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Purpose of review

Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular
stimulation, GVS) or invasive (infracranial electrical brain stimulation, iEBS) approaches have a long history
of use in studying selfmotion perception and balance control. The aim of this review is to summarize recent
electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system

using iEBS in awake patients.

Recent findings

The use of GVS has become increasingly common in the assessment and treatment of a wide range of
clinical disorders including vestibulopathy and Parkinson’s disease. The results of recent single unit
recording studies have provided new insight into the neural mechanisms underlying GVS-evoked
improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with
epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing
in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and

superior temporal gyrus.

Summary

Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith
afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore,
there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with
vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial
part of the cerebral hemispheres to the cortical vestibular network.
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Noninvasive (galvanic vestibular stimulation, GVS)
and invasive (intracranial electrical brain stimula-
tion, iEBS) electrical stimulation of the peripheral
and central vestibular system have a long history of
use in studying self-motion perception and balance
control [1,2].

Over the past two decades, GVS has increasingly
been used to probe the vestibular contributions to
several components of perception, cognition, and
emotions (reviewed in [3,4]). However, until
recently there was a paucity of data about the neural
mechanisms of GVS and its oculomotor, postural,
and perceptual effects in nonhuman primates and
humans.

As GVS is compatible with functional MRI
(fMRI) and PET, it has been used to describe the
human equivalent of nonhuman primate’s cortical
vestibular network in neurotypical participants
[5,6,7""]. A complementary way to delineate central
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vestibular pathways and structures is iEBS, a gold
standard for mapping brain functions in neurology
[8]. Pioneering work in patients with epilepsy or
during brain tumor resection in awake patients [9]
has demonstrated that iEBS can provide new
insights into the neural substrate of vestibular rep-
resentations within the cerebral cortex.
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KEY POINTS

e GVS produces robust and parallel activation of both
canal and otolith afferents that significantly differ from
those evoked by natural head motion stimulation.

o GVS evokes highly asymmetric responses in irregular
afferents for cathodal versus anodal currents, leading to
a directional bias in the net population
central response.

e Recent studies suggest that GVS induces beneficial
neural plasticity in the central pathways of patients with
vestibular loss.

e iEBS has provided novel causal evidence of vestibular
representations in medial brain areas (middle cingulate
corfex and precuneus) and subcortical structures (basal
ganglia, amygdala).

e GVS can contribute to the assessment and treatment of
vestibulopathy and Parkinson’s disease, whereas iEBS
can help understand cingulate and precuneal
epilepsies.

Electrical stimulation of both the peripheral and
central vestibular systems are now common and
their underlying mechanisms need to be under-
stood, especially, given the growing evidence of
potential therapeutic effects of various forms of
GVS and iEBS [10-12].

This review summarizes a selection of recent
studies that have used GVS and iEBS. We focus on
single unit recordings to understand the effects of
GVS on vestibular afferents and central structures,
and the effects of iEBS to identify the cortical and
subcortical structures processing vestibular signals.

GVS is commonly used to noninvasively probe and
perturb vestibular function in humans. The use of
GVS involves stimulating the peripheral vestibular
system via the application of current to external
electrodes placed on the mastoid processes. In addi-
tion to its use in basic research, GVS is also now
increasingly used in the assessment and treatment
of a wide range of clinical disorders including ves-
tibulopathy and Parkinson’s disease [13,14].

Method of activation, and basic/clinical
findings

In contrast to natural motion, GVS bypasses the
mechanotransduction of both canal and otolith ves-
tibular sensory organs to directly activate the vestib-
ular afferents of the VIII nerve (and potentially hair
cells themselves). The resulting afferent activation in

2 www.co-neurology.com

turn, evokes eye movements via central vestibulo-
ocular reflex (VOR) pathways [13], postural response
via central vestibulospinal pathways [15], as well as
virtual sensations of self-motion (e.g. [16-18]).

