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QUANTITATIVE RECURRENCE FOR 7,7-! TRANSFORMATIONS

FRANCOISE PENE AND BENOIT SAUSSOL

ABSTRACT. We are interested in the study of the asymptotic behaviour of return times
in small balls for the T, T~ !-transformation. We exhibit different asymptotic behaviour
(different scaling, different limit point process) depending on the respective dimensions
of the measures of the two underlying dynamical systems. It behaves either as for the
direct product of the underlying systems, or as for the Z-extension of the driving system
(also studied in this article), or as a more sophisticated process.
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1. INTRODUCTION

Within the context of dynamical systems, quantitative recurrence forms a specific family
of limit theorems where one either wants to precise the distribution of entrance times to
certain regions of the phase space, or also to compute the time needed for an orbit to
come back close to its starting point. It has been studied mainly for finite measure
preserving transformations with good mixing properties. The typical situation is to obtain
an exponential law in the first case and a recurrence rate equal to the dimension of the
measure in the second case. We refer to the book [8] and references therein for a survey
of these results and the relation with extreme value theory.

In this work we consider a map which preserves a finite measure, but its mixing is not
strong enough to be treated by classical methods. Indeed its behavior has a lot to do
with an underlying deterministic random walk, an infinite measure preserving dynamical
system. The quantitative recurrence in the infinite measure case has been studied, among
the few works, by Bressaud, Zweimiiller and the authors in [2, O] 1T}, 12].

More precisely, we study the particular case of the generalized T, T~ !-transformation,
which is known, since [19, p. 682, Problem 2| and [7], to be Kolmogorov but not loosely
Bernoulli. We will see that, depending on the measure dimensions of both dynamical
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2 FRANCOISE PENE AND BENOIT SAUSSOL

systems defining the T, T~ !-transformation, the quantitative recurrence properties are
either analogous to those of mixing subshift of finite type, or to those of an infinite measure
preserving dynamical systems (Z-extension of a subshift of finite type), or some more
elaborate compound process.

Let us recall the definition of the generalized T, T~ !-transformation. Let (X, f, ) and
(Y, g,v) be two ergodic probability measure preserving dynamical systems, where f (resp.
g) is a transformation acting on a relatively compact metric spaces X (resp. Y'), with g
invertible. For simplicity, we focus in this work on the case where (X, f, ) is a mixing
subshift of finite type endowed with an equilibrium state of a Holder potential. We endow
the product space Z := X x Y with the product (sup) metric and denote all these metrics
by d. Let h: X — Z be a measurable centered function fyhd,u = 0. We define the
generalized T, T~! transformation by

Flo.y) = (f@).6" ).

This map preserves the product probability measure p := p ® v. We denote by h,(z) =
h(z) + ---+ h(f" 'z). Note that

F(z.y) = (@), 6" W) - @

Our goal is to study fine (quantitative) recurrence properties of F', and more precisely to
study the return times of the orbit (F™(x,y)), in a ball B? (x,y) = BX (z) x BY (y) around
the initial point. To describe our results we suppose in this introduction that the system
(Y, g,v) is also a mixing subshift of finite type endowed with an equilibrium measure of a
Holder potential.

We will prove in Section [2 that the recurrence rate is given by min(2d,,d,), where
dp, stands for the dimension of a measure m. We establish results of convergence in
distribution in Section Bl In the particular case where d,, < d,, we show in Section [3.1]
how the first return time for F' coincide with the first return time for the Z-extension of
(X, f, ) by the cocycle h (dynamical system preserving an infinite measure), that has
been studied by Yassine in [20, 2I]. This Z-extension consists in the dynamical system
(X x Z,F, 1 ® m) with

F: X xZ0, F(z,q)=(f(x),q+h(z)) (2)
so that
Vne N, F"'(x,q) = (f"(2),q+ hn(2)) ,

and where m denotes the counting measure on Z. Then, in Section B.2] we study the return
time point process of F' with the time normalization max((u(BX(z)))?, p(BZ(x,y))) and
establish the convergence of this point process to:

e a standard Poisson process if d, > d,, as if I’ was the direct product f ® g :
(@, y) = (f(2),9(v));

e a standard Poisson process taken at the local time at 0 of the limit Brownian
motion B of (h|n)/v/n)n if d, < dy, as for the Z-extension F (the result for F
will be proved in Section [H);

e a sum of Poisson processes of parameter a taken at the local time of B at some
random points given by an independent Poisson process of parameter b, if d,, = d,,
(the couple of parameters (a,b) may be random, its distribution can then be
explicitely computed).
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In Section Ml we prove Theorem B3] the core approximation of the moments of our
hitting point process. In Section Bl we prove the convergence, stated in Theorem [B.I0] of
the point process of the Z-extension F.

Finally the appendix contains results about the moments of the limiting processes dis-
cussed above.

2. RECURRENCE RATE

We define, for z = (z,y) € Z and r > 0, the first return time 7, = 7" in the r-th
neighbourhood of the initial point, i.e.

7(2) = 7F(2) == inf{n > 1: d(F"(2),2) < r}.

The first quantity we want to consider is the pointwise recurrence rate defined by

. log7,(2)
_ pFy T
R(z) = R" (2) = }H% log 7

)

when it exists, otherwise we define R with a limsup and R with a liminf. We define the
pointwise dimension d,(x) (resp. d,(y)) of  at x (resp. v at y) as

o (@ og(v(BY

setting B:X (x) and B) (y) for the balls of radius r respectively around x in X and around
yin Y. In this paper we assume that the pointwise dimensions exist a.e. and are constant,
in particular they are equal then to the Hausdorff dimension of the measures d, and d,.

It was proven in [I7] that the upper recurrence rate is bounded from above by the
pointwise dimension. Namely, for p-a.e. z = (z,y) one has

—F o log 7,-(2)
r—0 —logr

Y
O
Il
=
®
Il
IN

d,=d,+d,, (3)
We write 77 and 7¢ for the respective first return times of f and g in the ball of radius

r around the original point. With these notations, the ball BZ(x,y) of radius  around
(z,y) in Z is BX(x) x BY (y) and

m(ay) =inf {n>1: f'(2) € BX @), ") € B ()} -

Whenever the random Walk h, returns to the origin it produces an exact return for the
second coordinate since ¢° = id. Therefore the study of the recurrence of the whole system
may be estimated via the one of the Z-extension (X x Z, F @ m). Indeedﬂ one has for
any (z,y) € Z and any r < 1,

Tr(z,y) < Tf(x) = inf {n >1: f(x) € BTX(QJ), hn(x) = O} ,
which immediately gives the

Proposition 2.1. The upper recurrence rate for F' is bounded from above by the one of
the Z-extension F

- 1 —F 1

R (o) = T 2227 - BP0y = T log 7/ (x,0)

for p-a.e. x and any y.
r—0 —logr r—0 —logr

1noticing that Tf(iﬂ, q) does not depend on ¢ € Z
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The latter was studied by Yassine [20]. She proved that when X is a mixing subshift
of finite type endowed with an equilibrium measure associated to an Holder potential and
when h is Continuousg, then for p-a.e. x € X

iy 087 (2,0)
r—0 —logr

= 2d,,. (4)
Combining Proposition 2] and () we obtain in this setting that for p-a.e. z

R'(2)<2d,. (5)

When d;, < d,, and under some hypotheses that we will describe later, this bound is
optimal. However, the returns to the origin of the random walk h,, are quite sparse, and
the first return of the whole system may happen much before. This is what happens when
d, > d, where (3]) becomes optimal, again under the same hypotheses that we describe
now.

Throughout the rest of this section we will make the following assumption.

Hypothesis 2.2. (A) The system (X, f,n) is a one-sided mizring subshift of finite
type with finite alphabet A, endowed with and equilibrium measure p with respect
to some Hoélder potential.

(B) The system (Y, g,v) is a two-sided mizing subshift of finite type with finite alphabet
A, endowed with an equilibrium measure p with respect to some Holder poten-
tial, or more generally it has super-polynomial decay of correlations on Lipschitz
functiong and Y has finite covering dimensior] as in [17].

(C) The step function h is Lipschitz and p-centered.

Let Ax > 0. We use the notations Cy,(z) for the cylinderf] of generation m (also called
m-cylinder) containing x and C,, for the set of the m-cylinders of X. We endow X with
the ultrametric d(x,2') = e~*X™ where n is the largest integer such that z; = z} for all
i < n. We call it the metric with Lyapunov exponent A\x. The cylinder C,,(x) and the
open ball BX(z,r) are equal when m = L% logr]|. Recall that the Hausdorff dimension
of p is the ratio of the entropy h, and the Lyapunov exponent Ax: d, = h,/Ax > 0, and
d, =d, +d,.

Theorem 2.3. Assume Hypothesis [2.2. Then the lower recurrence rate is equal to the
dimensions :

RY(2) = min(2d,,d,) for p-a.e. .

