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We propose a joint experimental and theoretical approach to measure the self-diffusion in a laser-
cooled trapped ion cloud where part of the ions are shelved in a long-lived dark state. The role
of the self-diffusion coefficient in the spatial organisation of the ions is deciphered, following from
the good agreement between the experimental observations and the theoretical predictions. This
comparison furthermore allows to deduce the temperature of the sample. Protocols to measure the
self-diffusion coefficient are discussed, in regard with the control that can be reached on the relevant
time scales through the dressing of the atomic levels by laser fields.

I. INTRODUCTION

Laser-cooled clouds of atomic ions stored in a radio-
frequency trap are practical realisations of a finite-size
One Component Plasma (OCP) in the strongly coupled
regime. The OCP is a reference model in the study of
strongly coupled Coulomb systems [1]. By tuning the
density ni and the temperature T of the sample, dif-
ferent regimes can be explored from gas to liquid and
crystals. Standard kinetic theories [2] fail to describe
transport plasma properties under conditions of strong
Coulomb coupling because they neglect effects of spa-
tial and temporal correlations induced by nonbinary col-
lisions [3]. This fundamental problem needs to be solved
to accurately model the transport properties, and equa-
tions of state of dense laboratory and astrophysical plas-
mas.

Even if measurements are important to benchmark po-
tential models and test plasma theories out of the con-
ventional plasma regimes [4–6], few experiments can give
access to relevant diffusivity parameters like the ion self-
diffusion constant. The main contributions so far have
come from experiments based on ultra-cold neutral plas-
mas created by photo-ionisation of an ultra-cold atomic
cloud [3]. Despite the short lifetime of these neutral plas-
mas, the experimental data allow for studying the ef-
fects of strong coupling on collisional processes, which is
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of interest for dense laboratory and astrophysical plas-
mas [3, 7, 8]. Here, we propose to use another model
system for a strongly correlated plasma, which benefits
from an infinitely long trapping lifetime. The presence
of the external confining potential induces a finite size
for the system, while Coulomb repulsion forces tend to
maximize the mutual distance between ions. The inter-
play between these two effects typically results in a shell
structure [9, 10], which can be fairly modeled by a reg-
ular lattice geometry. This will be the starting point for
the building of our model.

The next section introduces the experimental set-up
and the characteristics of the system used. In section III,
we propose a model for the diffusion process, to identify
the parameters that are accessible to experiments. Sec-
tion IV compares the predictions of the model for the
stationary regime to the results of the experiments. Sec-
tion V proposes experimental strategies to measure the
diffusivity of the ions, while conclusions are drawn in sec-
tion VI.

II. EXPERIMENTAL SETUP

In the experiment considered as a support for study-
ing diffusion properties, clouds of few hundreds to thou-
sands Ca+ ions are stored in a linear radio-frequency
(rf) quadrupole trap where the role of the neutralising
particles is played by the confining potential [11]. The
technical details concerning the set-up can be found in
[12, 13] and we recall here the useful facts. In the pseudo-
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potential approximation [14, 15] which is relevant in the
context of these experiments, the effective trapping po-
tential can be described by

Vtrap(x, y, z) =
1

2
mω2

r(x2 + y2) +
1

2
mω2

zz
2 (1)

with m the mass of a single ion, and (x, y, z) its Cartesian
coordinates. The potential depth is of several eV and its
cylindrical symmetry is related to the quadrupole geom-
etry which is built on four electrodes along the direction
Oz. By means of Doppler laser-cooling, temperatures T
of the order of 1 to 100 mK can be reached [16, 17]. The
density ni of the cloud is controlled by the strength of
the rf trapping field, and scales with ω2

r . Through the
tuning of the density and of the temperature, the plasma
parameter

Gp =
q2

4πε0akBT
(2)

can be tuned over several orders of magnitude, where a
is the Wigner-Seitz cell radius defined as (3/4πni)

(1/3),
when ni has reached the cold limit for the density [17],
q the charge of the Ca+ ion and kB the Boltzmann con-
stant. It is possible to assign a gas, liquid and crystal
state to such a sample, using the two body correlation
function [18, 19]. With the control on Doppler laser-
cooling and on the steepness of the trapping potential,
the plasma parameter of a trapped-ion based finite OCP
can span from gas (Gp lower than 0.1) to liquid (Gp of the
order of 1 to 100) and crystal phases (Gp larger than 200).
For temperatures lower than 1 K, the thermal kinetic
energy is small compared to the trapping and Coulomb
repulsion potential energies and ions arrange in a station-
ary structure that minimise the total potential energy, to
form what is called a Coulomb crystal, of an ellipsoidal
shape, characterised by a radius R and length L, with
an aspect ratio R/L controlled by the trapping potential
aspect ratio ω2

r/ω
2
z [17].

