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ARTICLE

BRAT1–related disorders: phenotypic spectrum and
phenotype-genotype correlations from 97 patients
Camille Engel 1 ✉, Stéphanie Valence 2, Geoffroy Delplancq1, Reza Maroofian3, Andrea Accogli4, Emanuele Agolini5,
Fowzan S. Alkuraya 6, Valentina Baglioni7, Irene Bagnasco8, Mathilde Becmeur-Lefebvre 9, Enrico Bertini 10, Ingo Borggraefe11, 
Elise Brischoux-Boucher 1, Ange-Line Bruel 12,13, Alfredo Brusco 14, Dalal K. Bubshait15, Christelle Cabrol1, Maria Roberta Cilio16, 
Marie-Coralie Cornet 17, Christine Coubes18, Olivier Danhaive19, Valérie Delague 20, Anne-Sophie Denommé-Pichon 12,13, 
Marilena Carmela Di Giacomo21, Martine Doco-Fenzy22,23,24, Hartmut Engels 25, Kirsten Cremer25, Marion Gérard26,
Joseph G. Gleeson 27, Delphine Heron28, Joanna Goffeney29, Anne Guimier30, Frederike L. Harms 31, Henry Houlden 3, 
Michele Iacomino32, Rauan Kaiyrzhanov3, Benjamin Kamien33, Ehsan Ghayoor Karimiani34,35, Dror Kraus36,37, Paul Kuentz 12,38, 
Kerstin Kutsche31, Damien Lederer39, Lauren Massingham40, Cyril Mignot41,42, Déborah Morris-Rosendahl 43,44,
Lakshmi Nagarajan45,46, Sylvie Odent47, Clothilde Ormières30, Jennifer Neil Partlow48, Laurent Pasquier 47, Lynette Penney49, 
Christophe Philippe 12,13, Gianluca Piccolo 50, Cathryn Poulton33, Audrey Putoux51,52, Marlène Rio30, Christelle Rougeot53, 
Vincenzo Salpietro 3,54,55, Ingrid Scheffer56,57, Amy Schneider 56, Siddharth Srivastava 58, Rachel Straussberg37,
Pasquale Striano 54,55, Enza Maria Valente 59,60, Perrine Venot61, Laurent Villard 20,62, Antonio Vitobello 12,13, Johanna Wagner11, 
Matias Wagner 11,63,64, Maha S. Zaki 65, Federizo Zara54,55, Gaetan Lesca  51,66, Vahid Reza Yassaee67, Mohammad Miryounesi68, 
Farzad Hashemi-Gorji 67, Mehran Beiraghi69, Farah  Ashrafzadeh69, Hamid Galehdari70, Christopher Walsh 48, Antonio  Novelli  5, 
Moritz Tacke11, Dinara Sadykova71, Yerdan Maidyrov72, Kairgali Koneev73, Chingiz Shashkin74, Valeria Capra32, Mina Zamani70,
Lionel Van Maldergem1, Lydie Burglen 75 and Juliette Piard 1,12

BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and
neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals
have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large
cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL
phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and
died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-
six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had
cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort
revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL
phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%).
The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).

 (2023) 31:1023–1031; https://doi.org/10.1038/s41431-023-01410-z

INTRODUCTION
BRCA1-associated protein required for ATM activation-1 (BRAT1)
encodes a nuclear protein that interacts with the tumor suppressor
protein BRCA1 (breast cancer 1) and ATM (ataxia telangiectasia
mutated). It plays a role in DNA repair, particularly through ATM, a
protein necessary for the early response to double-stranded DNA
degrading agents, such as ionizing radiation. Ionizing radiations
induce immediate phosphorylation of the Ser1981 residue of ATM,
resulting in its activation [1]. BRAT1, which binds to ATM at double-
strand breaks, is required for ATM activation [1]. Further functional
studies showed that BRAT1 also interacts with the catalytic subunit
of the DNA-dependent protein kinase DNA-PK (DNA-PKcs), the
major player in DNA double-strand break repair [2].

BRAT1 is also involved in the cell cycle and growth, through its
interaction with the protein SMC1 and its contribution to the
stability and regulation of mTOR [2, 3]. In addition, BRAT1 has a
role in apoptosis by the production of reactive oxygen species [4].
Biallelic BRAT1 variants were first described by Puffenberger

et al. in 2012, after sequencing the exome of two individuals from
an endogamous population of Amish origin in Pennsylvania.
These individuals had a combination of severe drug-resistant
epilepsy, limb rigidity, brain injury, and early death [5]. In 2015,
Hanes et al. reported a patient with compound heterozygous
BRAT1 variants and a less severe clinical phenotype characterized
by global developmental delay and cerebellar atrophy [6]. Biallelic
BRAT1 variants have therefore been associated with two distinct
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clinical pictures: BRAT1-related rigidity and multifocal seizure
syndrome (RMFSL; MIM 614498) and BRAT1-related neurodevelop-
mental disorder associating cerebellar atrophy with or without
seizures syndrome (NEDCAS; MIM 618056). A correlation between
the severity of the disorder and the type of BRAT1 mutations has
been suggested, with biallelic truncating variants appearing to be
associated with the more severe phenotype [7, 8].
So far, 40 individuals from 29 families have been described with

BRAT1 biallelic variants [5, 6, 8–29]. We report here a cohort of 57
additional individuals from 45 families, describe the clinical
features of BRAT1-related disorders and discuss genotype-
phenotype correlations.