Before proving this result, we will state some notations and useful intermediate results.
It follows from () that, for a point z = (x,y) we have the obvious equivalence

d(f"(x),x) <7

hn(.%') € Gr(y) = {k €7 : d(gky7y) < 7“} ’ (6)

d(F"(z),z) <riff {

2Since h has integer values, this implies that h is locally constant and takes a finite number of values.
:)’A(:tually7 we just use the fact that RI(y) = E(gil)(y) = d, for v-almost every y € Y and that
there exists K > 0 and 71 > 0 such that, for any 7 €]0;71[, any ¥y € Y and any k > r~%7T¢,
v (B2 (y) Ng™"(B2.(y)) < Kv(BY (y)*.
meaning that there exists M such that for each r > 0 there exists a cover of Y by r-balls with
multiplicity at most M, e.g. Y is a subset of euclidean space.
5Cum () is here the set of & = (x},)kez such that z} =z for all k =0, ..., m.
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We will apply a version of the local limit theorem [9] (see [21] for the precised error
term); quantifying the so-called mixing local limit theorem (See e.g. [5]). Let us write Fp,
for the o-algebra of sets made of union of cylinders of generation n.

Proposition 2.4. Assume Hypothesis[2.2. There exists C > 0 such that, for any positive
integers n,m satisfying m < 3n, and for any A € F,, and any B € o (Uk>0 ffk(fkij)) ,

_ mA)uB)

2nm

w({x € A hy(x) =k, f*(x) € B})

e i )‘SM(A)M(B)C%-

202n

A measurable set B is in ¢ <Uk20 f*k(}"kij)) if there exists a measurable function
fo: AN — {0,1} (where A is the alphabet of the subshift X) such that 15(x) = fo(zm, ....).

Lemma 2.5. Assume Hypothesis[2Z.2 and d, > 0. For any ¢ > 0, any decreasing family
(Ny)r>o of positive integers, for v-a.e. y € Y, for any r > 0 sufficiently small

#(Gr(y) N [=Np, Ny]) < 142N, jor® 2,
where G, (y) is the set defined in ().

Proof. Note that k = 0 € G,(y). For non zero k, it suffices to estimate the number of
positive k in the set, and then to apply the same estimate to ¢!, which still satisfies our
assumption, to get the result for negative k. By assumption (B) on g and [17], the lower
recurrence rate satisfies R9(y) = d, for v-a.e. y € Y. Let € > 0 and set

Yo = {y cY:Vr< ro,d(gk(y),y) >pfor 1 <k<r %t and V(B%/,,(y)) < rd"*e}

Since v(Y°) — 1 as rg — 0, it suffices to prove the results for y € Y°. Let yop € YV
and r < ro. Set B = BY (y0). When y € BY (yo) and d(¢*y,y) < r we have gy € B.
Moreover, if y € Y° this does not happen if k£ < r~4*e Therefore, by Markov inequality

v(y e BY o) ¥ 4k = 1N dlb ) < b > D)< - S0 u(BngB)
r—dvte<k<N,
(™)

By assumption@, for such k& we have
v(BNg *B) < 2v(B)%
Taking a finite cover of Y° by balls of radius r of multiplicity at most M shows that

N, , _
viye Y #G,(y) N[1,N,] > L) < QMTrd” £ =0(r"),

choosing L = N,r%~2¢. The result follows from the Borel Cantelli lemma, summing up

over 7, = 27™ and then using the monotonicity of N,. O

We follow the proof in [9], using the extra information about the growth rate of h,
given by the law of iterated logarithm.

Proof of Theorem [2.3. By (B) and (Bl we only need to prove a lower bound.
We assume that d, > 0. Let ¢ > 0 and K¢ = K."" be the set of points z € X
such that Vm > ng, p(C(x)) < e and Vn > ng, |ha(z)] < (1 + €)oy/nloglogn.

The Shannon-McMillan-Breiman theorem and the law of iterated logarithm ensures the

6This follows from 1-mixing when (Y, g,v) is a SFT with an equilibrium state; otherwise it follows by
approximation of indicator function of balls by Lipschitz functions as in [17].
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existence of mg and ng such that u(K."") >1—¢c. Let N = N,, = (1 +¢)oy/nloglogn.
We fix now m such that m := L—i logr]|.
First note that for any y € Y

p{e € Keod(F (), (o) < D S 0wl €O f " s a(a) € Gr(9)).
Chn : Con NK A
(8)

By Proposition 24 for any k € Z, the quantity

1 ({z € Cp N fT"Cy, hn(2) = k}) (9)
is the sum of a main term
1(Ch)? ! exp <—£> < epu(Crp )24 (10)
oV 2nm o®n ) —

and of an error term bounded in absolute value by

:“(CM)Zm

. 11
: ()
Summing the main contribution (I0]) among all m-cylinders intersecting K¢ and all integer
k € [~Ny,, N,] such that d(g*y,y) < r gives, using Lemma (r and n will be linked
later), that for v-a.e. y, provided r is small enough

LAVEED DD DR E T

k€[~ Nn,Nn] Con : Coo MK A0
< celm—epdn—e/Ax p=1/2 <1 + %) #{k € [— Ny, Ny,]: d(gky,y) <r}
n

< celm—epdu—e/Ax 1+ |log 7| 14 rdv=2e nloglogn.
- Axv/n vn

N
If d, < d,, we take 7, =n 2%—"* with x = max(6,3/Ax). The term in the numerator
goes to one as n — oo therefore the whole term is bounded with

_d,u,*f/)\X _

E?i(y7 rn) == O(Tzu*E/AXn,1/2) — O(n 2dy, —ke %)

which is summable in n. )
If d, > d, we take r, =n w+d—re with k = 34 1/Ax. We get a bound

EZ(% rn) =0 (Tgu+du*(1/)\x+2)e /ﬁg log 7”L> 7

which is again summable in n.
In both cases the error term is negligible with respect to the main term, therefore by
Borel Cantelli lemma we conclude that for p-a.e. z € Z, d(F"z,z) > r, eventually.
Letting £ — 0 ends the proof of Theorem 23] when d,, > 0.
In the case where d, = 0, by [I7] we have for p-a.e. (x,y)

d, = R'(z) < RF(x,y) < RF(z,y) < d,

by (B]), which proves the equality. O
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3. CONVERGENCE IN DISTRIBUTION

We still consider the case where (X, f, ) is a mixing subshift of finite type. We will first
state in Section [B.1] a result of convergence in distribution (Proposition B.]) for the first
return time in the particular case wherd] v(BY) < pu(BX). This first convergence result
will appear as a consequence of Yassine’s convergence result for 77 established in [20]. In
a second time, in Section B.2] we will study the asymptotic behavior of the point process
of visits to small balls. Whenf] v(BY) < pw(BX) we will retrieve a result analogous to
Proposition Bl But we will also highlight other behaviors when u(B;X) < v(BY) or
w(BX) ~ v(BY). The normalization will be given by

np(x,y) = 1/ max (u(B;* (), p(By (2,9))) -

3.1. Study of the first return time when v(B)) < u(BX). Then we set n,(z,y) =
(u(B* (x))) 2.

Proposition 3.1. Assume (X, f, 1) is a mizing two-sided subshift of finite type and that
h is bounded Hélder continuous, that v(B) ) < u(BX) in p-probability and thaf]

. - Y\ g IR - Y g—l o

ig%lg% v(v(B; )Td <e) = ilg(l) }g% v(v(B; )t <e)=0.
Then (u(BX(:)?7EF), converges in distribution, asr — 0 to 022/ N?, where & and N are

standard exponential and Gaussian random variable mutually independent, and where o
is the asymptotic variance of (hy/v/M)n.

Proof. Let € > 0 and n > 0. Set D,,, := {v(BY (-)) < nu(B;X())}. Furthermore,

p (;gp || > e/v(BY (), Dr,n) <p < sup [l > 6/V(Bf(-))>

k<n?(v(BY (1))

< / u( sup || > 6/7/(33/(@/))) dv(y), (12)
Y

k<n?(v(BY (y))) 2

which converges to P(nW > ¢) as r — 0 since supy<,2, P converges to nW (where

Jn
W = osupjy,y) |B|, B being a standard Brownian motion). Let

Qe 1= {min(fﬂ,fﬂl) >e/v(BY (), sup |hy| < e/v(B) <->>} :
k<n,
On Q,, foralln=1,...,n,,

[d(f™(x),2) <7, d(g" P (y),y) <r] & [halz) =0, d(f*(x),x) <1].
Thus, on Q, .,

mF(x,y) =18 (x) :=inf {n > 1 : hy(z) =0, d(f"(z),2) <7} .

7Throughout this article, the notation a,» < b, means that a, = o(b,), i.e. that a, is negligible with
respect to b, as r — 0.

8The notation ar < by means that a, = o(b,) as r — 0.

