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ARTICLE

Deep learning-based image analysis identifies a
DAT-negative subpopulation of dopaminergic
neurons in the lateral Substantia nigra
Nicole Burkert1,9, Shoumik Roy 1,9✉, Max Häusler1,9, Dominik Wuttke2, Sonja Müller1, Johanna Wiemer1,

Helene Hollmann1, Marvin Oldrati1, Jorge Ramirez-Franco 3,4, Julia Benkert1, Michael Fauler5, Johanna Duda1,

Jean-Marc Goaillard3,4, Christina Pötschke1, Moritz Münchmeyer2,6, Rosanna Parlato1,8 & Birgit Liss 1,7✉

Here we present a deep learning-based image analysis platform (DLAP), tailored to auton-

omously quantify cell numbers, and fluorescence signals within cellular compartments,

derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of

tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human

brain-sections. These neurons modulate complex behaviour, and are differentially affected in

Parkinson’s and other diseases. DLAP allows the analysis of large cell numbers, and facilitates

the identification of small cellular subpopulations. Using DLAP, we identified a small sub-

population of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra

(SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter

(DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehy-

drogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold

higher likelihood of calbindin-d28k co-expression (~70%). These results have important

implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for

dopaminergic SN neurons.
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Dopamine releasing (DA) neurons within the midbrain are
important for a variety of brain functions and behavioural
processes like voluntary movement control, learning,

cognition, and motivation1–4. The cell bodies of DA midbrain
neurons are predominantly located in two overlapping nuclei, the
Substantia nigra pars compacta (SN) and the ventral tegmental
area (VTA), with axonal projections to the dorsal striatum, or the
ventral striatum and prefrontal cortex, respectively5–8. In line
with these differential functions and projections, dysfunction of
the dopaminergic midbrain system can lead to severe diseases like
Parkinson’s, Schizophrenia, addiction, or attention deficit
hyperactivity disorders, ADHD9–12. Importantly, not all DA
midbrain neurons are affected equally in these diseases. More
precisely, in Parkinson’s disease (PD), the second most common
neurodegenerative disorder, a subpopulation of mesostriatal SN
DA neurons is progressively degenerating, while neighbouring
VTA DA neurons remain largely intact13–16. In contrast, in
Schizophrenia, mesocorticolimbic VTA DA neurons display
complex dysfunctions, while SN DA neurons are mainly
unaffected17–19. The cause for this differential vulnerability of
dopaminergic midbrain neurons is still unclear, and only
unspecific, symptomatic therapies are available, with their
respective side-effects20,21.

One prerequisite for curative and cell-type specific therapies is
a better understanding of the distinct subpopulations of dopa-
minergic neurons and their selective pathophysiology5,8. Analysis
of mRNA and protein expression with single cell resolution and
its correlation with anatomical locations and projections in health
and disease states is an essential approach for identifying mole-
cular determinants of differential neuronal vulnerability22–26. For
this, labelling of mRNA or proteins in tissue sections, followed by
microscopic imaging, are important tools27–29. However, manual
neuronal mapping, cell counting, and quantification of mRNA-
and protein-derived fluorescence signals is very time consuming
and prone to human error30–32. Here, we present a deep learning-
based image analysis platform (DLAP) that overcomes these
issues. Our single cell DLAP approach and six individual algo-
rithms were tailored to quantify autonomously (i) the number of
distinct cell types in defined areas, as well as (ii) fluorescence
signals, derived from either RNAscope probes (mRNA) or
immunohistochemistry (proteins), in defined compartments -
more precisely in plasma-membranes, cell body/cytoplasm, and
nuclei of individual neurons. We utilised artificial neuronal net-
works (ANN) based artificial intelligence/deep learning approa-
ches for image analysis. ANN are biologically inspired computer
programs, designed to simulate the way in which the human
brain processes information. ANN gather their knowledge by
detecting the patterns and relationships in data (segmentation),
and learn (or are trained) through experience, not by
programming33–36. ANN consist of artificial neurons, arranged in
different layers37,38, where each consecutive layer obtains inputs
from its preceding layer. As only the first (input) and the last
(output) layer are visible/accessible, all layers in between are
referred to as hidden layers. Network architectures containing
hundreds of hidden layers are called deep networks33. After
suitable training, deep learning networks can effectively extract
relevant cellular features for automated image analysis39.

To facilitate easy adaption to the most common respective
tasks in life science, we have predesigned six algorithms, based on
two distinct network structures, DeepLab3 (DL3) and fully con-
volutional neural networks (FCN)40,41. We trained them to
detect, count, and analyse individual DA midbrain neurons,
labelled for tyrosine hydroxylase (TH), the key-enzyme for
synthesis of dopamine and other catecholamines42. However, the
flexible design of the algorithms and the workflow allows quick
and easy adaptions to other cell types and specimens, and thus is

of general interest. Here, we detail the DLAP pipeline, including
all six predesigned algorithms for automated image processing.
As proof-of-principle, we demonstrate its reliable identification
and count of cells in defined areas, as well as fluorescence-signal
quantification in cellular compartments, by analysing about
40.000 TH-positive midbrain neurons. Using this approach for
quantification of the immunofluorescence signal of the plasma-
lemmal dopamine transporter (DAT) in TH-positive SN neurons,
we identified a small subpopulation of DAT immuno-negative
neurons (~5%), mainly located in the caudo-lateral parts of the
SN (~37% of all lateral TH-positive SN neurons). These neurons
had ~40% smaller cell bodies and also showed a co-expression
profile for three additional markers of subpopulations of SN DA
neurons (dopamine-D2-autoreceptor, Ca2+ binding protein cal-
bindin-d28k, and aldehyde dehydrogenase 1) that is rather
untypical for classical SN DA neurons. The DAT is an electro-
genic symporter of the Na+/Cl− dependent transporter family
(SLC6). It is crucial for re-uptake of dopamine at somatodendrites
and axons, and also mediates an electric conductance43. The
identification of a DAT-negative TH-positive SN neuron popu-
lation has not only physiological relevance44–46, but it has addi-
tional implications, as DAT is commonly used as marker for SN
DA neurons and for their specific targeting, e.g., to generate
transgenic mice, expressing Cre-recombinase under the control of
the DAT-promoter47–49.

Results
Based on the Wolution web-interfaces (https://wolution.ai/), we
developed a deep learning-based, automated image analysis
platform (DLAP) as well as six tailored algorithms (two based on
FCN, four based on DL3) for fast and reliable identification and
quantitative analysis of TH-positive midbrain neurons within the
SN and VTA of mouse and human post mortem brain sections.
These six DLAP algorithms were trained by hundreds of manu-
ally marked TH- and DAPI-positive cell bodies of midbrain
neurons. Figure 1 illustrates the general workflow. Tables 1, 2
and S1 provide details of algorithms, trainings, and performances
(further details in methods and supplement). For all approaches,
the region of interest (ROI) for cell type identification and
quantification (i.e the SN) was marked manually, according to
anatomical landmarks50. All six algorithms allowed reliable
identification of target cells, as well as their quantification in a
given ROI (DLAP-3 & 4), and/or quantification of mRNA-
derived (DLAP-1 &-2) or protein-derived (DLAP-5 & 6) fluor-
escence signals of distinct genes of interest in these target cells -
all common tasks in life science.

Deep learning networks for image segmentation of complicated
scenes, such as the Pascal Visual Object Classes (VOC) dataset51,
that we used in the DeepLab3 based algorithms, are usually very
large, and their filters are particularly trained to learn abstract
concepts such as “tree” or “car”. Particularly, for the analysis of
simple, RNAscope derived fluorescence signals (i.e., individual
small dots, diameter Ø ~ 0.3 μm), we found that such a compli-
cated pre-trained neural network was not of benefit. RNAscope-
derived fluorescence signals are mainly small dots (Ø ~ 0.3 μm)
within the cytoplasm, which makes threshold based automatic
recognition/segmentation of the cell body difficult. Thus, we
custom-designed and optimized two less complex FCN-based
algorithms (DLAP-1 and 2), and we demonstrate that they were
better suited for the analysis of RNAscope data, compared to
DeepLab3 approaches. The latter algorithm failed to recognize the
small dots (mRNA molecules) as evident from the sensitivity-
value of 0.0% for this class, compared to 92.5% and 94.7% for the
FCN-based algorithm (Table S1). For protein-derived immuno-
histochemistry signals (diaminobenzidine (DAB), and
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Fig. 1 Graphic illustration of the deep learning-based image analysis platform (DLAP). After sectioning of murine/human midbrain samples, either
mRNA- (RNAscope) or protein- (IHC/IF) labelling is performed. After image acquisition, images are preprocessed and the ROIs (e.g., SN) are manually
marked. Cell types and compartments (e.g., cell body, plasma membrane, nucleus) were manually labelled in a training dataset to generate the ground
truth data that was used to train the individual algorithms (FCN- or Deeplab3-based, depending on complexity of signals to identify). After sufficient
training, images are automatically analysed (detection of ROI, quantification of cell numbers and signal intensities).

Table 1 Quality evaluation parameters for all six algorithms.

DLAP algorithm class name Error [%] TP [%] TN [%] FP [%] FN [%] Spec [%] Sens [%]

1
cell body 5.08 10.3 84.7 4.1 0.8 95.3 92.7
mRNA 0.3 98.9 0.7 0.0 99.3 92.5

2
(human)

cell body 4.13 5.2 91.0 2.5 1.4 97.3 80.8
mRNA 0.2 98.9 0.9 0.0 99.1 94.7

3 nucleus 0.61 0.5 98.9 0.5 0.1 99.5 85.5
4 nucleus 0.26 0.1 99.7 0.2 0.0 99.8 59.8

5
nucleus 3.3 0.9 98.5 0.3 0.3 99.7 74.5
cytoplasm 4.1 92.9 2.2 0.8 97.7 83.7

6
nucleus 5.49 3.0 93.5 2.5 1.0 97.4 75.6
cytoplasm 9.7 89.0 0.8 0.5 99.1 95.0
membrane 11.7 85.2 2.2 0.9 97.5 92.4

Performances were determined by comparing DLAP analysis results of the test image sets to the ground truth data (provided by manual labelling). Class name defines the identified molecular or cellular
structures. The following quality measures were assessed separately for each class: pixel error rate, rate for true positive (TP), true negative (TN), false positive (FP), false negative (FN) detection, as well
as relative specificity (spec.) [defined as TN/(TN+ FP)], and sensitivity (sens.) [defined as TP/(TP+ FN)].
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immunofluorescence (IF)), tailored DeepLab3 algorithms per-
formed better, as indicated by lower overall error (Table S1;
DLAP-3 to -6).

DLAP based automated quantification of mRNA molecules in
individual target cells via RNAscope approaches. RNAscope
in situ hybridization allows absolute quantification of distinct
mRNA molecules, directly via hybridization-probes, with each
fluorescence dot representing one target mRNA-molecule52,53. Due
to multiple probes for each target-gene, it is hardly affected by
degraded RNA. We have used RNAscope for determining mRNA
molecule numbers in individual TH-positive SN DA neurons in
fresh-frozen, PFA-postfixed mouse midbrain sections54. For auto-
mated quantification of numbers of RNAscope probe derived
fluorescence dots, two custom-designed FCN based algorithms were
used (DLAP-1 & 2). The general principle of the FCN algorithms is
given in Fig. 2. DLAP analysis of RNAscope signals was performed
in two steps: in a first step, the cell body was recognized and marked

according to the TH-signals, and in a second step, individual target
gene mRNA dots (labelled with a different fluorophore) were
identified and counted within the marked TH-positive cell body,
including the nucleus. DLAP-1 is optimized for detecting TH-
positive DA neurons from mice, DLAP-2 for detecting human TH-
positive DA neurons, containing neuromelanin (NM), a dark pig-
ment present in DA neurons from humans and primates55,56, visible
only in bright field (BF).

Figure 3a shows a representative image of TH-positive SN
neurons in a coronal mouse brain section, after RNAscope in situ
hybridization, before (input image, left) and after automated
identification of TH-positive cell bodies and quantification of
individual fluorescence dots, derived from target mRNA molecules.
Cell bodies were identified and marked according to the TH-derived
fluorescence signal (green dots), and target mRNA were identified as
probe-derived fluorescence-signals (red dots, Table S2). Results for
two different target genes - with lower (Cav1.3) and higher (Cav2.3)
mRNA abundance - are given (Fig. 3b and Tables S3, S4). Both

Table 2 Overview of six individual DLAP algorithms and workflow, optimized for distinct image sets and analysis tasks.

