
HAL Id: hal-04281052
https://amu.hal.science/hal-04281052

Submitted on 12 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automata Theoretic Characterization of Weighted
First-Order Logic

Dhruv Nevatia, Benjamin Monmege

To cite this version:
Dhruv Nevatia, Benjamin Monmege. An Automata Theoretic Characterization of Weighted First-
Order Logic. International Symposium on Automated Technology for Verification and Analysis, 2023,
Singapore, Singapore. pp.115-133, �10.1007/978-3-031-45329-8_6�. �hal-04281052�

https://amu.hal.science/hal-04281052
https://hal.archives-ouvertes.fr

An Automata Theoretic Characterization of
Weighted First-Order Logic⋆

Dhruv Nevatia1[0009−0008−0845−6754]

and Benjamin Monmege2[0000−0002−4717−9955]

1 ETH Zurich, Switzerland dhruv.nevatia@inf.ethz.ch
2 Aix Marseille Univ, LIS, CNRS, Marseille, France benjamin.monmege@univ-amu.fr

Abstract. Since the 1970s with the work of McNaughton, Papert and
Schützenberger [23,21], a regular language is known to be definable in
the first-order logic if and only if its syntactic monoid is aperiodic. This
algebraic characterisation of a fundamental logical fragment has been
extended in the quantitative case by Droste and Gastin [10], dealing
with polynomially ambiguous weighted automata and a restricted frag-
ment of weighted first-order logic. In the quantitative setting, the full
weighted first-order logic (without the restriction that Droste and Gastin
use, about the quantifier alternation) is more powerful than weighted au-
tomata, and extensions of the automata with two-way navigation, and
pebbles or nested capabilities have been introduced to deal with it [5,19].
In this work, we characterise the fragment of these extended weighted
automata that recognise exactly the full weighted first-order logic, under
the condition that automata are polynomially ambiguous.

Keywords: Weighted logics, weighted automata, aperiodic monoids

1 Introduction

Early works by McNaughton, Papert and Schützenberger [23,21] have enabled
an automata-theoretic characterisation of first-order logic over finite words: a
regular language is definable in the first-order logic if and only if its syntactic
monoid is aperiodic. From the minimal automaton recognising the language, we
can compute its syntactic monoid and check aperiodicity to conclude. Moreover,
from the aperiodic minimal automaton, we can deduce a first-order formula
equivalent to it.

More recently, Droste and Gastin [10] have extended this result to deal with
quantitative extensions of the first-order logic and automata. These quantitative
extensions find their origin in the works of Schützenberger [22] that investigated
weighted automata, and their expressive power in terms of (formal power) series
that are mappings from finite words to weights of a semiring. Weighted automata

⋆ We thank the reviewers that helped greatly improving the readability of this article.
The work was partially done during an internship of the first author at Aix-Marseille
Université, partially funded by CNRS IRL 2000 ReLaX.

2 Dhruv N. and B. Monmege

were originally thought as finite state automata where each transition (as well
as initial and final states) are equipped with weights of a semiring. Along a
run, weights are combined by the multiplication of the semiring, while non-
determinism is resolved by considering the sum of the weights of all accepting
runs over a word. By changing the semiring we consider, weights can model
cost, rewards, energy or probabilities in a unified way: see [12]. Many extensions
have then been considered, by allowing for more structures than words (infinite
words [15], trees [16], nested words [14,3]) and more weights than semirings
(valuation monoids [13], multioperator monoids [18]).

In order to describe the series describable by weighted automata in a more
readable way, it might be useful to have more high-level ways of description, like
weighted logics based on monadic second order (MSO) features, introduced by
Droste and Gastin [9]. Based on the seminal result by Büchi, Elgot, and Trakht-
enbrot [6,17,24], they have explored a weighted extension of MSO logic on finite
words and semirings: the semantics of disjunction and existential quantification
are based on the sum of the semiring, while the ones of conjunction and universal
quantification are based on the product. The appropriate restriction on the logic
was found in order to obtain the exact same expressivity as weighted automata:
a restriction is needed for combinatorial reasons, certain operators of the logic
being able to generate series growing too quickly with respect to the length of
the input word. In particular, universal quantifications must be used only once
over very basic formulas, and conjunction is not allowed. Once again, this semi-
nal result relating weighted automata and weighted logics has been extended in
many ways: on trees [16], on nested words [14,3], with weights valuation monoids
[13], to cite only a very few.

In [20], the semantics of weighted automata and weighted MSO logic has
been revisited in a uniform way allowing one to obtain many previous results
in a simplified way. First, an abstract semantics is defined, mapping each word
to a multiset of sequences of weights (one sequence per accepting run): this
abstract semantics does not depend on the weight structure, since no actual
computation is made. The abstract semantics can then be aggregated into a
single output weight by an ad-hoc operator: we call this the concrete semantics.
Methodologically speaking, showing that two models have equal abstract seman-
tics is sufficient (but not necessary in general) to show that they have equivalent
concrete semantics.

In [10], Droste and Gastin consider the first-order fragment WFO of the
weighted MSO logic, with the same kind of restrictions as the one explored for
weighted MSO logic to recover the same expressive power as weighted automata.
Under this restriction, they show that the logic WFO is expressively equivalent
to weighted automata that are aperiodic (defined similarly as in the unweighted
setting) and polynomially ambiguous. Moreover, the proof is constructive and
works for the abstract semantics (and thus for any concrete semantics).

In order to express more properties than the restricted logics (WFO and
weighted MSO), weighted automata with two-way navigation and pebbles or
nested capabilities have been introduced [5,19], with an equivalent logic based on

An Automata Theoretic Characterization of Weighted First-Order Logic 3

an extension of WFO with some limited transitive closure operators. As noted in
[10] by Droste and Gastin, this is thus natural to ask what the models of two-way
nested/pebble weighted automata are that recognise exactly the full WFO logic.
In this work, we answer this question: the series recognised by WFO logic can be
obtained from two-way nested/pebble weighted automata that are aperiodic and
polynomially unambiguous. This generalises the results of [10] only working for
a small fragment of WFO, and one-way (non-nested) weighted automata, but the
condition has a similar flavour. The aperiodicity condition on two-way automata
models has been explored in [7]. Our proof is constructive and goes through a
special case of two-way automata that are called sweeping where every change
of direction happens on the border of the input word (and not in the middle).
This allows us to more easily reuse the work by Droste and Gastin, which only
works for one-way models.

After defining the weighted first-order logic we study in Section 2, and the
nested two-way weighted automata in Section 3, we prove the equivalence be-
tween the various formalisms in subsequent sections: the translation from the
logic to sweeping nested weighted automata is done in Section 4; sweeping nested
weighted automata are translated back in the logic in Section 5. The most diffi-
cult part of the proof is the translation from two-way nested weighted automata
to sweeping nested weighted automata: this does not hold if we do not have nest-
ing mechanisms, and this translation thus raises the number of nesting necessary
in the model.

