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Abstract: 
The NFAT family of transcription factors plays central roles in adaptive immunity in murine models, 
however, their contribution to human immune homeostasis remains poorly defined. In a 
multigenerational pedigree, we identified three patients carrying germline biallelic missense 
variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia and decreased 
antibody responses. The compound heterozygous NFATC1 variants identified in the patients caused 
decreased stability and reduced binding of DNA and interacting proteins. We observed defects in 
early activation and proliferation of T and B cells from these patients, amenable to reconstitution 
upon genetic rescue. Following stimulation, T-cell activation and proliferation were impaired, 
reaching that of healthy controls with delay indicative of an adaptive capacity of the cells. 
Assessment of the metabolic capacity of patient T cells, revealed that NFATc1-dysfunction rendered 
T cells unable to engage in glycolysis following stimulation, although oxidative metabolic 
processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy 
deficit due to defective glycolysis by enhanced lipid metabolism as an adaptation, leading to a 

delayed, but not lost activation responses. Indeed, we observed increased 13C-labelled palmitate 
incorporation into citrate indicating higher fatty acid oxidation and we demonstrated that 
metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by 
our molecular dissection of NFATC1 mutations and extending the role of NFATc1 in human immunity 
beyond receptor signaling, and reveal evidence of metabolic plasticity in the context of impaired 
glycolysis observed in patient T cells to remedy delayed effector responses. 
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Key points 

• Germline biallelic loss‐ of‐ function mutations in NFATC1 underly a 

previously unknown inborn error of immunity. 

• NFATc1 defects curtail the activation responses of CD8+ cytotoxic T cells due to 

impaired glycolysis. 

• CD8+ T cells with NFATc1 dysfunction adapt to impaired glycolysis likely by fostering 

fatty acid utilization. 
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Abstract 

The NFAT family of transcription factors plays central roles in adaptive immunity in murine 

models, however, their contribution to human immune homeostasis remains poorly defined. 

In a multigenerational pedigree, we identified three patients carrying germline biallelic 

missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia 

and decreased antibody responses. The compound heterozygous NFATC1 variants identified 

in the patients caused decreased stability and reduced binding of DNA and interacting 

proteins. We observed defects in early activation and proliferation of T and B cells from 

these patients, amenable to reconstitution upon genetic rescue. Following stimulation, 

T‐ cell activation and proliferation were impaired, reaching that of healthy controls with 

delay indicative of an adaptive capacity of the cells. Assessment of the metabolic 

capacity of patient T cells, revealed that NFATc1‐ dysfunction rendered T cells unable 

to engage in glycolysis following stimulation, although oxidative metabolic processes 

were intact. We hypothesized that NFATc1‐ mutant T cells could compensate for the 

energy deficit due to defective glycolysis by enhanced lipid metabolism as an adaptation, 

leading to a delayed, but not lost activation responses. Indeed, we observed increased 

13C‐ labelled palmitate incorporation into citrate indicating higher fatty acid oxidation 

and we demonstrated that metformin and rosiglitazone improved patient T‐ cell effector 

functions. Collectively, enabled by our molecular dissection of NFATC1 mutations and 

extending the role of NFATc1 in human immunity beyond receptor signaling, and reveal 

evidence of metabolic plasticity in the context of impaired glycolysis observed in patient 

T cells to remedy delayed effector responses. 

 
 

 
Keywords: NFATc1, CD8 T‐ cell metabolism, metabolic reprogramming, metabolic 

plasticity, inborn errors of immunity 
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Introduction 

T cells can possess a diverse spectrum of functional states, governed primarily by cues in 

their environment. Hence, T cells constantly fine‐ tune their behavior through 

coordination between signal transduction pathways, gene expression and cellular 

metabolism. Studying how metabolic circuitries contribute to T‐ cell responses is 

fundamental to our understanding of the immune system and currently under intense 

scrutiny1,2. However, most studies have been conducted within the field of chronic 

inflammation and tumor immunity and typically focus on components within metabolic 

pathways. Consequently, the contribution of transcriptional regulation to metabolic 

control within T cells, particularly in the context of human disease remains poorly 

understood. 

The nuclear factor‐ of‐ activated T cells (NFAT) family of transcription factors (TF) regulates 

T‐  lymphocyte activation, survival, proliferation and differentiation, as well as the 

transcription of many growth factors, cytokines, and cell‐ to‐ cell interaction molecules 

that are essential for the morphogenesis, development, and function of numerous cell 

types and organ systems3‐ 5. The NFAT family comprises five members of which NFATc1, 

NFATc2, and NFATc3 are strongly expressed in lymphocytes5. In T‐  and B‐ cells, 

stimulation of the antigen receptor (TCR and BCR, respectively) triggers signaling cascades 

resulting in Ca2+‐ release from the endoplasmic reticulum (ER) to the cytosol. Decreased 

Ca2+ in the ER lumen is sensed by stromal interaction molecules (STIM) that activate 

pore‐ forming ORAI proteins at the plasma membrane and induce store‐ operated Ca2+ entry 

(SOCE)5‐ 7. Increased cytoplasmic Ca2+ leads to the activation of calcineurin, which 

subsequently dephosphorylates NFATc.5. Upon dephosphorylation, cytoplasmic NFATc 

translocates to the nucleus where it regulates gene transcription in cooperation with various 

other TFs such as AP‐ 1, a heterodimer consisting of Jun and Fos members5‐ 7. 

Distinct roles of individual NFATc members have been shown in murine T lymphocytes, 

particularly during differentiation of Th17, T‐ follicular helper cells (TfH) and regulatory T 

cells (Tregs)3. Perturbations in NFATc activity, via loss of binding to AP‐ 1, are linked to CD8+ 

T‐ cell exhaustion upon prolonged stimulation in models of chronic infection and 

oncogenesis8. 

Recently, NFATc1 has been discovered as a central regulator of T‐ cell metabolism. 

Under physiological conditions, activated CD8+ T cells shift their metabolism from 
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oxidative phosphorylation (OXPHOS) to glycolysis. Dysfunctions of SOCE/NFAT axis rendered 

mouse T cells fail to undergo the glycolytic switch necessary for metabolic expenses during 

activation 
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and clonal expansion9,10. Here, we report two heterozygous loss‐ of‐ function (LOF) 

mutations in compound heterozygosity in NFATC1 as the etiology of a previously unknown 

inborn error of immunity (IEI). We dissect the molecular function of NFATc1, as a TF and 

extend its role beyond receptor signaling. Specifically, we demonstrate that NFATc1 is 

required for intact glycolytic metabolism, revealing the fundamental but permissive 

nature of metabolic circuitries in governing T‐ cell responses in an IEI setting. In addition, 

we demonstrate that NFATc1‐ dysfunctional T cells shift towards alternative metabolic 

resources such as fatty acid (FA) utilization and showcase the exploitability of this 

phenomenon in patient cells with the use of metformin and rosiglitazone providing 

proof‐ of‐ concept for therapeutic modulation of immunometabolic states to improve 

effector functions in a genetically defined T‐ cell defect. 
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Material and methods 

Study approval 

Samples from the patients, family members and other healthy controls (HCs) were obtained 

following an informed written consent and approval from the ethics committee of Marmara 

University Faculty of Medicine as well as the Institutional Review Board of the Medical 

University of Vienna. 

Whole exome sequencing (WES) 

For WES, a TrueSeq Rapid Exome kit as well as the Illumina HiSeq3000 system and the cBot 

cluster generation instruments were used as previously described11. A detailed list of genetic 

variants is shown in Supplementary Tables 2‐ 6. 

Immunoblot experiments 

Immunoblots were done according to established protocols as outlined11. 

Lymphocyte phenotyping and functions 

Cryopreserved PBMCs were stained with fluorescent antibodies (Supplementary Table 1). 