One can show [11, 17, 20, 21] that starting from a
gaseous (“high temperature”) region and cooling to the
liquid phase, the ion density is uniform in the cloud, ex-
cept for an outside layer, of a width of the order of few
µm, small compared to the sizes of the cloud which are of
the order of several hundreds of µm (see Fig. 1). When
cooled further to the crystal phase, the outer shape of
the cloud does not change and the mean density remains
equal as in the liquid phase. It is of the order of 108 cm−3

for the experiments mentioned in the following. An ex-
ample of this structure formed by 1240 ±50 ions is shown
on Fig. 1a, obtained by the image of their laser induced
fluorescence on an intensified CCD camera. The fluores-
cence is driven by the laser excitation used for Doppler
cooling. In the case of such 3D-trapped sample, a single
laser beam propagating along the Oz direction is suffi-
cient for Doppler laser cooling. Here it propagates to-
ward the positive z. The pixel signal is proportional to
the number of emitted photons integrated along the line

200 300 400 500 600 700 800

z
image

 (pxl)

350

400

450

500

550

600

650

x
im

a
g

e
 (

p
x
l)

200 300 400 500 600 700 800

z
image

 (pxl)

350

400

450

500

550

600

650

x
im

a
g

e
 (

p
x
l)

b)

a)

R

L

FIG. 1. Panel (a): picture of the laser induced fluorescence
of a trapped ion cloud made of 1240 ±50 Ca+ ions. Given an
optical magnification of 12.6 ± 0.1 and a pixel size of 13 µm,
the scale of the picture in pxl is very close to the scale of the
cloud in µm. The cloud dimensions are : R = 107(±2)µm for
the largest radius and L = 576(±14)µm for the total length.
Panel (b) : same cloud with an extra laser admitted, prop-
agating toward z > 0 in real space and on the picture, this
laser is shelving part of the ions in a metastable dark state.

of sight, which is one of the direction perpendicular to
the trap axis Oz.

Such systems can be considered as a finite size realisa-
tion of a one-component plasma and we can get an esti-
mate of the self-diffusion coefficient D from the work of
Daligault, based on molecular dynamics simulations [22]
or computation by practical model [23]. For the typical
range of parameters covered by the experiments detailed
in the following, these results lead to a value for D of the
order of 1 to 10× 10−6 m2/s.

Introducing extra lasers, the internal structure of Ca+

allows to shelve the electronic state in a metastable state
[24, 25], or to trap it in a dark state involving a coher-
ent superposition of two [26, 27] or three [28, 29] stable
and metastable states. In these three situations, the ions
cannot be excited by the cooling laser and thus do not
scatter photons. These dark states have a lifetime in
the millisecond to second range, which is far longer than
the 6.9 ns lifetime of the excited state involved in the
Doppler laser cooling. Because of several experimental
imperfection like Doppler effect or collisions, the shelv-
ing or coherent trapping process does not involve all the
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ions at the same time and some ions are still enrolled
in the laser cooling process, inducing a cycling of absorp-
tion and spontaneous emission. The net recoil induced by
each cycle is responsible for a radiation pressure [30] that
is applied only on these bright ions. This state selective
force is responsible for the spatial segregation between
the bright and dark ions that is visible on figure 1b. In
spite of this, thermalisation between the dark ions and
the laser cooled ones allows to keep the cloud in a steady
state, where segregation by the state-selective radiation
pressure offers a unique tool to measure diffusion prop-
erties within a strongly correlated non-neutral plasma.

III. ANALYTICAL MODEL

In this section we propose a simplified model for the
considered system, assuming that the dynamics can be
mapped, at a microscopical level, to an exclusion pro-
cess on a lattice. Such a regular geometry is inspired
by the ordered structure at short scale of OCP [9]. The
dynamics does not allow the simultaneous presence of
more than one ion in a “site” of the lattice, hence the
restriction to an exclusion dynamics, in the spirit of the
celebrated Asymmetric Exclusion Process [31]. At first
we will neglect the internal state long lived dynamics, i.e.
we will assume that the ions are not allowed to pass from
the bright to the dark state and vice-versa. We will say
that the states of the ions are “frozen”. This simplifying
hypothesis accounts for the fact that the typical life-times
of the shelved states are much longer than the character-
istic times for the spatial displacement of the ions. While
the main features of the model will be already present in
the one-dimensional setting, an accurate functional form
to be compared with experimental density profiles will
be provided by considering a more realistic ellipsoidal
geometry. In subsection III B the consequences of a non-
frozen regime will be discussed, as to provide strategies
for future experiments in this regime also.