2 Weighted First-Order Logic

In this section, we introduce the weighted first-order logic whose power we will
characterise in the following with respect to some automata model. The logic
used in [10] is a fragment of this logic where nesting of operations is limited to
be as expressive as weighted automata.

Definition 1. For a set K of weights and an alphabet A, we let WFO(K, A) be
the logic defined by the following grammar:

φ ::= ⊤ | Pa(x) | x ≤ y | ¬φ | φ ∧ φ | ∀xφ (FO)

Φ ::= 0 | 1 | k | φ?Φ : Φ | Φ+ Φ | Φ · Φ | ΣxΦ | ΠxΦ | Π−1x Φ (WFO)

where a ∈ A, k ∈ K and x, y are first order variables.

Formulas φ stand for the classical (Boolean) first-order logic over words on
the alphabet A. Their semantics is defined classically over words u = u1u2 · · ·un ∈
A∗ and valuations σ : V → {1, 2, . . . , n} of the free variables V of the formula,
letting u, σ |= φ when the formula is satisfied by the word and the valuation.

Formulas Φ are weighted formulas that intuitively associate a weight with
each word and valuation of free variables. As described in [19], the semantics is
defined in two steps: first we give an abstract semantics associating with each
word and valuation a multiset of sequences of weights in K; then we may define

4 Dhruv N. and B. Monmege

a concrete semantics by describing how to fuse the multiset of sequences into
a single weight. This differs from the classical semantics that directly compute
the concrete semantics, but for our later proofs the other equivalent definition
is much easier to manipulate.

Let u ∈ A∗ be a word and σ : V → {1, 2, . . . , n} be a valuation where V is a set
of variables. The abstract semantics of a WFO formula ϕ, with V as free variables,
is denoted by {|ϕ|}V(u, σ): it is a multiset of sequences of weights, i.e. a series
of N⟨K∗⟩ mapping each sequence to its multiplicity in the multiset. As usual,
we denote multisets via the symbols {{.}}. The disjoint union of two multisets is
obtained as the sum of the associated series, it is denoted by S1∪S2. The product
of two multisets is obtained as the Cauchy product of the associated series, it
is denoted by S1 · S2 = {{s1s2 | s1 ∈ S1, s2 ∈ S2}}. This defines a structure of
semiring on multisets where neutral elements are the empty multiset (i.e. the
series mapping all sequences to 0), denoted by ∅, and the singleton {{ε}} that
only contains the empty sequence. The constants 0 and 1 of the logic represent
those constants.

The semantics of WFO is defined inductively as follows:

{|0|}V(u, σ) = ∅ {|1|}V(u, σ) = {{ε}} {|k|}V(u, σ) = {{k}}

{|φ?Φ1 : Φ2|}V(u, σ) =

{
{|Φ1|}V(u, σ) if u, σ |= φ

{|Φ2|}V(u, σ) otherwise

{|Φ1 + Φ2|}V(u, σ) = {|Φ1|}V(u, σ) ∪ {|Φ2|}V(u, σ)
{|Φ1 · Φ2|}V(u, σ) = {|Φ1|}V(u, σ) · {|Φ2|}V(u, σ)

{|ΣxΦ|}V(u, σ) =
⋃

i∈{1,2,...,|u|}

{|Φ|}V∪{x}(u, σ[x 7→ i])

{|ΠxΦ|}V(u, σ) = {|Φ|}V∪{x}(u, σ[x 7→ 1]) · · · {|Φ|}V∪{x}(u, σ[x 7→ |u|])
{|Π−1x Φ|}V(u, σ) = {|Φ|}V∪{x}(u, σ[x 7→ |u|]) · · · {|Φ|}V∪{x}(u, σ[x 7→ 1])

For sentences (formulas without free variables), we remove the set V of vari-
ables as well as the valuation σ from the notation. Given a series f ∈ (N⟨K∗⟩)⟨A∗⟩
we say that f is WFO-definable if there exists a sentence Φf such that for all
words u ∈ A∗, f(u) = {|Φf |}(u).

We also define the 1-way fragments WFO→ and WFO← by discarding binary
product (·), as well as Π−1x and Πx, respectively.

The fragment rWFO→ of logic studied in [10] is obtained by the following
grammar:

Ψ ::= k | φ?Ψ : Ψ (step-wFO)
Φ ::= 0 | φ?Φ : Φ | Φ+ Φ | ΣxΦ | ΠxΨ (rWFO→)

where k ∈ K, φ is a formula of FO, and x is a first order variable.
Notice that the abstract semantics of a formula from step-wFO maps every

word to a singleton multiset. Since 1 is removed, as well as the binary product,
and Πx is restricted to step-wFO formulas, it is easy to check inductively that the

An Automata Theoretic Characterization of Weighted First-Order Logic 5

abstract semantics of a formula from rWFO→ maps every word u to a multiset
of sequences of weights all of the length of u.

To interpret the abstract semantics in terms of a single quantity, we more-
over provide an aggregation operator aggr : N⟨K∗⟩ → S to a set S of weights.
The concrete semantics of a formula Φ is then obtained by applying aggr over
the multiset obtained via the abstract semantics. The set S can be equipped
of various algebraic structures, like semirings or valuation monoids [11], as ex-
plained in [19]. In the case of a semiring, we for instance let aggr(f) be the sum
over all sequences k1k2 · · · kn of f(k1k2 · · · kn)× k1 × k2 × · · · × kn.

Example 1. As a first example, consider as a set of weights the languages over
the alphabet A. It is naturally equipped with a structure of semiring, where the
addition is the union of languages and the multiplication is the concatenation of
languages. This semiring is non-commutative which validates our introduction
of two product quantification operators, one from left to right and one from right
to left. For instance, suppose we want to compute the mapping f : A∗ → 2A

∗

that associates to a word u all the words of the form w̃w̃ with w all factors of u
(i.e. consecutive letters taken inside u), where w̃ denotes the mirror image of the
word w. For instance, f(abb) = {aa, bb, baba, bbbb, bbabba}. We can describe this
function via a formula of WFO as follows. We suppose that A = {a, b} to simplify,
and we let K = {a,b} be the weights that represent the singleton languages {a}
and {b}. Then, we describe a formula mirror-factor(x, y) that computes the mirror
image of the factor in-between positions pointed by x and y:

mirror-factor(x, y) = Π−1z (x ≤ z ∧ z ≤ y)?(Pa(z)?a : b) : 1

Then, the mapping f can be described with the formula Φ:

ΣxΣy (x ≤ y)?[mirror-factor(x, y) ·mirror-factor(x, y)] : 0

The abstract semantics of the formula associates a multiset of words w̃w̃ with
w all factors of u. For instance, {|Φ|}(aa) = {{aa,aa,aaaa}}. To provide a con-
crete semantics, we simply consider the aggregation operator that computes the
product of sets of weights and removes duplicates in multisets. ⊓⊔
Example 2. As a second example, consider the alphabet A = {a, b}, and the nat-
ural semiring (N,+,×, 0, 1), i.e. the aggregation operator that naturally comes
with a semiring. It is a commutative semiring, thus the operator Π−1 becomes
semantically equivalent (with respect to the concrete semantics, but not to the
abstract one) to Π. Consider the series f : A∗ → N defined for all words u ∈ A∗

by f(u) = |u|a|u|b , where |u|c denotes the number of a given letter c in the word
u. This series can be defined by the following formula, where we intentionally
reuse the same variable name twice (but the semantics would be unchanged if
the internal variable x was renamed y): Πx (Pb(x)?Σx (Pa(x)?1 : 0) : 1). The
abstract semantics maps a word with m letters a and n letters b to the multiset
containing mn copies of the sequence 1. For instance, for the word abbaa, the
abstract semantics computes {{ε}} · {{1, 1, 1}} · {{1, 1, 1}} · {{ε}} · {{ε}}, where we have
decomposed it with respect to the outermost Πx operator. Once aggregated, all
sequences map to 1, and we thus count mn as expected. ⊓⊔

6 Dhruv N. and B. Monmege

3 Nested Two-Way Weighted Automata

Weighted automata are a well-studied model of automata equipped with weights,
introduced by Schützenberger [22]. They have been extended to several weight
structures (semirings, valuation monoids), once again with a unified abstract
semantics introduced in [19]. They also have been extended with two-way navi-
gation, and pebbles or nested capabilities, in order to get more power [5,20]. In
order to simplify our later proofs, we first redefine the semantics of the nested
two-way weighted automata with the abstract semantics seen above for the logic.

Since we consider two-way navigation in a word, it is classical to frame the
finite word by markers, both on the left and on the right, so that the automaton
knows the boundary of the domain. We denote by ▷,◁ the left and right markers
of the input word, respectively, that are supposed to be symbols not already
present in the alphabet A we consider.

Definition 2. First, by convention, we let (−1)-nested two-way weighted au-
tomata to be constants of K. Then, for r ≥ 0, we let r-NWA(K, A) (or, r-NWA
if K and A are clear from the context) be the class of r-nested two-way weighted
automata over a finite set K of constants and alphabet A, that are all tuples
A = ⟨Q,Tr, I, F ⟩ where

– Q is a finite set of states;
– Tr is the transition relation split into two subsets.

1. For a ∈ A, there are transitions of the form (q, a,B, d, q′) ∈ Q × A ×
(r − 1)-NWA(K, A×{0, 1})×{←,→}×Q, meaning that the automaton
is in state q, reads the letter a, calls the (r− 1)-nested two-way weighted
automaton B over the same set K of weights and alphabet A × {0, 1}
(used to mark the current position), decides to move in the d-direction,
and changes its state to q′.

2. For a ∈ A∪{▷,◁}, there are some other transitions where the automaton
B is replaced by a weight from K, or by the special constant 1 (that we
used in the logic WFO) to forbid the call of a nested automaton (especially
on the markers): these transitions are thus of the form

(q, a, k, d, q′) ∈
(
Q×A× (K ∪ {1})× {←,→}×Q

)
∪
(
Q× {▷} × (K ∪ {1})× {→} ×Q

)
∪
(
Q× {◁} × (K ∪ {1})× {←} ×Q

)
where we have chosen to remove the possibility to move right on a right
marker, and left on a left marker (to avoid exiting the possible positions
in the input word);

– I ⊆ Q is the set of initial states;
– F ⊆ Q is the set of final states.

An automaton B that appears in the transitions of an automaton A is called
a child of A, and reciprocally A is a parent of B (notice that an automaton could

An Automata Theoretic Characterization of Weighted First-Order Logic 7

have several parents, since it can appear in the transitions of several automata).
This describes a directed acyclic relationship of dependency between automata:
we thus say that an automaton is a descendant of another one if they are re-
lated by a sequence of parent-child relationship. The unique automaton with no
ancestors shall be called the root.

In the following a transition of the form (q, a, x, d, q′) is said to go from state
q to state q′, reading letter a, having weight x, and is called a d-transition.

We now define the abstract semantics of an r-NWA(K, A) A, mapping each
word u ∈ A∗ to a multiset of sequences of weights {|A|}(u) ∈ N⟨K∗⟩. Config-
urations of such an automaton are tuples (u, i, q) where u = u1 · · ·un is the
word in {ε,▷}A∗{ε,◁} (that could start and end with the markers, or not, in
order to be able to define subruns on an unmarked word, that we will use later),
i ∈ {1, . . . , n} is a position in the word, and q ∈ Q is the current state. We call
run a sequence ρ = (u, i0, q0)

δ0,f0−−−→ (u, i1, q1)
δ1,f1−−−→ · · · δm,fm−−−−→ (u, im, qm), where

i0, . . . , im−1 ∈ {1, . . . , n}, im ∈ {0, 1, . . . , n, n + 1} is the final position (that
could exit the word on left or right) δ0, . . . , δm ∈ Tr and f0, . . . , fm are multisets
in N⟨K∗⟩ such that for all j ∈ {0, . . . ,m− 1}:

– δj is a transition from state qj to state qj+1 reading letter uij ;
– if δj is a →-transition then ij+1 = ij + 1, otherwise ij+1 = ij − 1;
– if uij ∈ A and the transition has weight B that is a (r − 1)-NWA(K, A ×
{0, 1}), then fj = {|B|}(u′) where u′ is the word over alphabet A × {0, 1},
that will later be denoted by (u, ij), whose left component is u and whose
right component is the constant 0 except at position ij where it is 1;

– if the transition has weight k ∈ K, then fj = {{k}},
– if the transition has weight 1, then fj = {{ε}}.

The initial position of the run is i0, and its final position is im. The run is
accepting if q0 ∈ I, qm ∈ F . Notice that we do not require runs to start on the
left marker and stop at the right marker. The weight wt(ρ) of this run is given
as the product of multisets f0 · f1 · · · fm.

A run is called simple if it never goes twice through the same configura-
tion. Not all runs are simple, but we restrict ourselves to using only those in
the semantics: otherwise, an infinite number of runs should be summed, which
would produce an infinite multiset (and then the aggregator function should be
extended to add this possible behaviour). This restriction was also considered in
[5,20].

