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Abstract

Random walks on networks are widely used to model stochastic processes such as search

strategies, transportation problems or disease propagation. A prominent example of such

process is the dynamics of naive T cells within the lymph node while they are scanning for

antigens. The observed T cells trajectories in small sub-volumes of the lymph node are well

modeled as a random walk and they have been shown to follow the lymphatic conduit net-

work as substrate for migration. One can then ask how does the connectivity patterns of the

lymph node conduit network affect the T cells collective exploration behavior. In particular,

does the network display properties that are uniform across the whole volume of the lymph

node or can we distinguish some heterogeneities? We propose a workflow to accurately

and efficiently define and compute these quantities on large networks, which enables us to

characterize heterogeneities within a very large published dataset of Lymph Node Conduit

Network. To establish the significance of our results, we compared the results obtained on

the lymph node to null models of varying complexity. We identified significantly heteroge-

neous regions characterized as “remote regions” at the poles and next to the medulla, while

a large portion of the network promotes uniform exploration by T cells.

Author summary

Lymph nodes are organs in which actors of the immune system meet. In particular, the

encounter between the naive T cells and their specific antigens occurs in lymph nodes.

This event triggers the adaptive immune response. T cells movement has been shown to

be well described as a random walk, at least when they are measured on small sub-volumes

of the lymph node. In parallel, it was shown that T-cells migrate following the lymphatic

conduit network that span the lymph nodes. In this study, we ask, how does the connec-

tivity pattern of the conduit network on which T cells move influences their collective

exploration behavior? Are there regions in the lymph node conduit network which have
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distinct random walk related properties? The topological reconstruction of the lymph

node conduit network was recently made available. The network is very large (about 200

000 nodes) and appears very regular, with most nodes being connected to three neigh-

bours. We propose a workflow to detect heterogeneities in such large and quasi-regular

networks, building on random walk on network tools, and the measure of two features

which we interpret using a series of generated null models for comparison. We show that

the lymph node conduit network displays remotely accessible regions at both poles and

near medulla, with however most of the network promoting uniform exploration.

Introduction

Random walks on networks are a widely used model to describe search strategies [1, 2], trans-

portation problems [3], transmission in epidemiology [4, 5] or diffusion of information [6, 7].

In this model, random walkers hop from node to node while choosing randomly the edges on

which to move. The structure of the underlying network, such as its degree distribution and

connectivity pattern, will thus determine how the random walk evolves over time. Can the

connectivity pattern favour the exploration of some nodes over others? We will test the

hypothesis that the network is heterogeneous in the sense that regions can be distinguished

using their connectivity properties, and that this heterogeneity has an influence on the collec-

tive exploration behavior on the network. We aim to define a measure of such heterogeneity

that is applicable to large networks.

Indeed, the question of the influence of network connectivity on random walker behavior is

raised in the case of biological transportation networks [8]. Among such networks, the lymph

node conduit network (LNCN) offers a prominent example of a large network whose structure

can affect its function [9]. The lymph nodes, among other functions, are hubs along the lym-

phatic system in which T cells encounter dendritic cells upon an infection. The dendritic cells

bring the virus’ antigen to the lymph node. Only a small subset of the naive T cells able to react

to a given antigen (one out of 1 000 000). When these relevant naive T cells encounter the den-

dritic cells, they proliferate and the specific immune response starts. This crucial encounter

arises after a search phase [10]: the dendritic cells stay still at an unknown location, and the

naive T cells scan the lymph node for dendritic cells to test their specificity. The trajectories of

T cells on sub-volumes of the lymph nodes have shown different types of random walk behav-

iours [10]: brownian [11], Lévy-type [12] or, more recently, correlated random walk [13].

These behaviours might arise as a combination of different mechanisms: internal cell reorgani-

zations, chemical cues, or the fact that T cells follow a network, the LNCN, which is a network

of pipes conveying lymph that span the lymph nodes, as support for their migration [14]. In

this paper, we focus on this last aspect of the T cell behaviour, so that without additional

hypothesis, T cells movement is modeled as a random walk on the LNCN. Considering the

topology of the LNCN, we ask if the network connectivity influences the collective exploration

behavior by T cells by exhibiting specific heterogeneities.

Previous studies have shown that the network formed by the cells that cover the conduits,

the FRC (fibloblastic reticular cells), has a small-world structure and robustness [15]. This net-

work is surprisingly different from the network formed by the conduits themselves (LNCN)

which exhibits very different properties. These characteristics were measured on a slice of a

mouse lymph node. Only recently, for the first time, the whole conduit network (LNCN) was

imaged by Kelch et al. [9], providing a new and unique opportunity to map the connectivity

properties across the whole T cell zone. The authors observed that there is a higher density of
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nodes on the periphery on the network and lower density at the core. Focusing on the guiding

function of the conduit network (LNCN), the authors performed an agent-based model to

simulate T cells migration which concluded that immune cells would have similar behaviors in

both regions. Similarly, and in the absence of an available complete T-cell zone reconstruction

of the FRC network, we will consider the LNCN as the substrate of migration of the T cells,

and not the FRC network, and thus base our analysis on the LNCN topological reconstruction

from Kelch et al.