A. Limit of infinite lifetime of the dark state

1. Derivation of the model

We consider a one-dimensional lattice, extending along
the z axis, composed by N cells with size a. Each site
of the lattice is occupied by an ion, and each ion can
be found either in a bright or in a dark state. For the
moment, let us assume that transitions to and from the
metastable state do not occur on the time-scale of the
observed dynamics (frozen states). The only allowed evo-
lution is the swapping of neighbour particles along the z
direction. We will denote by γu the rate at which a bright
particle placed on site n exchanges its position with a
dark particle at site n + 1, by γd the exchange rate to-
ward site n−1. The two rates are determined by thermal
fluctuations and by the effect of radiation pressure, as it

will be discussed in the following. In particular, we ex-
pect γu and γd to be identical in the absence of external
forces; the cooling laser along the z axis, acting only on
the bright ions, leads instead to unbalance.

Let us denote by pn(t) the probability that, at time t,
the site n is occupied by a bright particle. We can write
down an evolution equation for the {pn}, 1 < n < N by
recalling the swapping rules introduced before:

dpn
dt

=− γupn(1− pn+1)− γdpn(1− pn−1)

+ γupn−1(1− pn) + γdpn+1(1− pn) .
(3)

The first two terms on the right hand side are loss terms,
as they account for the cases in which a bright parti-
cle initially present in the nth site leaves it and goes to
a neighbour site, occupied by a dark ion; the two gain
terms stand for the opposite transitions. The evolution
equations are completed by the boundary conditions

dp1
dt

= −γup1(1− p2) + γdp2(1− p1)

dpN
dt

= −γdpN (1− pN−1) + γupN−1(1− pN ) .

(4)

This scenario relies on the approximation that pn and
pn+1 are independent probabilities. A more accurate
description of the system would involve the conditional
probabilities of finding bright particles in the neighbor
sites n− 1 and n+ 1, given the occupation in the site n.
The equations ruling the time evolution of such two-site
probabilities would requires three-site terms, leading to a
hierarchy of coupled equations hardly addressable. The
factorization hypothesis, which is reminiscent of Boltz-
mann’s Stosszahlansatz (“molecular chaos” hypothesis),
allows to close the equations at the first level of the hi-
erarchy (see, e.g., Chapter 3.3 of Ref. [32]). The quality
of the approximation is checked a posteriori, by compar-
ing the predictions of the model with the experimental
results.

2. Physical interpretation

It is useful to switch to a continuous description, as
it is typically done when considering the hydrodynamic
behaviour of a gas of particles. Passing to such a coarse-
grained model yields the twofold benefit of (i) getting
insight about the physical interpretation of the terms rul-
ing the evolution and (ii) finding explicitly – at least in
some cases – the stationary state. The price to pay is a
lower accuracy on the short length-scales. To this end,
we define a density of bright particles as∫ z

0

dz′ρ(z′) =

bz/ac∑
n=1

pn ,

where bxc denotes the largest integer smaller than x. We
are interested in the limit N � 1, with the total length
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FIG. 2. Sketch of the potential felt by a bright particle moving
along the lattice. The tilt of the periodic potential (green
curve) is induced by a force F pointing toward z > 0 (red
line).

of the lattice, L = Na, finite. We can then derive an
evolution equation for the density from Eq. (3), by sub-
stituting

pn → aρ(z)

pn±1 → aρ(z ± a) ' aρ(z)± a2∂zρ(z) +
a3

2
∂2zρ(z) + ...

One gets

∂tρ = −V ∂zρ+ 2aV ρ∂zρ+D∂2zρ , (5)

where

V = a(γu − γd) D =
a2(γu + γd)

2
. (6)

The evolution equation (5) is a Burgers’ equation with
viscosity [33], often encountered when taking the hydro-
dynamic limit of asymmetric exclusion processes [34, 35].
The first term on the r.h.s. is a systematic drift due to
the presence of the external forcing by the radiation pres-
sure; the second one, nonlinear in the density, accounts
for the exclusion processes that favor the occupation of
a site by a single particle; the last term, proportional
to the second derivative of the density, accounts for dif-
fusion. Equation (5) can be written in the form of a
conservation law

∂tρ = −∂zJ(z) , (7)

where

J(z) = V ρ(z)− aV ρ2(z)−D∂zρ(z) (8)

plays the role of a density current.
A physical interpretation of the above scenario can be

obtained by considering an effective potential U(z) felt
by a bright particle moving in the lattice, as sketched in
Fig. 2. This potential accounts for the repulsion between
adjacent particles and for the effect of the external force
F pointing along z > 0 which tilts the potential profile.

