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Abstract

Regulated microneme secretion governs motility, host cell invasion and egress in the obli-

gate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynam-

ics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of

these parasites, molecular mechanistic details about exocytosis are still missing. Some

members of the P4-ATPases act as flippases, changing the phospholipid distribution by

translocation from the outer to the inner leaflet of the membrane. Here, the localization and

function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxo-

plasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control pro-

tein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane,

essential for microneme exocytosis. This complex is responsible for flipping phosphatidyl-

serine, which presumably acts as a lipid mediator for organelle fusion with the plasma mem-

brane. Overall, this study points toward the importance of phosphatidylserine asymmetric

distribution at the plasma membrane for microneme exocytosis.

Author summary

Biological membranes display diverse functions, including membrane fusion, which are

conferred by a defined composition and organization of proteins and lipids. Apicom-

plexan parasites possess specialized secretory organelles (micronemes), implicated in

motility, invasion and egress from host cells. Microneme exocytosis is already known to

depend on phosphatidic acid for its fusion with the plasma membrane. Here we identify a

type P4-ATPase and its CDC50 chaperone (ATP2B-CDC50.4) that act as a flippase and

contribute to the enrichment of phosphatidylserine (PS) in the inner leaflet of the parasite

plasma membrane. The disruption of PS asymmetric distribution at the plasma mem-

brane impacts microneme exocytosis. Overall, our results shed light on the importance of

membrane homeostasis and lipid composition in controlling microneme secretion.
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Introduction

The phylum of Apicomplexa encompasses a diverse group of obligate intracellular protozoan

parasites responsible for severe diseases in animals and humans. Plasmodium spp., the etiologi-

cal agent of malaria, account for half a million deaths per year (World Malaria Report 2017,

WHO). Cryptosporidium is one of the most important agents causing severe diarrhea in chil-

dren [1]. Relevant for the farming industry, Eimeria and Theileria are responsible for a consid-

erable economic burden [2,3]. Toxoplasma gondii is the most ubiquitous member of the

phylum, capable of infecting humans and animals. The lytic cycle of apicomplexan parasites is

tightly controlled to ensure parasite survival and dissemination [4,5]. Underpinning several

steps of the lytic cycle is the release of apical secretory organelles called micronemes that are

conserved in all motile and invasive stages of apicomplexans [4]. The micronemes secrete

adhesins, perforins and proteases that allow gliding, invasion and egress of the parasites [6,7].

In a simplified model, microneme exocytosis is regulated and initiated by the production of

cyclic guanosine monophosphate (cGMP) via a signaling platform composed of an atypical

guanylate cyclase (GC) fused to a P type-IV ATPase (P4-ATPase) and associated to CDC50.1

as well as to a unique GC organizer, UGO [8–11]. The level of cGMP is tightly controlled by

phosphodiesterases, which differential phosphorylation state upon depletion of the protein

cAMP-dependent protein kinase (PKA-C1) indicates that are presumably regulated by cyclic

adenosine monophosphate (cAMP) levels [12,13]. In turn, cGMP leads to the activation of the

cGMP-dependent protein kinase (PKG) [14] which triggers a signaling cascade that involves

the production of inositol-tri-phosphate (IP3) and diacylglycerol (DAG) by phosphoinositide

phospholipase C (PI-PLC) [15]. IP3 is believed to mobilize calcium from an unknown intracel-

lular store of the parasite [16] and activate calcium-dependent protein kinases (CDPKs)

[17,18]. Both CDPK1 and CDPK3 contribute to microneme exocytosis while CDPK1 addi-

tionally extrudes the conoid and activates the actomyosin system [17–19], allowing parasite

gliding motility, invasion and egress [20]. On the other hand, DAG is converted into phospha-

tidic acid (PA) through a reversible reaction catalyzed by the DAG kinase 1 (DGK1) and PA

phosphatases (PAPs) [21]. Importantly, several feedback loops are expected to feed into differ-

ent steps of this signaling pathway.

The endomembrane system of the cell displays diverse functions conferred by a defined

composition and organization of proteins and lipids. In particular, the exocytosis of secretory

organelles depends on specific phospholipids that select the target membranes and trigger

fusion. In apicomplexan parasites, PA acts as an essential lipid mediator for microneme exocy-

tosis [21,22]. PA is produced in the inner leaflet of the plasma membrane and allows the dock-

ing of micronemes with the assistance of the acylated pleckstrin-homology domain-containing

protein (APH) on the microneme organelle surface [21,23]. Importantly, the asymmetric dis-

tribution of phospholipids (PLs) across the plasma membrane is known to generate a physical

surface tension that is used to induce membrane curvature, favoring vesicle budding and

fusion [24]. These gradients are set and maintained by different groups of proteins including

P4-ATPases, which function as flippases and form heterodimeric complexes with cell division

control protein 50 (CDC50), that act as cofactors and chaperones (Fig 1A) [25]. P4-ATPases

possess ten predicted transmembrane spanning domains with cytosolic domains mediating

nucleotide binding (N), phosphorylation (P) and dephosphorylation (A) (Fig 1A) [26]. The

P4-ATPases couple the hydrolysis of ATP with inward PLs translocation via a Post-Albers

mechanism [25], transitioning between two intermediate states: E1 and E2, with different

affinities to substrates. During this process, the transmembrane region remainsstructurally

rigid based on its interaction with the CDC50 partner [27]. Among the repertoire of

P4-ATPases in apicomplexan parasites, some are essential for parasite survival [28–30] yet little
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Fig 1. Members of the Apicomplexa phylum encode a plethora of P4-ATPases and CDC50 cofactor at different parasite

locations. (A) Schematic representation of the domain architecture of the P4-ATPase-CDC50 heterocomplex. (B) Conservation

of P4-ATPases and CDC50 cofactors across the Apicomplexa phylum. Blue circle: Absent in Theileria. Eimeria possesses two

genes belonging to the CDC50.1/CDC50.2 subgroups but direct homology could not be deducted by blast analysis. See S1 Fig.

