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Abstract 

Purpose: To assess the impact of PHF6 alterations on clinical outcome and 

therapeutical actionability in T cells acute lymphoblastic leukemia (T-ALL). 

Experimental Design: We described PHF6 alterations in an adult cohort of T-ALL from 

the French trial GRAALL 2003/2005 and retrospectively analyzed clinical outcomes 

between PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC and 

ChIP-seq data of patient samples to analyze the epigenetic landscape of PHF6ALT T-

ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combine with 

venetoclax, in PHF6ALT T-ALL. 

Results: We show that PHF6 alterations account for 47% of cases in our cohort and 

demonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes. 

Integrative analysis of DNA methylation and histone marks shows that PHF6ALT are 

characterized by DNA hypermethylation and H3K27me3 loss at promoters 

physiologically bivalent in thymocytes. Using patient-derived xenografts (PDX), we 

show that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism with 

the BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing PHF6ALT T-

ALL using fresh samples. Importantly, we report three cases of refractory/relapsed 

(R/R) PHF6ALT patients who were successfully treated with this combination. 

Conclusions: Overall, our study supports the use of PHF6 alterations as a biomarker 

of sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL.  
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Translational Relevance 

Predicting and treating R/R T-ALL remains a major challenge and require improved 

patient prognosis stratification and biomarkers for targeted therapies. PHF6 is 

frequently mutated in adult T-ALL, but the impact of its alterations on clinical outcome 

and their actionability as a therapeutic target remain elusive. We describe PHF6 

alterations in 216 T-ALL and show that PHF6 loss of function is associated with better 

outcome, independently of other known prognostic parameters. Using multiomics 

approaches, we demonstrate that PHF6 alterations in T-ALL is associated with DNA 

hypermethylation and H3K27me3 loss at promoters physiologically bivalent in 

thymocytes. Using fresh samples of R/R T-ALL, we revealed increased in vivo 

sensitivity of PHF6ALT T-ALL to the demethylating agent 5-azacitidine alone or 

associated with the BCL2-inhibitor venetoclax. We report three cases of R/R PHF6ALT 

T-ALL patients successfully treated with this combination. Overall, our study supports 

the use of PHF6 alterations as a biomarker of eligibility to 5-azacytidine and venetoclax 

in R/R T-ALL.  
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Introduction 

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous hematological disease 

resulting from malignant proliferation of immature thymic cell precursors blocked at 

varying stages of differentiation, which partially recapitulates normal lymphoid T-cell 

ontogeny (1). T-ALL mostly occurs in children and young adults (10%-15% and 20%-

25% of ALL cases, respectively) (2). The use of intensive chemotherapy regimens has 

considerably improved the outcome of adult T-ALL. Yet, refractory and relapsed 

disease conveys a dismal prognosis with a 6-to-9 months median survival (2–5). 

Therefore, improving patient prognosis stratification and finding biomarkers for 

innovative targeted therapies is of major importance. Epigenetic alterations are 

frequent events in T-ALL and can offer unique therapeutic vulnerabilities to epigenetic 

modifiers such as the hypomethylating agent 5-azacytidine. However, the eligibility of 

T-ALL patients to this therapy is still debated (6,7). 

Plant Homeodomain Finger protein 6 gene (PHF6) was originally identified as the 

causative gene of Börjesson-Forsmann-Lehman syndrome (BFLS), a rare X-linked 

neurodevelopmental disorder (8). PHF6 is frequently altered by somatic LoF mutations 

and deletions in T-ALL (~40% adult and ~15% pediatric cases) and T/M mixed-

phenotype acute leukemia (MPAL), and less frequently in myeloid malignancies or 

clonal hematopoïesis (9–14). The PHF6 protein localizes within the nucleolus where it 

support a role in the control of transcription and ribosome biogenesis (15,16). In 

addition, PHF6 has been demonstrated to control chromatin accessibility through 

interaction with chromatin remodelers such as NuRD and SWI/SNF complexes (15,17–

19).  

PHF6 alterations are associated with NOTCH1 and IL7R/JAK/STAT pathway genes 

gain-of-function mutations, PRC2 complex genes LoF mutations, WT1 and PTPN2 
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deletions and TLX1 or TLX3 ectopic expression (20–27). Analysis of clonal evolution 

and mutation dynamics using paired diagnostic and relapse samples identified PHF6 

LoF as an early events in T leukemogenesis (28). Mechanistically, increased self-

renewal in the hematopoietic stem cell compartment following PHF6 LoF have been 

reported as a major feature contributing to leukemia (28–31). Even though PHF6 

alterations are often found in adult T-ALL, their impact on prognosis and their 

therapeutic actionability remain poorly explored (31–33).  

In this study, we analyzed PHF6 alterations in a large cohort of adult T-ALL from the 

Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) 03/05 French 

trials. Our data demonstrate that PHF6 alterations in T-ALL lead to DNA 

hypermethylation and is associated with response to demethylating drugs alone or in 

combination with the BCL2 inhibitor venetoclax. 

Material and Methods 

Patients enrolled in the GRAALL 2003-2005 study 

Patients were enrolled in the GRAALL-2003-2005 trials (registered on 

http://clinicaltrials.gov as follows: GRAALL-2003, #NCT00222027; GRAALL-2005, 

#NCT00327678). 216 patients out of 337 were included in this study based on DNA 

availability for molecular analyses. No differences in clinical outcomes were observed 

between the included patients and the entire cohort (data not shown). Diagnostic 

samples were collected after informed consent according to the Declaration of Helsinki. 

