
HAL Id: hal-04361509
https://amu.hal.science/hal-04361509

Submitted on 22 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing partial hypergraphs of bounded width
Nabil Adrar, Philippe Jégou, Cyril Terrioux

To cite this version:
Nabil Adrar, Philippe Jégou, Cyril Terrioux. Computing partial hypergraphs of bounded width.
Discrete Applied Mathematics, 2023, 329, pp.1-22. �10.1016/j.dam.2022.12.025�. �hal-04361509�

https://amu.hal.science/hal-04361509
https://hal.archives-ouvertes.fr

Computing Partial Hypergraphs of Bounded Width∗

Nabil Adrar Philippe Jégou Cyril Terrioux

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

{firstname.name}@univ-amu.fr

Abstract

In this paper, we are interested in the computation of partial hypergraphs whose width is bounded by an integer k.
Given a hypergraph H = (V,E) the task is to find a “partial” hypergraph H ′ = (V,E′) (with E′ ⊆ E) for which the
width of its 2-section is at most k − 1. Several criteria can be considered for the optimality of the result. The first one
is related to the maximum number of hyperedges to include in H ′ (maximum criteria). Another one is based on the
fact that for all E′′ ⊆ E with E′ ⊊ E′′, the width is then strictly greater than k− 1 (maximal criteria). Unfortunately,
each one of these tasks is NP-hard.

So, as this task can be useful in practice for the processing of graphical models (e.g. constraint networks, cost
function networks, Bayesian networks, Markov random fields, . . .), we propose a polynomial-time algorithm that finds
such partial hypergraphs but with no guarantee with respect to optimality. Nevertheless, we show that for an important
class of hypergraphs, it can be optimal. Finally, we present experiments performed on a large benchmark containing
more than 11,000 instances from different communities. These experiments allow us to evaluate the efficiency of this
algorithm from two points of view: first the proximity of the optimality of the result, then its time efficiency in practice.

Keywords: Partial hypergraph, Bounded treewidth

1 Introduction

It is well known that many problems can be represented by graphs, or even beyond, by hypergraphs. To mention only
a few domains, it can be for example constraint networks, in the sense of CSP (Constraint Satisfaction Problem), with
valuation [1] or not [2, 3], and more generally, graphical models in the sense of cost function networks, Bayesian networks,
or Markov Random Fields [4, 5]. On another level, one can also evoke the conjunctive queries in relational databases [6].
In addition to the interest of representing these problems by their structure, this approach makes it possible to use at the
same time many works stemming from the (algorithmic) graph theory, both in terms of properties that can be exploited
and results in terms of complexity bounds, or even the whole set of algorithms available for the manipulation of these
graphs or hypergraphs. And at the level of the most exploited theoretical results to help in the treatment of these graphical
models, there is the work around the exploitation of structural properties. Among the different notions developed in this
framework, we find mainly the notion of tree-decomposition [7] as well as its numerous variants and extensions which
have been proposed in the literature for years while constituting today an extremely active field of work [8, 9, 10, 11, 12].
In this field, tree-decomposition has been exploited both theoretically to provide complexity bounds as well as to define
tractable classes using the notion of bounded width [13, 14]. On a practical level, this notion allows offering to process
and solving methods that are often very efficient (see [15]), as long as the structure of the processed instances has good
properties such as a small width (see [16]). On another level, it has been known for a long time that conjunctive queries
in relational databases can be processed in polynomial time when the structure of the concerned relations is defined by
an α-acyclic hypergraph [6]. In fact, the link between acyclicity and tree-decomposition is very strong since the notion of
treewidth is intended in particular as a kind of measure of the cyclicity of a graph, and beyond, of a hypergraph. But
the link is even stronger formally. Indeed, it is well known that if we consider a tree-decomposition, then the hypergraph
defined by the set of vertices and taking as hyperedges the bags of the decomposition is an α-acyclic hypergraph.

However, while tree-decomposition provides a very useful tool on the theoretical level, there are often difficulties on
the practical level. On the one hand, the calculation of an optimal tree-decomposition, i.e. whose width is equal to the
treewidth, is an NP-hard problem [17] if this treewidth is not bounded by a constant. On the other hand, depending
on the instances, as soon as the treewidth is too large, it becomes difficult to exploit the solving methods based on the
exploitation of the structure by this kind of approach.

Therefore, alternative approaches have been proposed to get around this type of difficulty. About the treatment of
acyclic hypergraphs, Hirata et al. were interested in such a question [18]. They studied several questions including the

∗The final publication is available at https://doi.org/10.1016/j.dam.2022.12.025.

1

https://doi.org/10.1016/j.dam.2022.12.025

problem called “Spanning connected Acyclic Subhypergraph” which consists, given a hypergraphH, in determining if there
exists a partial α-acyclic hypergraph that is connected and covering all the vertices of H. They show that this problem is
NP-complete. They also studied the so-called “Maximum Acyclic Subhypergraph Problem”, itself NP-complete. In this
problem, given a hypergraph H and an integer k, the question is whether there exists a partial sub-hypergraph (subsets of
vertices and hyperedges) of k hyperedges that is α-acyclic. Because of these two negative results, they became interested
in the problem which consists, given a hypergraph H, in calculating a maximum α-acyclic partial subhypergraph in the
sense of the set of hyperedges. They propose for this purpose a linear time algorithm based on the algorithm of Tarjan
and Yannakakis [19] that deals with the question of the recognition of α-acyclic hypergraphs and chordal graphs.

Within the framework of CSPs, Jégou and Terrioux have been interested in the search sub-networks of binary CSPs
of limited width in order to propose new filtering techniques based on the internal structural properties of the constraint
networks [20]. This approach was essentially guided by the study and exploitation of substructures in terms of filtering on
the basis of a problem that is relaxed because it contains only a subset of the constraints of the problem to be solved. Such
an approach gave interesting experimental results for this task. To this end, they dealt with the question of the calculation
of sub-networks by introducing the notion of w-PST which corresponds to “partial spanning tree-decompositions” of width
w. This question not being central in their work, the calculation was limited to a heuristic constructing from the input
graph, a partial graph constituted by a partial k-tree [21].

It is in the Markov random fields framework that the issue seems to have been most studied. But in a way, as with the
work on CSPs, the value of the work carried out is to be assessed in terms of its contribution to the field of application,
i.e. the practical efficiency of the treatments of Markov random fields. Karger and Srebro [22] are interested in the
problem called “Maximal Hypertree problem” which, given an integer k, a set of vertices V , and a weight function with
real values on hyperedges of size at most k + 1, seeks to find a hypertree H of treewidth at most k which minimizes the
sum of the weights of the hyperedges of H. In fact, hypertree is to be understood as tree-decomposition. They show (the
proofs are to be found in [23]) that the (associated decision) problem restricted to graphs is NP-complete. Moreover, the
associated optimization problem belongs to the class max-SNP-hard. They also specify that even with unit weights, this
problem remains NP-hard. Beyond this theoretical study, their main contribution consists in giving the first approximation
algorithms for the problem, achieving a polynomial-time constant-factor approximation for any fixed treewidth objective.

