-15.4

4We have computed the Gic with a higher precision for top quantiles. For the last
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We do not have the usual elephant curve of Lakner and Milanovic (2016).
How can we explain this difference with the World GIC? The shape of the
latter was mainly due to the impact of the huge economic growth of China
and partially of India. In the GIC depicted in Figure 14, the position of
China would correspond to the 0.05 quantile in 2008 and 0.15 quantile in
2018. So we observe only the trump of the world elephant curve and not its
body.5

6 Conclusion

We have assumed that the lower part of the sample correctly reported in-
comes, while some incomes were either missing or under-reported in the upper
part of the survey sample. The main question was how to empirically deter-
mine the point of junction between the two parts of the sample. We have
proposed a method coming from the extreme-value literature. We have cor-
roborated one of the findings of Jenkins (2017) that the amount of correction
for measuring inequality depended very much on the threshold. However, we
did not corroborate the second finding of Jenkins (2017) that the direction
of correction depended little on the choice of threshold. The reason is that
with our enlarged model, we estimate the value of h in every case and this
value can change a lot, both over time and between countries. This has to be
contrasted with the empirical literature (Jenkins 2017, Bartels and Metzing
2019 and others) that opted for quite high and fixed values of the threshold,
between the top 0.90 quantile and the top 0.99 quantile.

Our Bayesian approach allows the sample to react in its own way to the
prior information based on WID data. It can lead to lower corrections and
in a few cases to higher corrections. We found only a weak relation between
the source of the data (register versus survey) and the amount of correction,
which is in a way surprising.

This varying h has also important consequences on the shape of the GIC
which tries to depict which quantiles benefited from growth in income. When
measured for a group of countries, here the 15+8 European countries, the

0.01%, the corrected Gic is decreasing while the uncorrected one is increasing. But there
is so much uncertainty that the difference is not significant.

5China GDP per capita was $7,413 in 2008 and $15,134 in 2018 (computed in 2017
$PPP). The same indicators for Germany were respectively $47,643 and $53,431. To
translate these figures in average incomes in €, we can confront them to the figures of
average income obtained for Germany with the SILC data. They are 20,697 €in 2008 and
25,144 €in 2018. So the ratio between GDP per capita in $ PPP and mean income in
€is 20697/47643=0.43 in 2008 and 25144/53431=0.47 in 2018. The corresponding mean
income for China is thus 7,413*0.43=3,188 €in 2008 and 15134.47=7,113 €in 2018.
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Pareto correction modifies its shape at the level of intermediate quantiles,
because the EU-15 and the NMS have intrinsic different characteristics.

This work is not exempt of limitations. The main limitation is due to the
interpretation of h which is here the threshold where a Pareto II tail best
fit the sample. This threshold can be rather low, due to the nice properties
of the Pareto II, compared to those of the Pareto I. There are plenty of
other reasons, besides under-sampling, for explaining the possible bias in
survey incomes. They have been investigated by Angel et al. (2019) and
they might be different according to the nature of income (wages, pension,
unemployment allowances). And this analysis requires linked samples, which
are not very frequent. This is beyond the scope of the present paper.
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Appendix

A The EU-SILC data set

The EU-SILC data set is both a cross section and a panel survey. But the
panel aspect is limited as it is a rotational household panel with a quarter of
respondents being exchanged each year. So it is possible to follow the same
household only during four consecutive years. Data are available starting in
2004 for the initial 15 EU members and slightly later for the new member
states.

A.1 Coverage

We provide in Tables 8 and 9 the coverage of the survey for the initial 15
members and for the new member states that joined the EU later. We
indicate the origin of the income variables (survey, administrative or mixed).
We also provide the average population over the period. For the rest of
the analysis, it is better to exclude Bulgaria, Romania, Croatia and Malta
which are starting later than 2005. Other countries includes countries out
of the EU, Switzerland, Iceland, Norway, Serbia. If we are interesting in
economic convergence inside the EU, it is better to exclude those countries.
So, we are going to consider two groups: EU15, the original 15 members
(including the UK) and NMS, the new-comers, essentially the former eastern
countries, so excluding Cyprus. In total, we have 23 countries for 14 years.
For further analysis, we can distinguish five groups of countries among those
23 countries with Kranzinger (2020), grouping European countries according
to their welfare state regimes. We have:

1. Scandinavian countries: Denmark (DK), Finland (FI), Sweden (SE),

2. Anglo-saxon: Ireland (IE), the UK,

3. Northern Europe: Austria (AT), Belgium (BE), Germany (DE), France
(FR), Luxembourg (LU), Netherlands (NL),

4. Southern Europe: Greece (EL), Spain (ES), Italy (IT), Portugal (PT),

5. Baltic countries: Estonia (EE), Lithuania (LT), Latvia (LV),

6. Eastern Europe: Czech Rep (CZ), Hungary (HU), Poland (PL), Slove-
nia (SI), Slovakia (SK)

This classification will help us to present our empirical results.
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Table 8: Old EU-15. Founding members plus joiners

Country Full name Min Max Source Population

DK Denmark 2004 2019 Register 5.8
FI Finland 2004 2019 Register 5.5
SE Sweden 2004 2019 Register 10.4

IE Ireland 2004 2019 Register 5.0
UK United Kingdom 2005 2018 Survey 67.0

AT Austria 2004 2019 Mixed 8.9
BE Belgium 2004 2019 Mixed 11.6
DE Germany 2005 2019 Survey 83.2
FR France 2004 2019 Mixed 67.4
LU Luxembourg 2004 2019 Mixed 0.6
NL Netherlands 2005 2019 Register 17.5

EL Greece 2004 2019 Survey 10.7
ES Spain 2004 2019 Mixed 47.4
IT Italy 2004 2019 Mixed 59.3
PT Portugal 2004 2019 Survey 10.3

The nature of the source of income comes from The use of registers in the

context of EU–SILC: Challenges and opportunities by Jantti et al. (2013).

Table 9: New member states

Country Full name Min Max Source Joining Population
EE Estonia 2004 2019 Survey 2004 1.3
LT Lithuania 2005 2019 Mixed 2004 2.8
LV Latvia 2005 2019 Mixed 2004 1.9
CZ Czech Rep 2005 2019 Survey 2004 10.7
HU Hungary 2005 2019 Survey 2004 9.7
PL Poland 2005 2019 Survey 2004 37.8
SI Slovenia 2005 2019 Register 2004 2.1
SK Slovakia 2005 2019 Survey 2004 5.5

Source from The use of registers in the context of EU–SILC: Challenges and oppor-

tunities by Jantti et al. (2013).

A.2 The income variables

For each country and year, three files are available in the EU-SILC: P-file
for individuals, H-file for households and D-file for identifiers. The variable
HX090 corresponds to household income, normalised by the OECD equiv-
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alence scale. This scale assigns value 1 to the first adult, 0.5 to any other
person aged 14 or older, and 0.3 to each child younger than 14. HY020 is also
total (disposable) household income, but without normalisation and HY010
corresponds to total household gross income. HX050 is the OECD-modified
scale equivalised household size. HX090 is the variable that is mostly used
in empirical studies with HX090 = HY 020/HX050. It corresponds to the
notion of HGDI (household gross disposable income) of national accounts.
The series are made comparable for all EU countries. They are adjusted
for cost-of living differences both across countries and over time. We have
excluded negative and missing values.

Most references focus on the household equivalised disposable income
variable (HX090) readily available in EU-SILC data (e.g., Van Kerm 2007,
Hlasny and Verme 2018, Brandolini and Rosolia 2021). This variable is de-
fined as:

HX090 =
HY020

HX050
(32)

where the OECD-modified scale equivalised household size (HX050) is defined
as6

HX050 = 1 + 0.5× (# household members aged 14 and over− 1) (33)

+ 0.3× (# household members aged 13 or less) (34)

and the total disposable household income (HY020) is defined as

HY020 = HY010
︸ ︷︷ ︸

Total household gross income

(35)

− HY120G
︸ ︷︷ ︸

Regular taxes on wealth

(36)

− HY130G
︸ ︷︷ ︸

Regular inter-household cash transfers paid

(37)

− HY140G
︸ ︷︷ ︸

Regular taxes on income and social ins. contributions

(38)

An equal-split (i.e., per capita) household income variable can be com-
puted as:

HX090es =
HY020

HX040
(39)

The composition of total household gross incomes (HY010) considered is
as follows:

6This scale gives a weight of 1 to the household head, of .5 to each and every other
adult household member and of .3 to each and every child in the household.
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HY010 = HY040G
︸ ︷︷ ︸

Income from rental of a property or land

(40)

+ HY050G
︸ ︷︷ ︸

Family/children related allowances

(41)

+ HY060G
︸ ︷︷ ︸

Social exclusion not elsewhere classified

(42)

+ HY070G
︸ ︷︷ ︸

Housing allowances

(43)

+ HY080G
︸ ︷︷ ︸

Regular inter-household cash transfers received

(44)

+ HY090G
︸ ︷︷ ︸

Interests, dividends, profit from capital investments in unincorporated business

(45)

+ HY110G
︸ ︷︷ ︸

Income received by people aged under 16

(46)

+
∑

i in household

PY010Gi
︸ ︷︷ ︸

Gross employee cash or near cash income

(47)

+ PY021Gi
︸ ︷︷ ︸

Company car

(48)

+ PY050Gi
︸ ︷︷ ︸

Gross cash benefits or losses from self-employment (including royalties)

(49)

+ PY080Gi
︸ ︷︷ ︸

Pensions received from individual private plans (other than those covered under ESSPROS)

(50)

+ PY090Gi
︸ ︷︷ ︸

Unemployment benefits

(51)

+ PY100Gi
︸ ︷︷ ︸

Old-age benefits

(52)

+ PY110Gi
︸ ︷︷ ︸

Survivors’ benefits

(53)

+ PY120Gi
︸ ︷︷ ︸

Sickness benefits

(54)

+ PY130Gi
︸ ︷︷ ︸

Disability benefits

(55)

+ PY140Gi
︸ ︷︷ ︸

Education-related allowances

(56)

(57)
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Ederer et al. (2020) gives a framework allowing to understand the links
between these EU-SILC income aggregates and National Accounts aggre-
gates under the 2010 European System of Accounts (ESA2010). For most
EU-SILC countries, they find that the Adjusted Disposable Income (ADINC)
aggregate from the OECD-Eurostat Expert Group on Disparities in National
Accounts (EG-DNA) methodology very closely resembles the Post-tax Na-
tional Income (POTNI) aggregate from the WID.world DINA methodology,
which are the key aggregates for studying the National Accounts-consistent
post-tax distribution of incomes. In their methodology for EU-SILC data,
out of 22 ESA2010 items in total which define the ADINC, 10 items must
be imputed to the micro-data based only on National Accounts, and 4 are
imputed through simulations from EUROMOD (employer social contribu-
tions, employee social contributions, taxes on employment income, taxes
on simulated property income, & taxes on non-simulated property income)
(Ederer et al. 2020, Table 1). Additionally, they don’t take taxes from EU-
SILC but rather from EUROMOD simulations on the micro-data and they
consider some income items which are not included in HY010: Gross non-cash
employee income (PY020Gi. Includes within it the imputed value for company
car PY021Gi), gross imputed rents (HY030G), and gross value of goods pro-
duced for own-consumption (HY170G). Mixed income and capital income are
particularly not well covered in EU-SILC data in general while they con-
tribute significantly to National Account aggregates and income inequality.

B Generalised Pareto versus Pareto II

The Generalised Pareto distribution (GPD) introduced by Pickands (1975)
is slightly more general than the Pareto II as the latter corresponds to a
parametric restriction (ξ > 0) and to a re-parameterisation. The original
formulation of the GPD was:

F (x|ξ, ς) = 1− (1 + ξx/ς)−1/ξ. (58)

It reduces to the exponential distribution for ξ = 0. The Pareto II model
corresponds to positive values of ξ which induce a heavy tail behaviour. For
negatives values of ξ, the random variable is bounded above with 0 ≤ x ≤
−ς/ξ. The uniform distribution on [0, ς] is obtained for ξ = −1. Recovering
the original Pareto II implies considering the following re-parameterisation:

α = 1/ξ, β = ς/ξ.

The R packages SpatialExtremes and eva provide an implementation of an
extension of this distribution, with three parameters (location µ, scale ς and
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shape ξ:

F (x) = 1−
[

1 + ξ
x− µ

ς

]−1/ξ

, f(x|ξ, ς) = 1

ς

(

1 + ξ
x− µ

ς

)−1−1/ξ

.