9This happens, e.g. if (v(BY)7¢), and (V(BX)T;?A)T both converge, as r — 0, to some random variable
with no atom at 0.
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But Yassine proved in [20] that, when (X, f, 1) is a subshift of finite type, then (u(BX(-))%7,),
converges in distribution, with respect to p (and so to p) as r — 0, to £2/N?2. We conclude
as follows. For all t > 0,

hm‘p (BX ()] > 1) —P(E2IN? > 1)
< T [p(.0) + [ol@ue (u(BX()r > 1)~ BEN? > )] |

r—0

<hm [Qp( ‘p (BX ()27 >t)—]P’(52/./\/2>t)H
< 21im p(Q¢.).
r—0 ’
Moreover, it follows from the convergence of (I2]) that, for all ,7,
lim p(07) < Tim v (rf < e/v(B)) + v(rf " <e/u(BY))+ p(D5,)] +B(W > ¢/n)

< Hmlv(r? < e/v(BY) +v(rf " <e/v(BY))] +BW > </n)

We end the proof of Proposition Bl by taking lim._,q lim,, 0. O

3.2. Study of the point process in the general case. We are interested in the study
of the asymptotic behavior of the point process generated by visits to the ball BZ (z,y) =
BX(z) x BY (y), Le.
NT(Z) = Z 5n/nT . (13)
neN: Fn(z)eBZ(z)
To this end, we will consider moments of the multivariate variable (N, ([ty,—1;ty]))». To

simplify the exposure of our proofs, we have chosen to restrict our study to the following
case.

Hypothesis 3.2. We assume that

(I) The system (X, f,p) is a one-sided mixing subshz% of finite type and p is an
equilibrium state of a (normalized) Holder potentia
(IT) The system (Y, g,v) is a two-sided mizing subshift of finite type and the measure
v is an equilibrium state of a Hdlder potential, or, more generally, it satisfies
the following condition: For all integers J, K such that 2 < J < K, there exists
€ (0;1) and co > 1 such that, for all integers {1 < ... < lx and ally € Y, the
followmg holds tru.

<
1=
Q

J—1 K
“(BY ) | = (1+ 0@ mmwlmn )y | (g™ (B @) | v | (o
j=1 j=J

uniformly in (r,y, 01, ..., 0K).
(ITIT) The p-centered function h is constant on 0-cylinders with asymptotic variance
o2 = limn*)JrOO Eu[h3]
: e
101y, particular the ball BX( ) corresponds to the |log r|-cylinder containing z, i.e. to the set of points
(yk)kez such that yx = xj, for all non-negative integer k < |A1 log r|.
HNote that for mixing subshifts of finite type this assumption holds also true if we replace the 2-sided
cylinders BY (y) = {z : 2z = yx, V]k| < |/\1Y logr|} by the one-sided cylinders {z : zp = yi, Vk =

0,..., U% logr|]}.
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(IV) The function h is non-arithmetic, i.e. h is not cohomologous in L*(u) to a sub-
lattice valued function.

Under these assumptions, we know that (|, /v/n)n>1 converges in distribution, as
n — +00, to a centered Brownian process B of variance o2. Let (L(z))i>0zcr be a
continuous compactly supported version of the local time of B, i.e. (L¢(x)), satisfies

[ e = [ s

i.e. L; is the image measure of the Lebesgue measure on [0;¢] by the Brownian motion B.
Recall that

ny = np(w,y) = min ((u(B ()%, (w(B* ())v(BY (1)) -
We define a,.(7,y) := n,(z,y)u(BX (z))? and B,(z,y) := n.(z,y)p(BZ (z,y)). Note that
L gy ) i u(BY @) > v(BY ()

I X (z
(@9 B ) = Py 0 o . (14)
V(B,Y W)’ otherwise

Let us now state our key result that will be proved in Section Fl

Theorem 3.3. Assume Hypothesis[32. Let K be a positive integer and T = (T, ..., Mg)
be a K-uple of positive integers and let (tg = 0,t1,...,tx) be an increasing collection of
nonnegative real numbers. There exist C > 0 and u > 0 such that, for every (z,y) € X XY,

ﬁ (2E9 (k) — 269 (tvl))m]

v=1

E,

K —_
H Nr(]tvfly tv])mv
v=1

BrZ(xay)] —E

< O (1105 7" (1 (hy oy < 1og 7| BY @) +v (hy,, < Iogr"| BY )

(15)
m2 1 r _1
_{_efu\/flogr + rz + (\)/gnﬁ > + |logrr-| é + €O(| log T|2/n7‘)> s (16)

with m = [m| =My + -+ + Mg, €9 bounded, continuous, vanishing at 0, and with
Ziy = Zar(@y).r(@y)

where 21 is a standard Poisson process and where, for all a € (0,1] and all 5 € [0;1],

Zop(t) = /R P!(Li(s)) (8o + P)(s) (17)

where P, B and (P.) are mutually independent, B being a Brownian motion of variance o>

and of local time L, (P.)ser being a family of independent homogeneous Poisson processes
with intensity /o and P being a two-sided Poisson process with intensity [ /+/c.

Remark 3.4. Observe that Z; o(t) = Py(L:(0)). Furthermore, we will see in Appendiz[Al
that the moments E [Hle (Za,5(ty) — Za,g(tv_l))m,“} are continuous in («, 3).

Corollary 3.5 (Conditional convergence in distribution). Assume the assumptions and
keep the notations of Theorem [3.3. Suppose that (x,y) € X XY is such that the limit

lim (o (@), B (@.9)) = (0 )
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exist and all the error terms of Theorem [T satisfy (I3) + (I8) = o(1) as r — 0. Then N,
converges in distribution for the vague convergencdd as r — 0, with respect to p(-| BX () x

BY (y)), to 24,5 defined in (7).

Proof. It follows from Theorem B3] that the moments of any linear combination of the
coordinates of multivariate variables

X, = (Nr(]tvflatv]))vzl..l( (18)

converges to those of Xo := (24 gltv—1,tv])v=1.K-

Note that || Xollcoc < Zas([to,tx]) =: Y, which is a random variable with Poisson
distribution with random parameter bounded by ¢(1+|N|) where N is a standard normal
random variable. The convergence in distribution of X, (an thus of the process N, itself
by convergence of its finite dimensional distributions) will follow from the multivariate

Carleman’s criterion (See Lemma [A4)) provided
STEY™w = co.
m>1

It follows from Lemma [AJ] (with the notations therein) that, for m > 1,

B = s kZ(,f) rih

=0
< (/2™ ) S(m,q)(20)"
q=1

< 21+ VA/2)" ™,

since (1 + %) = /#/2, T(1+£) > 1 and 3°9_, ({) = 29, and finally since the number
of partitions of {1,...,m} in non-empty sets is dominated by the number of its self maps

m™. Thus

STEY™Tm > S @m(l + o)vA/2) ! = +oo.

m>1 m>1
This implies the convergence of the finite distributions, which, combined with the conver-
gence of their moments, implies the convergence in distribution in the space of positive
measure endowed with the vague convergence (due to [16, Proposition 3.22]). O

Theorem 3.6. Assume Hypothesis[3.2, that both systems are SFT (either with 2-sided or
1-sided cylinders), and that the error terms ([IB) + (I8) of Theorem converge to 0 in
p-probability.

Assume furthermore that (o, 3,) converges in distribution, under p, to some random
variable with law 7.

Then N, converges in distribution, with respect to p for the vague convergence, asr — 0,
to the point process Z, where 7 is a random variable independent of the Z, g’s and with
distribution 1. Namely

Bip(Zn)) = [ Elp(Zus)] dn(e, ).
for all bounded continuous function ¢ defined on the space of measures on (0,+00).

12G60 e.g. [16] for this convergence. Recall that this convergence implies also the convergence in distri-
bution of (N:([0;t]))ejo;r) (seen as a cadlag process) for the J1-metric (see [6]).
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In particular, if w is a.s. constant equal to (o, 8) then N, converges in distribution, as
r — 0 and with respect to p, to Z, 5 defined in (D).

Proof. Fix some K and (t,)’s as in Theorem B3l We will apply the multivariate moments
Lemma [A4] to prove the convergence in distribution

Xr - (Nr([tv—latv]))vzl..K 7:6 XO = (Zw([tv—latv]))vzl..K-

The Carleman’s criterion holds as in the proof of Corollary
For any multi-index m’ = (m/},...m/) and r > 0 denote the corresponding error term

in Theorem [B.3] by egml)(z) = ([I35) + (I8). By assumption ™) 5 0 in probability as

r — 0. Set Aﬁd) = MaX|,y|<q eswm ). We still have Aﬁd) — 0 in probability as r — 0.

