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Abstract—In basic testing problems, a topic of great interest
is that of state identification. State identification has been solved
by the way of synchronizing sequences, i.e., sequences thatdrive
the system to a unique final state regardless of the initial one
and do not require the observation of the system’s outputs. In
this paper we provide a novel approach for the computation
of synchronizing sequences on discrete event systems modeled
by synchronized Petri nets. This approach is compared with
our previous results for synchronizing sequence computation by
means of two different benchmarks. First, we generate random
nets, second we provide a parametric manufacturing system.

I. I NTRODUCTION

Basic testing problems have been introduced in the pio-
neering work of Moore [1]. In this paper we focus on the
synchronization problem. Synchronization concerns how to
drive a system to a known state when its current state is
unknown and the outputs are unobservable.

The classic approach to solve this problem considers sys-
tems modeled by finite automata [2]. In particular a stan-
dard technique requires the computation of a synchronizing
sequence (SS), i.e., a sequence of inputs that drives the system
to a unique final state independently of the initial state anddoes
not require the observation of the system’s outputs.

In our previous works [3], [4], we have dealt with this
problem in the Petri net (PN) framework. We have shown how
the automata approach [2] can be applied with minor changes
to the class of bounded synchronized PNs. In this setting, one
needs to construct thereachability graph(RG) G of the net
— which describes the state-space of the net and depends on
the initial marking — and its correspondingauxiliary graph
of cardinality 1

2
n(n + 1), with n = ∣G∣1. We will refer to this

approach as the RG approach.

We have considered a special class of synchronized PNs,
calledstate machine(SM) PNs [5], where each transition has
a single input and a single output place. For this class, we
have proposed a novel approach which allows us to determine
a SS for nets containing1 token (cf. 1-SS), that can be
used as a building block to construct a SS for the same net
in the k-token case (cf. k-SS). Such a sequence is called
synchronizing transition sequence(STS). The STS approach
[3] constructs SSs with a depth-first search on the net structure
and verifies certain conditions over the labeling function.This
avoids the state-space explosion problem encountered in the

1Here by ∣G∣ we denote the cardinality of the RG nodes, which coincides
with the number of reachable markings of the net.

RG-approach. However, not all SSs can be obtained in this
way, because of the more restrictive required conditions.

The first contribution of this paper is a new approach that
builds on results of the RG approach to construct all1-SS
that satisfy the conditions required by the STS approach. This
allows one to determine ak-SS — for an arbitrary largerk
— with no further computation, thus avoiding any reachability
analysis.

The second contribution consists of a set of experiments
results, which aim to compare our new approach with the two
previously presented ones. Here, randomly generated SM PNs
are taken into account. Furthermore they are applied to a family
of manufacturing plants, which are not SMs.

The paper is organized as follows. In Section II a back-
ground on synchronized PNs is provided. In addition, the sec-
tion provides the comparative scenarios where to finally show
how to obtain a1-SS for synchronized SM PNs. Section III
presents a novel approach for SS computation. Section IV and
Section V are devoted to compare the existing techniques for
SS computation on PNs. Numerical results for SS computation
are presented first by the aid of randomly constructed nets,
then via a manufacturing example. Finally, in Section VI,
conclusions are drawn and open areas of research are outlined.

II. BACKGROUND

A. Synchronized Petri net formalisms

A Petri net (PN) is a structureN = (P,T,Pre,Post) ,
whereP is the set ofm places,T is the set ofq transitions,
Pre ∶ P × T → N andPost ∶ P × T → N are the pre and post
incidence functions that specify the weighted arcs. An ordinary
PN is a PN where∀p ∈ P,∀t ∈ T, Pre(p, t), Post(p, t) ≤ 1.
A marking is a vectorM ∶ P → N that assigns to each place
a nonnegative integer number of tokens;M(p) is the marking
of a placep. A marked PN is denoted⟨N,M0⟩.