Let us call ∆U the potential barrier that a bright particle
placed in z needs to overcome in order to swap with a
neighbour dark particle placed in z + a. Because of the
tilt, the potential barrier associated with a swapping with
a dark particle in z − a is thus ∆U + Fa. An Arrhenius
law can be used to relate the transition rates with these
energies like

γu ∝ exp [−β∆U ]

γd ∝ exp [−β(∆U + aF )] ,
(9)

where β = (kBT )−1 is the inverse temperature. From
Eq. (6) follows

V = a(γu + γd)
γu − γd
γu + γd

= a(γu + γd) tanh(βaF/2)

' a2

2
β(γu + γd)F ,

(10)

the last approximation holding if aF is small with respect
to the typical thermal fluctuations. In this case, we have
an explicit expression for the mobility

µ =
V

F
' a2

2
β(γu + γd) . (11)

Comparing this result to Eq. (6) one gets

µ = βD , (12)

i.e. Einstein’s relation, which is indeed expected to hold
at equilibrium.

The characterization of the coefficients µ and D is the
goal of the measurement strategies proposed in the fol-
lowing sections.

3. Stationary profile

The stationary solutions to Eq. (5) are of the form

ρ(z) =
1

2a
+

D

σV a
tanh

(
z − z0
σ

)
, (13)

where z0 and σ are free parameters that are fixed by the
boundary conditions of the problem: z0 represents the
center of the transition front between the bright and dark
region of the ion cloud and depends on the ratio of bright
and dark ions; σ is a typical width of this transition front.

By substituting Eq. (13) in the density current given
by Eq. 8 one finds that in the stationary state, the density
current is

J(z) =
V

4a
− D2

aV σ2
.

Because the stationary state is an equilibrium state where
no density currents are present, we impose the additional
condition J = 0, leading to

σ =
2D

V
(14)



5

hence

ρ(z) =
1

2a

[
1 + tanh

(
V

2D
(z − z0)

)]
. (15)

The constant z0 is fixed by the normalization on the
ion density. Denoting by Nb the number of bright ions,
the relation ∫ L

0

dzρ(z) = Nb (16)

leads to

L

2a
+
D

aV
ln

[
cosh

(
LV

2D

)
− tanh

(
V z0
2D

)
sinh

(
LV

2D

)]
= Nb ,

hence, z0 depends on σ = 2D/V as

z0 = σ tanh−1
[

cosh (L/σ)− e(2aNb−L)/σ

sinh (L/σ)

]
. (17)

If the front width |σ| is much smaller than the total length
L, we can approximate the argument of the tanh−1 as

cosh (L/σ)− e(2aNb−L)/σ

sinh (L/σ)
'

{
1− 2e2(aNb−L)/σ if σ > 0

2e2aNb/σ − 1 if σ < 0 .

By recalling the small-x expansion

tanh−1(1− x) ' −1

2
log
(x

2

)
− x

4
+O(x2) ,

z0 takes the simple form:

z0 '

{
L
(
1− Nb

N

)
+ o (σ) if V > 0

NbL
N + o (σ) if V < 0 .

(18)

4. Ellipsoidal geometry

The experimental setup described in Section II confines
the ion cloud in an ellipsoidal shape. It is experimentally
verified that the action of the forcing laser does not alter
this geometry. It is thus natural to model the dynamics
as taking place in a 3d lattice with reflecting boundaries
on an ellipsoidal domain. Along the z axis, the dynamics
is the one described in the previous paragraphs. Along
the xy plane, since no external forces are exerted, we
expect self-diffusion.

The evolution equation for the density of ions is now
given by

∂tρ̃ = −V ∂z ρ̃+ 2a3V ρ̃∂z ρ̃+D(∂2x + ∂2y + ∂2z )ρ̃ , (19)

where ρ̃ is a volume density, justifying the different di-
mensional factor in front of the nonlinear term, with re-
spect to Eq. (5). Since, for every fixed value of z, the
dynamics on the accessible domain of the xy plane is

purely diffusive, the stationary solution is a density pro-
file ρ̃(x, y, z), whose dependence on the x and y variables
is only due to the constraint of the confining potential:

ρ̃(x, y, z) = Θ

[
4R2

(
z

L
− z2

L2

)
− x2 − y2

]
ρ(z)

a2
, (20)

where Θ(·) is the Heavyside step-function, and R the
transversal semi-axis of the ellipsoid. The linear density
ρ(z) is defined by Eq. (13), where the parameter z0 needs
to be fixed by taking into account the new geometry of
the system. By recalling that the area of the section
perpendicular to the z axis measures

S(z) = 4πR2

(
z

L
− z2

L2

)
, (21)

the density of bright ions projected to the z axis is

ρ̃meas(z) =

∫
dx dy ρ̃(x, y, z)

= S(z)ρ(z)

=
2πR2

a3

(
z

L
− z2

L2

)[
1 + tanh

(
V

2D
(z − z0)

)]
.

