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The adaptability of plant populations to a changing environment depends on their

genetic diversity, which in turn is influenced by the degree of sexual reproduction

and gene flow from distant areas. Aquaticmacrophytes can reproduce both sexually

and asexually, and their reproductive fragments are spread in various ways (e.g. by

water). Although these plants are obviously exposed to hydrological changes, the

degree of vulnerability may depend on the types of their reproduction and

distribution, as well as the hydrological differences of habitats. The aim of this

study was to investigate the genetic diversity of the cosmopolitan macrophyte

Ceratophyllum demersum in hydrologically different aquatic habitats, i.e. rivers and

backwaters separated from themain river bed to a different extent. For this purpose,

the first microsatellite primer set was developed for this species. Using 10 developed

primer pairs, a high level of genetic variation was explored in C. demersum

populations. Overall, more than 80% of the loci were found to be polymorphic, a

total of 46 different multilocus genotypes and 18 private alleles were detected in the

63 individuals examined. The results demonstrated thatmicrosatellite polymorphism

in this species depends on habitat hydrology. The greatest genetic variability was

revealed in populations of rivers, where flowing water provides constant longitudinal

connections with distant habitats. The populations of the hydrologically isolated

backwaters showed the lowest microsatellite polymorphism, while plants from an

oxbow occasionally flooded by the main river had medium genetic diversity. The

results highlight that in contrast to species that spread independently of water flow

or among hydrologically isolated water bodies, macrophytes with exclusive or

dominant hydrochory may be most severely affected by habitat fragmentation, for

example due to climate change.

KEYWORDS

microsatellites, multilocus genotypes, vegetative dispersion, Danube, river
channel, backwaters
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1 Introduction

Aquatic macrophytes are widely distributed and of great

importance in various freshwater and marine ecosystems. They

play a key role in aquatic food webs and biochemical cycles,

influence the hydrology and sediment dynamics of aquatic

habitats by altering current velocity, and provide habitat and

refuge for many living organisms from microbiota to vertebrates

and multiple benefits for humans (Bornette and Puijalon, 2011;

Hossain et al., 2017; Thomaz, 2023). It is widely recognized that

climate change threatens aquatic plants in several ways, including

rising temperature, CO2 concentration and dissolved organic

carbon, as well as changes in nutrient availability, light conditions

and salinity. Climate change has been proven to greatly affect the

growth and physiology of these plants, as well as the species

composition and ecosystem functioning (Hossain et al., 2017; Li

et al., 2017; Reitsema et al., 2018; Reitsema et al., 2020). First,

aquatic macrophytes are completely dependent on the water supply

of their habitat and are obviously exposed to hydrological changes

caused by global climate change. It is clear that where less

precipitation falls and the water supply of the habitats decreases,

the living conditions of macrophytes deteriorate, or, if the climate

becomes wetter, their potential habitats may increase. In river

ecosystems, altered flow regimes have significant effects on

macrophytes (Reitsema et al., 2020; Goldenberg-Vilar et al., 2022;

Rivaes et al., 2022). Droughts and floods associated with climate

change have both been shown to simplify physical habitats by

leading to shallow flow conditions and reduced hydraulic diversity,

especially in ecologically important pool and riffle features

(O’Briain, 2019).

Not only the amount, presence or absence of water in a given

habitat can affect the colonization of aquatic macrophytes, but also

the degree of connectivity between different habitats can be of great

importance. These plants can reproduce both sexually and

asexually, and their seeds and vegetative shoot fragments can

spread in several ways; by wind, birds or water (Santamarıá, 2002;

Capers, 2003; Jones et al., 2020). It is easy to understand, that

dispersion by water flow (hydrochory) is not possible between

hydrologically isolated habitats. In addition to sexual

reproduction, gene inflow from distant areas can significantly

increase the genetic diversity of populations, which can improve

their ability to adapt to changing environments (Cao et al., 2020;

Cao et al., 2021). Conversely, if a plant species reproduces mainly

vegetatively and has only limited ‘external’ propagating material

introduced into its population (or none at all), it is expected to be

more vulnerable to habitat changes.