We then let {|A|}(u) be the union (as multiset) of the weights of accepting
simple runs (whatever their initial and final positions). As for the logics above,
we may then use an aggregation operator to obtain a concrete semantics [[A]]
mapping each word u to a weight structure S.

Given a series f ∈ (N⟨K∗⟩)⟨A∗⟩ we say that f is NWA-definable if there exists
r ≥ 0 and an r-NWA(K, A) A such that for all words u ∈ A∗, f(u) = {|A|}(u).

Example 3. We describe in Figure 1 a 2-NWA A that recognises the series de-
scribed in Example 1. Two levels of nesting are used to mark non-deterministically
the positions x and y, such that x ≤ y (or only one of them if x = y).

8 Dhruv N. and B. Monmege

A
A,Ax,→

Ax

(A, 1),1,→

(A, 0),1,→

(A, 0),Ax,y,→

(a, 1), {a},→

◁, {a},←
(A, 0), {a},→

(b, 1), {b},→
◁, {a},←

(A, 0), {b},→

Ax,y

(a, 0, 1), {a},←
(b, 0, 1), {b},←

(a, 0, 0), {a},←
(b, 0, 0), {b},←

(a, 1, 0), {a},→
(b, 1, 0), {b},→

(A, 0, 0),1,→

(a, 0, 1), {a},←
(b, 0, 1), {b},←

(a, 0, 0), {a},←
(b, 0, 0), {b},←

(a, 1, 0), {a},←
(b, 1, 0), {b},←

Fig. 1. An 2-NWA that recognises the series described in Example 1. The letter A is
used in transitions to denote the presence of all possible letters from A. Notice that the
runs of all the automata may start and stop at any position of the word, as described
in the semantics.

Then, the last level of nesting is used to compute the value of the formula
mirror-factor(x, y) ·mirror-factor(x, y) by two passes from right to left. ⊓⊔

A run over a word u is called left-to-right (resp. left-to-left, right-to-right,
right-to-left) if its initial position is 1 (resp. 1, |u|, |u|) and its final position is
|u| + 1 (resp. 0, |u| + 1, 0). Intuitively, we thus use this terminology to detect
if a run starts on the first or last position of the word, and if it exits the word
either on the left or on the right.
Navigational restrictions. An r-NWA→ (respectively, r-NWA←) is an r-NWA
where all transitions appearing in the automaton or its descendants are →-
transitions (resp.←-transitions). Those models are called one-way in the follow-
ing, since the head movement is fixed during the whole run.

An r-nested sweeping weighted automaton (r-swNWA) is an r-NWA where
changes of directions are only allowed (in this automaton or its descendants) at
markers. More formally, states of the automaton and each of its descendants are
separated in two sets Q→ and Q← such that for all transitions (q, a,B, d, q′) or
(q, a, k, d, q′),

– if q, q′ ∈ Q→, then d =→;
– if q, q′ ∈ Q←, then d =←;
– if q ∈ Q→ and q′ ∈ Q←, then d =← and a = ◁;
– if q ∈ Q← and q′ ∈ Q→, then d =→ and a = ▷.

Ambiguity. An r-NWA A is called polynomially ambiguous if there is a poly-
nomial p such that over every word u on its alphabet the number of accepting

An Automata Theoretic Characterization of Weighted First-Order Logic 9

runs of A, as well as the number of accepting runs of any of its descendants, is
at most p(|u|). If the polynomial p is linear, A is said to be linearly ambiguous.
If the polynomial p is the constant 1, A is said to be unambiguous. Notice that
the condition deals with all runs, and not only the simple ones.

Polynomial ambiguity (indeed even finite ambiguity, where the number of
accepting runs must be finite for all words) implies that all accepting runs are
simple: otherwise, there would be an infinite number of accepting runs, by al-
lowing the loops to happen as many times as possible.

The 2-NWA of Figure 1 is linearly ambiguous since the toplevel automaton A
has only to choose the position where to start the run, the automaton Ax has
then only to choose the position where to call the next automaton, and the
automaton Ax,y is unambiguous.
Aperiodicity. In order to define a notion of aperiodicity for NWA, we need to
enhance the usual notion of aperiodicity for automata to incorporate weights,
two-way navigations, and nesting. As in [10], we simply do not care about weights
and thus require that the unweighted version of the automata are aperiodic. For
two-way navigations, we rely on existing extensions of the notion of transition
monoid for two-way automata and transducers [1,2,7]. Finally, for nesting, we
simply require that each automaton appearing in an NWA is aperiodic.

More formally, given a NWA A over the alphabet A, its transition monoid
is the quotient of the free monoid A∗ by a congruence relation capturing the
equivalence of two behaviours of the automaton. As for runs, we distinguish four
types of behaviours: left-to-left, left-to-right, right-to-left and right-to-right. The
left-to-left behaviour bhAll (w) of w ∈ {ε,▷}A∗{ε,◁} in A is the set of pairs of
states (p, q) such that there exists a left-to-left run over w from state p to state q
(notice that we do not care if the descendant automata that are called along
this run are indeed "accepting" the word). The other behaviours can be defined
analogously.

Definition 3. Let A = ⟨Q,Tr, I, F ⟩ be a NWA(K, A). The transition monoid
of A is A∗\ ∼A where ∼A is the conjunction of the following congruence rela-
tions, defined for w,w′ ∈ A∗ by:

– w ∼All w′ iff bhAll (w) = bhAll (w
′)

– w ∼Alr w′ iff bhAlr(w) = bhAlr(w
′)

– w ∼Arl w′ iff bhArl(w) = bhArl(w
′)

– w ∼Arr w′ iff bhArr(w) = bhArr(w
′)

Notice that in the previous definition, we only focus on words not containing
markers. This is because we only use this monoid in order to define aperiodicity
of the automata where we focus on powers of elements of the monoid, which
correspond to runs on iterates of a word in which it makes no sense to duplicate
some markers.

An r-NWA is aperiodic if its transition monoid, as well as the ones of all
its descendants, are aperiodic (i.e. for all elements x of the monoid, there is a
natural number n such that xn = xn+1).

10 Dhruv N. and B. Monmege

Given an NWAA, its left-to-right (resp. right-to-left) projection is the NWA
−→
A

(resp.
←−
A) obtained by only keeping →-transitions (resp. ←-transitions) in the

root automaton. Interestingly, when starting from sweeping automata, aperiod-
icity is preserved when taking such projections.

Lemma 1. If a swNWA A is aperiodic then
−→
A and

←−
A are aperiodic.

Proof. Let A = ⟨Q,Tr, I, F ⟩ be a swNWA(K,A). We prove the result for
−→
A . The

proof for
←−
A follows analogously.