DLAP algorithm Trained by
/optimized for

Algorithm task Network-Type Training-set post training image analysis
optimization (a-e)

images cells

1 RNAscope
fluorescence:
TH-mouse (DAPI)

(1) Identifies cells of interest and delineates
the shape of cell bodies by TH-derived
fluorescence signals (green channel).
(2) Within these marked cell bodies, target
gene derived individual fluorescent dots (red
channel) are detected, marked,and counted.

FCN 100 ~1000 (a) watershed algorithm for
improved separation of
mRNA molecules.
(b) morphological operations
(type dilation and erosion)
applied, for better separation
of neurons.

2
modification of
algorithm No. 1

RNAscope
fluorescence:
TH-human (DAPI)

(3) A fourth BF channel was included, as a
measure for NM-content. After Step (1) and
(2) from algorithm 1, in an additional step,
the BF signal intensity is quantified within
the marked cell bodies (including nuclei).

FCN 200 ~500# (a) watershed algorithm for
improved separation of
mRNA molecules.
(b) morphological operations
(type dilation & erosion)
applied, for better separation
of neurons.

3 DAB-labelling:
TH-mouse

Identifies and counts nuclei of DAB-positive
cells (TH-stained).

DeepLab3# 100 ~3000# none

4
modification of
algorithm No. 3

DAB-labelling:
TH-mouse &
HE-counterstain

Extends the automated counting of DAB-
positive cells (TH-stained) to sections that
are counterstained with HE.

DeepLab3# 300 ~2500# (a) watershed algorithm for
improved separation of
individual nuclei.
(c) filling holes within
recognized compartments.

5 IF-labelling:
TH-mouse, DAPI
DAT-mouse
D2/CB/Aldh1A1-
mouse

(1) Identifies and counts cells of interest (i.e
TH-positive cells). It delineates the shape of
the cell body by immunofluorescence
signals for TH (red channel) and of the
nucleus by DAPI fluorescence signal (blue
channel).
(2) Within these marked compartments, the
relative signal intensities are quantified for
all four fluorescent channels.

DeepLab3 95 ~500 (a) watershed algorithm for
improved separation of
neurons.
(c) filling holes within
recognized compartments.
(d) removing target gene
channel during cell
identification.
(e) RGB intensity threshold
for background-signal
determination.

6 IF-labelling:
TH-mouse,
DAPI
Kv4.3-mouse,

(1) Identifies cells of interest and delineates
the shape of the cell body by
immunofluorescence signals for TH (red
channel), of the nucleus by DAPI
fluorescence signal (blue channel), and of
the membrane (originally learned by Kv4.3
staining, after training no membrane marker
needed).
(2) Within these marked compartments, the
relative signal intensities are quantified for
all three fluorescent channels.

DeepLab3 94 ~110 (c) filling holes within
recognized compartments.
(d) removing target gene
channel during cell
identification.
(e) RGB intensity threshold
for background-signal
determination.

For detailed description, see methods.
BF brightfield, DAB diaminobenzidine, DAPI 4′,6-diamidino-2-phenylindole, FCN fully convolutional neural network, HE hematoxylin, IF immunofluorescence, NM neuromelanin, RGB red-green-blue, TH
tyrosine hydroxylase.
#For training, only the cellular nuclei were marked, not the full cell body, similar as in stereology; only clearly visible, full nuclei were counted.
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target genes code for a specific voltage gated Ca2+ channel α-subunit
that has been linked to Parkinson’s disease54,57,58. The manual and
the automated analysis (DLAP-1) resulted in very similar results for
both genes, over the full range of mRNA molecule numbers (Cav1.3
manual: 24 ± 1 mRNA molecules, DLAP-1: 24 ± 1, N= 3, n= 499
neurons analysed, p= 0.999, R2= 0.92; Cav2.3 manual: 69 ± 5,
DLAP-1: 69 ± 5; N= 3, n= 372; p= 0.999, R2= 0.92; Fig. 3b/c, S1,
Tables S3, S4). Accordingly, the significant, ~3-fold higher number
of Cav2.3 mRNA molecules in mouse SN DA neurons, compared to
those of Cav1.3 is robustly detected with both manual and DLAP-1
analysis (p < 0.0001 for both), similar as previously described54.

Similar robust results were obtained for RNAscope analysis of
human SN DA neurons with the DLAP-2 algorithm. To optimize
DLAP for human SN DA neurons, the DLAP-1 algorithm was
extended to quantify the brightfield (BF) intensity, as a measure for
the variable NM content of human SN DA neurons, to evaluate
possible confounding effects of different NM content on RNAscope
results (Fig. 4, S2, Table 2). Cav1.3 mRNA molecules as well as NM
content were compared in SN DA neurons from adult and aged
individuals (adult: 42 ± 7 years; aged: 78 ± 3, details in Table S5).
Manual and automated DLAP-2 analysis provided very similar
results, and we detected a strong linear correlation between manually
and automatically determined mRNA molecule numbers as well as
NM-content (Fig. 4b/d/e, Tables S6, S7). Interestingly, the number of
Cav1.3 mRNA molecules was significantly lower (~60%) in SN DA
neurons from aged individuals (Fig. 4b left, manual: adult 38 ± 5,
aged 14 ± 3; N= 3, n= 223; p < 0.0001; DLAP-2: adult 40 ± 7, aged
17 ± 4; N= 3, n= 258; p < 0.0001).

Noteworthy, the BF-value derived NM content was also
significantly different between adult and aged samples, with ~30%
higher NM content in aged SN DA neurons (p < 0.0001, Fig. 4b right,
Tables S6, S7). To exclude that the lower number of mRNA
molecules determined in aged SN DA neurons were artificially
caused by the higher BF values (as measure for NM content), we
addressed possible confounding parameters by applying a mixed
effects model optimized for these kind of human sample-derived data
that are in general more heterogeneous59,60. As the model indicated
that the NM content indeed affected the detected Cav1.3 mRNA
molecule numbers, we corrected the automated data for the NM-
content attributed effect. However, as evident in Fig. 4c, Table S6, we
still detected a similar highly significant lower number of Cav1.3
mRNA molecules (~35%) in SN DA neurons from aged donors
(manual: adult 32 ± 2, aged 17 ± 3; N= 3, n= 180; p < 0.0001;
DLAP-2: adult 32 ± 3, aged 20 ± 3; N= 3, n= 244; p < 0.0001).

DLAP based automated quantification of immuno-labelled
neuron numbers in tissue sections. Determination of numbers of
cellular populations in defined ROI is a common task e.g., for
quantifying selective cell loss in neurodegenerative diseases, and to
assess neuroprotective therapeutic effects61. However, commonly

used stereological approaches (still the gold-standard), are time
consuming, and they provide only a - more or less exact - estimation
of cell numbers, depending on the size of the manually counted
fraction of cells62,63. Approaches have been developed to increase
sampling sizes and thus accuracy of estimates64. Nevertheless, esti-
mates are prone to over- or underestimating total cell numbers,
particularly if the target cells are not homogeneously distributed in
the ROI, as it is the case e.g., due to differential neuronal vulner-
ability in degenerative disease65–67. However, manual approaches to
count all neurons in a given ROI are extremely time consuming and
prone to bias/human error. To overcome these issues, we developed
three DLAP algorithms, dramatically reducing the time for valid
determination of cell numbers, tailored to detect and count target
cells, immuno-labelled by either DAB alone (DLAP-3), or in the
presence of an additional hematoxylin counterstain (DLAP-4), or by
IF (DLAP-5). According to our stereological procedures, the DLAP-
3 and 4 algorithms were trained by marking the neuronal nuclei
only, not the whole cell bodies, to count only TH-positive cells with
clearly visible nuclei.

DAB-labelling is commonly used for determining cell-numbers in
histological samples, as stained sections can be archived and e.g. (re-)
analysed. Figure 5, S3, Tables S8, S11 summarize the results for
counts of TH-positive SN neurons (unilaterally) from juvenile mice
after DAB immunostaining, comparing stereological estimates with
automated counting, utilising DLAP-3. The stereological estimates
and automated neuron counts resulted in very similar neuron
numbers (Stereology: 4951 ± 1079, DLAP-3: 4317 ± 912 neurons
unilaterally; p= 0.218, N= 10. linear correlation/section: R2= 0.79).
These SN DA neuron numbers correspond well to the literature for
C57bl/6 mice, ranging from 4000–6000 neurons unilaterally68,69.

Immunohistochemistry sections are often counterstained with an
unspecific cellular marker (like Nissl, hematoxylin). For analysis of
SN DA neurons, such counterstains are often performed to confirm
that a loss of TH-immunopositive neurons (e.g., in a PD-model)
indeed corresponds to a loss of the respective neurons, and does not
reflect a mere downregulation of TH-expression70–72. As we use
hematoxylin-counterstains in such experiments54,73, we optimized
DLAP-4 to detect DAB stained TH-positive SN neurons in such
counterstained sections. With DLAP-4, we re-analysed a cohort of 21
mice that we had already analysed54 to quantify the effect of a PD-
inducing drug (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin, MPTP)
that induces preferential loss of SN DA neurons. Adult C57bl/6 J
mice were either injected with saline (N= 9) or with MPTP/
probenecid (N= 12). We compared DLAP-4 analysed data with the
respective already published stereology-derived data, and also with
another automated neuron count approach, based on the Aiforia
platform (Fig. 6, S4, Tables S9–11). We had used the Aiforia platform
(https://www.aiforia.com) for this cohort, to confirm relative
numbers of remaining SN DA neurons after drug-treatment. Indeed,
the relative determined cell loss by the Aiforia approach was similar
to that estimated by stereology (~40%, p= 0.183; Fig. 6b, Table S10,

Fig. 2 Architecture of the fully convolutional neural network (FCN), used for RNAscope-derived signals. Left: the input image shows SN DA neurons,
RNAscope-labelled for tyrosine hydroxylase (TH) mRNA (green), target gene mRNA (red) and DAPI (blue). Scale bar: 20 µm. Right: the image is passed
through five convolutional layers, connected by the Rectified Linear Units (ReLU) and the softmax activation function, as indicated. The latter normalises
the network output to the probability distribution. The size of the convolutional kernels is specified in the orange boxes, the dimensions of the resulting
feature maps are given in the blue boxes [pixels]. The network analyses image patches of size 63 × 63 pixels to determine the class of the central pixel in
the patch. It is applied convolutionally to every central pixel in the image, so that the final output image has the same dimensions as the input image.
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and Benkert, Hess54). However, the absolute number of neurons
determined with the Aiforia approach was almost double as high
(saline: stereology: 3959 ± 643, Aiforia: 7048 ± 843, p < 0.0001, drug:
stereology: 2504 ± 933, Aiforia: 4108 ± 1596, p= 0.004; Fig. 6b, S4,
Table S9). This overcount, and the fact that the convolutional
neuronal network (CNN)-based Aiforia system does not allow
algorithm training by the users74, prompted us to switch to the
Wolution-platform in the first instance.

With the DLAP-4 approach, a similar relative % of remaining
TH-positive SN neurons in the drug-treated mouse cohort was
detected, as with stereology or Aiforia (DLAP-4: 59 ± 21%,
stereology: 63 ± 59%, p= 0.234; Aiforia: 58 ± 23%, p= 0.988).
Moreover, also the absolute numbers of SN DA neurons/mouse,
counted by DLAP-4 were similar to the respective stereological
estimates (Saline: DLAP-4: 4614 ± 500, stereology: 3959 ± 643,
p= 0.744; Aiforia: 7048 ± 823, p < 0.0001. Drug: DLAP-4:
2708 ± 975, stereology: 2504 ± 922, p= 0.996; Aiforia:
4108 ± 1596, p= 0.016). The linear correlation coefficients
between manually and automatically counted neuron numbers
were similarly high for both automated approaches. However, the
linear regression slope, was higher for the Aiforia algorithm

compared to our DLAP-4 algorithm (1.6 vs 1.0), in line with the
higher, over-counted neuron-number by the Aiforia approach
(Fig. 6, S4, Table S11).