Fitness scores associated to gene disruption in T. gondii are obtained from [28]. CM: Cyst-forming. PM: plasma membrane. G:

Golgi apparatus. A: Apical. S.p: Secretory pathway. N.a: Not assessed. Accession numbers of all putative orthologs genes are

included in S1 Table. (C) Indirect immunofluorescence assay (IFA) of intracellular ATP2A-mAID-HA and ATP2B-mAID-HA

parasites. GAP45: parasite periphery. (D) IFA of intracellular ATP7B-SM-HA parasites. Actin: Parasite cytosol. (E) IFA of

intracellular CDC50.2, CDC50.3 and CDC50.4-mAID-HA parasites. GAP45: parasite pellicle. Cam-Like protein: Golgi

apparatus. The scale bars for the immunofluorescence images are 7μM, unless otherwise indicated.

https://doi.org/10.1371/journal.ppat.1010438.g001
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is known about their biological roles and enzymatic functions. Beside the lipid composition,

membrane fusion is a universal process that also involves a machinery composed of SNAREs

(for “soluble N-Ethylmaleimide-sensitive factor (NSF)-attachment protein receptor”) [31].

During fusion, vesicular and target SNAREs assemble into an α-helical trans-SNARE complex

that forces the two membranes tightly together [31]. Additionally, this machinery is controlled

by C2-containing proteins, like synaptotagmin/ferlin and DOC2, in a calcium-dependent

manner [32,33]. The SNARE proteins appear to play pleiotropic functions in T. gondii with

none identified to date to be uniquely associated to microneme secretion [34]. Contrastingly,

both DOC2.1 and Ferlin 1 (FER1) are solely dedicated to microneme secretion in Plasmodium
spp. and T. gondii [35–38]. While DOC2.1 function strictly participates in microneme exocyto-

sis [35], FER1 is involved in microneme proteins trafficking in addition to exocytosis [37],

although some of these phenotypes might result from indirect dominant negative effects.

In this study, we address the importance of several P type-IV ATPases and CDC50 chaper-

ones in T. gondii. We show that ATP2B forms a heterocomplex with CDC50.4 and acts as an

essential flippase to maintain phosphatidylserine (PS) enrichment in the inner leaflet of the

parasite plasma membrane. ATP2B and CDC50.4 crucially contribute to microneme exocyto-

sis indicating that PS is a key lipid participating in microneme fusion with the plasma

membrane.

Results

Identification and localization of the putative flippases and their CDC50

partners in Toxoplasma gondii
Sequence homology search in T. gondii genome identified six genes predicted to code for P4-

ATPases and four genes for CDC50 cofactors (Fig 1B and S1 Table). We utilized the nomen-

clature already established for Plasmodium species in order to name the putative homologues

of P4-ATPases [39]. We have chosen this nomenclature, instead of the one presented in a

recent overlapping report [30], in order to provide an integrative view of different apicom-

plexan parasites P4-ATPases and facilitate comparisons. ATP2A and ATP2B appear to be

paralogues that are present either as one or two copies across all members of the Apicomplexa

phylum. Similarly, ATP7A and ATP7B are putative paralogues found as a pair in the cyst-

forming coccidian subgroup of Apicomplexa but absent in Theileria and Cryptosporidia. Plau-

sible orthologs of T. gondii ATP8 and GC are found across the phylum (Fig 1B and S1 Table)

with GC being duplicated in the Plasmodium and Eimeria spp., as previously reported [5] (Fig

1B and S1 Table). The CDC50 protein family is composed of four members in T. gondii.
CDC50.1, CDC50.2 and CDC50.3 are clustered phylogenetically and may have arisen through

gene duplication (S1 Fig). The presence of three individual genes belonging to this group is

only found in coccidians (Fig 1B and S1 Table). A single gene assigned to the CDC50.1/2/3

group is present in Cryptosporidia while CDC50.3 is absent in Theileria. In contrast, CDC50.4

is conserved across the entire phylum (Figs 1B, S1 and S1 Table).

To determine their localization and scrutinize their function, the genes corresponding to

the P4-ATPases and CDC50s were C-terminally tagged with 3-HA epitope tags and concomi-

tantly fused to the auxin-inducible degron (mAID) [14] at their endogenous locus via

CRISPR-Cas9 genome editing. The resulting mutants were cloned and confirmed by genomic

PCR (S2A Fig). Similar to GC and its partner CDC50.1, which have previously been found at

the apical cap of the parasites [8], ATP2A, ATP2B, CDC50.2 and CDC50.4 were also found at

the apical cap (Fig 1C and 1E). Contrastingly, CDC50.3 localized to the Golgi apparatus (Fig

1E) while ATP7B could only be detected throughout the secretory pathway after tagging with
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the spaghetti monster-HA (SM-HA) [40] (Figs 1D and S3B and S3C). ATP8 was refractory to

genetic modification, which hampered further investigation.

Toxoplasma gondii CDC50.4 forms promiscuously stable heterocomplexes

with ATP2A and ATP2B

Given its conservation across the Apicomplexa, localization and predicted essentiality, we

focus our attention on CDC50.4 [28]. In order to identify the complex formed by this protein,

we performed immunoprecipitation of CDC50.4 coupled with mass spectrometry analysis

(S2D Fig). ATP2A and ATP2B were identified as interacting partners of this protein (Fig 2A).

