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Non-Hermitian Anharmonicity Induces Single-Photon Emission

Single-photon sources are in high demand for quantum information applications. A paradigmatic way to achieve single-photon emission is through anharmonicity in the energy levels, such that the absorption of a single photon from a coherent drive shifts the system out of resonance and prevents absorption of a second one. In this Letter, we identify a novel mechanism for single-photon emission through non-Hermitian anharmonicity, i.e., anharmonicity in the losses instead of in the energy levels. We demonstrate the mechanism in two types of systems and show that it induces high-purity single-photon emission at high repetition rates. Furthermore, we show that it can be observed in the weak-coupling regime of a cavity quantum electrodynamical setup.

The generation and manipulation of nonclassical light are essential for light-based quantum information technologies [START_REF] O'brien | Photonic quantum technologies[END_REF]. Nonclassical light is characterized by photons that are correlated with each other, and therefore, their arrival times are dependent. The likeliness to detect coincident photons is usually quantified by the normalized high-order correlation functions at zero delay g (n≥2) τ =0 [START_REF] Loudon | The quantum theory of light[END_REF]. While g (n) τ = 1 characterizes a coherent source of classical light with a Poissonian distribution of the photon arrival times, g

(n=2) τ =0
< 1 characterizes a sub-Poissonian distribution associated with quantum light. When g

(n) τ =0
1, the source can essentially only emit a single photon at a time. Such single-photon devices play a vital role in secure communications [START_REF] Gisin | Quantum cryptography[END_REF][START_REF] Scarani | The security of practical quantum key distribution[END_REF], quantum computing [START_REF] Knill | A scheme for efficient quantum computation with linear optics[END_REF][START_REF] Kok | Linear optical quantum com-puting with photonic qubits[END_REF][START_REF] Chang | A single-photon transistor using nanoscale surface plasmons[END_REF][START_REF] Shomroni | All-optical routing of single photons by a one-atom switch controlled by a single photon[END_REF], quantum metrology [START_REF] Giovannetti | Quantum metrology[END_REF][START_REF] Giovannetti | Advances in quantum metrology[END_REF][START_REF] Chunnilall | Metrology of single-photon sources and detectors: a review[END_REF] and quantum sensing [START_REF] Degen | Quantum sensing[END_REF].

A prominent mechanism for the generation of single photons is the so-called photon blockade (PB, also known as conventional antibunching) [START_REF] Birnbaum | Photon blockade in an optical cavity with one trapped atom[END_REF][START_REF] Fink | Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system[END_REF][START_REF] Faraon | Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade[END_REF] phenomenon, observed across various platforms, e.g., in cavity quantum electrodynamical (QED) [START_REF] Birnbaum | Photon blockade in an optical cavity with one trapped atom[END_REF][START_REF] Fink | Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system[END_REF] and optomechanical [START_REF] Rabl | Photon blockade effect in optomechanical systems[END_REF][START_REF] Stannigel | Optomechanical quantum information processing with photons and phonons[END_REF] systems. This mechanism is traditionally interpreted in terms of the eigenstates of the (Hermitian) Hamiltonian, which describes the effect of the coherent coupling of the system components but does not describe the modification of these dynamics due to losses. That is, the anharmonicity of these Hermitian eigenstates, for which the energy required to absorb one photon is different from the energy required to absorb a subsequent photon, induces this mechanism. In this Letter, we describe a novel mechanism for single-photon emission, which is based on the anharmonicity of the eigenstates of the effective non-Hermitian (NH) Hamiltonian arising from the Lindblad master equation for open quantum systems [START_REF] Visser | Solution of quantum master equations in terms of a non-hermitian hamiltonian[END_REF][START_REF] Sáez-Blázquez | Photon statistics in collective strong coupling: Nanocavities and microcavities[END_REF]. This mechanism occurs when there is a significant difference in the losses (encoded in the imaginary parts of the NH eigenenergies) of the singly and doubly excited states of the system. Thus, we show that the effective NH Hamiltonian not only provides a mathematically convenient description including the effect of losses, but naturally points the way towards the novel mechanism of non-Hermitian photon blockade (NHPB). This is similar to phenomena such as exceptional points and parity-time symmetry that have attracted much attention in the last decade [START_REF] Liertzer | Pump-induced exceptional points in lasers[END_REF][START_REF] Regensburger | Parity-time synthetic photonic lattices[END_REF][START_REF] Chang | Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[END_REF][START_REF] Sun | Experimental demonstration of a coherent perfect absorber with pt phase transition[END_REF][START_REF] Doppler | Dynamically encircling an exceptional point for asymmetric mode switching[END_REF][START_REF] Chen | Exceptional points enhance sensing in an optical microcavity[END_REF][START_REF] Zhang | A phonon laser operating at an exceptional point[END_REF][START_REF] Wang | Electromagnetically induced transparency at a chiral exceptional point[END_REF][START_REF] Wang | Coherent perfect absorption at an exceptional point[END_REF][START_REF] Ergoktas | Topological engineering of terahertz light using electrically tunable exceptional point singularities[END_REF], and also arise naturally from a NH description.