To answer the question of whether the network topology biases the search, the global mean

first passage time (GMFPT) [16] might appear at first to be sufficient to detect which nodes are

found by random walkers first. However this measure is local (node by node) and does not

allow to delimit whole distinct regions in the network. Moreover, it is not computable for large

networks since it requires the computation of all return probabilities for all nodes at all time

steps. Here, instead, we propose to assess the level of heterogeneity of the network by compar-

ing random walk related properties between regions, i.e. communities of nodes, of the net-

work. If these features are similar in all regions, the network is homogeneous. On the contrary,

if some regions have features differing considerably from the others, the network displays het-

erogeneity. To devise random walk interpretable communities, we compute clusters in the so-

called diffusion space [17, 18]. These communities can be interpreted as groups of nodes

which are highly connected by random walks paths, which means that there are many short

paths connecting the nodes [19]. Additionally, random walkers departing from nodes of a

same community have correlated probability of presence fields over time. These communities

can be defined at different resolutions by tuning two parameters. First, one can vary the length

of the random walk to be considered, i.e. the number of time steps after which the probabilities

are calculated, and second, the number of communities which encodes the resolution at which

we observe the network. Furthermore, the workflow is tractable for large networks.

The first question is: Do the diffusion communities form compact groups of neighbouring

nodes or are they on the contrary scattered across the network? The latter case implies that in

some cases there is more chance to reach a node at the other end of the network than a node

which is only a few edges apart. We call this property spatial coherence, which describes how

the diffusion accessibility is correlated with the shortest paths lengths. This question is moti-

vated by a seemingly contradiction in the description of the lymphatic network in the lymph

node. Indeed, on the one hand, the conduit network that was described qualitatively as a mesh,

[9], a loosely defined concept that suggests high spatial coherence. On the other hand, the

small-world property of the FRC network [20] suggests that there are shortcuts between other-

wise distant nodes of the network [21]. To answer this question, we introduce the Cheeger

mixing index as a measure of spatial coherence. We compare the average value of the Cheeger

mixing index of the LNCN with a series of null models to estimate if this value is high or low.

Using a Voronoi tesselation of similar size and mean degree as the LNCN as a null model for

minimal Cheeger mixing index, we show that the Cheeger mixing index increases progres-

sively as we rewire an increasing number of edges from the initial network. The Cheeger mix-

ing value for the LNCN is very low, barely higher than the tesselation network showing that it

displays high spatial coherence.
The second question is: is the network heterogeneous? This will be assessed by measuring

the mean entry and exit probabilities of diffusion communities and assessing their variability.

To answer this question, we measure the mean entry and exit probability at relaxation time, a

reference time that can be found in all networks. We compare the levels of variation of the val-

ues between communities of the LNCN with various null models of the same size and mean

degree and we conclude that the LNCN is significantly heterogeneous. We locate a few com-

munities with lower mean entry and exit probabilities at the time scale of the exploration time
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of the T cells. These communities are at the extremities of the longest axis and one near the

medulla which is where the T cells exit the lymph node. On the contrary, the rest of the LNCN,

appears homogeneous, promoting an uniform exploration by random walkers.

In summary, the value of this study is to build on the interpretability of the diffusion space

coordinates [17–19, 22] and its associated approximation [22] to propose a workflow to detect

heterogeneity in networks which are large, and which appear almost uniform in terms of

degree distribution, such as the LNCN. The workflow succeeds at characterizing the network

as spatially coherent and to locate specifically “remote” regions in the LNCN, by comparing

the values of the indicators we propose between the LNCN and a series of null models.

Materials and methods

In this section, we first describe our workflow, which consists in defining diffusion communi-

ties within the network, and to measure for each community (i) the Cheeger mixing index to

characterize the spatial coherence of the network and (ii) the mean entry and exit probabilities

to detect specific regions that are more accessible or remote. Then, we introduce the networks

that are analyzed and compared using this workflow. The networks consist of the LNCN

which is the biological network of interest, and 7 other generated networks of similar sizes and

same mean degree as the LNCN as null models to help interpret the measured features.

Workflow

We consider only the connectivity information of the network under consideration and ignore

the spatial coordinates and edge lengths. Therefore, we address a discrete-time random walk

on an unweighted, undirected network. The dynamics of a random walk on a network can be

derived analytically. We use previously defined diffusion coordinates, based on the definition

of a random walk [17, 19], to compute community detection. The workflow is illustrated on

Fig 1.