A transition t is enabled atM iff M ≥ Pre(⋅, t). An
enabled transition may be fired yielding the markingM ′ =
M+Post(⋅, t)−Pre(⋅, t). The set of enabled transitions atM is
denotedE(M). M[σ⟩ denotes that the sequence of transitions
σ = t1 . . . tk is enabled atM and M[σ⟩M ′ denotes that the
firing of σ from M yields M ′. A marking M is said to be
reachablein ⟨N,M0⟩ iff there exists a firing sequenceσ such
thatM0[σ⟩M . The whole markings reachable fromM0 defines
thereachability setof ⟨N,M0⟩ and is denoted withR(N,M0).

The preset and postset of a placep (resp. transitiont)
are respectively denoted●p and p● (resp. ●t and t●). These
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Fig. 1: A synchronized SM PN (a), its completely specified
RG with one token (b) and the reachable markings (c).

notions can be easily extended to a set of places and a set of
transitions. Astate machine(SM) PN is an ordinary PN such
that each transitiont has exactly one input place and exactly
one output place, i.e.,∀t ∈ T it holds that∣●t∣ = ∣t●∣ = 1.

Definition 1: A synchronized PN [6] is a structure
⟨N,E, f⟩ such that: i)N is a PN; ii) E is an alphabet of input
events; iii) f ∶ T → E is a labeling function that associates
with each transitiont an input eventf(t). ∎

The labeling function is extended to sequences of transi-
tions as follows: ifσ = t1t2 . . . tk thenf∗(σ) = f(t1)f(t2) . . .
f(tk). The setTe of transitions associated with input evente
is defined as follows:Te = {t ∣ t ∈ T, f(t) = e}. All transitions
in Te are said to be receptive to input evente.

A synchronized PN is driven by input sequences as follows.
At marking M , transitiont ∈ T is fired iff:

1) it is enabled, i.e.,t ∈ E(M);
2) the evente = f(t) occurs.

On the contrary, the occurrence of an event associated with a
transitiont /∈ E(M) does not produce any firing. Note that a
single server semantic is here adopted, i.e., when input event e
occurs, the enabled transitions inTe fire only once regardless
of their enabling degree. One writesM

w
Ð→M ′ to denote the

fact that the application of input event sequencew = e1 . . . ek

from M drives the net toM ′.

The following structural restriction is common in the
literature to ensure the synchronized PN to bedeterministic:
∄p s.t. t, t′ ∈ p●, t ≠ t′ and f(t) = f(t′). When an event
occurs in a deterministic net, all enabled transitions receptive
to that event can simultaneously fire. Thus an input sequence
w = e1e2⋯ek ∈ E∗ (∗ is the kleen star) drives a deterministic
net through the sequence of markingsM0, M1, M2, ⋯, Mk

whereM0 is the initial marking and

Mi+1 =Mi + ∑
t∈Tei+1

⋂E(Mi)

(Post(⋅, t) −Pre(⋅, t)) .

A synchronized marked PN⟨N,M0,E, f⟩ is said to be
bounded if there exists a positive constantk such that for
all M ∈ R(N,M0), M(p) ≤ k, ∀p ∈ P . Such a net has a
finite reachability set. In this case, the behavior of the net
can be represented by thereachability graph(RG), a directed
graph whose vertices correspond to reachable markings and
whose edges correspond to the transitions and the associated
event causing a change of marking.In Fig. 1a an example of
synchronized SM PN is shown. Note that labels next to each
transition denote its name and the associated input event. Its

RG for the one-token case — disregarding the dashed arc —
it is shown in Fig. 1b.

In the rest of the paper, the reader will only deal with the
class of synchronized deterministic PNs.

B. Previous approaches for synchronzing sequences

A synchronizing sequence (SS) it is a sequence that drives
the model to a known state when its current state it is
unknown and the outputs are unobservable. We recall the
formal definition of SS in the framework of SM PNs.

Definition 2: [4] Given a synchronized SM PN⟨N,E, f⟩,
assume that the initial markingM0 is not given but is known
to belong to a setM0 = {M ∈ N

m ∣ ∑i M(pi) = k}. w̄ is
called ak-SS if for allM ∈ M0 it holds M

w̄
Ð→ M̄ . ∎

In [3] we have provided a first approach, namely the
RG approach, for SS computation. This is a straightforward
approach that consists in adapting the existing approach for
automata and applying it to the RGG of the net, ofn markings.
That requires first to turn the RGG into a completely specified
graphG̃ — condition that in a RG of a PN is not always true
— and to construct its auxiliary graph (AG)A(G̃). In Fig. 1b,
the self-loop on markingM2 is added to to turn the graph into
a completely specified one.