Consider the word u ∈ A∗. Then there exists a natural number k such that
bhAe (u

k) = bhAe (u
k+1) for e ∈ {ll, lr, rl, rr}. If u = ε, then bh

−→
A
e (u) = {(p, p) | p ∈

Q} = bh
−→
A
e (u2) for e ∈ {ll, lr, rl, rr}. It remains to prove the lemma when u is

not empty. Immediately, we have bh
−→
A
ll (u) = bh

−→
A
ll (u

2) = bh
−→
A
rl (u) = bh

−→
A
rl (u

2) = ∅.
Since no run of the sweeping automaton A over u can change the direction
of its head movement over w that does not contain end markers, we have
bh
−→
A
lr (u

k) = bhAlr(u
k) = bhAlr(u

k+1) = bh
−→
A
lr (u

k+1). Finally, bh
−→
A
rr(u) = {(p, q) |

(p, u|u|, x,→, q) ∈ Tr} = bh
−→
A
rr(u

2).

For every word u ∈ A∗, we thus have bh
−→
A
e (uk′

) = bh
−→
A
e (uk′+1) for e ∈

{ll, lr, rl, rr}, where k′ = max(1, k). Hence,
−→
A is aperiodic. ⊓⊔

Results. The goal is to find an adequate characterisation of the automata models
that recognise exactly the series WFO-definable or the fragments introduced
before. Droste and Gastin [10] paved the way of this study by characterising
rWFO→ with a fragment of the classical one-way weighted automata, that are 0-
NWA→ where the semantics is computed by only considering accepting runs that
start on the first letter of the word, and end on the last letter of the word: this
is because of the specific type of multiset produced by formulas of rWFO→, all
elements being of the same length (the length of the input word). In particular,
markers are useless in this context.

Theorem 1 ([10]). For all series f ∈ (N⟨K∗⟩)⟨A∗⟩, the following conditions
are equivalent:

1. f is definable by a polynomially ambiguous aperiodic 0-NWA→

2. f is rWFO→-definable.

Here, and in the following, classes C1 and C2 of models are said to be equiva-
lent if for all models M1 ∈ C1 and M2 ∈ C2 working on the same alphabet and
the same sets of weights, and for all words u, the abstract semantics {|M1|}(u)
is equal to the abstract semantics {|M2|}(u). This then implies that, for every
aggregation function, the concrete semantics are also the same.

The proof of this theorem is constructive in both directions, and we will
revisit it in the next sections, providing generalisations of it in order to get our
main contribution:

An Automata Theoretic Characterization of Weighted First-Order Logic 11

Theorem 2. For all series f ∈ (N⟨K∗⟩)⟨A∗⟩, the following conditions are equiv-
alent:

1. f is definable by a linearly ambiguous aperiodic NWA;
2. f is definable by a polynomially ambiguous aperiodic NWA;
3. f is WFO-definable;
4. f is definable by a linearly ambiguous aperiodic swNWA
5. f is definable by a polynomially ambiguous aperiodic swNWA.

The rest of the article is devoted to a sketch of the proofs of Theorem 2. We
provide in Section 4 the sketch of proof of 3⇒ 4, in Section 5 the sketch of proof
of 5 ⇒ 3, and in Section 6 the sketch of proof of 2 ⇒ 5. We can then conclude
by the trivial implications 4⇒ 1⇒ 2.

As a side result, we also obtain a characterisation for one-way models:

Theorem 3. For all series f ∈ (N⟨K∗⟩)⟨A∗⟩, the following conditions are equiv-
alent:

1. f is definable by a linearly ambiguous aperiodic NWA→;
2. f is definable by a polynomially ambiguous aperiodic NWA→;
3. f is WFO→-definable.

These theorems complete the picture initiated in [5, Theorem 5.11] where it
is shown that, in commutative semirings, NWA (called pebble two-way weighted
automata, with a more operational view of dropping/lifting pebbles, but the
expressive power is identical) are equivalent to an extension of the logic WFO
with a bounded weighted transitive closure operator. It is also noted that, even in
non commutative semirings, the whole logic WFO→ with the bounded transitive
closure operator can be translated into equivalent NWA.

4 From the Logic to Automata

In this section, we prove the implication 3 ⇒ 4 of Theorem 2. This is obtained
by a generalisation of the proof given by Droste and Gastin in [10, Theorem 16],
where they only deal with restricted one-way logic and non-nested one-way au-
tomata. The proof is indeed simpler since we can rely on the use of nesting,
contrary to them where they need a careful construction for formulas ΠxΨ of
rWFO→.

The construction is performed by induction on the formula of WFO, making
use of nesting in automata, as originally demonstrated in [5, Proposition 5.13]
to transform every formula of a logic containing WFO (as well as a bounded
weighted transitive closure operator) into NWA.

As known since [23,21], from every formula φ of FO, we can obtain an equiva-
lent classical deterministic finite state automaton that is aperiodic, starts on the
marker ▷ and ends on the marker ◁. By putting on every transition the weight 1,
this results in a 1-NWA→ Aφ that is unambiguous and aperiodic, whose abstract
semantics is equal to the formula φ?1 : 0.

12 Dhruv N. and B. Monmege

Consider then a formula Φ = φ?Φ1 : Φ2, where, by induction, we already have
two r-NWA A1 and A2 for Φ1 and Φ2 (without loss of generality we adapt the
maximal level r of nesting by adding useless levels). We can use the 1-NWA→ Aφ

in order to produce an r-NWA equivalent to Φ: the first level consists in Aφ, and
once it unambiguously reach the marker ◁, we continue the run by going back
to the left marker, and continue either to A1 or to A2, whether the formula φ
was concluded to be satisfied or not, respectively.3

The sum and product of two formulas can be computed by taking the disjoint
union of two automata, or by starting the computation of the second after the
computation of the first one (either by going back to the beginning of the word,
or using a level of nesting).

For the quantification operators, we use one more level of nesting. Sup-
pose that we have an r-NWA(K, A × {0, 1}) A equivalent to a formula Φ with
a free variable x. Then, the formula Σx Φ can be defined by the following
(r + 1)-NWA(K, A), making use of the fact that we can non-deterministically
start and end a run wherever we want: the automaton thus has a single transi-
tion that calls A. For the Πx operator, the toplevel automaton scans the whole
word from left to right, and calls A on each position (that is not a marker).
For the Π−1x operator, we do the same but starting from the right marker and
scanning the whole word from right to left. In both the cases, the root of the
resulting automaton is aperiodic.