Therefore, for all d > 1, there exists r4 € (0;1] (take the largest one) such that
vr€l0irgl, p(AW >dY) <d ™t

The sequence (r4)q is decreasing.
If it converges to some value ro, > 0, this means that, for all r €]0; 7| and all d, p(A&d) >
d1) < d7!, and so that p(A£°°) > d1) < d7!, so that A = 0 as. and we can take

Q. = {AS’O) = 0}. If (rq)q converges to 0, then, for any d > 1 and any r €]rgyq1;74], we
set

We notice that p(Q2,) — 1 as r — 0.
Let m’ and set m = |m’| as in Theorem B3l For (a,) € [0,1)%, set G(a,B) =

K !
EllTo=1 Za,s(to-1,tu])™].
We partition the space X xY by balls BTZ of radius r, noticing that €2, is a finite union
of such balls and that a, and 3, are constants on these balls and get

K

EP(H(NT(]tU—NtU]))m; 1Q¢) = Z p(BrZ)EP

v=1 BZ: BZCQ,

- / G(ar(BZ), B,(BZ))dp + O(sup AL™)
Qr Qr

K

H(Nr(]tv—U tv]))m;

v=1

By

— G(a, B)dn(a,8) = E
0 S (@, B)dn(a, B)

K /
H(detv_l;tu]))mv] ,
v=1

by the convergence in distribution of (., 5,) and the continuity and boundedness of F'

(coming from Lemmas [A.] and [A.3]). O

Corollary 3.7. Assume Hypothesis [3.3, that both systems are SFT (f one-sided, g 2-
sided) with equilibrium states of Holder potentials. Let Ay > 0 and endow Y with the
metric (resp. pseudo metric) with Lyapunov exponent Ay, so that BTY are two-sided (resp.
one-sided) cylinders; Set d =2 (resp. d = 1). Then in the following cases, N, converges
i distribution to the random process Z,, where the random parameter w is equal to

(a) m=(1,0) a.s. if 0 < d, <dy;

(b) m=(0,1) a.s. if d,, > d, > 0;

(c) m = (1,0) or (0,1) with probability 1/2 if d, = d,, > 0 and if at least one of the

measures is not of maximal entropy;
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(d) 7 is a discrete random variable supported on (0,1)% if d, = d,, Ax = Ay and
both measures are of maximal entmpﬂ In particular, if f and g are two full
shifts with uniform distribution (on sets of respectively L? and L elements), then
™= (L1741).

The remaining case (d) with Ax # Ay will be considered in Remark [B.8] below.

Proof. To apply Theorem we first show that the error terms (5] and (I6]) go to zero.
Let 0 <y < dimp p = hy. Given r > 0, a summation over balls BX allows to get

S uB ) (hy <l1ogr" | BY) < ulr] <r7) = o(r®),
X

by the large deviation estimates for return time proven in [3], for some « > 0 and all r
sufficiently small. The same arguments apply to the error term involving 7. Therefore
the error terms go to zero in Lp, hence in probability.

By the existence of the pointwise dimension we have p— a.e. (z,y)

1 wBr(x))
1 — d, —dy.
log r °8 v(Br(y)) r—o0 "

Using (I4)) we get in the first case (a) that («, 5,) — (1,0) a.s., and in the second case
T—
(b), (o, Br) — (0,1) a.s
r—0

Suppose that d, = d, and that at least one of the measures is not of maximal entropy.
Let kX = L;—; logr| and kY = U—; logr|. Then for ¢, and ¢, the respective normalized
potentials we have

kX kY -1
1 u(BX (x X
log H(Br (2)) ST (g™ y) + b +o(1),

v/ |log r| gV(BT‘Y(y)) \/kJ_XZ:(%faC il - \/—7] (1—d)kY

since kX by, — dkY h, = O(1). By the central limit theorem (for f and g) these normalized
Birkhoff sums converge in distribution under the product measure p to a sum S of two
centered (since [ ¢ dp = —hy, and [ ¢,dv = —h,,) independent gaussian random variables,
with at least one of them of nonzero variance (otherwise both potentials are cohomologous
to a constant and each measure has maximal entropy). Hence the variance of S is positive.
Therefore, removing the normalization, the ratio of the measures converges in distribution
to the uniform law on {—o0, 400}, proving the result in the third case (c).

In the last case (d), the two measures are the Parry measure. Let AX and AY denote
the transition matrices of the subshifts. Denote by uX,v*X and uY,vY their left and
right positive eigenvectors, associated to the maximal eigenvalues e e. We fix the

normalization u~ - vX =1 and u¥ - v¥ = 1. Dropping the dependence on r we denote by
k the common value of kX = kY (smce Ax = Ay). The measure of a cylinder is known
to be equal to p([agar . .. ag]) = ugva e ~khu and similarly for v. Thus the distribution of
the ratios
plao- - -ak]) uiﬁ”ﬁ fd—2 ang Mlao---a]) _ Uay Uiy ifd=1  (19)
v([bog...bk])  wl kvbk v( bo...bk]) ug;vg;

13The two measures are thus Markov. The limit distribution 7 is explicitly computed in terms of the
stationary vector at the end of the proof of Corollary 3.7
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is given by the discrete measure

S el DN DSy = S e uedul o e dug s =

a,a’ b,/ ul vy a,a’ ,b,b’ ug’vgf

by mixing. The limiting distribution 7 is obtained by the continuous mapping theorem,
applying the map ®: A+ (1, A71)1 1 + (A, 1)1x<; to the distribution n*.

In the particular case of two full shifts, V“(([l[:ialflj})) = i:é:ﬂ; = L7 'ifd =2 and

ao...a L—k—l .
Sy = e = Lifd =1 0

Remark 3.8. In the case when d, = d,, and both measures are of mazximal entropy but
Ax # Ay, the random parameter does not converge. Indeed, the computations in the proof
of (d) can be rewritten with kx and ky defined as in the proof of (b). However, the entropic
part in the expression of the measure of the cylinders do not cancel completely, so that in
front of the ratio of the measures (I9)) a deterministic prefactor

p— [— (L‘i‘f%x - L‘i‘f%ﬁ Z—}

subsists. Note that if \x and Ay are rationally free, the accumulation points of (. asr — 0
is the whole interval [e=%  eMw]. Proceeding as in the proof of case (d), we conclude that
N, is asymptotic to Z.,, where the parameter 7, is distributed as the image of n* by the
continuous map ®((,-).

Remark 3.9. Under the assumptions of the previous corollary, if v(BY) < u(BX) in
p-probability, we retrieve the conclusion of Proposition [31l. Indeed

7F =inf{t >0 : P(Ly(0)) > 1} = inf{t > 0 : L,(0) >} = T}
where € = inf{u > 0 : P(u) > 1} has exponential distribution of parameter 1 and
7 = inf{t > 0 : L;(0) > u} which has the same distribution as o*u?N~2 where

N is a standard gaussian random variable (see e.g. [15]) combined with the fact that
Li(0) = L}(0)/o where L' is the local time of the standard Brownian motion B/o.

0)

We end this section by stating a result that ensures that the limit process of N, when
v(BY) < u(BX) coincide with the limit of the analogous time process A, of return times
of the Z-extension F' to the origin. This point process is given by

VreX, Ni(z)= Z Onp(BX (2))2 - (20)
neN: Fr(z,0)e BX (z)x {0}

where F has been defined in ). We will prove in Section [l the next result about the
asymptotic behaviour of N, as r — 0.

Theorem 3.10. The family of point processes (J\N/})Do converges in distribution to 2 g,
as r — 0, for the vague convergence, with respect to both u(-|BX (x)) and p.

4. APPROXIMATION OF MOMENTS OF THE HITTING PROCESS
We prove here Theorem B3l Let P be the transfer operator of (X, f, u), i.e.
VG, H € L*(p), / P(G).Hdu:/ G.Ho fdu.
X X

The following results come from Fourier perturbations u € C,w — P, (w) := P(e™ w) of
the transfer operator P acting on the Banach space By of #-Holder continuous functions
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endowed with the norm ||w|| := |w|g + ||w||;y where |w|g := inf{K > 0: Vn, var,(w) <
Ko™}, where var, (w) is the maximal variation of w on a n-cylinder, that is

var, (w) = sup lw(z) —w(y)|.
T,YE X T0=Y0, - Tn=Yn

We recall that PP (w) = P"(e/*"n), using again the notation h,, :== Y 7—3 ho f*.
Proposition 4.1. Assume Hypothesis [3.2. There ewist three positive numbers §, ¢ and

a < 1 and three continuous functions u — X\, € C, u — II, € L(B) and u — N, € L(B)
defined on {z € C : |z| < 6} such that

(i) for |u] <, P’“w = NIy (w) + Ny (w) with |[Nf(w)]| < "“HwH
02
M = 1=Zu24+0(Wd) = e~ TV Niog(,) + 2| < % |uf? and ||TL, (w) -

p(w)| < dulf[wl],
(ii) foru e |—ma]\[=6,0], [ Pyw]| < da*uwl| .

Lemma 4.2. For all constant ¢ > 0 there exists a constant C' > 0 such that for any
M > 1 and any function H such that log |H| is uniformly 0-Hélder continuous on each
M -cylinder with Hélder constant bounded by ¢,

ie. YD€ECy, Vy,z€D, |H(y)|<|H(z)e? o)
then for allu € [—=, 7|, |PM(H)| < C|H|1 -
Proof. Let us write ¢ for the (normalized) potential. Write H =), H1p where the sum
runs over all M-cylinders. One has var,(PM (H1p)) < (|g0 + iuh|glefn€ + e%H") IPM(|H1D)]|so-
Note that |¢ + iuhlg < |¢|g + 7|h|g is uniformly bounded, and
|PY(|H|1p)(2)| = [H(zp)|exp(Sme(ep)) < |H(zp)l|k p(D)

by the Gibbs property, where zp € D is the unique preimage in D of z € X by o™, for
some constant k. Furthermore

[ 1o dut) < [ 1H@IE D)/ dut) < ¢ [ 110 du)
Hence |[PM(H1p)|p < C'||H1p])1 for the constant C’ = (% + cec> kef. Therefore,
summing over D gives |PM(H)|y < C'||H||;. O

We will use the next lemma which is the operator estimate that is behind Proposi-

tion 241

Lemma 4.3. For all ¢ > 0, there exists a constant C' > 0 such that, for any positive
integer M, any function H as in Lemma[J.3 and any k > M? we have

P () =z (72 ) )| < Sl 1)
2

where ® is the density function of the centered Gaussian distribution with variance o=.

sup
LEL

Proof. We start with the identity

1 —iu
P (1 —eyH) = 277/[ . ‘PF(H)du. (22)
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0_2
Let w = PM(H). Let dy(k,w) = |PF My — ¢~ ZTw k=M

tion @Il For |u| > § we have

02
() < (MM n ezmM)) ).