Other proteins identified in pull-down are likely contaminants that correspond to highly

abundant proteins or are predicted to be implicated in non-related functions. Moreover,

endogenous epitope-tagging of ATP2B-Ty in CDC50.4-mAID-HA confirmed co-localization

of the two proteins at the apical tip of the parasite (Fig 2B) and pull-down experiments pro-

vided further evidence of their stable association (Fig 2C). Compellingly, depletion of

CDC50.4 led to a significant decrease in ATP2B protein level (Figs 2D and S2E). Partial coloca-

lization and downregulation of ATP2A upon depletion of CDC50.4 were also shown by immu-

nofluorescence (Fig 2E). Importantly, double tagging of ATP2A and CDC50.4 rendered a

partial miss localization of the complex (Fig 2E), indicating some steric impediment for correct

trafficking upon presence of both C-terminal tags. We also observed no decrease in ATP2A-Ty

levels upon depletion of CDC50.4 (S2F Fig). The absence of CDC50.4 did not impact on the

localization of GC-Ty (Fig 2F and 2G) and its level of expression (Fig 2H) although it shares

the same localization as ATP2B but forms a heterocomplex with CDC50.1 [9]. Taken together,

these data strongly indicate that CDC50.4 is forming a complex with ATP2A and ATP2B.

ATP2B-CDC50.4 complex and ATP7B are critical for the survival of

Toxoplasma gondii
The three P-type IV ATPases (ATP2A, ATP2B and ATP7A) and CDC50s (CDC50.2, CDC50.3

and CDC50.4), were C-terminally fused to the auxin-inducible degron (mAID) at the endoge-

nous locus [14] and efficiently depleted upon addition of 3-indoleacetic acid (IAA) as con-

firmed by western blot (Fig 3A and 3B). The relative fitness of each knockdown mutant was

assessed by its ability to form plaques of lysis on host cell monolayers (Fig 3C and 3D). Parasite

lacking ATP2A and CDC50.2 had no apparent fitness defect, whereas loss ATP2B, ATP7B and

CDC50.4 in presence of IAA led to significantly smaller plaques compared to parasites grown

in absence of IAA (Fig 3C and 3D). Down-regulation of CDC50.3 resulted in a moderate

decrease in fitness (Fig 3C and 3D).

P-type IV ATPases and its CDC50 chaperones play distinct roles in the

parasite biology

To dissect the fitness conferring role of ATP7B depletion, each of the steps of the lytic cycle

were examined individually. Parasites depleted in ATP7B are impaired in intracellular growth

(S3A Fig) but egress and invade normally (S3B and S3C Fig). Moreover, the organization of

intracellular parasites in rosettes was disrupted in the absence of ATP7B (S3D and S3E Fig).

Deeper characterization would be needed to understand the importance of ATP7B in the para-

site biology.

Parasites depleted in either ATP2B or CDC50.4 showed a severe impairment in invasion

(Fig 4A) and in egress (Fig 4B), without alteration of intracellular growth (Fig 4C). Impor-

tantly, microneme secretion of extracellular parasites depleted in either ATP2B or CDC50.4
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Fig 2. ATP2B and CDC50.4 form an heterocomplex. (A) Gene ID and number of unique peptides identified as putative

interactors of CDC50.4 upon coimmunoprecipitation and mass spectrometry analysis (B) IFA of intracellular ATP2B-Ty/

CDC50.4-mAID-HA parasites. (C) Western blot of immunoprecipitation with anti-Ty from ATP2B-Ty/CDC50.4-mAID-HA lysate

showing that ATP2B-Ty is associated with CDC50.4-mAID-HA. (D) Western blot of lysates ATP2B-Ty/CDC50.4-mAID-HA

parasites treated with or without IAA for 24 hours. Actin: loading control. (E) IFA of intracellular RH ATP2A-Ty/

CDC50.4-mAID-HA parasites with or without IAA. (F) IFA of intracellular RH GC-Ty/CDC50.4-mAID-HA parasites with or

without IAA. (G) Quantification of representative pictures in (F). The ratio between the intensity of fluorescence at the basal pole

versus the apical pole of the parasite is shown. Approximately 100 vacuoles were quantified. (H) Western blot of lysates GC-Ty/
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triggered by BIPPO (PDE inhibitor which induces the accumulation of cGMP in the cell) was

considerably reduced (Fig 4D and 4E). The defect in microneme exocytosis explains the

impaired egress and invasion phenotype of ATP2B, suggesting a crucial role of the heterocom-

plex for the completion of the parasite’s lytic cycle. In contrast, depletion of the paralogue pro-

tein ATP2A did not affect any steps of the parasite lytic cycle including invasion (Fig 4F),

egress (Fig 4G), intracellular growth (Fig 4H) or microneme secretion (Fig 4I and 4J).

ATP2B-CDC50.4, but not ATP2A-CDC50.4, is a phosphatidylserine

flippase at the plasma membrane

Anchoring of ATP2A-CDC50.4 and ATP2B-CDC50.4 complex to the parasite plasma mem-

brane was demonstrated by protease protection assay on non-permeabilized parasites. Proteins

exposed to the outer leaflet of the plasma membrane are susceptible to cleavage by proteases.

Concomitantly, the disappearance of the full length ATP2A, ATP2B and CDC50.4 upon prote-

ase treatment demonstrates that these complexes localize to the plasma membrane of the para-

site (Fig 5A–5C). The presence of the complexes at the parasite plasma membrane, offers the

convenient opportunity to assess its flippase activity using a live cells assay [41] as previously

reported in T. gondii [8]. We focused our investigation on the analysis of phosphatidylserine

(PS) since we previously demonstrated that it is the phospholipid that extracellular parasites

majorly incorporate into the plasma membrane [8]. A bulk time-dependent increase in non-

quenchable fluorescent analogues of PS was crucially dependent on the presence of ATP2B at

the plasma membrane in extracellular (Fig 5D) or intracellular mimicking conditions (S3F

Fig), whereas no changes were found upon depletion of ATP2A (Fig 5E). The depletion of

CDC50.4 mimicked the effects of the depletion of ATP2B with respect to the bulk PS flipping

activity (Fig 5F), in contrast to CDC50.1, which did not affect bulk PS activity upon depletion

(Fig 5G).