We remind thatA(G̃) has a node for every unordered
pair (Mi,Mj) of markings of G̃, including pairs(Mi,Mi)
of identical markings. There is an edge from(Mi,Mj) to
(Mp,Mq) labeled with an input evente ∈ E iff in G̃ there
exists an arc fromMi to Mp and an arc fromMj to Mq,
both labelede. Note that, while constructing the AG, self-
loops are generally omitted because non significant for the
synchronization scope.

The cardinalities of those graphs can significantly increase
with an increasing number of tokens and constructing ak-SS
can be a very tricky problem. In fact, it can be shown that for
a strongly connected SM PN withm places andk tokens the
following equations hold:

∣G∣ = ( m + k − 1

m − 1
) ≤ 1

(m−1)!
km−1, ∣A(G̃)∣ = ∣G̃∣(∣G̃∣+1)

2

A more efficient technique, namely thesynchronizing transi-
tion sequence(STS) approach [3], consists in determining first
a1-SS, that, under certain conditions, can be used as a building
block to construct ak-SS. The STS approach allows to do so,
while in the contrary an arbitrary SS constructed by the RG
approach does not. This approach constructs any SS with a
depth-first search on the net structure avoiding the state space
enumeration. This avoids the state space explosion problembut
not all SSs can be obtained in this way, because the required
conditions are more restrictive.

III. A NEW APPROACH FORSSCOMPUTATION

In this section, a novel approach for SS computation on
PNs is proposed. In a first step, we consider the net with one
token and construct a modified and less complex reachability
graph. The objective is to determine on this graph a1-SS,
which satisfies all conditions required by the STS approach.
This allows one to determine ak-SS — for an arbitrary larger
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Fig. 2: The completely specified MRG̃G of the PN in Fig. 1a
having p̄ = p2 (a) and its AGA(G̃) (b).

k — with no further computation, thus avoiding any additional
reachability analysis.

The 1-SS computation is based on the RG approach and
ensures that the sole sequences satisfying conditions required
by the STS approach, if any exists, are found. The proposed
approach is a modified implementation of the RG approach,
based on an arc-pruning. Given a target placep̄, events
labeling arcs outputtinḡp — disregarding self-loops — are
not considered. These events belong to the set offorbidden
events, which is denoted asF(p̄).

For any given target place, we construct the so-called
modified reachability graph(MRG) GM , obtained by removing
all forbidden events from the RG of the net with only1 token.
Note that there is a different MRG for any given target place.

Example 3:Consider the synchronized PN of Fig. 1a
with one token. Let the target placēp be p2. It holds that
F(p2) = {e1, e3}. Its completely specified MRG̃GM is shown
in Fig. 2a, where the self-loop on markingM2 is added to
make it completely specified. The corresponding AGA(G̃M)
is shown in Fig. 2b. ∎

The MRG computation of1-SS consists of three steps.
First, we determine the set of forbidden events, which is
used to construct the MRG and its AG; second, we apply the
algorithm for the RG computation [3]. Finally we prove that
the obtained sequence is a1-SS for the complete model.

The so-constructed SS is a1-SS, which leads the net to
a target markingM̄ ∈ R(N,M0), where placēp is the only
marked place.

Algorithm 1: (MRG computation of a1-SS on SM PNs)
Input: a synchronized SM PN⟨N,E, f⟩ and a target placēp.
Ouput: a 1-SS w̄ for a markingM̄ such thatM̄(p) = 1 if
p = p̄ and0 otherwise.