PBMCs or sorted CD8+ T‐ cell subsets were isolated and cultured in vitro under various 

conditions11 and proliferation, activation, cytokine expression, or apoptosis were 

determined. Data were acquired with an LSRFortessa™ (BD Biosciences) and analyzed using 

FlowJo™ v.10 The gating strategies and the panels are shown in Supplementary Figure 1 and 

Supplementary Table 1 respectively. 

Treatment of T‐ lymphoblasts with metformin and rosiglitazone 

Patient and HC T cells were expanded as described11. Starting on day 5 after the initial 

stimulation, metformin (2mM; Sigma) or rosiglitazone (1 μM; Sigma) or carrier were added 

until day 10, when the experiments were performed. 

Statistical analysis 

For single comparisons of independent groups, Student’s t test was performed. For multiple 

comparisons, a one or two‐ way analysis of variance (ANOVA) followed by corrections 

of multiple tests were applied. Analyses were performed using PRISM software 

(GraphPad Software Inc). 
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Results 

Identification of human NFATC1 mutations 

Here we studied 3 patients (P1‐ P3) from a multigenerational consanguineous pedigree 

(Figure 1A), who suffered from early‐ onset sinopulmonary infections requiring multiple 

hospitalizations and eventually leading to bronchiectasis. In the extended family, we noted 

that several infants (from whom no genetic material was available for testing) succumbed to 

infectious complications (Supplementary information). P2 and P3 experienced recurrent viral 

(warts) and bacterial (folliculitis and abscesses) skin infections. Thoracolumbal scoliosis was 

documented in P1 and P2, which was corrected by surgery (Figure 1B). Laboratory results 

indicated hypogammaglobulinemia (more prominently in P1) and low antibody titers 

following pneumococcus vaccine were detected in P1. P3 had negative response to hepatitis 

B vaccine. (Supplementary Table 2). Immunophenotyping revealed lower CD4+/CD8+ 

T‐ cell ratio and lower recent thymic emigrants compared with the age‐ matched 

controls. Lymphocyte proliferation responses to PHA and CD3/CD28 stimulations were 

defective (Supplementary Table 2). At present, P1 and P2 receive regular IVIG 

replacement and antibiotic prophylaxis, alleviating their symptoms. Detailed case reports 

are provided in the Supplementary information. 

To unveil the genetic etiology, WES was performed on P1 and P2. Based on the pedigree, an 

autosomal recessive mode of inheritance was assumed, and all rare nonsynonymous 

homozygous and compound heterozygous variants shared between the affected relatives 

were extracted. Further analysis of compound heterozygous variants shared in between the 

patients showed two missense variants within the NFATC1 gene 

(ENST00000427363.7:c.1361C>T, p.S454L and ENST00000427363.7:c.2233G>A, p.V745M), 

segregating within the family members (Supplementary Figure 2A). The variant p.S454L lies 

in the region Rel homology domain (RHD) critical for DNA binding in the groove proximal to 

the AP‐ 1 binding site, while p.V745M is located in the transactivation domain B (TAD‐ B) 

on the C‐ terminal end of the protein (Figure 1C). No homozygous cases of these variants 

were reported in the gnomAD database and the frequency of observed heterozygous 

alleles are below 10‐ 5 (last accessed 14.04.2023). Notably both amino acids at their 

particular position are conserved across species (Figure 1C). Although the variants in 

additional genes also segregated within the individuals, they were disregarded as being 

causative since they could not be related to the immunodeficiency status of the patients 
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(Supplementary Table 3). 
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Collectively, these data suggested that the compound heterozygous constellation in 

NFATC1 has high probability for being disease‐ causing. 
 

 
Identified NFATc1 variants result in reduced protein stability, DNA binding, nuclear 

translocation and altered interaction with c‐ Jun 

To elucidate the variants´ pathogenic mechanisms, we tested their effect on the expression, 

localization and function of NFATc1. We first measured mRNA abundance and NFATc1 

protein expression. Though mRNA levels were slightly higher, protein levels are comparable 

between patients and HC (Figure 1D and Supplementary Figure 2B‐ C) (P1 and P2, 

the patients whose material we had access to). We next assessed protein stability and 

found that ectopic expression of NFATc1S454L and NFATc1V745M variants exhibited reduced 

protein stability compared to NFATc1WT in HEK cells (Figure 1E, Supplementary Figure 2D‐ E). 

Further, we observed reduced NFATc1 nuclear translocation in stimulated 

T‐ lymphoblasts from patient 1 compared to HC (Figure 1F and Supplementary Figure 3). 

Additionally, we detected a significant reduction in NFATc1 activation as per ELISA based 

DNA binding assay in patient T‐ cells compared to HC (Figure 1G). Given that TFs 

operate by interacting with multiple proteins on promoter sites of target genes, we studied 

the impact of the NFATC1 variants on its interaction with the AP‐ 1 complex. 

Co‐ immunoprecipitation experiments demonstrated reduced interaction of both variants 

(more prominently in S454L) with c‐ Jun (Supplementary Figure 4A). Taken together, our 

data indicate that both NFATC1 variants impact protein function through decreased 

stability, cellular mislocalization, reduced activation and aberrant interaction with 

c‐ Jun. 

 

Dysfunctional NFATc1 impairs the differentiation, function, and survival of T cells 

To systematically examine the effect of NFATc1 on lymphocyte differentiation, we 

performed detailed flow cytometric analysis on patients’ PBMCs. T‐ , B‐  and NK‐ cell 

overall proportions remained unaltered throughout the disease course (Supplementary 

Table 2, Supplementary Figure 4B‐ C). Within the T‐ cell population, CD8+ T cells were 

increased resulting in a decreased CD4/CD8 ratio in all three patients (Supplementary Table 

2). Despite absence of autoimmunity, we detected lower proportions of Treg‐  and 

TfH‐ cells in patients (Figure 2A), consistent with Nfatc1‐ deficient murine models which 
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have aberrant Treg and TfH development and disproportional Th1, Th2 and 

Th17‐ populations12. IFN‐ γ and IL‐ 4 
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productions were lower in CD4+CD45RA‐  T cells in the patients, whereas the IL17 production 

was comparable with HCs (Supplementary Figure 4D). Similarly, CXCR3+CCR6‐  

populations were lower, as well as the GATA3 and T‐ Bet expression in Th2 (CCR4+CCR6‐  

CXCR3‐ ) and Th1(CCR4‐ CCR6‐  CXCR3+) enriched populations (Supplementary Figure 4E‐ F). 

Both CD4+ and CD8+ T‐ cell compartments contained lower naïve (CD45RA+) and 

central memory (TCM:CD45RA–CCR7+) with a corresponding increase in the effector memory 

(TEM:CD45RA– CCR7–) proportions (Figure 2B). Moreover, CD8+ T cells displayed 

reduced CD28 but enhanced CD57 expression, attesting to their chronic activation and 

exhausted phenotype (Figure 2C and Supplementary Figure 5). In summary, these 

results show that patients harboring NFATC1 mutations exhibit altered proportions of 

T‐ helper lineage evidenced by reduced TfH‐ , Treg‐ , Th1‐  and Th2‐ cells as well as 

aberrations in cytotoxic T‐ cells. 