DLAP-5 analysis of immunofluorescence-labelled cells defines
a novel population of DAT-negative neurons in the lateral SN.
We extended our automated cell quantification approach from
DAB/BF to cells labelled by immunofluorescence (IF). IF has a
greater dynamic signal range75,76, and allows the parallel quan-
tification of more than one cell-population, defined by distinct
markers77. Moreover, it can provide additional information
regarding protein localization and relative expression levels.

We trained DLAP-5, based on TH and DAPI signals only, to
detect and count immunofluorescence TH-positive SN DA
neurons in DAPI co-stained sections, and to mark the neuronal
cell body and the nucleus of TH-positive neurons. After
identification of TH-positive cell bodies and nuclei, in the next
step, DLAP-5 quantifies IF-intensities separately in both
identified compartments for currently up to four distinct
fluorescent channels, enabling co-expression analyses. Fig. 7a

Fig. 3 Comparison between manual and automated (DLAP-1) RNAscope-derived image analysis of mouse midbrain sections. a SN DA neurons in
coronal midbrain section from adult mice after RNAscope for tyrosine hydroxylase (TH, green) and for the voltage gated Ca2+ channel α-subunits Cav1.3
or Cav2.3 (red). Nuclei are marked by DAPI-staining (blue). Left: input images. Middle and right: images after automated recognition of the TH-labelled cell
bodies (middle, blue area) and of target mRNA molecules (right, white dots) by DLAP-1. Scale bars: 5 μm. b mRNA molecule numbers/neuron, counted
manually (M) or automatically (A) via DLAP-1, as indicated. Data are given as boxplots (median, 10–90 percentile) for all analysed neurons (Cav1.3:
n= 449, Cav2.3: n= 372). The open circles indicate mean values for each analysed animal (N= 3 each). Significant differences (for analysed neurons, n)
according to two-way ANOVA with Tukey’s multiple comparison tests (****p < 0.0001, ns: p > 0.05). c Upper: single neuron correlations of mRNA-derived
dot counts/cell between manual and automated analysis according to Pearson correlation test (s= slope). Lower: corresponding proportionality constants
∝, calculated from the manual and automated dot count ratios. All data are detailed in Tables S3, S4 and Fig. S1.
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and S5a illustrate the automated identification of TH IF-positive
SN neurons (red) in a coronal mouse midbrain section.

As the expression of the dopamine transporter DAT is
commonly used as an additional maker for SN DA neurons
besides TH, we used DLAP-5 to quantify the relative DAT-IF
signals in the marked TH-positive cell bodies. Our central aim
here was to quantify the co-expression of TH and DAT in SN

neurons, and their relative expression levels, rather than
determining absolute numbers of TH-positive SN neurons
(Figs. 7–9, S5–S7). Thus, we only included those TH-positive
SN neurons into further quantitative DAT analysis that were
clearly separated/segmented, with marked cell bodies of proper
size and clearly visible full nuclei. Our exclusion criteria are
specified in methods and in Fig. S5b, and resulted in manual
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exclusion of ~30 ± 6% of the automatically identified TH-positive
SN neurons (Fig. S5c, Table S12). In the remaining number of
TH-positive SN neurons (2750 ± 462 neurons/mouse, N= 14), we
detected only in ~95% a DAT-IF signal above the background
signal (2633 ± 442 neurons/mouse, p= 0.0001). The remaining
~5% (4.3 ± 1.7%) of TH-positive SN neurons were immuno-
fluorescence negative for DAT (Fig. 7b, S5d, Tables S12, S13,
S16).

In order to further characterize this small subpopulation of
TH-positive but DAT-negative SN neurons, we used the x,y,z

-coordinates of the analysed TH-positive neurons to generate 2D
and 3D anatomical maps for each analysed coronal section, and
merged maps for all mice Figs. 7c, 8, S6, online-Fig. S7, Table S16).
These maps revealed that the TH-positive DAT-negative neurons
were clustered in the very lateral parts of the SN, with 17% of all
TH-positive neurons being DAT-negative compared to only ~3%
in the whole non-lateral SN (lateral – defined as >1.5 scaled x-
axis units (>377.8 μm) lateral from each SN hemisphere-centre
(0.0): DAT negative: 17.0 ± 5.8%, non-lateral: 3.2 ± 1.6%, Fig. 7d,
S6). This location excludes that they constitute a contamination

Fig. 5 Comparison between unbiased stereology and automated (DLAP-3) IHC-derived image analysis of juvenile mouse midbrain sections. a SN DA
neurons in coronal midbrain section from juvenile mice after DAB-IHC for tyrosine hydroxylase (TH, brown). Left: input image with SN outlined in red.
Scale bar: 200 µm. Middle and right: enlarged images before (top) and after (bottom) automated recognition of the nuclei within TH-labelled cell bodies
(green area) with DLAP-3. Scale bars: 50 μm (middle) and 10 µm (right). b Numbers of TH-positive SN DA neurons/mouse, quantified via unbiased
stereology (extrapolated via the optical fractionator method, M) or automatically (A) via DLAP-3, as indicated. Data are given as boxplots (median, 10–90
percentile) for all analysed mice (N= 10). No significant differences according to Mann–Whitney test (ns: p > 0.05). c Upper: correlations of SN DA neuron
counts/section between stereology and automated analysis, according to Pearson correlation test. Lower: corresponding proportionality constants ∝,
calculated from the manual and automated cell count ratios. All data are detailed in Tables S8, S11 and Fig. S3.

Fig. 4 Comparison between manual and automated (DLAP-2) RNAscope-derived image analysis of human midbrain sections. a SN DA neurons in a
horizontal midbrain section from human adult and aged post mortem brain samples after RNAscope for tyrosine hydroxylase (TH, green) and for the voltage
gated Ca2+ channel α-subunit Cav1.3 (red). Nuclei are marked by DAPI-staining (blue). Left: input images. Middle: images after automated recognition of
the TH-labelled cell bodies (middle left, blue area) and of target mRNA molecules (middle right, white dots) with DLAP-2. Right: corresponding brightfield
(BF) images used to quantify neuromelanin (NM) content. Relative (rel.) BF intensities were measured within the detected cell bodies. Scale bars: 10 μm.
b mRNA molecule numbers/neuron (left) and NM content (rel. BF signal intensity; right), quantified manually (M) or automatically (A) via DLAP-2, as
indicated. Data are given as boxplots (median, 10–90 percentile) for all analysed neurons (adult: n= 223, aged: n= 258). The open circles indicate mean
values for each analysed brain sample (N= 3 each). Significant differences (for analysed neurons, n) according to two-way ANOVA with Tukey’s multiple
comparison tests (****: p < 0.0001, ns: p > 0.05). c mRNA molecule numbers/SN DA neuron, determined via DLAP-2, adjusted for individual NM using a
Mixed Effects Model. Data are given as boxplots (median, 10–90 percentile) for all analysed neurons (adult: n= 206, aged: n= 231). The open circles
indicate mean values for each analysed brain sample (N= 3 each). Significant differences (for analysed neurons, n) according to Mann–Whitney tests
(****p < 0.0001). d/e) Upper: single neuron correlations of Cav1.3 mRNA-derived dot counts/cell (d) and rel. BF signal intensity/cell (e) between manual
and automated analysis according to Pearson correlation test. Lower: corresponding proportionality constants ∝, calculated from the manual and
automated dot count ratios. All data are detailed in Tables S5–7 and Fig. S2.
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by VTA DA neurons, overlapping with the medial SN. Moreover,
the 3D-maps identified a ~ 7-fold enrichment of the DAT-
negative TH-positive neurons in the caudo-lateral SN, compared
to its rostral parts (caudal: 36.7 ± 14.8%, medial: 15.0 ± 5.3%,
rostral: 5.0 ± 5.3%, p < 0.0001; Fig. 8, S6/7, Table S12), and a ~ 12-
fold enrichment compared to the non-lateral parts of the SN.
Moreover, cell bodies of the DAT-negative TH-positive SN
neurons were about 35% smaller compared to the DAT-
positive neurons (DAT-positive: 195 ± 15 μm², DAT-negative:

131 ± 17 μm², p < 0.0001), with those of the lateral DAT-negatives
being about a further 20% smaller than their non-lateral
counterparts, but no further differences between the caudo-
lateral and rostro-lateral neurons (DAT-negative: lateral
118 ± 20 μm² vs. non-lateral 138 ± 17 μm², p < 0.011, caudo-
lateral 116 ± 20 μm² vs rostro-lateral 124 ± 33 μm², p= 0.650,
Fig. 7e, Table S17).

For subpopulations of VTA DA neurons, DAT-expression
gradients have been described78,79. To systematically address

Fig. 6 Comparison between unbiased stereology and automated (DLAP-4) IHC-derived image analysis of adult mouse midbrain sections. a SN DA
neurons in coronal midbrain section from adult mice after DAB-IHC for tyrosine hydroxylase (TH, brown). Nuclei are marked by hematoxylin-staining
(blue). Left: input image where the SN is outlined in red. Scale bar: 200 µm. Middle and right: enlarged images before (upper) and after (lower) automated
recognition of the nuclei within TH-labelled cell bodies (green area) with DLAP-4. Scale bars: 50 μm (middle) and 10 µm (right). b Left: number of TH-
positive SN DA neurons/mouse quantified via unbiased stereology extrapolated via the optical fractionator method (M), or automatically (A), either via an
algorithm provided by Aiforia or DLAP-4, as indicated. Right: remaining TH-positive neurons [%] in mice, treated with a neurodegenerative drug, calculated
relative to the mean of the saline-treated group. Data are given as boxplots (median, 10–90 percentile) for all analysed mice (saline: N= 9; PD-drug:
N= 12). Significant differences, according to two-way ANOVA with Tukey’s (neuron counts) or Kruskal–Wallis with Dunn’s multiple comparison tests
(percentage of remaining neurons) (ns: p > 0.05, *p < 0.05, **p < 0.01, ****p < 0.0001). c Upper: correlations of SN DA neuron counts/animal between
stereology and automated analysis (left: Aiforia, right: DLAP-4), according to Pearson correlation test. Lower: corresponding proportionality constants ∝,
calculated from the manual and automated cell count ratios. Stereology data and Aiforia data modified from Benkert et al., Nat. Commun. 2019. All data are
detailed in Tables S9–11 and Fig. S4.
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whether a gradient in DAT expression is present within the SN,
we used the relative, non-saturated DAT fluorescence signal
intensities (DAT-RF) of each analysed TH IF-positive neuron,
determined by DLAP-5, and the respective x,y,z-coordinates to
generate heat-maps of RF-signal intensities (Fig. 9a, S7). Those
maps indicated a medio-lateral as well as a caudo-rostral DAT-
protein gradient, with lowest DAT-immunosignals (within the
background-range) in the very (caudo-) lateral SN. Correspond-
ing heat-maps for TH suggested a similar, but much less
prominent gradient (Fig. 9b, S7), similar as previously
described78,80.