1. Let F(p̄) ⊆ E be the set of forbidden events such
thatF(p̄) = {e ∈ E ∶ ∃t ∈ p̄●/●p̄ ∧ f(t) = e}.

2. Construct the RGG for any M0 ∶ MT
0 ⋅ 1⃗ = 1.

3. Construct the MRGGM , by removing all eventse ∈
F(p̄) from G.

4. Let G̃M be the completely specified MRG.
5. Construct the corresponding AGA(G̃M).
6. Let i = 0.
7. Let w = ε, the empty initial input sequence.
8. Let φ(w) = ⋃

i

Mi ∀Mi ∈ G̃M , the initial current

marking uncertainty.
9. Let M̄ be the target marking, such that̄M(p) = 1 if

p = p̄ and0 otherwise.

10. While φ(wi) ≠ {M̄}, do
10.1. i = i + 1.
10.2. Pick two markingsM,M ′ ∈ φ(wi−1), such

that M ≠M ′.
10.3. If there exists no path inA(G̃M) from node

(M,M ′) to (M̄, M̄), stop the computation.
Else find the shortest path from node
(M,M ′) to (M̄, M̄) and letw be the input
sequence along this path, do

10.3.1. wi = wi−1w.
10.3.2. φ(wi) = {M ∶ ∀M ′ ∈ φ(wi−1),M ′ w

Ð→

M};
11. w̄ = wi ∎

The correctness of its results is proven by the following
theorem.

Theorem 4: Sequences determined by the way of Algo-
rithm 1 are1-SS for the considered synchronized SM PN.

Proof: Let w̄ = e1e2⋯ek be the sequence constructed by
Algorithm 1, such that it drives the MRG through the sequence
of markingsM ′

0, M ′
1,⋯, M ′

k. We have to prove that: i)̄w drives
the given synchronized PN through exactly the same sequence
of markings; ii) point i) holds for every markingM ′

0 ∈M0.

First, we prove point i). Consider some markingM ′
i . For

any eventei ∈ w̄ occurrence, every transitiont ∈ Tei
is

fired, driving the net to markingM ′
i+1. Since graphGM takes

into account all but the forbidden events, the same marking
will be reached. Second, we prove point ii), by showing that
at step 8. the current state uncertainty corresponds to the
set of reachable markings of the net, which is necessary by
Definition 2 of 1-SS. This proof is easily provided, sinceGM

has the same cardinality ofG, whose behavior is equivalent to
the synchronized net itself. ◻

We show now that determining a1-SS using Algorithm 1
allows us to readily determine ak-SS for an arbitrary large
number ofk tokens. That is because for such sequences the
following sufficient condition holds.

Proposition 5: Consider a strongly connected synchro-
nized SM PN⟨N,E, f⟩ containingk tokens. Letw̄ be a 1-
SS constructed via Algorithm 1 for a target markinḡM , s.t.
M̄(p) = 1 if p = p̄, 0 otherwise. Input sequencēwk — where
w̄k is the concatenation ofk timesw̄ — is ak-SS for a target
markingM̄k, s.t. M̄k(p) = k if p = p̄, 0 otherwise.

Proof: Every sequencēw constructed by Algorithm 1
satisfies the following condition:(∀t ∈ p̄●/●p̄) f(t) /∈ w. In
other words sequencēw does not contain any symbol labeling
a transition that outputs placēp and inputs any placep ≠ p̄.
A first application of sequencew drives at least one token to
p̄. Any further application ofw moves top̄ at least one of
the tokens which is not contained by this place, and does not
move the tokens already in̄p, as none of its output transitions
is receptive to any event inw. Here, we disregard self-loop
transitions, as they do not change the marking of the net.◻

IV. N UMERICAL RESULTS FOR RANDOMLY
CONSTRUCTEDSM PNS

In this section we prove the efficiency of our novel algo-
rithm by comparing it with our previous PN techniques for



H
H

H
HH

m
q

3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.000 1.000 1.000 0.899 0.944 0.925 0.977 0.944 0.987 0.987 1.000 0.987 1.000

3 1.000 0.867 0.716 0.892 0.899 0.793 0.815 0.915 0.899 0.973 0.915 0.951

4 0.797 0.797 0.758 0.746 0.867 0.778 0.797 0.833 0.850 0.883 0.867

5 0.737 0.757 0.716 0.815 0.758 0.915 0.778 0.815 0.716 0.902

6 0.786 0.852 0.738 0.725 0.852 0.858 0.887 0.917 0.887

TABLE I: NMRG%

H
H

H
HH

m
q

3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.900 0.900 0.900 0.809 0.850 0.823 0.876 0.850 0.888 0.888 0.900 0.888 0.900