NFATc1 plays a prominent role in T‐ cell effector functions including cytokine productions 

(IL‐  2, IFN‐ γ, TNF‐ α) and cytotoxicity9,10,13. We therefore hypothesized that NFATC1 LOF 

would compromise the effector responses of T‐ cells. Indeed, upon stimulation, 

patients’ T‐  lymphoblasts exhibited diminished IL‐ 2 and IFN‐ γ production (Figure 2D) as 

well as reduced expression of CD107a indicating compromised lytic machinery 

(Supplementary Figure 6A). NFAT transcriptional control is essential for maintaining 

survival5,13‐ 15, and indeed, patients’ CD8+ T‐ lymphoblasts showed higher apoptosis 

compared to HCs, which could not be rescued by IL‐ 2 (Figure 2E). To exclude the 

possibility of an additional signaling defect that would impair T‐ cell functions, we tested 

the signaling cascades and Ca2+‐ flux following TCR stimulation. Except for a slight 

reduction of AKT phosphorylation, the downstream TCR responses (Ca2+‐ flux and ERK, 

p65, and S6 phosphorylation) remained intact (Supplementary Figure 6B‐ C), ruling out that 

additional defects proximal to NFAT signaling contribute meaningfully to cellular 

dysfunctions. Consistent with the role of Nfatc1 in T‐ cell activation and proliferation in 

murine models16,17, patient PBMCs showed defective proliferation and CD25 upregulation 

compared to HCs, predominantly in the CD8+ T‐ cell population (Figure 2F‐  G) and even 

more pronounced in the naïve T‐ cell compartment (Supplementary Figure 6D). 

Importantly, genetic reconstitution of wild‐ type NFATC1 into patients’ PBMCs restored 

both stimulation‐ induced CD25 expression and proliferation (Figure 2H‐ I) proving the 

pathogenicity of the patients’ inherited NFATC1 variants. 
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NFATc1 is required for survival and proliferation of activated mature B‐ cell populations 
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The Ca2+/NFAT axis is critical for germinal center reactions, implicated in the regulation of 

ICOS and CD40L expression and thus, TfH differentiation12. Following TCR stimulation, there 

was reduced upregulation of CD40L in patient TfH cells compared with the HCs 

(Supplementary Figure 6E). Despite normal absolute CD19+ B‐ cell numbers, we detected 

a phenotypic skewing of B‐ cell subsets with slightly lower switched‐ memory proportions 

and increased naïve B‐ cells in patients (Supplementary Figure 4C). These data are 

reminiscent of the mild effect on B‐ cell differentiation processes in the bone marrow and 

periphery of NFATc1‐ deficient murine models18. However, these mice have blunted 

proliferation and Ca2+ flux responses to stimulation, culminating in decreased 

immunoglobulin class switch and plasmablast formation, as well as aberrant cellular 

immune responses18. Therefore, we next assessed functional responses in patient B‐ cells. 

Compared with CD19+ B‐ cells from HC, patient cells were less responsive to stimulation 

with CD40L and IL4 as assessed by CD86 upregulation (Figure 2J). Notably, the activation 

marker CD25 was only partially upregulated in patient B‐ cells, suggesting impaired 

IL‐ 2‐ mediated survival and proliferation (Figure 2J). In response to CD40L and IL‐ 4/IL‐ 21 

as well as CpG stimulations, patient B‐ cells were capable of class‐ switch recombination 

(CSR) to IgG in vitro, albeit with reduced frequency at day 7 (Supplementary Figure 7A), 

an effect likely due to impaired proliferative capacity which was lower following CpG 

exposure (Figure 2K). Given the reported Ca2+ flux perturbations in peripheral B‐ cells 

from NFATc1‐ deficient mice18, we tested Ca2+ dynamics in patient EBV B‐  cells. Patient 

derived EBV B‐ cells displayed reduced Ca2+ flux upon ionomycin treatment (Figure 2L), 

an effect that was rescued upon transfection with WT‐ NFATc1 vector on P1 EBV B‐ cells 

(Supplementary Figure 7B). These data add corroborating evidence for the causality of the 

dysfunctional NFATc1 in patients leading to an impaired B‐ cell function. Taken 

together, these results suggest that intact NFATc1 is required to relay signals essential for 

survival and proliferation of activated mature B‐ cell populations. 

 

Transcriptomic analysis of NFATc1 patients’ lymphocytes indicates chronic inflammation 

and a tolerogenic/senescent signature 

To better understand how NFATc1 dysfunction impacts the patients’ lymphocytes, we 

compared the basal transcriptome and TCR repertoire of lymphocytes between P1 and P2 

and HCs utilizing droplet based single‐ cell RNA sequencing (10x Genomics). The number 
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of TCRαβ clonotypes in patients’ T‐ cell populations, particularly within the CD8+‐ TEM 

fraction 
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(Supplementary Figure 8), were lower indicating a diminished TCRαβ repertoire diversity 

(Figure 3A). Consistent with our FACS‐ based immunophenotyping (Figure 2B), 

transcriptional profiling confirmed reduced naïve CD4+ and CD8+ T cells with a 

concomitant skewing towards a TEM phenotype (Figure 3B‐ C), as well as reduced Tregs, and 

decreased CCR7 and IL7RA expression, similar to observations in NFATc1‐ deficient murine 

models10. 

Differential gene expression analysis between the patients and controls on CD4+ and CD8+ T 

cells (Figure 3D) showed increased transcription of genes associated with chronic 

inflammation (CD70, GPR65, JUNB, MAP3K8)19, cellular stress (MTRNRL2, SDF2L1)20‐ 22 and 

tolerogenic signals (LGALS1, CREM, AREG, NR4A2)23‐ 25. Consistently, an activated 

and terminally differentiated effector state (PRDM1)26 was further evidenced by reduced 

TCF7, LEF1 and KLF7 expressions in the CD8+ compartment24,27,28, altogether 

corroborating the molecular evidence for an anergic/exhausted state of patient T cells 

(Figure 3D). We performed a gene set enrichment analysis on 16 pre‐ defined 

pathways (Supplementary Table 8) and detected a significant enrichment in 

anergy/exhaustion pathway in the patients compared with HCs (hypergeometric test, 

FDR <= 0.05)29. We assessed the altered expression of selected marker genes at protein 

level (CD70, PRDM1) using flow cytometry (Supplementary Figure 9). We then focused on 

the expression profile within the CD8+‐ TEM compartment, constituting the largest CD8+ 

T‐ cell fraction having differential distribution among the controls and patients. 

Interestingly, within this population, we observed a significant increase in genes 

including SGK1 and PIM3 implicated in connecting T‐ cell fate determination to cellular 

metabolic signals such as environmental nutrient deprivation and/or mTOR activation30,31 

(Figure 3E). Collectively, transcriptome profiling of the NFATc1‐  dysfunctional patients 

revealed a state of chronic activation, increased cellular stress response and anergy in 

T cells. 

Within the B‐ cell compartment, differential gene expression analysis revealed 16 

genes having altered expression levels in the patients compared with HCs. 

Interestingly, we detected reduced expression of several immunoglobulin heavy and 

light chain genes, including IGHV5‐ 10‐ 1, IGHV1‐ 24, IGHV1‐ 26 and IGLV1‐ 47 (Figure 3F), 

similar to the NFATc1‐  deficient murine models, suggesting a role for NFATc1 as a 

facilitator of Ig gene locus accessibility32. Pathway analysis of up‐ regulated genes 



17  

confirmed the patients’ proinflammatory state with a significant enrichment in TNFα/NFκB 

signaling (Supplementary Table 9). Upregulation of genes such as ZFP36L2, KLF3, PRDM4 

and ZBP1, which are usually 
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expected to be downregulated during the transition from naïve to mature B‐ cells, 

suggested a differentiation defect. Consistently, we detected a reduced differentiation to 

plasmablasts (CD19+CD27+CD38+) upon stimulation with CD40L and IL‐ 4 or IL‐ 21 

(Supplementary Figure 10). 

 

Altered global chromatin landscape in human NFATc1 dysfunction 

NFATc1 regulates chromatin remodeling and increases DNA accessibility to interacting TFs33. 

Based on our earlier data showing reduced binding of NFATc1 to DNA and AP‐ 1 complex, 

we hypothesized reduced accessibility of NFAT mutants at the NFAT sites of IL2 promoter. 