More recently, still in the context of Markov random fields, several works have taken an interest in this question, such
as [24] or [25]. In [25], Fix et al. study the problem called “Maximum Bounded-Treewidth Subgraph problem” which,
given a graph with weights on the edges, consists in finding a subgraph of treewidth at most k and of maximum weight.
To solve it, they propose a greedy algorithm to find a subgraph of treewidth k and large weight. In addition to the quality
of their algorithm, they show its interest in terms of its practical use, and this was its main objective. To do this, their
algorithm exactly solves the inference problem in the subgraph using dynamic programming. Then, using a proof of lower
bound, the authors argue that the solution for the subgraph is a good approximation to the optimum for the original
energy.

This type of work has also been developed in the management of Bayesian networks. In [26], Nie et al. propose an
algorithm to find k-trees with maximum informative scores, which is a measure of quality for the k-tree in yielding good
Bayesian networks. The algorithm achieves close to optimal performance compared to exact solutions in small domains
and can discover better networks than existing approximate methods can in large domains. It also provides an optimal
elimination order of variables that guarantees small complexity for later runs of exact inference.

In this paper, we are interested in the question specifically expressed in terms of hypergraphs. Indeed, if the literature
has a very large number of graph processing algorithms, it seems necessary to enrich this corpus with algorithms that
directly process hypergraphs. In this work, we seek to calculate a partial hypergraph whose width, in the sense of tree-
decomposition, is bounded by a constant k. It turns out that this problem is NP-hard if one is interested in the maximum
number of hyperedges to be selected. But it also turns out to be NP-hard if we limit ourselves to a maximal set in the sense
of inclusion. So, we propose a polynomial-time algorithm called k-PH (for Partial Hypergraph of width k−1) which looks
neither for optimality in terms of the number of hyperedges, nor for maximality in set terms (i.e. for inclusion). However,
its interest is already justified on a theoretical level. Indeed, we show that for the case where the input hypergraph is
α-acyclic, and if the value of the parameter k is equal to the size of the largest hyperedge, then the algorithm calculates
the optimal result. But the interest of this algorithm is also shown experimentally.

To this end, we conducted experiments on a large benchmark containing 11,302 instances from different communities
and whose treewidth is known, and we consider the proportion of hyperedges included in the calculated partial hypergraph.
For example, these experiments show that for about 90% of the instances, more than 70% of the hyperedges are retained
in the calculated partial hypergraph, and more than 80% of the hyperedges are retained in 75% of the instances. These
experiments also make it possible to verify that calculation times remain limited because they are on average well below
one second on a basic computer. Finally, this algorithm can easily be adapted according to the considered objective.
Indeed, one can thus add to it different heuristics which make it possible, for example, to take into account weights for
hyperedge to be selected in the partial hypergraph. This should make it easier to process different types of graphical
models.

In the following section, we introduce the notations and we formally specify the different problems associated with this

2

type of question. Section 3 presents the scheme of the k-PH algorithm and after having provided proof of its validity, we
show its optimality for the case of α-acyclic hypergraphs. We give an evaluation of the time complexity of this algorithm
but its analysis needs to presents the details of the implementation. So, these details are given in Appendix A. The
penultimate section provides an experimental study to assess the quality of the results as well as the runtimes. Finally,
we conclude and give some perspectives in Section 5.

2 Preliminaries

A hypergraph H = (V,E) is defined by a set V of vertices and a set E ⊆ 2V of hyperedges. The size of V is denoted n
while the size of E is e. For v ∈ V , d(v) is the degree of v, that is the number of hyperedges containing v while r is the
rank of the hypergraph (i.e. the maximum number of vertices per hyperedge).

Definition 1 (subhypergraph) Given a hypergraph H = (V,E) and V ′ ⊆ V , the subhypergraph of H induced by V ′ is
the hypergraph H[V ′] = (V ′, E′), where E′ = {Ei ∈ E | Ei ⊆ V ′}.

Note that all hyperedges appearing in H[V ′] must be included in V ′. It is not the case for what we call expanded
subhypergraph:

Definition 2 (expanded subhypergraph) Given a hypergraph H = (V,E) and V ′ ⊆ V , the expanded subhypergraph
of H induced by V ′ is the hypergraph H[[V ′]] = (V ′, E′), where E′ = {Ei ⊆ V ′ | ∃Ej ∈ E,Ej ∩ V ′ ̸= ∅, Ei = Ej ∩ V ′ and
Ei is maximal}.

In this definition, maximal means that there is no Ei′ satisfying the same conditions as Ei such that Ei ⊊ Ei′ . So,
by verifying this condition, in an expanded subhypergraph, if a hyperedge does not appear in H[V ′] but has a non-empty
intersection with V ′, H[[V ′]] contains as hyperedge this maximal intersection.

Definition 3 (partial hypergraph) Given a hypergraph H = (V,E) and E′ ⊆ E, the partial hypergraph of H induced
by E′ is the hypergraph H[E′] = (V,E′).

To define the width of a hypergraph, we recall the definition of the 2-section [27] of a hypergraph (note that this graph
is sometimes called the primal graph [3]):

Definition 4 (2-section of hypergraph) Given a hypergraph H = (V,E), the 2-section of H is the graph 2SEC (H) = (V ,E ′)
where an edge {x, y} ∈ E′ if and only if there is a hyperedge Ei ∈ E such that {x, y} ⊆ Ei.

Given a hypergraph H = (V,E), a path of length ℓ in H between two vertices x and y is a sequence of vertices
(x = v0, v1, . . . , vℓ = y) such that ∀i, 1 ≤ i ≤ ℓ,∃Ei ∈ E such that {vi−1, vi} ⊆ Ei. We can see that there is a path in
H if and only if there is a path in 2SEC (H). In the sequel, we call connected component of a hypergraph H = (V,E) a
subset of vertices1 of V which is a connected component in 2SEC (H). In other words, two vertices of H appear in the
same connected component if there is a path between them in H, as for graphs. So, if V ′ ⊆ V is a connected component
of the hypergraph H = (V,E), for all hyperedge Ei ∈ E, either Ei ⊆ V ′, or Ei ∩ V ′ = ∅.

