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A NOTE ON NEYMAN’S TEST OF GOODNESS OF FIT USING THE EXTENDED 

LISREL MODEL WITH MEAN STRUCTURES 

 

 

SUMMARY 
It is shown in this note that for testing discrepancy between a set of observed proportions 

kppp ,...,, 21  in k mutually exclusive cells and corresponding expected probabilities , 

k ,...,, 21 , Neyman’s statistic is n / (n – 1) times the Jöreskog and Sörbom chi-square 

goodness-of-fit of a factor model with no latent variables but with mean structures for (k – 1) 

binary indicators coding for the k-cell category. When the empirical data lead to a rejection of 

hypothesized model, the modification index gives useful information about post hoc tests for 

categorical data.  
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Consider a single k-cell multinomial distribution with cell nonzero probabilities k ,...,, 21 , 

with 
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1 . Let knnn ,...,, 21  be the observed cell frequencies with 
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and let 

n

n
p i
ii ̂  be a consistent estimator of ),...,2,1( kii  . If the k binary variables u1, u2, …, 

uk are indicator variables for k possible outcomes of a categorical variable, these binary 

variables are linearly dependent so that only the first (k-1) of them will be considered. The 

expectation of each ui is iiuE )( , (i  1, 2,..., k  1)  and the variance-covariance matrix Vp 

of the (k-1) indicator variables is given by (Kendall & al., 1987; Bishop & al., 1975) 
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Let ),...,,( 121  k


 and ),...,,( 121  kpppp


. Asymptotically, )(21 


pn  has a (k-1)-

variate normal distribution with zero mean vector and variance-covariance matrix Vp. Thus, 

the quadratic form  
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is distributed like 
2
 with (k-1) degrees of freedom. This result, due to Pearson (1900), is the 

basis of the so-called Pearson’s goodness-of-fit test; this test is used as an index of 

discrepancy between a set of observed proportions in k mutually exclusive cells and 

corresponding expected probabilities for a specific hypothesis under investigation. 



 

For situations where all pi>0, Neyman (1949) suggested an alternative to the method of 

Pearson’s chi-square, where the quadratic form is modified to  
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The purpose of this note is to point out that the Neyman statistic QN may also be obtained by 

the Jöreskog and Sörbom (2001) criterion QJS for the extended Lisrel model with mean 

structures (see also Bollen, 1989).  

 )()()()()1( 1'1' 


  mVmsWsnQJS  

The first part contains s


, the vector of the elements in the lower half, including the diagonal, 

of the sample covariance matrix S used to fit the model to the data. It also contains 


, the 

vector of corresponding elements of Σ  reproduced from the model parameters. The W matrix 

serves as a correct weight matrix (see Joreskog & Sorbom, 2001). The second term involves 

the sample mean vector m


, the population mean vector 


, and the weight matrix V defined 

as the sample covariance matrix S for Generalized Least Squares (GLS) estimation. If the 

model holds and is identified, QJS is approximately distributed in large samples as 
2
 with 

(w-v) degrees of freedom, where w is the number of statistics (observed means and 

covariances) and v is the number of independent parameters estimated.  

 



For obtaining the Neyman statistic, is candidate every model which cancels the first term by 

fixing σs


 , and which lets free the second term which involved the sample mean vector m


 

and the population mean vector 


. As will be argued, the Neyman goodness-of-fit test can be 

obtained by constraining an extended confirmatory factor analysis with mean structures. That 

is, the Neyman goodness-of-fit test is equivalent to the Jöreskog and Sörbom criterion when 

are specified and estimated by GLS the mean parameters of the confirmatory factor model, 

with binary indicators and with no latent variables.  

 

The extended confirmatory factor model with mean structures is defined by the following 

(Jöreskog and Sörbom, 2001) 

εηΛτy yy


  

where y


 is a vector of observed binary variables, y


 a vector of constant intercept terms, 


a 

vector of latent variables, yΛ  a factor-loading matrix and 


 a vector of error terms. It is 

traditionnally assumed that 0),cov( 


 and 0)(


E  and 0)(


E . As a matter of interest, 

factor analysis of binary variables was initiated by Christoffersson (1975) and later expanded 

by Muthén (1978, 1983, 1984) and Muthén and Christoffersson (1981).  