Random walk on a network. Let N ¼ ðV; EÞ be a spatial network where V 2 R3�N
is the

set of N nodes and E ¼ fði; jÞ 2 ½1;N�2g is the set of E edges. The connectivity information is

encoded in the adjacency matrix A which is defined as Aij = 1 if ði; jÞ 2 E and Aij = 0 otherwise.

We consider a random walker following a Markovian process on the network. At each time

step, the walker chooses with equal probability to jump to one of its adjacent nodes. The transi-

tion matrix T = D−1A (where D = diag(di) is the diagonal degree matrix with di the degree of

node i) encodes the probabilities of transition from one node to another in one time step Tij =

p(j, t = 1|i).
Diffusion coordinates. The diffusion coordinates allow to embed each node of the net-

work in an interpretable Euclidean space. These distances depend on the random walk on the

network, thus the embedding is called the diffusion space. [22]. The diffusion coordinates are

computed by using the spectral decomposition of the transition matrix T with left and right

eigenvectors [19, 22, 23] T = CΛFT (the derivation is in S1 Text), and for any time step t = q,

Tq =CΛqFT. The diffusion coordinates for a given time t = q are given by the rows of the left

part of the spectral decomposition: X(q) =CΛq. The Euclidean distances in this embedding,

also called diffusion distances are interpreted as a measure of the correlation of random walks

departing from i0 and i1, with (i0, i1) 2 [1, N]2:

D2
t ði0; i1Þ ¼ kpðj; tji0Þ � pðj; tji1Þk

2

w ð1Þ

¼
X

j

ðpðj; tji0Þ � pðj; tji1ÞÞ
2wðjÞ ð2Þ
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where w(j) = 1/ϕj0, with �j0 ¼
dj
2E [22]. Furthermore, nodes are close in the diffusion space if

random walkers are likely to travel from one to the other through short paths. For large net-

works, the spectral decomposition of the transition matrix is computationally impossible. We

therefore use an approximation.

Approximation. For large number of nodes, such as for the LNCN, which contains

approximately 200,000 nodes, the computation of C and F requires the diagonalization of the

symmetrized transition matrix Ts ¼ D1
2TD� 1

2, which cannot be completed fully for large N. The

matrix T and the diffusion coordinates X(q) can be respectively approximated by the truncated

spectral decomposition T̂ t
K ¼ CKL

t
KF

T
K where CK = (ψ0, ‥, ψK),FK = (ϕ0, ‥, ϕK) and ΛK = diag

(λ0, . . ., λK), and XkðqÞ ¼ CkL
q
k. The diffusion distance is then

D2
t ði0; i1Þ ¼

PK
k¼1
l

2t
k ðckði0Þ � ckði1ÞÞ

2
. The numeric calculation and its algorithmic complex-

ity are detailed in S2 Text. The accuracy of this approximation increases with increasing t or

when K increases. In this paper, K was restricted to K = 2000 for all networks to keep spectral

decomposition computation time acceptable (11–13 hours). In the case of the LNCN the

smallest t we consider suffers from an error of less than 0.1%. The method for error calculation

is detailed in S3 Text and the error for the LNCN with respect to t is shown in S1 Fig.

Fig 1. Description of the diffusion community detection workflow A: Decoupling of a spatial network into geometric

and topological information. Credit for the base layer city map that illustrates the spatial network: Rue d’Aubagne,

Marseille, France OpenStreetMap B: We consider a random walker on the topological network C: Nodes of the

network are embedded into the diffusion space D: Diffusion communities are clusters made in the diffusion space E:

These communities are interpreted as: random walkers departing from nodes of the same community follow

correlated probability of presence fields F: Nodes are close in the diffusion space if they are highly connected through

random walks. Dash lines represent random walks trajectories through nodes not represented on the sketch.

https://doi.org/10.1371/journal.pcbi.1011168.g001
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Community detection and relaxation time. Using the diffusion coordinates, the nodes

of the network can be seen as a point cloud. To identify subset of nodes having similar proper-

ties, we computed communities using the k-means algorithm [24] in the diffusion coordinate

space. Since the diffusion coordinate are dependent of the time t, we chose to always use a ref-

erence time in the dynamics of the random walk, τ the relaxation time. The relaxation time is

the time at which the difference between the probability field and the stationary field is

reduced significantly by a constant factor. The relaxation time differs from one network to the

other, however providing a comparable time scale. This time scale is defined by the ratio

between the magnitude of the second largest eigenvalue of the transition matrix |λ1| and λ0 =

1, t ¼ 1

1� l1
. The derivation is in S4 Text and the values for all the considered networks are sum-

marized in Table 1. As for k, the number of clusters, we chose to use k = 100 for all networks.

We show how this k-dependant community detection differs from state-of-the-art random

walk based community detection method Infomap [7] in S2 Fig.