GVS is typically applied in a binaural manner
that activates afferents from all five vestibular sen-
sory end organs on one side with concurrent inhib-
ition of those on the contralateral side. The resulting
activation is thus unnatural as the pattern of com-
bined otolith and semicircular canal afferent acti-
vation has no physiological motion equivalent. At
the population level, the net effect of GVS has been
modeled as a vector of the summed canal activation
with an overall net cancellation of the otolithic
signals [1,19], where asymmetries in afferent
responses induces a directional bias in the net pop-
ulation response [20%].

To date, three primary classes of wave forms have
been utilized in basic and clinical GVS human stud-
ies: currents steps, sinusoids, and band-limited noise
(also termed stochastic GVS or noisy GVS [13]). Most
current work is focused on the use of stochastic GVS
because of its efficiency of application and improved
subject comfort. Suprathreshold noisy GVS has been
applied to probe vestibulomotor responses of both
the eyes and different axial and appendicular
muscles. Leg and trunk muscles show response over
a limited frequency range (<15—25 Hz) that modu-
late with standing posture [21,22], postural transi-
tions [23], and gait cycle [24,25]. In contrast, neck
muscles show GVS responses for frequencies up to
150 Hz [26]) that are task-independent [1]. This latter
result suggests that the vestibulocollic reflex is
largely hardwired (reviewed by [1]).

Moreover, there has been much recent discus-
sion regarding the use of subthreshold noisy GVS to
improve balance function. Although a number of
studies have reported positive outcomes (healthy
[11,27] and patients [27-29]), the mechanisms by
which improvements occur remain unknown. On
the one hand, it has been proposed that subthres-
hold induces stochastic resonance (see, e.g. [30,31]).
However, several recent investigations have failed to
provide consistent support for this view (e.g.
[32™%,33], reviewed in [34-36]). Importantly, an
open question is whether the stimuli used in studies
demonstrating positive outcomes have employed
suprathreshold rather than subthreshold stimuli.

Effects of galvanic vestibular stimulation on
the peripheral vestibular system

Single unit recording studies are required to under-
stand how GVS actually activates the central neural
pathways underlying perception and behavior. In
turn, this fundamental knowledge has significant
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implications for advancing the development of more
accurate stimulation techniques to selectively probe
and perturb vestibular function. A series of recent
experiments conducted on macaque monkeys used a
setup comparable to that commonly used in humans
to explicitly establish how GVS activates vestibular
afferents [20%,26,37]. GVS was applied to surface
electrodes placed behind the monkeys’ ears
(Fig. 1a) and induced torsional eye movements sim-
ilar to those observed in humans [37]. Single unit
recording experiments then established that GVS

evokes robust and comparable responses in canal
and otolith afferents and that these responses differ
from those evoked by natural head motion stimula-
tion. This latter finding is not unexpected given that
GVS activates afferents by bypassing the biome-
chanics of both the semicircular canals and otolith
organs, which contribute to the dynamics of
responses to rotation and translation, respectively.
More specifically, in response to GVS canal and
otolith afferents both demonstrate a similar increase
in gain with increasing stimulation frequency.
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FIGURE 1. Effects of galvanic vestibular stimulation on the peripheral vestibular system. (a) Schematic of the setup used to
apply GVS in the nonhuman primate model. Stimulation is applied between surface electrodes placed on the mastoid
processes behind the ears, while the animal’s eye movements and neural activity are recorded. (b) Response dynamics of
vestibular canal afferents to sinusoidal GVS where the population averaged gain is shown for regular and irregular (blue and
red, respectively) canal afferents. Dashed lines illustrating the corresponding responses to actual rotational motion are shown
for comparison. (c) Constant current GVS evokes asymmetric changes in afferent firing rates during stimuli of opposing
polarity, primarily for irregular afferents. Schematic of the asymmetric responses (gray) of an irregular afferent is shown for
cathodal (top) versus anodal (bottom) stimulation. The red traces show the response fit to cathodal stimulation (solid), and the
mirrored fit superimposed on the anodal response. (d) Response dynamics of monkey vestibular afferents and neck motor
neurons to high-frequency (0-300 Hz) GVS. Population responses are shown for irregular versus regular canal afferents (top,
red and blue, respectively) versus neck single unit versus EMG activity (bottom, purple and green, respectively). Data from
Kwan et al. [85™], Forbes et al. [26] and [20®], with permission from the authors. GVS, galvanic vestibular stimulation.
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Further, more irregular afferents demonstrate larger
firing sensitivity compared with their regular coun-
terparts. However, this gain increase is less than that
observed for natural head motion (Fig. 1b). GVS
evoked-afferent responses also became more phasi-
cally dynamic with increasing frequency, contrast-
ing with reports based on internal stimulation of the
inner ear [38,39]. Overall, the dynamics of GVS-
induced afferent responses cannot be predicted by
a simple stochastic model of repetitive afferent
activity [40], suggesting that other key factors (e.g.
hair-cell-mediated activity, nonquantal transmis-
sion, and the dynamics of vestibular afferent con-
ductances) also shape afferent responses to GVS. The
development of a mechanistic GVS model (e.g.
[41%]) is an important direction for future work.