To further characterize these atypical TH-positive but DAT-
negative lateral SN neurons, we next analysed the co-expression
patterns and expression-maps of the dopamine-D2-autoreceptor
(D2-AR), the Ca2+ binding protein calbindin-d28k (CB), and the
aldehyde dehydrogenase 1 (Aldh1A1), all markers for subpopula-
tions of SN DA neurons. D2-AR is known to be abundantly
expressed in classical (DAT-positive and CB-negative81,82) SN
DA neurons83,84, and accordingly, we robustly detected D2-co-
expression in almost all ( ~ 93%) TH- and DAT-positive SN
neurons (Figs. 10a, 11a, S8, Tables S14–17). In the DAT-negative
SN neurons however, D2-AR co-expression was significantly less

Fig. 7 Automated (DLAP-5) image analysis of IF-derived signals identifies a DAT-negative subpopulation of TH-positive SN neurons. a Left: neurons in
a coronal midbrain section from adult mice after IF for tyrosine hydroxylase (TH, red) and Dopamine transporter (DAT, green). Nuclei are marked by DAPI-
staining (blue), the SN is outlined in yellow, the white box in the lateral SN indicates the location of DAT immuno-negative (DAT−) neurons. Middle:
enlarged image of TH-positive neurons within the white box from the left, before (top) and after (bottom) automated recognition of TH-positive cell bodies
(yellow) and nuclei (blue) with DLAP-5. Right: single channel input image, for TH-IF (red, top) and DAT-IF (green, bottom). White arrows point to a TH-
positive (TH+), DAT-negative (DAT−) SN neuron. Scale bars: 200 μm (left) and 10 µm (middle, right). b TH-positive (TH+) and TH- and DAT-positive
(TH+DAT+ ) neurons/mouse and their relative amounts, quantified via DLAP-5. Given are the numbers of TH+ neurons that were further analysed for
semi-quantitative DAT-analysis (compare Fig. S5b for criteria). Data are given as scatterplots and mean ± SD for all analysed mice (N= 14). Significant
difference according to Wilcoxon test (***p < 0.001). c Plotted are the individual TH+ neurons for all analysed animals (n= 38504, N= 14), according to
their scaled x,y-coordinates, determined via DLAP-5. The resulting anatomical 2D-maps display the medio-lateral distribution of the TH+DAT− neurons
(violet) within the SN (TH+DAT+ in grey). d Left: sagittal and coronal mouse brain sections, modified from (Paxinos & Keith B. J. Franklin, 2007),
illustrating the analysed caudo-rostral extent of the SN (bregma: −3.9 to −2.7, sagittal, blue), and the definition of its lateral parts in coronal sections
(defined as >1.5 scaled x-units (>377.8 µm) lateral from each SN hemisphere-centre (0.0); lateral: violet, non-lateral: grey, compare Fig. S6). Right: relative
amounts of TH+DAT− neurons in the lateral and non-lateral SN. Significance according to Fisher’s exact test (**p < 0.01). e Mean cell body sizes (x,y-
area) of TH+DAT+ and TH+DAT− SN neurons as indicated, determined via DLAP-5. Data are given as scatterplots and mean ± SD for all analysed
animals (N= 14). Significant differences according to Mann–Whitney tests (*p < 0.05). All data are detailed in Tables S12, S16, S17, Figs. S5–S7.
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abundant (~70%, p < 0.0001; N= 3), with no further difference
between neurons in the lateral and non-lateral SN. The cytosolic
Ca2+ binding protein CB is a marker for SN DA neurons that are
less vulnerable in PD-paradigms69,85–87. Accordingly, and in line
with previous publications78,86,88–90, we detected only in a small
percentage of TH- and DAT-positive SN neurons co-expression
of CB (9 ± 1%, n= 865 from 8446 neurons, N= 3); Figs. 10b, 11b,

S8b, Tables S14–17), and the cell bodies of these neurons
were ~20% smaller compared to the CB-negative SN DA
neurons (TH&DAT+ CB+ : 173 ± 7 μm2, TH&DAT+ CB−:
195 ± 8 μm2, p < 0.0001). In contrast, in the TH-positive but
DAT-negative SN neurons, the CB co-expression rate was ~4-fold
higher (39 ± 7% n= 143 from 383 neurons; p < 0.0001, Fig. 11b).
Additionally, those neurons had the smallest cell bodies from all

Fig. 8 Caudo-rostral distribution of TH-positive DAT-negative mouse SN neurons. a Upper: illustration of the caudo-rostral extent of the SN (bregma:
−3.9 to −2.7), the definition of its lateral parts in coronal sections, and colour coding, as in Fig. 7d, S6. Lower: plotted are the individual TH-positive
neurons according to their scaled x,y-coordinates, separately for rostral, medial and caudal sections (according to bregma: rostral: −2.7 to −3.1 mm;
medial: −3.1 to −3.5; caudal:−3.5 to −3.9; N= 14; rostral: TH+DAT− n= 145, TH+DAT+ n= 12263; medial: TH+DAT− n= 742, TH+DAT+
n= 13821; caudal: TH+DAT− n= 797, TH+DAT+ n= 10736). b relative abundancies of TH+DAT+ and TH+DAT− neurons, as indicated. Significant
differences according to Chi square tests (**p < 0.01, ****p < 0.0001). All data are detailed in Table S12. Corresponding 3D maps are given in Fig. S7.
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four TH-positive groups; they were only about half of the size of
that of classical DAT-positive and CB-negative SN DA neurons
(DAT− CB+ : 104 ± 8 μm2; p < 0.0001). Moreover, the DAT-
negative but CB-positive neurons clustered in the lateral SN, with
a ~ 7-fold higher co-expression rate (67%), compared to all DAT-
positive SN neurons, (Fig. 11b), had the smallest cell bodies
(96 ± 5 μm2, Table S17). Among the CB-positive neurons, the
relative CB-expression levels were about 12% higher in the DAT-
negative SN neurons, compared to the DAT-positives (DAT+ :
2.6 ± 0.9, DAT−: 3.0 ± 0.8, p < 0.0001). In contrast, Aldh1A1, a
marker for highly vulnerable ventral tier SN DA neurons87,91 was
rather not expressed in the TH-positive but DAT-negative lateral
SN neurons (Figs. 10c, 11c, S8c, Tables S14–17), compared to
~60% co-expression in the DAT-positive non-lateral SN DA
neurons, with a higher co-expression rate in more medio-
ventrally located SN DA neurons, in line with previous
descriptions92,93.

To our knowledge, neurons in the very caudo-lateral SN that
are immuno-positive for TH but immuno-negative for DAT and,
a medio-lateral and rostro-caudal DAT-gradient in the SN, has
not yet been systematically described. We enabled this by
analysing DAT-expression in about 40,000 SN neurons - hardly

possible without the automated DLAP-5 approach. However, this
algorithm does not allow conclusions regarding the sub-cellular
location of the IF-signal.

DLAP-6 based relative quantification of immuno-fluorescence
derived signals in cellular compartments. As proteins can
mediate different functions in dependence of their cellular loca-
lization, analysis with higher resolution is desired. To enable
relative quantification of immunofluorescence signals in plasma-
membranes, cytoplasm and nucleus, we developed the DLAP-6
algorithm, optimized to detect and analyse neurons in high-
resolution confocal fluorescent images.

DLAP-6 was specifically trained by using TH as marker for the
cell body/cytoplasm, DAPI as marker for the nucleus, and the ion
channel subunit Kv4.3 as marker for the plasma-membrane of SN
DA neurons. Kv4.3 is not a specific marker for dopaminergic
neurons, but it is highly expressed in plasma-membranes of SN
DA neurons, and it is the pore-forming subunit of voltage and
Ca2+ sensitive A-type K+ channels that modulate the activity and
the vulnerability of SN DA neurons94–99. The Ca2+-sensitivity of
Kv4.3 channel complexes is mediated by plasma-membrane

Fig. 9 IF-derived relative TH- and DAT-protein expression in TH-positive SN neurons. Plotted are the individual TH-positive neurons from Fig. 8,
according to their scaled x,y-coordinates, determined via DLAP-5, for all analysed animals (n= ~38500, N= 14). Scaled relative (rel.) fluorescence-values
of DAT (a) and TH (b) signals are colour coded according to their individual deviation from the scaled mean-values (0.0) for each animal. Corresponding
3D maps are given in Fig. S7.
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associated KChip3. However, in the cytoplasm, KChip3 is also
known as the enzyme calsenilin, regulating presenilins, and in the
nucleus, KChip3 acts as gene-transcription-repressor DREAM
(downstream regulatory element antagonist modulator), illustrat-
ing the importance of subcellular localization-analysis100,101. A
prerequisite for DLAP-6 training is the availability of a very well-
suited antibody to detect and separately analyse signals in plasma-
membrane, cytoplasm and nucleus of DA neurons. Therefore, we
utilised a suitable Kv4.3 antibody that we and others had already
used for immunoelectron-microscopy94,95,97.

Figure 12a shows a representative confocal image of a TH-
positive SN neuron in a coronal mouse brain section, after IF-
staining, before automated cell body detection (input image),

and after manual as well as algorithm-based identification of the cell
cytoplasm (TH, red), the nucleus (DAPI, blue), and the plasma-
membrane (Kv4.3, green). As expected, the highest relative
fluorescence (RF) signals for each gene were detected in these
respective compartments, with manual as well as DLAP-6 analysis
(RF for TH in cytoplasmic compartment: manual 55 ± 3% vs.
DLAP-6 57 ± 4%, p= 0.5862; DAPI/nucleus: manual 76 ± 7% vs.
DLAP-6 76 ± 8%, p= 0.9270; Kv4.3/membrane: manual 75 ± 8%
vs. DLAP-6 68 ± 9%, p < 0.0001; Fig. 12b, Tables S18, S19).

Particularly for detecting the RF-signal in the plasma-
membrane compartment, the algorithm appeared superior or
more consistent/precise than the manual analysis. Accordingly,
the single cell correlation manual vs DLAP-6 is less good - but

Fig. 10 IF-derived relative expression of D2, CB, and Aldh1A1 in TH-positive DAT-negative SN neurons. Left: SN neurons in coronal midbrain sections
from adult mice after IF for tyrosine hydroxylase (TH, red), dopamine transporter (DAT, green) and (a) dopamine D2 autoreceptor (D2, magenta), (b)
calbindin (CB, cyan), or (c) aldehyde dehydrogenase (Aldh1A1, blue). Scale bars: 10 μm. White arrows indicate TH-positive, DAT-negative neurons that are
positive (top) or negative (bottom) for the respective target gene. Right: relative fluorescence (RF) signal intensities for D2, CB, and Aldh1A1 in DAT-
positive (DAT+) and DAT-negative (DAT−) neurons for all analysed TH-positive neurons (left), and for those TH-positive neurons only that were also
immuno-positive for D2, CB, or Aldh1A1, respectively (right). Data are given as scatterplots, and mean ± SD for all analysed animals (N= 3; DAT+ n= 722-
8206, DAT− n= 14–383). Significant differences according to Mann–Whitney tests (**p < 0.01, ****p < 0.0001). Data are detailed in Fig. S8 and
Tables S14, S15.
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still very high - (R2= 0.93 for membrane compared to 0.99 for
cytoplasm and nucleus, Fig. 12c, Table S19). Most importantly,
the DLAP-6 algorithm has successfully learned to identify SN DA
neuron plasma-membranes, irrespective of a Kv4.3 derived
fluorescence signal, and thus enables a reliable identification of
the membrane-compartment in the absence of a membrane-
derived fluorescence-signal.

For a direct proof, we tested the DLAP-6 approach on SN DA
neurons from Kv4.3 knock-out (KO) mice (Fig. 12d, S9,
Table S20). As expected, SN DA neurons from Kv4.3 KO mice
did not show any Kv4.3 derived membrane-signal higher than the

background, while in wildtype (WT), mean RF-values were ~10-
fold higher (DLAP-6: RF KO: 0.8 ± 0.5, RF WT: 7.7 ± 2.9,
p < 0.0001). Nevertheless, the plasma-membrane compartment
was marked by the DLAP-6 approach in TH-positive neurons
from KO mice with similar robustness as for neurons from
wildtype mice - a nearly impossible task by manual analysis.

Discussion
Here, we detail a deep learning-based image analysis platform
(DLAP), including six pre-designed algorithms for automated

Fig. 11 Co-expression of D2, CB, and Aldh1A1 in TH-positive SN neurons. a Upper: illustration of the definition of the lateral SN, as in Fig. 7d, S6. Left:
plotted are the respective co-expression patterns of individual TH-positive neurons, as indicated, for all analysed animals (N= 3; DAT+ n= 124–7341,
DAT− n= 3–209), according to their scaled x,y-coordinates, determined via DLAP-5 (similar as in Fig. 7c). The resulting anatomical 2D-maps display
the medio-lateral distribution of (a) D2, (b) CB, and (c) Aldh1A1 in the DAT-negative and DAT-positive SN neurons. Right: respective co-expression
rates in all TH-positive SN neurons, and separately for the lateral and non-lateral SN, as indicated. Significant difference according to Chi square tests
(****p < 0.0001). Data are detailed in Table S16 and Fig. S8.
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image analysis that are easily adapted to distinct scientific needs,
and allows rapid and unbiased cell count, as well as quantification
of fluorescence signals (e.g., derived from mRNA or proteins) in a
given ROI. These are common tasks in cell biology, but manual
analysis is time consuming and prone to human error31,32.
However, automated AI based and related approaches, like
ImageJ/Fiji plugins102 such as the Trainable Weka
Segmentation103, CellProfiler104,105, QuPath106, U-Net39, and
DeepImageJ107, Cellpose108,109, or the HALO® image analysis
platform by Indica Labs110, require significant computational
skills and/or high-end hardware, a significant barrier for their
routine use111–113. Hence, manual approaches are still widely
used for image analysis in life sciences62,114,115.