3 0.900 0.780 0.644 0.809 0.809 0.717 0.734 0.823 0.809 0.876 0.823 0.850

4 0.717 0.717 0.682 0.644 0.780 0.700 0.717 0.750 0.765 0.795 0.780

5 0.664 0.664 0.644 0.734 0.682 0.823 0.700 0.734 0.644 0.809

6 0.707 0.767 0.682 0.652 0.767 0.767 0.799 0.826 0.799

TABLE II: NSTS%

H
H

H
HH

m
q

3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.788 0.835 0.818 0.834 0.834 0.826 0.835 0.848 0.838 0.837 0.845 0.843 0.833

3 0.829 0.860 0.892 0.882 0.872 0.910 0.905 0.898 0.941 0.920 0.930 0.980

4 0.878 0.873 0.890 0.926 0.906 0.934 1.003 0.984 0.979 0.977 0.986

5 0.855 0.860 0.879 0.915 0.932 0.961 0.944 1.024 0.945 1.064

6 0.814 0.832 0.900 0.821 0.862 0.876 0.872 1.030 1.030

TABLE III: T̂STS/T̂MRG

H
H

H
HH

m
q

3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1.000 0.963 0.889 1.023 1.200 1.167 1.875 1.600 1.500 1.786 1.222 1.185

4 0.781 0.971 1.032 1.333 0.830 1.193 1.127 1.137 1.429 1.167 1.215

5 0.868 0.769 0.926 1.160 0.952 1.125 1.260 0.976 1.079 1.429

6 1.625 0.653 0.556 0.400 0.224 0.300 0.274 0.544 0.431

TABLE IV: L̂STS/L̂MRG

SS computation, i.e., the RG and the STS approach. Experi-
mental results are carried out by applying these approachesto
randomly generated nets and analyzing their performance. The
model data and MATLAB programs can be downloaded from
[7]. Simulations have been run on a mini Mac intel core Duo
2, 2.53 GHz processor, with4 GB 1067 MhZ DDR3 RAM.

For selected values ofm places andq transitions, we
randomly generate100 deterministic synchronized SM PNs
having 2 ≤ m ≤ 7 places,m ≤ q ≤ 15 transitions andk = 1

token. In all cases the input alphabet has a randomly chosen
cardinality q

m
≤ f ≤ q. Note that q

m
is the minimal alphabet

cardinality to ensure a SM PN withm places andq transitions
to be deterministic. Note that all generated PNs are synchoniz-
able, i.e., the RG-approach would succeed, computing a SS.

It has been proved [3] that the reachability condition of
Algorithm 1 (see step 10.3.) is verified only when there exists
only one ergodic component and there may exist a SS only
for those states belonging to this ergodic component. That is
why these simulations deal only with strongly connected PNs.

For each net a place is randomly selected and we use
both Algorithm 1 and the STS approach to determine a SS
to this place. The algorithms are compared by means of three
performance indexes:

NMRG%, NSTS%: number of times the algorithm suc-
cessfully terminates returning a SS over the total
number of generated nets;

T̂MRG, T̂STS : average time required to compute the SS;
L̂MRG, L̂STS : average length of the SS.

Table I and Table II show the number of times a1-SS
has been found, using respectively the MRG and the STS
approaches, over the whole number of constructed nets. In
the previous sections we have mentioned that while the RG
approach always determines a SS if any exists, the STS
and MRG approaches may fail to do so, due to structural
constraints. Hence the value in the table should be contained
in the interval[0,1]. We can observe, however, that all the
Table 2 entries show a value greater than65% and that results
for the MRG approach are even better. In fact, this comparison
shows that the MRG approach finds a solution in10% of cases
where the STS does not. This confirms that these results are
not too restrictive.