Thus, we performed an assay for transposase‐ accessible chromatin with 

high‐ throughput sequencing (ATAC‐ seq) on stimulated patient and HC 

T‐ lymphoblasts. Analysis of the consensus peaks at the promoter sites confirmed a 

decreased accessibility of the IL2 promoter (Figure 4A) in patients, alongside other 

genes involved in T‐ cell proliferation and effector responses (CCNA1, TESPA1, IL12RB2, 

CD44, PAK1, LEF1) (Figure 4B). The motif heatmap (Figure 4C) shows z‐ scores of 

chromatin accessibility for the top 50 most significantly (p.adj < 0.05) variable motifs 

across samples. The majority of the FOS‐ JUN motifs have a reduced pattern of 

chromatin accessibility in the patients, as well as several other AP1 complex family 

members including BATF (Basic leucine zipper transcriptional factor ATF‐ like). AP‐ 1 

transcription complex comprises numerous basic region‐ leucine zipper proteins that belong 

to different families (JUN, FOS, ATF, BATF and MAF) and form heterodimers to execute 

transcriptional activity. The members of this family such as BATF, might control other 

genes than the typical cJUN/cFOS heterodimers, or can replace those heterodimers 

under different physiological conditions34,35. Collectively, ATACseq data suggest an 

overall reduced chromatin accessibility for AP1 complex motifs in the patient cells. Gene 

ontology (GO) term enrichment analysis of unique accessibility sites for patients and HCs 

revealed HC‐ specific GO enrichments of the genes involved in adaptive immune 

response, effector functions and activation responses implying reduced accessibility of 

corresponding sites in patient cells (Figure 4D). Altogether, these data support our earlier 

findings on reduced IL‐ 2 production caused by dysfunctional NFATc1 in patient T cells, 

with reduced accessibility of the chromatin regions required for T‐ cell activation. 
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NFATc1 dysfunction delays T‐ cell activation, which is associated with perturbed 

metabolic responses 

To better understand the effect of NFATc1 deficiency on the temporal patterning of 

T‐ cell activation and proliferation responses, we performed detailed time‐ course 

experiments. Interestingly, determinants of activation and proliferation which were 

clearly different at earlier timepoints, were no longer distinguishable between patient and 

HC CD8+ T cells 7 days after stimulation (Figure 5A). As NFATc1 fine‐ tunes activation 

and senescence processes8 we assessed the expression profile of checkpoint inhibitors 

typically upregulated upon TCR activation in parallel to surface CD25. We observed a 

delayed upregulation of PD‐ 1, LAG3 and AITR/GITR upon TCR stimulation, particularly in 

patient CD8+ T cells in a trend reminiscent of the delayed activation (Figure 5B, 

Supplementary Figure 11A). A slight reduction in activation and proliferation was evident 

in CD4+ cells, albeit to a lesser extent than the CD8+ T cells, while exhaustion 

parameters were comparable (Supplementary Figure 11B). We hypothesized that the 

delay in activation is preceded by an altered transcriptional program in patient T cells. 

Thus, we stimulated PBMCs until day 3 which corresponded to the timepoint with the 

largest difference in proliferation between the patients and HCs, and performed bulk 

RNA sequencing on sorted CD8+ T cells. We analyzed enrichment of gene sets for 50 

“hallmark” functions and pathways36 through calculating normalized enrichment score 

(NES), which represents enrichment of genes from a tested gene set towards the top of 

the ranked list (positive NES) or the bottom of the ranked list (negative NES), 

respectively. In our dataset, it shows the gene enrichment profile of the stimulated T cells 

in comparison to unstimulated cells. TCR stimulation induced a global increase in the 

signals from pathways regulating cell cycle, ribosomal organization, protein translation 

and unfolded protein response, as well as metabolic signatures, including mTOR signaling 

in both HCs and patients (Figure 5C‐ D). In patients, a statistically significant positive 

enrichment is present for OXPHOS in the upregulated gene set upon stimulation 

compared to the unstimulated samples, whereas in HCs the contribution of oxidative 

pathway genes to the upregulated dataset is not significant. These data reveal a 

transcriptional disconnect between the expression profiles induced upon activation in HC 

compared to NFATc1 defective cells. 

Given the impaired glycolysis in NFATc1‐ deficient murine models10, we next focused on 
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the genes regulating glycolysis (such as HK2, ENO, PGK2, PFK2) and observed a 

differentially 
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reduced expression pattern in patients compared to the HCs (Figure 5E). These data 

prompted us to analyze the metabolic parameters and functional capacity of patient T cells. 

We assessed glucose uptake in activated CD8+ T‐ lymphoblasts using the fluorescent 

glucose analogue 2‐ NBDG and observed that patients’ cells took up less glucose compared 

with HCs, despite equivalent GLUT1 surface levels (Figure 6A and Supplementary Figure 

12A‐ B). Next, we measured lower glycolytic rate and glycolytic reserve capacity in 

patients’ CD8+ T‐  lymphoblasts upon stimulation compared to HC. Conversely, no major 

effect was observed on OXPHOS and mitochondrial respiration in patient’ 

T‐ lymphoblasts (Figure 6B). These findings including reduced glucose uptake and 

glycolysis capacity due to an altered transcriptome, phenocopy those of CD8+ T cells 

from Nfatc1–/– mice10. Consistent with hexokinase 2 (HK2), a glycolytic marker, 

expression being regulated by NFATc110, we observed that the stimulation‐ induced 

increase in HK2 expression was almost absent in P1 and reduced in P2 T‐ lymphoblasts, 

whereas expression of GLUT3, one of the major glucose transporter in addition to 

GLUT137 remained unaltered (Figure 6C‐ D and Supplementary Figure 12‐ 13). 

Accordingly, LC‐ MS metabolomics analysis revealed higher hexose (representing 

glucose) and pentose levels with a concomitant decrease in downstream glycolytic 

metabolites in patient T‐ cells, consistent with an obstructed initial step of glycolysis 

(Figure 6E). 

 

NFATc1‐ mutant T cells compensate for impaired glycolysis by enhancing lipid metabolism 

The observation that the delayed patient T‐ cell activation and proliferation responses 

could “catch‐ up” prompted us to evaluate whether NFATc1‐ dysfunctional cells were 

adapting by increasing their reliance on alternative metabolic substrates. Not only was the 

expression of CPT1a, a transporter of FAs into the mitochondria and key regulator of 

FA metabolism, higher in stimulated patient T cells (Figure 6C‐ D, Supplementary Figure 

13), but lipid uptake determined using Bodipy FL C16 was higher in patients’ 

T‐ lymphoblasts both with, and without stimulation compared to HCs (Figure 7A, 

Supplementary Figure 14A). Interestingly, lipidomic analysis revealed that although overall 

lipid populations increased with stimulation in both HC and patients (Figure 7B), 

consistent with the stimulation induced increased in lipid uptake seen with Bodipy 

(Figure 7A). The extent of the increase in the triacylglycerol pool is markedly attenuated in 
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patient cells compared with HC (Figure 7C‐ D). Together, these data suggest that patient 

cells had a shifted substrate preference towards FAO. Indeed, 
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fluxomics experiments utilizing [13C16]‐ palmitic acid revealed patients’ T lymphoblasts 

to have higher tracer incorporation into citrate isotopologues, indicating enhanced flux 

of exogenously administered, palmitate‐ derived carbons into the TCA cycle (Figure 

7E). Considering the exhausted phenotype of the patient cells and heterogeneity in the 

T‐ cell pool, we sought for innovative ways to delineate, at the T‐ cell subpopulation 

level, the consequences of the NFATC1 mutations on metabolic responses. We utilized 

the recently described flow cytometry‐ based metabolic profiling technique SCENITH and 

extended our understanding at the single‐ cell level38. While patients’ CD4+ T cells 

displayed similar metabolic trends compared with HC (Supplementary Figure 14B), 

consistent with the impaired glycolytic capacity observed in patient T‐ lymphoblasts during 

the glycolysis stress test (Figure 6B), further analysis of the CD8+ T‐ cell subpopulation 

revealed that the effector memory (CD45RA–CCR7+) population was most different 

compared with HC (Figure 7F) and thus, most sensitive to NFATc1 deficiency. Taken 

together, these data strongly argue that NFATC1 mutations impair glycolysis in CD8+ T cells 

which is associated with delayed CD8 T‐  cell effector responses and a metabolic shift 

towards β‐ oxidation and FA utilization. 