Arnold (2008) underlines that the statistical literature on the GPD has be-
come quite extensive and thus provides a useful source of information for
the Pareto II. We can nevertheless notice a certain confusion of appellation.
Mokrani et al. (2016) use the notation of the Pareto II for their Generalised
Pareto. Hu and Gui (2018) use a notation similar to the Pareto II, but with
λ = 1/σ which gives F (x) = 1− (1+λx)−α. Jenkins (2017) called the Pareto
II the following survival function:

S(x) =

[

1 + ξ
x− µ

σ

]−1/ξ

, ξ > 0,

which is nothing but the usual Generalised Pareto, restricted to positive
values of ξ. Finally, it is worth noting that the Singh-Maddala (or Burr XII)
distribution could be classified also among distributions having a Pareto tail
as its CDF corresponds to:

F (x) = 1− [1 + (x/σ)b]−α,

which is the parameterisation of the Pareto IV with µ = 0. For b ≤ 1, we
have a zero mode distribution.

C Bernstein polynomials for truncated dis-

tributions

Vitale (1975) was the first to propose a density estimator based on Bernstein
polynomials. Let us suppose that we have n observations with distribution
f(x) from which we form histogram values of k + 1 bins. Let xj be the
center of each class and nj the corresponding frequencies. A semi-parametric
estimator of the density is then formed by a polynomial approximation of
the empirical function described by the k + 1 couples (xj, nj).

We propose here another Bernstein density estimator, where the coeffi-
cients of the polynomial approximation are obtained by a regression. Let us
first recall the expression of a Bernstein polynomial defined for x ∈ [0, 1]:

Bk(x, j) = Cj
kx

j(1− x)k−j, (59)
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where Cj
k is the binomial coefficient. This polynomial has, among many,

the properties that
∑

j Bk(x, j) = 1 and Bk(x, j) ≥ 0. If the range of x is
[a, b], then we can always use the transformation y = (x − a)/(b − a) and
use Bk(y, j) instead of Bk(x, j). The estimator proposed by Vitale (1975)
corresponds to:

f̂n,k(x) = (k + 1)

k∑

j=0

nj

n
Bk(x, j). (60)

We propose to approximate the coefficients in (60) by using a regression of
the log of the vector of the histogram frequencies nj over Bk(xj, j) where xj
is the vector of the cell midsts xj with the advantage of choosing the degree
k of the Bernstein polynomial independently of the number of cells of the
histogram:

log(nj) = Bk(xj, 0)δ0 + · · ·+Bk(xj, k)δk + ǫ.

Calling δ̂j the estimated regression coefficients, the new density estimator is:

f̂n,k(x) = exp(

k∑

j=0

Bk(x, j) δ̂j). (61)

It has to be normalised to one by numerical integration. Using a regres-
sion on the logs and then predicting the exponential is a way to impose the
positivity of the density estimate. We compare in Figure 15 three different
estimators for the truncated French income distribution in 2018. For k = 12,
the Bernstein estimator (61) and the kernel estimator provide very similar
results for the bulk of the distribution. But the kernel estimate shows its
deficiencies in the right tail, which is of particular concern in our context.
The fit of the lognormal is adequate for the right tail, but not for the rest
of the distribution, which has motivated Cabras and Castellanos (2011) to
propose a semi-parametric estimator for the lower part of the distribution.

The same approach can be used for estimating the CDF. Let us as-
sume that the vector of the n values of x has been sorted and let Fn =
(1, · · · , n)/(n+ 1).7 Babu et al. (2002) propose the following estimator:

F̂n,k(x) =
k∑

j=0

Fn(j/k)Bk(x, j).

We have the same problem as before for the dimension of the polynomial
that we shall solve by introducing a new regression. Because an estimated

7If we have weights w summing to n, then Fn = cumsum(w)/(n + 1) where cumsum in
the operator giving the cumulative sum.
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Lower truncated density, p= 0.95 , Country FR
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Figure 15: Comparing various density estimators

cumulative is not only a positive, but also an increasing function of x, we
have to impose this supplementary restriction. For this, we use a logistic
regression, obtained by regressing the log of (1− Fn)/Fn over the Bernstein
basis Zk(x) = [Bk(x, j)] with:

log[(1− Fn)/Fn] = Zk(x)δ + ǫ.