Immunophenotyping was performed as previously described (1). All samples used 

contained at least 80% blasts. Patient minimal residual disease (MRD) was assessed 

as previously described (59). 
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Patients enrolled in the ALL-TARGET study 

The three 5-AZA-Venetoclax treated-patients reported in this manucript have been 

registred within the ALL-TARGET, Registry of Relapsed/Refractory T-cell Acute 

Lymphoblastic Leukemia, trial. This study has been registered on ClinicalTrials.gov. 

under NCT05832125 references.  

Next-generation sequencing, copy number, and molecular analyses 

Genomic analysis was performed by pan-exon targeted next-generation sequencing 

of DNA extracted from diagnosis samples. The next-generation sequencing panel 

included 103 genes relevant in hematological malignancies (Nextera XT gene panel; 

Illumina, San Diego, CA). Libraries were prepared according to Illumina instructions 

and sequenced on a MiSeq instrument (Illumina; 500× with mean coverage 95%). 

Sequence reads were aligned to the reference genome (GRCh38) using our in-house 

software Polyweb (Institut Imagine, Paris). Variant filtering and calling were performed 

using validated criteria (coverage <30×, <10 alternative reads or variant allelic fraction 

< 7%, polymorphisms described in dbSNP, 1000Genomes, EVS, Gnomad, and EXAC 

with a calculated mean population frequency >0.1%); annotations were done using 

somatic database COSMIC and ProteinPaint (St Jude Children's Research Hospital—

Pediatric Cancer data portal). Some mutations were confirmed by Sanger sequencing. 

Copy number variants were assessed either by multiplex ligation-dependent probe 

amplification technique (SALSA-multiplex ligation-dependent probe amplification P383 

T-ALL probe mix (MRC-Holland, Amsterdam, Netherlands) kit containing 53 probes for 

13 different chromosomic regions of diagnostic or prognostic importance in T-ALL. 

PHF6 deletions were confirmed by high-resolution array comparative genomic 

hybridization as previously reported (35). 
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EPIC array analysis 

Intensity Data (IDAT) files from Illumina Infinium Methylation EPIC BeadChip (EPIC 

arrays) were processed and normalized with RnBeads Bioconductor package. Probes 

with high SNP probability and bad detection P-values were filtered out. EPIC arrays 

were also used for copy number analysis using the conumee Bioconductor package, 

and further processed with GISTIC2 to identify recurrent copy number aberrations. 

Probes located in regions with altered copy numbers were excluded from downstream 

analysis. Differential methylation analysis was performed using Limma R package (60). 

ChIP-seq analysis 

BAM files for thymocytes ChIP-seq datasets were obtained from the BLUEPRINT 

consortium. Peak calling was performed as previously described (38). Regulatory 

features were found by overlapping histone marks peaks with the GenomicRanges R 

package. Enrichment analysis of DMPs within regulatory regions was performed with 

the LOLA Bioconductor package. As background probes, we used all the annotated 

probes of the EPIC analysis. 

RNA sequencing and data analysis 

For T-ALL, 89 primary samples with eligible RNA were analyzed by poly(A)-enriched 

RNA-Seq. Fragments were sequenced in stranded paired-end mode (2×50 bp) using 

the Agilent platform. Variance-stabilized log2 expression values were computed using 

DESEq2 R package. Z-scores of log2 expression values were computed to perform 

hierarchical clustering analysis using Euclidean distance and complete clustering 

method arguments with ComplexHeatmap R package. Uniform Manifold 

Approximation and Projection for dimension reduction was performed using the M3C 

R package.  
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Patient-derived xenografts  

Patient-derived xenografts (PDX) were generated from primary T-ALL samples as 

previously reported.38 106 viable leukemic cells were xenografted by intravenous 

retro-orbital injection in 6-weeks old NSG mice. Mice were monitored weekly by flow 

cytometry for leukemic load (FSChi, hCD7+, hCD45+ cells) in peripheral blood. Animal 

were clinically and biologically monitored until endpoint was reached or terminally ill, 

according to local ethical rules and home office license (30078-2021021814199445). 

Bone marrows from tibiae, hip, femora and vertebrae were collected for subsequent 

ex vivo experiments. All samples used contained ≥90% blasts. 

PDX 5-azacytidine treatment 

Mice were treated in a “curative-like” setting, starting when peripheral blood blast 

counts exceeded 1%. They received 5 mg/kg/day 5-Azacytidine intra-peritoneally (IP) 

for five days twice with two days break. Untreated mice received the same volume of 

NaCl IP. Mice were sacrificed when the blast fraction was more than 80% or if mice 

presented clinical signs of disease (loss of weight >10%, neurological symptoms, 

tumor development). The national ethics committee approved the mouse study: 

PROJET APAFIS # 8853 N° 2017020814103710. 

Cytotoxic assay of fresh patient samples  

Fresh blast-infiltrated samples were counted for cellularity, assayed by flow cytometry 

to quantify blast-infiltration. Samples had at least 20.106 cells with more than 25% 

blasts and 50% of viability before incubation with drugs. Cell suspension was incubated 

with 1.25 to 5 µg/µL of 5-azacytidine combined, or not with 125 µM of venetoclax. Cells 

were then cultured in a complete medium supplemented with cytokines, at 37°C. After 

3 days of incubation, cell viability was assessed by flow cytometry (Annexin-

V/Propidium iodide). 
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Statistical analyses  

Statistical analyses were performed using GraphPad Prism 8 software and R (version 

4.2.0). The following were used to indicate significant differences: • : P > 0.05; * : P < 

0.05; ** : P < 0.01; *** : P <0 .001; **** : P <0 .0001. 