To analyze and understand the properties of the communities, we compute two features,

the Cheeger mixing index, and the mean entry and exit probabilities. The Cheeger mixing

index measures to what extent the nodes which belong to the same diffusion community, thus

which are close in the diffusion space, form compact neighbourhoods in the network. The

mean entry and exit probabilities are features that can be computed over time, and can be

compared between communities to distinguish outlying communities with especially low or

high values.

Cheeger mixing index The Cheeger mixing index, for the community C, is defined as

hðCÞ ¼
P

i2C
P

j2�C Aij

minð
P

i2C di ;
P

i2�C diÞ
and measures the relative number of edges connecting a node of

C and a node that does not belong to C. If it is large it means that the nodes that belong to

the same diffusion community do not form contiguous groups. We call this value Cheeger

mixing index because the minimal value over all possible sets of nodes instead of commu-

nity C is known as the Cheeger constant [25]. This measure is similar to the participation

coefficient defined in [26]. The Cheeger mixing index, measured on diffusion communities,

can be interpreted as follows. The diffusion distance D2
t ði0; i1Þ between two nodes i0 and i1

expresses the distance between the two posterior distributions p(j, t|i0) and p(j, t|i1). If i0
and i1 belong to the same community (i.e. are close in terms of diffusion distance), random

walkers starting from i0 and i1 have correlated walks. Additionally, D2
t ði0; i1Þ is small if there

is a large number of short paths connecting i0 and i1 [19]. Thus, a community defines a set

of nodes that are highly connected and from which random walks are correlated. The Chee-

ger mixing index of one community Cmeasures the proportion of edges between nodes of

C and nodes that do not belong to C over the number of edges inside C. The mean Cheeger

Table 1. Summary of the characteristics the considered networks.

Network Nb of nodes Nb of edges Modularity τ
LNCN 192,386 274,906 0.95 (n = 75) 17,797

Random 192,306 269,308 0.72 (n = 225) 1

PVor 193,429 270,786 0.94 (n = 78) 10,924

HVor 204,653 286,509 0.94 (n = 79) 5,339

HVor rwd. 2% 204,653 286,509 0.90 (n = 108) 152

HVor rwd. 5% 204,653 286,509 0.85 (n = 194) 104

HVor rwd 10% 204,653 286,509 0.80 (n = 237) 100

HVor rwd 20% 204,653 286,509 0.85 (n = 230) 82

https://doi.org/10.1371/journal.pcbi.1011168.t001
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mixing index is the average over all communities of the Cheeger mixing index

�h ¼< hðCÞ>C. For a given network, if this number is high we expect the nodes belonging

to a same community to be scattered across the networks: close neighbours (in terms of

shortest path length) are not necessarily the most well connected at this time t integrating

on all possible paths. On the contrary if this number is low, the nodes belonging to the

same community form a compact neighbourhood within the network, which means high

spatial coherence.

Mean entry and exit probabilities For each community, the mean entry probability was com-

puted as the sum of probabilities to arrive at any node that belong to the community depart-

ing from all the nodes that do not belong to the community, averaged over all the nodes

that belong to the community, then over all the nodes that do not belong to the cluster.

< pin>C ðtÞ ¼ 1

nCn�C

P
l2C

P
m2�C

PK
k¼1
ckðmÞl

t
k�kðlÞ. Similarly, the mean exit probability was

computed as the sum of probabilities to arrive at any node that does not belong the commu-

nity departing from any node that belongs to the communities, averaged over all the nodes

that belong to the community, then over all the nodes that don’t belong to the cluster.

< pout>C ðtÞ ¼ 1

nCn�C

P
l2�C

P
m2C

PK
k¼1
ckðmÞl

t
k�kðlÞ. Note that (i) if a network is fully regu-

lar,< pin>C (t) =< pout>C (t) for all C and (ii) at infinite time t,< pin>C (t) is propor-

tional to the mean degree of the community, and< pin>C (t) is proportional to the mean

degree of the nodes that do not belong to the communities (derivation in S5 Text). At long

time scale, these measures depend only on the degree distribution among the communities

but their computation at shorter time scales prove useful to distinguish communities, espe-

cially when the networks are quasi-regular as shown in Results section.

Datasets

The lymph node conduit network (LNCN). The network’s connectivity, published in [9],

was extracted from a segmented 3D microscopy acquisition of a whole mouse popliteal lymph

node conduit network (850 x 750 x 900 μm) obtained from microscopy data [9] in which the

conduits are made fluorescent by injection of labelled molecular tracer into the lymphatic ves-

sels. The conduit network is restricted to the T cell zone, after the medulla, subcapsular sinus

and B cell follicles were removed by the authors Kelch et al. This is a 3D network made of

192,386 nodes and 274,906 edges. Most of its nodes are degree 3 (72%), and 99% of nodes hav-

ing degree between 1 and 4 (see degree distribution in Fig 2A).