To define the tree-decomposition and the treewidth of a hypergraph, we need to use the corresponding definitions for
graphs [7]:

Definition 5 (tree-decomposition and treewidth of hypergraph) A tree-decomposition of a graph G = (V,E) is
a pair (B, T) where T = (I, F) is a tree (I is a set of nodes and F a set of edges) and B = {Bi : i ∈ I} a family of subsets
of V such that every Bi ∈ B (called bag) corresponds to a node i of T and satisfies:

(i) ∪i∈IBi = V ,

(ii) ∀{x, y} ∈ E, ∃i ∈ I such that {x, y} ⊆ Bi, and

(iii) ∀i, j, k ∈ I, if k is on a path between i and j in T , then Bi ∩Bj ⊆ Bk

The width of a tree-decomposition is equal to maxi∈I |Bi| − 1. The treewidth of G denoted w is equal to the minimum
width among all the tree-decompositions of G. So, given a hypergraph H = (V,E) and its 2-section 2SEC (H), a tree-
decomposition of H is a tree-decomposition of 2SEC (H), and the treewidth of H is the treewidth of 2SEC (H).

1Usually, a connected component in a graph is defined as the subgraph induced by the vertices that compose it. Here, for the case of
hypergraphs, we assimilate a connected component to the set of vertices that compose it because this simplifies the notations without reducing
their precision.

3

In this paper, we study the issue of calculating a partial hypergraph that includes as many hyperedges as possible
while guaranteeing a bounded width. Also, we are interested in the question of a maximum (size) set of hyperedges or, at
least, maximal (for inclusion). This problem is based on the following definitions.

Definition 6 (k partial hypergraph) Given a hypergraph H = (V,E) and an integer k, a k partial hypergraph of H
is a hypergraph H ′ = (V,E′) with E′ ⊆ E, such that 2SEC (H ′) has a treewidth at most k − 1. A k partial hypergraph H ′

of H is maximal if there is no E′′ such that E′ ⊊ E′′ ⊆ E and such that the treewidth of H ′′ = (V,E′′) is at most equal
to k − 1. It is maximum if it is a partial hypergraph of treewidth at most k − 1 with as many hyperedges as possible.

Note that for a hypergraph H and an integer k, it is possible that no partial hypergraph H ′ exists which has a width
exactly equal to k− 1. Indeed, if a hypergraph contains two edges, one of size k− 2 and the other of size k+1, it does not
have any partial hypergraph whose treewidth is equal to k − 1. Before considering the associated optimization problems,
we define a first decision problem:

MAXIMUM PARTIAL HYPERGRAPH OF BOUNDED WIDTH

INSTANCE: A hypergraph H = (V,E), an integer M ≤ |E| and an integer k ≤ |V |.
QUESTION: Does H have a partial hypergraph with M hyperedges whose treewidth is at most k − 1?

In fact, this problem has already been studied in the case of Markov random fields under consideration of weighted
hyperedges and as an optimization problem called MAXIMAL HYPERTREE [22, 23]:

MAXIMAL HYPERTREE

INSTANCE: A weighted hypergraph H = (V,E,w) with w : E → R and an integer k ≤ |V |.
QUESTION: Find a partial hypergraph of H for which the sum of the weights of its hyperedges is

maximum and whose treewidth is at most k − 1.

In [22], it is shown that this optimization problem is max-SNP-hard and that the associated decision problem restricted
to graphs is NP-complete. The authors specify that even with unit weights, this problem is NP-hard. The details of the
proofs are to be found in [23]. This being, in fact, we can deal with two questions here, depending on whether we are
interested in the maximum in terms of weights (or number of hyperedges for unit weights), or in terms of the maximality
of the set of the selected hyperedges. We present these two variants:

MAXIMAL PARTIAL HYPERGRAPH OF BOUNDED WIDTH

INSTANCE: A hypergraph H = (V,E) and an integer k ≤ |V |.
QUESTION: Find a maximal partial hypergraph of H whose treewidth is at most k − 1.

It can be observed that the associated decision problem is trivial because, except for having only hyperedges of which
size is strictly greater than k, the answer to the question of the existence of a partial hypergraph of treewidth at most k−1
is always yes. It is then necessary to reformulate the question by removing “maximal”, and by replacing “of treewidth at
most k − 1” by “of treewidth k − 1”:

PARTIAL HYPERGRAPH OF GIVEN WIDTH

INSTANCE: A hypergraph H = (V,E) and an integer k ≤ |V |.
QUESTION: Does H have a partial hypergraph of treewidth k − 1?

Unfortunately, this problem is as difficult as the problems associated with the tree-decomposition and treewidth in
graphs. And we know that given a graph G and an integer k, it is NP-complete to determine whether the treewidth of
G is at most k [17]. So, to determine whether a graph G have a partial graph of treewidth k − 1 is also NP-complete
and thus, PARTIAL HYPERGRAPH OF GIVEN WIDTH is NP-complete. Another immediate consequence is that MAXIMAL

PARTIAL HYPERGRAPH OF GIVEN WIDTH is NP-hard. Finally, it is useful to recall, as mentioned above, that for a given
hypergraph and an integer k, there may exist a partial hypergraph of treewidth k− 2 while there exists no partial hyper-
graph of treewidth k − 1. Therefore, in the following (see Section 3), we will be interested in finding partial hypergraphs
whose treewidth is bounded by k − 1 rather than of treewidth k − 1 exactly.

In the following section, we propose a polynomial-time algorithm, called k-PH, which, given a hypergraph and an
integer k, calculates a partial hypergraph whose width is at most k − 1, that is a k partial hypergraph. We show that
this algorithm is of theoretical interest since it guarantees optimality of the result for the case of α-acyclic hypergraphs
[6] (see Theorem 2). Before that, we recall here some properties related to the notion of acyclic hypergraphs.

4

Definition 7 (chordal graph [28]) A graph is chordal (or triangulated) if it contains no chordless induced cycle of
length 4 or more, a chord being an edge joining two non consecutive vertices along a path.

It has been shown by Dirac [29] that a graph is chordal if and only if all its minimal separators are cliques. Chordal
graphs can also be characterized by means of perfect elimination orderings:

Definition 8 (perfect elimination ordering) Given a graph G = (V,E), a perfect elimination ordering on V is a
function σ : V → [1, n] such that N+

σ (x) is a clique for every x ∈ V , where N+
σ (x) = {y ∈ V | {x, y} ∈ E and

σ(x) < σ(y)}.