 

As alluded to above, the Neyman chi-square can be obtained by specifying 0yΛ , y


 to be 

fixed equal to 


 and εΘ)ε,ε( 


cov  to be completely free. In this case, the fit function F for 

the extended Lisrel model with mean structures (Jöreskog and Sörbom, 2001; Jöreskog et al., 

2000) reduces to be )()( 1' 


  mVmF  where V is the sample covariance matrix S for 

GLS estimation. Here, the observed covariance matrix S of the linearly independent indicators 

is equal to VN. Hence 
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which has a distribution like a 
2
 with (w-v) degrees of freedom, where w is the number of 

statistics and v is the number of independent parameters estimated (see also Christoffersson, 

1975, appendix 1). The independent parameters are those of the completely free matrix εΘ , 

and the statistics are from the covariance matrix VN and the vector p . In general, (w–v) equals 

the number of restrictions imposed to the parameters 


 by the hypothetical underlying model, 

in general (k – 1). Thus, Jöreskog and Sörbom statistic QJS reduces to the Neyman statistic 



QN,  a part from the factor (n-1)/n. In other words, the Neyman statistic QN is n times the 

minimum value of the fit function whereas QJS is (n-1) times this minimum. If the model 

holds, both statistics QJS and QN converge on the same value and both have the same 

asymptotic distribution under Ho. 

 

To illustrate, we consider a single multinominal distribution corresponding to a categorical 

variable with 4 categories : the observed proportions and the expected probabilities are 

respectively p  (0.35; 0.10; 0.15; 0.40) and  (0.15; 0.30; 0.45; 0.10). The sample size is n 

= 40. The observed covariance matrix S for the three first linearly independent indicator 

variables is 





















1275.00150.00525.0

0900.00350.0
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S  

The data analysis was performed on a Sony micro-computer using Proc Calis of the SAS 

software package (SAS Institute, 2004). A generalized least squares (GLS) estimation method 

was used. The goodness-of-fit indices described earlier are QP (3) = 60.00, QJS (3) = 52.23 

and  QN (3) = 53.5. Hence, for GLS estimation, the QJS is (n-1) times the minimum value of 

the fit function for the specified model, and the Neyman QN is n times this minimum. This 

minimum is equal here to F = 1.3393.  

 

CONFIRMATORY APPROACH AND MODIFICATION INDEX 

The empirical example presented above for demonstrating the equivalence between Neyman’s 

test and the Joreskog-Sorbom’ test was rather trivial. However, the confirmatory approach to 

modeling multinomial distribution offers an interesting extension of the classical goodness-of-

fit tests. In a confirmatory analysis, the investigator has such knowledge about the problem 

that he/she is able to specify not only the expected probabilities but also other constraints 

(equality, order, zeroes ..). Because the pattern of constrains is specified a priori on the basis 

of theory, the confirmatory approach is particularly well suited to the theoretical questions 

posed in a study. Whithin this approach, the Neyman’s chi-square QN is of interest because it 

has been shown by Bhapkar (1961, 1966) to be algebraically identical to the Wald statistic 

(1943), as adapted to the categorical data, for testing the hypothesis 

0)(0  


iFH , ),...,2,1( ui   



where F’s are u prespecified fonctions of 


. Test statistics such as the Wald statistics and 

their application to problems involving the analysis of discrete or categorical data are 

discussed in Grizzle & al. (1969), Koch & al. (1977) and Kosh & Bhapkar (1982). Details 

concerning their general theoretical properties are given in Stroud (1971) ans Sen and Singer 

(1993). Thus, at a practical level, an important question is how can we identify the ‘best’ 

model when comparing several alternative well-fitting models, as the finding that a given 

model provides an adequate fit, provides little information in the absence of alternative 

models which may fit just as well, or better. Another important question is when the empirical 

data lead to a rejection of an ill-fitting and presumably incorrect model, how can we modify it 

or respecify it by either freeing parameters that formerly were fixed or fixing parameters that 

formerly were free. A modification index was  proposed by Sörbom (1989) to serve as a guide 

in the search for reducing the discrepancy between model and data when one parameter is 

freed or when equality constraint is relaxed. In our context, relaxing a fixed parameter or an 

equality constraint simply means moving one parameter from 


 to p


. For each fixed 

parameter, the modification index (MI) is a measure of predicted decrease in 
2
 if a single 

constraint is relaxed and the model is reestimated. This suggests ways in which the fit may be 

improved.  

 

Let us illustrate our approach with an example taken from Haberman (1978) who presents 

data concerning the political views of subjects interviewed during the U.S. 1975 General 

Social Survey (NORC, 1975).  