Homogeneous Voronoi (HVor). The homogeneous Voronoi 3D was generated using the

network generator from Python library Scipy [27] spatial.Voronoi. The input points coordi-

nates were defined such as: (i) create a rectangular 3D grid of 31x31x31 nodes (ii) keep only

nodes inside a sphere resulting in 5185 nodes (iii) introduce noise in the coordinates so that

the grid structure is not perfect (if the node were perfectly aligned on a 3D grid, this would cor-

respond to a limit case where Voronoi vertices are degree 6 instead of 4). Then, the edges were

randomly removed until the mean degree is 2.8 like the LNCN. The resulting network contains

204,653 nodes and 286,509 edges.

Polar Voronoi (PVor). The polar Voronoi 3D was generated using the network generator

from Python library Scipy [27] spatial.Voronoi. The input points coordinates were defined

such as: the union of two Gaussian distributions in 3D, one centered in (0,0,0) with standard

deviation 5, with N1 = 10, 000 nodes, and the other one centered in (5,5,5) with standard devia-

tion 1 with N2 = 18, 752. Then, edges were randomly removed until the mean degree is 2.8 like

the LNCN. The resulting network contains 193,429 nodes and 270,786 edges.
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Random network. The random network was generated using configuration model [28,

29] from Python NetworkX library [30], using a degree sequence of a regular graph of degree 3

of same size as LNCN. Then, edges were randomly removed until the mean degree is 2.8 like

the LNCN.

Rewired Homogeneous Voronoi. Departing from the HVor, we obtain the HVor

rewired 2%, HVor rewired 5%, HVor rewired 10% and HVor rewired 20% respectively by

double edges swapping [30] of 2%, 5%, 10% and 20% of edges.

Results

The LNCN despite quasi-regularity, shows anisotropy and heterogeneities

The LNCN, for which the topology was reconstructed by Kelch et al. [9], is a very large net-

work. Overall the network is quite regular (more that 72% of nodes of degree 3) although there

is a small amount of nodes of higher degree. Its size restricts the measures that can be made on

the network because of the computational challenges, and its quasi-regularity gives a first

impression of uniformity.

Tracking random walk in the LNCN highlights the spatial organization of the net-

work. For any time t, the probability of presence of the random walker at time t departing

from a given node can be read as a term of the transition matrix elevated at the power t.
However, the elevation at power t of the transition matrix becomes intractable when t grows

higher and the matrix loses its sparsity. Thus, we apply the approximation described in the

Methods section to the transition matrix. One can visualize and follow over time at low

Fig 2. LNCN features. A: Degree distribution B: Probability of presence departing from one chosen node in time C:

100 diffusion communities at relaxation time τ shown in the diffusion space in the dimensions 1 and 2 (respectively

2nd and 3rd columns of X(τ) =CΛτ, the first column for dimension 0 being filled with only value 1) D: The 100

diffusion communities shown in the physical space (right panel).

https://doi.org/10.1371/journal.pcbi.1011168.g002
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computational cost the field of probability of presence of a random walker over time depart-

ing from a given node, thanks to the approximation of the transition matrix detailed in S2

Text. Fig 2B shows these fields departing from a given node from time 500 to 10,000 (for

comparison, the relaxation time is reached at τ = 17, 797). The chosen node is the one with

smallest y value. It is located at the center of the x-axis (longest axis). We see that the proba-

bility field in time is skewed towards the left part on the x-axis. The anisotropy of these fields

hints towards a non uniform spatial organization of the network. Furthermore, the probabil-

ity fields provide a way to explore the trajectories of random walkers departing from specific

places chosen according to biological hypotheses without computing a Monte Carlo

simulation.

Description of the diffusion communities in the LNCN. 100 diffusion communities

were defined on the LNCN as described in the Methods section by using approximated diffu-

sion coordinates at t = τ = 17797. These diffusion communities are shown on Fig 2C. The clus-

ter size varies from 272 to 4905 nodes and has an average value of 1924 nodes. The diffusion

communities form elongated bands in the y-axis as shown in Fig 2D. Overall, the communities

seem to form slices that are stacked along the x-axis. This suggests easier diffusion in the y and

z-axes than in the x-axis.

The following sections will measure features on the communities and compare them to

null networks in order to check the spatial coherence of these communities and the level of

heterogeneity. The features colormaps of < pin>C (τ) and < pout>C (τ) as well as the Chee-

ger mixing values and mean degree for each community of the LNCN can be found in S3

Fig.

The comparison of the Cheeger mixing index between LNCN and the null

models shows that the LNCN is spatially coherent

The Cheeger mixing index averaged over all the diffusion communities, �h, like introduced in

the Methods section quantifies to what extent the nodes which are close in the diffusion space

are also close neighbours in terms of shortest paths in the network. We call this feature spatial

coherence. This measure aims to clarify the structure of the LNCN. Indeed, as described in the

introduction, the fact that the LNCN is called a mesh [9] suggests that we should find high spa-

tial coherence. However, the FRC network that ensheath the conduits where shown to display

small-world property [20]. The small-world property implies that the network minimizes the

mean shortest path length between two nodes and maximizes the clustering coefficient, which

refers to the propensity to form triangles, so that nodes that are connected to the same node

tend to be also connected between them. As a consequence, there should be shortcut edges

connecting distant nodes, thus low spatial coherence.