SUBJECTS AND METHODS
Patients
Individuals with biallelic deleterious BRAT1 variants were collected from
Australia, Belgium, Canada, France, Germany, Italy, Iran, Israel, the United
Kingdom, Kazakhstan, Saudi Arabia, and the USA. Clinicians and biologists
from the different centers were contacted through GeneMatcher [30] and
at European congresses. Clinical and genetic data were transmitted by the
referring clinicians in a detailed table (Supplementary data S1). Written
informed consent was obtained for genetic testing and the use of
photographs (if applicable).
In addition, we reviewed published clinical data [5, 6, 8–24, 26, 27, 31] to

compare the phenotype to the one described in our patients (Supple-
mentary data S2). The literature review was performed on Pubmed with
the keywords “BRAT1” and “BAAT1” for articles published before March
31, 2022.
Individuals 38, 39, and 40 were briefly reported by Valence et al. [7] and

individuals 19 and 20 by Cornet et al. [32]. Since we obtained an updated
and detailed clinical description of these 5 cases from the referring
clinicians, they were included in the current cohort.
Individuals were divided into two subgroups according to their

phenotype. Patients with at least two of the following three criteria: (i)
no psychomotor development (no words and no sitting); (ii) early-onset
(<6 months) and/or drug-resistant epilepsy and (iii) early death (<3 years)
were considered to have BRAT1-related RMFSL phenotype. All other
patients were considered to have a BRAT1-related NEDCAS phenotype.

METHODS
BRAT1 variants were identified by gene panel or exome sequencing (ES)
and confirmed by targeted Sanger sequencing. Targeted Sanger sequen-
cing of coding exons 1–14 of the BRAT1 gene was first performed in one
family (Family 1). In the majority of cases, parental testing confirm that the
variants found in the probands were in trans. For patient P23, the
c.566dup; p.(Asp190Ter) variant occurred de novo. For two patients from
the literature (PL5 and PL15) who were siblings of molecularly confirmed
affected patients (PL4 and PL16), sequencing was not performed. However,
they were considered to carry the familial variants.
BRAT1 variants are given according to mRNA reference number

NM_152743.4. Genomic position (hg19) was determined by Mutalyzer. All
the bioinformatics scores were obtained from Mobidetails interface (CADD
(v1.6), Polyphen-2, SIFT scores, and ClinVar (v20230410) database), SeattleSeq
Annotation138 website (for GERP and Grantham scores), GnomAD database
(v3.1.2), HGMD database, LOVD database and PROVEAN web server. The effect
on splicing was analyzed using SPIP (v2.1), splice AI (v1.3) scores and the UCSC
database (Supplementary data S3). The graphical representation of the protein
variants was performed with the IBS 1.0.3 software.
In our study, frameshifts and nonsense variants were considered as

predicted loss-of-function variants with amorphous effects. Splice variants
were considered separately as their amorphous or hypomorphic character
is more challenging to assess. The variants with supportive splicing
predictions by Splice AI (>0.2) and Spip were all considered in that group
as affecting splicing. This corresponds to the following variations: c.431-
10_431- 7delCCCTinsTGGGTAGGG; p.(?), c.803 G > A; p.(Arg268His),
c.803+1 G > C; p.(?); c.925_930del;p.(Pro309_Gln310del), c.1015+2 T > C;
p.(?), c.1134+1 G > A; p.(?), c.1395 G > C; p.(Thr465= ), c.1395 G > A;
p.(Thr465= ), c.1498+1 G > A; p.(?), c.1499-1 G > T, p.(Glu500Alafs*36).
As SPIP and SpliceAI were not consistent to predict splicing effect of

c.358 C > T; p.(Arg120Cys), c.458 A > C; p.(Gln153Pro) and c.(1564 G > A);
p.(Glu522Lys) variants, they were considered as missense variants.

RESULTS
Clinical data
Ninety-seven individuals belonging to 74 unrelated families were
identified with BRAT1 biallelic variants. Forty-three patients were
males (44%) and 52 were females (54%). Sex was unknown for two
previously published patients. The median age at last follow-up
was 20 months (6 days - 28 years).
The families were of Latin America, North Africa, Sub-Saharan

Africa, Middle East, East and Southeast Asia, and Caucasian
descent. Among the 74 families, 29 were consanguineous (39%).