Data availability 

The data generated in this study are not publicly available due to information that could 

compromise patient privacy or consent but are available upon reasonable request from 

the corresponding author, vahid.asnafi@aphp.fr. 

Results   

PHF6 alterations are frequent in adult T-ALL 

To assess the prevalence of PHF6 alterations in T-ALL, we analyzed data from 

targeted whole-exome sequencing and copy number analysis previously obtained for 

216 adult patients from the GRAALL-03/05 protocols (34). 47% patients had at least 

one PHF6 LoF alteration in our cohort (102 ALT patients versus 114 WT) (Figure 1A). 

The most frequent alterations were nonsense mutations followed by frameshift indels 

and missense mutations (Figure 1B-C). Truncating mutations were frequently located 

within the 5’ half of the protein whereas missense mutations were almost exclusively 

found at the ePHD2 and 3’ PHD zinc finger domain. 

We then compared the oncogenetic landscape between PHF6ALT and PHF6WT T-ALL 

PHF6 LoF was significantly associated with increased mutational rates of WT1 and 

RUNX1, and decreased mutational rate of ETV6, three transcription factors known to 

be frequently altered in immature T-ALL. As previously reported, PHF6 alterations 

frequently co-occurred with activating NOTCH1 and IL7R pathway (IL7R, JAK1, JAK3, 

STAT5B, DNM2, PTPRC, PTPN2) mutations. The RAS signaling regulator NF1 was 

mailto:vahid.asnafi@aphp.fr
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also frequently co-inactivated. Among epigenetic factors, PHF6 alterations were 

associated with increased mutational rates of the PRC2 complex gene SUZ12, ASXL1 

and CTCF. Conversely, PHF6 alterations segregated from mutations in DNMT3A and 

IDH2, both implicated in DNA methylation process (Figure 1D-E and Supplementary 

Figure S1A). PHF6 alterations were less frequent in mature TCRAB expressing T-ALL 

(25% vs 75% with p = 0.01) (Figure 1F). Consistent with seminal studies, PHF6 LoF 

anomalies were significantly associated with ectopic expression of both TLX1 and 

TLX3 with marked enrichment in the TLX1 subtype (35% vs 12% with p < 1.10-4 and 

19% vs 9% with p = 0.03 respectively) (Figure 1G). In line with their absence in TCRAB 

expressing T-ALL, PHF6 alterations were virtually absent from the TAL1 deregulated 

subtype (1% in PHF6ALT T-ALL vs 26% in PHF6WT cases, p < 1.10-4).  

Finally, we addressed the question of the conservation of PHF6 alterations from 

diagnosis to relapse. In a series of 5 protocolar paired diagnosis/relapsed PHF6ALT 

patients, all retained PHF6 alteration at relapse (Supplementary Figure S1B). We 

decided to confirm these results on a larger non protocolar cohort of 37 other patients 

bearing PHF6 pathogenic variant at diagnosis (Supplementary Table 1). Among them, 

35 (95%) retained PHF6 alteration at relapse. These results suggest that PHF6 

alterations are strongly conserved during the clonal evolution of the disease. 
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PHF6 alterations are associated with better clinical outcomes in the GRAALL-

03/05 protocols 

A clinical and biological comparison of cases with and without PHF6 alterations is 

shown in Table 1. PHF6ALT patients were significantly older than the rest of the cohort 

(median age of 34.17 versus 28.22 years with p = 0.04).  

We also analyzed treatment response in PHF6ALT and PHF6WT cases in our cohort. 

There was no significant difference between the two groups regarding steroid response 

and early bone marrow blast clearance. Nevertheless, and despite older age, PHF6ALT 

patients had significantly lower rates of death during induction (1% versus 7%, p = 

0.04), and higher attainment of complete remission (96% versus 89%, p = 0.05). 

Mutated patients had better outcomes at five years estimation in terms of overall 

survival, event-free survival, and cumulative incidence of relapse.  

By univariate analysis, PHF6ALT patients had significantly increased overall survival 

(HR 0.51, p = 0.004)(Table 1 and Figure 2). This benefit remained significant by 

multivariate analysis and was independent from the High risk genetic classifier (HR of 

0.58 with p = 0.03) (35). Overall, our results show that PHF6 LoF mutations are 

associated with better treatment response and survival and should be considered 

when assessing patient prognosis.  

PHF6ALT T-ALL display DNA hypermethylation at promoters of physiological 

PRC2 target genes 

PHF6 being a known epigenetic modulator, we sought to explore the epigenetic 

landscape of PHF6ALT T-ALL. We thus performed genome-wide methylation analysis, 

taking advantage of data formerly generated by our team, in a series of 143 primary 

adult T-ALL samples (7). Genome-wide DNA methylation was significantly higher in 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669163/table/t1-1041617/
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PHF6ALT when compared to WT patients (Figure 3A). These results are coherent with 

our previous paper on DNA methylation in T-ALL in which PHF6 alterations seemed to 

be associated with hypermethylated cluster C3, C4 and C5 (7). Indeed PHF6 

alterations were significantly enriched in clusters C3 and C4 (15/22, p = 0.01 and 

30/41, p < 0.001 respectively) and almost absent from C1 and C2 hypomethylated 

clusters (0/14, p < 0.001 and 1/34, p < 0.001 respectively)(Supplementary Figure S2A). 