Recent experimental findings in monkey have
also challenged the prevailing view that GVS line-
arly activates the vestibular system. In response to
cathodal versus anodal GVS currents, canal and
otolith afferents both display significant response
asymmetries, which also manifest in asymmetric
eye movement responses via vestibulo-ocular path-
ways (Fig. 1c). For example, the onset of a cathodal
versus anodal current step induces more pro-
nounced changes in afferent responses [20%]. These
nonlinearities are more pronounced in irregular
afferents relative to their regular counterparts. Sim-
ulations combining these experimental results with
a well established computational model of the net
effect of GVS [1], has led to the unexpected (and not
yet tested) prediction that GVS induces directional
biases in centrally integrated head motion signals
[207].

Finally, it is noteworthy that recent GVS studies
in macaque monkeys have directly compared the
activation of afferents versus the neck musculature
via vestibulospinal pathways, specifically the vesti-
bulocollic reflex. The vestibulocollic reflex stabilizes
head position in space by activating the neck mus-
culature in response to unexpected self-motion
across the natural range of head motion ([42];
Fig. 1d). Strikingly, both neck motoneurons and
primary vestibular afferents respond to sinusoidal
GVS stimulation up to 300 Hz, peaking around 70-
80 Hz ([26]; Fig. 1d). Taken together, these findings
suggest that that the high-frequency information
encoded by afferents is indeed transmitted through
the vestibular system to stabilize the head during
unexpected head transients.

Effects of galvanic vestibular stimulation on
the central vestibular system

Despite the recent progress made in understanding
GVS’s impact on individual vestibular afferents, our

4 www.co-neurology.com

understanding of its effect on central vestibular
pathways remains quite limited. Vestibular afferents
directly target central neurons in the vestibular
nuclei [43]. In-vitro studies using vestibular nuclei
slices have long been used to investigate electro-
physiological properties of individual neurons [44].
More recent experiments [34] have further shown
that stochastic versus sinusoidal current waveforms
— comparable with those used in the clinic — induce
differential changes in neuronal membrane poten-
tial, neuronal regularity, and response gain across
neurons. To date, however, only a handful of in-vivo
studies have investigated how GVS alters signal
transmission in central vestibular pathways. One
2020 study assessing how vestibular nuclei neurons
encode combined GVS and motion stimulation [45]
reported that sub additive responses similar to those
reported for the integration of semicircular canal
and otolith afferents in these cells [46]. This same
group also reported that repeated GVS reduces ves-
tibular nuclei neuronal potentials [45]. Notably, this
reduction was accompanied by a decrease in AMPA
and NMDA receptors, leading to proposal that GVS
induces a reduction in the number of glutamate
receptors that in turn modifies neuronal potentials
in the vestibular nucleus.