To conclude that the constructed NWA is linearly ambiguous and aperiodic,
we make use of the fact that linearly ambiguous aperiodic automata are closed
under disjoint union, nesting and concatenation with unambiguous (even finitely
ambiguous) automata. It is indeed true for the case of disjoint unions, the indi-
vidual automata still preserve the aperiodicity in their simulations and any run
in the new automaton must be restricted to one of the automata. In the case of
nesting, every transition of the soon-to-be-child automaton is replaced by all its
extensions with respect to the input letter. Since the transitions are now oblivi-
ous to the marking of an input, the aperiodicity of the new child automaton is
once again ensured under the extended alphabet. To understand the closure of
linear ambiguity of automata under concatenation with unambiguous automata,
one must just observe that the concatenation of automata essentially multiples
the ambiguities of the factor automata, since every run in the concatenation is
the sequence of a run in the first factor and one in the second.

5 From Nested Sweeping Weighted Automata to the
Logic

This section aims at proving the implication 5⇒ 3 of Theorem 2. We shall first
prove it in the 1-way case.

3 In the proof of Theorem 3, we replace this construction by the use of nesting that
allows one to restart from the first position of the word in order to compute the
behaviour of either A1 or A2.

An Automata Theoretic Characterization of Weighted First-Order Logic 13

Lemma 2. For all polynomially ambiguous aperiodic r-NWA→ (resp. r-NWA←),
there exists an equivalent formula of WFO→ (resp. WFO←).

Proof. Once again, we only deal with the left-to-right result, the other one being
obtained symmetrically. Let Ap,q denote the r-NWA→ obtained from A where
the initial and final states are p and q respectively. We prove by induction on r,
that for all r-NWA→ A and each pair of states p and q, we can construct a WFO→

sentence Φp,q such that {|Ap,q|} = {|Φp,q|}. We then conclude by considering all
initial states p and final states q.

If r = 0, the result follows, after trimming the root of A so that all states
can be reached from an initial state and reach a final state (no matter if the
descendant automata called on the transition indeed accept the word), directly
from the construction of Droste and Gastin [10, Proposition 9 and Theorem
10]. Note that trimming the automaton does not alter its semantics. The main
difference in our case is the fact that our automata can non-deterministically
start and end in the middle of the word. We may however start by modifying
them to force them to start on the left marker and end on the right marker: it
suffices to add self-loop transitions at the beginning and the end of weight 1 (so
that these additional transitions do not modify the abstract semantics).

We now suppose that r > 0, and assume that the result holds for r − 1.
Consider an r-NWA→(K, A) A that we suppose trimmed. As in the previous
case, we can produce a formula Φ for A, abstracting away for now the weight kB
on the transitions that stands for a (r − 1)-NWA→(K, A× {0, 1}) B.

We use the induction hypothesis to produce a formula ΦB of WFO for every
(r − 1)-NWA→(K, A×{0, 1}) B that appears in the transitions of A. We modify
this formula so that we incorporate a fresh first order variable x standing for the
position on which B is called. Then, we replace every subformula P(a,i)(y) with
(a, i) ∈ A× {0, 1} by Pa(y) ∧ y = x if i = 1, Pa(y) ∧ y ̸= x if i = 0.

In the formula Φ produced by Droste and Gastin, each weight kB appears in
a subformula with a distinguished first order variable x encoding the position of
the letter read by the transition that should compute the weight kB. Thus, we
simply replace every such weight kB by the modified formula ΦB above. ⊓⊔

We then turn to the case of sweeping automata.

Lemma 3. For every polynomially ambiguous aperiodic swNWA, there exists an
equivalent formula of WFO.

Proof. The proof also goes by induction on the level of nesting, and follows the
same construction as the previous lemma. The only novelty is the treatment of
change of directions in the runs. We thus only consider the case of 0-swNWA
below.

For a 0-swNWA A = ⟨Q,Tr, I, F ⟩, we show that for each pair of states p
and q, we can construct a formula of WFO Φp,q equivalent to Ap,q. As before,
without loss of generality, we can suppose that every accepting run starts on the
left marker, and stops on the right marker.

14 Dhruv N. and B. Monmege

Given a word w = w1 · · ·wm, every run from p to q on ▷w◁ can then be
decomposed as

(p,▷, k0,→, p0)ρ1(p1,◁, k2,←, p2)ρ2(p3,▷, k4,→, p4) · · ·
(p2n−1,▷, k2n,→, p2n)ρ2n+1(p2n+1,◁, k2n+2,←, q)

where ρ2i+1 only contains →-transitions (for i ∈ {0, . . . , n}), and ρ2i only ←-
transitions (for i ∈ {1, . . . , n}). Since we assume polynomial ambiguity of A,
we must have n ≤ |Q|. Otherwise, there exists a position which is visited twice
in the same state, thus allowing infinitely many runs over the input word by
pumping this looping fragment of the run. We then immediately obtain that, for
every word w, the multiset {|Ap,q|}(w) can be decomposed as∑

n≤|Q|
(p,▷,k0,→,p0),...,

(p2n+1,◁,k2n+2,←,q)∈Tr

{{k0}}{|
−→
Ap0,p1 |}(w){{k2}}{|

←−
Ap2,p3 |}(w) · · · {|

−→
Ap2n,p2n+1 |}(w){{k2n+2}}

It remains to show that the above decomposition can be translated into an
equivalent WFO sentence. Since trimming preserves aperiodicity, using Lemma 1,
we know that for every p, q ∈ Q, both

−→
Ap,q and

←−
Ap,q are aperiodic. By Lemma 2,

we can thus construct equivalent WFO sentences
←−
Φ p,q and

−→
Φ p,q, respectively.

We now define,

Φp,q =
∑

n≤|Q|
(p,▷,k0,→,p0),...,

(p2n+1,◁,k2n+2,←,q)∈Tr

k0 ·
−→
Φ p0,p1

· k2 ·
←−
Φ p2,p3

· · · ·
−→
Φ p2n,p2n+1

· k2n+2

It can be proved that {|Ap,q|} = {|Φp,q|}. Finally, we set Φ =
∑

p∈I,q∈F Φp,q and
we can check that this formula is equivalent to A. ⊓⊔

6 From Nested Two-Way Weighted Automata to Nested
Sweeping Weighted Automata

In this section we finally provide a sketch of the proof of 2 ⇒ 5 in Theorem 2.
This is the most novel and challenging part of the proof. In particular, notice that
such an implication requires the use of nesting: the following example of 0-NWA
does not have an equivalent 0-swNWA, even under the restriction of polynomial
ambiguity and aperiodicity.

