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ABSTRACT

The DEv-PROMELA formalism is a new formalism that allows combining formal verification and discrete
event simulation. In this paper, we propose to use a hierarchy of simulation formalisms to restrict the DEV-
PROMELA language. From sequential machine to the most expressive DEv-PROMELA formalism, this
hierarchy helps designers to design models and to analyze systems in a progressive manner.

Keywords: DEv-PROMELA, discrete event formalisms, DEVS, formal verification.

1 INTRODUCTION

Since the emergence of the Theory of Modelling and Simulation (Zeigler 1976), many discrete event for-
malisms, and especially many extensions and subclasses of DEVS, such as Parallel DEVS (Chow and Zei-
gler 1994), Generalized DEVS (Giambiasi and Carmona 2006), Real-Time DEVS, RTA-DEVS (Saadawi
and Wainer 2010), Fuzzy DEVS, etc. were proposed and developed to model particular aspects of sys-
tems. Each formalism has different expressiveness capabilities, and choosing the best formalism and the
best level of abstraction for the modelling of systems depends on the level of knowledge that the modellers
have about these systems. Indeed, as stated by Zeigler et al. (2000), "Formalisms are proposed, and some-
times accepted, because they provide convenient means to express models for particular classes of systems
and problems". However, the multiplicity of formalisms have sometimes blurred the relationship between
models. For instance, some questions which were addressed to a timed model could no longer be handled
by another timed model expressed in a different formalism. Furthermore, proving relationship between two
models can be awkward, or needs specific works and manual mapping, for instance in the case of Timed
Automata and DEVS (Giambiasi et al. 2003).

However, in order to make easier the understanding of basic concepts of discrete event modelling, different
attempts of classification were made in the litterature. For instance, stating that each extension encapsulates
the others, increasing the DEVS modelling capabilities, Wainer (2009), Giambiasi (2009), Hwang (2011),
Hwang (2014) propose different hierarchies of discrete event formalisms, according to their expressiveness
capabilities.

If such these attempts make more clear the relations between formalisms, they are underused, especially in
modern verification and validation techniques, which try to combine several formal methods and simula-
tion tools. In the most of case, these new strategies propose the mapping between two or more integrated
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Figure 1: Hierarchy of discrete-event formalisms.

formalisms (Abdulhameed et al. 2014, Maiga et al. 2012, Aliyu et al. 2016) without reusability of subfor-
malisms or extended formalisms.

More recently, the DEv-PROMELA formalism (Yacoub et al. 2015, Yacoub et al. 2016) provides a
methodology for deep integration between simulation formalisms and formal methods, especially between
PROMELA (Holzmann 1991) and Classic DEVS (Zeigler 1976). DEv-PROMELA is built as a PROMELA
extension which supports formal checking and discrete event simulation. Morphisms between PROMELA
and DEv-PROMELA, on the one hand, and DEVS and DEv-PROMELA, on the other hand, ensure that the
DEv-PROMELA models can be verified by model-checking, and that they can also be simulated using any
Classic DEVS simulators. However, because a DEv-PROMELA model is both a PROMELA model and a
DEVS model, it is possible to restrict the language in order to model DEVS subclasses.

In this paper, we propose to use the hierarchy developed in (Giambiasi 2009), and which is represented in
the Figure 1, in order to restrict the DEv-PROMELA formalism. The objective is to facilitate the progressive
modelling of complex discrete event systems using a unique syntactic language. Consequently, modelling
a DEVS becomes easier by progressively relaxing constraints, and going from a subclass to another. The
paper is organized as follows: Sections 2 and 3 introduces the DEv-PROMELA formalism and the simula-
tion formalisms hierarchy. In Section 4, we show how the DEv-PROMELA language can be syntactically
restricted in order to model DEVS subclasses.

2 DEV-PROMELA

2.1 Syntax

DEv-PROMELA (Yacoub et al. 2015) is presented as an extension of PROMELA for the modelling, verifi-
cation and simulation of discrete event models. The PROMELA syntax is out of the scope of this paper. For
more informations, readers are encouraged to read (Holzmann 2003). As an extension, the DEv-PROMELA
language is built by adding missing concepts of simulation into the PROMELA language: events, time, tran-
sition and determinism. Therefore, DEv-PROMELA is built upon the syntax of PROMELA (Algorithm) in
which some syntactic elements were added:

• a new abstract datatype for representing infinite and unbounded real values, especially needed for
modelling time and data like floating numbers;

• events are modelled by integer constant values;
• each statement is prefixed with a meta-information that describes how the statement is performed by

reacting to an event, or autonomously after an amout of time;
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For instance, Program 1 shows a condition structure. The condition x == 2 (l.5) is evaluated after t1 units
of time, and after the generation of the changex event.