,u(w)‘. We apply Proposi-

For |u| < 6 we have
_ _ _ _ o2 (ke
du(k,w) < | Py Mw = XML (w)] + (AT (w) — pw)] + A = e 7 G0 p(w))
0_2
< P M flwll + ¢ fulfwl] + e TEEME = M)luf |u(w)).

The second term is handled by the change of variable v = uVk

/

) ) o2 1 L2 C
/ IAE=M Ju|du < / 677u2(k7M)!u\du < / 67?1}2‘?}‘611) <=,
-0 -5 R

k—M k

for some constant C’. Next, the same change of variable and the dominated convergence
theorem shows that the integral of the third term is O(k™!)|u(w)|.
Finally, the same change of variable yields

4 . 2 Vk iv o2 - iv 202
vk emiule=Fw (=M g _ <i> = i/ 77£77U2%dv L 67\/7%7 2 dv

— e
27 _5 \/E 27 —_5vVk 27 R
M
=0 (-) = O(k™2).
k
Therefore
\/E/ iul pk—M ¢
sup | — e "t P wdu—@(—) w)| < niljwl,
iyt [ (w)du & () utw)| < ool
where 7;, = O(kf%). To conclude remark that P¥(H) = PFMPM(H), use @2) and
Lemma (4.2 0

Lemma 4.4. Let ¢ > 0. There exists K > 1 such that for all u > 0 small enough,
_uL
Pk(l{hkzL}H) < Ke VE|H| 1,
uniformly in L, M, in k > M?, in H as in Lemma[].2.

Proof. For all u > 0, we have

u(hg—L)

_ Lu
Py ) < P4 (5 ) < VP )

Noticing that P_;,,(-) = P(e""). Set w = Pi\/z[u/\/k(’HD =pM (e%hM]HD. Noticing that

% < 1 and that the §-Hélder constant of hys on each M-cylinder D satisfies |(has)|plg <

|/;\f19:114, it follows from Lemma [£.2] that |w| < C||H||;.

We assume from now on that |u| < MJ. By real perturbations in Proposition 1] we
get

k _ pk—M k—M ! k—M
PE oy (1) = PR ) < [N AT p(w)] + oM o]

3u? (k—M)

< (26" 1 kM) ) < K H]s
since |u/VE| < Ju|/M < 6. O
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For m,k € N we denote the number of partitions with k atoms of a set of m elements
by S(m, k), the Stirling number of the second kind.
We now proceed with the proof of the theorem.

Proof of Theorem [3.3. Tt follows from the definition (I3) of N, combined with (6) and
from the fact that the balls are cylinders that

V(@',y') € B (x) x BY (y), Ni(a',y) = > S fmy
(n,k)ENXZ: fr(2)€ B (x),hn (2')=k,g" (y) EBY (y)
We set m, := 3cg|logr|, where ¢y > 1 is the constant appearing in (II) of Hypothesis
(noticing that, since ¢y > 1, this assumption holds also true if we replace (Y,g,v) by
(X, f,u)). Changing cq is necessary, we assume that c¢g > y=. For any sequence (k;);>1,
we denote the derived sequence (k:; =kj —kj_1)j>1 Where we put kg = 0.
Step 1: Moments expressed thanks to the Fourier-perturbed transfer operator

In the following product, we first expand the T, powers of the sums defining N, ([t,—1, ty])
as m, sums of a product. Regrouping the indices which are equal we are left with ¢, =
1,...,m, distinct indices, which gives after reordering

M, (t,m):=E, [HN’ o-15 o)) L X () BX(y)]

v=1
K
= > <H S (M, qv>qv!> Apiq(z,y) (23)
a=(q1,-..gx) W=l
qv=1,...,my
with
q
A”r;Q(x7y) = Z Z E 1BX XBY(y H (1BY © ggj 1{th:£J}]‘B$((:L') © fkj)
k=(k1,....kq) LELI j=1
(24)
where we set from now on
qg:=q+..+3qK
and where the first sum holds over the k = (ky, ..., k;) corresponding to concatenation of
(k:%, ,k;l) (kY. ,k;’v) (k‘f, ,k;;) such that
ty—iny < kY <...< k;’v < tyn,.

Recalling that
ki{ = k?l — kifl and f; = fl - fz‘,l, k?(] == fo == 0,

2

we observe that A,, .q(z,y) can be rewritten

Y. E 1BX(z>xBYy>H<1BY 097 Ln, 1=} o [ px gy 0 f* >

k £c74 j=1

and so

Analwy) =SS v [V o B @) | B Q) @ (x| . (29)

k ¢cz¢  \j=0
with
ff;( H) = 1px () P* (Lp,—ey H) -
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The strategy of the proof is then to apply inductively Condition (II) of Hypothesis
and Lemma [£3] to say roughly

o that v (Vg g~ (BY (4)) behaves as (v(BY ()"

T

el
b J
T T +1 <\/ kl‘)
e and that E, [QI(C&?% e Q](C,l?g,l(lng(gﬁ))] behaves as (u(B:X (z)))? ;1.:1 T;

Unfortunately this requires some care since the Holder norm of 1px (resp. 1 BY (y))
explodes as r goes to 0. Nevertheless, this will be possible when there are gaps between
the indices. In Step 2, we treat the bad situations where there are clusters of indices k;’s
(and so lack of gaps). A second difficulty will come from the uniform error (in /) in

the approximation by ® < > /+/ K. To avoid this difficulty we will use Lemma 4] to

control in Step 3 the contribution of the big values of E; (and so to restrict the sums over
the (7s). We will then be able to conclude with the use of Riemann sums (Step 4) and by
sum-integral approximations and moment identifications (Step 5).

We say that k € Z has clustering if k; < m, for some j =1,...,q

Step 2: Neglectability of clusters of k;’s. We will prove that the contribution to Ay, .q(z,y)
of those k € Z4 for which there is clustering gives rise to the error term (IHl).

For ki < --- < k4 with clustering we denote by c¢; the minimal j > 0 such that
k' 41 <my. The length of the first cluster is p; + 1 where p; is the maximal integer such
that k! k! < m,. We then define 1nduct1vely the s-th cluster (if any) and its

cpy o Mer+pr

length ps + 1 by ¢s := min{j > ¢s_1 + ps—1: k:]
such that kf_,..., k., < m‘;’s_l. Note that the s-th cluster starts at the index ¢ and
ends at the index ¢s + ps. Let Jix = {1,...,¢} \ Us{es +1,...,¢s +ps}. {0} U Jx is the
set of indices j which are isolated or where a cluster starts. It determines uniquely the
sequences ¢ and ps. Note that the existence of a cluster means that # 7, < q.

The sum over k = (ki,...,k;) in the definition of A, .q(z,y) detailed between (24))
and (25) can be rewritten as a sum over J C {1,...,¢q} of the sum over the k’s such that
J=J.

Fix J C {1,...,q} with w:= #J < q. Consider k such that Jx = J for which there is
a cluster. First we have

11 < m3 } and p; is the maximal integer

q
[Misrmed?| <v| N 9B W)
=0

jeJU{0}

Let us consider j € J U {0} a beginning of say the s-th cluster. Inside this cluster,

K., )ie1__ .. can take at most (m3 )P values and we know that at time k; not only we
G4 s T J y
are in the set B;X (x) but also we return to it before time m?sjl. Hence
, kj j+i—1 kj j+1 pJ k
Z Z 1{hk3 =0, of J 1p X ( of ittt <m, 1{7_ L )_ m3*} o f*

kjt1-kjtp; bit1-Litp;

This means that we can remove all the sums over the indices inside the clusters, provided
we insert the above factor in the corresponding place. This finally gives a contribution to
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Ay, .q(z,y) of those k such that Jx = J bounded from above by

w3 S v [N B W) | B |, 00 @, (Qa0w)] - (26)
§=0

k fezw

where the sum is taken over k € Z™ which are images by the projection k — (kj)jes, and
where

(@) ._ %
Qi o) :=1g, ;" (1{hk;:f;-} H ) :

and G, ;(z) = BX (z yn{rl Thx(z) < m3'} if the (i +1)-th element of {0} U J is the beginning
of the s-th cluster, and Gm( ) = BjX(x) otherwise. Note that, since ¢y > 1, G, ()
is a union of m,-cylinders (if no cluster) or a union of m, + m3 -cylinders, in any case

ki > 3S+ > (m, +m3°)?, so that the lemmas apply. We observe that
A ke
Qw 0 0 Qf]%’l,é’l(lGnO(af))] = E,u[lGr,w( YPw’ ] ) (27)
with pg = 1 and defining inductively
. k10010 k! E1io1,01. e
Vi=1,.,w, p"t = PR (1{h,;f.=é;} GraoaPisi " 1) : (28)
kl zygl K

A computation by induction shows that the norms || log p; || are bounded by a con-
stant C,, independent of k, £.