Vestibular stimulation also activates higher level
areas of central vestibular processing. The vestibular
input to the hippocampus is thought to play an
essential role in spatial navigation and for updating
brain representations of spatial information [43]. A
recent study in rats demonstrated that GVS altered
hippocampal cell proliferation and neurogenesis;
high amplitude GVS causes a marked decrease in cell
proliferation, and corresponding decrease in neuro-
genesis [47]. Surprisingly, however, these changes
were not linked to functional impairments in spatial
memory. Human imaging studies have likewise
shown that GVS activates the hippocampus [48,49].
In addition, imaging studies have shown that GVS
activates regions of the cerebellum, thalamus, and
cortical areas (i.e. PIVC, 3aV, and 2v) associated with
self-motion processing [7*%,50%51,52%,53]. Interest-
ingly, bilateral vestibulopathy patients demonstrate
reduced resting state brain activity in several of these
core cortical vestibular regions, that can be increased
via GVS (Fig. 2a; [54,55]). Moreover, these GVS-
induced changes were linked to better patient out-
comes, suggesting that GVS might induce beneficial
neural plasticity. A recent comparison of noisy versus
conventional (current step) GVS indicated that the
former resulted in greater increase in brain activity in
vestibular cortical areas [56]. Although this result led
the authors to suggest that noisy GVS evokes stochas-
tic resonance, further investigation will be required to
understand the actual neural mechanisms responsible
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FIGURE 2. Effects of galvanic vestibular stimulation and vestibular implant stimulation on the central vestibular system. (a)
Compared with healthy control subjects, resting state brain activity of bilateral loss patients was smaller in vestibular core
regions but larger in several frontoparietal and occipital brain areas associated with visual processing. (b) GVS increased

resting state in vestibular core regions in both groups, as well as in visual regions in patients that was associated with lower

dizziness. Helmchen et al. [55]. (c) Schematic diagram of the direct versus commissural pathways mediating the VOR and
vestibulospinal reflexes. Inset: normalized sensitivity of direct versus commissural pathway neurons in the vestibular nuclei over
a 10min period following activation of the vestibular nerve. The black dashed line is showing, for comparison, the lack of
adaption in vestibular afferents. Adapted with permission from Mitchell et al. [98].

for the observed enhancements and to further opti-
mize the application of GVS as a noninvasive ther-
apeutic approach to improve patient outcomes.
Correspondingly, the development of new methods
for internal peripheral stimulation using a vestibular
implant (Fig. 2c, see ‘Future Directions’) provides
another promising approach for improving patient
outcomes.

1350-7540 Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

INTRACRANIAL ELECTRICAL BRAIN
STIMULATION

The central vestibular network described above
[77",50%,51,52%,53] has been revealed by neuroimag-
ing studies contrasting BOLD signal during GVS
with various control conditions. Complementary
to this approach, iEBS can disrupt neural activity
within specific nodes of the central vestibular
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pathways. iEBS can provide causal evidence [8] of
the specific contribution of cortical and subcortical
structures in the neural network processing vestib-
ular information. iEBS consists of delivering an elec-
trical current through electrodes directly at the
surface of the cortex, in deep structures, or subcort-
ical fibers. iEBS can evoke from simple perceptions,
such as vestibular illusions, to complex hallucina-
tions, and behaviors.

Cortical networks underpinning vestibular
representations as revealed by intracranial
electrical brain stimulation

One part of the cortex that has long been related to
vestibular information processing in nonhuman
primates is the posterior insula (with adjacent pari-
etal operculum and retroinsular cortex) [S7-59].
Surprisingly, Penfield and Faulk [60] had originally
reported that iEBS in the insula evoked no vestibular
sensation during surgery for focal epilepsy. How-
ever, a retrospective analysis of 219 patients with
epilepsy revealed that vestibular sensations (illusory
body rotation or translation, vertigo, dizziness) in
fact represents ~8% of all responses evoked by iEBS
through implanted electrodes in the insula [61].
Notably, vestibular sensations were mostly elicited
by iEBS in the posterior insula, and rotatory and
translational self-motion illusions were evoked by
iEBS more posterior than vertigo and dizziness [61].
Following up on this, Yu et al. [62] analyzed the
effect of operculo-insular iEBS in patients with epi-
lepsy, and found that dizziness was evoked by stim-
ulation of the superior part of the left posterior long
gyrus (i.e. posterior insula). Other functional map-
ping of the insula with iEBS revealed that its poste-
rior part, while eliciting some vestibular sensations,
was more involved in somatosensory and pain per-
ception, whereas the anterior insula was more
involved in visceral functions [63].