 
Pharmacological modeling of patient phenotype in primary T cells recapitulates the 

metabolic flexibility observed in patient cells 

To better understand the molecular association between the impaired glycolysis in the 

NFATc1‐ dysfunctional patient cells and the adaptation towards FAO, we aimed to model 

the patient phenotype pharmacologically using lymphocytes derived only from HCs. 

Consistent with established literature, inhibiting glycolysis in HC PBMCs using 

2‐ Deoxyglucose (2‐ DG) reduced activation and proliferation1,2. In contrast to 

NFATc1‐ deficient mice data10, such defects in activation and proliferation, secondary to 

ablated glycolysis, could not be rescued with IL‐ 2 treatment (Supplementary Figure 

14C‐ D). Next, we assessed the effect of 2‐ DG on IL‐ 2 production of the 

HC‐ lymphoblasts. Lower IL‐ 2 production upon 2‐ DG‐ treatment further corroborated the 

necessity of glycolysis for appropriate effector responses (Supplementary Figure 14E). To 

rule out that the defects in activation and proliferation responses in patient PBMCs merely 

reflected differences in T‐ cells subset proportions, we performed time course experiments 

in sorted HC naïve T‐ cells treated with Cyclosporin‐ A39 to model NFAT inhibition, or 
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2‐ DG to inhibit glycolysis, and measured their functional and metabolic responses. In a 

pattern reminiscent of the patients, stimulated CD8+ T cells exposed to 2‐ DG, 
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whilst delayed initially with respect to the proliferation and activation (Figure 7G), managed 

to match responses of the stimulated, vehicle‐ treated cells by day 8. Importantly, 

this recovery in functional responses after the initial delay in 2‐ DG‐ treated cells was 

associated with a concomitant increase in lipid uptake (Figure 7G). Additionally, HK2 

upregulation upon stimulation was normal in 2‐ DG group whereas it was reduced in CsA 

treated cells (Figure 7H), consistent with our patient data. Furthermore, both CsA and 

2‐ DG treatment promoted [13C16]‐ palmitic acid incorporation into TCA cycle 

metabolites following TCR stimulation compared with stimulated, vehicle‐ treated 

control cells (Figure 7I). These data strongly suggest that glycolysis inhibition is sufficient 

to induce metabolic adaptations towards FAO. NFATc1‐ mutant CD8+ T cells possess a 

“delayed but not absent” responsiveness to stimulation, possibly associated with a 

subsequent adaptation towards FA utilization. We next tested whether CD8+ T‐ cell 

effector functions could be improved through therapeutic metabolic reprogramming. We 

reasoned that early priming of cells towards FAO might diminish the delay in functional 

responses, in CD8+ T cells with ineffective glycolysis. We primed patient CD8+ T cells 

with metformin and rosiglitazone, two therapies well‐  documented for their effects on 

lipid catabolism40. Not only did CD8+ T‐ lymphoblasts from both patients increase IL‐ 2 

production with their treatment (Supplementary Figure 14F), but treatment of patient 

PBMCs with metformin and rosiglizatone simultaneously with stimulation led to 

improved proliferation, predominantly in rosiglitazone‐ treated patient CD8+ T cells 

(Supplementary Figure 14G‐ H). Taken together, these results demonstrate that 

NFATc1‐ mutant T cells may adapt to restricted glycolysis likely by shifting their substrate 

preference towards FAO following stimulation thereby retaining some degree of functional 

capacity, which might be enhanced by metabolic priming as a potential therapeutic 

modulation. 
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Discussion 

Here, we describe patients with inherited mutations in NFATc1 that present with a novel 

combined immunodeficiency characterized by recurrent viral and bacterial infections, due to 

impaired T‐ and B‐ cell activation and proliferation. Through a detailed profiling of the 

patient’s immunophenotype and comprehensive molecular experiments, we further 

authenticate the involvement of NFATc1 in establishing a cellular milieu that permits 

optimum glycolytic responses in T cells and reveal evidence of metabolic plasticity in the 

context of impaired glycolysis observed in patient T cells to remedy delayed effector 

responses. Lastly, through metabolic priming of patient T cells, we provide preliminary 

proof‐ of‐ concept pre‐ clinical evidence for the therapeutic improvement of genetically 

defective T cells. 

The role of NFAT family of transcription factors, including the contribution of SOCE to the 

regulation of NFAT axis on different phenotypes has been extensively characterized in 

mouse models. Recently, patients with LOF NFATC2 were reported and characterized by 

joint contractures, osteochondromas, and recurrent B‐ cell lymphoma41. Aspects of our 

patients’ clinical presentations are shared by patients with NFATc2 deficiency including the 

aberrant T‐ cell functions. However, skeletal manifestations appear somewhat 

divergent. While NFATC1‐ mutated patients (P1 and P2) presented with scoliosis, likely 

reflecting an imbalance in bone remodeling processes for which NFATc1 has a 

well‐ documented role42, the joint contractures observed in the NFATC2‐ mutated patients 

points towards the cartilage as the origin of the skeletal phenotype. A possible 

explanation for this is the expression profile differences between these proteins with 

NFATC2 being more widely expressed compared with NFATC1 whose expression is 

more limited to the lymphoid/bone marrow compartment. 

The phenotype of our patients is also reminiscent of ORAI/STIM1 deficiencies, the prototype 

diseases of defective SOCE6, who present with normal lymphocyte numbers, despite 

impairments in their activation and proliferation responses. Defective T‐  and B‐ cell 

activation in ORAI/STIM1 deficiency manifests as blunted NFAT activation and downstream 

effects on cytokine production6. Murine models revealed the essential role of NFATc1 in the 

regulation of multiple steps of both B and T‐ cell development5,10,13,18,32. The defects in 

B‐ cell differentiation, activation and class switch functions in our patients are 

consistent with mouse models where a prevailing theory suggests a threshold level of 
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NFATc1 expression is 
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necessary for proper B‐ cell development. The relatively milder phenotype observed in 

patient 2 might be due to the higher protein expression. However, larger cohorts of 

NFATc1‐  defective patients will be required to address such a relationship between 

NFATc1 protein expression and severity of clinical presentations and/or impaired B‐ cell 

functioning. SOCE also controls transcriptional networks that determine the differentiation 

of CD4+ T cells into TfH and Treg, evidenced by STIM1‐ deficient patients developing 

autoimmune thrombocytopenia and hemolytic anemia. While autoimmunity is also a 

defining feature in Nfatc1–/– mice, no such clinical evidence for autoimmunity in our 

patients was observed despite having fewer circulating Treg‐ cells. Nonetheless, 

further patient cohorts will be needed to clarify whether any causal link between NFATc1 

dysfunction and autoimmunity exists. 

Despite the substantial data generated using murine models, mechanisms by which NFAT 

controls the switch of T‐ cells from the quiescent to proliferative state have remained 

elusive. A proposed mechanism involves transcriptional regulation of IL243,44, however, 

results from animal studies remain discordant7,37. Although in some animal studies, IL‐ 2 

partially rescued the T‐ cell dysfunction10, additional IL‐ 2 did not rescue apoptosis in our 

patient cells and only slightly improved TCR‐ induced proliferation in 

ORAI/STIM1‐ deficient patients37. Our finding of impaired glycolytic capacity in NFATC1 

mutant T‐ cells is consistent with Nfatc1 and Stim1 deficient murine T‐ cells10,34 attesting 

to the essential role of the SOCE/NFAT axis in regulating glycolytic capacity and 

subsequent T‐ cell proliferation. However, that functional responses were delayed rather 

than absent in the NFATC1 mutant T‐ cells, prompted us to question whether this delay 

corresponded to cells adapting to the impaired glycolytic capacity by enhancing 

alternative metabolic preferences. Indeed, fluxomics experiments confirmed 

palmitate‐ derived carbons were incorporated more readily into the TCA cycle in NFATC1 

mutant lymphocytes suggesting an increased utilization on FAO45. 