We again need to decompose the sum over £ € Z" subject to clustering or not. Unfor-
tunately clusters may now appear from non consecutive indices and we need to adapt the
definition. Given £ € ZY, for each ¢ = 0,...,w we denote by Cf the set of indices i’ such
that there exists a chain of ¢;’s, pairwise m,-close, joining ¢; to ¢;;. Next we denote by
Ty ={C¥i=0,..,w} the set of such clusters.

Fix Z a partition of {0,...,w} and consider £ such that Z, = Z. Denote by Z* =
{minC,C € Z} \ {0} the set of minimal index of each cluster, zero excluded. Let p =
#T* = #T — 1. Tt follows from (II) of Hypothesis on g that

v N (5B W) | =0 +0@™) [T v (ﬂ g (BY <y>>>
7=0 cel eC
= (14 0™ Nw(BY ) v (BY )N Ty, < m¥}) ™ (20)

< CuBY W)y (v, <m¥ | BY W) (30)

BY (y)

where ay = #{C € T : #{l;;i € C} =1} and By = #{C € I : #{{;,i € C} > 1} =
p+1— ay. It follows from Lemma [£3] that

ki io1,01.i-
E |:1G1" zpkl . z)] = M(Gr,i)Ai(k7 E)EM |:1G'm'—1pii“1 v 1]
where, setting v = ||A||0o0,

bi(k, £)

1 [
d :Azk,f
a0~ o ()

< S it | <K, (31)
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and A;(k,£) =0 if |¢;| > vk]. Hence an immediate induction gives

E, [1cr,w,o‘;ﬂ < (H M(Gm-)> [T4:k, 2. (32)
=0 i=1
Now we fix k and make the summation over £ such that Z, = Z:

Szk) =Y Eullg, ,@prs ]

Z:IZ:I
| l bi(k, £)
= > (IIrc)|IT—=(2|—F~= |+ | e
£: T,=T \j=0 i=1 1/ k] k! k!
v O ¢ bi(k, £
=S (1T | T [ —= (o [ = | + 2521
£ \j=0 i=1 k! \/kz k]

where the sums are restricted to |¢}| < k! for i = 1,...,w and Z, = Z. During this
summation, when ¢ € Z* we bound the sum over ¢; by

1 14 C
Koy :=sup sup — (CD <—> + —> < 0. 33
r<l m,<k<nr Z|<Z»yk Vk Vk Vk (33)
Otherwise when i € Z*, there are at most 2pm,. + 1 choices for ¢;, since /; is close to ¢;
where j = min C; < ¢ (hence ¢; is already fixed). Moreover ® < 1 therefore the sum over
¢; is bounded by
1+C

k!

1

((p+1)m; + 1) (34)

Therefore

Sz =0 [ [ [[nGry) | TT =
j=0

igz* \/ k!

7

Putting this last estimate together with (27) and (29) and summing up over k gives
) < Cmd"u(BY () (Hu . ) g 7).

< Omy mip(BY (@))w(BY () (B (@) (B ()n)" (Viep(BX (@) (35
1 (thy ey < m¥'1BX @)
< Cp(BZ(x y)) 349 +qu( ]{;X( ) <m3q+q‘BX( )>

since there were at least one cluster for k& (w < ¢) and due to the definition of n, = n,(z,y).

We henceforth suppose that there are no cluster of k;’s in the definition of A, .q(x,y),
that is k:; > m, for j =1.q, hencew = q, and G, ; = BX(z) for alli.

Step 3: Neglectability of big values of ¢;. Let ¢, := gy/—logr. The contribution of those
¢ such that ¢ > L; := Cr\/k7 for some 4 contributes to the error term (I6l).
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Set Z,) ;== {i = 1,...,q: £, > L;}. Fix ) # 7' C Z%. We follow the idea in the previous
discussion: fix a partition Z C {0,...,q}, define as previously Z* as the set of starting
indices of clusters and p = #Z*, consider the sum over ¢ such that Z, =7 and Z; = 7'

Recall that pfi"f*l’él“i*l has been defined inductively in [28). Set, for the indices i €
Z' N T* we obtain via Lemma [4.4]

k1,001, ' i—1,01..i—
Z p b _Pkl(1{|hk/‘>Lz}]‘Gr'L lplll p 1)

l;: ‘5/|>L
_Liu
SK@ \/k_;EN[ rz 1[)5“111 P 1i| :
Therefore
E 1 k1,81, < K G X *UCTE ki.i—1,01.i-1 36
Z Grzp — /’L( 7"7@)6 1% 7‘1 lpl 1 ) ( )
[€;1>Ls

that is instead of ([B3) we get the better bound Ke 4.
For the indices ¢ € Z' \ Z*, we notice that ® (

Vi :

4 ) < exp(—ﬁ) therefore the sum
over ¢; is bounded by

e
e T2 +C
my | ——— + —
Kok

instead of (B34).

For the other indices i € Z’, we keep the estimates of the previous discussion, using
using (B33]) or B4), wether ¢ € Z* or not. We finally end up with a contribution in

022 -
< OB @) (B () e PO (e 5 2

I*\I’ (mr\/n—r)qf#(l'*ul”)
< CM(BX(@“))V(B ®) (nep(BX (2))w(BY ()" (Viru(BX ()" mie,
< Cmie,p(BY (z,y)),

. _ —1:2 1
with €, := max(e ¥¢r e~ 2 4 281r)

Ve 2
Step 4: Reduction to a Riemann sum. Recall that ¢, = ¢v/— logr. Thus, up to error terms

in (I5) and (I6), in view of Z3), An, q(z,y)/p(BZ(z,y)) behaves as

S wm ey Y (mg )H

k!k};>m7‘ K]M;‘SCT /k;J =0

with [A;(k,€) — a;(k, £)| < C/k; by Lemma L3} where a;(k, () =

Lo (i>
vt \vE

We aim to replace each A;(k, ) by a;(k, ¢). Note that they are both bounded by C'/ /K]
and their difference is bounded by C/k}. Fix a partition Z of {1,...,q} as above. Using
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a telescopic sum we get

q q q -1 q
[14ik0 - H (K, 0) <ZHA ko 0) | Ay (k,0) — aw(k,0) ] ai(k.0)
Jj=1 Jj=1 =17j=1 j=i'+1
C
T w0+ )
i'=1 i g

We now fix some ¢/ and sum over £ such that Z, = Z as in the proof of the Step 2, with
the additional condition |¢}| < cr\/k? for all i. For the indices i # i’ we use the same
estimates, and for 7 = ¢/ two cases can happen:

If i =i’ € Z* we replace the estimate (33) by

C 14 2¢,\/K!
Sy Cey Y oo
ki £ ki v
Otherwise, i =i’ & ZT* and we replace the estimate (34]) by

sz/ _Zﬂ < Cm,logn,.

In both cases we gain a factor max(m, log Ny /Ny, ¢r/\/Nr), so that the total contribution
is dominated by (I6). Thus, writing e, := (I3]) 4+ (L6]), we have proved that

E, [(N)™BZ (z,y)] = O (e;) + (1 + O(e,)) u( BX (2))*

q
% Ao o) e £
k:k;>mygj;\g;‘§w\/§ 1=0 j=1 kj kj

Step 5 : Final step. It remains to estimate the following quantity

q q /
4 1 12
S 5 o Artwosw) e (L) o
k:kl>my KjiM}\SCr\/k_} 1=0 j=1 \/g \/k’»]
with ¢, = g/—logr. Recall from (29) that
q
"y m Be
Mo~ BY )| BY ) | = L+ O™ )u(BY ) () <m¥'}| BY @)
j=0

with Z, the partition of {0,...,q} consisting in gathering the indices ¢ corresponding to
clusters of ¢;’s (as defined in step 2) and with 8, = #{C € Z, : #{{;;i € C} > 1}.
Let go € {0,...,q}. Since supg~,, >, cp(%\/%) < 00, the contribution of terms with
#Tp=qo+ 1 and By = B is bounded from above by

Cu(B (@)1 (BY () v ({r§ < m¥"}| BY ()" [ ®(0) Z K ndomy P70
k=m,

CIQO

< C'(u(BX () (u(BX () (BY ) v ({77 < m¥'}| BY (1)) ny? O 90
< 'm0y ({79 < w3} BY ()7
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due to the definition of n, = n,(x,y). Thus the terms with 5 > 1 contribute to the error

term ([I3)).