There was no significant enrichment for PHF6 alterations in cluster C5 (16/32, p = 

0.25). This cluster was reported to have dismal outcomes in our previous paper. We 

thus checked if PHF6 status could refine the overall survival prognosis in this cluster. 

Interestingly yet not significantly, PHF6ALT patients from the C5 cluster had a tendency 

towards better overall survival than their WT counterpart (Supplementary Figure S2B). 

Differential methylation analysis identified a total of 42,164 differentially methylated 

probes (DMP) (39,286 hypermethylated and only 2,878 hypomethylated DMP) in 

PHF6ALT T-ALL when compared to PHF6WT (Figure 3B). Hypermethylated DMPs 

(hyDMPs) were strongly enriched in CpG islands (CGIs), regardless of their genomic 

location. Hypomethylated DMPs were enriched in CpG open seas and shores and 

preferentially located at distal regions of promoter and gene body (Figure 3C and 4D). 

Of note, hyDMPs were strictly hypomethylated in normal thymocytes (Figure 3E). A 

total of 3,066 protein-coding gene-associated promoters were hypermethylated and 

431 were hypomethylated in PHF6ALT T-ALL (Figure 3F). Hypermethylated promoters 

were associated with H3K27me3 and H3K4me3 histone marks in CD34+ and CD3+ 

cells (Figure 3G). ChIP-seq analysis of these promoters at different stages of normal 

thymocytes revealed simultaneous H3K4me3 and H3K27me3 marks, representing 

bivalent chromatin domains, a hallmark of developmentally regulated genes (Figure 

3H) (36,37). Consistently, these promoters were enriched in target genes of SUZ12 
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and EZH2, two subunits of the PRC2 complex, responsible for H3K27me3 histone 

mark deposition and a major regulator of bivalent chromatin. 

PHF6 and SUZ12 alterations significantly co-occur in our cohorts, therefore, to prevent 

potential confounding factors, patients were separated into PHF6 altered only, PRC2 

altered only (with alterations of SUZ12, EED or EZH2), both altered, or none altered. 

T-ALL bearing alterations in either PHF6, PRC2 or in both, had significantly higher 

overall DNA methylation (Figure 3I). These T-ALL shared 30,839 hyDMPs when 

compared to T-ALL with no alterations and constitute a coherent cluster on UMAP 

projection of methylome profile (Figure 3J and K). These hyDMPs were also enriched 

at genes associated with H3K27me3 and H3K4me3 histone marks in CD34+ and 

CD3+ cells and affiliated with gene ontology terms related to developmental processes, 

transcription regulation, cell proliferation and central nervous system differentiation 

(Figure 3L). Altogether, our data suggest that PHF6ALT T-ALL display DNA 

hypermethylation at promoters of physiological PRC2 target genes. 

PHF6ALT T-ALL display altered epigenetics landscape of bivalent promoters with 

loss of H3K27me3 and DNA hypermethylation 

Given the enrichment of hyDMPs in both H3K27me3 and H3K4me1/3, we 

hypothesized that PHF6ALT T-ALL display aberrant DNA hypermethylation and 

profound alteration of bivalent promoters.  

We therefore performed enrichment analysis for regulatory elements on hyDMPs using 

ChIP-seq data of H3K4me3 and H3K27me3 histone marks. Two types of promoters 

were defined and studied (active and bivalent) (38). To assess the possible implication 

of major oncotypes we also studied the distribution of TLX1, TAL1 and PHF6 binding 

sites by using publicly available ChIP-seq data (39). hyDMPs and PHF6-bound regions 
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were strikingly enriched in bivalent promoters. Of note, among known genes targeted 

by PHF6 (118 genes), 11 (~10%) are also found in repressed bivalent genes 

(Supplementary Table 2). Genomic regions bound by TAL1 or TLX1 did not overlap 

with bivalent promoters but exclusively with active one (Figure 4A). Unsupervised 

hierarchical clustering of DNA methylation level efficiently segregated samples 

according to their oncotype when considering active promoters, while bivalent ones 

separated PHF6ALT T-ALL from PHF6WT T-ALL and normal thymocytes, regardless of 

the oncotype (Figure 4B). Strikingly, a subset of PHF6WT T-ALL, strongly enriched in 

TAL1 oncotype showed very similar methylation profile of bivalent promoters to normal 

thymocytes, with very low levels of DNA methylation. UMAP projection according to 

bivalent promoters methylation levels displayed similar results (Figure 4C). 

Hypermethylation of bivalent regions has already been described and usually follows 

the loss of bivalent histone marks (40–42). To look for epigenetic changes in histone 

mark deposition following PHF6 LoF, we analyzed H3K27me3 and H3K4me3 ChIP-

seq peaks from 8 T-ALL (4 PHF6WT/ PRC2WT, 2 PHF6ALT, PRC2ALT, PHF6ALT/ 

PRC2ALT) at thymic bivalent promoters. PHF6ALT T-ALL had a profound reduction of 

H3K27me3 peaks at thymic bivalent promoters when compared with WT T-ALL (Figure 

4D). Among the 2278 thymic bivalent genes, 1545 were associated to hyDMPs (Figure 

4E). Surprisingly, PRC2ALT T-ALL had no reduction of H3K27me3 peaks while 

PHF6ALT/ PRC2ALT had profiles similar to PHF6ALT. The analysis of H3K4me3 marks 

gave comparable results, although less pronounced. These results suggest a role for 

PHF6 in the maintenance of H3K27me3 histone mark and of low levels of DNA 

methylation at bivalent promoters. 