The estimated CDF is then obtained by the inverse transformation with:

F̂n,k(x) =
1

1 + exp(Zk(x)δ̂)
. (62)

Remains the question of the range of x which is not [0,1] in empirical ap-
plications. This time, we use the following logistic transformation of the x,
y = 1/(1+exp(x/x̄)), the initial transformation y = (x−a)/(b−a) producing
unsatisfactory results at the top of the distribution.

Let us now compare the performance of these estimators in Table 10. We
have computed the RMSE between an estimate and the natural estimator
alternatively for the whole sample and for the top 10% of French and UK
SILC income data for 2018. The quality of the adjustment increases with
k as expected. Figure 16 shows that even with a very low value for k, the
estimator manages to reproduce very well the shape of the CDF.
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Table 10: Comparing CDF estimators
Method France France UK UK

full top 10% full top 10%
Bernstein k = 3 0.547 0.097 0.779 0.176
Bernstein k = 6 0.470 0.040 0.264 0.070
Bernstein k = 12 0.162 0.036 0.253 0.049
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Figure 16: Two estimators for the CDF

D The need of a Pareto II

Is it necessary to adopt a Pareto II tail, instead of a simple Pareto I which
is easier to estimate. The answer is given by looking at the posterior density
of the difference β − h. The Pareto I corresponds to the restriction β = h.
So if 0.00 belong to a 90% HPD confidence interval of the posterior density
of β − h, the Pareto I restriction becomes valid. A second information can
be drawn from the posterior densities of β − h. From Figure 2. Depending
on the sign of β − h, the Gini coefficient associated to the Pareto II will be
lower (β− h < 0) or greater (β− h > 0) than the Pareto I Gini. This means
that imposing a Pareto I tail can over-estimate or under-estimate inequality.

Table 11 indicates that a Pareto II is needed in all EUR-15 countries,
except for Ireland in 2008, Luxembourg, and Greece in 2008. In all other
cases, a Pareto I would induce a positive bias, except for Portugal where the
bias would be negative. Note the particular case of Luxembourg where the
Pareto II is not needed according to this test but for which the estimated h
corresponds to a quite low value of p. Such a low value would not have been
possible with a Pareto I model.

For the New Member States, Table 12 indicates that a Pareto I could be
valid for more cases (Lituania 2008 and 2018, Czech Republic 2018, Poland
2008). The Pareto II tail induces a greater measure of inequality for Estonia,
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Table 11: Posterior distribution of β − h: EUR-15
2008 2018

0 ∈ 90%HPD Pr(β > h) 0 ∈ 90%HPD Pr(β > h)
DK No 0.00 No 0.00
FI No 0.00 No 0.00
SE No 0.00 No 0.00
IE Yes 0.92 No 0.00
UK No 0.00 No 0.00
AT No 0.00 No 0.00
BE No 0.00 No 0.00
DE No 0.00 No 0.00
FR No 0.00 No 0.00
LU Yes 0.82 Yes 0.90
NL No 0.00 No 0.00
EL Yes 0.45 No 0.00
ES No 0.00 No 0.00
IT No 0.00 No 0.00
PT No 1.00 No 1.00

YES means that a 90% HPD of the posterior density of the differ-
ence β − h contains the value 0.00. In this case, a Pareto I model
is enough for modelling the right tail. If the posterior probability
that β > h is greater than 0.50, the Pareto II model provides a
higher measure of inequality than the Pareto I.

Table 12: Posterior distribution of β − h: NMS
2008 2018

0 ∈ 95%HPD Pr(β > h) 0 ∈ 95%HPD Pr(β > h)
EE No 1.00 No 1.00
LT Yes 0.62 Yes 0.94
LV No 1.00 No 1.00
CZ No 0.02 Yes 0.15
HU No 0.00 No 1.00
PL Yes 0.91 No 1.00
SI No 0.00 No 0.00
SK No 0.00 No 1.00

YES means that a 90% HPD of the posterior density of the differ-
ence β − h contains the value 0.00. In this case, a Pareto I model
is enough for modelling the right tail. If the posterior probability
that β > h is greater than 0.50, the Pareto II model provides a
higher measure of inequality than the Pareto I.

Latvia and Hungary 2018, Slovakia 2018.
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