We now consider the terms corresponding to 8y = 0, that is we are led to the study of

K
Mtﬁ(xay) = Z <H S(m;, QU)QU!> A;Mq(:c,y)

a=(q1,--,9x) \v=1
quly"'ym'/u

where

Al qlzy) = Y (B (@) ((B) ()77 De(a), (38)

£:Bg=0

as Zr/m% — 400, i.e. as pu(BX(x))/m, — +oo and u(BX(z))v(BY (y))/(m,)? — +oo,
wit

kk’>mT] 1

= >y H \/» e e)

the sum over k being still constrained by the ¢,’s as in (24]).
At this step, we can point out the two exteme cases:
(A) if w(BX(z)) = o(v(BY (v))), then the terms with ¢o < q (i.e. #Zp < q+ 1) are
negligeable.
(B) if v(BX(x)) = o(u(BY (y))), then the terms with gg > 0 are negligeable, hence
the remaining term is go = 0 and 3, = 0 thus £; = 0 for all j.

Let us start with the study of the case g9 = ¢ and B¢ = 0, i.e. |{; — £;] > m, (the
dominating term in Case (A) above). The contribution of these terms is

; <1><£—9'

\/k_’
BZ z, q — =1 ~m /l<e 7
(p(BY (x,y))) Z;H \/1?] Lk >moy L <o /)

~ (p(BY (x,1)))*

~ B2 S [ os)ds
k R

7=1
~ (p(B2 (2, )14k}
K qu
~ (p(BE )t T[ =
v=1 vr

A careful analysis would have shown that this equivalence is an equality up to a multi-
2

plicative factor 1 + 0(67%) + O(mrfé) =1+ O(|log 7’|7%). Furthermore, we recognize
the distribution of a standard Poisson process.
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Second, we study the contribution of terms of (B8]) such that go = 0 and 5, = 0, i.e.
such that ¢; = 0 for all j. This contribution is

(2(0)) c

u(BX (z))1 27 ~ (vVrru(BX (x) H

K =i/ =1

K
(L, (0 Ltv (0))%

~ (e ), | 11 O (5)
where £ is the set of x € R? obtained by concatenation of (m%,...,xél),..., (@], g )5y
(zf ..., CE;;) such that ¢,y < z{ < ... <zy <t,, and where the last identification follows

e.g. from [I4, Proposition B.1.2].

We return to the general case. Given ¢y € {0,...,q}, we study of the asymptotic as
ny/m2 — +oo of the terms of (B8) with #Z, = go + 1 and 3, = 0 (i.e. clusters in ¢
corresponds to repetitions of a same value).

Setting J,_q, for the set of surjections ¢ : {0, ...,q} — {0,...,qo} such that (0) =
we observe that

q ((Ibl[ CT,CT}) %
) Ly oy > 10 (5)

/
C:#Ly=qo+1, Be= weJq_,qo kik!>mp (by)v=1,...,q0 o —Lyr |>my 7=1 kj

Wapy (1) —Wah (5 —1
q q)< $(5) S:.Z)(J ))
! dw | ds

nE /Rqo ];I \/g

where we set & the set of s € R? obtained by concatenation of (si, ..., sél),..., (sV,..., sgv),...,
(s{(,...,sg;) such that 1 < s] < ... < sy < ty, and using again the notation s;- =

sj — sj—1 with the conventions sy := 0 and wg = 0. It follows that, if ny/m2 — 400,

. , @ <%>
n2 N8’
'f‘ J
> Dy(a) ~ /R%H \/,57 dw | ds
J

£:#Tp=qo+1B8,=0 weJq—»qo J=1

atag q (I)<ww(j)_1;}:l)(j_l)>
3 / [ 11 g | ds
. /

YE€Jg—qq R0 J=1 \/ Sj

Z /( R0 ¢q,sl, 8 ((U)w ))) dwl...dwq0> dSl...dSq,

PE€Jg—qq

where we set ¢q,....s, for the density function of (Bs,, ..., Bs,).

On & the s;’s are in increasing order. For a.e. s € Hszl(tv,l,t ]9 =: € there exists
a unique permutation 7, preserving the K blocks, such that (s (j)) € £. Applying this
change of variables is balanced by substituting ¢ by ¢ = o (0 — 0, 7). Thus the above
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quantity is

at+4q0

n. 2
=— | Z ( )/ </ ¢q,sl, .8 U)d, ))) dSl...dSq> dwl...dwqo
qo: YETq gy \v= 1 RY0
n;ﬁ% ol g
~ | Z H o1 / E H(Ltvq(j) - Ltvq(j),l)(ww(j)) dw;...dwg, ,
4q0° YEJqrqy \v=1 Quv: R0 i

where v4(j) is the smallest integer v such that j <¢; 4+ -+ + . So

at+4q0

Z DZ(CI) NnT’TJT‘(qaqO)7
L:##Ty=qo+1,8,=0
with

K q
JT(q’ q0) = Z (H q ) /R‘ZO H bog(5) vq(j)—l)(ww(j))dwl"'dwqo
—0 ! 5

YEJg—qq
In view of (23) and (38)), we study

K
MP(zy)~ Y (Hsmg,qv U>A'm,q<x,y>.
v=1

a=(q1,---,9x)
QU:17"'7m{U

As n,./m?2 — +o0o, this quantity is equivalent to

K q 4 %@
5 (H s<m:,,qv>) S (i BE @)P)F (mo(BY () ¥

a=(q1,.-,qx) \v=1 q0=0
qulv"'vmfu

1 q
XYy oE /R QOH(L%(].)—Ltvq(j)fl)(wlﬂ(j))dwl...dwqo
]:

We then conclude by Lemmas [A.T] and [A.3]

5. STUDY FOR THE Z-EXTENSION

This section is devoted to the proof of Theorem B.I0l about the convergence in distri-
bution, as » — 0, of the return time point process N, defined in (20) of the Z-extension

F. The proof of the next result appears as an easy consequence of parts of the proof of
Theorem [3.3]

Theorem 5.1. Assume Hypothesis[3.2 except (II). Let K be a positive integer and m =
(my,...,mx) be a K-uple of positive integers and let (tg = 0,t1,...,tx) be an increasing
collection of nonegative real numbers. There exist a constant C > 0 and a continuous
function €1 vanishing at 0 such that, for all x € X,

K
E, [HJ\N/T(]tvl,t e H (Z1,0(tw Zl,o(tvl))m]
v=1 v=1

< 1 (u(BX @)+, +Cllog r 7 (7] ) < Nogr | BY (@), (40)

BX
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with m = |m| =m; + -+ - + Mg, and with 2o as in Remark [34).

Proof. Setting this time n, := (u(BX(z)))~2, we follow the scheme of the proof of Theo-
rem [3.3 with some simplifications coming from the fact that first ), ,a therein is replaced
by £ = 0 and second that BY (y) disappears. As in Step 1 of the proof of Theorem 3.3} we
observe that

K K
“ Hmhvl,tvnmvlw(m)l - > (H sm,qv)qvl) Anya(2,y)
v=1

q:(ql,...,iK) v=1
qv=1,...;Mmy

where we denote again S(m, k) for the Stirling number of the second kind (i.e. for the
number of partitions with k& atoms of a set of m elements), and where we set this time

q
Anga(@) = D Eu | gy [] (L =0y Lpx iy 0 £5) | = Y Eu Q1 -+ Q1,1
J=1 k

k=(k1,....kq)
(41)
with the notations

¢=q+..+qx, K :=k—ki_1, ko=0, Q;(f}(H) = 1B§(z)Pk (Lpery H)

and where the sum over the k = (ky, ..., k) corresponds to concatenation of (ki ..., kL ),...,(kY, ..

g
(K ..., kE ) such that

K
to—1ny < ki <...<ky <tyn,.

In Step 2 of the proof of Theorem [3.:3] since £ = 0, Z* = () and p = 0, (26) and (35]) ensure
that the contribution of clusters of the m,-clusters of k;’s with Jix = J is

3qz ZE [ w, Ky 0, °Q1k'1,z'(1Gr,0(w))]

k Lezvw

<cm” <H M(Gm')> (mr/nr)®

< O mip(BY (0) (Viru(BE 0)" 1 (thy () < |BX (2)

< Cu(BX @)m¥ i (rhy ) < mEHBY (@)

Step 3 of the proof of Theorem B3] disappears (as well as the first part of (I6])) since E; =0
for all j.
As in Step 4 of the proof of Theorem B3] it follows from Lemma [£.3] that

Anal®) o () S
BRG]~ BT @)Y H\//?] Z H\ﬁ

k j=1 ’1lj7éz

1 20) (-
= Zk:]r[l \/]?; +0 <nr log(nr)>

uniformly in z € X, and we conclude by using ([B89) (note that we do not need anymore
the control of the probability that 77 is small used in Step 5 of the proof of Theorem [3.3]
so that the second part of (I3 does not appear here). O

BX (m))] ,

kL ),...

7 qu
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Proof of Theorem [Z10. This result follows from Theorem [(E.I] as Corollary (3.5]) and The-
orem follow from Theorem [3.3] O

APPENDIX A. MOMENTS OF INTEGRALS WITH RESPECT TO A POISSON PROCESS
The main goal of this appendix is to prove that for any a, 8 € [0; 1] such that max(«, ) =
1, for all K, m),...,m} withm =m] + ...+ m/, t1 < ... <tg,

!