(22)
This is the quantity that is actually measured in exper-
iments. The value of z0 can be fixed again by imposing
the normalization condition (16). One gets the relation

3

∫ L

0

dz

L

(
z

L
− z2

L2

)[
1 + tanh

(
V

2D
(z − z0)

)]
=
Nb
N

,

(23)
which can be inverted numerically to find the value of z0,
given V/D and the density of bright ions (see Fig. 5 in
the next Section).

B. Dynamics with a finite lifetime of the dark state

So far we have neglected the shelving dynamics and
have assumed that the bright or dark state of each ion
is fixed during the observational time. In this section we
relax this hypothesis, assuming that the ions can switch
from bright to dark, and vice-versa, during the dynamics.
When variations of this state occur much more frequently
than the typical displacements, a uniform distribution of
bright ions along the z axis is expected to be observed.
If, instead, the characteristic dark state lifetimes are of
the same order of the ones responsible for the swapping of
neighbour ions, nontrivial competing effects are expected
to arise.

Let us consider again the simple one-dimensional
model of Eq. (3) where we now include the possibility
that a bright ion becomes dark with rate Γd, and a dark
ion becomes bright with rate Γb. The shelving process
is induced by laser excitation and thanks to a coherent
three photon process, these two rates can be tuned inde-
pendently [28, 29]. The discrete lattice model becomes
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then

dpn
dt

= Γb(1− pn)− Γdpn

− γupn(1− pn+1)− γdpn(1− pn−1)

+ γupn−1(1− pn) + γdpn+1(1− pn) ,

(24)

leading to the continuous-space evolution equation

∂tρ =
Γb
a
− (Γb+ Γd)ρ−V ∂zρ+ 2aV ρ∂zρ+D∂2zρ . (25)

The stationary state for the density cannot be ex-
pressed in closed form. However, some quantitative pre-
dictions can still be made concerning this state. First of
all, the average number of bright ions is controlled by the
relation

Nb =
Γb

Γd + Γb
N (26)

which results from a balance between bright and dark
ions in the stationary state.

For a force exerted by the laser on the bright ions ori-
ented toward the positive direction of the z axis and for
a transition region size which is smaller than the whole
cloud, the density is expected to be close to a−1 (only
bright ions) when z approaches L and to 0 (only dark
ions) when z ' 0. In the former regime, the stationary
state coming from Eq. (25) can be approximated as

∂zρ(L) =
Γd
aV

; (27)

and in the latter case by

∂zρ(0) =
Γb
aV

. (28)

We thus get a normalization condition for the density
profile and an approximation for its behavior close to
the cloud boundaries. This information is useful when
devising diffusivity measurement strategies in the non-
negligible shelving regime. Other useful information are
also obtained by numerical simulations of the system as
ruled by Eq. (25) as reported in Appendix B. A rich phe-
nomenology of bright ion density profiles can be observed
when varying two scaling parameters: the ratio θ =
(γu − γd)/(γu + γd) which scales the unbalance between
the swapping probabilities and ε = (Γb + Γd)/(γu + γd)
which scales the probability of state exchange relative to
the mean swapping probability.

IV. EXPERIMENTAL VALIDATION

In this section, we present an experimental validation
of the model in the frozen limit (ε� 1) described in sec-
tion. III A. In practice, to go from the situation of Fig. 1a
to Fig. 1b, we leave the Doppler cooling lasers on and we
add an extra laser beam at 729 nm that drives part of

(a)
P1/2

D5/2

S1/2

(b)
P1/2

D5/2

S1/2

FIG. 3. Scheme of the electronic levels of Ca+ involved in
the two regimes considered in the experiment. Panel (a)
represents the cycle of excitation (black straight arrow) and
spontaneous emission (black wavy arrow) in the laser-cooling
process. Panel (b) refers to the regime in which shelving is
present also (excitation to the shelved state is represented by
the red arrow).

the ions in a metastable state (shelving process) [24], like
sketched in Fig. 3. The lifetime of the metastable state
D5/2 is 1.2 s [36], which is far longer than the swapping
times 1/γu and 1/γd. The experimental data are ex-
tracted from the pictures of the laser induced fluorescence
emitted by a cloud of ions, with and without shelving like
explained in section II. The data processing allows to ex-
tract the characteristics of the ellipsoid formed by the
picture of the cloud and to deduce the cloud sizes L and
R based on the pixel dimension, which is 13 µm and the
optical magnification measured to 12.6±0.1. By defining
the boundary of cloud picture, it is possible to integrate
the signal in the other direction transverse to the force
direction and compute an integrated signal I(z). By tak-
ing care of setting the experimental conditions to have a
linear response of the photon counting pixels and a uni-
form laser beam intensity over the whole cloud, the inte-
grated signal I(z) can be used as a proxy for the density
of bright ions ρ(z), with a scaling factor η, taking into
account the probability for each ion to scatter photons
and the detection efficiency and detector gain. The sig-
nal integrated over the whole ellipsoid is proportional to
the number of bright ions in the cloud. The ratio of the
two signals collected with and without shelving of part
of the ions in a dark state gives access to Nb/(Nb +Nd).
In the case of Fig. 1, this ratio is 0.58± 0.02, resulting in
a ratio Γb/Γd = 1.38± 0.04.