The NHPB mechanism is expected to have less stringent experimental requirements than the Hermitian PB for the realization of an efficient single-photon source. While Hermitian PB is difficult to achieve in lossy systems, as the anharmonicity has to be larger than the linewidths (which are determined by the loss rates) of the system eigenstates [START_REF] Faraon | Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade[END_REF], NHPB is not limited by the linewidths but instead exploits their possibly large values. Moreover, in contrast to the Hermitian PB mechanism, the NHPB does not require strong coupling and operates in the weak-coupling regime of cavity QED systems. Note that another antibunching mechanism, the destructive interference mechanism (also known as unconventional antibunching) [START_REF] Liew | Single photons from coupled quantum modes[END_REF][START_REF] Bamba | Origin of strong photon antibunching in weakly nonlinear photonic molecules[END_REF][START_REF] Majumdar | Loss-enabled sub-poissonian light generation in a bimodal nanocavity[END_REF] also usually operates in the weakcoupling regime; however, it suffers from severe limitations for single-photon generation [START_REF] Zubizarreta Casalengua | Conventional and unconventional photon statistics[END_REF].

We obtain a unified description of the PB phenomenon, which includes both the Hermitian and the NH mechanisms, using a perturbative approach to obtain a simple expression for the correlation function under weak pumping by a continuous-wave source at frequency ω L . The derivation details and the full expressions are given in the appendix. In the common situation that only one eigenstate in each excitation manifold contributes significantly, the normalized zero-delay second-order correlation function g

(2)
τ =0 is given by

g (2) τ =0 (ω L ) ≈ Ẽp1 -ω L Ẽp 2 2 -ω L 2 (p 2 | Vp |p 1 ) 2 2 (p 1 | Vp |0 2 × (p 2 |E - D E - D E + D E + D p 2 )| 2 (p 1 |E - D E + D |p 1 ) 2 ( 1 
)
where Vp is the pumping operator in the rotating frame that the external driving laser couples to, E - D is the scattered far-field operator at the detector, |0 is the ground state of the laser-free system, and |p 1 ), |p 2 ) are the relevant NH eigenstates in its first-and second-excitation manifolds. Their complex eigenenergies Ẽj = E j -i 2 Γ j , while j can be either p 1 or p 2 , encode both the energy position E j and loss rate Γ j . Note that for eigenstates of a NH Hamiltonian, the notation | . . . ), (. . . | rather than | . . . , . . . | is used to describe the right and left eigenstates [START_REF] Moiseyev | Non-Hermitian quantum mechanics[END_REF].

The emergence of both Hermitian and non-Hermitian PB manifests itself in the first term of Eq. ( 1), which can be strongly suppressed when there is anharmonicity in the complex plane, i.e., when Ẽp1 = Ẽp 2 2 . Fig. 1 shows a sketch of these two mechanisms: While the Hermitian PB in Fig. 1 = ω L and stems from the anharmonicity in the imaginary part of the eigenenergies. In particular, when the decay rate of |p 1 ) is much smaller than that of |p 2 ), i.e., when Γ p1 Γ p2 , the absorption of a second photon is prevented, as illustrated in Fig. 1(b), andg (2)

τ =0 (ω L ) is strongly suppressed. Note that the first term of Eq. ( 1) is the ratio between two Lorentzian functions centered at E p1 and E p2 /2 and whose widths are Γ p1 and Γ p2 /2, respectively. These Lorentzian functions are also depicted in Fig. 1(b). They represent the energydependent densities of states that correspond to |p 1 ) and |p 2 ) in the real energy spectrum and originate from their NH character [START_REF] Moiseyev | Non-Hermitian quantum mechanics[END_REF]. This observation provides a physical explanation for the NHPB, revealing that the absorption of subsequent photons is suppressed due to a smaller density of states at twice the laser frequency than at the laser frequency itself.