Our DLAP approach overcomes these issues by providing
already pre-trained neural networks that can learn to detect new
labels and extract desired features, with only a small amount of
additional training-images. The six DLAP algorithms are pre-
designed to suit most common life science tasks, and the flexible
design allows their quick and easy adaption to other cell types,
specimens, and scientific questions, by retraining them with a few
additional respective images via the user-friendly web-platform.
The FCN algorithm is not pre-trained, but can be easily trained
from scratch, as less training data is required, because of its
smaller size compared to the Deeplab3 neural network. For the
loss function116, we briefly experimented with training the FCN
with the dice loss instead of the common pixel-wise cross-
entropy117, but did not find a significant improvement (see
ref. 118 for a recent discussion of these loss functions in the
context of medical image segmentation).

DLAP dramatically reduces the respective analysis-time, and it
is straightforward to use (utilised by under-graduate students in
our lab). Our approach directly combines deep learning-based
segmentation with a variety of more conventional post-processing
methods (such as the watershed algorithm), leading to high
quality segmentation results. Moreover, as training and image-
analyses are carried out via an easy-to-use web-based interface
(https://wolution.ai/), and Wolution provides in-depth support
for specific adjustments, our approach does not require any
sophisticated hardware, software, or programming skills. Impor-
tantly, DLAP details are not proprietary, but all steps and stra-
tegies are provided here for free and in full detail, to facilitate
distribution and use within the scientific community. These fea-
tures represent important advantages in comparison to other
cloud-based analysis pipelines, for example, Aiforia54,74,
CDeep3M119, or Visiopharm120 that do not disclose insights into
the underlying algorithms, do not allow user-based modifications,
or require advanced programming experience (e.g., DeepCell
Kiosk or Cellpose109,121). For example, the recent freely dis-
tributed well-suited algorithm for cell-segmentation, Cellpose2.0
did enable equally proper segmentation of TH-positive neurons
from our IF-images, as our DLAP algorithms. However, in con-
trast to DLAP, it does not enable any automated post-processing
or post-analysis of segmented ROIs for further downstream
analysis (like whatershed algorithms, threshold based background
exclusion, or quantification of fluorescent dot numbers or
intensities) in one single package, but the user would require to
write additional scripts for such downstream-application. Hence,
as Cellpose2.0 relies on Python packages, despite its Graphical
User Interface, basic programming knowledge is required, e.g., for
troubleshooting package related issues or run-time errors. One
particular additional advantage of our DLAP-6 is that it auto-
matically segments the cellular membrane compartment, in the
absence of any membrane marker, and thus enables a more
detailed sub-cellular analysis.

The here detailed DLAP approach allows the systematic
quantitative analysis and anatomical mapping of several

thousands of neurons in reasonable time, and thus facilitates the
identification and characterization of small cellular subpopula-
tions. Accordingly, by DLAP-analysis of about 40,000 TH-
immuno-positive SN neurons in PFA-fixed brain-sections from
adult mice, and by generation of expression-maps according to
anatomical coordinates, we defined a small subpopulation of
neurons (~5% of all TH-positive SN neurons). These neurons
were immuno-negative for the dopamine transporter DAT, were
mainly located in the caudo-lateral SN, and had ~40% smaller cell
bodies. Due to their localization in the lateral SN, we can exclude
that the DAT-negative TH-positive neurons are VTA neurons92.
However, we do not exclude that they are non-dopaminergic, as
TH-expression alone is not a proof of neurons being
dopaminergic2. TH-positive but DAT negative striatal inter-
neurons have been described122. However, interneurons in the SN
are rare123,124 and rather small (~three times smaller than clas-
sical DAT-positive CB-negative SN DA neurons,125. Given the
still relatively large cell body size of the DAT-negative lateral SN
neurons (~120 μm² compared to ~195 cm2), here we would not
unequivocally conclude that these are interneurons, while we do
not rule out this possibility.

DAT is a major determinant of activity and excitability of DA
neurons, and of dopamine homeostasis and transmission44,45,126. It
is inhibited e.g., by methylphenidate and amphetamines as treat-
ment for ADHD and depression19,127, and changes in DAT
expression have been reported in schizophrenia, ADHD, and
Parkinson’s128. However beyond disease states, up to now, only for
VTA DA neurons lower DAT expression has been analysed78,79,82.
On the contrary, for SN DA neurons, DAT is commonly used as
specific marker besides TH93,129, as well as for their targeting, for
instance, via DAT-Cre transgenic mouse lines, expressing the Cre-
recombinase under the DAT-promotor47–49,92,130. Our results
imply that with such approaches, target-gene expression might not
be affected in those lateral TH-positive SN neurons that are
immuno-negative for DAT protein. However, it must be noted that
we did not perform an absolute DAT-protein quantification.
Hence, we explicitly do not exclude very low expression of DAT
protein in the plasma-membranes of these lateral SN neurons,
within the range of the respective detected DAT-background
immuno-signals (similar applies for D2, CB and Aldh1A1). Such a
low DAT expression would still be sufficient for successful DAT-
Cre recombination131,132.

We found that the DAT-negative TH-positive SN neurons in
the lateral SN were negative for Aldh1A1, a marker for more
vulnerable, (medio-)ventral tier SN DA neurons, while the co-
expression rate was massively (~7-fold; ~70% vs 8%) increased
for CB, a marker for less vulnerable SN DA neurons. For classical
DAT- and D2-AR-positive SN DA neurons, CB expression and/
or absence of Aldh1A1 is a marker for less vulnerable neurons,
suggesting that the non-classic DAT-negative neurons in the
caudo-lateral SN might be less vulnerable as well. However, the
absence of inhibitory D2-AR in ~30% of DAT-negative SN
neurons might render them more vulnerable toward excitotoxi-
city, as their activity control by dopamine is missing57,133. On the
other hand, the mesocortical VTA DA neurons, that are hardly
affected in PD, express no functional D2-AR82,134. For more
lateral SN DA neurons, a higher sensitivity towards PD-stressors
is described15,135–138. In terms of axonal projections, it is
described that the (caudo-) lateral SN DA neurons project into
the (rostro-) dorsolateral striatum139, and it corresponds to the
ventro-lateral SN DA neurons in humans140,141. These neurons
have been described to display a higher vulnerability in Parkin-
son’s compared to rostro-medial SN DA neurons15,142–146.
However, whether these neurons are DAT-positive or DAT-
negative has not yet been analysed, and in general, there is no
clear correlation between DAT-expression and vulnerability147,
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Fig. 12 Comparison between manual and automated (DLAP-6) IF-derived image analysis in cellular compartments of TH-positive SN neurons. a SNDA
neurons in coronal midbrain section from adult mice after IF for tyrosine hydroxylase (TH, red) and the K+ channel α-subunit Kv4.3 (green). Nuclei are marked by
DAPI-staining (blue). Left: input image.Middle: image after manual labelling of cell body, nucleus andmembrane. Right: image after automated recognition of the TH-
labelled cell body (yellow area), nucleus (blue area) and membrane (green area) with DLAP-6. Scale bars: 10 μm. b Relative fluorescence (RF) intensity/cell in
different sub-cellular compartments, quantified manually (M) or automatically (A), as indicated. Data are given as boxplots (median, 10–90 percentile) for all
analysed neurons (n= 94). Significant differences according to Mann–Whitney tests (ns: p >0.05, ****p<0.0001). c Upper: single neuron correlations of RF
intensities/cell between manual and automated analysis for all three marker genes in their respective compartment according to Pearson correlation test. Lower:
corresponding proportionality constants∝, calculated from themanual and automated signal intensity ratios. d SNDA neurons in coronal midbrain section from adult
WT (top) and Kv4.3 KO (bottom) mice after IF for TH and Kv4.3, similar as in (a). e Kv4.3 RF intensity/neuron-membrane compartment in WT and KO mice, as
indicated. Data are given as boxplots (median, 10–90 percentile) for all analysed neuros (WT: n= 179, Kv4.3 KO: n= 200). Open circles indicate mean values for
each analysed animal. Significant difference according to Mann–Whitney test (****p<0.0001). All data are detailed in Tables S18–20 and Fig. S9.
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suggested in earlier studies148,149. Hence, additional studies are
necessary to address the vulnerability of the here identified DAT-
negative caudo-lateral SN neurons.

Very lateral SN DA neurons have been reported to be positive
for the vesicular glutamate transporter Vglut2, and rather nega-
tive for the transcription factor SOX687,92,93. In line, our pre-
liminary single nuclei sequencing data indicate that the here
described DAT-negative SN neurons are also Vglut2-positive,
while SOX6 expression is at least significantly reduced, and they
confirmed the absence of Aldh1A1 in TH-positive and DAT-
negative SN neurons at the mRNA level. In accordance with this
and the high degree of CB co-expression, in a similar approach, it
recently has been shown that one type of SN DA neuron clusters
preferentially expressed SOX6 mRNA while other clusters pre-
ferentially expressed CB150.

What is known about the function of lateral SN DA neurons?
Vglut2- and CB-positive but Aldh1A1-negative lateral SN DA
neurons are important for responses to novel cues and
salience87,91,129,130,151. Sox6-negative SN DA neurons have been
shown to project to the medial, ventral, and caudal striatum and
respond to rewards152. Some lateral SN DA neurons are activated
by aversive stimuli or cues that predict aversive stimuli153.
However, these studies either analysed only DAT-positive neu-
rons or they did not report whether the analysed neurons were
DAT-positive or -negative. Lateral SN DA neurons in vivo display
a higher burst activity (that is particularly metabolically
demanding) compared to medial SN DA neurons154. In vitro, the
pacemaker frequency of lateral but not medial SN DA neurons is
positively coupled to the activity of Cav1.3 L-type voltage gated
Ca2+ channels155. These channels have been linked to the vul-
nerabilities of SN DA neurons in PD57,58,156,157. However, it
should be noted that the definition of the “lateral SN” in this -
and most of the studies cited above - is much broader, and likely
includes the here defined very lateral TH-positive SN neurons
(compare Fig. S6), but also more medial, DAT-positive neurons
in the lateral SN. One recent study has indeed addressed the
electrophysiological properties exclusively of only very lateral SN
DA neurons, expressing CB or Vglut2, most likely similar to the
very lateral DAT immuno-negative neuronal population that we
describe here. The cell bodies of these neurons were also sig-
nificantly smaller than those of classical SN DA neurons, had a
higher input resistance and excitability, and they displayed a less
precise pacemaker, with lower frequencies and less prominent
after-hyperpolarisations, compared to classical SN DA
neurons158. However, future studies are necessary to fully char-
acterize the here defined and quantified subpopulation of lateral
TH-positive SN DA, in terms of their distinct molecular identity,
their axonal projections, their physiological function, and their
fate in disease.

Methods
DLAP algorithms and underlying convolutional neural net-
works. We have used two very different neuronal network
architectures, based on either the DeepLab3 network architecture
or on a fully convolutional neural network (FCN). DeepLab3
based networks are more powerful for detecting complicated
larger objects, like complex neuronal structures, and beyond,
while FCN perform in general better for fine structures (like
RNAscope probe derived, small individual dots), rather than large
global concepts41,159. Both types of neural networks belong to the
class of convolutional neuronal networks (CNN), commonly used
for image analysis37. Convolutional layers do not receive their
inputs from the whole previous layer but only from a certain area
(called ‘filter’ or ‘kernel’) which increases their computational
efficiency160. Moreover, they assign to each pixel in the image a

class, such as cellular nucleus or background. This type of analysis
is called semantic segmentation. The performance of deep
learning based semantic segmentation depends strongly on the
neural network architecture, training parameters and in particular
the quality of the training dataset. By specific training and further
optimizing these two network-types for distinct tasks, we gener-
ated six distinct algorithms, as specified in Tables 1, 2.

For cell counting and immunofluorescence signal quantifica-
tion (DLAP-3 to 6), the large pre-trained neural network
DeepLab340 was further trained and optimized post training for
the respective specific tasks. DeepLab3 is one of the best
performing image segmentation algorithms on the Pascal Visual
Object Classes (VOC) dataset161. The Pascal VOC is a
standardized image dataset for building and evaluating algo-
rithms, often used as a benchmark for segmentation quality. In
general, the key innovation of DeepLab algorithms is the use of so
called dilated or atrous convolutions. This type of convolutions
has a dilated filter size, increasing the area covered by each filter,
and the context that can be incorporated. Therefore, they have a
higher resolution and can integrate information over larger areas,
while keeping the number of parameters of the convolutions the
same159. Specifically, for our algorithms 3 to 6, we used
xception65 as the CNN backend, provided by Google [https://
github.com/tensorflow/models/tree/master/research/deeplab]162,
which was pre-trained on the Pascal VOC 2012 segmentation
dataset (Everingham et al.51).