As the initial engagement of glycolysis appears most relevant in naïve cells in terms of 

coordinating initial effector responses1,2, we assessed whether naïve CD8+ T‐ cells 

would similarly modify their metabolic preference towards FAO upon the inhibition of 

glycolysis induced with the use of 2‐ DG. 2‐ DG inhibited initial proliferation and activation 

responses in naïve CD8+ T‐ cells from HCs consistent with reported literature1,2 and 

mirrored the delayed effector responses in our patient T‐ cells. Similar to our patient cells, 
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TCA cycle incorporation of 13C‐ labeled palmitate‐ derived carbons were higher in 

TCR‐ activated T‐ cells exposed to 2‐  
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DG compared with vehicle, indicating a greater reliance on FAs as a substrate. Importantly, 

markers of increased lipid uptake and incorporation into the TCA cycle induced by 

2‐ DG preceded the recovery of functional responses to levels of the vehicle‐ treated 

cells. Thus, while observations that proliferation and survival of T‐ cells can persist in 

vitro when glycolysis is ablated have been reported45, to the best of our knowledge, this 

is the first evidence of metabolic adaptation established in the setting of an IEI. 

Not addressed specifically in this study are the underlying stimuli and mechanisms for the 

shifted preference toward FAO in NFATC1 mutant T cells. Thus, while NFATC1 mutant T cells 

have altered HK2 expression following stimulation, whether this is responsible for the 

glycolytic defect in patient T‐ cells is uncertain, particularly given the data from murine HK2–

/– T‐ cells which retain intact glycolysis and are grossly immunologically normal46. Kaymak 

et al47 revealed that shifted fuel preferences in T cells could occur in the absence of 

major differences in global transcriptional changes of metabolic programs47 suggesting 

that metabolite concentrations per se exert a greater influence on the immediate and 

dynamic control of metabolic fuel selection48. We focused our attention on lipids for 

which associated metabolic pathways are sensitive to changes in glucose utilization 

dynamics 49‐ 51. NFATc1 defective T‐ cells had attenuated increase in TAG pool following 

stimulation, despite markers of FA uptake being higher suggests increased utilization, 

consistent with the elevated CPT1a levels and palmitate‐ derived carbon incorporation 

into the TCA cycle. However, whether increased FAO is engaged to alleviate an 

energetic deficit or for some other compensation is unknown. The pentose phosphate 

pathway(PPP) is essential for T‐ cell functions, particularly for proliferative purposes where 

glucose gets consumed to generate biosynthetic precursors for DNA and RNA synthesis as 

well as NADPH which is required for de novo FA and cholesterol biosynthesis 52. Thus, it 

is possible that FAO is engaged in response to impaired glucose‐ PPP flux in order to 

sustain cytosolic NADPH pools 51,53. Inadvertently, such an adaptation would serve not 

only to sustain proliferative capacity, but also act to promote survival by supporting 

defenses against oxidative stress 51,53‐ 55. Additional advanced substrate‐ tracing 

experiments would be required to evaluate cross‐  metabolic pathway regulation and 

engagement as well as shifted utilization of other non‐  conventional substrates such as 

amino acids and lactate by NFATc1 mutant T‐ cells. 
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Our observations that contribution of FA to oxidative metabolism is higher in 

NFATc1‐  mutant T‐ cells and that 2‐ DG treatment promotes a metabolic shift towards 

FA utilization, led us to consider therapeutic priming of patient T‐ cells in order to promote 

FAO and evaluate whether this might improve T‐ effector cell functionality. We tested 

this hypothesis using metformin and rosiglitazone; two drugs with well‐ characterized 

effects on FAO56‐ 59. These drugs were able to induce a modest, albeit reproducible 

increase in IL‐ 2 expression in patient T lymphocytes expanded in vitro. Experiments 

performed on limited patient material restricted us from making firm conclusions about 

these data regarding their significance or clinical relevance and obtaining in vivo 

evidence from patients e.g. in the scope of a clinical trial are outside the scope of the 

current study. Nonetheless, a growing body of literature supports the premise that 

increasing FAO can improve the development and quality of CD8+ T cells52 suggesting 

metabolic priming as a promising line of inquiry. Additional experiments are required to 

elucidate how IL‐ 2 production is improved by these compounds in the NFATc1‐ defective 

T cells. It would also be interesting to assess whether murine Nfatc1–/– T cells similarly 

adapt to restricted glycolysis by increasing FA utilization and whether their 

immune‐ dysregulated features can be improved with pharmacological approaches that 

target metabolic pathways and to dissect the responsible underlying cellular 

mechanisms. 

Collectively, we report NFATC1‐ deficiency as a novel IEI and provide evidence 

that NFATC1 mutant T‐ cells adapt to impairments in their glycolytic capacity by increasing 

their reliance on FA utilization showcasing the phenomena of metabolic plasticity in a 

transcriptionally defective genetic landscape. The extent to which other IEIs can be classified 

by specific metabolic signatures irrespective of their genetic etiology and/or sensitivity to 

therapies targeting metabolic pathways warrants further research. 
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Figure Legends 
 

 
Figure 1. Identification of human NFATc1 mutations and molecular analysis of the impact 

of identified variants on protein stability, localization, function and interactions. (A) 

Pedigree of multigenerational family; shaded symbols, affected patients having compound 

heterozygous variants in NFATC1; open symbols, healthy heterozygous carriers and 

wild‐  type subjects. Double lines indicate consanguinity. Crossed symbols designate 

deceased individuals. The genotype of the patients and family members is indicated 

below each symbol. The asterisk represents those individuals who underwent WES. (B) 

Chest X Ray and Thoracolumbal X‐ Ray showing scoliosis in P1 and P2 respectively (red 

arrows). (C) Illustration of the NFATc1 protein, with N‐ terminal regulatory domain, Rel 

homology domain (RHD) for DNA binding to the consensus sequence, and C‐ terminal 

transactivation domain (TAD‐ B). Location of variants are shown together with their 

conservation across several species. An 

*(asterisk) means fully conserved, a : (colon) highly conserved and a . (period) weakly 

conserved residues. (D) Immunoblot showing NFATc1 expression in T cells from P1 and P2 

(the patients whose material we could access) and healthy controls (HC). (E) Representative 

blot for protein stability analysis using cycloheximide (CHX) chase assay on HEK cells 

transfected with either empty vector, or Strep‐ HA‐ NFATc1WT, ‐ NFATc1S454L, ‐ NFATc1V745M, or 

‐  NFATc1V745M+s454L plasmids followed by 6 and 10 hours of cycloheximide treatment. 

Quantifications of NFATc1 expression from blots represented in (D) and (E) are provided in 

Supplementary Figure 2B, E. Quantification of similarity scores of nuclear translocation 

analysis of NFATc1 on (F) Representative images acquired with 60x magnification with Image 

Flow Cytometer (AMNIS®) (left) and similarity score quantification using IDEAS software 

(right) of NFATc1 nuclear translocation in feeder‐ expanded T‐ lymphoblasts from patients 

or HC, either unstimulated (unstim) or upon stimulation with soluble anti‐ CD3/CD28 

antibodies (stim). Data show significant nuclear translocation in HC cells upon 

stimulation and no or slight nuclear translocation in T cells from patients 1 and 2, 

respectively. Representative images for different similarity scores (measure of nuclear 

translocation) in HC are shown adjacent to the violin plot. Cells were stained with the 

nuclear marker DAPI (blue), NFATc1 PE is displayed in magenta. (G) Quantification of 
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NFATc1 activation measure as absorbance at 450nm using an ELISA‐ based transcription 

factor activation assay on feeder expanded T‐  
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lymphoblasts from patient or HC following stimulation with PMA/ionomycin. All experiments 

are representative of at least three independent experiments with similar findings, with the 

exception of unstimulated fraction of (G) where n=1. All data are mean ± SEM and were 

analyzed by two‐ way ANOVA with Bonferroni post hoc test (F), one way ANOVA with 

Bonferroni post hoc test to correct for multiple comparison (G). WT, wild type. Scale bar= 5 

μm. 