To illustrate how the Cheeger mixing index captures the spatial coherence of networks, we

compute it on a series of networks made from increasing rewiring of the HVor. The HVor

being a tesselation, it displays the lowest value of Cheeger mixing index. The more rewired

edges there are, the more there are chances of shortcuts, and thus the more the Cheeger mixing

value is high as shown in Fig 3. This seems to be a consistent definition for quantifying the spa-

tial coherence of a network. The LNCN being between the HVor and the HVor rewired 2%

shows that the LNCN is spatially coherent.

We have shown that the LNCN is spatially coherent, and we measured the heterogeneity in

the LNCN across time, showing that its level of heterogeneity is significant compared to null

models. In the following section we will locate spatially this heterogeneity, specifically at the

time scale that is relevant for T cells scanning collective behavior in order to draw biological

conclusions.
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< pin>C and< pout>C comparison between the LNCN and null models

shows that the LNCN is significantly heterogenous

We analyzed 3 different null networks of comparable sizes and mean degree in order to evalu-

ate the level of heterogeneity of the LNCN by comparing the< pin>C (t) and< pout>C (t) var-

iability to those of the null networks. The null networks were analyzed following the same

workflow as the LNCN: we defined 100 communities by k-means clustering in the diffusion

space. The time t chosen to compute the diffusion coordinates is the relaxation time τ. For

each network,< pin>C (t) and< pout>C (t) are computed for each community at various

times. For each time, the distribution of< pin>C (t) and< pout>C (t) for all 100 communities

is displayed as boxplot in Fig 4A, 4B, 4C and 4D.

Fig 3. The LNCN is spatially coherent. A-E 100 diffusion communities for the HVor, HVor rewired 2%, HVor

rewired 5%, HVor rewired 10%, HVor rewired 20%. Each color represent a community. In the HVor and PVor,

there is respectively 95% and 99% of nodes that belong to a unique community among the 100 communities imposed

by k-means algorithm F: The mean Cheeger index across all communities �h for each null model. �h increases as the

rewiring percentage increases departing from the HVor. Compared with this series of null models, LNCN mean

Cheeger mixing value is higher than the HVor and lower than the HVor rewired 2%.

https://doi.org/10.1371/journal.pcbi.1011168.g003
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The diversity of values of< pin>C (t) and< pout>C (t) across the 100 communities is used

as a proxy for heterogeneity across the communities. This diversity is computed as the stan-

dard deviation of< pin>C (t) and < pout>C (t) across communities. Since this depends on the

random walk time considered, we take the maximal value over time. These maximal value of

standard deviation of< pin>C (t) and< pout>C (t) across communities maxt(SDC(< pin>C

Fig 4. The LNCN network displays a level of heterogeneity higher than the HCN and the Random network and

lower than the PCN. A,B,C,D:< pin>C (t) and< pout>C (t) box plots, respectively for the LNCN,HVor, PVor and

Random network. The dash lines mark the relaxation times. E: The maximal standard deviation over all times of< pin
>C (t) and< pout>C (t).

https://doi.org/10.1371/journal.pcbi.1011168.g004
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(t))) and maxt(SDC(< pout>C (t))) are recapitulated in Fig 4E. The higher these values are, the

more heterogeneous the networks are.

The null networks are the Random network, the HVor and the PVor. The Random net-

work has no structure so it is a first null model with minimal heterogeneity. The LNCN is

more heterogeneous than the Random network. However, we know, from the previous sec-

tion that the LNCN is very different from the Random network in terms of spatial coherence.
So we also compare it with the HVor and PVor. The LNCN has higher heterogeneity than

HVor but lower than PVor. We suppose that this is due to the fact that HVor was generated

with spatially homogeneously distributed seeds whereas PVor which was generated with seeds

with non-uniform spatial density, and this reflects into the network heterogeneity. In conclu-

sion, the LNCN displays a level of heterogeneity which is significant, since it is higher than the

Random network and HVor, and interestingly it is lower than the PVor, which indicates a

polarity of the network. The diffusion communities and features colormaps (< pin>C (τ) and

< pout>C (τ) as well as the Cheeger mixing values and mean degree) of the null models used

in this section are in S3 Fig.