BRAT1-related RMFSL (Table 1). Fifty-nine individuals from 45
families were included in this group. Twenty-seven were males
and 30 were females. Consanguinity was noted in 19 families (19/
45; 42%). The median age at last examination was 3 months
(6 days - 14 years).
Prenatal signs were found in 50% of patients (22/44) with

abnormal movements reported by the mother in 14 individuals
(14/44; 32%), intra-uterine growth retardation (IUGR) in 9 (9/44;
20%), hydramnios in two (2/44; 5%) and oligohydramnios in two
others (2/44; 5%). Ten individuals were born prematurely (10/48;
21%), including one at 27 weeks of gestation +6 days. Congenital
microcephaly was reported in 14 individuals (14/49; 29%), axial
hypotonia in 8 (8/22; 36%), and peripheral hypertonia in 16 (16/
22; 73%).
From a neurodevelopmental perspective, these children had

not acquired any psychomotor milestones (59/59; 100%). Of note,
two of them showed initial psychomotor development before
regression (Patients 24 and L26). Early death occurred in 54
patients (54/59; 92%) with a mean age at death of 274 days
(median: 112 days; 6 days – 5 years). One patient died at age 23
(Patient 14). Four individuals in this cohort were still alive at the
time of the study, two of them being less than one month old.
All individuals had epilepsy (59/59; 100%). Seizures were mostly

drug-resistant (51/54; 94%). The mean age of onset was 39 days
(median: 1 day) ranging from in utero to 15 months. For patient 7,
who was born prematurely, epilepsy was considered to start at
day 1 corrected age.
Brain magnetic resonance imaging (MRI) showed signs of

cerebral atrophy in 57% of the cases (31/54). Other brain
anomalies were cerebellar atrophy (14/54; 26%), abnormalities of
the corpus callosum (13/54; 24%), and delayed myelination (12/54;
22%) (Fig. 1). One patient had a pattern of brain injury which could
be related to neonatal hypoxic-ischemic injury (Patient 12). Brain
MRIs were normal in 22 patients (22/54; 41%). Six patients
presented signs of optic nerve injury (6/17; 35%).
On clinical examination, most individuals had microcephaly (42/

46; 91%) and peripheral hypertonia or spasticity (53/57; 93%). Axial
hypotonia was described in 52% of them (29/56). Two-thirds of
the patients had dysmorphic features (30/48; 63%). The most
common findings included micrognathia (7/30), round face (5/30),
low-set ears (4/30), bulbous nose (4/30), and thick lips (4/30).
Photographs are shown in Fig. 2.
Other associated findings were cardiac anomalies in seven

individuals (7/59; 12%) and unilateral clubfoot in four patients (4/
59; 7%).

BRAT1-related NEDCAS (Table 1). Thirty-eight patients from 29
families were included in this group. Sixteen were males and 22
were females. Consanguinity was noted in one-third of the cases
(10/29; 34%). The median age at last clinical examination was 7
years and 3 months (15 months - 28 years).
There were no prenatal signs, except in one individual who had

oligohydramnios (1/30; 3%). Half of the newborns had neonatal
hypotonia (14/27; 52%) and one had neonatal microcephaly (1/
29; 3%).
All patients showed developmental delay and mild to severe

intellectual disability, except one described as borderline. Almost

C. Engel et al.

1024

European Journal of Human Genetics (2023) 31:1023 – 1031



Ta
bl
e
1.

C
lin

ic
al

d
at
a
o
f
th
e
97

p
at
ie
n
ts

w
it
h
BR

A
T1

b
ia
lle
lic

va
ri
an

ts
.