 
Figure 2. Dysfunctional NFATc1 impairs differentiation, effector function and survival of T 

cells. (A) Proportions of regulatory T helper (on the left) (Treg: CD3+CD4+CD25+FOXP3+) and 

T‐ follicular helper cells (on the right) (TFH: CD3+CD4+CD45RA‐ CXCR5+), in HCs (n=6) 

and patients (P1, P2) and (B) Proportions of naïve (CD45RA+CCR7+), TCM 

(CD45RA‐ CCR7+), TEM (CD45RA‐ CCR7‐ ) or TEMRA (CD45RA+CCR7‐ ) subpopulations within 

CD4+ and CD8+ fractions. (C) Flow cytometry dot plots quantitating surface CD28 and CD57 

expression on CD8+ T cells. (D) Summary bar graphs showing quantification of IL‐ 2 (Upper) 

or IFN‐ γ intracellular expression determined by flow cytometric analysis. (gMFI: 

geometric mean fluorescent intensity) T‐  lymphoblasts were analyzed for IL‐ 2 and 

IFN‐ γ production after 5 h of PMA/ionomycin stimulation and addition of Brefeldin A 

during the final 4 h. Surface staining was done with CD3, CD4 and CD8. (E) Flow 

cytometry plots showing the percentage of apoptotic cells in feeder expanded 

T‐ lymphoblasts, measured by Annexin‐ V and propidium iodide (PI) staining, after 

withdrawing IL‐ 2 from the growth media (upper plot) and following 24 hours treatment of 

IL‐ 2 (200IU/uL) (lower plot) (F) Summary bar graphs showing the percentage proliferation 

of the cells as measured by the dilution of the violet proliferation dye (VPD450) in CD4+ and 

CD8+ T cells from the patients and HCs after 3 days of stimulation with anti‐ CD3 

soluble antibody, CD3/CD28 beads or phytohemagglutinin (PHA) (G) Summary bar graphs 

showing percentage of CD4+ and CD8+ T cells that have upregulated CD25 surface expression 

at day 3, corresponding to the proliferation experiments from (F) (I) Representative 

histogram showing CD25 expression normalized to mode of GFP+CD8+ T cells at day 3, 

corresponding to the experiments from (G)Summary plots of CD25 expression, following 

transfection of both patients’ PBMCs are shown in the upper square within the graph. 

(H) Representative histogram showing the dilution of VPD450 in the GFP+ population of the 

patient CD8+ T cells transfected with either the GFP‐ NFATc1WT (red) or GFP‐ empty 
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(blue) (EV:empty vector) plasmids at day 3, upon stimulation with CD3/CD28 beads. 

Summary plots of the percentage 
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of proliferating cells, following transfection of both patients’ PBMCs are shown in the upper 

square within the graph. (J) Flow cytometry histograms quantitating surface CD86 and CD25 

expression on CD19 cells of the patients and HC following 48 hrs stimulation with CD40L and 

IL‐ 4 or CD40L and IL‐ 21. (K) Representative histogram showing the dilution of VPD450 

in CD19 B‐ cells from the patients and HCs after 5 days of stimulation with CpG. (L) 

Representative flow cytometry plot showing Ca2+ influx in EBV transformed B lymphoblasts 

from P1, P2 and HC upon 100nM ionomycin treatment as measured by Ca2+eFluor450 dye 

expression. All data are mean ± SEM. Statistical analysis for panels A, D, F and G was 

performed using a one‐ way ANOVA with Bonferroni post hoc test to correct for 

multiple comparison. 

 

Figure 3. Single‐ cell RNA sequencing reveals the altered transcriptomic profile of 

NFATc1‐  dysfunctional patients. Basal transcriptome and profiled the TCR repertoire of 

lymphocytes from P1 and P2 with that of controls utilizing single‐ cell RNA sequencing 

(5’‐ scRNAseq, 10x Genomics). (A) Analysis of T‐ cell receptor ab repertoire diversity 

with a tree‐ map representation for patients 1 and 2 and age‐ matched healthy 

controls. Each square represents a unique clone and its size reflects its productive 

frequency within the repertoire. 

(B) Uniform Manifold Approximation and Projection (UMAP) plot of the combined 

scRNA‐  seq dataset from the patients (P1‐ 2) and HCs. Left: Cells colored by cell type 

annotation after mapping to a reference data set of healthy PBMC60 cell types with fewer 

than 20 cells omitted for clarity. Right: Cells colored by genotype; patients on top of HCs. 

(C) Bar graphs showing proportions of different cell populations within the lymphocytes. 

(D) Heatmap showing pseudobulk expression data for genes (shown as rows) that are 

differentially expressed between patients and controls within CD4+ and CD8+ T‐ cell 

populations (samples and cell types shown as columns). Genes shown are the top 20 up or 

down regulated in any of the two tests (tests performed with edgeR software with exact test 

and pseudobulk data, FDR < 0.05, ranked by p‐ value) Expression values shown are 

scaled log‐ counts per million cropped to the range ‐ 2 to 2 (E) Heatmap showing 

single‐ cell expression data for genes differentially expressed between patients and 

controls within CD8+T‐ cell subpopulations (naïve, TCM and TEM). Genes shown are 

the top 30 up‐  or down‐ regulated in any of the three tests [tests performed as in panel 
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(D)]. (F) Heatmap showing single‐ cell pseudobulk 
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expression data for genes differentially expressed between patients and controls within 

CD19+ B‐ cells [tests performed as in panel (D)]. 

 
Figure 4. Altered epigenome landscape of patients’ T‐ lymphoblasts. We performed 

an assay for transposase‐ accessible chromatin with high‐ throughput sequencing 

(ATAC‐ seq) on patient and HC T‐ lymphoblasts upon stimulation with PMA/ionomycin, 

to initiate downstream epigenetic and transcriptional changes (A) ATAC‐ seq 

chromatogram showing the accessibility of IL2 gene locus in patients P1, P2 and HCs 

(n=2). Reads per genomic content (1x normalization, RPGC) normalized tracks. (B) 

Heatmap of differentially accessible regions at gene promoters (transcription start site 

+/‐ 1kb) between healthy control‐ derived (HC1, HC2) and patients‐ derived (P1, P2) 

expanded T cells (DESeq2; abs(log2FC) > log2(1.3))61. Values are z‐ scores derived 

from 'regularized log' transformation (DESeq2 rlog function) of counts data. Positive values 

indicate that regions of the corresponding genes are more transcriptionally accessible, 

whereas negative values indicate that the regions are less accessible. (C) Heatmap of top 

50 most significantly (padj < 0.05; a BH adjusted p‐ value for the variability being greater 

than the null hypothesis of 1) variable transcription factor motifs across samples of 

HC‐ derived (HC1, HC2) and patients‐ derived (P1, P2) expanded T cells. Values are 

z‐ scores for each bias corrected deviations. (D) Top 20 significantly (padj < 0.05; a BH 

adjusted corrected p‐ value (p<0.05) and HC‐ only enriched GOBP terms of genes 

associated with WT unique peaks. 