The parietal cortex has also long been associated
with vestibular information processing in animal
models, as evidenced by vestibular-sensitive neu-
rons in the primary somatosensory cortex, intrapar-
ietal sulcus, retroinsular cortex, and parietal
operculum [64]. Consistent with these findings,
iEBS in epileptic patients demonstrated vestibular
sensations in both the lateral and medial parts of the
parietal cortex [65]. Operculo-insular stimulation in
patients with epilepsy revealed that vertigo and the
feeling of body elevation or movement to one side
were evoked by iEBS of the bilateral parietal operc-
ulum, and by no other opercular region [62]. A
recent retrospective analysis in a large patient
cohort with epilepsy (n=165) revealed that ~21%
of iEBS evoking vertigo were in the posterior insula

6 www.co-neurology.com

or parietal operculum (area OP2) [66""]. This data
provides causal evidence that stimulation in this
core area within the vestibular cortical network
[7%",67,68",69] produces a vestibular sign. Balestrini
et al. [70] retrospectively analyzed data from iEBS in
the parietal cortex in 172 patients with epilepsy.
Vertigo was observed during iEBS in the precuneus,
inferior parietal lobule, posterior cingulum, superior
parietal lobule, intraparietal sulcus, and postcentral
gyrus. In contrast, no such responses were evoked by
iEBS in the primary somatosensory cortex in two
retrospective studies [71,72], despite evidence of
vestibular projections to the primary somatosensory
cortex in several animal species [73,74].

Interestingly, the precuneus, which was until
recently not considered a main vestibular area, is
the parietal area where most vestibular responses
have been elicited [70]. A recent study emphasized
vestibular illusions in the anterior precuneus [75™],
with iEBS in the left precuneus evoking mostly
sensations of dropping, slipping, falling, and dizzi-
ness, whereas iEBS in the right precuneus evoked
mostly sensations of floating and elevation. This
finding is consistent with those of recent fMRI stud-
ies identifying an egomotion selective area in the
anterior precuneus, referred to as Pcm (precuneus
motion area), that responded to both GVS and optic
flow [7""]. Yet, other studies described area Pcm as
only sensitive to optic flow [76™].

Taken together, these studies suggest that the
medial part of the cerebral hemispheres may play a
more substantive role in shaping vestibular repre-
sentations than has been assumed based on early
studies in nonhuman primates [57,77]. In fact, in
the last few years, evidence of vestibular responses in
the cingulate cortex were provided by electrophy-
siological recordings in the macaque posterior cin-
gulate cortex [78], fMRI in rats during optogenetic
activation of the vestibular nuclei [79], and fMRI in
humans using GVS or caloric vestibular stimulation
[7%%,76"%,80].

Consistent with these findings, three recent
retrospective analyses in patients with epilepsy
reported vestibular responses during iEBS in the
cingulate cortex [81,82,83"]. Vestibular responses
represented 4.3% [83"] to 8.3% [81] of all responses
evoked by cingulate cortex stimulation. The two
studies with the largest samples (n=329 [81] and
n=124 [83"]) identified most vestibular responses in
the middle cingulate cortex (right posterior middle
cingulate cortex, as well as to a smaller extent the
ventral anterior middle cingulate cortex) and the
posterior cingulate cortex (dorsal part [81]). By con-
trast, the study with the smallest sample (n =47 [82])
reported that vestibular sensations were evoked by
iEBS in the left anterior and posterior cingulate
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Copyright © 2023 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.