In fact, this ordering σ corresponds to a numbering of the vertices from 1 to n. So, in the following, we will speak
about numbering to evoke this ordering. It has been shown by Fulkerson and Gross [30] that a graph is chordal if and
only if it admits a perfect elimination ordering. We can now define the notion of acyclicity in hypergraphs. It should be
noted that different types of acyclicity have been defined such as Berge-acyclicity [31], γ-acyclicity [32], β-acyclicity [32]
and α-acyclicity [6], but the most usable and used in practice is clearly the last one:

Definition 9 (α-acyclicity) A hypergraph H = (V,E) is α-acyclic if 2SEC (H) is chordal and H is conformal, that is if
for any clique X ⊆ V of 2SEC (H), there is at least one hyperedge Ei ∈ E such that X ⊆ Ei.

It should be noted that the relationship between hypergraph α-acyclicity and tree-decomposition are very close. In-
deed, for any graph G = (V,E), for any tree-decomposition of G, it is well known that the set B of bags allows defining a
hypergraph H = (V,B) which is α-acyclic.

Finally, in the next section, we use the notion of neighborhood of a vertex and neighborhood of sets of vertices in a
hypergraph. We give below the associated definitions.

Definition 10 (neighborhood in a hypergraph) Let H = (V,E) be a hypergraph. For x ∈ V , the neighborhood
NH(x) of x in H is defined as {y ∈ V | ∃Ei ∈ E, x, y ∈ Ei}. For X ⊆ V , the neighborhood NH(X) of X in H is defined
as ∪x∈XNH(x). The subset of vertices of a set Y which are neighbors of a set of vertices X is denoted NH(X,Y) = {y ∈ Y
| ∃x ∈ X : ∃Ej ∈ E, {x, y} ⊆ Ej}.

It is obvious that NH(X, ∅) = ∅.

3 Finding a Partial Hypergraph of Bounded Width

In this section, we present the algorithm k-PH (for Partial Hypergraph parametrized by an integer k). Given a hypergraph
H = (V,E) and an integer k, this algorithm computes a partial hypergraph H ′ = (V,E′) of H and a tree-decomposition
of its 2-section whose width is at most k − 1. This tree-decomposition will be represented by the set B of its bags, that
is B = {B1, B2, . . . }. In practice, B is constructed bag by bag and, at the end, E′ is the set of hyperedges of H which
are covered by a bag Bi. Roughly speaking, the bag Bi is built by selecting some hyperedges of H ′ (Bi is then defined
as the union of these hyperedges) in such a way that the size of Bi does not exceed k. This computation only depends
on the previously built bags and the way the hyperedges are selected. So, the hyperedge selection is an important step
in the construction of H ′ and its associated decomposition. Since our algorithm does not aim to guarantee to obtain an
optimal solution, this step is achieved thanks to a heuristic H that constitutes the third input argument of k-PH. Note
that H only relies on the previously built bags and the current value of H ′. Once Bi is built, all the hyperedges of H ′

that call into question the validity of the built tree-decomposition are removed from E′.
Now, we give a detailed description of this algorithm and all the arguments to ensure its correctness. The time

complexity is given in this section. However, our analysis requires a precise presentation of the implementation of the
algorithm (e.g. the data structures used in the algorithm to ensure its efficiency). So, these elements of complexity analysis
are presented in great detail in Appendix A. Then, to facilitate the understanding of k-PH, we describe it by considering
the Hα heuristic which will be also used in the proof of Theorem 3. Finally, without loss of generality, we consider that
the rank of the hypergraph is at most k, that is no hyperedge of H has a size strictly greater than k. If some hyperedges
do not satisfy this condition, we only consider the partial hypergraph of H induced by the removal of these hyperedges.
Moreover, we assume that any vertex of this hypergraph belongs to at least one hyperedge.

Initially, H ′ is equal to H (line 1) and it is computed by gradually removing some of its hyperedges. The obtained
tree-decomposition of 2SEC (H ′) is represented by a set of bags called B (initially, B = ∅, line 2) which is also computed
by gradually adding at each step a new bag denoted Bi. As it is possible that H is not connected, we first compute its
connected components X1, X2, . . . Xn0 using the Comp-CC algorithm2. This algorithm takes as inputs the current partial

2A detailed description of this algorithm is given in Appendix A. Although the calculation of the connected components in a hypergraph is
very simple, we prefer to describe this algorithm because Comp-CC also maintains data structures allowing to ensure the efficiency of k-PH.

5

Algorithm 1: k-PH

Input: A hypergraph H = (V,E), an integer k and a heuristic H.
Output: A partial hypergraph H′ = (V,E′) of H and a tree-decomposition of 2SEC (H ′) represented by B (a set of bags) whose

width is at most k − 1.
1 H′ = (V,E′)← (V,E)
2 B ← ∅
3 i← 1
4 Q← ∅
5 Enqueue(Q,Comp-CC(i,H′, V, ∅))
6 while Q ̸= ∅ do
7 Xi ← Dequeue(Q)
8 Bi ← ∅
9 Ni ← NH′ (Xi,∪1≤j≤i−1Bj)

10 if H = Hα then
11 if Ni = ∅ then
12 Sort the hyperedges Ej ∈ E′ such that Ej ⊆ Xi in descending order of their size
13 Visit this ordered list and insert the current hyperedge Ej into Bi if |Bi ∪ Ej | ≤ k

14 else
15 NH′ (Ni, Xi)← {y ∈ Xi | ∃x ∈ Ni : ∃Ej ∈ E′, {x, y} ⊆ Ej}
16 Si ← {Ej ∈ E′ | Ej ⊆ Ni ∪NH′ (Ni, Xi)}
17 Select Bℓ ∈ B such that |Bℓ ∩Ni| is maximum
18 Sort the hyperedges Ej ∈ Si such that Ej ̸⊆ Ni and Ej ̸⊆ NH′ (Ni, Xi) in descending order of the size of |Bℓ ∩ Ej |
19 Visit this ordered list and insert the current hyperedge Ej into Bi if |Bi ∪ Ej | ≤ k
20 Insert in Bi the hyperedges Ej ∈ Si such that Ej ⊆ Bi which were not selected in the previous step
21 Remove from H′ the hyperedges Ej ∈ Si such that Ej ̸⊆ Ni and Ej ̸⊆ NH′ (Ni, Xi) and Ej ̸⊆ Bi

22 B ← B ∪ {Bi}
23 Enqueue(Q,Comp-CC(i,H′, Xi, Bi))
24 i← i+ 1

25 For each vertex v that does not appear in any bag from B, add the bag {v}

hypergraph H ′, a set of vertices X and another set of vertices Y . Comp-CC returns the set of connected components of
the expanded subhypergraph of H ′ induced by X\Y , i.e. H[[X\Y]]. These components are then inserted into the queue
Q (line 5).