The impact of ATP2B on microneme secretion implicates the importance of a pool of PS at

the inner leaflet of the plasma membrane. Such a pool can be detected using the genetically

encoded molecular probe lactadherin C2 domain (Lact-C2) fused to GFP known to bind to PS

[42]. GFP-Lact-C2 specifically labelled the parasite periphery (Fig 5H) as well as some endo-

membrane compartments where PS synthesis possibly takes place. Mutation in the specific

binding site of Lac-C2 for PS inhibited the plasma membrane localization of the protein (Fig

5I) [42]. Importantly, no changes were observed in Lac-C2 localization upon depletion of

ATP2B (Fig 5H). These results are not surprising since PS is the most abundant anionic phos-

pholipid in eukaryotic membranes (accounting up to 10% of the total cellular lipids) and it is

highly concentrated at the inner leaflet of the plasma membrane [43]. Concordantly, due to

the high affinity of LacC2 to PS [44], low concentration of PS would be sufficient for its bind-

ing and re-localization.

We then reasoned that fluctuation in PS levels would be easier to measure in the outer leaf-

let of the plasma membrane, where concentration in wild type parasites is low. Compellingly,

parasite depleted in ATP2B failed to restore PS asymmetric distribution in natural conditions,

leading to an accumulation of PS in the outer leaflet of the plasma membrane that can be

detected in extracellular parasites via binding to Annexin V (Figs 5J and S3G and S3H).

Taken together, these results demonstrate that ATP2B-CDC50.4 complex, but not ATP2A

complex, controls flipping of PS at the plasma membrane of T. gondii.

CDC50.4-mAID-HA parasites treated with or without IAA for 24 hours. Catalase: loading control. The scale bars for the

immunofluorescence images are 7μM, unless otherwise indicated.

https://doi.org/10.1371/journal.ppat.1010438.g002
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Fig 3. Fitness conferring and dispensable P-type IV ATPases and CDC50 subunits are encoded in the T. gondii
genome. (A) Western blot analysis of ATP2A-mAID, ATP2B-mAID and ATP7B-mAID regulation with IAA

treatment for 24 hours. Actin: loading control. P: parental strain (Tir1 strain) (B) Western blot of lysates from

CDC50.2-4-mAID parasites treated with or without IAA for 24 hours. Actin: loading control. (C) Images of plaques

formed by RH Tir1 parental strain, ATP2A, ATP2B, ATP7B, CDC50.2, CDC50.3 and CDC50.4-mAID-HA lines on

HFF monolayers with or without IAA treatment. (D) Quantification of plaque size relative to the parental control

(Tir1), mean +/- SD of 1 representative experiment. Each parasite line was analysed individually for statistical

significance using an unpaired t test. P values: ���� =<0.0001, � =<0.05.

https://doi.org/10.1371/journal.ppat.1010438.g003
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Fig 4. ATP2B-CDC50.4 heterocomplex facilitates microneme secretion. (A) Invasion assay of Tir1 parental strain, ATP2B-mAID-HA

and CDC50.4-mAID-HA parasites treated with or without IAA for 24 hours. Data represents mean +/- SD of three independent

experiments. (B) Egress assay of Tir1 parental strain, ATP2B-mAID-HA and CDC50.4-mAID-HA parasites grown for 30 hours treated

with or without IAA. Egress was induced with BIPPO (PDE inhibitor which induces the accumulation of cGMP in the cell) or DMSO for

7 minutes. The percentage of egress (lysed vacuoles) is shown as means +/- SD of 3 independent replicates. (C) Parasites lacking ATP2B

or CDC50.4 are not impaired in intracellular replication. Error bars represent +/- SD from three independent experiments. (D)
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Discussion

Phospholipid asymmetry plays a key role in several indispensable cellular functions including

membrane potential [45], receptor based signaling [46] and secretion of vesicles [47].

P4-ATPases are central flippases that help maintain lipids asymmetry [25]. Most P type-IV

ATPases usually require CDC50 partners acting as chaperones for correct localization and

activity [48], and complexes formed between these proteins have been shown to be either

highly promiscuous or specific [48]. Here we demonstrate that T. gondii encodes for 6 type IV

ATPases and 4 CDC50 cofactors with different functions and fitness associated to their dele-

tion. Importantly, some of the data presented here are supported by an overlapping study [30].

P4-ATPases and CDC50 complex formation in Apicomplexa

Here, we demonstrate that in T. gondii, CDC50.4 forms heterocomplexes with ATP2B and

ATP2A but not with GC despite sharing a similar localization [8], demonstrating some level of

specificity in complex formation independent of protein localization. ATP2B acts as a PS flip-

pase at the plasma membrane which plays a crucial role in microneme exocytosis. The promis-

cuity of ATP2B substrates was not assessed in this study and would require further analysis.

Importantly, a recent report has indicated that P. chabaudi recombinant ATP2 is capable of

flipping PS and PE [49], which would suggest that T. gondii ATP2B or ATP2A would also flip

PE. Importantly, the authors of this study identified CDC50A and CDC50B as interactors of

ATP2, while CDC50C (homologue of CDC50.4) could not be produced recombinantly [49].

This promiscuity of binding remains to be confirmed in vivo since we show here that T. gondii
ATP2B is incapable of using other CDC50 chaperones to compensate for the lack of CDC50.4.

Assignment of other pairs will await further investigation but ATP7 and CDC50.3 might

form another heterocomplex which is absent in Theileria and Cryptosporidia. ATP7 has previ-

ously been shown to be essential and localize to the parasite–host interface in Plasmodium par-

asites [29]. Despite not being the main focus of this study, we show here that ATP7B is

important for T. gondii intracellular growth while ATP7A has been reported to be dispensable

based on its fitness score deduced from the genome wide analysis [28]. In addition, a recent

report indicates that mutations in the ATP7B are associated with increase resistance of T. gon-
dii to extracellular environment during in vitro evolution studies [50]. The mechanistic details

for this emergent resistance are obscure.

