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A NOTE ON NEYMAN’S TEST OF GOODNESS OF FIT USING THE EXTENDED
LISREL MODEL WITH MEAN STRUCTURES

SUMMARY

It is shown in this note that for testing discrepancy between a set of observed proportions

DPy» Ds»e--» P, 10 k mutually exclusive cells and corresponding expected probabilities ,

7T, TTyse» 7T, , Neyman’s statistic is n / (n — 1) times the Joreskog and S6rbom chi-square
goodness-of-fit of a factor model with no latent variables but with mean structures for (k — 1)
binary indicators coding for the k-cell category. When the empirical data lead to a rejection of

hypothesized model, the modification index gives useful information about post hoc tests for
categorical data.



A NOTE ON NEYMAN’S TEST OF GOODNESS OF FIT USING THE EXTENDED
LISREL MODEL WITH MEAN STRUCTURES

Consider a single k-cell multinomial distribution with cell nonzero probabilities 7, 7,,...,7,,
k k

with Z;zl. =1. Let n,,n,,...,n, be the observed cell frequencies with an_ =nand let
i=1 i=1

A

7, = p, = — be a consistent estimator of 7,(i =1,2,...,k) . If the k binary variables u,, u,, ...,
n

uy are indicator variables for k possible outcomes of a categorical variable, these binary

variables are linearly dependent so that only the first (k-1) of them will be considered. The
expectation of each u; is E(u,)=r,, (i =1,2,...,k — 1) and the variance-covariance matrix V'p

of the (k-1) indicator variables is given by (Kendall & al., 1987; Bishop & al., 1975)

rn(-m) -mm, .. -7,
- -, w,(l-m,) .. — T, 7T,
=

Y — Ty e T (I=7, )
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Let 7 = (7, 7y,.... 7)) and p =(p,, p,,..., ;) . Asymptotically, n"?(p —7) has a (k-1)-
variate normal distribution with zero mean vector and variance-covariance matrix Vp. Thus,

the quadratic form

0 =n(p—2) (V)P 7) :nz@

is distributed like % with (k-1) degrees of freedom. This result, due to Pearson (1900), is the
basis of the so-called Pearson’s goodness-of-fit test; this test is used as an index of
discrepancy between a set of observed proportions in k mutually exclusive cells and

corresponding expected probabilities for a specific hypothesis under investigation.



For situations where all p>0, Neyman (1949) suggested an alternative to the method of

Pearson’s chi-square, where the quadratic form is modified to
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The purpose of this note is to point out that the Neyman statistic Qn may also be obtained by
the Joreskog and S6rbom (2001) criterion Qs for the extended Lisrel model with mean
structures (see also Bollen, 1989).

O =(1=D{E -6V W' (5 =6)+ (- )V (i — )
The first part contains s , the vector of the elements in the lower half, including the diagonal,
of the sample covariance matrix S used to fit the model to the data. It also contains & , the
vector of corresponding elements of 2 reproduced from the model parameters. The W matrix
serves as a correct weight matrix (see Joreskog & Sorbom, 2001). The second term involves
the sample mean vector m , the population mean vector /i, and the weight matrix V" defined
as the sample covariance matrix S for Generalized Least Squares (GLS) estimation. If the
model holds and is identified, Qys is approximately distributed in large samples as x> with
(w-v) degrees of freedom, where w is the number of statistics (observed means and

covariances) and v is the number of independent parameters estimated.



For obtaining the Neyman statistic, is candidate every model which cancels the first term by
fixing § =& , and which lets free the second term which involved the sample mean vector m

and the population mean vector z . As will be argued, the Neyman goodness-of-fit test can be

obtained by constraining an extended confirmatory factor analysis with mean structures. That
is, the Neyman goodness-of-fit test is equivalent to the Joreskog and S6rbom criterion when
are specified and estimated by GLS the mean parameters of the confirmatory factor model,

with binary indicators and with no latent variables.

The extended confirmatory factor model with mean structures is defined by the following

(Joreskog and S6rbom, 2001)

y=1,+A4n+¢
where y is a vector of observed binary variables, 7, a vector of constant intercept terms, 77 a

vector of latent variables, 4, a factor-loading matrix and & a vector of error terms. It is

traditionnally assumed that cov(77,£) =0 and E(¢) = 0 and E(7) = 0. As a matter of interest,

factor analysis of binary variables was initiated by Christoffersson (1975) and later expanded

by Muthén (1978, 1983, 1984) and Muthén and Christoffersson (1981).