For analysis of RNAscope data, we developed a more simple,
better-suited FCN (DLAP-1 and 2), as the trained respective
algorithms based on DeepLab3 were not optimal for reliable
detection of RNAscope-derived dot-numbers (Table S1). The
most important modification of the FCN architecture is that it
uses only convolutions, rather than including fully connected
linear layers41. Our FCN has a smaller receptive field and
conserves image resolution at each convolutional layer. Replacing
the linear layers with fixed dimensions by convolutions allows the
network to accept arbitrarily large images for processing and
making predictions (called interference), and to process them
very efficiently - limited mainly by the graphics processing unit
(GPU) memory size. The FCN architecture, illustrated in Fig. 2, is
our own development, using the Tensorflow library [https://www.
tensorflow.org/]. Our FCN network uses five convolutional layers,
connected by the Rectified Linear Units (ReLU) activation
function. This function only transfers the direct output of the
previous layer to the next layer, if it is positive, while it returns
zero for negative outputs163. The softmax activation function
normalises the network output to the probability distribution.
Our network does not include any downsampling/downsizing to
reduce image resolution through dropout or strided (kernel step
size > 1) convolutions. Therefore, the output image has the same
resolution as the input image, and fine structures are not
smoothed out. We used another approach of neural network
architectures, the so-called 1x1 convolutions, to reduce the
number of feature maps and keep the parameter number
tractable164. Such a convolution is used between feature map 2
and feature map 3 to reduce the number of kernels by a factor of
4, thus reducing the parameter size of the following convolution
by a factor of 16. To conserve image dimension, we extend the
outer frame at the boundary of each image, which increases the
space for the filter/kernel to scan the image, a process also called
mirror padding. This architecture provided a good compromise
between simplicity (and thus computational speed) and segmen-
tation quality.

Algorithm training and post processing parameters. Training
datasets need to have sufficient quality and size, depending on
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data variability112,165. However, we observed that using too large
training datasets leads to overfitting, which resulted in decreased
generalization. We ensured the quality (e.g., resolution, frame
size) of our training datasets, and performed a quality evaluation
during training (see below), in addition to data-validation by
comparison with manual analyses. Images showing different
neuronal shapes/forms in different brightness intensities were
used for training to ensure the identification and recognition over
a vast array of brightness and cellular structure.

As our FCN is not based on a pre-trained neural network (no
“transfer learning”), it was trained by us from scratch, by only
using our own training data. This is possible because of its smaller
size compared to the Deeplab neural network, which also means
that less training data is required. The FCN-based algorithms 1
and 2 analyse image patches of size 63 × 63 pixels. To train the
network, we randomly cropped the images from our manually
labelled training dataset (ground truth data) into such patches.
Training was performed using the stochastic first-order gradient-
based Adam optimizer with default settings (learning rate
α= 0.001, estimates decay rates β1= 0.9, β2= 0.999, to prevent
division by zero ε= 10−8)166. For DeepLab3 based algorithms
DLAP-3 to 6, we adjusted the neural network weights by further
training with our own datasets using the training script provided
by Google Research162. This was performed on randomly
sampled patches of size 5122 pixels, much larger than the 632

pixels we use in the FCN algorithm, as Deeplab3 is designed to
detect large, complex objects within an image.

For both network-types, the training time on a modern GPU
was several hours for each of the datasets. The number of images
and neurons each that were used to train each of the individual
algorithms is given in Table 2. We used 80% of manually labelled
images for the training dataset, and the remaining 20% of
the images for the “test data” set. Train-test-split on the level of
images was chosen to avoid data leakage. For this performance-
evaluation of the individual algorithms, the “test data” was
analysed and the results were compared to the ground truth
provided by the labels. For all algorithms, we assessed typical
quality measures (Table 1, S1): The pixel error rate, i.e., the global
percentage of pixels that are wrongly classified. This global error
rate was calculated by defining for each segmentation class the
rates of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), each given in % of the total pixels
of the whole training dataset. The specificity [defined as TN/
(TN+ FP)] and the sensitivity [defined as TP/(TP+ FN)], for
each segmentation class, were also calculated, as these values are
more suitable measures in cases of large class imbalance.

We trained each dataset until the training error/loss function
(difference between output and ground truth) converged to a
minimum. We also use “Early Stopping” in the training
process167 to avoid overtraining (see above). We verified that
we did not overtrain, by tracking the pixel error in the “test data”.
If overtraining is happening, only the training error is still getting
lower, while the test error increases. Training was stopped as soon
as the pixel error was getting worse not better. Performances of all
algorithms were evaluated on the respective “test data” (compare
Table 2).

For post training image analysis optimization, the quality of the
CNN outputs for each task (summarized in Table 1) was further
improved by, implementing additional classic image analysis
procedures (a) to (e), specified below, into the individual CNN
procedures. If an analysis step was further increasing the
correlation between algorithm- and manually-obtained results
for a distinct task, it was implemented into the respective
algorithm. The specific steps (a-e) that were implemented post-
training into each of the final algorithms are summarized in
Table 2.

a. Watershed algorithm requires a set of markers, which are
associated with the centres of respective target structures168.
These markers are obtained by calculating the Euclidean
distance transform of the binary mask of target structures
(cells detected by the neural network), and then finding
peaks in the distance image. Starting from these markers,
the watershed algorithm “floods” the image until all pixels
are assigned with a watershed region. We used this
algorithm in both FCN based algorithms, for a better
separation of mRNA molecule derived dots. The FCN
output tend to connect single fluorescent dots of individual
mRNA molecules, which biases their number count. We
found that, by applying a classical watershed algorithm we
can separate these points and get a number count much
closer to the truth (manual count). For the DeepLab3 based
algorithms 4 and 5, watershed algorithm were used to
improve segmentation of neighbouring nuclei/cells. This
was not necessary for DLAP-3.

b. Morphological operations like type dilation and erosion169

were applied to algorithms 1 and 2. These operations add or
remove pixels from the object boundaries. This improves
separation of individual neurons and smoothens out
uneven boundaries provided by the CNN. This approach
was used in both FCN-based algorithms for a better
separation of individual neurons.

c. The Binary fill-holes-function was applied to the
DeepLab3-based CNN outputs for DLAP-4 to 6, where
pixel-wise semantic segmentation resulted in holes within
the detected compartments, as such holes are of no
biological meaning. Therefore, all holes in the segmentation
masks of each region were filled using the “binary_fill_-
holes” function147 of the SciPy library http://scipy.github.
io/devdocs/reference/generated/scipy.ndimage.binary_fill_
holes.html.

d. A procedure to remove target gene colour channel was
applied to the DeepLab3 based algorithms 5 and 6 to
facilitate identification of the target areas within the ROI
(i.e., neuronal cell bodies or neuronal compartments), in
which the relative target gene derived fluorescence-signal
was quantified. This procedure is removing the target gene
channel for the algorithm-based detection of the target
areas, to ensure its recognition, independently of the target
gene fluorescence-signal. For excluding the target gene
channel, the respective colour layer of the image was set to
zero before passing the image through the CNN (both for
training and analysis), and it was added back, for the target-
signal quantification step of the algorithms.

e. An RGB intensity threshold was included to the DeepLab3
based algorithms 5 and 6, to optimize background intensity
quantification for calculation of relative target gene signal
intensities in identified target areas (i.e., neuronal cell
bodies or neuronal compartments) to correct for non-
uniform intensity conditions in different images/experi-
ments. It was not always straightforward to determine the
individual background intensities, because some images
contained large regions with no detected target areas, but
also with no apparent blank background. We included RGB
intensity thresholds (for widefield and for confocal images)
of pixel values ranging from 10-40 for each channel,
depending on its raw intensities, to exclude pixels higher
than this threshold from determining background signal
intensities.

Mice. Juvenile (~PN13, Fig. 5 data), and adult (~PN90) male
mice were bred at Ulm University at a 12-h light/12-h dark cycle
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and were fed ad libitum. Kv4.3 KO mice were obtained from
Jean-Marc Goaillard97. All animal procedures were approved by
the German Regierungspräsidium Tübingen (Ref: 35/9185.81-3;
TV-No. 1043, Reg. Nr. o.147) and carried out in accordance with
the approved guidelines.

Drug and saline treated animals (Fig. 4 data), were the same,
cohort as already published (Cav2.3 +/+ mice from Benkert,
Hess54). Drug treated mice were treated in vivo with MPTP/
probenecid to introduce SN DA neuron degeneration. Briefly,
MPTP hydrochloride was injected 10 times (every 3.5 days for
5 weeks) subcutaneously at a concentration of 20 mg/kg saline
(sigma) together with probenecid intraperitoneally at a concen-
tration of 250 mg/kg in 1x PBS (Thermo Fisher). Control mice
were injected with saline and probenecid. For all details,
including, TH-DAB/hematoxillin staining, stereology, and
Aforia-based automated analysis, (see Benkert, Hess54).

Human brain samples. Human midbrain tissue including the
Substantia nigra (SN) was collected and obtained from the Ger-
man Brain Bank (www.brain-net.net), Grant-No. GA76 and
GA82), as native cryo-preserved tissue blocks (−80 °C/dry ice).
Analysis of the human material was approved by the ethic
commission of the German Brain Bank as well as of Ulm Uni-
versity (277/07-UBB/se). Informed consent from all participants
was given to the German Brain Bank. Detailed information on
human midbrain samples, including sex, is summarized in
Table S5. We have no information if/how the information
regarding sex and gender was obtained. Human tissue was pro-
cessed, stained, and the RNA integrity was assessed via deter-
mining the RNA integrity number (RIN), using the Agilent 2100
Bioanalyzer as described59.

RNAscope® in situ hybridization, image acquisition, and data
analysis. RNAscope experiments were performed essentially as
described54,170. The RNAscope® technology (Advanced Cell
Diagnostics, ACD) was performed according to the provided
protocol for fresh frozen tissue sections [https://acdbio.com].
Details of the used RNAscope probes are given in Table S2. All
used chemicals were RNAse free grade.

12 μm coronal cryosections of mouse or human midbrains
were prepared, using a Leica CM3050S cryotome as previously
described59,171, mounted on SuperFrost® Plus glass slides (VWR),
and allowed to dry in a drying chamber containing silica gel
(Merck) at −20 °C for 1 h. After fixation with 4% PFA (Thermo
Fisher Scientific) in 1x PBS (pH 7.4) for 15 min at 4 °C and
dehydration via an increasing ethanol series (50%, 75%, 100%,
100%, Sigma), sections were permeabilized for 30 min by
digestion with protease IV (ACD) at room temperature (RT).
Following digestion, respective RNAscope probes (TH probes and
target gene probes were processed in parallel) were hybridized for
2 h at 40 °C in a HybEZ II hybridization oven (ACD). Signal was
amplified using the RNAscope Fluorescent Multiplex Detection
Kit (ACD) containing four amplification probes (AMP1-4). In
between each amplification step (incubation at 40 °C for 30 min
with AMP1/3) or 15 min with AMP2/4), sections were washed
twice for 2 min with wash buffer (ACD). After RNAscope
hybridization, sections were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI) ready-to-use solution (ACD, included in
Kit) for 30 s at RT. Sides were coverslipped with HardSet
mounting medium (VectaShield), and allowed to dry overnight at
4 °C. RNAscope probes for TH were labelled with AlexaFluor488,
and target gene probes with Atto550.

Fluorescent images containing the ROI (i.e., the SN), of murine
and human midbrain sections were acquired at 63x magnification
using a Leica DM6 B epifluorescence microscope. All images were

acquired as Z-stacks, covering the full depth of cells, and reduced
to maximum intensity Z-projections, by using Fiji [http://imagej.
net/Fiji]. TH-derived RNAscope fluorescence signals were
visualized at 480/40 nm excitation, 527/30 nm emission and
505 nm dichroic mirror, target gene-derived fluorescence signals
were visualized at 546/10 nm excitation, 585/40 nm emission and
560 nm dichroic mirror, DAPI-signals were visualized at 350/
50 nm excitation, 460/50 nm emission and 400 nm dichroic
mirror. Files were aquired using the LASX software (Leica), and
stored as PNG files.