Once these preliminary processes have been realized, at each new step of the loop in line 6, a connected component Xi is
removed from the queueQ to build a new bag Bi (line 7). So, before, Bi is initialized to the empty set (line 8). This new bag
will be added to the tree-decomposition already computed (current set of bags B), and H ′ will be updated by removing the
hyperedges whose conservation would distort the tree-decomposition. Considering the connected component Xi removed
from the queue Q, the set of nodes Ni is initialized (line 9). Ni is the set of vertices that belong to at least one of the bags
in B = {B1, B2, . . . , Bi−1} and that are adjacent to at least one vertex of Xi in H ′. Formally, Ni = NH′(Xi,∪1≤j≤i−1Bj)
(see Figure 1 and recall Definition 10). There are then two cases to consider for the connections in the hypergraph H ′:

(1) (Basic case) Either Xi has no neighbor in Ni (this is the case, for instance, in the first step since the set Ni is empty
because B = ∅);

(2) (General case) Or Xi has at least one neighbor in Ni.

In case (1), we proceed by searching within Xi a new bag Bi. This bag is obtained by computing a set of hyperedges
included in Xi whose union is equal to the bag Bi and such that |Bi| ≤ k. Such a bag is found using a given heuristic H.
In the description of k-PH presented in Algorithm 1, this step is illustrated with the Hα heuristic (lines 12 and 13). For
this case, no hyperedge has to be deleted from H ′.

Case (2) is the general case and it is more intricate. The new bag Bi is calculated in the neighborhood of an already
computed bag Bℓ (1 ≤ ℓ < i) such that Bi ∩ Bℓ = Ni ∩ Bℓ ̸= ∅. This guarantees that we obtain a tree-decomposition
because any new bag Bi is linked to at least one bag Bℓ ∈ {B1, B2, . . . , Bi−1} and such that (∪1≤j≤i−1Bj)∩Bi ⊆ (Bℓ∩Bi).
This condition allows us to verify that the computed set of bags can be structured as a tree. Moreover, it allows satisfying
the third condition (condition (iii)) of tree-decompositions which deals with the links between bags. About the bag Bℓ,
note that there are two options. Either this bag Bℓ can be pre-determined and then Bi is defined with respect to Bℓ, or,
on the contrary, Bℓ is determined with respect to the new bag Bi. This choice depends on the used heuristic H. Several
heuristics are conceivable but we consider here as a reference and as for case 1, the Hα heuristic, which is a very simple
and natural heuristic that chooses first as bag Bℓ the one with the largest intersection with Ni and then, chooses as the
first hyperedge to be in Bi the one that shares the maximum number of vertices with Bℓ (the next hyperedges are taken
with the same principle, in descending order of the size of their intersection with Bℓ).

6

B jU
1≤j<i

Ni
NiN (,)H' Xi

Xi

class 1

class 3

class 2

class 2

Figure 1: Beginning of a new bag building stage with the representation of the sets ∪1≤j≤i−1Bj , Ni, Xi and NH′ (Ni, Xi). 4 hyperedges
illustrate the 3 possible classes of hyperedges inside Ni ∩NH′ (Ni, Xi).

The set of hyperedges that are candidates for the construction of Bi is denoted Si and is defined by Si = {Ej ∈ E′ |
Ej ⊆ Ni ∪NH′(Ni, Xi)}. To compute Bi, some hyperedges from Si are selected and they constitute a set S′

i ⊆ Si. Thus,
Bi is obtained by the union of the hyperedges from S′

i, i.e. Bi = ∪Ej∈S′
i
Ej . So, we analyze the hyperedges Ej of Si. We

have three classes of hyperedges:

(1) Ej ⊆ Ni and therefore Ej ∩NH′(Ni, Xi) = ∅. In this case, the hyperedge Ej appears in Ni, thus in at least one bag
already computed.

(2) Ej ̸⊆ Ni and Ej ̸⊆ NH′(Ni, Xi). Thus Ej ∩Ni ̸= ∅ and Ej ∩NH′(Ni, Xi) ̸= ∅. In this case, the hyperedge Ej overlaps
Ni and NH′(Ni, Xi).

(3) Ej ⊆ NH′(Ni, Xi) ⊆ Xi and thus Ej ∩Ni = ∅.

Figure 1 shows the sets ∪1≤j≤i−1Bj , Ni, Xi and NH′(Ni, Xi), and indicates the location of the hyperedges in relation
to the class to which they belong.

The hyperedges Ej of class (1) have already been treated during the calculation of the previous bags. They can
therefore be ignored and they will appear in the hypergraph H ′ at the end of processing. They will therefore not be taken
into account in the calculation of Bi even if they may eventually be included inside. Likewise, calculating Bi, we will not
consider the hyperedges of class (3). However, some of these could also be included in Bi. Thus, only the hyperedges of
class (2) will be explicitly considered for the calculation of Bi. We analyze this case.

Bi will be defined as ∪Ej∈S′
i
Ej . So, when selecting a subset S′

i of hyperedges of Si, a first condition to satisfy is
related to the bound of the width and therefore we must calculate a subset S′

i of Si such that |Bi| ≤ k. In addition, we
must impose that Bi ∩ NH′(Ni, Xi) ̸= ∅, that is Bi must include at least one vertex which does not appear in the bags
already computed. This second condition is necessary because one must ensure that the size of the tree-decomposition
grows strictly during the calculation (i.e. at each step of the loop) so as to guarantee the termination of the algorithm.
So, by increasing the size of the tree-decomposition, we mean the number of bags of the tree-decomposition, and thus,
the number of new vertices appearing in at least one bag of B. Note that this second condition necessarily holds since
only class (2) hyperedges are taken into account and each of them contains at least one vertex that does not appear in an
already calculated bag. A third condition must be verified to make sure that there exists an already built bag Bℓ, with
1 ≤ ℓ < i, such that (∪1≤j≤i−1Bj) ∩Bi ⊆ (Bℓ ∩Bi). By fulfilling these three conditions, we just have to choose, with the
heuristic, hyperedges of Si which will define the set S′

i. Recall that we suppose that this heuristic takes as a bag Bℓ the one
that has the largest intersection with Ni. Figure 2 shows different possibilities for the selection of hyperedges in a new bag.

Once S′
i is calculated, H ′ has to be updated (line 21). Only hyperedges Ej ∈ Si belonging to the class (2) such

that Ej ̸⊂ Bi may be removed. Indeed, all hyperedges from class (1) are preserved because they belong to bags already
computed. Hyperedges from classes (3) are preserved too: if they are included in Bi, they must be retained; and it is
also the case if they are not included in Bi because they will be considered later. It is the same for hyperedges Ej from
class (2) such that Ej ⊆ Bi. The hyperedges Ej ∈ Si that must be deleted are exactly such that Ej ∩ Ni ̸⊂ Bi and
Ej ∩ Bi ̸⊂ Ni. In other words, these are the hyperedges that have disjoint intersections with at least two bags already
constructed, because including them later in a bag will prevent us from maintaining the tree structure of B.