The NHPB mechanism is general and can be observed in any setup with an anharmonic behavior in losses. Specifically, the narrowest accessible eigenstates, i.e., those with the lowest losses, in each excitation manifold are the relevant |p 1 ) and |p 2 ) which should obey Γ p1 Γ p2 to induce it. This points towards a way to design single-photon sources by engineering the loss in the system, instead of designing a specific energetic structure and trying to minimize losses as the Hermitian PB suggests. In the following, we demonstrate the concept in two types of systems. In the first one, the nonlinearity is due to a quadratic interaction between harmonic oscillators, which can be obtained from, e.g., second harmonic generation (SHG) [START_REF] Muñoz | Quantum metrology of two-photon absorption[END_REF] or optomechanical interactions [START_REF] Xie | Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling[END_REF][START_REF] Li | Two-phonon blockade in quadratically coupled optomechanical systems[END_REF][START_REF] Xie | Optically induced phonon blockade in an optomechanical system with second-order nonlinearity[END_REF]. The second system is a cavity QED setup in which the nonlinearities are induced by linear coupling of a nonlinear subsystem, e.g., a quantum emitter, to a subsystem consisting of optical modes with different decay rates, as can be readily implemented in, e.g., hybrid metallodielectric cavities [START_REF] Barth | Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling[END_REF][START_REF] Yang | Hybrid photonic-plasmonic crystal nanocavities[END_REF][START_REF] Luo | On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform[END_REF][START_REF] Cui | Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond[END_REF][START_REF] Peng | Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances[END_REF][START_REF] Gurlek | Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling[END_REF][START_REF] Thakkar | Sculpting fano resonances to control photonic-plasmonic hybridization[END_REF].

A prototypical NH Hamiltonian describing a quadratic interaction between modes is given by [START_REF] Muñoz | Quantum metrology of two-photon absorption[END_REF] 

Ĥ0 = ωa a † a + ωb b † b + g(a † b 2 + (b † ) 2 a), (2) 
where a (a † ) and b (b † ) are the annihilation (creation) operators of two bosonic modes, ωa = 2ω b -i 2 γ a and ωb = ω b -i 2 γ b are their complex energies, and g is the quadratic coupling strength between them. Note that we have assumed that the real parts of the energies are exactly on two-photon resonance. This simple Hamiltonian can be analyzed analytically without any restriction to just a few eigenstates. In particular, when weakly pumping the b-mode ( Vp = b † + b) on resonance (ω L = ω b ), and detecting its emission (E - D ∝ b † ), the intensity I is given by

I(ω L = ω b ) ∝ 4 γ 2 b , (3) and g 
(2)

τ =0 (ω L = ω b ) = 1 (1 + η) 2 , (4) 
where η = 4g 2 γaγ b is the cooperativity parameter for the two modes [START_REF] Tanji-Suzuki | Interaction between atomic ensembles and optical resonators: Classical description[END_REF]. g [START_REF] Loudon | The quantum theory of light[END_REF] τ =0 (ω L = ω b ) vanishes when η 1. While large cooperativity η can be obtained either through a large g, or through small γ a or γ b , Eq. (3) shows that the latter limit leads to the highest intensity and thus the most efficient single-photon emission. This limit corresponds exactly to the NHPB mechanism, where the accessible first-excitation eigenstate |p 1 ), that is the pure b-mode with Γ p1 = γ b , is narrow. The second-excitation eigenstates, however, which arise from the interaction between the singly-excited mode a and the doubly-excited mode b, are much broader than |p 1 ) when γ b γ a . In particular, when the coupling is weak (g < γa 2 √

2 ), the decay rate of the narrowest state |p 2 ) is given by Γ p2 ≈ 2γ b (1+η). Thus, we obtain g

(2) τ =0 (ω L = ω b ) ≈ 2Γp 1 Γp 2 2
, demonstrating the manifestation of the NHPB mechanism. Note that in the limits of large g and small γ a , which give lower emission efficiency, the origin of the antibunching are the Hermitian PB and the destructive interference mechanism, respectively.

The Hamiltonian in Eq. ( 2) can, e.g., describe a mechanical oscillator (mode b) located exactly in the middle of a Fabry-Pérot cavity (mode a), when the optical mode is strongly driven by a laser (see Refs. [START_REF] Xie | Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling[END_REF][START_REF] Li | Two-phonon blockade in quadratically coupled optomechanical systems[END_REF][START_REF] Xie | Optically induced phonon blockade in an optomechanical system with second-order nonlinearity[END_REF]). Since commonly the mechanical decay rate is much smaller than the optical one, the NHPB induces single-phonon emission in such a system. For example, for γ b γa = 10 -3 and g = γa 10 , the cooperativity is η = 40. Consequently, g

τ =0 (ω L = ω b ) ≈ 6 × 10 -3 (Eq. ( 4)), showing strong antibunching. Note that adiabatic elimination of the mode a in Eq. ( 2) leads to a single oscillator with a nonlinear loss. Single-phonon emission in such a system has been demonstrated in Ref. [START_REF] Li | Highly nonclassical phonon emission statistics through two-phonon loss of van der pol oscillator[END_REF].