R
M
FS

L
N
ED

C
A
S

To
ta
l

C
oh

or
t

Li
te
ra
tu
re

To
ta
l

C
oh

or
t

Li
te
ra
tu
re

To
ta
l

C
oh

or
t

Li
te
ra
tu
re

To
ta
l

Ep
id
em

io
lo
g
ic
al

d
at
a

N
u
m
b
er

o
f
fa
m
ili
es

25
/4
5

56
%

20
/2
9

69
%

45
/7
4

61
%

10
/4
5

44
%

9/
29

31
%

29
/7
4

39
%

45
/7
4

61
%

29
/7
4

39
%

74
fa
m
ili
es

N
u
m
b
er

o
f
p
at
ie
n
ts

31
/5
7

54
%

28
/4
0

70
%

59
/9
7

61
%

26
/5
7

46
%

12
/4
0

30
%

38
/9
7

39
%

57
/9
7

61
%

40
/9
7

39
%

97
p
at
ie
n
ts

Pr
en

at
al

fe
at
u
re
s

Pr
en

at
al

fe
at
u
re
s

15
/3
0

50
%

7/
14

50
%

22
/4
4

50
%

1/
21

5%
0/
9

0%
1/
30

3%
16

/5
1

31
%

7/
23

30
%

23
/7
4

31
%

H
yd

ra
m
n
io
s

2/
30

7%
0/
14

0%
2/
44

5%
0/
21

0%
0/
9

0%
0/
30

0%
2/
51

4%
0/
23

0%
2/
74

3%

O
lig

o
h
yd

ra
m
n
io
s

1/
30

3%
1/
14

7%
2/
44

5%
1/
21

5%
0/
9

0%
1/
30

3%
2/
51

4%
1/
23

4%
3/
74

4%

A
b
n
o
rm

al
m
o
ve
m
en

ts
8/
30

27
%

6/
14

43
%

14
/4
4

32
%

0/
21

0%
0/
9

0%
0/
30

0%
8/
51

16
%

6/
23

26
%

14
/7
4

19
%

IU
G
R

9/
30

30
%

0/
14

0%
9/
44

20
%

0/
21

0%
0/
9

0%
0/
30

0%
9/
51

18
%

0/
23

0%
9/
74

12
%

D
ev

el
o
p
m
en

ta
l

st
ag

es
N
o
d
ev
el
o
p
m
en

ta
l

m
ile
st
o
n
es

31
/3
1

10
0%

28
/2
8

10
0%

59
/5
9

10
0%

0/
26

4%
0/
12

0%
0/
38

0%
32

/5
7

56
%

27
/4
0

68
%

60
/9
7

62
%

W
al
k
ac
q
u
is
it
io
n

−
−

0/
59

0%
21

/2
6

81
%

8/
12

67
%

29
/3
8

76
%

21
/5
6

38
%

8/
39

21
%

29
/9
7

30
%

O
n
ly

fe
w

st
ep

s
8/
21

38
%

0/
8

0%
8/
29

28
%

8/
21

38
%

0/
8

0%
8/
29

28
%

O
n
ly

w
it
h
su
p
p
o
rt

11
/2
1

52
%

4/
8

50
%

15
/2
9

52
%

11
/2
1

52
%

4/
8

50
%

15
/2
9

52
%

A
ta
xi
c
g
ai
t

17
/2
1

81
%

3/
4

75
%

20
/2
5

80
%

17
/2
1

81
%

3/
4

75
%

20
/2
5

80
%

La
n
g
u
ag

e
−

−
0/
59

0%
17

/2
6

65
%

9/
12

75
%

26
/3
8

68
%

17
/5
5

31
%

9/
39

23
%

26
/9
7

27
%

U
se

fe
w

w
o
rd
s

6/
14

43
%

5/
6

83
%

11
/2
0

55
%

6/
14

43
%

5/
6

83
%

11
/2
0

55
%

U
se

sh
o
rt

se
n
te
n
ce
s

6/
14

43
%

1/
6

17
%

7/
20

35
%

6/
14

43
%

1/
6

17
%

7/
20

35
%

D
ys
ar
th
ri
a

8/
10

80
%

6/
6

10
0%

14
/1
6

88
%

8/
10

80
%

6/
6

10
0%

14
/1
6

88
%

In
te
lle
ct
u
al

d
is
ab

ili
ty

26
/2
6

10
0%

11
/1
2

92
%

37
/3
8

97
%

28
/2
8

10
0%

12
/1
3

92
%

40
/4
1

98
%

Ep
ile
p
sy

Se
iz
u
re
s

31
/3
1

97
%

28
/2
8

10
0%

59
/5
9

10
0%

2/
26

8%
4/
12

33
%

6/
38

16
%

33
/5
7

58
%

32
/4
0

80
%

65
/9
7

67
%

A
g
e
o
f
o
n
se
t
(m

ed
ia
n
)

3
d
ay
s
(D
0-
M
15

)
1
d
ay

(D
0-
M
8)

1
d
ay

(D
0-
M
15

)
4
ye
ar
s
(Y
3-
Y
5)

2,
5
ye
ar
s
(M

3-
Y
13

)
3
ye
ar
s
1
m
o
n
th

(M
3-
Y
13

)
10

d
ay
s
(D
0-
Y
5)

1
d
ay

(D
0-
Y
13

)
3,
5
d
ay
s
(D
0-

Y
13

)

Ph
ar
m
ac
o
re
si
st
an

ce
25

/2
8

89
%

26
/2
6

10
0%

51
/5
4

94
%

1/
2

50
%

3/
4

75
%

4/
6

67
%

26
/3
0

87
%

29
/3
0

97
%

55
/6
0

90
%

Ph
ys
ic
al

ex
am

in
at
io
n

A
g
e
at

la
st

ex
am

(m
ed

ia
n
)