After updating H ′ (for case 2) and computing Bi, we calculate the connected components of H ′[[Xi\Bi]] (line 23),
that is Xi1 , Xi2 , . . . Xini

which are then be inserted into Q. This task is repeated until the queue Q is empty.

7

E i B i

B l

E j'

B jU
1≤j<i

Ni
NiN (,)H' Xi

Xi

E j

Figure 2: Bag building stage. Bags Bℓ and Bi are in blue. Among the 3 hyperedges of class 2, Ej must be deleted while Ei will be preserved
in the final partial hypergraph and Ej′ is temporary at least preserved.

x1

x2

x3

x4 x5

E1

E2 E3

E4

E5

x1

x2

x3

x4

x5

x6

x7

x8

x9

x11

x10

x12

x13

x14

x15

x16

x17

x18

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

(a) (b)

Figure 3: Illustration of how k-PH works on two possible instances: a graph with k = 2 (a) and a hypergraph with k = 5
(b).

Note that at the end of the while loop, some vertices may not have been processed. Indeed, this case is possible if
some vertices only appear in the hyperedges deleted during the construction of H ′. So, none of these vertices can be
included in a bag when constructing B during the loop. This is why, at the end of processing (line 25), specific bags are
defined for each of these vertices, so as to ensure that B will correspond to the bags of a tree-decomposition of 2SEC (H ′)
since every vertex must appear in at least one bag. Note that if at the end of the process, H ′ is not connected, we finally
obtain a collection of trees, and thus a forest of tree-decompositions.

We illustrate how k-PH with the heuristic Hα works on the two instances of Figure 3. First, we apply k-PH with
k = 2 on the graph (V = {x1, . . . , x5}, E = {E1, . . . , E5}) depicted in Figure 3(a). Initially, X1 corresponds to V since
the graph is connected, N1 = ∅ and any edge can be selected by the heuristic. In line 13 of k-PH, suppose that the first
chosen edge is E1 = {x1, x2}. It ensues that B1 = {x1, x2}. The call of Comp-CC then builds two connected components,
{x3} and {x4, x5}, which will be inserted in Q. In the next step, suppose that {x3} is removed from Q and so that
X2 = {x3}. In this case, line 9 calculates N2 = {x2} and line 14 is executed. So we have NH′(N2, X2) = {x3} (line 15)
and S2 = {E4} (line 16). It ensues that we have necessarily Bl = B1. Only the edge E4 (of class 2) is then considered
and we have B2 = E4. No edge is added to B2 in line 20, nor deleted from H ′ in line 21. At this point, no new connected
component is found by Comp-CC and therefore, nothing will be added in Q. In the next step, X3 = {x4, x5} is removed
from Q. Line 9 computes N3 = {x1}, and then line 14 is executed. We obtain NH′(N3, X3) = {x4, x5} (line 15), and
then S3 = {E2, E3, E5} (line 16) where E2 and E3 are of class 2 and E5 of class 3. So, only E2 or E3 can be chosen in
line 19. Assume that E2 is chosen and therefore B3 = {x1, x4}. No edge is added to B2 in line 20, nor deleted from H ′

in line 21. The call of Comp-CC on line 23 calculates a new connected component {x5} which is then inserted in Q. The
while loop therefore continues with X4 = {x5}, then line 9 calculates N4 = {x1, x4}. Again line 14 is executed. Line 15
calculates NH′(N4, X4) = {E3, E5}, then line 16 obtains S4 = {E3, E5}. There are then two possibilities for Bℓ, either
Bℓ = B1, or Bℓ = B3 (line 17). If Bℓ = B1, E3 is necessarily used to build B4, and no edge will be added to it (line 20).
Then, E5 is removed from H ′ since we have E5 ̸⊆ N4, E5 ̸⊆ NH′(N4, X4) and E5 ̸⊆ B4. Running Comp-CC (line 23) will
not compute a new connected component, and since Q is empty, the algorithm will stop. We notice that if Bℓ = B3, the
algorithm will calculate B4 = E5 because E5 will be kept but E3 deleted from H ′.

8

Now, let us consider the hypergraph (V = {x1, . . . , x18}, E = {E1, . . . , E12}) of Figure 3(b). We illustrate the execution
of k-PH over it when k is set to 5 thanks to Table 1. This table specifies the state of the various objects manipulated at
each stage. Let us note that, unlike the first example, and because of the deletion of the hyperedge E3 from H ′, a vertex
will be isolated, namely the vertex x7 which belongs to E3 but which does not appear in any hyperedge kept in H ′. Also,
the bag B7 which contains only x7 is calculated on Line 25 of k-PH.

i Xi Ni NH′(Ni, Xi) Si Bℓ Bi H ′ Q

- - - - - - - (V,E) [V]

1 V ∅ - - -
E6 ∪ E4 =

(V,E)
[{x12, . . . , x18},

{x6, x8, . . . , x11} {x1, . . . , x5, x7}]

2 {x12, . . . , x18} {x9, x10} {x12, . . . , x15} {E5, E7, E8, E9} B1
E5 ∪ E8 =

(V,E)
[{x1, . . . , x5, x7},

{x9, x10, x12, x13, x15} {x14, x16, x17, x18}]

3 {x1, . . . , x5, x7} {x6} {x2, . . . , x5, x7} {E2, E3} B1
E2 =

(V,E)
[{x14, x16, x17, x18},

{x2, x3, x5, x6} {x1, x4, x7}]

4
{x14, x16, {x9, x15} {x14, x17, x18} {E7, E9, E11} B2

E7 ∪ E9 ∪ E11 =
(V,E)

[{x1, x4, x7},
x17, x18} {x9, x14, x15, x17, x18} {x16}]

5 {x1, x4, x7} {x2, x3, x6} {x1, x4, x7} {E1, E3} B3
E1 =

(V,E\{E3}) [{x16}]{x1, . . . , x4}

6 {x16} {x14, x17, x18} {x16} {E10, E12} B4
E10 ∪ E12 =

(V,E\{E3}) ∅{x14, x16, x17, x18}
7 - - - - - B7 = {x7} (V,E\{E3}) -

Table 1: Execution of k-PH on the hypergraph of Figure 3(b) with k = 5.