We then sought to assess hyDMRs-associated bivalent gene expression in T-ALL and 

look for differential expression between PHF6ALT and PHF6WT samples. We therefore 
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performed differential expression analysis using bulk RNA-seq on 89/216 primary 

clinical samples (49 WT and 40 ALT). Out of the 1548 bivalent genes associated with 

hyDMRs, only 65 were differentially expressed between the two conditions (27 

upregulated and 38 downregulated in PHF6ALT T-ALL), suggesting epigenetic 

alteration of bivalent promoter has minimal impact on bivalent genes expression at the 

stage of patent leukemia (Figure 4F).  

PHF6ALT T-ALL are sensitive to hypomethylating agents alone or in combination 

with BCL2 inhibitor venetoclax 

PHF6ALT T-ALL have significantly higher level of global DNA methylation. We thus 

reasoned that treatment with hypomethylating agents could be of potential interest in 

the treatment of these T-ALL. To first confirm this rational, we took advantage of results 

previously generated with patient derived xenografts (PDX) from 4 primary T-ALL 

samples (2 PHF6 WT (UPNT-M525 / UPNT-M894) and 3 ALT (UPNT-M149 / UPNT-

670)) (7). Treatment was initiated when peripheral blood (PB) blast counts exceeded 

1%. Mice were given 5-azacytidine in vivo or left untreated. For PDX derived from 

PHF6ALT patients, curative 5-azacytidine treatment significantly increased survival 

(Figure 5A). There were no differences in terms of survival between treated and 

untreated mice derived from PHF6WT patients-derived PDX. These results suggest that 

PHF6ALT T-ALL indeed display increased vulnerability to demethylating agents. 

R/R disease being a major problem in T-ALL, due to particularly poor prognosis, we 

examined whether 5-azacytidine could be used to treat patients at relapse. We 

therefore performed ex vivo cytotoxic assays using 5-azacytidine on fresh blasts 

infiltrated samples from 21 R/R T-ALL patients collected within the French ALL-Target 

protocol (9 PHF6ALT, 5 PRC2ALT, 7 WT)(Supplementary Table 3). PHF6ALT samples 

had significantly better response to 5-azacytidine than WT (Figure 5B). Coherently with 
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their comparable DNA methylation profile, similar results could be observed for 

PRC2ALT T-ALL. 

Anti-apoptotic dependency of T-ALL vary according to their phenotype with immature 

and early cortical T-ALL survival relying essentially on BCL2.56 We thus wondered 

whether PHF6 alterations could be associated with better response to 5-azacytidine 

and venetoclax combination, a reference treatment combination for AML uneligible for 

intensive chemotherapy and an emerging one for T-ALL (43–45). Of note, within 

GRAALL03/05 cohort, PHF6ALT T-ALL indeed displayed higher BCL2 transcript 

expression when compared to WT, further supporting this rational (Figure 5C). We 

therefore tested this combination ex vivo, on fresh blasts from the same patients 

depicted in fig. 5B. There was no significant difference between PHF6ALT and WT 

samples when exposed to 125 nM of venetoclax. Nevertheless, PHF6ALT blasts were 

significantly more sensitive to the combination of both drugs when compared to WT 

(Figure 5D). Again, PRC2ALT T-ALL displayed similar response profile to this 

combination. 

Given these results, we investigated the efficacy of this combination at relapse in a 

small cohort of patients with relapsed or refractory disease. Three R/R PHF6ALT 

patients (from those tested in vitro in Figure 5B and D, details are provided in 

Supplementary Table 3) were treated with 5-azacytidine and venetoclax combination 

at relapse (Figure 5E). Patient 1 (T-ALL1) presented with T lymphoblastic lymphoma 

at diagnosis and relapsed as a T-ALL during the first year of treatment according to 

the standard of care. He received a total of three lines of treatment before benefiting 

from 5-azacytidine and venetoclax combination. Complete bone marrow blast 

clearance and metabolic response, assessed by positron emission tomography (PET), 

was achieved after the first course of treatment. Patient 2 (T-ALL2) was treated with 5-



17 
 

azacytidine and venetoclax upon mediastinal relapse 15 months after HSCT. Complete 

morphological and metabolical response (Deauville 4), was obtained after two courses 

of treatment. Patient 3 (T-ALL3) was treated with the same combination at relapse with 

cutaneous and CNS involvement, four years after HSCT. Complete medullary and 

extramedullary response was achieved after two courses and four intrathecal 

chemotherapies, allowing second HSCT. Apart from expected adverse events, 

treatment was well tolerated. All three patients are alive at the time of writing this 

manuscript. Taken together, these results suggest that PHF6 LoF is associated to 

increased sensitivity to 5-azacytidine alone or in combination with venetoclax. 

Discussion 

This study is the first to assess PHF6 alterations incidence and clinical impact in a 

large protocolar study. Consistent with previous literature, PHF6 alterations are 

frequent in GRAALL 2003-2005 cohort (10,20–27). As reported in previous studies, 

PHF6 alterations are strongly associated to TLX oncotypes, with particular emphasis 

for TLX1. PHF6 LoF seems to be mutually exclusive with a mature TCRAB phenotype 

in T-ALL and with known TAL1 expression deregulations.  