As alluded to above, the Neyman chi-square can be obtained by specifying 4, =0, T , tobe
fixed equal to 7 and cov(€,e) = @, to be completely free. In this case, the fit function F for
the extended Lisrel model with mean structures (Joreskog and Sérbom, 2001; Joreskog et al.,
2000) reduces to be F = (m — i) V' (m — ii) where V is the sample covariance matrix S for

GLS estimation. Here, the observed covariance matrix S of the linearly independent indicators

is equal to Vy. Hence
0.5 = (n=DF = (n=1Gi - )V (= ) = (n = (5 - 2 Vi (=) =" 0,

which has a distribution like a % with (w-v) degrees of freedom, where w is the number of
statistics and v is the number of independent parameters estimated (see also Christoffersson,

1975, appendix 1). The independent parameters are those of the completely free matrix @,

and the statistics are from the covariance matrix ¥y and the vector p. In general, (w—v) equals
the number of restrictions imposed to the parameters 7 by the hypothetical underlying model,

in general (k — 1). Thus, Joreskog and Sorbom statistic Q;s reduces to the Neyman statistic



Qx, a part from the factor (n-1)/n. In other words, the Neyman statistic Qy is n times the
minimum value of the fit function whereas Qs is (n-1) times this minimum. If the model
holds, both statistics Qs and Qn converge on the same value and both have the same

asymptotic distribution under Ho.

To illustrate, we consider a single multinominal distribution corresponding to a categorical
variable with 4 categories : the observed proportions and the expected probabilities are
respectively p =(0.35; 0.10; 0.15; 0.40) and 7 =(0.15; 0.30; 0.45; 0.10). The sample size is n
= 40. The observed covariance matrix S for the three first linearly independent indicator
variables is

0.2275

§=|-0.0350 0.0900
—-0.0525 -0.0150 0.1275

The data analysis was performed on a Sony micro-computer using Proc Calis of the SAS
software package (SAS Institute, 2004). A generalized least squares (GLS) estimation method
was used. The goodness-of-fit indices described earlier are Qp (3) = 60.00, Qs (3) = 52.23
and Qn (3) = 53.5. Hence, for GLS estimation, the Qs is (n-1) times the minimum value of
the fit function for the specified model, and the Neyman Qy is n times this minimum. This

minimum is equal here to F=1.3393.

CONFIRMATORY APPROACH AND MODIFICATION INDEX
The empirical example presented above for demonstrating the equivalence between Neyman’s
test and the Joreskog-Sorbom’ test was rather trivial. However, the confirmatory approach to
modeling multinomial distribution offers an interesting extension of the classical goodness-of-
fit tests. In a confirmatory analysis, the investigator has such knowledge about the problem
that he/she is able to specify not only the expected probabilities but also other constraints
(equality, order, zeroes ..). Because the pattern of constrains is specified a priori on the basis
of theory, the confirmatory approach is particularly well suited to the theoretical questions
posed in a study. Whithin this approach, the Neyman’s chi-square Qy is of interest because it
has been shown by Bhapkar (1961, 1966) to be algebraically identical to the Wald statistic
(1943), as adapted to the categorical data, for testing the hypothesis

H,=F(#)=0, (i=12,..,u)



where F’s are u prespecified fonctions of 7 . Test statistics such as the Wald statistics and
their application to problems involving the analysis of discrete or categorical data are
discussed in Grizzle & al. (1969), Koch & al. (1977) and Kosh & Bhapkar (1982). Details
concerning their general theoretical properties are given in Stroud (1971) ans Sen and Singer
(1993). Thus, at a practical level, an important question is how can we identify the ‘best’
model when comparing several alternative well-fitting models, as the finding that a given
model provides an adequate fit, provides little information in the absence of alternative
models which may fit just as well, or better. Another important question is when the empirical
data lead to a rejection of an ill-fitting and presumably incorrect model, how can we modify it
or respecify it by either freeing parameters that formerly were fixed or fixing parameters that
formerly were free. A modification index was proposed by S6rbom (1989) to serve as a guide
in the search for reducing the discrepancy between model and data when one parameter is
freed or when equality constraint is relaxed. In our context, relaxing a fixed parameter or an

equality constraint simply means moving one parameter from 7 to p . For each fixed

parameter, the modification index (MI) is a measure of predicted decrease in y~ if a single

constraint is relaxed and the model is reestimated. This suggests ways in which the fit may be

improved.