Changes in the genetic diversity of populations can be caused or

enhanced by various environmental factors, among which habitat

heterogeneity and dispersal can play decisive role (Orsini et al.,

2013; Davis et al., 2018). The environmental factors have also been

suggested as important drivers of genetic variation in aquatic plants,

however, only a few studies focus on these organisms (Foust et al.,

2016; Robertson et al., 2017; Li et al., 2022 and references therein).

Temperature, salinity-gradient, heavy metals and bird-mediated

dispersal have been shown to affect macrophyte genetic diversity
Frontiers in Plant Science 02
(Gupta and Sarin, 2009; Triest et al., 2010; Cao et al., 2017; Li

et al., 2022).

Ceratophyllum demersum is a cosmopolitan submersed

macrophyte with wide climatic tolerance and all the ecosystem

functions detailed above (Les, 1986; Qadri et al., 2022). This species

is known for low sexual reproduction and predominance of clonal

growth (Les, 1988; Les, 1991). Although the main reproductive

mechanism of C. demersum is reported to be shoot fragmentation

(Arber, 1920; Les, 1991; Fukuhara et al., 1997), and dispersion of

this species relies on these vegetative fragments flowing in water

rather than pollen or seeds (Wade, 1993; Capers, 2003), the effect of

hydrological conditions on its genetic variability has never

been studied.

Most of the molecular studies on C. demersum are phylogenetic

(Moore et al., 2007; Szalontai et al., 2018; Albert and Renner, 2020;

Yang et al., 2020), and further investigations concern the genetic

alteration in response to heavy metal tolerance (Gupta and Sarin,

2009; Khaleel et al., 2022) and the isolation of genes encoding

enzymes potentially required for heavy metal accumulation (Shukla

et al., 2012). A variety of molecular markers and techniques have

been used for the genetic investigations of Ceratophyllum, from

karyology to AFLP, MSAP and ISSR markers (Triest et al., 2010;

Cao et al., 2017; Gargiulo et al., 2022; Li et al., 2022), however,

microsatellite primers and studies based on them have not yet been

published for this species. Microsatellites (i.e. short tandem repeats)

have been the most widely used markers for genotyping plants over

the past 20 years (Vieira et al., 2016), as they are multi-allelic

markers with a mutation rate of 103-106 per cell generation, which

can be 10 orders of magnitude greater than point mutations

(Gemayel et al., 2012). Their codominant nature, biparental mode

of inheritance and elevated levels of polymorphism (Goldstein and

Schlötterer, 1999; Schlötterer, 2000; Ellegren, 2004) have made

them particularly informative and powerful for investigating

genetic diversity and structure as well as demographic processes

(Kim and Sappington, 2013). The advantages of using microsatellite

markers, especially in population genetic studies, were even

demonstrated for macrophyte species (Ouborg et al., 1999; Triest

et al., 2010; Kong et al., 2019).

For the above reasons, the aim of the present paper is to explore

whether the microsatellite polymorphism of the worldwide

macrophyte C. demersum depends on the hydrology of the

habitat and how it can affect the genetic diversity of its

populations to changing environments. For this purpose, we have

developed and provide the first microsatellite primers set for

this species.
2 Materials and methods

2.1 Marker development

To produce high-quality DNA extract, C. demersum samples

were first rinsed and impurities were removed with toothbrushes.

The stems were then discarded and the leaves were used for

subsequent processes. About 80 g leaf material were grinded in
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200 ml of “grinding buffer” (450 mM Sucrose, 1.5 mM EGTA, 0.2%

[w / v ] b o v i n e s e r um a l b um i n [ B SA ] , 0 . 6% [w / v ]

polyvinylpyrrolidone 40, 10 mM dithiothreitol [DTT], 0.2 mM

phenylmethylsulfonyl fluoride [PMSF], and 15 mM MOPS [3-(N-

morpholino)-propanesulfonic acid]/KOH, pH 7.4). The cells were

disrupted by homogenizing for three periods of 15 s using a Waring

blender. Cell debris was removed by centrifugation at 3,000 g for 5

min. According to the recommendations, the sample DNA was

isolated using Thermo Scientific™ Genomic DNA Purification Kit

(Thermo Fisher Scientific, Waltham, MA, USA) and sequenced on

Illumina Miseq sequencer using v3 kit for 2x300 bp PE protocol.