We revealed that PHF6ALT T-ALL are characterized by high overall DNA methylation. 

Differentially hypermethylated probes were highly enriched in CGIs located at regions 

physiologically bearing bivalent H3K4me3 and/or H3K27me3 histone marks. Such 

chromatin is frequently associated with genes regulated by Polycomb complexes and 

H3K4me3 depositing proteins such as COMPASS and MLL2 (KMT2B/D) complexes 

(37,46,47). These genes are involved in developmental processes and thought to 

display highly variable and finely tuned expression. Moreover, they have been 

implicated in the regulation of lineage specificity and functional plasticity of 

differentiating CD4+ T cells, revealing their importance during thymocytes maturation 
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(48). Many bivalent genes in human ES cells (hESC) are frequent targets for 

hypermethylation in human cancers and growing evidence suggests a role in 

carcinogenesis can be find in literature (40,46,49–51). Our results show that thymic 

bivalent promoters are maintained strictly hypomethylated during thymopoiesis. Even 

though hypermethylation of these promoters had little impact on bivalent genes 

expression in PHF6ALT T-ALL, loss of PHF6 and subsequent modification of the 

epigenetic landscape could participate to leukemogenesis by altering thymopoiesis. 

Supporting a role for PHF6 in T cell development, mouse models did find altered 

thymopoiesis with reduced DN2 and DN3 thymocytes, as well as lower counts of T 

cells in peripheral blood after conditional Phf6 KO (28,30,52).  

PRC2 is thought to protect CGIs from methylation, directly or through the recruitment 

of other epigenetic regulators like TET proteins (41,42,53). DNA hypermethylation of 

PRC2 target genes have already been described in T-ALL (42,54). Our results indicate 

that PHF6 and/or PRC2-altered T-ALL display a switch from a labile and permissive 

silencing of bivalent genes, insured by H3K27me3, to a more static state following DNA 

hypermethylation (55). We propose that both PHF6 and PRC2 complex are implicated 

in the maintenance of thymic bivalent regions and might protect them from DNA 

methylation in a similar manner. Mutual exclusion of PHF6 and DNMT3A LoF suggests 

that this hypermethylation is crucial during T leukemogenesis. Notably, PHF6 locates 

at bivalent promoters and has been shown to interact with RBBP4, a member of PRC2, 

MLL2 and NuRD complexes, all implicated in bivalent promoters maintenance 

(47,56,57). Moreover, the co-occurrence of PHF6 and PRC2 alterations support a 

collaborative interaction during leukemogenesis. Surprisingly, PHF6ALT/PRC2WT T-ALL 

only showed a drastic reduction in H3K27me3 mark at bivalent promoters while 

PHF6WT/PRC2ALT had almost none. These results could be explained by residual 
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activity of the PRC2 complex due to sufficient expression of the remaining wild type 

allele in PHF6WT/PRC2ALT T-ALL. Because of its location on X chromosome, PHF6 is 

more prone to permanent LoF when mutated, even in the case of female patient, as a 

result of X inactivation. However, both PHF6ALT/PRC2WT and PHF6WT/PRC2ALT T-ALL 

display hypermethylation of bivalent promoters suggesting that loss of H3K27me3 is 

dispensable during this process. Overall, this study supports a model in which PHF6 

and PRC2 complex collaborates to maintain bivalent promoters hypomethylated. 

Functional studies are required to detail the role of PHF6 in maintaining H3K27me3 

marks at bivalent promoters and in preventing them from DNA hypermethylation during 

leukemogenesis.  

We demonstrate that PHF6 alterations are conserved during the clonal evolution of the 

disease and might provide better clonal fitness at relapse as suggested in previous 

publications (28,31). It has also been suggested that PHF6 LoF is an early event during 

leukemogenesis (28). Nevertheless, this event is not sufficient to specifically develop 

T-ALL, as mice lacking PHF6 develop a heterogeneous spectrum of hemopathies, and 

further leukemogenic events may be required to develop T-ALL, such as 

homeodomain protein overexpression (30). The loss of epigenetic plasticity following 

PHF6 alteration and DNA hypermethylation could participate in early leukemogenesis, 

by slowing down the differentiation program of thymocytes as it is suggested for other 

cancer (55). This epigenetic state, and the LoF of PHF6 itself, could lead to genomic 

instability and appearance of chromosomal rearrangement responsible for ectopic 

expression of homeobox transcription factor such as TLXs (55,58). Importantly, we 

showed that TLX1 does not locate at bivalent promoters suggesting that its 

overexpression may not be directly responsible for the epigenetic changes depicted in 

this study. The strong association between PHF6 alterations and homeodomain 
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oncotypes also supports oncogenic cooperation. However, further studies are needed 

to explore the role and chronology of PHF6 LoF in leukemogenesis.  

Finally, our results show that PHF6 alterations are associated with better overall 

survival, event-free survival, and lower cumulative risk of relapse, independently of 

other known prognostic parameters. Moreover, despite significantly older age, patient 

with PHF6ALT T-ALL achieve complete remission significantly more often and have 

lower incidence of death during induction treatment. However, according to this study, 

one out of four PHF6ALT patients still experienced relapsed or refractory disease. 