The second example we discuss is a cavity-QED-like setup involving the linear coupling of a two-level emitter (TLE) to bosonic (cavity) modes. In order to generate the anharmonicity in the complex plane that induces the NHPB, two bosonic modes with different losses are required. Hybrid metallodielectric cavities, incorporating a narrow photonic mode and a broad plasmonic mode, provide an excellent platform that fits this requirement. These cavities have attracted much attention lately [START_REF] Barth | Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling[END_REF][START_REF] Yang | Hybrid photonic-plasmonic crystal nanocavities[END_REF][START_REF] Luo | On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform[END_REF][START_REF] Cui | Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond[END_REF][START_REF] Peng | Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances[END_REF][START_REF] Gurlek | Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling[END_REF][START_REF] Thakkar | Sculpting fano resonances to control photonic-plasmonic hybridization[END_REF] since they combine the merits of low-loss microcavities with highly localized plasmons, thus yielding new functionalities. Very recent works [START_REF] Shen | Quantum statistics engineering in a hybrid nanoparticle-emitter-cavity system[END_REF][START_REF] Lu | Plasmonicphotonic cavity for high-efficiency single-photon blockade[END_REF][START_REF] Lu | Single-photon blockade in quasichiral atom-photon interaction: simultaneous high purity and high efficiency[END_REF][START_REF] Lu | Unveiling atom-photon quasi-bound states in hybrid plasmonic-photonic cavity[END_REF] have studied the photon statistics of a hybrid cavity coupled to a TLE and showed that it can present strong antibunching. These works related the antibunching to the destructive interference mechanism [START_REF] Shen | Quantum statistics engineering in a hybrid nanoparticle-emitter-cavity system[END_REF][START_REF] Lu | Plasmonicphotonic cavity for high-efficiency single-photon blockade[END_REF][START_REF] Lu | Single-photon blockade in quasichiral atom-photon interaction: simultaneous high purity and high efficiency[END_REF], and/or utilized large coupling strengths or energy detuning to induce the Hermitian PB mechanism [START_REF] Lu | Plasmonicphotonic cavity for high-efficiency single-photon blockade[END_REF][START_REF] Lu | Single-photon blockade in quasichiral atom-photon interaction: simultaneous high purity and high efficiency[END_REF][START_REF] Lu | Unveiling atom-photon quasi-bound states in hybrid plasmonic-photonic cavity[END_REF]. In contrast, we here demonstrate that NHPB in such a system can lead to efficient single-photon emission without requiring large coupling strengths or energy detunings.

The NH Hamiltonian that describes the coupling between a TLE and two optical modes (e.g., a Fabry-Pérot mode and a plasmonic mode) can be written as

Ĥ0 = (ω e -i γ e 2 )σ + σ -+ n=1,2 (ω n -i γ n 2 )a † n a n (5) +g n (σ + a n + a † n σ -) + d(a † 1 a 2 + a † 2 a 1
). Here, σ -(σ + ) and a n (a † n ) are the annihilation (creation) operators of the TLE and the two optical modes, respectively; ω e , ω n and γ e , γ n are respectively their energies and decay rates; g 1 , g 2 are the coupling strengths between the TLE and each optical mode, and d is the coupling strength between the two optical modes. Without loss of generality, we assign index 1 to the narrow (Fabry-Pérot) mode and index 2 to the broad (plasmonic) mode, such that γ 2 γ 1 . In addition, we consider γ e γ 1,2 , which describes a good emitter at low temperatures (e.g., see Ref. [START_REF] Wang | Turning a molecule into a coherent two-level quantum system[END_REF]).