The sequences were aligned using Mira4 (Chevreux et al., 1999) in

accurate mode and the contigs exceeding 1 kb length were used for

microsatellite prediction.

The potential SSR loci were mined from the assembled, total of

289 contigs, by QDD v. 3.1.2 (Meglécz et al., 2014) using default

parameters. The following criteria were used to select primer pairs

for laboratory testing: (i) the sequence contained only pure

microsatellites in the target region with at least six repeats; (ii)

did not contain repeats of (AT)n or (CG)n; (iii) the primer

alignment score to the amplified sequence was lower than six; (iv)

primers were at least five bases away from the microsatellite motif;

(v) no BLAST hit to non-Viridiplantae sequences in GenBank; and
Frontiers in Plant Science 03
only one microsatellite was selected from each contig to avoid

linkage disequilibrium. After the above selection, a total of 50

primer pairs were selected for initial screening.

Among the potential primers tested according to the protocol

detailed in the next section, 16 consistently amplified the target

sequences and showed signs of variability between the tested

individuals based on visual inspection of the agarose gel. Of the

16 loci, those with at least two alleles were retained for the final

marker set.

Finally, our marker development resulted in 10 recommendable

primer pairs to explore genetic polymorphism of C. demersum

(Table 1). The use of these primers is facilitated by the same optimal

annealing temperature and a wide range of the amplicon size, which

allows multiplexing of PCR products in a single reaction.
2.2 Sampling and laboratory work to
explore microsatellite polymorphism of
Ceratophyllum populations

Plant material was collected from five aquatic habitats belonging to

two main different hydrological types (Figure 1). Two habitats

represent rivers (hereinafter referred to as ‘river habitats’), namely (i)
TABLE 1 Characteristics of 10 microsatellite loci of Ceratophyllum demersum.

Locus Primer sequence (5’-3’)
Repeat
motif

Fluorescent dye
label

Ta
(C°)

Size range
(bp)

Na Ho

HME4 fw TTTAAATCCTTCTCCCATTCTTCAAA ATC NED 55 152-176 9 0.779

rv GCAGAACACATCTCTATCAATGGA

HME6 fw TTATGCCCAAGCTTATAATAGACTTGA ATC VIC 55 290-308 3 0.115

rv TCTTTCAAGAAGTGGATTTATGATTGT

HME11 fw GAGGAAGAGATTGGCCCTCC AG VIC 55 181-195 8 0.817

rv TCCATGATGATCGCTGACCA

HME14 fw GGTTGTCACCCTTCTTCTCTT AC FAM 55 94-106 4 0.316

rv CACAACCAGTGCGCGAATG

HME17 fw TCTGGAAGAGAAGAACAAAGTTTCA AGAT FAM 55 124-144 6 0.562

rv GCCTGACAATCATACATGTATAGACC

HME24 fw CCACTGATAGTAATTGCCTCCT ATC VIC 55 119-125 2 0.013

rv AGAATTCATGTAGCCGACCC

HME27 fw TCTTGTTAGGCCTTATTCATAGTTTC AG PET 55 160-226 11 0.756

rv TGACTAAACGCTGCTCTGGA

HME29 fw ACCTACCTGCTGTATTTGGCT AC PET 55 298-304 4 0.444

rv ACAGCAATCGAACTGTTCTGC

HME32 fw TCCCTATTGGACTGCATATTTCAT AG NED 55 189-205 6 0.967

rv GTGCAGGCTTCTTCTCTTGG

HME43 fw GGATTTAGGTTGTACTTTGCGC AAG NED 55 82-88 3 1.000

rv ACTCGGACAACGGAAACAGT
f
rontier
Values are based on the analyses of 63 individuals. Ta, optimal annealing temperature; Na, number of alleles per locus; Ho, observed heterozigosity.
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the main channel of the River Danube (RD) and (ii) the Soroksári