Insert Table 1 here 

 

Haberman suggests testing the symmetry of political views model whereby categories 1 and 7 

should be equally likely, as should categories 2 and 6, and categories 3 and 5. The data, the 

expected frequencies estimated for this model, the value of QJS, QP and QN are given in table 

1. These statistics are distributed approximately as 
2
 with degrees of freedom equal to the 

number of different response patterns minus one minus the number of independent contraints, 

(here three equality constraints 1 =  7 ,  2 =  6  and 3 =  5 ). Other fit indices were given by 

the Calis Procedure and only a few of them are listed here (see Table 2). 

 

Insert Table 2 about here 

 



It is important to note that good-fitting models should produce consistent results on many 

different indices (see Bollen, 1989). The Goodness of Fit Index (Jöreskog & Sörbom, 2001), 

the Comparative Fit Index CFI (Bentler, 1990) and the Steiger and Lind (1980; Steiger, 1998) 

root mean squared error approximation (RMSEA) coefficient are the most frequently reported 

overall fit indices. The Akaike Information Criterion AIC (Akaike, 1987) is a helpful index to 

use when comparing models. These indices are here GFI=0.9985, CFI=0.9968, 

RMSEA=0.0313, and AIC=1.1090 (see Table 2a). In addition to the observed proportions, 

Table 2 gives detailed assessment of fit: the fitted probabilities under the symmetry 

hypothesis, the t value for each parameter estimate, the modification index for each 

parameter, and the corresponding estimated change when the parameter is freed. All these 

statistics show a good fit and no need to seek alternative models to the symmetry one (see 

Table 2b).    

 

Discussion 

The emphasis of Pearson or Neyman is on testing rather than estimation of cell probabilities 

or parameters. The method presented herein represents a particular formulation of the 

Neyman’s test with linear or non-linear constraints. The advantage of this formulation is that 

it allows one to test hypotheses regarding importance of a subset of parameters within a 

general confirmatory model. Another advantage is given by the Lisrel approach which is to 

allow us great latitude in our choice of models. For example, when the analysis of empirical 

data leads to a rejection of a hypothesized model, the researcher must reformulate the model 

in some way, even there is, in most instances and at least theoretically, an overwhelming 

number of possible actions that could be taken for a better model.  For instance, the 

modification index measures how much we will be able to reduce the discrepancy between 

model and data when one parameter is added or freed or when one equality constraint is 

relaxed. This also may give useful information about the multiple comparison procedures for 

categorical data. It is also known that the Lisrel models can also be used to analyze data from 

several groups with some or all parameters constrained to be equal over groups (see Sörbom, 

1974; Jöreskog & Sörbom, 2001). In this case, a homogeneity test a multi-sample of 

constraints across groups assesses whether paired observations on two variables, expressed in 

a contingency table, are independent of each other – for example, whether people from 

different regions differ in the frequency with which they report that they support a political 



candidate.  When specifying the model, the vectors yτ


 and the error covariance matrices  

 may be postulated to be invariant over groups.  
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Table 1 : Political views : ordinal data (reference : Haberman, 1978, p.85) 

 Categories from Extremely liberal (1) to Extremely conservative (7) 

Political views 1 2 3 4 5 6 7 

Observed count 46 179 196 559 232 150 35 

Fitted count 40.5 164.5 214 559 214 164,5 40,5 

Political views : (1) Extremely liberal, (2) Liberal, (3) Slightly liberal, (4) Moderate, middle of the road,  

(5) Slightly conservative, (6) Conservative, (7) Extremely conservative 



 

Table 2a: overall fit indices 

Jöreskog and Sörbom  QJS (3) = 7.1090 p = 0,0685 

Pearson QP (3) = 7.0781 p = 0.0694 

Neyman QN (3) = 7.1478 p = 0.0673 

 

Table 2a: detailed assessment of fit 

Parameters 1   2  3   4   5   6   7  

Observed 0.0329 0.1281 0.1403 0.4001 0.1661 0.1074 0.0251 

Fitted 0.0286 0.1174 0.1529 0.4021 0.1529 0.1174 0.0286 

t-value 9.2266 20.7532 24.8584 30.7079 24.8584 20.7532 9.2266 

MI 1.5064 2.5758 3.0501 0.0000 3.0501 2.5758 1.5064 

Estimated change 0.0045 0.0111 -0.0122 0.0000 0.0137 -0.0097 -0.0034 

p 0.2197 0.1085 0.0807 - 0.0807 0.1085 0.2197 

 

 

 