The LNCN displays remote regions at its poles and next to the medulla,

while being homogeneous on most of its total volume, promoting overall

uniform collective exploration behavior

The biological scanning time corresponds to t = 935 steps. Indeed, the CD4+ T cells stay about

12h in the lymph node. With an estimation that the naive T-cells move with an average speed

of 13μm.min−1 [31] and that the average length of an edge is 10μm [20], we can make the

rough estimation that one time step represents 0.77 min. Thus, a 12h exploration time corre-

sponds to t = 935 step time. We show in Fig 5A the values of< pin>C and the< pout>C for

this time step. For this time step, the < pin>C and the< pout>C variation across communities

is larger than at relaxation as shown in Fig 4A.

Heterogeneities are localized in restricted regions on the long axis extremities, the poles,

and near the medulla. Fig 5B shows the values of< pin>C (t = 935) and< pout>C (t = 935)

ranked from smallest to largest across all 100 communities. The heterogeneities that we

describe are the 5 communities with smallest < pin>C (t = 935) and< pout>C (t = 935). We

characterize these regions as remote, because a low value of< pin> indicates that it is more

difficult to enter, and a low value of< pout> indicates that it is more difficult to get out of

these regions.

We also computed the 5 communities with respectively the smallest and largest Cheeger

mixing (Fig 5C and 5D). Among the 5 communities with smallest Cheeger mixing index, 4 of

them are also part of the 5 communities with smallest < pin>C (t = 935) and < pout>C

(t = 935). The 5 communities with largest Cheeger mixing index are communities which

shapes are slices cutting the longest axis at its center.

Beside these regions that we identify with the extremal values of< pin>, < pout> and

Cheeger mixing index, we find that most of the network is homogeneous with similar values of

these descriptors. Therefore there is no privileged regions for which random walkers would be

attracted to or repelled from. This indicates that, despite variations in the connectivity pat-

terns, the overall network structure promotes an exhaustive exploration by a collection of ran-

dom walkers that maximizes the volume of exploration.

Discussion

The question that we addressed is to assess whether the network connectivity influences the

collective exploration behavior of the T cells.
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Fig 5. A:< pin>C (t = 935) and< pout>C (t = 935) for each community at biological scan time B: On the left panel,<

pin>C (t = 935) at biological scan time showed as percentage of the mean value across the 100 communities, shown for

each of the 100 communities, ranked from smallest to largest value. The five communities with smallest values of< pin
>C are shown as colored dots. The same plot for< pout>C is visually identical so we show only< pin>C. The same 5

communities have both lowest< pin>C and< pout>C. On the right panel these five communities locations are shown

with the same colors. C,D: On the left panels, Cheeger mixing value of each community represented as percentage of the

mean value across the 100 communities, shown for the 100 communities, ranked from smallest to largest value. The five

communities with smallest (C), and highest highest (D) values are shown as colored dots. On the right panels, these

communities locations are shown with the same colors.

https://doi.org/10.1371/journal.pcbi.1011168.g005
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In summary, the LNCN promotes spatially continuous and overall uniform exploration by

random walk. The low Cheeger mixing shows that similarly to a tesselation, in the LNCN the

regions that are highly connected by short random walk paths are also close in the network in

the sense of topological distance. Compared to the null models that we explored, the level of

heterogeneity is significant. We distinguish a small set of communities which have lower< pin
>C and< pout>C as well as small Cheeger mixing values. They are restricted to extremities

along the long axis and close to the medulla. Since the entry and exit probabilities are low, they

are not drawing T cells faster than other regions and thus are not particularly privileged loca-

tion for the dendritic cells to sit to be found by the T cells. The rest of the network (most of the

volume) is homogeneous, thus overall the network promotes uniform exploration by a large

population of random walkers. In this respect, our finding that the LNCN promotes overall

uniform exploration is compatible with an optimal search strategy that would aim at maximiz-

ing the volume crossed by random walker.

We have restricted the analysis to the topology of the network, and we have not included

the geometric information: edges lengths and angles. For a more complete view of the net-

work, including some assumptions on the preferential angles can be described by a weighted

network, so that edges which are for instance most aligned with the one the walker comes

from have a higher probability to be chosen. Taking into account the edges lengths, and sub-

sequent traveling times, requires to address continuous time random walk to account for the

fact that some edges take more time than others to be crossed, which can also be formulated

as: the waiting time between two jumps will be long if the second jump involves crossing a

long edge.

Our conclusions about the exploration behavior of the T cells also suffers several limita-

tions. The measures were done on one sample of lymph node. Including more samples

would increase the robustness of the conclusions. Ideally, staining of new lymphatic conduit

networks would be done simultaneously with the staining of the entry and exit locations of

the lymph nodes, respectively the HEVs (high endothelial venules) which are part of the

blood vascular network, and the efferent lymphatic vessels at the medulla. One would then

be able to include inlet and outlet in the random walk in the network analysis. Another point

that would need clarification is the radical mismatch between the FRC network and the con-

duit network characteristics. The FRC network, in which nodes and edges are respectively

the nuclei and cellular protrusions of the cells that ensheath the conduits, based on a slice of

lymph node, shows small world properties and a degree distribution far less regular than the

conduit network. T-cells can be guided by FRC as they are producing IL7 survival factors

[32] and adhesion molecules [33, 34], however, no complete reconstruction of the FRC net-

work is available to date. Moreover, the FRC use the conduit network as a support, therefore

the constraints induced by the topology of the conduit network would still apply when con-

sidering the T-cells migration on a network of FRC. Our workflow can easily be applied on

the FRC network when the topological data of whole lymph node FRC network becomes

available.