Danube (RS), the second largest side arm of River Danube in Hungary

between the 1642 and 1586 river kms. The latter is closed at both ends

by sluices regulating its water flow. Due to the hydrological regulation,

only a small amount of water enters the side arm from the main

channel, it is the fortieth to sixtieth part of the Danube’s water at mean

water-flow (Hungarian Hydrological Forecasting Service, 2023). In

addition to the two ‘river habitats’, three oxbows were also selected; (iii)

Schisler oxbow (OS) and (iv) Zátonyi Danube (OZ) in the Szigetköz,

the watery plain with many branches, islands and backwaters between

the main Danube channel and the Moson-arm, and (v) the oxbow

Mocskos Danube (OM), a former Danube side branch lying on the

floodplain of Béda-Karapancsa Landscape Protection Area. Of the five

habitats, only the main Danube channel and the Soroksári Danube

have water flowing continuously, and only these habitats have steady

longitudinal connections with distant river sections. Among the

backwaters, the Mocskos Danube can temporarily connect to the

Danube during the river’s floods, however, these events have only

occurred on a third of the days in the last fifty years (Hungarian

Hydrological Forecasting Service, 2023).

The two selected ‘river habitats’ allowed both large-scale and fine-

scale sampling: 13 plants were collected between the 1680-425 river

kms of the main Danube channel, and 16 samples were taken along the

1600 m long stretch of the Soroksári Danube, at river km 31. Sampling

in the oxbows was determined by the size of the water bodies and the

amount of plant cover in them. Furthermore, in order to avoid

sampling from the same plant (i.e. collecting multiple leaves of the

same individual), a distance of at least 30 m was kept between two

samples. In this way, the C. demersum stands in the 500, 400 and 900
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meter long sections of OS, OZ and OM provided 16, 8 and 10 plant

samples for the genetic investigations. Plant material was stored at 4°C

during transport to the laboratory, and then at -80°C until

DNA isolation.

DNA was extracted by homogenizing 200 mg frozen leaves in 800

ml CTAB isolation buffer (2%) following the protocol described in

Bousquet et al. (1990). The amplification procedure from 5 ml of DNA
extracts was carried out in 15 ml final reaction volumes containing 10X

PCR buffer, 3 mM MgCl2, 0.2 mM dNTPs, 0.05 units/ml of Taq DNA

polymerase (Taq DNA Polymerase, recombinant, Fermentas) and 0.5

mM of each primer. Forward primers were labelled fluorescently at

their 5’ end. The following cycling conditions were used: initial

denaturation for 5 min at 94°C, 40 cycles of 45 s at 94°C, 45 s at 55°

C, 45 s at 72°C; final elongation of 10 min at 72°C. The success of PCR

was checked by running 2 µl of product on 1.4% agarose gels stained

with GelRed Nucleic Acid Stain (Biotium Inc., Fremont, CA, USA).

After amplification, PCR products weremultiplexed in a single reaction

and fragment analysis was carried out on an ABI 3130 Genetic

Analyser. Allele sizes were estimated using Peak Scanner software

(Thermo Fisher Scientific, Waltham, MA, USA).
2.3 Statistical analyses

Checking for the presence of null alleles was performed using

Micro-Checker 2.2.3 (Van Oosterhout et al., 2004) by Monte Carlo

simulation of expected homozygote frequencies and heterozygote allele

size differences. Since null alleles were only observed in a single case, the

entire dataset was used for further analyses. Parameters of
FIGURE 1

Sampling locations along the Danube River. RD – the main Danube channel; RS, Soroksári Danube; OS, Schisler oxbow; OM, Mocskos Danube; OZ,
Zátonyi Danube. The numbers after the abbreviations indicate the serial numbers of samples, while numbers in the rectangles show the river
kilometers in the main river channel.
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polymorphism were determined using GenAlEx v. 6.5 (Peakall and

Smouse, 2006; Peakall and Smouse, 2012) and Fstat v. 2.9.4 (Goudet,

2003). Based on the genetic distance matrix calculated by Identix v.1.1

(Belkhir et al., 2002), UPGMA tree was constructed using PAST v. 4.12.