ATP8 belongs to the class 2 of P4-ATPases, which includes ATP9A and ATP9B in mam-

mals and Neo1p in yeast [48]. These proteins do not appear to use CDC50 as β-subunit which

might indicate that apicomplexan ATP8 can function independently of any CDC50 subunit.

In yeast and mammals, these proteins translocate PS and affect the Golgi/endosomal system

Microneme secretion of extracellular of Tir1 parental strain, ATP2B-mAID-HA and CDC50.4-mAID-HA parasites stimulated with or

without BIPPO after having been treated or not with IAA for 24 hours. ESA (excreted-secreted antigens) and pellet fractions are shown.

MIC2: microneme ESA. GRA1: dense granule ESA. Catalase: lysis control. Relative ratio of MIC2 secretion compared to Tir1 –IAA

parental control +/- SD of 3 independent replicates is shown in (E). (F) Invasion assay of Tir1 parental strain and ATP2A-mAID-HA

parasites treated with or without IAA for 24 hours. Data represents mean +/- SD of three independent experiments. (G) Egress assay of

Tir1 parental strain and ATP2A-mAID-HA parasites grown for 30 hours treated with or without IAA. Egress was induced with BIPPO

(PDE inhibitor which induces the accumulation of cGMP in the cell) or DMSO for 7 minutes. The percentage of egress (lysed vacuoles)

is shown as means +/- SD of 3 independent replicates. (H) Parasites lacking ATP2A are not impaired in intracellular replication. Error

bars represent +/- SD from three independent experiments. (I) Microneme secretion of extracellular of Tir1 parental strain and ATP2A-

mAID-HA parasites stimulated with or without BIPPO after having been treated or not with IAA for 24 hours. ESA and pellet fractions

are shown. MIC2: microneme ESA. GRA1: dense granule ESA. Catalase: lysis control. Relative ratio of MIC2 secretion compared to Tir1

–IAA parental control +/- SD of 3 independent replicates is shown in (J). Each parasite line was analysed individually for statistical

significance using an unpaired t test. P values: ���� =<0.0001, � =<0.05.

https://doi.org/10.1371/journal.ppat.1010438.g004
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Fig 5. ATP2A and ATP2B are phospholipid specific flippases at the parasite plasma membrane. (A-C) Full length ATP2A, ATP2B

and CDC50.4 are digested by proteinase K (PK) in non-permeabilized parasites, respectively. C-terminally HA-tagged ATP2B and

CDC50.4 were used for the assay. ROM4; plasma membrane protein. GAPM3; alveolar protein. Catalase; cytosolic marker. (D-G) Flow

cytometry measurement of residual fluorescence upon addition of DPX to NBD-PS incubated extracellular ATP2B, ATP2A, CDC50.4

and CDC50.1-mAID strain of T. gondii, respectively. Data represents mean +/- SD of three independent experiments. (H) LactC2

stains plasma membrane and internal vesicular organelles even upon downregulation of ATP2B. GAP45: parasite periphery. (I) LactC2

PLOS PATHOGENS Repertoire of flippases in Toxoplasma and contribution to microneme secretion

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010438 March 24, 2022 11 / 21

https://doi.org/10.1371/journal.ppat.1010438


[51] and recycling of endosomes [52]. A similar function of ATP8 in PS flipping at the Golgi/

endosomal compartment in apicomplexans remains to be assessed.

With the group of alveolates, the apicomplexan parasites as well as some ciliates [53] have

directly fused a P4-ATPase with GC catalytic domains to form a large GC protein [5]. In T.

gondii, CDC50.1 was shown to be essential for GC localization and the sensing and integration

of external signals, notably phosphatidic acid [8]. Plasmodium species possess two genes that

harbor a fusion with P4-ATPases GCα and GCβ. Importantly, in P. yoelii, CDC50A has been

demonstrated to interact with GCβ and to be essential for ookinete gliding motility [54]. The

Plasmodium CDC50A groups with the members of CDC50.3 (S1 Fig). On the other hand, the

β-subunit associated to GCα remains to be identified. Plasmodium CDC50A and CDC50B

belong to the same phylogenetic subgroup that T. gondii CDC50.1 and CDC50.2, and would

be good candidates to bind GCα. Conflictingly, neither of these proteins are essential for Plas-
modium yoelii erythrocytic stages (PY17X_0619700 and PY17X_0916600) [55] and, despite

discrepancies with a genome wide screening on P. falciparum [56], would suggest a possible

functional redundancy between CDC50A and CDC50B.

Maintenance of PS asymmetry by ATP2B-CDC50.4 at the plasma

membrane is crucial for efficient microneme secretion

Plasma membrane asymmetry is an essential need in cell biology [24–26] and flipping of PS is

likely to be maintained across the entire lytic cycle of the parasite for survival. Coherently,

ATP2B flippase activity is maintained even in intracellular mimicking conditions (S3F Fig).