Hence, novel treatments are still needed for those patients. PHF6 alterations are 

largely conserved at relapse and are therefore potential biomarkers for innovative 

targeted therapies. This study reveals increased in vitro and in vivo sensitivity of 

PHF6ALT T-ALL to the demethylating agent 5-azacytidine alone and in combination with 

the BCL2 inhibitor venetoclax. Such treatment combination has recently become a 

standard of care for patients diagnosed with AML and not eligible for intensive 

chemotherapy induction, and has been given to patients presenting R/R T-ALL (44,45). 

These observations led us to treat three patients bearing PHF6  alterations with good 

response and minimal toxicity. Altogether, this study provides clinical evidence that 

PHF6 alterations is associated with 5-azacytidine and venetoclax combination 

response and might therefore be used as surrogate of eligibility to this treatment. 
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Tables 

Clinical characteristics 

  All PHF6ALT PHF6WT   

  N = 216 N = 102 N = 114 p 

 Patients characteristics      

     Median age (CI) 
30.49 (16.27 - 

59.15) 
34.17 (16.42 - 

58.05) 
28.22 (16.27 - 

59.15) 
0.04 

     White cell count in G/L (CI) 
35.15 (1.00 - 

645.00) 
33.00 (1.00 - 

604.40) 
40.45 (2.20 - 

645.00) 
0.90 

     CNS involvment (%) 24 (11%) 10 (10%) 14 (12%) 0.67 

 Treatment response      

     Steroid response (%) 117 (54%) 59 (58%) 58 (51%) 0.34 

     Early BM blast clearance (%) 119 (55%) 56 (55%) 63 (55%) 0.89 

     Induction mortality rate (%) 9 (4%) 1 (1%) 8 (7%) 0.04 

     Complete remission rate (%) 199 (92%) 98 (96%) 101 (89%) 0.05 

     MRD1 < 10-4 (%) (N = 122) 38 (31%) 22 (33%) 16 (29%) 0.70 

     HSCT (%) 77 (36%) 40 (39%) 37 (32%) 0.32 

 NOTCH1/FBXW7 - RAS/PTEN classifier      

     High risk (%) 88 (41%) 28 (27%) 60 (53%) < 0.001 

Outcomes 

 Outcome estimations at 5 yrs      

     Cumulative incidence of relapse (CI) 0.33 (0.27 - 0.40) 0.27 (0.19 - 0.37) 0.39 (0.30 - 0.49) 0.04 

     Event-free survival (CI) 0.56 (0.49 - 0.62) 0.63 (0.53 - 0.72) 0.49 (0.40 - 0.58) 0.02 

     Overall survival (CI) 0.65 (0.58 - 0.71) 0.74 (0.64 - 0.81) 0.57 (0.47 - 0.66) 0.01 

     Overall survival Univariate   Multivariate 

  HR CI p 
 

HR CI p 

     Age 1.03 1.01 - 1.05 0.002  1.05 1.03 - 1.07 <0.001 

     White cells blood count 1.64 1.11 - 2.40 0.01  1.94 1.29 - 2.91 0.001 

     CNS involvment 2.43 1.38 - 4.27 0.002  2.27 1.28 - 4.03 0.005 

     Steroid response 0.62 0.41 - 0.98 0.04  0.92 0.57 - 1.47 0.72 

     Classifier high risk 2.74 1.75 - 4.29 <0.001  2.48 1.53 - 4.02 <0.001 

     PHF6ALT 0.51 0.32 - 0.80 0.004   0.58 0.36 - 0.94 0.03 

Table 1: Patients clinical characteristics and outcomes. 
CI, confidence interval; CNS, central nervous system; HSCT, hematopoietic stem cell 
transplant; HR, hazard ratio; CI, confidence interval; CNS, central nervous system. 
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Figure legends 

Figure 1: PHF6 alterations in the GRAALL-2003-2005 studies.  

(A) Pie chart indicating the incidence of PHF6 alterations. (B) Pie chart indicating the 

proportion of the different types of mutations affecting the PHF6 gene in our cohort. 

(C) Lollipop plots indicating the observed mutations and their consequences. The red 

bars map the observed chromosomal deletions involving the PHF6 gene in the 

GRAALL-2003-2005 studies. (D) Oncoplot depicting the genetic anomalies observed 

in PHF6 WT or altered T-ALL cases of the GRAALL 2003-2005 studies. For each case, 

their immunophenotype, and ETP classification. As ETP status is separate from the 

immunophenotypes, some T-ALL cases are both considered as ETP and immature or 

TCRAB in the analyses. Genes are classified by functional groups. (E) Panel indicating 

alterations with significantly different frequency between PHF6 WT or altered patients. 

Statistical differences were compared by Fisher tests. (F) Bar graphs showing the 

significant association between PHF6 status and the maturation arrest stage. 

Annotations indicate the incidence of each maturation arrest stage among the entire 

cohort. PHF6 WT ETP cases are also considered as immature for 16/24, cortical for 

4/54, TCRGD for 1/10 and TCRAB for 1/17 cases. For the PHF6 ALT, ETP cases count 

as immature for 18/28, cortical for 5/53, TCRGD for 1/13. (G) Bar graphs displaying 

significant association between PHF6 status and the defining T-ALL genetic events. 

Figure 2. Clinical impact of PHF6 alterations in the GRAALL-2003-2005 studies.  