Fig. 2(a) shows g

τ =0 as a function of the laser detuning ∆ω L = ω eω L and the coupling d, for the system above when γ 1 = 10 -3 γ 2 , γ e = 10 -5 γ 2 , g 1 = 0, g 2 = γ2 15 and ω e = ω 1 = ω 2 . Note that the intensity reaches its maximum for ∆ω L = 0 because the coupling strengths are sufficiently small not to induce Rabi splitting. The observed antibunching again stems from the anharmonicity in the imaginary part of the eigenenergies. This anharmonicity is presented in Fig. 2(b), which depicts the decay rates Γ j of the first-(red) and second-(black) excitation eigenstates, normalized by the excitation number q = 1, 2, as a function of d. The decay rates of the narrowest states in each manifold, |p 1 ) and |p 2 ), are in thicker lines. The differences between these are induced by the decoupling of the Fabry-Pérot mode and emitter from the plasmonic mode occurring when g 2 , d g 1 , γ e , γ 1 (see Supplementary Material for details). This decoupling is only present in the first-excitation manifold, forming a very narrow |p 1 ), and is shown by the dark red line in Fig. 2(c) that plots |(p 1 |a † 2 a 2 |p 1 )|, the component of the plasmonic mode in |p 1 ), as a function of d. The state |p 1 ) resembles the dark state formed when several emitters interact with a cavity [START_REF] Del Pino | Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode[END_REF]. However, this state is optically accessible by pumping the Fabry-Pérot mode and detecting its emission, such that Vp = a † 1 + a 1 and E - D ∝ a † 1 . Note that these operators, used for calculating the antibunching map in Fig. 2(a), describe a system configuration in which its driving from and leakage into free space is mediated by the mirrors of the Fabry-Pérot cavity. Ref. [START_REF] Lu | Unveiling atom-photon quasi-bound states in hybrid plasmonic-photonic cavity[END_REF] has discussed the formation of a very narrow |p 1 ) in hybrid cavities and presented its role in enhancing the efficiency of the single-photon emission occurring due to the Hermitian PB mechanism. We here show that by controlling the decay rate of |p 2 ), the very narrow |p 1 ) can be utilized to induce the NHPB mechanism. The plasmonic mode participates in |p 2 ) through its coupling to the Fabry-Pérot mode, d. Indeed, Fig. 2(c horizontal line in Fig. 2(c)), the decay rate of |p 2 ) becomes larger than that of |p 1 ) (Fig. 2(b)), inducing the emission of single photons (Fig. 2(a)).

Similarly to the previous example, g

τ =0 can be expressed as a function of the cooperativity between the two optical modes η = 4d 2 γ1γ2 :

g (2) τ =0 (ω L = ω e ) ≈ 1 η 2 g 2 2 d 2 + 2 + 4 g 2 γ 2 2 g 2 2 d 2 -1 2 , (6) 
showing that large η is required to achieve antibunching. Eq. ( 6) is the second-order approximation for the analytical expression of g

τ =0 (ω L = ω e ) when γ1 γ2 1 and γ e = 0. For further investigation of the dependence of the results and their robustness with respect to the system parameters, see the Supplementary Material.

Finally, in Fig. 3, we analyze the validity of the approximations inherent to our analysis above. Fig. 3(a τ =0 , respectively, as a function of ∆ω L when d = γ2 10 (and the other parameters are as in Fig. 2). In addition, since single-photon emission requires the suppression of all the high-order correlations g

(n)
τ =0 , we present in Fig. 3(c) the normalized zero-delay third-order correlation function g

τ =0 as a function of ∆ω L . The strong dip in Fig. 3(c) (solid line) demonstrates that the NHPB operates beyond second-order processes and suppresses multi-photon events. Moreover, the results support that the predicted antibunching is related to the generalized PB phenomenon and not to the destructive interference effect [START_REF] Zubizarreta Casalengua | Conventional and unconventional photon statistics[END_REF]. To verify that the predicted antibunching can be well-understood in terms of just two system eigenstates, |p 1 ) and |p 2 ), as Eq. ( 1) does, we compare I, g

τ =0 and g

τ =0 obtained by including all system eigenstates (solid lines) with the values obtained only by the narrowest eigenstates in each manifold, |p 1 ), |p 2 ) and |p 3 ) (dotted lines). As can be seen, almost perfect agreement is achieved between the two cases in the vicinity of ∆ω L = 0. Furthermore, we show that artificially setting all the eigenstates to have the same decay rate Γ j = qΓ p1 (dashed lines) suppresses the antibunching completely. q is the excitation number, and Γ p1 is the decay rate of |p 1 ). This suppression demonstrates that indeed the anharmonicity in the imaginary part of the eigenenergies, i.e., the NHPB mechanism, is the origin of the observed antibunching.

To conclude, we have theoretically proposed a novel mechanism for generating high-purity single-photon emission at high repetition rates. This non-Hermitian photon blockade mechanism stems from the difference in linewidth between the absorption of one photon and of two photons, and can be explained by the anharmonicity in the complex NH eigenenergy spectrum. Thus, the NHPB mechanism reveals an interesting interplay between non-Hermiticity of the system and quantum nonlinearity of the emitted light. Importantly, it provides a reliable route to single-photon emission even in the weak-coupling regime where couplings do not overcome the losses. We have demonstrated two types of setups in which NHPB can be implemented with realistic parameters, and showed that the effect indeed induces strong antibunching. Our findings open the door to the realization of new singlephoton devices with potential applications in quantum information, communication and metrology.
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Appendix: Description of the correlation functions using the system's eigenstates and eigenenergies

The effective Hamiltonian in the rotating frame of a system pumped by the laser with pumping strength Ω and by the operator Vp can be written as [START_REF] Sáez-Blázquez | Photon statistics in collective strong coupling: Nanocavities and microcavities[END_REF] Ĥeff = ∆ Ĥ0 + Ω Vp .