Here, we demonstrate that the first repercussion of the dysregulation of PS asymmetry at the

plasma membrane are during egress, invasion and egress. Compellingly, PS in the inner leaflet

of the plasma membrane is known to play a critical role in neurotransmitter release [47]and

insulin secretion [57] in mammalian cells. Moreover, Candida albicans strains impaired in PS

biosynthesis display decreased ability to secrete proteases and phospholipases [58]. As in most

eukaryotic cells, PS is synthesized at the cytosolic leaflet of the ER in T. gondii [59] and asym-

metry is predictably maintained by flippases at the Golgi and plasma membrane [41,60]. Golgi

localized PS flippases are key players in exocytic vesicle sorting [60]. Once PS reaches the para-

site plasma membrane, the ATP2B-CDC50.4 heterocomplex presumably ensures an enrich-

ment of PS at the inner leaflet at the apical tip of the parasites. Any excess of PS at the plasma

membrane is rapidly converted into PE as recently demonstrated [30]. The disruption of this

homeostasis might lead to overall changes in plasma membrane tension, curvature and could

also affect the activity of important signaling components (i.e. GC [8–11], PKG [14], PI-PLC

or DGK1 [21]), explaining the phenotype associated to the depletion of ATP2B-CDC50.4 com-

plex. In addition to the previously reported role of PA [21], PS is a second anionic PL impli-

cated in the docking and/or fusion of the micronemes with the plasma membrane. PA is

recognized by APH, an acylated protein at surface of the micronemes [21]. Hypothetically,

a plausible candidate binding to PS could be DOC2.1 [35] or Ferlin 1 (FER1) [37], and since

this phospholipid is enriched at the inner leaflet of the plasma membrane (Fig 5H), might

contribute to the mechanism of recognition and fusion of micronemes with the plasma mem-

brane for exocytosis, similarly to well-studied mechanisms proposed in model organisms

[32,61,62].

localized to the cytoplasm of the parasite upon mutation of PS binding sites. GAP45: parasite periphery. (J) Flow cytometry

measurement of Annexin V staining of extracellular parental and ATP2B-mAID strain T. gondii. Data represents mean +/- SD of three

independent experiments. Each parasite line was analysed individually for statistical significance using an unpaired t test. P values: ����

=<0.0001, � =<0.05. The scale bars for the immunofluorescence images are 7μM, unless otherwise indicated.

https://doi.org/10.1371/journal.ppat.1010438.g005
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In addition to its role in exocytosis, ‘healthy’ exposure of PS has been previously associated

to pathogenesis and immune regulation by T. gondii [63], as well as other eukaryotic parasites

[64,65]. The regulation of PS exposure at the plasma membrane of T. gondii and the role of

ATP2B-CDC50.4 in this process remain to be investigated. Remarkably, T. gondii is known to

secrete a soluble PS decarboxylase which might contribute to a decrease of PS concentration at

the outer leaflet of the plasma membrane [66].

A possible implication of ATP2B in phosphatidylthreonine (PT) homeostasis has not been

investigated due to the lack of commercially available tools to study this phospholipid. PT was

previously described as highly enriched phospholipid in Apicomplexa [59] and was shown to

be associated to calcium homeostasis in T. gondii [67]. It is possible that the phenotype of

ATP2B is, at least partially, associated to an unexplored capacity of ATP2B to translocate PT.

On the other hand, PT synthesis was previously shown to impact specifically natural egress

[59], while induced egress reminds unaltered [67]. In addition, since the lack of PT could not

be complemented nor aggravated by excess or reduction of PS [59], it is not likely that PS and

PT have redundant functions for secretion. Taken together, this data strongly indicates that

lack of PS translocation is the main responsible of the phenotype associated to the depletion of

ATP2B-CDC50.4 complex showed here.

Overall, this study identified the complex ATP2B-CDC50.4, which is a PS flippase that cru-

cially contributes to motility, invasion and egress. A model by which PS concentration at the

inner leaflet of the plasma membrane contribute to microneme docking and exocytosis could

imply the participation of lipid binding proteins. However, this hypothesis awaits further

investigations.

Materials and methods

Bacteria, parasite and host cell culture

E. coli XL-10 Gold chemo-competent bacteria were used for all recombinant DNA experi-

ments. Parental T. gondii strain Ku80 KO (genotype RHΔhxgprtΔku80) and parental parasites

expressing the Tir1 protein were used in this study [14]. T. gondii tachyzoites parental and

derivative strains were grown in confluent human foreskin fibroblasts (HFFs) maintained in

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supplemented with 5% fetal calf serum

(FCS), 2 mM glutamine and 25 mg/ml gentamicin. Depletion of mAID fusion proteins was

achieved with 500 μM of IAA [14].

Preparation of T. gondii genomic DNA

Genomic DNA (gDNA) was prepared from tachyzoites of RH or RH ΔKu80 (here referred as

Δku80) strains using the Wizard SV genomic DNA purification (Promega) according to man-

ufacturer’s instructions.

DNA vector constructs and transfection

All primers used in this study are listed in S2 Table. Auxin-inducible degradation of ATP2A,

ATP2B, ATP7B, CDC50.2, CDC50.3 and CDC50.4 were generated using a PCR fragment

encoding the mAID–HA and the HXGPRT cassette produced using the KOD DNA polymer-

ase (Novagen, Merck) with the vector pTUB1:YFP-mAID-3HA as template and the primers

indicated in S2 Table. A specific sgRNA was generated to introduce a double-stranded break

at the 30 of each gene (primers used to generate the guide are indicated in S2 Table).

Parasite transfection and selection of clonal stable lines T. gondii tachyzoites were trans-

fected by electroporation as previously described [68]. Selection of transgenic parasites were
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performed either with mycophenolic acid and xanthine for HXGPRT selection [69], pyrimeth-

amine for DHFR selection [70] or chloramphenicol for CAT selection [71]. Stable line for all

expressing strains were cloned by limited dilution and checked for genomic integration by

PCR and analysed by IFA and/or WB.

Antibodies

The monoclonal antibodies against the Ty tag BB2 (1:10 dilution by WB, 1:20 by IFA) [72],

actin (1:20 WB) [72], SAG1 (1:20 IFA) (generous gift from J-F. Dubremetz), GRA1 T5-2B4

(1:50 WB, 1:100 IFA), GRA3 (1:50 WB, 1:100 IFA) (generous gift from J-F. Dubremetz), MIC2

(1:20 WB, 1:50 IFA) (generous gift from J-F. Dubremetz), MIC3 T4-2F3 (1:20 WB, 1:50 IFA),

anti-Catalase (1:2000 WB) [73], anti-IMC1 (1:2000 WB, 1:1000 IFA), anti-ARO (1:3000 IFA).