For manual image analysis, the images were further processed
using the Fiji software [http://imagej.net/Fiji]. First, cell bodies of
individual TH- and DAPI-positive neurons were encircled, using
the “Polygon selection” tool to define the area for RNAscope
signal quantification. In the next step, a classifier was trained on
images only showing target gene signal, by manually labelling and
annotating background and dot regions (around 30 labels for
each class) in the “Trainable Weka Segmentation”. This classifier
was then used to classify all target gene images into the two
groups “dots” and “background”. Afterwards, the threshold for
particle recognition was set on classified images, and dots were
counted for each cell-specific ROI using the “analyse particle”
function. Target probe hybridization results in a small fluorescent
dot for each mRNA molecule, allowing absolute quantification of
mRNA molecules (via dot counting) independent from fluor-
escent signal intensity.

For automated quantification of RNAscope signals, custom-
designed FCN based algorithms DLAP-1 (for mouse-brain
sections) and 2 (for human brain sections) and the Wolution-
platform were used [https://console.wolution.ai/] (Wolution
GmbH & Co. KG, Planegg, Germany). Processed images were
uploaded on the Wolution platform, and the algorithms
automatically marked cell bodies of TH-positive cells and
quantified the number (and the dot area) of target gene derived
fluorescence dots. After algorithm processing, correct identifica-
tion of cells was controlled by hand and resulted in inclusion of
~50% correctly identified cells for analysis. If a quantification of
all TH-positive neurons is required, neuronal nuclei must be
counted, before excluding neurons with not optimally separated
cell bodies for subsequent RNAscope based mRNA quantification
in the target cells.

We carried out a statistical modelling for brightfield light
adjustment to asses and correct for the possible influence of
neuromelanin (NM) in human-derived RNAscope data applying a
linear mixed effect model, similar as we had previously
described59,60. Briefly, we applied a bayesian probabilistic model
approach conducted in RStan172 with the R package version 2.21.7,
https://mc-stan.org/) using R (version 4.2) under RStudio (version
2022.07). We applied normal distributions for priors of all
parameters. To achieve a stable non-degenerate solution priors
needed to be properly informed by restricting the effective
parameter space. The chosen model, detailed below, is well-
informed by the data on all its parameters and shows an acceptable
fit on the age level (see posterior-predictive plots in Fig. S2).

The number of detected dots/mRNA-molecules for each
component/gene (defined as YG) is assumed to follow a binomial
distribution in which the trial size is derived from cell areas:

YG � Binomðs; pGÞ ð1Þ
The probability pG of detecting a target molecule is expressed

according to a logit-link function (linear combination) as:

pG ¼ pmax

1þ e�gðxÞ ð2Þ

where gðxÞ is an equation, indexed by the mixture-component
and a binary discretization of a brain donor (adult vs. aged) that
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considers a cell’s NM concentration (as given by brightfield light
transmission, T) according to the Lambert-Beer law which states
that concentration is proportional to the negative logarithm of
light transmission

�log10T ¼ lε � c ð3Þ
Light transmission T is the fraction of transmitted to incident

light intensity

T ¼ It
Ii

ð4Þ

Since It<Ii and light intensities are strictly positive, it follows that
0<T<1. For the probabilistic model, a distribution for T has to be
defined. A continuous distribution bounded on [0, 1] is the Beta-
distribution.

T � BetaðμT ; κÞ ð5Þ
The Beta distribution is parameterized by its mean μT and the

precision κ.
For μT we apply a logit-link function:

μT ¼ 1
1þ e�hðxÞ ð6Þ

hðxÞ is a linear equation, indexed by the mixture component and
binarized age. In addition, the intercept considers a random effect
on individual brains. The mixture proportion is modelled to
depend on binarized age and to consider a random effect on the
brain level, given in Wilcoxon notation173

θ ¼ logit�1ðθ0 þ Δθ;age þ 1jbrainð ÞÞ ð7Þ
To adjust experimental results for a mutual NM influence, data

were fitted and then reproduced from the model, with each cell’s
T set to a constant value according to the mean of all brains’
μT .The influence of BF light transmission (associated to NM
content by –log T) on gene expression / dot detection probability
can be considered significant with 95%-credible intervals from
−5.1 to −1.5 or from −12.2 to −7.7 for low and high expressing
cells, respectively (corresponding intervals from the prior
distribution vary from −7.8 to +8.0).

Immunohistochemistry, image acquisition, and data analysis.
DAB Immunohistochemistry (IHC) experimental procedures
were performed essentially as previously described54. Briefly, mice
were transcardially perfused with 1x PBS-heparin (37 °C) for
2 min followed by ice cold 4% PFA for 4 min with a flow rate of
6 ml/min and post-fixed (overnight at 4 °C) in 4% PFA (Thermo
Fisher Scientific) in 1x PBS (pH 7.4). Brains were stored in 0.05%
NaN3 (Sigma) in PBS at 4 °C until vibratome (VT 1000 S, Leica)
cutting (30 μm coronal midbrain sections). All washing and
incubation steps during the staining procedure were performed
while shaking (300 rpm, microplate shaker, VWR). Free-floating
sections were washed (three times in 1x PBS for 10 min) and
blocked for 2 h with 10% normal goat serum (NGS, Vector
Laboratories), 0.2% BSA (Carl Roth) and 0.5% Triton X-100
(Merck) in 1x PBS to prevent non-specific antibody binding.
After further washing (one time in 1x PBS for 10 min), sections
were incubated with rabbit anti-TH primary antibody (1:5000,
Merck) in 1% NGS, 0.2% BSA and 0.5% Triton X-100 (in 1x PBS)
overnight at room temperature (RT). Sections were then washed
three times in 0.2% Triton X-100 in 1x PBS for 10 min and
incubated with biotinylated goat anti-rabbit (1:1000, Vector
Laboratories) for 2 h at room temperature. Immunostaining was
visualized via VECTASTAIN® ABC system based on Horseradish
peroxidase (HRP) detection (Vector Laboratories) using 3,3’-
Diaminobenzidine (DAB, Vector Laboratories) as substrate. The
slices were mounted on SuperFrost® Plus glass slides (VWR),

dehydrated in ascending ethanol series (50%, 70%, 90%, 100%,
100%, Sigma) for 10 min each, and cleared with xylene (Sigma)
two times for 10 min each. Slides were mounted with Vecta-
Mount Permanent Mounting Medium (Vector Laboratories).

For hematoxylin-counterstaining of already DAB-stained and
permanently mounted adult mouse brain sections, slides were
incubated in xylene (two times for 5 min) to remove coverslips
and rehydrated by an ethanol series (100%, 100%, 90%, 70%,
50%) and H2O (5 min each). After drying for 5 min, slides were
incubated with Vector hematoxylin QS (2 min) to counterstain
nuclei (Vector Hematoxylin QS Kit, Vector Laboratories). After
dehydration in ethanol series and clearing in xylene they were
again mounted using VectaMount (all steps as described for
DAB-staining).

Stereological estimates of TH-positive neuron numbers were
determined using a Leica CTR5500 microscope and the unbiased
optical fractionator method (StereoInvestigator software; MBF
Bioscience), similar as previously described54,73. The SN region
throughout the whole caudo-rostral SN axis (Bregma −3.8 to
−2.7, according to50 was identified, using well established
landmarks78), and was marked as ROI for TH-positive neuron
count. The ROI was marked and analysed unilaterally on each of
the serial DAB-stained sections (37 for juvenile, 40 for adult
mice). Sampling grid dimensions were 75 × 75 μm (x,y-axes),
counting frame size was 50 × 50 μm (x,y-axes), and counting
frame height was 9 or 11 μm for juvenile and adult mice,
respectively. Estimated total number of TH-positive neurons (N)
was calculated for each animal according to Eq. (8):

N ¼ ∑Q� � t
h � asf � ssf ð8Þ

with ΣQ- = number of counted neurons, t=mean mounted
section thickness (i.e., ~10–11 μm), h= counting frame height
(i.e., 80% of the mounted section thickness), asf= area sampling
fraction (i.e., 0.44), and ssf= section sampling fraction (i.e., 1
for SN).

Reliability of the estimation was evaluated by the Gundersen
coefficient (CE, m= 1) according to Eq. (9). CE values were all
≤0.05 for all analysed animals.

CE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ VARSRS

p

s2
ð9Þ

with A ¼ ∑n
i¼1 ðQ�

i Þ2; B ¼ ∑n�1
i¼1 Q�

i Q
�
iþ1; C ¼ ∑n�2

i¼1 Q�
i Q

�
iþ2

s2= variance due to noise, and VARSRS= variance due to
systematic random sampling, according to Eq. (10) for m= 1.

VARSRS ¼
3 A� s2
� �� 4Bþ C

240
ð10Þ

For automated neuron counting digital images of DAB-stained
sections were acquired using a whole slide scanner (3D-Histech
Pannoramic 250 Flash III, Sysmex Deutschland GmbH, Norder-
stedt, Germany or Aperio Versa 8, Leica Biosystems Nussloch
GmbH, Nußloch, Germany) and processed using the Fiji software
[http://imagej.net/Fiji]. The digital slides were processed using
QuPath [https://qupath.github.io/] to label and cut out the
sections of interest (37/40 consecutive SN sections covering the
entire caudo-rostral axis). As for stereology, the SN ROI was
identified according to the typical landmarks50,78 and analysed
unilaterally. Processed sections (showing the ROIs) were after-
wards uploaded on the Aiforia® Cloud platform [https://www.
aiforia.com/] (Aiforia Technologies Oy, Helsinki, Finland) or the
Wolution platform [https://console.wolution.ai/] (Wolution
GmbH & Co. KG, Planegg, Germany). For both automated
platforms, in case of flawed sections that could not be
automatically analysed, the counts from the section before and
after were averaged to prevent methodological bias (for
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stereology, these sections were omitted, and this information was
taken account for the calculation of the stereological estimates).

The Aiforia-platform was only used for analysis of
Hematoxylin-counterstained DAB-stained brain sections. It uses
a supervised training to establish a non-disclosed deep CNN
algorithm that recognized TH-positive neurons, based on
nuclear/cell morphology and TH signal. The Aiforia algorithm
was trained with 4064 TH-positive neurons54 and comprised two
layers. The individual TH-positive cells were segmented in the
first one and counted in the second one (see Penttinen,
Parkkinen74). For generating the ground truth data used for
algorithm training, one circle is placed on top of the nucleus
within each TH-positive neuron (instead of marking the whole
nucleus), similar as for our respective Wolution-based algorithms
DLAP-3 and 4. Only TH-positive cells with a clearly visible/
focused nucleus were considered for neuron counting, to avoid
counting the same cell on more than one section. Processed
images were uploaded on the Wolution platform. For counting of
only DAB-stained TH-positive neurons (juvenile mice), DLAP-3
was used, for counting of hematoxylin counterstained TH-
positive neurons (adult mice), DLAP-4 was utilised.

Immunofluorescence, image acquisition, and analysis. Immu-
nofluorescence (IF) experimental procedures were performed
essentially as previously described54. Mouse brains were perfused,
stored and cut as already described for IHC. All washing and
incubation steps were performed while shaking (300 rpm,
microplate shaker, VWR).