(A.1)

Here, ∆ Ĥ0 = Ĥ0ω L N where Ĥ0 is the NH Hamiltonian of the laser-free system under the rotating wave approximation [START_REF] Walls | Interaction of radiation with atoms[END_REF], N is a number operator that counts how many laser photons have been absorbed by the system, and ω L is the laser frequency. The system's steady state can be determined perturbatively in the low pumping regime (Ω → 0). Expanding the solution as a power series in Ω, |Ψ ss = n=0 Ω n |Ψ n and solving Ĥeff |Ψ ss = 0 [START_REF] Sáez-Blázquez | Photon statistics in collective strong coupling: Nanocavities and microcavities[END_REF] yields the following Born series:

|Ψ ss = n=0 Ω n 1 ∆ Ĥ0 Vp n |0 (A.2)
where |0 is the system's ground state. By using the spectral representation of ∆ Ĥ0 , such that 1 ∆ Ĥ0 = q Nq rq=1 |rq)(rq| Er q -q ω L , we reveal the contribution of the system's eigenstates |r q ) corresponding to the eigenenergies E rq . Here, q is the excitation number (the eigenvalue of N ) and N q is the number of eigenstates in the q-excitation manifold. The c-product (. . . | . . . ) is used due to the system's non-Hermiticity [START_REF] Moiseyev | Non-Hermitian quantum mechanics[END_REF]. The intensity and second-order correlation function are evaluated, respectively, using the first-and second-order Born series:

(A.3) I(ω L ) = |Ω| 2 N1 i=1 N1 j=1 0| Vp |i) E i -ω L (i|E - D E + D |j) (j| Vp |0 E j -ω L G (2) τ =0 (ω L ) = |Ω| 4 N2 m=1 N2 n=1 N1 i=1 N1 j=1 0| Vp |i) E i -ω L (i| Vp |m) E m -2 ω L ×(m|E - D E - D E + D E + D |n) (n| Vp |j) E n -2 ω L (j| Vp |0 E j -ω L
where E - D is the scattered far-field operator at the detector. The normalized second-order correlation is given by g 1) is obtained when considering only one eigenstate in each excitation manifold, i.e., considering only the terms j = i = p 1 , n = m = p 2 in Eq. (A.3). g

(2) τ =0 (ω L ) = G (2) τ =0 (ω L ) [I(ω L )] 2 [2]. Eq. (
τ =0 (ω L ), depicted in Fig. 3(c), is given by

G (3) τ =0 (ω L ) [I(ω L )] 3 where G (3) τ =0 (ω L ) = Ψ ss |E - D E - D E - D E + D E + D E + D |Ψ ss is evaluated in a similar manner as G (2) τ =0 (ω L ) and I(ω L ).
Supplementary material for: Non-Hermitian Anharmonicity Induces Single-Photon Emission The Hamiltonian in Eq. ( 5) in the main text (when ω e = ω 1 = ω 2 ) is represented in the first-excitation manifold by the matrix:

H (1) =   ω e -i γe 2 g 1 g 2 g 1 ω e -i γ1 2 d g 2 d ω e -i γ2 2   (S1)
and in the second-excitation manifold by the matrix:

H (2) =       2ω e -i γe+γ1 2 d √ 2g 1 g 2 0 d 2ω e -i γe+γ2 2 0 g 1 √ 2g 2 √ 2g 1 0 2ω e -iγ 1 √ 2d 0 g 2 g 1 √ 2d 2ω e -i γ1+γ2 2 √ 2d 0 √ 2g 2 0 √ 2d 2ω e -iγ 2       . (S2) 
The basis sets used to build H (1) and H (2) 

are {σ + |0 , a † 1 |0 , a † 2 |0 } and {σ + a † 1 |0 , σ + a † 2 |0 , (a † 1 ) 2 √ 2 |0 , a † 1 a † 2 |0 , (a † 2 ) 2 √
2 |0 }, respectively. We study the photon statistics of the emission from the Fabry-Pérot mode, E - D ∝ a 1 . A very narrow first-excitation state |p 1 ) can be formed, even when d and g 2 are not negligible, while approximating γ e ≈ γ 1 ≈ 0 in two edge cases: (i) when g 1 → 0 and (ii) when g 2 ≈ d. In these cases, |p 1 ) corresponds to the zeroth-order eigenvector: v (0) p1 = Ñ -d g2 0 t , such that the singly-excited state of the plasmonic mode a † 2 |0 is decoupled. Ñ is the normalization factor of v (0) p1 . The correction to this eigenvector to first order in g 1 , γ 1 , and γ e is v (1) p1 = ± 16(g 1 (d2 g 2 2 ) + idg 2 γ1-γe