For western blot analysis, secondary peroxidase-conjugated goat anti-rabbit-IgG, anti-mouse-

IgG antibodies and secondary Alexa-Fluor-680-conjugated goat anti-rabbit IgG antibodies

(Thermofisher) were used. For immunofluorescence analysis, the secondary antibodies Alexa-

Fluor-488-conjugated goat anti-rabbit IgG antibodies, Alexa-Fluor-488-conjugated goat anti-

mouse-IgG antibodies and Alexa-Fluor-594-conjugated goat anti-mouse-IgG antibodies

(Thermofisher) were used.

Immunofluorescence assay (IFA)

HFFs seeded on coverslips in 24-well plates were inoculated with freshly egressed parasites.

After 24 h, cells were fixed with 4% paraformaldehyde (PFA) and 0.005% glutaraldehyde (GA)

in PBS for 10 min and processed as previously described [8]. Confocal images were acquired

with a Zeiss confocal laser scanning microscope (LSM700 or LSM800) using a Plan-Apochro-

mat 63x objective with NA 1.4 at the Bioimaging core facility of the Faculty of Medicine, Uni-

versity of Geneva. Final image analysis and processing was done with Fiji [74].

Western blotting

Freshly egressed parasites were pelleted after complete host cell lysis. SDS-PAGE, wet transfer

to nitrocellulose and proteins visualized using ECL system (Amersham Corp) were performed

as described previously [8].

Plaque assay

A confluent monolayer of HFFs was infected with around 50 freshly egressed parasites for 7 to

8 days before cells were fixed with PFA/GA. Plaques were visualized by staining with Crystal

Violet (0.1%) as previously described [8]. Quantification was performed using the Fiji [75].

Intracellular growth assay

Parasites were allowed to grow on HFFs for 24 h prior to fixation with PFA/GA. IFA was per-

formed as described previously [8].

Invasion assay

Freshly egressed parasites were inoculated on coverslips seeded with HFFs monolayers and

centrifuged at 1100 x g for 1 min. Invasion was allowed for 20 min at 37˚C +/- ATc prior to fix-

ation with PFA/GA. Extracellular parasites were stained first using monoclonal anti-SAG1 Ab

in non-permeabilized conditions. After 3 washes with PBS, cells were fixed with 1% formalde-

hyde/PBS for 7 min and washed once with PBS. This was followed by permeabilization with

0.2% Triton/PBS and staining of all parasites with polyclonal anti-GAP45 Ab. Appropriate
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secondary Abs were used as previously described. 100 parasites were counted for each experi-

ment, the ratio between red (all) and green (invaded) parasites is presented. Results are pre-

sented as mean ± standard deviation (SD) of three independent biological replicate

experiments.

Induced egress assay

Freshly egressed tachyzoites were added to a new monolayer of HFFs, washed after 30 min

and grown for 30 h. The infected HFFs were washed once in serum-free DMEM and then

incubated with 50 μM BIPPO in serum-free DMEM for 7 min at 37˚C. Cells were fixed with

PFA/GA and processed for IFA using anti-GAP45 Ab. 100 vacuoles were counted per strain

and scored as egressed or non-egressed. Results are presented as mean ± standard deviation

(SD) of three independent biological replicate experiments. Control experiment with DMSO

showed no egress. For live video microscopy of induced egress, parasites were grown on glass

bottom plates seeded with HFFs monolayers for 30 h at 37˚C and egress was induced as

described above.

Microneme secretion assay

Microneme secretion assay was performed on freshly egressed parasites, pre-treated 24 or 48 h

+/- ATc. Parasites were pelleted at 1000 rpm for 5 min and resuspended in extracellular (EC)

buffer (142 mM NaCl, 5.8 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 5.6 mM glucose, 25 mM

HEPES, pH to 7.2 with NaOH). After centrifugation, the pellets were resuspended in 100 μL of

extracellular (EC) buffer containing +/- 2% ethanol and incubated for 30 min at 37˚C. Then,

parasites were pelleted at 1000 x g for 10 min at 4˚C, the supernatant was transferred to a new

Eppendorf tube (the pellet from this step serves as the pellet fraction) and centrifuged again at

2000 x g for 10 min at 4˚C. The final supernatant, containing the excreted/secreted antigens

(ESA), and pellet fraction were resuspended in SDS loading buffer and boiled prior to

immunoblotting.

Flippase assay

NBD-phospholipid incorporation (NBD-PS) was assessed by flow cytometry as described

before [8,41]. In brief, 5 × 106 extracellular parasites were washed in Hank’s balanced salt solu-

tion (pH 7.4) containing 1 g l−1 glucose. Subsequently, 1 μM NBD-PS was incubated at room

temperature. At the designated time point, 20 mM DPX (p-xylene-bis-pyridinium bromide)

was added to quench fluorescence of lipids localized in the outer leaflet. Then, 10,000 cells

were analysed with a Gallios (4-laser) cytometer. The mean fluorescence intensities of the cells

were calculated.

Immunoprecipitation assay

Extracellular tachyzoites were harvested, washed in PBS and lysed in co-immunoprecipitation

buffer (0.2% v/v Triton X-100, 50 mM Tris-HCl, pH 8, 150 mM NaCl) in the presence of a pro-

tease inhibitor cocktail (Roche). Cells were sonicated on ice and centrifuged at 14,000 r.p.m.

for 30 min at 4˚C. Supernatants were then subjected to immunoprecipitation using anti-HA

antibodies as previously described [8]. 2 μl of DTT (50 mM in liquid chromatography–mass

spectrometry-grade water) were added and the reduction was carried out at 37˚C for 1 h.