80
d
ay
s

5
m
o
n
th
s

90
d
ay
s

7
ye
ar
s
7
m
o
n
th
s

6
ye
ar
s
1/
2

7
ye
ar
s
3
m
o
n
th
s

3
ye
ar
s
1/
2

1
ye
ar

1m
o
n
th

1
ye
ar

8
m
o
n
th
s

M
ic
ro
ce
p
h
al
y

20
/2
3

87
%

22
/2
3

96
%

42
/4
6

91
%

6/
22

27
%

5/
11

45
%

11
/3
3

33
%

26
/4
5

58
%

27
/3
4

79
%

53
/7
9

67
%

D
ys
m
o
rp
h
is
m

13
/2
6

50
%

17
/2
2

77
%

30
/4
8

63
%

9/
20

45
%

4/
9

44
%

13
/2
9

45
%

22
/4
6

48
%

21
/3
1

68
%

43
/7
7

56
%

H
yp

o
to
n
ia

15
/3
0

50
%

14
/2
6

54
%

29
/5
6

52
%

17
/2
0

85
%

6/
9

67
%

23
/2
9

79
%

32
/5
0

64
%

20
/3
5

57
%

52
/8
5

61
%

Sp
as
ti
ci
ty
/h
yp

er
to
n
ia

27
/3
0

90
%

26
/2
7

96
%

53
/5
7

93
%

6/
26

23
%

5/
10

50
%

11
/3
6

31
%

33
/5
6

59
%

31
/3
7

84
%

64
/9
3

69
%

O
p
h
ta
lm

o
lo
g
ic
al

fe
at
u
re
s

O
p
ti
c
at
ro
p
h
y

3/
13

23
%

3/
4

75
%

6/
17

35
%

3/
22

14
%

3/
7

43
%

6/
29

21
%

6/
35

17
%

6/
11

55
%

12
/4
6

26
%

R
et
in
o
p
at
h
y

1/
13

8%
0/
4

0%
1/
17

6%
7/
22

32
%

1/
7

14
%

8/
29

28
%

8/
35

20
%

1/
11

9%
9/
46

20
%

N
ys
ta
g
m
u
s

1/
6

17
%

0/
5

0%
1/
11

9%
15

/1
9

79
%

8/
9

89
%

23
/2
8

82
%

16
/2
5

64
%

8/
14

57
%

24
/3
9

62
%

B
ra
in

M
R
I

N
o
rm

al
7/
29

24
%

15
/2
5

60
%

22
/5
4

41
%

0/
26

0%
0/
11

0%
0/
37

0%
7/
55

13
%

15
/3
6

42
%

22
/9
1

24
%

C
er
eb

el
la
r
at
ro
p
h
y

8/
29

28
%

6/
25

24
%

14
/5
4

26
%

26
/2
6

10
0%

11
/1
1

10
0%

37
/3
7

10
0%

34
/5
5

62
%

17
/3
6

47
%

51
/9
1

56
%

C
er
eb

ra
l
at
ro
p
h
y

16
/2
9

55
%

15
/2
5

60
%

31
/5
4

57
%

0/
26

0%
0/
11

0%
0/
37

0%
16

/5
5

29
%

15
/3
6

42
%

31
/9
1

34
%

D
el
ay
ed

m
ye
lin

is
at
io
n

6/
29

21
%

6/
25

24
%

12
/5
4

22
%

0/
26

0%
3/
11

27
%

3/
37

8%
6/
55

11
%

9/
36

25
%

15
/9
1

16
%

C
C
an

o
m
al
ie
s

7/
29

24
%

6/
25

24
%

13
/5
4

24
%

5/
26

19
%

1/
11

9%
6/
37

16
%

12
/5
5

22
%

7/
36

19
%

19
/9
1

21
%

Su
rv
iv
al

D
ea
th

28
/3
1

87
%

27
/2
8

93
%

55
/5
9

93
%

0/
26

0%
0/
12

0%
0/
38

0%
28

/5
7

47
%

27
/4
0

65
%

55
/9
7

57
%

A
g
e
o
f
d
ea
th

(m
ed

ia
n
)

10
5
d
ay
s
(D
11

-
Y
23

)
15

0
d
ay
s
(D
6-

Y
5M

9)
11

3
d
ay
s
(D
6-

Y
23

)
—

—
—

10
5
d
ay
s
(D
11

-
Y
23

)
15

0
d
ay
s
(D
6-

Y
5M

9)
11

3
d
ay
s
(D
6-

Y
23

)

IU
G
R
in
tr
a
u
te
ri
n
e
g
ro
w
th

re
ta
rd
at
io
n
,
D
d
ay
,M

m
o
n
th
,Y

ye
ar
,C

C
co

rp
u
s
ca
llo

su
m
.