K
I (Zas(te) = Zaptoa)™
v=1

m 1 q1+...+qK a0

Sh Y ((Msetw) ¥ e

0=0 7" q=(q1,---.9K) v=1 YEJqy +.. +ax —a0
qv=1,...,m/,

E (42)

q
/Rqo H(Ltvq(j) (Sw(])) B Lt”q(i)—l (Sw(]))) dSl...dqu )
j=1

keeping the notations S(m,q), ve(j) and J,—q, introduced above in the proof of Theo-
rem 3.3l The case o = 0 will follow from Lemma [A.T] whereas the case o > 0 will be
studied in Lemma [A.3] (applied with a := \/a and b := 3/\/«).

Lemma A.1. For any nonnegative integer m, the moment of order m of a Poisson random
variable Py of intensity A > 0 is

f: S(m (43)

q=0

Proof. Recall that S(m,q) is the number of partitions of a set of m elements in ¢ non-
empty subsets. The proof of Lemma [A. 1] is standard and follows e.g. from the following
computation

Aet —1))4 ()‘Z >1 |>q
E[etm] — eAMet=1) Z (Al - 1)) N Y Z m' m
>0 ' >0 ¢

_Z Zqu ml'

m>0 \ ¢g=0

Lemma A.2. Let P be a Poisson process with intensity n on R and g;, j = 1..m, be
bounded integrable functions from R to R. Then

H/ 4(s) 45 i:: > X/ Hga Sup) dn(s1)dn(s,),

" pi>lipit..Apg=m X

where the last sum is taken over the set of maps x : {1,...m} — {1,...,q} such that

#x({5}) = p;-
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Proof. We first claim that

E K/Rg(s) dP(s)) m] = i% > HqL('p],) /qu]i[l(g(sg‘))”j dn(s1)...dn(sq) -

q=1 pi>l:pi+...+pg=m =

Indeed, using the functional Fourier transform of a Poisson measure [4]

E [ewfmz 9(s) dp(s)} = exp </R(ei09(5) —1) dn(s))
1y (Je (€ —1) dn(s))”

1 ¢
=1+ Z qu( 321(ei€g(si) -1) dn(sl)...dn(sq)
=1 ¢!

=1+ Z/ Z Z H %j{))mdn(sl)...dn(sq)

p1>1  pg>1j=1

=1+ (i:;)um > > SN /Rq Hl(g(sj))pj dn(s1)...dn(sq).
ol

q .
m>1 " ¢=1pi>l:pit...4pg=m 3:1(1)]-)

This proves the claim by expanding the exponential in E [ew Jr9(s) dp(s)] and identifying
the m-th coefficient.

The lemma follows by identification of the coefficients of ¢; - - - ¢, in the following iden-
tity, obtained with the claim applied to ), ¢;g; and by direct computation:

m

> ( tju>E [H/jou(s) dP(s)] —E [(/RZtigi(s) dP(s)) ]

J1seesdm=1 \u=
m| q m Pj
- X sl H( tigxsj)) dn(s1).dn(sq)
=1 pi>1:prtotpg=m L Hi=1\P70) JRO G555
0

Lemma A.3. Let B be a Brownian motion of variance o* and (L(-))¢ its local time.
Let P be a two-sided Poisson process with intensity b > 0 and let (P.)ser be a family of
independent homogeneous Poisson processes with intensity a > 0. We assume that P, B

and (PL) are mutually independent. Let T = (my,...,Mg) be a K-uple of positive integers
and t = (t1,...,tx) be a K-uple of positive real numbers as in Theorem [3.3. Then
PR K My
M. m) =E |]] (/ Pi(Le, () — Pe(Le,_, (5)) d(do +7’)(5)> ]
v=1 R

1
— Z @ Z | (H S(mm(h)) Z alpdo

Y€Jg—qq

=
5
—=
—
h
Cﬂ
=)
S
—
Va)
<
<
N}
|
h
Cﬂ
=)
S
|
—
Va)
<
<
)
N—
QL
(Va)
=
A
V)
Q2
o
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with the convention so =0, ¢ = q1 + -+ - + qK, Jy—q, denotes the set of surjections from
{1,...,¢} to {0,...,q0}, vg(j) is the smallest integer v such that j < g1 + --- + ¢, and
m=m + -+ Mk.

Proof. Take g;(s) = Pqo(Lt,;,(s)) — Py(Lt,;,_,(s)). Expanding the product of the sum
then using Lemma [A:2 applied to (g;);¢z, and E(:|B, (P's)) give

H/g] (6 + P)(s)
- ¥ B|Huo I [a@ee

Ipc{l,...,m} jo€lo J€{1,....mIN\Io

m  M—po

=22 2 L;Z/ E [[]oi(sx) | b7 ds1.dsg, .
qo- Y /R0 jabe

Po=0 qo=0 p;>1:p1...4+pgy=m—po

with the convention sg = 0 and where the last sum is taken over the set of maps x :
{1,...,m} = {0,...,qo} such that #x '({u}) = p, for u =0,...,qo. Since the P, are a.e
independent conditionally to B, it follows that

m q0
1T 9iGsi))| B = T] Kuls)
j=1 u=0

with
K,(s):=E H (Péu(Ltv(j)(su)) — Pl (Lt, ;. (su))| B
jex—H(w)
- H E { L(Li, (54) — Ltv,l(su)))#{jeXfl(u)iv(ij}‘ B]

K muw

=TI 3 S0m¥ s 2uw)(0-(Le, (50) = Lo, (50)))7 .

wW=1 2y,=0

with my ., = #{j =1,....,m: x(j) = w,v(j) = w}. So
/ E ng(sx(j)) dSl...dSqO .
RO |50
- Z (H S(mz,un zuﬂl})) a‘D‘H(D) ’
D u,w

/

where the sum is over all the matrices Z' = (z,,,

Zyw < mg,w with |Z/| = Zu,w Zu,w and

q0 K
/R 11 <H<Ltw(su) —Ltw_l(su))z“’“’> dsl"'dS(Io] : (44)
w=1

q
0 u=0

Ju=0,....q0,w=1,...,k_such that VYu,w,0 <

H(Z'):=E
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Hence, we have proved that

M(t, ) =

D IFCCINNND VRS 9) o1 1 MR PEFIES

q0=0 p0>0,pi>1:po+t...+pgg=m X Z' \uw,w

5Ly e[ (s )]
qo=0 do- q:(qll,...,iK) VA b% U W
qu=1,...,My

where in the last line the matrices Z’ are such that > % 2, , = g, for all w = 1..K, and
the surjection y is such that mﬁ,w > Zuw-
Let Z’ be such that [],, S(m¥ w, zuw) # 0. Then, for every u,w such that mg ., > 1,

we also have z,,, > 1. This ensures that both g, := ZO:() Zu,w and 25:1 Zy,w are non
null.

Denote by C(Z’) the term into brackets above. We claim that C(Z’) is the number
of colored partitions in the following sense: a partition of {1,...,m} which refines the

partition in successive temporal blocks of size m] and to each element of the partition is
assigned a value in 0..qg, with the constraint that for each u,w there are z,,, elements of
the partition in the wth temporal block giving the value .

Indeed, choosing x assigns to each integer in {1,...,m} a unique value in {0, ...,qo}. For
each temporal block w and each value u, the set of integers j in the wth temporal block
such that x(j) = w has cardinality my,. We partition it into z,, atoms. There are
S(m w, zuw) possibilities. This defines uniquely a partition with the prescribed property,
and there are C'(Z’) possibilities.

Another method to construct such a colored partition is to first partition each temporal v
block in ¢, atoms. There are S(m!, q,) possibilities. This refined partition has g elements.
Any surjection ¢ € J, 4, assigns to the jth atom (ordered by their minimal element) of
the partition a value 9(j). Let Z¥ be the matrix with entries sz,w equal to the number

of atoms in the wth temporal block with value u, that is the number of j such that
vy(j) = w and ¥(j) = u. We restrict to those 1 such that Z¥ = Z'. Note that there are

Hszl S (Mg, qu)# {1 € Jyq0: Z¥ = Z'} possibilities. Therefore

_ ™1 q
M(t,m) = — alb® S(my, qu H(Z').
wm=Y k3 e ([sma)Y Y ww)
20=0 " q=(q1,---,9K) v=1 Z' Y€Jgmqy: Z¥=2"
gv=1,....m},

O

Finally, we give for completeness a convergence result with the moments method under
assumptions slightly weaker than usual. The subtlety is due to the fact that the moments
converge in restriction to a good set that may depend on the exponent. Given z € RX
and m € N¥ we let 2™ = Hiil .

Lemma A.4. Let W, X,,’s be RX walued random variables, such that

o There exists a sequence (), of measurable sets such that P(2,) — 1 asn — o0
e For everym € NK | E(X™1q,) — E(W™) as n — oo
o W satisfies the Carleman’s criterion 3.°0_o E(|[W||™)~V/™ = oc.

Then X, converges in distribution to W.
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Proof. 1t follows from the classical Carleman'’s criterion (see e.g. [I8]) that the linear combi-
nations of (X, 1q, ), converge in distribution to those of W, which implies the convergence
in distribution of (X,1q, ), to W. Furthermore X,, — X,,1q, converges in distribution to
0. We conclude (using e.g. the Slutzky lemma) that (X,,), converges in distribution to
w. O
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