Alkylation was performed by adding 2 μl of iodoacetamide (400 mM in distilled water) for 1 h

at room temperature in the dark. Protein digestion was performed overnight at 37˚C with 15

μl of freshly prepared trypsin (Promega; 0.2 μg μl−1 in ammonium bicarbonate). After beads
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were removed, the sample was desalted with a C18 microspin column (Harvard Apparatus),

dried under speed vacuum, and redissolved in H2O (94.9%), CH3CN (5%) and FA (0.1%)

before liquid chromatography–electrospray ionization-tandem mass spectrometry analysis

(LC–ESI-MS/MS). LC–ESI-MS/MS was performed on a Q-Exactive Hybrid Quadrupole-Orbi-

trap mass spectrometer (Thermo Fisher Scientific) equipped with an Easy nLC 1000 system

(Thermo Fisher Scientific). Peptides were trapped on an Acclaim PepMap 100, C18, 3 μm, 75

μm × 20 mm nano-trap column (Thermo Fisher Scientific) and separated on a 75 μm × 500

mm, C18, 2 μm Easy-Spray column (Thermo Fisher Scientific).

Annexin V staining

Annexin V (ThermoFisher, 88-8005-72) labelling was performed as indicated by supplier.

Briefly, 1x106 freshly egressed parasites were resuspended in binding buffer provided by sup-

plier. 5 uL of Annexin V was added for labelling and incubated during 10–15 minutes. Upon

washing once, 10,000 cells were analyzed with a Gallios (4-laser) cytometer. The mean fluores-

cence intensities of the cells were calculated.

In silico analysis of proteins and modelling

Sequences of Apicomplexan P-type ATPases and CDC50s were procured from EuPathDB and

aligned using MUSCLE sequence alignment software [76,77]. The resulting sequence align-

ment was manually curated utilizing BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.

html) to edit out uninformative alignment positions. Phylogeny tree was generating utilizing

PhyML [78] on the curated MUSCLE alignment, using LG model of amino acids substitution

with NNI topology search. Phylogeny.fr [78] platform was utilized for much of the above anal-

ysis. All accession numbers are provided in S1 Table.

C2 domain modelling of TgDOC2.1 was performed using the automated server i-TASSER

[79] and visualized using PyMOL (www.pymol.org). Modelling was performed using the resi-

dues 569 to 653, using the sequences 4ihbA, 3jzyA, 4icw, 5ixcA, 4rj9A, 3pfqA and 5ixcA

(Swissmodel templates) with normalized Z-scores of 0.87 to 2.51. Overall model possesses an

estimated C-score of -0.41, TM score of 0.66 ± 0.13 and RMSD of 4.4 ± 2.9Å.

Statistics and reproducibility

All data are presented as the mean ± s.d. of 3 independent biological replicates (n = 3), unless

otherwise stated in the figure. The mean of each independent biological replicate was gener-

ated by counting 100 vacuoles/parasites. All data analyses were carried out using GraphPad

Prism. The null hypothesis (α = 0.05) was tested using unpaired two-tailed Student’s t-tests

and significant P values are shown.

Supporting information

S1 Fig. (A) Apicomplexan CDC50s cluster into 2 phylogenetic groups. An unrooted maxi-

mum likelihood tree of apicomplexan ASPs was generated using PhyML v3.0, using WAG

model of amino acids substitution with NNI topology search, based on an amino acid align-

ment by MUSCLE. The genes are represented by the EuPathDB accession numbers. Node sup-

port values are indicated.

(TIF)

S2 Fig. (A) PCR demonstrates correct integration of ATP2A, ATP2B and ATP7B and

CDC50.2–4 mAID. Primers used are listed in S2 Table. (B) PCR demonstrates correct integra-

tion of ATP7B-SM-HA. Primers used are listed in S2 Table. (C) Immunoblot of lysates from
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RH parental and ATP7B-SM-HA parasites. HA antibodies were used to detect tagged ATP7B.

MIC2: loading control. (D) Western blot showing enrichment of CDC50.4-mAID-HA upon

immunoprecipitation. Anti-HA antibodies were used to detect CDC50.4-mAID-HA in the dif-

ferent fractions. S: soluble fraction (input), P: pellet fraction. (E) IFA of intracellular RH

ATP2B-Ty/CDC50.4-mAID-HA parasites with or without IAA. The scale bars for the immu-

nofluorescence images are 7μM, unless otherwise indicated. (F) Western blot of lysates

ATP2A-Ty/CDC50.4-mAID-HA parasites treated with or without IAA for 24 hours. Catalase:

loading control.

(TIF)

S3 Fig. (A) Parasites lacking ATP7B display a delay in intracellular replication. Error bars rep-

resent ±SD from three independent experiments. (B) Egress assay of Tir1 parental strain and

ATP7B-mAID-HA parasites grown for 30hs treated with or without IAA. Egress was induced

with BIPPO or DMSO for 7 minutes. Percentage of egressed vacuoles is shown as means+/-

SD of 3 independent replicates. (C) Invasion assay of Tir1 parental strain and ATP7B-

mAID-HA parasites treated with or without IAA for 24 hours. Data represents mean +/- SD.

(D) Representative images of vacuole organization in parasites depleted (or not) of ATP7B.

Quantification is shown in (E). (F) Flow cytometry measurement of residual fluorescence

upon addition of DPX to NBD-PS incubated extracellular ATP2B-mAID in intracellular

buffer. Parasites were mechanically released from intracellular condition to avoid activation of

egress signalling. (G-H) Histograms corresponding to one experiment of Annexin V binding

to parasites are shown in (G) and representative images in (H). The scale bars for the immuno-

fluorescence images are 7μM, unless otherwise indicated.

(TIF)

S1 Table. Gene accession numbers of the homologs of the studied genes within the Api-

complexa phylum.

(XLSX)

S2 Table. Oligonucleotide sequences used in this study.

(XLSX)
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