 

Figure 5. Time course analysis of proliferation, activation and upregulation of checkpoint 

inhibitors of T cells in parallel to RNA sequencing reveals their delayed responses 

associated with perturbed metabolism. (A) Representative histograms showing the 

percentage of CD4+ or CD8+ T cells with upregulated CD25 surface expression after 

stimulation with CD3/CD28 beads and percentage of proliferation by measuring dilution of 

the VPD450 in CD4+ and CD8+ T cells from patients and 3 HCs at basal state (unstimulated), 

day 1, day 2, day 3, day 4, day 7 and day 10 after stimulation. Marker up/downregulation 

was measured by flow cytometry at basal state (before stimulation), day 1, day 2, day 3, day 

4, day 7 and day 10 after stimulation. (B) Summary graphs showing the percentage of CD8+ T 

cells that have upregulated PD1, LAG3, AITR/GITR surface expression after stimulation with 
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CD3/CD28 beads measured by flow cytometry at basal state (unstimulated), day 1, day 2, 
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day 3, day 4, day 7 and day 10 after stimulation. (C) PBMCs from patients and 4 HCs were 

stimulated with CD3/CD28 beads and on the 3rd day after stimulation CD8+ T cells were 

sorted by flow cytometry. Bulk RNA sequencing was performed on sorted CD8+ T cells. Plots 

show the gene set enrichment analysis (GSEA) of 50 “hallmark” functions based on 

calculated normalized enrichment score. Pathways are stratified for the top 10 most 

significantly upregulated pathways upon stimulation comparing the patients and the HCs (D) 

Plots showing the calculation of ranking of normalized enrichment score (NES) within 

geneset enrichment analysis (GSEA) from Hallmark database representing the stimulation 

induced changes in expression of CD8 T cells in the patients and healthy controls with 

regards to oxidative phosphorylation (right) and glycolysis genesets (left). (E)Heatmap 

showing the expression of genes involved in glucose metabolism extracted from bulk 

RNA‐  sequencing analysis. Significance for gene expressions are indicated in the figure 

legend. 

 

Figure 6. Metabolic profiling of NFATc1‐ dysfunctional T cells shows the impaired 

glycolysis upon stimulation. (A) Summary dot plots showing the ratio of change of 

expression level of Glucose transporter 1 (GLUT1) and glucose uptake using fluorescent 

glucose analog 2‐ [N‐ (7‐  nitrobenz‐ 2‐ oxa‐ 1,3‐ diazol‐ 4‐ yl) 

amino]‐ 2‐ deoxy‐ D‐ glucose (2‐ NBDG) following 24‐ hour stimulation of feeder 

expanded T cells with soluble CD3/CD28 antibodies measured by gMFI 

(B) Extracellular flux analysis. Above: Graph showing oxidative consumption rate (OCR) of HC 

(n=3) and patients’ CD8+ T‐ lymphoblasts following 30 min stimulation with CD3/CD28 

beads and subjected to mitochondrial stress test. Below: Graph showing extracellular 

acidification rate (ECAR) of HC (n=3) and patients’ CD8+ T‐ lymphoblasts which were 

stimulated for 30 min with CD3/CD28 beads and subjected to glycolytic stress test. 

Experimental data were normalized to flow cytometric cell counts. FCCP: Carbonyl 

cyanide‐ p‐  trifluoromethoxyphenylhydrazone, Oligo: Oligomycin, Rot: Rotenone, AA: 

Antimycin A. (C) Upper panel: Immunoblot showing the protein expression levels of 

Hexokinase‐ 2 (HK2), glucose transporter‐ 3 (GLUT3), Carnitine palmitoyl transferase 1a 

(CPT1a), Glyceraldehyde 3‐  phosphate dehydrogenase (GAPDH), lactate dehydrogenase 

(LDH) on patient and HC T‐  lymphoblasts following 24 hour stimulation with soluble 

anti‐ CD3/CD28 antibodies. Lower panel: Graphs showing the quantification of the 



50  

Western blots averaged from 3 independent experiments displaying the expressions of 

HK2 and CPT1a. (D) Scheme summarizing the metabolic alteration observed in patient 

T‐ lymphoblasts following stimulation. (E) Heatmap 
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showing fold changes of metabolite concentrations (stimulated/unstimulated) in T‐  

lymphoblasts in patients and HCs measured by metabolomics following 24 hours of 

stimulation with soluble anti CD3/CD28 antibodies. All data are mean ± SEM. Statistical 

analysis was performed using one‐ way ANOVA with Bonferroni post hoc test (A and B) 

or two‐ way ANOVA with Bonferroni post hoc test (C) to correct for multiple comparison. 

 

Figure 7. Shifted substrate preference towards fatty acid oxidation in NFATc1‐  

dysfunctional T cells. (A) Summary dot plot showing the lipid uptake of patient and HC 

T‐  lymphoblasts following 24 hours stimulation with soluble anti‐ CD3/CD28 antibodies 

using Bodipy FL C16 staining. (B) Bar graph showing the measured levels of total lipid 

species in healthy controls and patients with and without stimulation (C) Volcano plot 

showing the log2 fold changes (x‐ axis) in lipid species upon stimulation in healthy controls 

versus patients. y‐  axis represents the p values for negative log 10 of the 

measurements. Red full circles represent the TAG species, each significantly changed 

TAG species is indicated (Statistics performed using Student’s t tests) (D) Heatmap 

showing fold changes in concentrations of different lipid species in patient and HC 

T‐ lymphoblasts measured by mass spectrometry based lipidomics following 24 hours of 

stimulation with soluble anti‐ CD3/CD28 antibodies. 

(E) Scheme depicting the TCA cycle and the TCA cycle intermediates that are detected in the 

current analysis. Summary graphs show the relative 13C enrichment of TCA cycle 

intermediates in patient T lymphoblasts incubated in [U‐ 13C16] palmitate normalized to 

the HCs. (F) SCENITH analysis showing the metabolic alterations of patients (P1‐ P2) 

and HC (experiment 1:n=4; experiment 2:n=3) CD8+‐ TEM population following 

CD3/CD28 beads stimulation. The experiment is performed twice and the plot shows 

the averaged results from each experimental replicate. The negative percentage values 

shown in the graph inherent to the analysis of the assay. The calculations formulas are 

indicated in the methods section. Statistical analysis was performed using two‐ way 

ANOVA with Bonferroni post hoc test to correct for multiple comparison. 

We treated the sorted naïve T cells from HCs (n=4) and treated them with vehicle, 

cyclosporin A (300 nM) or 2‐ deoxyglucose (1µM) and stimulated them with DynaBeads 

coated with CD3 and CD28 antibodies: (G) Summary graphs showing the percentage of CD8+ 

T cells with upregulated CD25 surface expression after stimulation with CD3/CD28 
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DynaBeads and percentage of proliferation by measuring dilution of the VPD450 in CD8+ T 
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cells from at basal state (unstimulated), day 2, day 3, day 4, and day 8 after stimulation in 

vehicle or CsA or 2DG treated . Summary graphs showing the geometric mean fluorescent 

intensity (gMFI) of 2NBDG and Bodipy FL16 in CD8+ T cells after stimulation with CD3/CD28 

beads measured by flow cytometry at basal state (unstimulated), day 2, day 3, day 4, and 

day 8 after stimulation. (H) Left panel: Immunoblot showing the protein expression levels of 

Hexokinase‐ 2 (HK2), Carnitine palmitoyl transferase 1a (CPT1a), Glyceraldehyde 3‐ phosphate 

dehydrogenase (GAPDH), Right panel: Graphs showing the quantification of the Western 

blots averaged from 3 independent experiments displaying the expressions of HK2 and 

CPT1a on HC naïve T cells harvested on day 4 following stimulation with DynaBeads. (I) 

Summary graphs show the relative 13C enrichment of TCA cycle intermediates (citrate, 

malate, aspartate) in HC T cells stimulated with DynaBeads (for 4 days) and treated with CsA 

or 2DG or vehicle, incubated in [U‐ 13C16] palmitate normalized to the vehicle treatment. 

(All data are mean ± SEM. Statistics performed using with one way ANOVA with post 

hoc Bonferroni correction if not stated otherwise.) 
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