Example 4. Consider the 0-NWA(K, A) Aex depicted in Figure 2, over the al-
phabet A = {a, b} and with weights K = {f, g}. Its semantics maps every word
of A∗ of the form u = am1b · · · amnb to the multiset {{fm1gm1 · · · fmngmn}}, and
every word of the form u = am1b · · · amn to the multiset {{fm1gm1 · · · fmn}}. The
automaton Aex is unambiguous (even deterministic). By a computation of its
transition monoid, it can also be shown to be aperiodic. We can prove (see the
long version [8]) that it has no equivalent 0-swNWA, since it is crucial that the
automaton switches direction several times in the middle of the word. ⊓⊔

An Automata Theoretic Characterization of Weighted First-Order Logic 15

p

ι

κ

q r

▷,1,→

◁,1,←

a, f,→

b,1,←

a, g,←

b,1,→

a,1,→

▷,1,→
b,1,→

Fig. 2. A 0-NWA Aex.

Consider now a 0-NWA A (we will explain at the very end how to do this
for an r-NWA). We build an swNWA A equivalent to it, that will moreover be
aperiodic and polynomially ambiguous if A is.

To understand our construction of A, consider an accepting simple run of A
over a word u. In order to get closer to a sweeping automaton, we first split the
run into subruns that go from the beginning of the run of the left marker to the
right marker or the end of the run (possibly hitting in the mean time the left
marker), and then to the left marker again (possibly hitting in the mean time
the right marker), and so on. We get at most |Q| subruns by doing so, since the
run is simple (and thus cannot visit more than |Q| times each marker).

For each subrun, we further decompose them as follows. We only present here
the decomposition for the left-to-right case, the other one being symmetrical.

For a left-to-right run over the word w = w1 · · ·wn (with w1 possibly being
equal to ▷, but wn ̸= ◁), we decompose it into the interleaving of subruns with
only→-transitions, ending in an increasing sequence of positions (ij)1≤j≤m, and
some right-to-right subruns on the prefix words w1 · · ·wij . Formally, every left-
to-right run can be written as ρ1λ1ρ2λ2 · · ·λm−1ρm where we have a sequence
of positions 0 = i0 < i1 < · · · < im−1 < im = n+ 1 such that

– for all j ∈ {1, . . . ,m}, ρj is a run over wij−1+1 · · ·wij−1 with only →-
transitions: notice that this run can be empty if ij = ij−1 + 1;

– for all j ∈ {1, . . . ,m−1}, λj is a right-to-right run over w1 · · ·wij that starts
with a ←-transition.

We exemplify the decomposition on the left of Figure 3. We thus build an
NWA A whose root automaton is a sweeping automaton that emulates the black
ρ-parts, interleaved with some new →-transitions from state p (in a position ij)
to state q (in the corresponding position ij + 1): the weight of this transition is
a (non-sweeping) NWA(K, A × {0, 1}) A(p,q) that is in charge of emulating the
blue subrun λj from state p to state q of A, keeping marked the position ij in
the second component of the alphabet A× {0, 1}.

We treat the various new automata A(p,q) recursively to transform them to
sweeping automata too. We thus similarly decompose the λ-subruns as before,
by adapting the previous decomposition working only for left-to-right runs. In
the decomposition of a right-to-right run over the word w = w1 · · ·wn (with
w1 possibly being equal to ▷, but wn ̸= ◁), the ρ-parts will be right-to-left,
and we will add a special left-to-right additional run τ at the end to come back

16 Dhruv N. and B. Monmege

i0 i1 i2 i3 n i41
ρ1

ρ2

ρ4

λ1

λ2

λ3

ni1i2i3
ρ1

λ1
ρ2

λ2ρ3

τ

i0

Fig. 3. On the left, the decomposition of a left-to-right run as a sequence
ρ1λ1ρ2λ2ρ3λ3ρ4 with ρ3 being empty. On the right, the decomposition of a right-
to-right run as a sequence ρ1λ1ρ2λ2ρ3τ .

to the right of the word. Formally, every right-to-right run can be written as
ρ1λ1ρ2λ2 · · ·λm−1ρmτ where we have a sequence of positions 1 ≤ im < · · · <
i1 < i0 = n+ 1 such that

– for all j ∈ {1, . . . ,m}, ρj is a left-to-right run over wij+1 · · ·wij−1−1 with
only →-transitions: notice that this run can be empty if ij−1 = ij + 1;

– for all j ∈ {1, . . . ,m − 1}, λj is a left-to-left run over wij · · ·wn that starts
with a →-transition;

– τ is a left-to-right run over wim · · ·wn.

We exemplify the decomposition on the right of Figure 3. Once again, the
automaton A(p,q) is transformed into a NWA where the root automaton is a
sweeping automaton that emulates the black ρ-parts, interleaved with some new
←-transitions with a weight being a NWA that computes the λ-subruns as well
as the τ one. We once again treat these NWA recursively similarly as before (new
cases occur in terms of directions).

This recursive decomposition of the runs, and thus the associated construc-
tion of sweeping automata, can be terminated after a bounded number of itera-
tions. Indeed, in all simple runs of A, no more than |Q| configurations are visited
for a particular position of the word. Since each recursive step in the decompo-
sition consumes each position in the black runs, this implies that after |Q| steps,
there are no remaining blue subruns to consider. At level |Q| of nesting, we thus
do not allow anymore the addition of new transitions that would simulate fur-
ther blue λ-subruns. The previous argument is the core of the correctness proof
showing that the sweeping automaton produced is equivalent to A.

In case A is an r-NWA, we use the black ρ-subruns to compute the children
automata of A with nested calls. In contrast the added transitions that are
supposed to launch the emulation of the blue λ-subruns call another sweeping
automaton below.

Example 5. We apply the construction on the 0-NWA of Example 4. This will
produce the 2-swNWA A in Figure 4. We also depict the actual decomposition

An Automata Theoretic Characterization of Weighted First-Order Logic 17

−→ι −→p ←−κA
▷,1,→

a, f,→

b,A1
←−p ,−→p ,→

◁,1,←

⊳ a b b a a b a ⊲
ι p p

qq
r r p

r
q

p p p
qq

r r
q
r p p

κ

←−pA1
←−p ,−→p

←−q −→r −→p
(b, 1),1,←

(a, 0), g,←

(▷, 0),1,→

(b, 0),A2
−→q ,−→p ,←

(a, 0),1,→

(b, 1),1,→

−→qA2
−→q ,−→p

−→r −→p
(b, 0, 1),1,→

(a, 0, 0),1,→

(b, 1, 0),1,→

Fig. 4. 2-swNWA A obtained by our construction, starting from the automaton of
Example 4, and the decomposition of a run of this automaton showing which sweeping
automaton computes each subrun.

of a run over the word ▷abbaaba◁. The black subruns are the ρ-parts that are
computed by the sweeping root automaton (it is sweeping, and not one way, just
because of the final transition). The automaton A1

←−p ,−→p is in charge of computing
the blue λ-subruns. Notice that the subscript tells the automaton that it should
start (at the marked position, which is checked by the first transition of the
automaton) in state p going left, and should stop (once again at the marked
position) in state p going right. There are two cases. For the leftmost λ-subrun,
the sweeping automaton can entirely compute it. For the other ones, it cannot
since there is a change of direction in the middle of the word. The red dotted part
is thus the τ -final piece of the decomposition in the second step of the recursion,
that is taken care of by automaton A2

−→q ,−→p .