€202/0€/0T uo

1971ZIMNZIDBpXZOBBAROATDOAEIOVIASALLIAIPOOAEIEAHIDN/AD AUMY TXOMAD

YOIAXYOHISABZIY e+ NIOITWNOTZTARY HJBGHNAYE Aq ABojoInau-02/wod* mm| sfeulnolj/:dny wolj papeojumod

Electrical stimulation Lopez and Cullen

cortex. Altogether, the data suggest predominant
vestibular representations at the junction between
the middle and posterior cingulate cortex [83"].
Although data in animals are rare, it was also in
the posterior cingulate cortex that neurons
responded to whole-body translations and rota-
tions, and to a lesser extent to optic flow [78].
Altogether, results from recent iEBS studies confirm
the existence of a vestibular and visual area, referred
to as the cingulate sulcus visual area (CSv), in the
posterior part of the middle cingulate cortex
[7%%,76"%,80,84".

A recent systematic review of the literature by
Dary et al. [85™] summarized cases of illusory whole-
body translations and rotations (excluding vertigo/
dizziness) evoked by iEBS. Across the different stud-
ies (Fig. 3a—c), most iEBS-evoking vestibular sensa-
tions were in the middle cingulate cortex, posterior
insula, inferior parietal lobule, amygdala, precuneus
and superior temporal gyrus, whereas vestibular
sensations were very rare after occipital and frontal
cortex stimulation (Fig. 3b) [85"*]. In addition, the
proportion of vestibular sensations after iEBS in the
right hemisphere was significantly higher than it

—
[}
~—

Number of illusory self-motion

Temporal

Cingulate

Insula

Parietal

Posterior Amygdala
insula Hippocampal
complex

FIGURE 3. Localization of intracranial electrical brain stimulation evoking vestibular illusions reported in a systematic review
of the literature. The review identified 131 cases of illusory selfmotion perception (excluding vertigo and dizziness) evoked by
iEBS reported in the literature between 1937 and 2022. Most of the electrode contacts where vestibular illusions were evoked
by iEBS could be located retrospectively according to published electrode coordinates, or with the best approximation

possible considering the published MRI, implantation schema, or the original description of iEBS in terms of gyrus, sulcus, and
Brodmann area. The number of illusory self-motion perception evoked by iEBS is showed for different brain areas (a), and as
a function of iEBS in the different lobes and cingulate cortex (b). (c) iEBS sites evoking illusory self-motion perception are
displayed on 3D views of a right cerebral hemisphere. The rightmost part shows iEBS in the insula and mesiotemporal region.
IPL, inferior parietal lobule; SPL, superior parietal lobule. Adapted from Dary et al. [85"®], with permission from the authors.
IEBS, intracranial electrical brain stimulation.
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was in the left hemisphere, a finding coherent with
the right-sided dominance of vestibular pathways to
the cerebral cortex in neurotypical individuals [86].

Effects of intracranial electrical brain
stimulation on subcortical structures

Evidence for vestibular representations in subcort-
ical structures has recently been investigated during
presurgical evaluation of epilepsy [87%%,88""] and in
Parkinson’s disease. Here we focus on the former, as
the latter has been reviewed in detail elsewhere
(2,12,89™.

Recently, Qi et al. [87™] reviewed the effects of
iEBS in the basal ganglia in 35 patients with epilepsy.
Vestibular sensations were the second most frequent
responses after sensorimotor responses. They were
elicited by iEBS in the putamen and external globus
pallidus, mostly on the right side (Fig. 4a). No ves-
tibular response was found in the dorsal caudate
nucleus, internal globus pallidus and subthalamic
nucleus. This causal demonstration of vestibular rep-
resentations in the basal ganglia helps disambiguate