In Fig. 4a, the integrated signal I(z) is plotted as a
function of z/L, in the absence or presence of shelving of
part of the ions in a dark state, for the same cloud. In
both cases, I(z) is expected to obey Eq. 22 scaled with
η, with V = 0 in the absence of shelving. In this case, a
1-parameter fit of the parabolic profile allows to defines
the common prefactor η4πR2/(2a3). Therefore, in the
case of shelving, the fit of the functional form Eq (22)
only includes two free parameters, namely z0 and D/V .
In Fig. 4b the inverse of the latter is plotted for differ-
ent values of the radiation pressure force exerted by the
cooling laser. To keep the temperature of the sample
constant along the experiment, the laser cooling exci-
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FIG. 4. Panel (a) : data analysis of a picture like shown in
Fig 1, for a cloud made of 1240 ± 60 ions with total length
L = 576 ± 14 µm, and a measurement time of 1 s. Blue
curve : number of collected photons I(z), as a function of
the relative coordinate z/L along the cloud symmetry axis,
in the absence of shelving, when all particles are “bright”.
The black line is the best fit with a parabolic profile, which is
expected because the projected density of ions is just propor-
tional to the transversal section of the cloud, Eq. (21). Red
curve : number of collected photons I(z), as a function of the
relative coordinate z/L, in the case where part of the ions
are shelved in a metastable state, so that they do not scat-
ter photons. The black curve is a fit which obeys Eq. (22),
taking into account the scaling factor given by the previous
fit. Panel (b) shows the value of V/D, obtained from this fit,
for several signal profiles I(z) obtained with different values
of the effective pressure force F .

tation process is set in the linear regime and the cool-
ing laser beam is split in two counter-propagating beams
and the balance between the two beam intensity is tuned
to reach a variable effective pressure force with a con-
served number of scattered photons. The method used
to estimate the value of the effective force is explained
in Appendix A. The linear behaviour observed in Fig 4b
is in agreement with the theoretical prediction, assuming
a constant temperature. Indeed, from Eqs. (6) and the
linear approximation of Eq. (10), one easily obtains

V

D
=

F

kBT
. (29)

-0.5
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z
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Theory - Linear lattice

Experiment

FIG. 5. Transition front coordinate z0/L as a function of
the drift. Red squares represent the values measured in ex-
periments (i.e., from the fits of density profiles, as shown in
Fig. 4a. The blue solid line shows the approximate estimate
provided by Eq. (18) for the linear-lattice geometry. The
green solid line is computed taking into account the ellispoidal
geometry, see Eq. (23).

From a linear fit of the plot in Fig. 4b it is then possible
to evaluate the temperature of the system, which in this
case is

T ' 22 mK .

Given the Wigner-Seitz radius estimated from the den-
sity to 13.8 µm, this value gives a plasma parameter
Gp = 55, which defines a liquid phase. This temperature
is consistent with the linear approximation of Eq. (10) as
βaF/2 ' 0.05 for a force of 2 × 10−21 N. Furthermore,
it is compatible with the typical temperatures reported
for ion clouds where only a fraction of the ions are laser
cooled [37, 38]. The same method applied to other sets
of measures (not shown here), with different values of
the density, shows the same linear dependence and leads
to values of the temperature of 19 mK and 16 mK. For
a precise and accurate estimation of this temperature,
all the cause of uncertainty concerning the detection ef-
ficiency and the force estimation must be evaluated and
reduced.

As an additional check of the validity of our model, we
plot in Fig. 5 the values of z0 obtained from the fits of the
density profiles against V/D, and we compare them with
our theoretical prediction (23). The agreement between
the two is a further confirmation of the relevance of our
description, even for situations where a front is not visible
on the picture, like for the smallest values of |V/D|. This
comparison shows also that the simplified relation (18),
which does not take into account the ellipsoidal geometry
of the system, provides a fair approximation for large
enough values of the external force.