As k-PH exploits a heuristic H, its correctness also depends on that of H. So, before proving the correctness of k-PH,
we specify the necessary conditions that H must verify. To be correct, the heuristic H must therefore :

• calculate a new bag Bi of size at most k,

• select at least one hyperedge of Si whose class is 2,

• make sure that the new bag Bi is such that there exists one already computed bag Bℓ such that (∪1≤j≤i−1Bj)∩Bi ⊆
(Bℓ ∩Bi).

For example, it can easily be shown that the heuristic Hα satisfies these conditions.

Theorem 1 k-PH is correct under the assumption that the heuristic H is correct.

Proof: To prove the correction of k-PH, we must show that:

(1) k-PH ends;

(2) H ′ = (V,E′) is a partial hypergraph of H;

(3) B is a the set of bags of a tree-decomposition of 2SEC (H ′) whose width is at most k − 1.

We prove each of these assertions.

(1) At each step of the loop, we add to B a new bag that contains at least one vertex that does not appear in any previous
bag. Also, after a finite number of iterations through the loop, no new connected components will be inserted into the
queue, and this queue will become empty and thus the loop will stop.

(2) By construction, H ′ = (V,E′) is a partial hypergraph of H.

(3) We must show that the 3 conditions required for a tree-decomposition are verified:

(i) (∪i∈IBi = V) By construction, we know that each vertex of H ′ belongs to at least one bag. It should be remembered
here that for each one of the vertices that do not appear in any hyperedge selected in H ′, the last step of k-PH
builds a specific bag. So, this property is satisfied.

(ii) (For every edge {x, y} of the graph, ∃i ∈ I such that {x, y} ⊆ Bi) This property is verified since the bags in B are
defined by the hyperedges of H ′ and thus, every hyperedge of H ′ is included in at least one bag. Since we consider
here 2SEC (H ′), that is the 2-section of H ′, all the edges of this graph are included in at least one bag.

9

(iii) (∀i, j, k ∈ I, if k is on a path between i and j in T , then Bi ∩Bj ⊆ Bk) We know that by construction, for any new
bag Bi, there is at least one previous bag Bℓ such that (∪1≤j≤i−1Bj)∩Bi ⊆ (Bℓ ∩Bi). So, if we assume that in the
tree-decomposition, there is an edge that connects Bℓ to Bi, it is easy to see that for any previous bag Bj (that is
1 ≤ j ≤ l), necessarily we have Bi ∩Bj ⊆ Bℓ. Then by induction, it is easy to see that this property holds for every
Bℓ′ which is on a path between Bi and Bj in the tree-decomposition, that is Bi ∩Bj ⊆ Bℓ′ . So, this third property
of tree-decompositions is satisfied.

Finally, by construction, we know that the size of bags belonging to B is at most k. So, the width of the tree-
decomposition of 2SEC (H ′) induced by B is at most k − 1.

To conclude, it should be remembered that the validity of the algorithm is of course conditioned by the validity of the
used heuristics. In fact, it is enough to consider heuristics that will be compatible with the conditions imposed. Indeed,
trivially, a heuristic allowing to build bags whose size is strictly greater than k will not allow ensuring the correctness of
k-PH algorithm if it uses it. 2

The time complexity of k-PH cannot be evaluated without knowing in detail the cost of the different internal treatments
such as Comp-CC, the computing of a new bag Bi, the cost of the heuristic H, and also, the cost of updating H ′. In order
to make these different treatments efficient, several data structures must be implemented and these must be detailed.
These descriptions and a detailed version of the different algorithms and their time complexity analysis are given in
Appendix A. We present here the results of this evaluation. So, before that, we recall some notations:

• n is the number of vertices in V ;

• e is the number of hyperedges in E;

• d is the maximum degree among all the vertices in H (the degree d(v) of a vertex v is the number of hyperedges in
E containing v);

• r is the rank of the hypergraph, that is the maximum size of the hyperedges in E;

• N is the number of bags in the computed tree-decomposition.

Moreover, to assess the complexity of k-PH, we assume that the cost of the considered heuristic H is h.

Theorem 2 The time complexity of k-PH is in O(N(h+ e · r + n · d(N + r))).

To give an illustration of this complexity, we consider the complexity of the heuristic Hα which is O(n · k + e · r). So,
using this heuristic, the time complexity of k-PH is O(N(h + e · r + n · d(N + r))) = O(N(n · k + e · r + n · d(N + r))).
This expression can be rephrased if we consider certain upper bounds. Indeed, we know that N ≤ n, we thus obtain the
complexity O(n(n ·k+e ·r+n ·d(n+r))) = O(n ·n ·k+n ·e ·r+n ·n ·d ·n+n ·n ·d ·r) = O(n2 ·k+n ·e ·r+n3 ·d+n2 ·d ·r) =
O(n2 · (k+ n · d+ r · d) + n · e · r). On the other hand, if we also consider that the width k− 1 is a constant, and therefore
that the treatments will only consider hyperedges whose size is less than or equal to k, this complexity can be reduced to
O(n3 · d+ n · e).

As mentioned previously, this algorithm does not guarantee that the obtained hyperedge set is maximal for inclusion.
However, it has certain properties related to optimality, as soon as hypergraphs belonging to particular classes are con-
sidered as input. Among these classes, one can find α-acyclic hypergraphs [6]. In this case, it is sufficient to adapt the
parameter k to show that their processing is optimal using k-PH. It should be noted that the relationship between hyper-
graph α-acyclicity and tree-decomposition are very close. Indeed, for any graph G = (V,E), for any tree-decomposition
of G, it is well known that the set B of bags allows defining a hypergraph H = (V,B) which is α-acyclic. Moreover,
the associated tree-decomposition is then a join tree, and in this case, assuming that k is the rank of the hypergraph
H, the maximal partial hypergraph H ′ that must be computed is exactly H. So, in this case, the MAXIMAL PARTIAL

HYPERGRAPH OF BOUNDED WIDTH problem can be solved efficiently. Finally, given an α-acyclic hypergraph, it is
easy (possible in linear time [19]) to recognize it and then compute an optimal tree decomposition of its 2-section. Never-
theless, we show here that k-PH is optimal in terms of result without knowing beforehand that the hypergraph is α-acyclic.

To show the optimality of the result of k-PH for α-acyclic hypergraphs, we first need to give a particular value for
the parameter k which is related to the size of the largest hyperedge in H. Then we have to consider the heuristic Hα

recalling that Hα constructs the first bag B1 by choosing as many maximum size hyperedges as possible while making sure
that the condition |B1| ≤ k holds. By so doing, when k is equal to m, B1 will contain a hyperedge of size k, and possibly
smaller included hyperedges. Then, for building a bag Bi, it first chooses as bag Bℓ the existing bag having the largest
intersection with Ni. Once Bℓ selected, it selects as the first hyperedge to be in Bi the one that shares the maximum

10

number of vertices with Ni. Finally, this latter step is repeated until no hyperedge can be added without violating the
condition |Bi| ≤ k.