Program 1 Simple condition structure in DEv-PROMELA.
1: int x,y = 2;
2: real t1, t2;
3:

4: if
5: :: [clt : t1 → emit : changex] ( x == 2 )→ x = 3;
6: :: [clt : t2 → emit : changey] ( y == 2 )→ y = 4;
7: fi;

2.2 Semantics

After modifying the syntax in order to allow modelling of DEVS concepts, DEv-PROMELA introduces the
semantics of the DEVS abstract simulator.

Semantics of a DEv-PROMELA process A DEv-PROMELA process P with a set of statements SL is
an automaton T = (Sτ ,E,δi,δe,s0,F) where

• Sτ = {si = (ts, id, l1, ..., lm,∈ R+×N×∏
m
i=1 Li ×∏

n
j=1 G j ×∏

o
k=1Ck)} is the set of states. id is the

identifier of the state related to the statement sl which defines it; the sets Li (resp. G j) are the sets of
values of each local (resp. global) variable li (resp. g j). Ck is the set of values of channels;

• E is the set of events; E contains at least the silent event denoted ε;
• δint : Q f → Q0 ×E is the internal transition partial function; δint is partial because it can be not

defined for all q ∈ Q f (especially when ta(s) = ∞);
• δext : Q×E → Q is the external transition partial function; δe is partial because it can be not defined

(especially when e = ε);
• s0 is the initial state;
• F is the set of final states.

Moreover, the following sets are defined:

- ta :
{

Sτ → R+

s 7→ ts
is the state lifetime function; the lifetime of each state is given by the delay before

executing the next statement in the specifications;
- Q = {q = (s,dt),∀s ∈ Sτ} such that 0 ≤ dt ≤ ta(s) is the set of total states; dt denotes the time

elapsed in the state s;
- Q0 = {q = (s,0),∀s ∈ Sτ} ⊂ Q;
- Q f = {q = (s, ta(s)),∀s ∈ Sτ} ⊂ Q.

Consider a DEv-PROMELA process P in a state s at time t, and the next statement l with its event descriptor.
We can admit the process P is in fact in a state q = (s,dt) (if dt denotes the elapsed time since the last event).
If l denotes an internal transition and if t = ta(s), then the statement l is enabled. The event associated with
the transition is emitted to all the other processes composing the program, before the transition is triggered,
and the next event for the process P is defined by :

de′ = getCurrentDate+ ta(s′)
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with ((s′,0),e′) = δint(s). If l denotes an external transition on an event e, then the transition is triggered
only if the process receives the event e. In this case, denote t the date of the event e. The next state is
given by q′ = δext(q,e) with q′ = (s′,0). If δext is not syntactically defined for ((s,dt),e), then the next state
is given by q′ = (s,dt) and ta(s) = ts. This behaviour corresponds to the semantics given by the DEVS
abstract simulator.

The automaton underlying a DEv-PROMELA process is thus built by making transitions between
control states (represented by each statement). The automonous event descriptors define the lifespan of the
initial control state, while the reactive descriptors define external transitions between the initial control state
and the end control state.

Semantics of a DEv-PROMELA program A DEv-PROMELA program Pr is a transition system Tr =
(S,Λ,→) where

• S = Sτ0 × ...×Sτn is the cartesian product of the set of states of each process;
• Λ is the union of the sets of all statements;
• → the set of transitions. t ∈→ and t = s → s′ if:

– given two states s = (spi ,sq j , ...) and s′ = (s′pi
,s′q j

, ...). Then, s l→ s′ with l ∈ Λ if there exists
an internal transition from spi to s′pi

, or from sq j to s′q j
, ... and if it does not exist any other

internal transition which can be triggered before the date t. In other words, the next event of Pr
is the minimum value of all the next events of each process and external events. If two events
can occur at the same date, the first proceeded event is that generated by the highest priority
process;

– given two states s = (spi ,sq j , ...) and s′ = (s′pi
,s′q j

, ...). Then, s l→ s′ with l ∈ Λ if there exists an
external transition from spi to s′pi

, or from sq j to s′q j
, ... and if it does not exist any other external

transition which can be triggered before the date t. If two events can occur at the same date, the
first proceeded event is that generated by the highest priority process;

– if (s′pi
,e) = δip(spi), then s′ = (s′pi

,δeq(sq j ,e), ...). Thus, s′ is the state of the program after
processing all internal and external transitions at the date t. Moreover, this property ensures that
a process can not proceed its own generated event.