The proposed model, based on a lattice-like descrip-
tion of the system, turns out to provide meaningful pre-
dictions in the considered cases, even if the ion cloud is
in a liquid regime where a crystalline structure is not
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present. This is not completely surprising. The main in-
gredient for the exclusion-process model is the presence
of a strong local order, and this is guaranteed as soon
as Gp exceeds a few tens [39]: in this case the pair cor-
relation function g(r) is known to exhibit a well-defined
first peak, from which a first layer of neighbors can be
identified [40]. When deriving the model no assumption
was made, instead, on the long-range order of the system,
which is of course missing in the liquid phase.

V. STRATEGIES TO THE DIRECT
MEASUREMENT OF ION DIFFUSIVITY

The analysis proposed in the previous section shows
that it is not possible to extract definitive information
about the diffusivity of the particles by only looking at
static measurements in the regime where the probabil-
ity for the particle to change state is negligible. While
the ratio kBT between D and the mobility µ can be in-
ferred and compared with the expected value of the local
temperature, no conclusion can be drawn about D alone.

In order to circumvent this issue, hereafter we propose
two possible strategies that may be pursued in future ex-
periments. The first one still considers the frozen regime,
but it focuses on dynamical measures of the density pro-
file, acquired with fast frequency. The second one does
not involve dynamical measurements, but it requires that
the shelving rates are of the same order as the displace-
ment rates.

Before proceeding with the discussion of methods to
measure the diffusivity, we compare here the proposed
model to the already available experimental results.

A. Dynamical measurements at high frequency

Let us assume that the dark state has an infinite life-
time (frozen regime) and that the system is prepared in
the stationary state described by Eq. (15), with a ra-
diation pressure force pointing toward positive z. The
density profile of the bright ions is characterised by z̄,
the mean value of their position defined as:

z̄ =
1

Nb

∫ L

0

dz ρ(z)z . (30)

At time t = 0 the two counter-propagating cooling lasers
are tuned in such a way that γu = γd, i.e. V = 0, so that
the following evolution is purely diffusive. The dynamics
of z̄ is obtained from Eq. (5) and reads

∂tz̄ = D

∫ L

0

dz ∂2zρ(z)z

=
DL

Nb
∂zρ(L)− D

Nb
[ρ(L)− ρ(0)] .

(31)

If the initial condition is characterized by a small front
width compared to the total length L, the bright ion

density profile is flat at the boundaries, and verifies

ρ(0) ' 0 ρ(L) ' 1

a
,

This means that at the beginning of the relaxation evo-
lution, until the shape of the profile changes significantly,
one has

∂tz̄ ' −
D

Nba
. (32)

The diffusivity can be thus measured from the variation
of z̄ by repeating the same protocol with an increasing
waiting time.

B. Static profile for finite lifetime of the dark state

As discussed in section III B, provided that the system
can be brought to a regime where the rates of bright to
dark are comparable with those of the ion displacements,
the slope of the density profile close to the boundaries
(Eqs. (27) and (28)) give access to V , provided Γd and
Γb have been measured previously. In the corresponding
case where Γd and Γb can be neglected (frozen regime),
the fit of the density profile gives access to the front
length σ = 2D/V from which one can deduce D. The
control on Γd and Γb can be reached by tuning the atom-
laser interaction parameters in the three-photon process
detailed in [28].

It would be tempting to estimate also the ratio D/V
from the fit in the regime where the lifetime of the dark
state is finite, skipping the preliminary measurement of
σ in the frozen one. However, one must take into account
that the width of the transition region is given, in this
case, by the non-trivial combination of two effects: (i)
the self-diffusion of the ions, which we aim at measuring;
(ii) the dynamical effect due to the fact that one ion can
be suddenly shelved (or unshelved), and start travelling
from one side of the system to the other one. When the
shelving rates are high enough, the latter effect results
in a broadening of the transition region between the two
coexisting phases (dark and bright) of the cloud, which
does not coincide with 2D/V anymore.

At a practical level, the measurement would require
two steps. First, one should perform the experiment in a
regime where the internal state of the ions is fixed. By re-
peating the analysis discussed in Sec. III A 3, it is possible
to measure the value of σ, which relates the diffusivity D
to the drift V . Then the shelving laser parameters should
be switched to reach a regime where Γb and Γd are not
negligible, to measure them by fitting the stationary pro-
file of the bright ions distribution. It can be useful to fit
it with the phenomenological law:

ρ(z) ' (a1 + b1z) + (a2 + b2z) tanh

(
z − z0
c

)
, (33)

where it is understood that the profile has been already
normalized by the local volume of the ellipsoid, in or-
der to make it comparable with the 1-dimensional case.
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shelving. The stationary profile is reported for a 1-
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the evolution: ∆t = 10−2s.