(A) Overall survival, (B) event-free survival and (C) cumulative incidence of relapse in 

the GRAALL 2003-2005 studies. Red curves represent the PHF6ALTT-ALL, and blue 

curves the WT patients. 
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Figure 3: PHF6ALTT-ALL display highly methylated methylome.  

(A) Genome-wide average CpG methylation of PHF6WT and PHF6ALT T-ALL. (B) 

Number of hyper- and hypomethylated DMPs in PHF6ALTT-ALL. (C and D) Stacked 

barplots depicting the relative frequency of significant hyper- or hypomethylated CpGs 

in relation to their CpG location (C) or context (D). (E) Average CpG methylation of 

hyDMPs of thymocytes, PHF6WT and PHF6ALT T-ALL. (F) Number of hyper- and 

hypomethylated promoters in PHF6ALT T-ALL. (G) Barplot for the enrichment of 

hyper- and hypomethylated DMPs in transcription factors target genes and histone 

marks. Bar color intensity is coded for odds ratio. (H) Heatmap of H3K27me3 (left) and 

H3K4me3 (right) histone marks peaks at promoters of genes associated to hyDMPs or 

to random promoters, at different stages of thymopoïesis ( ETP = early T precursors, 

EC = early cortical, LC = late corticals, SP = single positives) Genes are ordered 

identically for both marks. (I) Genome-wide average CpG methylation of 

PHF6WT/PRC2WT, PHF6ALT/PRC2WT, PRC2ALT/PHF6WT, PHF6ALT/PRC2ALT 

T-ALL. (J) Venn diagram of hyDMPs between PHF6ALT/PRC2WT, 

PRC2ALT/PHF6WT, PHF6ALT/PRC2ALT T-ALL versus None T-ALL. (K) Uniform 

Manifold Approximation and Projection of samples according to genome-wide 

methylation levels (β-values). Each dot represent a patient sample and is colored 

according to PHF6/PRC2 mutational status. (L) Dot plot for the enrichment of hyper-

DMPs common or unique to PHF6ALT/PRC2WT, PRC2ALT/PHF6WT, 

PHF6ALT/PRC2ALT versus PHF6WT/PRC2WT T-ALLs, in transcription factors target 

genes, histone marks and gene ontology. Dots are sized-coded for adjusted p-values 

in the -log10 scale, and color intensity is scaled according to odds ratio.  
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Figure 4: PHF6ALT T-ALL display altered epigenetics landscape of bivalent 

promoters 

(A) Dot plot for the enrichment of TLX1 (HPB-ALL), PHF6 and TAL1 (Jurkat) peaks 

along with hyDMPs in active or bivalent promoters (x axis) at specific stages of 

thymopoiesis. Circles are color-coded for significance, dots color gradient represent 

odds ratio and the size of the dots represents P values in the log10 scale. (B) Heatmap 

representing the hierarchical clustering of T-ALL samples and normal thymocytes (x-

axis) according to the 10 000 most variable CpG β-values associated to active (left) 

and bivalent (right) promoters (y-axis). (C) Uniform Manifold Approximation and 

Projection of T-ALL samples and normal thymocytes according to β-values of CpG 

associated to thymic bivalent promoters. Each dot represent a sample and is colored 

according to PHF6/PRC2 mutational status. (D) Heatmap of H3K27me3 (top) and 

H3K4me3 (bottom) histone marks peaks at thymic bivalent promoters in 

PHF6WT/PRC2WT (lightblue), PHF6ALT/PRC2WT (red), PHF6WT/PRC2ALT 

(yellow), PHF6ALT/PRC2ALT (black) T-ALL. (E) Venn diagram representing the 

proportion of thymic bivalent genes associated to hyDMPs. (F) Volcano plot of 

differentially expressed genes in PHF6ALT versus PHF6WT. Gene list with an 

absolute log fold change value superior to 2. 

Figure 5: 5-azacytidine and venetoclax sensitivity of PHF6ALTT-ALL 

(A) Survival for PDX mouse models of primary T-ALL : PHF6WT (UPNT-M894 : 

Untreated N = 5, Azacitidine N = 3 ; UPNT-M894 : Untreated N = 5, Azacitidine N = 4) 

and PHF6ALT ((UPNT-M640 : Untreated N = 4, Azacitidine N = 4 ; UPNT-M149 : 

Untreated N = 5, Azacitidine N = 5)). When blasts count reached 1% in blood, mice 

were administered with NaCl (Untreated : orange line) or treated with 5-azacytidine in 

a curative-like manner for 2 weeks (5 mg/kg per day for 5 days a week) (5-azacytidine 
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in a curative-like manner : green line). P values are calculated by comparing the 

untreated group with treated group using log-rank test. (B) Viability of T-ALL fresh 

samples blasts measured after 3 days of treatment with 5-azacytidine at the indicated 

doses. Means and SEM are plotted (C) BCL2 gene expression levels in 

PHF6WT/PRC2WT (lightblue), PHF6ALT/PRC2WT (red), PHF6WT/PRC2ALT (yellow), 

PHF6ALT/PRC2ALT (black) T-ALL (D) Viability of T-ALL fresh samples blasts measured 

after 3 days of treatment with 5-azacytidine at the indicated doses combined with 125 

µM of Venetoclax. Means and SEM are plotted. (E) Clinical timelines of three patient 

diagnosed with R/R T-ALL treated with 5-Azacytidine and Venetoclax. Timelines are 

centered on the time of initiation of the combination. 
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