heterogenous results about the basal ganglia involve-
ment in vestibular networks [90]. Indeed, recent stud-
ies in rats identified very few striatal neurons
responding to electrical stimulation applied to the
round window [91]. However, in response to the same
type of stimulation, local field potentials were
recorded in the tail of the rat striatum [92"] and
neurochemical changes were found in the striatum
[93]. Vestibular pathways to the striatum may involve
the perifascicular nucleus in the thalamus and direct
projections from the cortex [90] (Fig. 4b).
Furthermore, vestibular responses evoked by
iEBS of the amygdala have recently been described
in patients with epilepsy [88"]. Out of 250 responses
evoked by iEBS in the amygdala, vestibular sensa-
tions represented ~6% of all reports. Sites at which
iEBS evoked vestibular responses were in the later-
obasal and superficial groups of the amygdala. It is
unclear how vestibular information reaches the
amygdala. Yet, the parabrachial nucleus, which
responds to vestibular stimulation, is reciprocally
connected with the vestibular nuclei, amygdala,
hypothalamus and prefrontal cortex [94].
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FIGURE 4. Vestibular representations in the basal ganglia. (a) Location of electrode contacts evoking vestibular sensations
during iEBS. After sensorimotor responses (n=23), vestibular sensations were the second most frequent responses evoked by
iEBS (n=8; dizziness, spinning, floating). Vestibular sensations were evoked by iEBS in the ventromedial putamen (n=4),
dorsolateral putamen (n=3), and external globus pallidus (n=1). Modified from Qi ef al. [87*"] (images under Creative
Commons Attribution 4.0 International License). (b) Probable pathways from the vestibular apparatus to the basal ganglia.
iEBS, intracranial electrical brain stimulation; PFN, parafascicular nucleus; PPT, pedunculopontine tegmental nucleus; SNc,
substantia nigra pars compacta; VNC, vestibular nuclei complex. Reproduced from Sabzevar et al. [92*=] (images under

Creative Commons Attribution 4.0 International License).
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Causal demonstration of vestibular representa-
tions in subcortical structures should motivate to
study their contribution to spatially oriented behav-
iors and spatial cognition.

FUTURE DIRECTIONS

Above we have reviewed how the electrical stimu-
lation of the peripheral and central vestibular sys-
tems has advanced our understanding of the neural
mechanisms and networks underpinning vestibular
processing and self-motion perception. These lines
of research offer opportunities for developing novel
therapeutic strategies in patients with vestibular
disorders and have clinical relevance for neurology.

Internal peripheral stimulation and
vestibular implants

Pulsatile stimulation of chronically implanted elec-
trodes in animals has been an essential tool for prob-
ing the circuitry of vestibular pathways. Recent work
based on this approach has led to the development of
vestibular implants for patients with bilateral periph-
eral loss. These implants typically comprise electrodes
implanted into or near the ampulla of the semicir-
cular canals. Head motion information, sensed by
gyroscopes, is first projected into the three canal
planes, and then converted into a sequence of elec-
trical pulses for each implanted electrode (reviewed in
[10,13]). Ongoing clinical trials have reported
improvements in postural control [95%] and to a lesser
extent gaze stability [96,97]. Significant challenges
must still be overcome, including the reduction of
central vestibular pathway efficacy because of stim-
ulation-induced afferent synchrony (Fig. 2¢; [98,99])
and expanding vestibular implants to restore otolith
as well as canal function.

Advances in diagnosis and treatment of
focal epilepsy

Epileptic seizures with prominent vertigo and dizzi-
ness have been related to epileptic foci in the tem-
poral cortex and temporo-parieto-occipital junction
[100]. Recent evidence of vestibular representations in
the medial part of the cerebral hemispheres should
help understand the complex semiology of seizures in
patients with cingulate [101] or precuneal epilepsy
[102], which are difficult to characterize by surface
EEG. To better characterize seizures associated with
vertigo and dizziness, it would be important to delin-
eate the exact connectivity within the cortical ves-
tibular network, using effective connectivity (e.g.
corticocortical-evoked potentials) and functional
connectivity (e.g. nonlinear correlation of EEG sig-
nals) from iEBS and stereo-electroencephalography in

1350-7540 Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

patients with epilepsy (for similar approaches, see
[75%%,82)).

CONCLUSION

Studies summarized in this review help understand
long-described effects of electrical stimulation of the
peripheral and central vestibular system, which
commonly evoke illusory self-motion perception
and modulate multisensory integration properties
to ensure balance and gaze stability. By modulating
the functioning of large networks from the brain-
stem to the cerebral cortex, basal ganglia, and other
subcortical structures, GVS offer avenues for the
neuromodulation of vestibular functions using safe,
accessible, and inexpensive procedures.
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