Although Eq. (33) is not an exact solution of the sta-
tionary state for the considered model, it is expected to
catch the essential qualitative features of the profile when
the shelving effect is small. In particular it reproduces
the expected linear behaviour far from the transition re-
gion, i.e. when the value of the hyperbolic tangent is al-
most constant (and equal to −1 or 1 depending on which
boundary is considered). The frozen limit is recovered
when b1 and b2 are equal to zero. An example from nu-
merical simulations is shown in Fig. (6).

The values of b1 and b2 obtained by the fit are noth-
ing but the slopes appearing in the l.h.s. of Eqs. (27)
and (28). Since Γd and Γb can be measured indepen-
dently by a spectroscopic method, the two equations pro-
vide an estimate for V . The ratio σ having been previ-
ously measured, the diffusivity follows as

D = σV/2 .

VI. CONCLUSION

In this paper, we have shown how different aspects of
the atom-laser interaction can be used to measure the
self-diffusion coefficient of ions within a trapped laser-
cooled ion cloud. The measurements rely on a model
developed to describe the external dynamics of the ions,
when a spatial segregation is induced by the radiation
pressure that is encountered only by ions that are not
trapped in a dark state. The validation of this model
allows to measure the temperature of the sample and
to propose several protocols that should give access to
other relevant parameters, like the self-diffusivity coeffi-
cient (not directly measured in the present work). These

protocols rely on the control of the internal state dynam-
ics that is permitted by a coherent multi-photon process.
Together with the control gained on the sample temper-
ature by Doppler laser cooling, these atom-laser interac-
tion processes should allow to measure the self-diffusivity
coefficient for strongly coupled non neutral-plasma, for a
broad range of plasma parameters.
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Appendix A: Estimation of the laser’s pressure force

The radiation pressure force encountered by the ions is
due to the recoil associated with the absorption of pho-
tons from the laser beam ~kL, where kL is the wave
vector of the laser (kL = 2π/λL, λL = 397 nm), pointing
to the direction of the beam. In the limit of a low satu-
ration of the excited transition, the stimulated emission
following this absorption can be neglected and the only
emission process is spontaneous. The averaged recoil over
thousands of emission is then null and we only take into
account the absorption induced recoil. The mean force
depends on the number of absorption/emission cycles per
unit time ΓePe, with Pe the probability for an ion to be
in the excited state, and Γe the probability for an ion
in the excited state to decay to the ground state. This
spontaneous decay rate is the inverse of the excited state
lifetime, which is τe = 6.9 · 10−9 s for Ca+ ions [41].

For a single laser beam, the mean pressure force ex-
erted by the laser is thus given by [30]:

F = ~kLΓePe . (A1)

For the measurement of V/D like shown on Fig. 4, the
effective pressure force needs to be tuned. Tuning Pe
would induce a modification of the laser cooling efficiency
and thus of the temperature. To keep the temperature
constant over the experimental run, the laser beam is
split in two counter-propagating beams +kL and −kL
with a shared intensity x+IL and x−IL with IL the total
laser intensity, and x± the tuning parameters. Again in
the limit of low transition saturation, we can assume a
linear response of the ions to the laser excitation and
consider that Pe = Pe+ +Pe− with Pe± scaling with each
laser beam intensity x±. The average force on the z axis
is thus equal to

F = ~kL(x+ − x−)ΓePe , (A2)
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The probability Pe can be estimated from the number
Ne of photons emitted in a given time interval τmeas by
the whole cloud, and the total number of ions N :

Pe =
τeNe
τmeasN

. (A3)

This quantity is basically the ratio between the time
spent by a single ion in an excited state and the mea-
surement time, and it represents therefore the probability
searched for. Estimating Ne requires to take into account
the efficiency of the photon detector and this is certainly
the largest source of uncertainty in the described proto-
col. In the considered experimental setup, based on an
intensified CCD camera, an efficiency of 1 detected pho-
tons out of 10 has be evaluated. We obtain an estimate
of about 2 ·109 emitted photons per second (slightly fluc-
tuating) in the measurements without shelving, with a

cloud of 1240 ions, resulting in Pe ' 0.011.

Appendix B: Effect of the shelving on the stationary
profile

The stationary density profile of a system described by
Eq. (25) shows a quite rich phenomenology depending on
the values of the dynamical parameters. Such a station-
ary solution does not admit a closed analytical form, but
it can be explored by mean of numerical simulations. In
Fig. 7 some examples are shown for varying values of
the parameters of the experiment. If the shelving rate
is small enough compared to the displacement rates, the
functional form provided by Eq. (33) approximates pretty
well the measured curve. We recall that the functional
form (33) is purely phenomenological and it is not ex-
pected to fit the profile for any choice of the parameters.
Fig. 7 shows indeed that the agreement gets worse when
the ratio between the shelving and the displacement rates
increases.
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