C. Engel et al.

1025

European Journal of Human Genetics (2023) 31:1023 – 1031



all of them have acquired the sitting position (36/38), and the
two remaining ones can sit with support. Seventy-six percent
acquired walking (29/38). Among them, 28% were able to walk
only a few steps (8/29), and 52% required support (15/29).
Language skills were present in 26 patients (26/38; 68%),
restricted to a few words or short sentences in 18 of them. Four
individuals from two families acquired almost normal language
late in life (Family 37 and Family L27). Fourteen individuals had
dysarthria (14/16; 88%).
Epilepsy occured in 6 individuals (6/38; 16%). The mean age of

onset was 4 years and 5 months (median: 3 years 1 month)
ranging from 3 months to 13 years. Brain MRIs showed cerebellar
atrophy in all patients (37/37; 100%) and abnormalities of the
corpus callosum in six (6/37;16%) (Fig. 1).
Facial dysmorphism was reported in 13 individuals (13/29;

45%) (Fig. 2). The most common findings included long face (7/
13), low-set ears (5/13), short philtrum (4/13), retrognathism (3/
13), and prominent nose (2/13). Mean height was –0,39 SD
(standard deviation) with 6 patients under −2 SD (6/27; 22%).

Microcephaly (occipitofrontal circumference, OFC <−2 SD) was
observed in 11 patients (11/33; 33%); hypotonia was noted in 23
patients (23/29; 79%) and hypertonia of the limbs in 11 patients
(11/36; 31%). Ataxia was present in 31 individuals (31/35; 89%)
and described as progressively resolutive in two.
Ophthalmological investigation revealed optic nerve injury in 6

patients (6/29; 21%) and retinopathy in 9 (9/29; 31%). Nystagmus
was reported in 23 patients (23/28; 82%), oculomotor apraxia in 6
(6/17; 35%) and strabismus in 8 (8/16; 50%).
None of the patients in this group had died at the time of

publication.

Molecular findings
(Fig. 3) BRAT1 variants were compound heterozygous in 46
families (46/97; 47%) and homozygous in 51 families (51/97; 53%).
In addition to the 28 variants and the deletion of 2 exons

previously published, we identified 28 new variants in our cohort,
including 12 missenses, 5 nonsense, 4 frameshift, 4 in-frame
deletions, 1 in-frame duplication, and 2 intronic variants.

Fig. 1 Brain magnetic resonance image (MRI) of individuals with biallelic BRAT1 variants. A Patients with RMFSL (P1, P3, P4, P5, P25). Note
cerebral atrophy and enlarged subarachnoid spaces on axial and sagittal planes. B Patients with NEDCAS (P32, P33, P35, P36). Note cerebellar
atrophy on sagittal and coronal planes.

Fig. 2 Photographs of individuals with BRAT1-related disorders. A Patients from RMFSL group. Coarse facies are noted without specific
dysmorphic features. B Patients from NEDCAS group. A triangular face, a high nasal bridge and strabismus are noted in some patients.
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Nineteen BRAT1 variants were recurrent: c.638dup; p.(Val214-
Glyfs*189) was found in 20 families, c.294dup; p.(Leu99Thrfs*92) in
seven families; c.359 G > A; p.(Arg120His), c.393_422dup;
p.(Gln132_Ala141dup) and c.1564 G > A; p.(Glu522Lys) in four
families; c.803 G > A; p.(Arg268His), c.925_930del;
p.(Pro309_Gln310del), c.1313_1314del; p.(Gln438ArgfsTer51) and
c.2125_2128del; p.(Phe709ThrfsTer17) in three families; p.(Leu59-
Pro), c.393_422del; p.(Gln132_Ala141del), c.419 T > C; p.(Leu140-
Pro), c.491 C > T; c.491 C > T; p.(Ala164Val), c.1203_1204del;
p.(Cys401Ter), c.1395 G > C; p.(Thr465= ), c.1395 G > A;
p.(Thr465= ), c.1825C>T; p.(Arg609Trp), c.1857G>A; p.(Trp619Ter)
and c.2230_2237dup; p.(Ser747ThrfsTer36) in two families.
Bioinformatic tools results were non-consistent for the following

variants: c.224_226del; p.(Phe75del) and c.406 G > A; p.(Ala136Thr)
(each found in two siblings), c.491 C > T; p.(Ala164Val) (identified
in two children from unrelated families), c.358 C > T; p.(Arg120Cys)
and c.419 T > G; p.(Leu140Arg). Other missense variants identified
in this study were classified as probably or possibly damaging by
CADD, PolyPhen-2, and SIFT prediction tools (Supplementary
data S3). None of these variants was present in the homozygous
state in the GnomAD database (v.2.1.1).