Table III shows the ratiôTSTS /T̂MRG between the average
execution time to compute a SS using the STS and the MRG
approach. Here we expect the STS approach to be more
efficient — since the MRG approach enumerates the whole
space-set reducing just the branching factor of the constructed



Fig. 3: Layout of the manufacturing system.

graphs — and this is confirmed from the fact that in almost
all cases the table entries are smaller than one.

Table IV shows the ratiôLSTS/L̂MRG. Here we can see
that for larger nets the STS approach produces shorter SS. This
is due to the fact that the STS approach computes SS via a
depth first search, while Algorithm 1 finds a solution that may
be not the best one. In fact, at step 10.3. it finds a subsequence
w that synchronizes at least two markings but does not pick
those markings with any criterium.

V. SYNCHRONIZING SEQUENCES COMPUTATION FORPNS
COMPOSED STATE MACHINE SUBNETS

In the following, we present some results on synchronized
PNs which do not belong to the class of SM PNs but are
composed by SM subnets. Since differences between the STS
and MRG approach have already been highlighted, in order to
evaluate the quality of the new proposed approach, a second
experiment has been performed: a family of manufacturing
systems — represented by a parametric PN — is analyzed by
applying our techniques MRG and RG to find a SS.

A. Theoretical results

In this section we show how our approach can still be
applied in this more general setting.

This family includes several classes of nets used to model
resource allocation systems(RAS) [8], [9] including S3PR
nets,S4PR nets,S∗PR nets,NS − RAP , ERCN−merged
nets orPR nets. A broad and deep survey of the field can be
found in [9].

We first give the theoretical results for nets containing
several state machine subnets.

Proposition 6: [10] Consider a synchronized PN
⟨N,E, f⟩. Let Ps ∪ Pz = P and Ts ∪ Tz = T , where

Ps =
n

⊍
i=1

Ps,i and Ts =
n

⊍
i=1

Ts,i (here⊍ denotes the union of

disjoint subsets). These sets are such that fori = 1,2, . . . n
Ns,i = (Ps,i, Ts,i, P res,i, Posts,i) is a strongly connected SM

Fig. 4: Petri net model of the manufacturing system in Fig. 3

PN subnet.Pres,i and Posts,i are the restrictions toPre
and Post to Ps,i × Ts,i.

For every subnetNs,i, let w̄i be a SS that drives the subnet
Ns,i to a target markingM̄s,i. The sequencēw = w̄1w̄2 . . . w̄n

drivesN to a target markingM̄ such that:

M̄(p) = M̄ ′
s,i with M̄s,i

w̄i+1w̄i+2⋯w̄n

ÐÐÐÐÐÐÐ→ M̄ ′
s,i if p ∈ Ps,i,

if the two following conditions hold:

i) {●Tz ∪ T ●z } ∩ Ps = ∅;

ii) (∀e ∈ w̄i) Te ∩ P ●z

i

⋂
j=1

Ts,j = ∅. ◻

Any sequencew̄ determined by the way of the previous
proposition is a SS for the subnetNs. It also drives the
complete modelN to a state where the marking of places
in Ps is known, while in general nothing can be said about
the marking of places inPz .

The next section provides an example of application of
such a technique.

B. A manufacturing example

We consider a manufacturing plant consisting of two paral-
lel and symmetric production lines, that produce two different
kinds of final product. Each linei has a fixed number of
k pallets, that limit the number of parts that can be under
processing at a given time. A raw piece entering the system
waits in the buffer (not modeled) until a pallet becomes
available. RobotR0 feeds the two lines alternatively, taking
one part from the buffer and mounting it on an empty pallet.



In each line there are two workstations, which are com-
posed by two machines and one robot. A workstation can
process several pallets at a time.

For instance consider line 1. The pallet entering the system
is deposed byR0 on a conveyor belt and is moved to the
first worstation where machinesM ′

1,1 andM”1,1 perform their
operation as requested. RobotR11 moves the pallet from the
conveyor belt to the machines and viz.

Once the operations required on the first workstation have
been completed, the pallet is put again onto the conveyor belt
and moved to the second workstation where the processing is
repeated. After processing, parts are unloaded from the pallets
by robot R1,2 and put on an AGV that moves them to the
output bufferO1 (not represented in Fig. 4).