Let us illustrate our approach with an example taken from Haberman (1978) who presents

data concerning the political views of subjects interviewed during the U.S. 1975 General
Social Survey (NORC, 1975).
Insert Table 1 here

Haberman suggests testing the symmetry of political views model whereby categories 1 and 7
should be equally likely, as should categories 2 and 6, and categories 3 and 5. The data, the
expected frequencies estimated for this model, the value of Q,s, Qp and Qy are given in table
1. These statistics are distributed approximately as 3~ with degrees of freedom equal to the
number of different response patterns minus one minus the number of independent contraints,

(here three equality constraints n,= n,, n,= n, and n,= w). Other fit indices were given by

the Calis Procedure and only a few of them are listed here (see Table 2).

Insert Table 2 about here



It is important to note that good-fitting models should produce consistent results on many
different indices (see Bollen, 1989). The Goodness of Fit Index (Joreskog & Sérbom, 2001),
the Comparative Fit Index CFI (Bentler, 1990) and the Steiger and Lind (1980; Steiger, 1998)
root mean squared error approximation (RMSEA) coefficient are the most frequently reported
overall fit indices. The Akaike Information Criterion AIC (Akaike, 1987) is a helpful index to
use when comparing models. These indices are here GFI=0.9985, CFI=0.9968,
RMSEA=0.0313, and AIC=1.1090 (see Table 2a). In addition to the observed proportions,
Table 2 gives detailed assessment of fit: the fitted probabilities under the symmetry
hypothesis, the t value for each parameter estimate, the modification index for each
parameter, and the corresponding estimated change when the parameter is freed. All these
statistics show a good fit and no need to seek alternative models to the symmetry one (see

Table 2b).

Discussion

The emphasis of Pearson or Neyman is on testing rather than estimation of cell probabilities
or parameters. The method presented herein represents a particular formulation of the
Neyman'’s test with linear or non-linear constraints. The advantage of this formulation is that
it allows one to test hypotheses regarding importance of a subset of parameters within a
general confirmatory model. Another advantage is given by the Lisrel approach which is to
allow us great latitude in our choice of models. For example, when the analysis of empirical
data leads to a rejection of a hypothesized model, the researcher must reformulate the model
in some way, even there is, in most instances and at least theoretically, an overwhelming
number of possible actions that could be taken for a better model. For instance, the
modification index measures how much we will be able to reduce the discrepancy between
model and data when one parameter is added or freed or when one equality constraint is
relaxed. This also may give useful information about the multiple comparison procedures for
categorical data. It is also known that the Lisrel models can also be used to analyze data from
several groups with some or all parameters constrained to be equal over groups (see Soérbom,
1974; Joreskog & Sorbom, 2001). In this case, a homogeneity test a multi-sample of
constraints across groups assesses whether paired observations on two variables, expressed in
a contingency table, are independent of each other — for example, whether people from

different regions differ in the frequency with which they report that they support a political



candidate. When specifying the model, the vectors 7, and the error covariance matrices

©.may be postulated to be invariant over groups.
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Table 1 : Political views : ordinal data (reference : Haberman, 1978, p.85)

Categories from Extremely liberal (1) to Extremely conservative (7)

Political views 1 2 3 4 5 6 7
Observed count 46 179 196 559 232 150 35
Fitted count 40.5 164.5 214 559 214 164,5 40,5

Political views : (1) Extremely liberal, (2) Liberal, (3) Slightly liberal, (4) Moderate, middle of the road,

(5) Slightly conservative, (6) Conservative, (7) Extremely conservative




Table 2a: overall fit indices

Joreskog and S6rbom Qs (3)=7.1090 p =0,0685

Pearson Qr (3)=7.0781 p=0.0694

Neyman Qn (3)=7.1478 p=0.0673

Table 2a: detailed assessment of fit

Parameters T, T, T, T, s T T,
Observed 0.0329 | 0.1281 0.1403 | 0.4001 0.1661 0.1074 | 0.0251
Fitted 0.0286 | 0.1174 | 0.1529 | 0.4021 0.1529 | 0.1174 | 0.0286
t-value 9.2266 | 20.7532 | 24.8584 | 30.7079 | 24.8584 | 20.7532 | 9.2266
MI 1.5064 | 2.5758 | 3.0501 0.0000 | 3.0501 2.5758 1.5064
Estimated change | 0.0045 | 0.0111 | -0.0122 | 0.0000 | 0.0137 | -0.0097 | -0.0034
p 0.2197 | 0.1085 | 0.0807 - 0.0807 | 0.1085 | 0.2197