In the case in which we consider that global variables and channels are handled at the system level like in
PROMELA and don’t need synchronization, the semantics of DEv-PROMELA Program slightly changes.
In this case, a DEv-PROMELA program Pr is a transition system

T = (S,Λ,→)

where

• S is the cartesian product of the set of states of each process, the set of global variables and channels
that compose the program;

• Λ is the set of all statements, including statements changing the value of global variables and chan-
nels.

• → the set of transitions;

These two definitions are strictely identical. Indeed, the second definition generates a transition system that
simulates the first one.
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Thanks to the underlying algebraic structure and the semantics, it is shown that, given a DEv-PROMELA
model, it exists at least a DEVS model that strictly simulates it. The demonstration is not included again in
this paper. However, it can be intuitively deduced, whereas a DEv-PROMELA model behaves like a Classic
DEVS model.

3 SIMULATION FORMALISM HIERARCHY

This section makes brief recalls about the simulation formalisms hierarchy proposed by Giambiasi (2009).

3.1 Sequential Machine With Transitory States (SMTS)

SMTS allows representing reactive systems which will react to events only when they are in a steady state.
For instance, an old analogic elevator which cannot be stopped when going up can be modelled as a SMTS
system. Formally, a SMTS model M is defined as a 7-uplet:

M =< X ,Y,S,δi,δe,λs,λt >

where

X is a finite set of input events;
Y is a finite set of output events;
S = ST ∪ SS where ST ∩ SS = /0, SS is the set of steady states (i.e. the model remains in these states
until an event occurs), and ST is the set of transitory states;
δi : ST → S is the internal transition function which describes the autonomous behaviour of the
model;
δe : SS ×X → S is the external transition function which describes the reactive behaviour of the
model;
λt : ST →Y which defines the output event generated by the model when it transits from a transitory
state to the next state;
λs : SS×X →Y which defines the output event generated by the model when it transits from a steady
state to the next state.

We must also denote that the notion of timed events is not defined in SMTS.

3.2 Temporal Moore Machine (TMM)

TMM can be viewed as an extension of SMTS, with the introduction of two concepts (timed event and state
lifespan). TMM is very useful to describe systems which will perform tasks when they receive an event, and
which will then immediately return to a passive state. Thus, formally a TMM model M is an 7-uplet:

M =< X ,Y,S,δi,δe, ta,λ >

where

X is a finite set of input events;
Y is a finite set of output events;
ta : S → R+∪∞ defines the lifetime of each state;
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S = ST ∪ SS where ST ∩ SS = /0, SS is the set of steady states (i.e. s ∈ SS ⇒ ta(s) = +∞), and ST is
the set of transitory states (i.e. s ∈ ST ⇒ ta(s) ∈ [0;+in f [);
δi : ST → SS is the internal transition function;
δe : SS ×X → ST is the external transition function;
λ : ST → Y is the output function defined only for transitory states.

We can denote the restriction on δi and δe which enforces that a steady state is followed by a transitory state,
and a transitory state is followed by a steady state. In fact, in semantics of TMM and SMTS, this is not a
restriction. Because the notion of lifespan and timed event were introduced, a succession of transitory states
in SMTS is compressed in one transitory state with a finite lifetime in TMM.

TMM also supports coupling which allows modular building of models. This notion is important because it
introduces the capability to model complex systems by components which could interact with each other.

3.3 Temporal Sequential Machine (TSM)

TSM is a distension of TMM by allowing events to occur in transitory states. TSM allows the modelling
of a new elevator which can stop at each level even if a call button is pressed during an elevation phase. A
TSM model M is an 7-uplet:

M =< X ,Y,S,δi,δe, ta,λ >

where

X is a finite set of input events;
Y is a finite set of output events;
ta : S → R+∪∞ defines the lifetime of each state;
S = ST ∪ SS where ST ∩ SS = /0, SS is the set of steady states (i.e. s ∈ SS ⇒ ta(s) = +∞), and ST is
the set of transitory states (i.e. s ∈ ST ⇒ ta(s) ∈ [0;+in f [);
δi : ST → S is the internal transition function;
δe : S×X → S is the external transition function;
λ : ST → Y is the output function defined only for transitory states.

We can note that restriction of the succession of input/ouput events was removed, allowing TSM without
autonomous cycle.

Using such a hierarchy helps designers to focus on interesting models and involves implicit requirements.
At least, the structure imposed by each formalism must be respected by the model (otherwise, there is not a
model !). This notion is important for model validity and ensures that the model is a good representation of
the system. Then, the next section shows how this hierarchy can be used with DEv-PROMELA in order to
focus on interesting aspects of a system under study.