The system’s layout is shown in Fig. 3: we say that such
a plant has production lengthl = 2 because each line is
composed by a series of two workstations. We can consider a
parameterized family of plants of this type, assuming that the
number of palletsk and lengthl of the production lines may
vary. For this family of plants, we obtain the synchronized
Petri net depicted in Fig. 4.

This Petri net has4+6l places and2+10l transitions. The
marking of placesp1 andp2 represents number of the empty
pallets in each line, the marking of placep3 (resp.p4) denotes
that robotR0 is ready to move a pallet to the left (resp. right)
production line.

Consider machinesM ′
ij andM”ij , which compose work-

stationj in line i. Transitionn′i,j (resp.n”i,j) represents the
loading of a pallet from the conveyor belt queue to machine
M ′

ij (resp.M”ij) while transitiont′i,j (resp.,t”i,j) represents
the unloading. Tokens in placep′ij (resp.p”ij) denote pallets
loaded on machineM ′

ij (resp.M”ij).

The firing of transitionti,j denotes the transfer of a pallet
to the next workstation.

The PN in Fig. 4, without taking into account dashed
places and arcs, is composed by two SM PNs. Hence, ac-
cording to Proposition 6,Ps = Ps,1 ∪ Ps,2 = P /{p3, p4},
Ps,1 = {p1, p1,1, p

′
1,1, p

′′
1,1, . . . p1,l, p

′
1,l, p

′′
1,l}, Ps,2 = {p2, p2,1,

p′2,1, p
′′
2,1, . . . p2,l, p

′
2,l, p

′′
2,l} andTs = T .

We look for a SS that from an arbitrary state can empty
the system, thus moving all empty pallets to the input buffers.

Results obtained using the MRG and the RG approach
are shown in Table V, where required time of the SS are
summarized for different values ofm andl. Note that here only
one simulation per setting has been performed. Also, the table
shows the cardinality of the RG (∣G∣), of the MRG (∣GM ∣) and
of the corresponding AGs. These are important parameters to
understand the limits of the RG approach, while exhaustively
enumerating the set space of the net. Note that these values
do not correspond, because Proposition 6 applies so that SM
subnets can be analyzed.

Note that the table shows also non-numerical values where
the corresponding result cannot be provided: i)out of time
(o.t.), when the corresponding value has not been computed
within 6 hours; ii) not computable(n.c.), if the correspond-
ing value cannot be computed: e.g., the RG is o.t. and the
corresponding AG cannot be evaluated.

RG MRG
k l ∣G∣ ∣A(G̃)∣ time [s] ∣GM ∣ ∣A(G̃M )∣ time [s]
1 1 32 528 3.43 4 10 0.42

1 2 98 4851 o.t. 7 28 0.46

1 3 200 20100 o.t. 10 55 0.92

1 4 338 57291 o.t. 13 91 1.57

2 1 200 20100 o.t. 4 10 0.42

2 2 1568 o.t. n.c. 7 28 0.46

2 3 o.t. n.c. n.c. 10 55 0.92

2 4 o.t. n.c. n.c. 13 91 1.57

3 1 800 320400 o.t. 4 10 0.42

3 2 o.t. n.c. n.c. 7 28 0.46

3 3 o.t. n.c. n.c. 10 55 0.92

3 4 o.t. n.c. n.c. 13 91 1.57

TABLE V: Time results for a manufacturing system.

The table denotes, for an increasing number of tokens, that
the RG approach goes almost always o.t., due to a significant
larger space state. On the contrary, the required time does not
change with the MRG approach, that always finds a solution.

VI. CONCLUSION

This paper has two main contributions. First, we provide
a new method that allows to determine ak-SS for the class
of synchronized state machine PNs. Second, we provide a set
of experimental results. Models data and MATLAB programs
can be downloaded from [7]. The results show the advantages
of our approaches, rather than the adaptation of the automata
based approach. These approaches significantly reduce the
computation time for nets with a large number of tokens, hence
with a large state space. There is an open line for interesting
future works. We plan to extend our MRG approach to any
synchronized PN which do not belong to the class of SM PNs.
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