2 ) A ± d 2 + g 2 2 A 2 ± + 16(d 2 + g 2 2 ) v (0) ± (S3)
where A ± = -iγ 2 ± 16(d 2 + g 2 2 )γ 2 2 and v (0)

± are the other zeroth-order eigenvectors of H (1) when γ e ≈ γ 1 ≈ 0 and g 1 → 0. The correction v [START_REF] O'brien | Photonic quantum technologies[END_REF] p1 is negligible when the following conditions are fulfilled:

|γ 1 -γ e | 4 
2(g 2 2 + d 2 ) γ 2 (S4)

g 1 |d 2 -g 2 2 | 2(g 2 2 + d 2 ) 2 γ 2 .
This gives rise to the formation of a very narrow state |p 1 ). Note that similar to Eq. ( 6) in the main text, the first condition requires large cooperativity for the two optical modes η = 4d 2 γ1γ2 . These conditions were derived by assuming that d 2 + g 
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 1 FIG. 1. Sketch of the two mechanisms for PB: (a) the Hermitian mechanism and (b) the NHPB mechanism introduced in this Letter.
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 2 (a) stems from anharmonicity in the real axis E p1 = Ep , the NHPB in Fig. 1(b) occurs even when E p1 = Ep 2 2
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 2 FIG. 2. (a) g (2) τ =0 as a function of ∆ωL, and d. (b) Γj/q of the first-(red, q = 1) and the second-(black, q = 2) excitation eigenstates and (c) |(p1|a † 2 a2|p1)| (dark red) and |(p2|a † 2 a2|p2)| (grey) as a function of d.
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  FIG. 3. (a) I, (b) g (2)τ =0 and (c) g(3)τ =0 as a function of ∆ωL. The solid lines correspond to the full calculations (see Appendix), the dotted lines consider only the narrowest eigenstate in each excitation manifold, and the dashed lines were obtained when imposing Γj = qΓp 1 .
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 24 weak-coupling regime) andA + ≈ -8i(d 2 +g 2 2 ) k2. Forming a broad second-excitation eigenstate whose emission can be detected requires the coupling of the doubly excited state(a † 1 ) 2 √
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	NON-HERMITIAN PHOTON BLOCKADE (NHPB) IN A HYBRID CAVITY INTERACTING WITH A
	TWO-LEVEL EMITTER (TLE)
	Forming a narrow first-excitation eigenstate and a broad second-excitation eigenstate

|0 with a mode that involves excitation of the plasmonic mode. This is achieved through the coupling d between the two optical modes. Fig.2in the main text demonstrates that with increasing d, the narrowest second-excitation state |p 2 ) becomes broad due to the increasing component of the plasmonic mode in it. arXiv:2212.06307v1 [quant-ph] 13 Dec 2022

Robustness with respect to g2 Fig. S1 studies the effect of g 2 on the antibunching presented in Fig. 2 and Fig. 3 in the main text, when d = γ2 15 (and the other parameters are as in Fig. 2 in the main text). Fig. S1(a) and Fig. S1(b) present the intensity I and the normalized zero-delayed second-order correlation function g [START_REF] Loudon | The quantum theory of light[END_REF] τ =0 . Moreover, to present the effect of g 2 on the components in |p 1 ) and |p 2 ), Fig. S1(c) and Fig. S1(d) depicts the components of the Fabry-Pérot and the plasmonic modes, N 1 and N 2 , respectively, in |p 1 ) and |p 2 ) as a function of g 2 . In agreement with the above-mentioned zero-order eigenvector of |p 1 ), the dark red line in Fig. S1(c) shows that when g 2 is relatively small, the component of the Fabry-Pérot mode in |p 1 ) is negligible. As a result, since Fig. S1(a) and Fig. S1(b) presents the photon statistics of the emission from the Fabry-Pérot mode, the detection of the single-photon emission is prevented. Then, there is a range of values of g 2 for which the antibunching is robust. However, when g 2 becomes too large, the antibunching is suppressed (Fig. S1(b)). This suppression occurs because increasing g 2 , while keeping d constant, decouples the state a † 1 a † 1 |0 from the states that involve excitation of the plasmonic mode, as is shown by the grey line in Fig. S1(d). Consequently, |p 2 ) is narrow has small decay rate, preventing the NHPB mechanism. Fig. S2 investigates the interplay between g 2 and d and presents g

τ =0 as a function of g 2 and d when ω L = ω e (and the other parameters are as in Fig. S1). The minimal values of d that can be used to induce antibunching through the NHPB mechanism are depicted in Fig. S2 as a function of g 2 by the dotted line, derived when equating Eq. ( 6) in the main text to 1 when d g2 → 0. 