4 RESTRICTING DEV-PROMELA

Using such a hierarchy like the one introduced in the previous section is useful if modellers want to restrict
the behaviour of the model. While DEv-PROMELA embbeds the semantics of Classic DEVS, and allows
formal verification by using model-checking, restricting the DEv-PROMELA language will allows using
model-checking on models expressed in any formalisms of the previous hierarchy. This is possible only
because the formalisms described in the previous section are DEVS subclasses. All the restrictions described
in this section are purely syntactic.
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4.1 Sequential Machine with Transitory States (SMTS)

SMTS can be modelled using the SMTS-PROMELA formalism, which is a DEv-PROMELA model with
these syntax restrictions:

1. A SMTS-PROMELA model have only one process, no channel and no global variable.
2. An event descriptor can emit an output.
3. Only one type of descriptor (autonomous or event) is permitted by statement.
4. Lifetime of transitory states is 0.

The first constraint ensures the model is atomic (a SMTS is not modular). The second constraint allows
modelling of the ouput function. The third constraint allows differentiation between steady and transitory
states.

Therefore, a SMTS-PROMELA model P with a set of statements L is an automaton T = (Sτ ,E,δi,δe,s0,F)
where

• Sτ = {si = (ts, i, l1, ..., lm,∈ N×∏
m
i=1 Li)} is the set of states. i is the identifier of the state related to

the statement l which defines it; the sets Li are the sets of values of each local variable li;
• ST , the set of transitory states (those denotes with a transitory statement in the specifications);
• SS, the set of steady states (those denotes with an event statement in the specifications);
• E is the set of events; E contains at least the silent event denoted ε;
• δi : ST → Sτ ×E is the internal transition function;
• δe : SS ×E → Sτ ×E is the external transition function;
• s0 is the initial state;
• F is the set of final states.

Interpretation of a SMTS-PROMELA At a some time, the model is in a steady state, in which it stays
until an event occurs. The new state is then the result of applying the δe function to the current state.
Otherwise, the model is on a transitory state and instantaneously transits to the next state following the δi
function. In both cases, an event is generated.

Theorem 1. A SMTS-PROMELA model is a SMTS model.

Given a SMTS-PROMELA model T = (Sτ ,E,δi,δe,s0,F), we can build a SMTS model

M =< X ,Y,S,δi,δe,λT ,λS >

where

X ⊂ E is a finite set of input events;
Y ⊂ E is a finite set of output events;
S = Sτ and ST ∩SS = /0 by definition (a statement is decorated either by a transitory descriptor or an
event descriptor);
δi : ST → S is the internal transition function which describes the autonomous behaviour of the
model;
δe : SS ×X → S is the external transition function which describes the reactive behaviour of the
model;
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λT : ST →Y which defines the output event generated by the model when it transits from a transitory
state to the next state;
λS : SS×X →Y which defines the output event generated by the model when it transits from a steady
state to the next state.

While a SMTS-PROMELA behaves like a SMTS (a more rigourous proof using the bisimulation relation-
ship is possible), and it is possible to build a SMTS model from the SMTS-PROMELA model, then a
SMTS-PROMELA model is a SMTS model. Moreover, a SMTS-PROMELA model is a DEv-PROMELA
model (intuitively, because a SMTS model is a DEVS model).

4.2 Temporal Moore Machine (TMM)

TMM-PROMELA enforces these restrictions:

1. A TMM program can not involve channels or global variables;
2. Only one type of descriptor (autonomous or event) is permitted by statement.
3. An event descriptor can be followed only by an autonomous descriptor, and vice-verse.

The first constraint ensures that the synchronozing actions for channels and global variables do not break
the TMM semantics. The second ensures that a steady state is followed by a transitory state and vice-verse.

Therefore, a TMM-PROMELA model is an automaton T = (Sτ ,E,δi,δe,s0,F) where

• Sτ = {si = (ts, i, l1, ..., lm,∈ N×∏
m
i=1 Li)} is the set of states. i is the identifier of the state related to

the statement l which defines it; the sets Li are the sets of values of each local variable li;
• ST ⊂ Sτ , the set of transitory states (those denotes with a transitory statement in the specifications);
• SS ⊂ Sτ , the set of steady states (those denotes with an event statement in the specifications);
• E is the set of events; E contains at least the silent event denoted ε;
• δi : ST → SS ×E is the internal transition function;
• δe : SS ×E → ST is the external transition function;
• s0 is the initial state;
• F is the set of final states.

Theorem 2. A TMM-PROMELA model is a TMM model.