DISCUSSION
By combining previously published data and the results of our
series, we were able to study the largest cohort described so far of
97 patients from 74 families with biallelic variants in BRAT1, which
is a very large cohort size for such a rare condition.
Our study confirms that BRAT1 biallelic variants are associated

with two distinct clinical pictures. On the first hand, 59 patients
from 45 families presented with BRAT1-related RMFSL phenotype,
which corresponds to a severe epileptic encephalopathy leading
to early death. In our study, myoclonus was reported in several
patients early in life, before the first seizures. However, it is difficult
to assume that these neurologic manifestations are epileptic ones
in all cases. Death, most frequently due to status epilepticus or

dysautonomia, occurred in the first years of life for the majority of
patients. An autopsy was performed for six individuals and
showed multiple brain abnormalities including neuronal loss and
gliosis. Nonspecific dysmorphic features were noted in some
individuals but may be accentuated by intensive neonatal care.
On the second hand, 38 patients from 29 families had a milder

phenotype of BRAT1-related NEDCAS phenotype (38/97; 39%),
which corresponds to a clinical picture of intellectual disability
associated with cerebellar ataxia. Facial dysmorphism was noted
in some individuals, but none of the features seems specific to the
disease or highly recognizable. We confirmed that all patients in
this group presented with cerebellar anomalies and showed that
the degree of intellectual disability was highly variable. Intrafami-
lial variability was previously suggested for BRAT-related disorders
[18]. Even if the severity of the cognitive impairment could indeed
be different, it appears in our large cohort that siblings always had
an overlapping phenotype corresponding to either RMFSL or
NEDCAS.
On a molecular basis, the variant c.925_930del;

p.(Pro309_Gln310) was identified in three Tunisian families, which
suggest a founder effect. The variants c.294dup; p.(Leu99Thrf-
sTer92) and c.638dup; p.(Val214GlyfsTer189) were respectively
found in five Caucasian families and 20 families, mostly Caucasian
(French, German, Italian, Spanish and Amish from Pennsylvania,
descendants of Swiss immigrants) or Lebanese and Moroccan for
four additional families. A founder effect seems possible for these
variants but the high carrier frequency in the general population
(respectively 42 and 66 individuals in the GnomAD database)
makes it difficult to conclude.
Study of phenotype-genotype correlations shows that, among

the 59 individuals with RMFSL, 35 harbored two frameshift or
nonsense variants (35/59; 59%) and 6 had at least 1 missense (6/
59; 10%). In the remaining 18 patients, at least one splice variant
was found in 7 (7/59; 12%) and a deletion or in-phase insertion in
11 (11/59; 19%) (Fig. 4). Six individuals harbored the
c.393_422del; p.(Gln132_Ala141del) (1/59; 2%) or c.393_422dup;

Fig. 3 Graphical representation of BRAT1 variants (IBS 1.0.3). Missense and in-frame deletions are above; nonsense, frameshift and splice
variants are below. Variants in black were identified in patients with RMFSL phenotype, those in white in patients with NEDCAS. Each square
represents a patient with a homozygous variant, each circle a patient with a heterozygous one. Note that all the patients with a homozygous
loss-of function variant are presenting a RMFSL phenotype and that the only one patient with a homozygous missense variant and a severe
phenotype may have a second associated etiology. NDFIP1, NEDD4 family interacting protein 1; HEAT1/HEAT2, protein tandem repeat structural
motif found in the four proteins: Huntingtin, Elongation factor 3 (EF3), protein phosphatase 2 A (PP2A) and TOR1.
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p.(Gln132_Ala141dup) (5/59;8%) variants in a homozygous state
or in trans of a loss-of-function variant (Fig. 4).
These data suggest that a genotype-phenotype correlation for

BRAT1-related disorders may exist and depend on the mutation
type, probably linked to the amount of residual protein. Although
we could not collect data on gene expression and protein levels,
we speculate that the most severe mutations are unable to
produce BRAT1 protein and thus give rise to the RMFSL
phenotype. Interestingly, we did not notice any phenotypic
differences for patients with truncating variants that are predicted
to escape NMD.
In-frame insertion and deletion variants are associated with the

severe RMFSL phenotype. For the recurrent in-frame p.(Gln132_A-
la141del)/p.(Gln132_Ala141dup) variants, located in the NDFIP1
domain, which is necessary for BRAT1 translocation to the nucleus
[33], we could speculate that a modification of 10 amino acids in
this domain leads to a conformational defect that makes the
nuclear action of BRAT1 impossible. Thus, these variants probably
act as null ones. Conformational studies could be useful to confirm
this hypothesis and to study the changes caused by the other in-
frame variants.
Among missense changes, we found some noteworthy cases as