)) 3

Robustness with respect to g1 Fig. 2 in the main text presents the effect of increasing d on I and g

(2)

τ =0 , while g 1 is kept constant. However, when mode 1 and mode 2 are associated with the plasmonic and the Fabry-Pérot modes, respectively, g 1 is in principle proportional to d: while g 1 is given by the interaction of the Fabry-Pérot electric field with the TLE dipole moment µ e , d is given by the interaction of the Fabry-Pérot electric field with the plasmonic dipole moment µ 2 . Consequently, when increasing the Fabry-Pérot electric field, both d and g 1 are increased with the fixed ratio d g1 = µ2 µe . Fig. S3 presents I and g

τ =0 for this physical case, with all other parameters set to the same values as in Fig. 2 in the main text. Since g 1 is still smaller than d and the conditions in Eq. (S4) are fulfilled, Fig. S3 shows strong antibunching. The black and the red lines in Fig. S3(a) show, for each d, the pumping detuning that is required to populate |p 1 ) and |p 2 ), i.e., , where E p1 and E p2 are the real part of their eigenenergies. They show that Rabi splitting and emission in non-zero pumping detuning occur since g 1 reaches the strong-coupling regime for the TLE and the Fabry-Pérot mode. Robustness with respect to detuning the plasmonic mode Fig. S4 studies the robustness of the antibunching presented in Fig. 2 and Fig. 3 in the main text when detuning the plasmonic mode from the TLE and Fabry-Pérot mode by δ 2 , i.e., when ω 2 = ω e + δ 2 in Eq. ( 5) in the main text. The other parameters are as in Fig. 3 in the main text. Fig. S4(a) shows g [START_REF] Loudon | The quantum theory of light[END_REF] τ =0 ; Fig. S4(b) shows the decay rates of the first-(red) and second-(black) excitation eigenstates, where those of |p 1 ) and |p 2 ) are in thicker lines; and Fig. S4(c) shows the component of the plasmonic mode N 2 in |p 1 ) and |p 2 ). As can be seen from Fig. S4(a), the antibunching is robust for values of δ 2 that are smaller or comparable to the plasmonic decay rate γ 2 . Since the plasmonic mode is decoupled from |p 1 ) as is demonstrated by the dark red line in Fig. S4(c), its detuning affects only |p 2 ). The black line in Fig. S4(a) depicts for each value of δ 2 the pumping detuning that is required to populate |p 2 ), i.e., , and shows that the detuning shifts the energy of |p 2 ). Consequently, the anharmonicity between |p 1 ) and |p 2 ) is not only in the imaginary part of their eigenenergies, shown in Fig. S4(b), but also in their real part. Therefore, the antibunching in Fig. S4(a) stems from both the Hermitian PB and the NHPB mechanisms. However, the anharmonicity is destroyed and the antibunching is suppressed for large values of δ 2 . The grey line in Fig. S4(c) shows that when δ 2 becomes too large, the plasmonic mode is decoupled not only from |p 1 ) but also from |p 2 ), forming a narrow |p 2 ) (thick black line in Fig. S4(b)) that prevents the occurrence of the NHPB mechanism. τ =0 ; and Fig. S5(c) shows the component of the plasmonic mode N 2 in |p 1 ) and |p 2 ). As can be seen from Fig. S5(b), the antibunching is robust when δ e is relatively small but it is suppressed for larger values. Contrary to detuning the plasmonic mode (shown in Fig. S4), which is decoupled from |p 1 ), detuning the TLE affects both |p 1 ) and |p 2 ). Therefore, increasing δ e shifts the pumping detuning that yields the maximal intensity (Fig. S5(a)) and the antibunching (Fig. S5(b)). Importantly, the dark red line in Fig. S5(c) shows that relatively large δ e (that is larger by more than order of magnitude than the Fabry-Pérot decay rate γ 1 ) destroys the decoupling of the plasmonic mode from |p 1 ), thus, forming a relatively broad |p 1 ). As a result, the NHPB mechanism and the antibunching are suppressed.