The above construction preserves the ambiguity of the automata. However,
we are not able to directly show that it preserves aperiodicity. We must encode
more information in the state space of the various sweeping automata in order
to allow for the proof of aperiodicity. In particular, we encode some pieces of
information on the behaviours allowed in the current position, allowing us to
better understand the structure of the transition monoid of the built automaton.
The full construction and proof is given in the long version [8], which concludes
the proof of the last implication of Theorem 2.

18 Dhruv N. and B. Monmege

7 Conclusion

We have extended the results of Droste and Gastin [10] relating restricted weighted
first-order logic and aperiodic weighted automata with some restrictions about
ambiguity. We thus have closed open questions raised by them, introducing an
abstract semantics for a full fragment of weighted first-order logic, and show-
ing the equivalence between this logic and aperiodic nested weighted automaton
with linear or polynomial ambiguity.

We have only studied linear and polynomial ambiguity, contrary to Droste
and Gastin that have also characterised finitely-ambiguous and unambiguous
aperiodic weighted automata with fragments of the logic. We leave as future
work similar study for nested weighted automata, but we do hope that similar
restrictions may apply also in our more general case.

However, dropping the condition on polynomial ambiguity would certainly
lead to a logical fragment beyond weighted first-order logic. In particular, the
main difficulty is that the logic is not easily able to check the simplicity condition
of the accepting runs in this case.

Having introduced two-way navigations (and also nesting) makes possible to
ask similar questions to other input structures than words, like finite ranked or
unranked trees [16], nested words [14,3], or even graphs [4]. Nested weighted
automata and weighted logics have already been studied in this setting, without
any characterisation of the power of first-order fragments.

Last but not least, contrary to the unweighted setting, our characterization
(as well as the one by Droste and Gastin) does not yet lead to a procedure
deciding if the series recognised by a given (nested two-way) weighted automa-
ton is indeed recognisable by an aperiodic one, i.e. in the convenient first-order
fragment of the logic. We still lack the algebraic tools allowing for such decision
procedures.

References

1. Birget, J.C.: Concatenation of inputs in a two-way automaton. Theoretical Com-
puter Science 63(2), 141–156 (1989)

2. Birget, J.C.: Two-way automaton computations. RAIRO-Theoretical Informatics
and Applications 24(1), 47–66 (1990)

3. Bollig, B., Gastin, P., Monmege, B.: Weighted specifications over nested words. In:
FoSSaCS’13. LNCS, vol. 7794, pp. 385–400. Springer (2013). https://doi.org/
10.1007/978-3-642-37075-5_25

4. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Logical characterization of
weighted pebble walking automata. In: CSL-LICS’14. ACM (2014). https://doi.
org/10.1145/2603088.2603118

5. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and
weighted logics. ACM Transactions on Computational Logic 15(2:15) (Apr 2014).
https://doi.org/10.1145/2579819

6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

https://doi.org/10.1007/978-3-642-37075-5_25
https://doi.org/10.1007/978-3-642-37075-5_25
https://doi.org/10.1007/978-3-642-37075-5_25
https://doi.org/10.1007/978-3-642-37075-5_25
https://doi.org/10.1145/2603088.2603118
https://doi.org/10.1145/2603088.2603118
https://doi.org/10.1145/2603088.2603118
https://doi.org/10.1145/2603088.2603118
https://doi.org/10.1145/2579819
https://doi.org/10.1145/2579819

An Automata Theoretic Characterization of Weighted First-Order Logic 19

7. Carton, O., Dartois, L.: Aperiodic two-way transducers and FO-transductions.
Research Report 2103.15651, arXiv (2021)

8. Dhruv, N., Monmege, B.: An automata theoretic characterization of weighted first-
order logic. Research Report 2307.14707, arXiv (2023), http://arxiv.org/abs/
2307.14707

9. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Com-
puter Science 380(1-2), 69–86 (2007)

10. Droste, M., Gastin, P.: Aperiodic weighted automata and weighted first-order logic.
In: MFCS’19. No. 76 in LIPIcs, Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.76

11. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over val-
uation monoids and their characterization by weighted logics. In: Algebraic Foun-
dations in Computer Science. LNCS, vol. 7020. Springer (2011)

12. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. EATCS
Monographs in Theoretical Computer Science, Springer (2009)

13. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Information and Computation 220-221, 44–59 (2012)

14. Droste, M., Pibaljommee, B.: Weighted nested word automata and logics over
strong bimonoids. In: CIAA’12. LNCS, vol. 7381. Springer (2012)

15. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words.
In: DLT’06. LNCS, vol. 4036. Springer (2006)

16. Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory of
Computing Systems 48, 23–47 (2011)

17. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society 98, 21–52 (1961)

18. Fülöp, Z., Stüber, T., Vogler, H.: A Büchi-like theorem for weighted tree automata
over multioperator monoids. Theory of Computing Systems 50, 241–278 (2012)

19. Gastin, P., Monmege, B.: Adding pebbles to weighted automata: Easy specification
and efficient evaluation. Theoretical Computer Science 534, 24–44 (May 2014).
https://doi.org/10.1016/j.tcs.2014.02.034

20. Gastin, P., Monmege, B.: A unifying survey on weighted logics and weighted au-
tomata. Soft Computing 22(4), 1047–1065 (Feb 2018). https://doi.org/10.1007/
s00500-015-1952-6

21. McNaughton, R.F., Papert, S.A.: Counter-Free Automata. No. 65, MIT Press
(1971)

22. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4, 245–270 (1961)

23. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information
and Control 8, 190–194 (1965)

24. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR 149, 326–329 (1961)

http://arxiv.org/abs/2307.14707
http://arxiv.org/abs/2307.14707
https://doi.org/10.4230/LIPIcs.MFCS.2019.76
https://doi.org/10.4230/LIPIcs.MFCS.2019.76
https://doi.org/10.1016/j.tcs.2014.02.034
https://doi.org/10.1016/j.tcs.2014.02.034
https://doi.org/10.1007/s00500-015-1952-6
https://doi.org/10.1007/s00500-015-1952-6
https://doi.org/10.1007/s00500-015-1952-6
https://doi.org/10.1007/s00500-015-1952-6

	An Automata Theoretic Characterization of Weighted First-Order Logic