For automated counting and relative signal intensity quanti-
fication analysis with the DLAP-5 algorithm, immunostaining
was performed in five separate cohorts of mice, using sequential
or simultaneous antibody incubation. 30 μm coronal midbrain
free-floating sections were washed (three times in 1x PBS for
10 min). An additional antigen retrieval step was applied for D2-
and Aldh1A1-antibodies (100 °C for 10 min in pH6 (D2) or 80 °C
for 30 min in pH 9 (Aldh1A1). Sections were blocked for 2 h with
10% normal goat serum (NGS, Vector Laboratories) and 0.5%
Triton X-100 in 1x PBS. After blocking, sections were incubated
with rabbit or chicken anti-TH primary antibody (1:1000,
Merck), and/or mouse anti-DAT (1:500, Thermo Fisher Scien-
tific), chicken anti-calbindin d28K (1:1000, Novus bio), rabbit
anti-DRD2 (1:200, Proteintech), rabbit anti-Aldh1a1 (1:200,
Abcam) primary antibody in carrier solution (1% NGS, 0.5%
Triton X-100 in 1x PBS) overnight at 4 °C. For subsequent
primary antibody incubations, sections were washed (three times
in 1x PBS for 10 min at RT) before the next overnight incubation
at 4 °C. Sections were washed (three times in 1x PBS for 10 min at
RT) and incubated with Alexa Fluor 488 goat anti-mouse
secondary antibody (1:1000, Thermo Fisher Scientific), Alexa
Fluor 647 goat anti-rabbit (1:500, Thermo Fisher Scientific), and
Alexa Fluor 647 goat anti-chicken (1:1000, Thermo Fisher
Scientific), in carrier solution for 3 h at RT in darkness. After
washing (three times in 1x PBS for 10 min at RT), the sections
were mounted on SuperFrost® Plus glass slides (VWR) with
VectaMount Permanent Mounting Medium with DAPI (Vector
Laboratories).

For relative quantification of fluorescence-signal intensities in
cellular compartments (plasma-membrane, cytoplasm, nucleus)
with DLAP-6, two similar Kv4.3 staining protocols were utilised,
adapted from ref. 97, leading to very similar results. More
precisely, one WT and one Kv4.3 KO brain (dataset 1) was
processed, and images were acquired in the Goillard lab
essentially as described97. The other brains (dataset 2) were
perfused in the Goaillard lab, and further processed in the Liss
lab, according to the following protocol. 50 μm free-floating

coronal midbrain sections were blocked for 1 h 30 min with 5%
NGS and 0.3% Triton X-100 in 1x PBS, followed by incubation
with a rabbit anti-Kv4.3 primary antibody (1:10000, Alomone
Labs) together with chicken (G)/mouse (L) anti-TH primary
antibody (1:1000, Abcam / Merck) in a carrier solution (1% NGS,
0.3% Triton X-100 in 1x PBS) overnight at 4 °C. Sections were
then washed (three times in 0.3% Triton X-100 in 1x PBS for
15 min) and incubated with Alexa Fluor 488 goat anti-rabbit
secondary antibody (1:1000, Thermo Fisher Scientific) and Alexa
Fluor 546 goat anti-mouse secondary antibody (1:1000, Thermo
Fisher Scientific) in carrier solution for 2 h at room temperature.
After washing (three times in 0.3% Triton X-100 in 1x PBS for
15 min), sections were incubated with DAPI (1.5 μg/mL; Sigma-
Aldrich) for 10 min, washed (two times in 1x PBS for 10 min),
and mounted on glass slides using Vectashield mounting
medium.

Fluorescent images for automated TH-IF positive neuron
counts and relative signal intensity quantification (DAT-IF) were
acquired with a Leica DM6 B epifluorescence microscope (Leica
Microsystems) using a 63X oil objective. All image parameters
were set using the LAS X software (Leica microsystems) to avoid
saturated pixels, and identical acquisition settings were main-
tained (a prerequisite for relative signal intensity quantification).
TH-IF was visualized at 546 nm (exposure= 200–500 ms,
gain= 1–2), DAT-IF at 488 nm (exposure= 400–600 ms,
gain= 1–2), CB-IF, D2-IF and Aldh1A1-IF at 660 nm
(exposure= 300–500ms, gain= 2) and DAPI at 405 nm
(exposure= 60–300 ms, gain= 1). Fluorescence lamp illumina-
tion was kept at 30%. Images were acquired as tile scans from a
single plane of focus. Merged images were exported as Leica
Image File (LIF).

For relative quantification of fluorescence-signal intensities in
cellular compartments, 63X confocal quality images were
acquired using a Zeiss LSM780 with the settings defined in
ref. 97 for dataset 1. In dataset 2, confocal images using 100X/1.4
NA oil objective were acquired with STEDYCON (Abberior
Instruments) mounted on an Olympus BX53 upright microscope
(Olympus LS), and image parameters were adjusted using the
STEDYCON web-based user interface (Abberior Instruments).
To avoid saturated pixels (a prerequisite for relative signal
intensity quantification), photon counts from all channels were
monitored in the photon count range indicator using the “fire
blue” colour-map. This map indicates saturated image parts in
blue over a yellow-red gradient for each individual channel.
Fluorochromes were excited using an Argon laser, and the
following wavelengths were used for excitation: TH-IF at 546 nm,
Kv4.3-IF at 488 nm, and DAPI at 405 nm. The following
acquisition parameters were adjusted at the STEDYCON user
interface: Pixel size 78 nm; pinhole diameter 0.71 AU; one-
directional line accumulation acquisition; laser power 10% for TH
and Kv4.3, 12% for DAPI. Images were acquired from a single
plane of focus and were exported as OsmAnd Binary Maps
(OBF) files.

For automated counting of TH-IF positive neurons und and
relative signal intensity quantification, images were converted to
8 bit RGB colour TIFF images. The Fiji software was used to label
and cut out the sections of interest (~28 consecutive SN sections
within the caudo-rostral axis, bilaterally), and the ROI was
identified and strictly marked according to typical anatomical
landmarks and the cartesian coordinates according to the mouse
brain atlas for each section, similar as described for IHC/DAB-
stained neuron counting50,78. Exemplary ROI marking is depicted
in Fig. 7a and Fig. S5a. Processed images were uploaded on the
Wolution platform and DLAP-5 (Wolution GmBH & Co. HG)
was used for analysis. The algorithm automatically identified cell
bodies and nucleus of both TH- (red channel) and DAPI-positive
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(blue channel) cells within the ROI and directly quantified the
mean IF signal intensity per area for TH, DAPI and the target genes
(green channel, DAT; magenta channel, CB, D2, and Aldh1A1) in
the cell body and nucleus. Background (BG) regions (for normal-
ization of signal intensities) were taken from regions outside the
ROI by application of individual IF intensity thresholds for each
RGB channel (as described in post-training procedures). All
identified SN cells were manually checked for the correct and clear
identification of full cell bodies and nuclei. If cell bodies were not
completely separated from each other, or if they were cropped,
fragmented, very small, or did not show a full nucleus, these cells
were excluded from further semi-quantitative analysis (~30% of
identified TH-positive SN neurons, Fig. S5a, Table S12). This
strategy was used, as our aim was analysis of TH and DAT co-
expression and signal-quantification. For absolute quantification of
all TH-positive (or DAT-positive) neurons, a count of neuronal
nuclei is required (and possible), as described for DLAP-3/4.

Raw signal intensities of each cell were normalised to the
determined BG signals from the respective section. The BG
signals determined from each analysed section were then
normalised to the mean BG value for each animal, and outliers
were removed. The threshold for defining DAT-negative SN
neurons was manually determined, and set as the mean
normalised BG value for each mouse, plus 1.5 to 2.5 times SD
of the DAT relative fluorescence (RF) signal (depending on the
different signal intensities of the different mouse cohorts;
Fig. S5c). Similarly, a threshold of mean normalised BG value
for each mouse plus 1 time SD for D2, plus 4 times SD for CB,
and plus 5 times SD for Aldh1A1 was used (Fig. S8, Table S15).

For the generation of anatomical 2D/3D maps, the
R-computational environment174 version 4.2.1 with the Tidyverse
package175, Plotly [https://plot.ly/] and RMarkdown176 was used,
and coordinates as well as DAT and TH signal intensities were
systematically adjusted in order to plot the different cohorts and
animals into one graph. 2D-Maps were generated by using and
adjusting the x and y coordinates from each analysed TH-positive
neuron, automatically provided by the DLAP-5 algorithm. The
respective z-coordinates were derived according to the thickness
of the individual consecutive back-to-back brain sections (30 μm,
bregma: caudal to rostral; −3.9 to −2.7). Alternatively, as DLAP
processes single images within a part of a z-stack of images and
processes them slice by slice, the output-files of the algorithms are
easily amended, so the user can reassemble the z-stack of
segmentations afterwards, to analyse data in three-dimensions.
Training a 3-dimensional CNN is also possible with the DLAP
platform, but was not necessary here. For normalization of
anatomical coordinates of individual animals, we applied animal
and SN hemisphere dependent z-score normalization of x and y
coordinates using the “scale ()” function in R. Thereby, the centre
of each SN hemisphere (defined as the midpoint of the coordinate
scale for all identified SN neurons on this hemisphere) was set as
0,0-value for both axes, a commonly used strategy177. We also
utilised these adjusted x and y coordinates for defining the lateral
SN region as starting at >1.5 scaled x-axis units lateral (i.e.,
>377.8 μm) from each SN hemisphere-centre (0,0; Fig. S6,
Table S17). For generation of 2D and 3D gradient plots, we used
the “scale ()” function to generate scaled DAT and TH RF values:
similar as for the anatomical coordinates, the mean of the DAT
and the TH RF intensity of all anaysed TH-positive neurons was
set as 0-value and the deviation from the mean was plotted for
each individual neuron, using a colour gradient. For better
gradient-visualization, we excluded the highest values from the
gradient-plots of (0.3% of all neurons for DAT, 0.005% for TH).

For relative quantification of fluorescence-signal intensities in
cellular compartments with DLAP-6 algorithm, OBF images were
converted to 8 bit RGB colour TIFF images using the Fiji software.

For manual analysis, images were further processed using Fiji. First,
the “polygon selection” tool was used to manually delineate a
continuous membrane ROI around the cell based on the Kv4.3 IF
signal (green channel). The cytoplasm was marked according to the
immunofluorescence signal for the cytoplasmic TH (red channel),
and nucleus was marked according to the DAPI signal (blue
channel). In the next step, the “measure” function (under the
“analyse” toolbar) was used to calculate the mean RF signal
intensity for each compartment, already normalised to the
respective area. For automated analysis, the same high resolution
RGB colour TIFF images were uploaded on the Wolution platform
and analysed with DLAP-6. Each identified TH-positive neuron
was segmented into “cytoplasm”, “membrane” and “nucleus”,
based on the cytoplasmic TH and nuclear DAPI fluorescence signal
(after training, the plasma-membrane was reliably identified
without a third membrane-marker). BG signal intensities were
determined from images acquired outside the region of analysis,
using individual RGB channel thresholds, and were used to
normalise signal intensities for both, manual and automated
analyses. All images were manually checked for the correct
identification of membrane, cytoplasm and nuclear compartments
similar as performed for analysis with DLAP-5 and ~90% of cells
were used for further quantitative analysis. In case of a non-
continuous membrane compartment identification, the weighted
mean (area) of RF signal intensity in all identified membrane ROIs
from each cell was used for analysis.

Statistics and reproducibility. Data analysis and graphical illus-
trations were performed using GraphPad Prism 9 (GraphPad
Software, Inc.), Adobe Illustrator CC2015.3 (Adobe Systems Soft-
ware), Wolution (https://wolution.com/), and Fiji (https://imagej.
net/Fiji) software. Statistical tests were performed with GraphPad
Prism 9. Bayesian probabilistic model was conducted in RStan with
the R package version 2.21.7172. Anatomical maps were plotted
using R computational environment174 version 4.2.1 with Tidy-
verse package175, Plotly [https://plot.ly/], and RMarkdown176.

Normal distribution was tested with D’Agostino-Pearson
omnibus normality test. Correlations were performed using
Pearson correlation tests, proportionality constants was calculated
from the ratio between two directly corresponding values. In
graphs, data are given as boxplots, showing median and whiskers
representing 10th–90th percentile. For comparing one para-
meter only, non-parametric Mann-Whitney U tests and Kruskal-
Wallis tests, with post hoc Dunn’s multiple comparison was used.
For comparison between categorical %, Fisher’s exact tests and Chi-
squared tests were used, as indicated. Testings for two independent
parameters were performed via two-way ANOVA with Tukey’s
multiple comparison tests. ROUT outlier test (Q= 1) was used to
remove outliers. Statistical significances are indicated as ns > 0.05,
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Data used to generate figures in this manuscript, supporting analysis and RNAscope
probe details can be found in the associated Supplementary Information file. The source
data can be obtained from Supplementary Data 1. The link to our Deep Learning-based
Analysis Platform is https://console.wolution.ai/. All original data and further
information to interpret, verify and extend the research in this article are available from
the corresponding authors on reasonable request.

Code availability
Further information regarding the utilised algorithms and the individual codes are
available upon request to the corresponding authors.
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