patient 12 who harbored the homozygous c.358 C > T;
p.(Arg120Cys) variant. She presented with neonatal lactic acidosis
and cerebral lesions suggestive of hypoxia on brain MRI and died
prematurely. Bioinformatics tools predictions are non-consistent
for this variant but an effect on splicing could be involved
(Supplementary data S3). Her severe phenotype could be related
to additional perinatal complications or even a dual genetic
diagnosis that has not been proven so far. The exome identified
another homozygous variant of undetermined significance in this
patient in a gene not yet implicated in human disease
(Supplementary data S4). More generally, some individuals may
have a dual genetic diagnosis with a second gene involved,
especially in consanguineous families, since it has been shown
that dual diagnosis would concern 2% to 3% of patients [34, 35].
On the contrary, analysis of BRAT1 variants showed that 28 of

the 38 patients with NEDCAS presented at least one missense
variant (74%). The remaining ten presented with at least one
splice variant (10/38; 26%) (Fig. 4). None of the patients presented
with two nonsense or frameshift or inframe deletion or insertion,
except for the recurrent variant c.925_930del; p.(Pro309_Gln310-
del) which seems to affect splicing and was therefore considered
as such. We suggest that the NEDCAS phenotype is associated
with hypomorphic variants that lead to residual protein activity.

Variants predicted to affect splicing could thus have a milder
effect and behave as hypomorphic and not as null variants.
Interestingly, the NDFIP1 domain seems to be a hotspot for

missense variants, including variations with non-consistent pre-
dictions. This domain is not well conserved during evolution, but it
has a major functional role. It is thus possible that localized
variations in this domain decrease BRAT1 binding to NDFIP1, and
lead to a decrease in BRAT1 nuclear translocation.
We also noticed that the presence of the c.1395 G > C;

p.(Thr465= ) synonymous variant is associated with the RMFSL
phenotype while the c.1395 G > A; p.(Thr465= ) variant is
associated with the NEDCAS phenotype. Although functional
studies done in HEK293T cells have shown that these two variants
lead to a shorter isoform corresponding to the skipping of exon
10, fibroblasts were only studied in patients with the c.1395 G > A;
p.(Thr465= ) variant [31]. It would be interesting to know if the
c.1395 G > C variant could result in a null variant, while c.1395 G >
A would be hypomorphic.
These observations allowed us to draw genotype-phenotype

correlations for BRAT1-related disorders, which could be useful for
genetic counselling (Fig. 5). Biallelic nonsense, frameshift or
inframe deletion/insertion variants in a homozygous state or in
trans with another nonsense or frameshift variant appeared to
result in the severe BRAT1-related RMFSL phenotype (46/46;100%).
In contrast, genotypes with at least one missense were more likely
associated with NEDCAS (28/34; 82%). The phenotype of patients
carrying splice variants was variable: 41% presented with RMFSL
(7/17) and 59% with NEDCAS (10/17). Splice variants affecting
invariant sites are generally considered severe changes and act as
null variants, but alternative transcript or a residual normal
amount of transcript can lead to a milder phenotype. Transcript
analysis as well as functional studies would be valuable to
investigate the null or hypomorphic effect of the identified BRAT1
splice site, missense, and in-frame variants on BRAT1 mRNA and
protein function.
In conclusion, we studied a series of 97 patients with BRAT1 biallelic

pathogenic variants, the largest cohort of patients described so far.
Study of large cohort is very useful to define the clinical presentation
of rare diseases, to better understand their natural history, to provide
adequate genetic counselling to the extended family and to consider
possible novel therapeutic perspectives.
Taken together, our results suggest that biallelic BRAT1 variants

are associated with two distinct clinical presentations such as
BRAT1-related RMFSL phenotype or BRAT1-related NEDCAS
phenotype. The most severe clinical presentation is mainly seen

Fig. 4 Genotypes of patients with RMFSL and NEDCAS phenotypes. Are considered in the groups “at least 1 splice variant” or “deletion/
inframe insertion” the patients having respectively a splice variant or an inframe deletion/insertion in trans of any other variant (except a
missense). Note that the majority of patients with NEDCAS presenting with at least one missense variant and that none of them are carrying
two nonsense or frameshift variants. On the contrary, two third of the patients with RMFSL presenting with two frameshift, two nonsense or
inframe deletion/duplication.
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in patients with two probably null variants and is associated with
severe encephalopathy, drug-resistant epilepsy, cerebral atrophy,
and early death. On the opposite, a phenotype of variable
intellectual disability, cerebellar atrophy, ataxia, nystagmus, and
higher life expectancy is mostly observed in patients with at least
one missense variant. BRAT1-related neurodevelopmental disor-
ders should therefore be considered at birth as a differential
diagnosis of epileptic encephalopathy with rigidity due to ATAD1
[36], GRIA4 [37], NALCN [38], or MAGEL2 [39] variants, but also for
conditions associating developmental delay and ataxia linked to
WWOX [40, 41], PNKP [42], or SCA21 [43] variants.

DATA AVAILABILITY
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