Given a TMM-PROMELA model T = (Sτ ,E,δi,δe,s0,F), we can build a TMM model

M =< X ,Y,S,δi,δe, ta,λ >

where

X ⊂ E is a finite set of input events;
Y ⊂ E is a finite set of output events;
ta : S → R+∪∞ defines the lifetime of each state (from the event descriptor);
S = Sτ where ST ∩SS = /0 by construction (constraint 2), SS is the set of steady states (i.e. s ∈ SS ⇒
ta(s) = +∞), and ST is the set of transitory states (i.e. s ∈ ST ⇒ ta(s) ∈ [0;+in f [);
δi : ST → SS is the internal transition function;
δe : SS ×X → ST is the external transition function;
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λ : ST → Y is the output function defined only for transitory states.

δi and δe are building using the transition function of the TMM-PROMELA model. Therefore, we can build
a TMM that simulates the TMM-PROMELA model. Then, a TMM-PROMELA model is a TMM model.

Because a TMM-PROMELA is a TMM, it is possible to compose a TMM program by modelling each
process with a TMM atomic model. The closure under coupling described in (Giambiasi 2009) ensures the
TMM-PROMELA program is a TMM.

4.3 Temporal Sequential Machine (TSM)

TSM-PROMELA specifications are DEv-PROMELA specifications with :

1. A TSM program can not involve channels or global variables;
2. A pure event descriptor can be followed by an autonomous descriptor;
3. Clock is reset.

Therefore, a TSM-PROMELA model is an automaton T = (Sτ ,E,δi,δe,s0,F) where

• Sτ = {si = (ts, i, l1, ..., lm,∈ N×∏
m
i=1 Li)} is the set of states. i is the identifier of the state related to

the statement l which defines it; the sets Li are the sets of values of each local variable li;
• ST ⊂ Sτ , the set of transitory states (those denotes with a transitory statement in the specifications);
• SS ⊂ Sτ , the set of steady states (those denotes with an event statement in the specifications);
• E is the set of events; E contains at least the silent event denoted ε;
• δi : ST → Sτ ×E is the internal transition function;
• δe : Sτ ×E → Sτ is the external transition function;
• s0 is the initial state;
• F is the set of final states.

Theorem 3. A TSM-PROMELA model is a TSM model.

The demonstration is similar to the previous proofs. Given a TSM-PROMELA model T =
(Sτ ,E,δi,δe,s0,F), we can build a TSM model

M =< X ,Y,S,δi,δe, ta,λ >

where

X ⊂ E is a finite set of input events;
Y ⊂ E is a finite set of output events;
ta : S → R+∪∞ defines the lifetime of each state;
S = ST ∪SS = Sτ ;
δi : ST → S is the internal transition function;
δe : S×X → S is the external transition function;
λ : ST → Y is the output function defined only for transitory states.

Therefore, it is possible to build a TSM structure that behaves like a TSM-PROMELA model. Moreover,
the constraints 2 and 3 ensure the TSM-PROMELA model behaves like a TSM model. Then, a TSM-
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PROMELA model is a TSM model. The closure under coupling property ensures that a TSM-PROMELA
program is a TSM model.

4.4 Classic DEVS

Finally, the DEv-PROMELA model is a Classic DEVS model without restriction. Using the hierarchy allows
modeller to be sure to respect some structural properties. By translating the syntax of DEv-PROMELA into
formal specifications, these structure properties can be verified using a theorem proving on the language
(syntax proof) for example.

Note that for each sub-formalism, it is easier to show that a model is structurally equivalent to a PROMELA
model. Indeed, removing the event descriptors generates a PROMELA model which is structurally equiv-
alent to the DEv-PROMELA base model. However, all the previous formalisms are subclasses of DEv-
PROMELA. This means that, in each subformalism, the respective underlying structure is embbeded in the
ones of the DEv-PROMELA model. Therefore, we can easily deduce that it is possible to find a PROMELA
model which have the same structure as the former model. Then, model-checking can be applied on each
submodel in order to prove time-independant properties on the model.

5 CONCLUSION

In this paper, we have shown that formalism hierarchies could be used for restricting or extending the DEv-
PROMELA formalism. The restrictions are done only by applying syntactic constraints on the language.
These changes influence the resulting structure and the semantics. Therefore, by reducing or increasing the
expressiveness capabilities, modellers can focus only on interesting aspects at each phase of modelling. The
hierarchical relation between formalisms ensures the preservation of properties. Then, a DEv-PROMELA
model can be built from a PROMELA model, while the DEv-PROMELA model is the final step before the
implementation.
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