A minimum spanning network was generated by the bruvo.msn()

function of the ‘poppr’ package v. 2.9.3 in R (Kamvar et al., 2014;

Kamvar et al., 2015) using the Bruvo method (Bruvo et al., 2004) to

calculate genetic distances. To analyse the correlation between the

genetic and geographic distance matrices, a Mantel test was carried out

using GenAlEx v. 6.5 (Peakall and Smouse, 2006; Peakall and Smouse,

2012) with 9999 permutations. Genetic distances among individuals

were calculated by GenAlEx v. 6.5, while the geographic distance

matrix was produced by PAST v. 4.12 (Hammer et al., 2001).

The genetic structure of the populations has been analysed

using Bayesian-clustering method (Pritchard et al., 2000). The most

probable number of genetically differentiated groups (K) in the

populations was estimated and the individuals were assigned to

these groups. Structure 2.3.4 was run to carry out these analyses

using default settings with an initial burn in of 100,000 steps and

running length of 500,000 steps. In the evaluation of the results, DK
was computed which indicates the change in log probability

between successive K values (Evanno et al., 2005). Structure

Harvester Web 0.6.94 (Earl and vonHoldt, 2012) was used to

compute the DK values. The package ‘pophelper’ in R (Francis,

2017) was applied to average the ten runs of the most probable K

value given by Structure and correct for label switching.

To reveal the genetic differentiation among plant samples from

the five selected habitats, the microsatellite allele frequency data

were evaluated by standardized principal component analysis

(PCA) using SYN-TAX 2000 computer program package

(Podani, 2001).
3 Results

3.1 Level of microsatellite polymorphism

All indices of polymorphism indicated a high level of variation

in C. demersum populations (Table 2). Overall, more than 80% of
Frontiers in Plant Science 05
the loci were found to be polymorphic. The average number of

alleles per locus was slightly more than 3 and the average frequency

of heterozygotes was over 57%. A total of 46 different multilocus

genotypes and 18 private alleles were detected in the 63 individuals

examined. The variability parameters corrected for sample size, i.e.

the number of effective alleles and the allelic richness in total were

2.222 and 2.905, respectively.

The data clearly show greater genetic variability in river

populations than in backwaters (e.g., Ne 2.567 and 1.992; AR

3.606 and 2.437, for the former and the latter, respectively). The

average number of alleles per locus, the number of effective alleles,

allelic richness and Shannon’s information index all reached the

highest values in the Danube River and the Soroksári side arm,

while among the backwaters, most of these values were the highest

in the Mocskos oxbow (Table 2).
3.2 Structure of the genetic variation

According to the hierarchical classification, none of the

populations formed completely separate clusters, i.e. samples

from the different habitats have mixed with each other to some

extent (Figure 2). However, with the exception of three samples of

Mocskos Danube oxbow, plants of backwater habitats were

included in one main clade (marked with a dashed box at the

hierarchical level of 0.450 on the UPGMA tree). The largest distance

between all oxbow samples was 0.500 (marked with black arrow in

Figure 2). Contrary, plants from the two river habitats showed

higher mixing and dissimilarity (the latter indicated by an empty

arrow at the distance level of 0.650 on the UPGMA tree).

Geographically closer samples were not clearly placed in closer

clades, which is consistent with the result of Mantel test showing a

statistically significant positive but weak correlation between

geographic and genetic distance (R=0.249, p=0.0001). It can also

be observed in Figure 2, that multilocus genotypes consisting of

several plant samples occurred in both river habitats and

backwaters (up to six plants per genotype, in both habitat types).

Minimum spanning network also shows that plants belonging to

the river habitats can appear quite far from each other, and larger
TABLE 2 The parameters of variability based on 10 microsatellite loci.