Finally, the conduit network has other functions than guiding the migration of the T cells.

First, its structure is related to mechanical robustness of the lymph node [35]. Then, it is also a

piping system in which lymph flows, conveying crucial immune system molecules such as anti-

gens, inflammatory soluble mediators and cytokines across the lymph node. Thus its structure

could also be analyzed from a hydrodynamics point of view, such as modeled in the cortex cap-

illary network for example [36, 37]. We anticipate that our finding would be consistent with a

problem of optimal transport within the conduit network. Both flowing inside the network

and a random walk using the network as support should share similar characteristics as con-

tinuous and discrete flow models.
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Supporting information

S1 Text. Detailed spectral decomposition of the transition matrix.

(PDF)

S2 Text. Numerical approximation of the spectral decomposition for the large networks.

(PDF)

S3 Text. Estimation of the error of the approximation of the spectral decomposition of the

transition matrix.

(PDF)

S4 Text. Relaxation time calculation.

(PDF)

S5 Text. Features of < pin>C and < pout>C.

(PDF)

S1 Fig. Relative error estimation of the approximated transition matrix for the LNCN. Rel-

ative spectral norm between the exact transition matrix and the approximated one with trun-

cation at k = 2000 first eigenvalues, decaying with time steps. Insert: log scale representation.

(PDF)

S2 Fig. This figure shows how diffusion communities differ from Infomap [7], a state-of-

the-art community detection method based on random walk. A-D: small toy network that

exemplifies the difference between diffusion communities and Infomap. In this network, Info-

map (D) detects only one community, that encompasses all the nodes. In the workflow we pro-

pose, the diffusion communities are made after choosing k, the number of communities when

applying the k-means algorithm on the diffusion coordinates, for t = τ = 1. k is a parameter

one needs to adjust, which allows to tune the resolution. From k = 2 to k = 4 (A-C) the diffu-

sion communities are more and more precise. For k = 4, the communities illustrate well the

interpretation of diffusion communities as groups of nodes from which random walkers follow

close trajectories. E: Infomap algorithm applied on the LNCN yields 2 clusters, with code-

length 5.75. Diffusion communities, as presented in this study allows to detect higher resolu-

tion communities by chosing k = 100.

(PDF)

S3 Fig. Features colormaps for the diffusion communities in the null networks Random

network, HVor, PVor, and for the LNCN. For the null networks, the networks are repre-

sented as graphs, the embedding being the default layout of Matlab. On the contrary, the

LNCN is represented with the 3D coordinates of its nodes. For each network, for each commu-

nity we show the values as colormap of the mean degree< d>C, the mean entry and exit prob-

abilities < pin>C (τ) and< pout>C (τ) at relaxation time, as well as the Cheeger mixing value

< h>C.

(PDF)
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for fruitful discussions. We thank Anaïs Baudot, Anthony Baptista and Alain Barrat for their

critical reading of the manuscript and helpful discussions. We thank Nicolas Levernier, Jean-

PLOS COMPUTATIONAL BIOLOGY Network heterogeneities influence T cells collective dynamics in the lymph node

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011168 May 24, 2023 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011168.s008
https://doi.org/10.1371/journal.pcbi.1011168


François Rupprecht and Tanguy Fardet for helpful discussions. We thank Guillaume Gay

from the Multi-Engineering Platform of the Turing Center for Living Systems, Marseille,

France, for his valuable technical support.

Author Contributions

Conceptualization: Solène Song, Paul Villoutreix.

Data curation: Solène Song.

Formal analysis: Solène Song, Malek Senoussi, Paul Escande, Paul Villoutreix.

Funding acquisition: Paul Villoutreix.

Investigation: Solène Song, Malek Senoussi, Paul Escande.

Project administration: Paul Villoutreix.

Software: Solène Song, Malek Senoussi.

Supervision: Paul Villoutreix.

Validation: Solène Song.

Visualization: Solène Song.

Writing – original draft: Solène Song, Paul Villoutreix.

Writing – review & editing: Solène Song, Malek Senoussi, Paul Escande, Paul Villoutreix.

References
1. Okubo A, Levin SA. Diffusion and ecological problems: modern perspectives. vol. 14. Springer; 2001.

2. Bartumeus F, da Luz MGE, Viswanathan GM, Catalan J. Animal search strategies: a quantitative ran-

dom-walk analysis. Ecology. 2005; 86(11):3078–3087. https://doi.org/10.1890/04-1806
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