Habitat N Na Ne AR NPA MG I P% Ho He

RD 13.00 4.600 2.744 3.996 9 12 1.039 90.0 0.538 0.517

RS 15.80 3.700 2.390 3.216 3 10 0.867 90.0 0.560 0.457

River total 14.40 4.150 2.567 3.606 6 11 0.953 90.0 0.549 0.487

OS 15.80 2.400 2.179 2.377 0 13 0.703 70.0 0.663 0.425

OZ 8.00 2.300 1.785 2.300 1 3 0.567 70.0 0.613 0.355

OM 10.00 2.700 2.012 2.635 5 8 0.724 90.0 0.510 0.425

Oxbow total 11.27 2.467 1.992 2.437 2 8 0.665 76.7 0.595 0.402

Total 12.52 3.140 2.222 2.905 18 46 0.780 82,0 0.577 0.436
frontier
N, sample size; Na, average number of alleles per locus; Ne, the number of effective alleles; AR, allelic richness (N=8); NPA, number of private alleles; MG, the number of multilocus genotypes; I,
Shannon’s information index; P%, percentage of polymorphic loci on the basis of the 95% criterion; Ho, observed heterozygosity; He, expected heterozygosity. RD, the main Danube channel; RS,
Soroksári Danube; OS, Schisler oxbow; OM, Mocskos Danube; OZ, Zátonyi Danube.
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circles, i.e. multilocus genotypes with more than one sample, are

colored differently, indicating that they were observed in all

habitats (Figure 3).

According to the Structure analysis, the most probable number

of genetically differentiated groups (K) proved to be three

(Figure 4). The plants of the main Danube channel consisted

predominantly of a single genetic cluster, in addition to which,

another genetic cluster appeared in high proportion in the Soroksári

Danube. The samples of these two river habitats were clearly

separated from those of Schisler and Zátonyi oxbows, which were

mainly characterized by the third cluster. In the Mocskos Danube,

all three clusters were mixed.

The ordination of microsatellite data resulted in two large,

overlapped groups of samples taken from the main Danube River

and the Soroksári side arm, and three smaller and better-separated

groups representing the oxbow samples (Figure 5). This means that

the populations of the three oxbows were separated from each other

while the plants of two river habitats were mixed based on

microsatellites. As the areas of the polygons enclosing objects in

the scattergram are proportional to the variability between the

objects (i.e. the larger the area the higher the variability), the

result demonstrated that genetic variability of C. demersum in

river habitats was higher than in backwaters. Comparing the

backwater samples, the plants of the Mocskos oxbow showed the

highest variability.
4 Discussion

Although microsatellites have become the most widely used

markers for genotyping plants, and the benefits of their use were
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demonstrated even in population genetic studies of macrophytes,

microsatellite primers have not yet been published for C. demersum.

Based on the newly developed loci, this study revealed differences in

the microsatellite polymorphism of C. demersum populations

related to the hydrological types of the habitats. Although the

number of samples obtained from the populations was not

exactly the same due to differences in size and vegetation cover of

the water bodies, the number of effective alleles and allelic richness

make it possible to compare the genetic variability of populations

with different sample sizes. Both calculated variability parameters

showed greater genetic variability in riverine habitats than in

backwaters. In addition, the applied multivariate analyses revealed

low genetic variability from backwaters based on both the smaller

(Zátonyi and Mocskos oxbows) and larger sample sizes (Schisler

oxbow). The results also demonstrated that a high number of

multilocus genotypes could be detected from both river and

backwater populations, however, the observed genotypes were

genetically closer to each other in the latter than in the

former habitat.

Genetic variation is highly dependent on the ratio of sexual and

asexual reproduction, as well as the short- and long-distance

dispersal of sexual and vegetative propagules (Eckert et al., 2016).

Asexual spread is often assumed to be important in local, short-

distance dispersal while regional, long-distance dispersal is thought

to be based on sexual reproduction (Santamarıá, 2002). However,

the low sexual reproduction and the predominance of clonal growth

and vegetative dispersion of C. demersum (Les, 1988; Les, 1991;

Wade, 1993; Capers, 2003) suggest that the revealed genetic

variability is the result of differences in vegetative propagation. In

addition, the clear relationship observed between the genetic

diversity of populations and the hydrological types of the habitats
FIGURE 2

UPGMA tree based on genetic distance matrix among individuals. RD, the main Danube channel; RS, Soroksári Danube; OS, Schisler oxbow; OM,
Mocskos Danube; OZ, Zátonyi Danube. Samples from river habitats and oxbows are indicated by bluish and yellowish-red colors, respectively. The
dashed box shows the main clade that contains the majority of oxbow plants. Black and empty arrows indicate clades that contain all backwater and
river samples, respectively.
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indicates that the mode of propagule spread is mainly hydrochory.

The greatest genetic variability was revealed in river populations,

where continuously flowing water provides a constant longitudinal

connection with distant habitats. Contrary, C. demersum stands in

the hydrologically isolated backwaters showed the lowest genetic

diversity. The population of Mocskos oxbow, occasionally flooded

by the Danube, which enables gene flow, had medium genetic

diversity. If the majority of C. demersum propagules were not
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spread by water but by wind or birds, they could easily reach the

backwaters that are hydrologically isolated from the main river but

geographically very close to it.

Topography and geographic distance affect population genetic

structure of plants, especially in aquatic habitats (Kong et al., 2019).

However, unlike ponds and isolated backwaters that are discrete in

terrestrial landscapes, water flows continuously in rivers and

interconnected aquatic habitats, and the longitudinal connection
FIGURE 4

Bayesian assignment of individuals based on 10 microsatellite loci. RD, the main Danube channel; RS, Soroksári Danube; OS, Schisler oxbow; OM,
Mocskos Danube; OZ, Zátonyi Danube.
FIGURE 3

Minimum spanning network based on Bruvo’s distance. Each node on the graph represents a different multilocus genotype, while the edges show
the genetic distances between them. Areas of circles are proportional to the number of multilocus genotypes displayed. RD, the main Danube
channel; RS, Soroksári Danube; OS, Schisler oxbow; OM, Mocskos Danube; OZ, Zátonyi Danube.
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of distant sections is ensured in these habitats. The importance of

water flow in the establishment of plants was also demonstrated in

the case of other submerged macrophytes, for which, however, seeds

and the wind and animal-mediated dispersal were of great

importance (Chen et al., 2009; Pollux et al., 2009; Triest et al.,

2010). The spread of these macrophytes can be significant even

against the water flow (Chen et al., 2009; Jones et al., 2020) or

between water bodies with no hydrological connection, potentially

providing their populations with high genetic diversity. Conversely,

when hydrochory is exclusive or dominant, hydrological

connections between habitats are crucial for gene flow, as the

results of the present study suggest for C. demersum.

Of course, genetic diversity detected at marker loci in clonally

spreading populations may be attributed to somatic mutations,

which are enhanced by rapid clonal growth and a large amount of

vegetative propagules (de Witte and Stöcklin, 2010; Eckert et al.,

2016; Zhu et al., 2017; Kong et al., 2019). However, there are no

reports on somatic mutation related to C. demersum.

For the above reasons, although habitat deterioration affects all

macrophytes, the loss of hydrological connections between habitats

is expected to be more severe for species, such as C. demersum,

whose population genetic diversity is highly dependent on flow
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conditions and hydrological connectivity. The harmful effects of

this kind of habitat fragmentation may appear as a result of any

local anthropogenic intervention (cf. Cao et al., 2021) or global

processes, such as climate change. The effect of the latter is also

enhanced by temperature changes, which further reduce the genetic

diversity of macrophytes by altering reproductive strategies,

resulting in fewer flowers and thus less sexual reproduction (Li

et al., 2017). That is, the main processes of climate change can

reinforce each other, impairing the adaptability of macrophyte

populations and endangering their ecosystem functions.
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