Theorem 3 If a connected hypergraph H = (V,E) is α-acyclic and if k is equal to the maximum size of hyperedges in H,
then the result of k-PH with Hα is optimal, that is k-PH finds a partial hypergraph H ′ = (V,E′) such that E′ = E.

Proof: We have to show that during the calculation of H ′, no hyperedge is deleted.
In k-PH, the removed hyperedges belong to class (2). These are the hyperedges that overlap Ni and NH′(Ni, Xi),

namely, hyperedges Ej ∈ E′ such that Ej ⊆ Ni∪NH′(Ni, Xi) and NH′(Ni, Xi)∩Ej ̸= ∅ and Ni∩Ej ̸= ∅. The hyperedges
Ej ∈ Si that are deleted are exactly such that Ej ∩Ni ̸⊂ Bi and Ej ∩Bi ̸⊂ Ni.

The hyperedges Ej that are deleted are such that Ej ∩Bi ̸= ∅ and of course also Ej ̸⊂ Bi, but among these, the ones
that satisfy Ej ∩Ni ⊆ Bℓ ∩Bi must not be deleted. We show that if H is α-acyclic, none of these hyperedges can appear
during the calculation of H ′, and thus no hyperedge is deleted. To do this, we show that at each step of the algorithm,
the partial sub-hypergraph taken into account for the calculation of the bags is acyclic and that this ensures that there is
at least one hyperedge that avoids any deletion of hyperedge. The proof is organized first by treating the basic case for
the calculation of the first bag, then for each of the subsequent steps.

First, we take for B1 a hyperedge of maximum size, that is k. It is the only particular adaptation of the algorithm to
find the optimal result. B1 contains a hyperedge of size k, and possibly smaller included hyperedges. Then, connected
components induced by the deletion of B1 are calculated and inserted into Q. Of course, no hyperedge is removed for the
calculation of H ′ since it is the particular case of the first step. Moreover, once B1 has been calculated, if X1, X2, . . . Xn1

are the n1 sets stored in Q, one can observe that for each Xi (1 ≤ i ≤ n1), the hypergraph H ′[B1 ∪Xi] is α-acyclic. We
prove this below.

We know that a hypergraph is α-acyclic if and only if it is conformal and chordal. As any subgraph of a chordal graph is
chordal, then the graph 2SEC (H ′[B1 ∪Xi]) is chordal because it is a subgraph of 2SEC (H). We now show that H ′[B1∪Xi]
is conformal. No hyperedge included in B1 ∪Xi is deleted, and no new edge has appeared in 2SEC (H ′[B1 ∪Xi]). Indeed,
all edges of 2SEC (H ′[B1 ∪Xi]) induced by hyperedges of H intersecting B1 and which do not appear in H ′[B1 ∪Xi] are
already in 2SEC (H ′[B1 ∪Xi]) due to the existence of the hyperedge B1 in H ′[B1∪Xi]. It follows that no new clique which
would not be covered by a hyperedge of H ′[B1 ∪Xi] does not appear in 2SEC (H ′[B1 ∪Xi]) and thus that the hypergraph
H ′[B1 ∪Xi] is conformal.

We need another property to show the maximality of the calculation performed by k-PH, i.e. no hyperedge is removed
when calculating H ′. It deals with the interaction between the already constructed bags and the connected components
stored in Q. We first study this property concerning the computation of B1. We know that B1 is a hyperedge ofH

′[B1∪Xi]
and thus, there is at least one hyperedge Ei of H

′[B1∪Xi] such that Ei∩Xi ̸= ∅ and Ei∩B1 = Ni. We show the existence
of such a hyperedge. Since the graph 2SEC (H ′[B1 ∪Xi]) is chordal, it admits a perfect elimination ordering. In this
perfect elimination ordering, we consider the numbering of the vertices among those of Ni ∪NH′(Ni, Xi). More precisely,
rather than considering NH′(Ni, Xi) we consider Sep ⊆ NH ′(Ni ,Xi) which is a minimal separator in 2SEC (H ′[B1 ∪Xi])
between Ni and the vertices of Xi that do not belong to NH′(Ni, Xi). Since 2SEC (H ′[B1 ∪Xi]) is a chordal graph and
any minimal separator in such a graph is a clique, we know that Sep is a clique of 2SEC (H ′[B1 ∪Xi]). Since Sep is a
separator in 2SEC (H ′[B1 ∪Xi]), we know that all the edges that connect Ni to Xi have a vertex in Sep. We will consider
two cases. Either (case 1) a vertex of Ni is numbered before the first vertex of Sep is numbered, or (case 2) some vertices
of Sep are numbered before vertices of Ni are numbered:

(1) Let x be the first vertex of Ni which is numbered before the vertex of Sep that is numbered first. As we consider a
perfect elimination ordering, necessarily, all neighbors of x in Ni ∪NH′(Ni, Xi) constitute a clique. The neighbors of
x in Ni ∪NH′(Ni, Xi) are on the one hand all the other vertices of Ni and on the other hand at least one vertex of
Sep because there is at least one edge from x linking an unnumbered vertex of Sep in 2SEC (H ′[B1 ∪Xi]). On the
other hand, as H ′[B1 ∪Xi] is α-acyclic, this hypergraph is thus conformal, and it has at least one hyperedge Ei which
contains all the vertices of this clique formed of Ni and at least the neighboring vertex of x in NH′(Ni, Xi).

(2) Consider now that the first numbered vertices appear in Sep. We distinguish two cases:

(i) All the vertices of Sep are numbered before the ones of Ni. In this case, each time a vertex of Sep is numbered,
its neighbors in Ni must be linked to all vertices of Sep not yet numbered because Sep is a clique. And so, the
last vertex of Sep which is numbered has for neighbors all the vertices of Ni because they all have at least one
neighbor vertex in Sep. Thus, the last vertex of Sep which is numbered is a neighbor of all the vertices of Ni

and thus all these vertices constitute a clique.

(ii) A vertex x of Ni is numbered before that all the vertices of Sep are numbered. We then consider the first vertex
of Ni which is numbered. If this vertex x has a neighbor y in Sep not yet numbered, then this vertex of Sep
is linked to all vertices of Ni because x is the first vertex of Ni numbered, and the vertices of Ni with y thus
constitute a clique. Otherwise, suppose all the neighbors of x in Sep are already numbered. Consider y ∈ Sep,

11

a neighbor of x that has already been numbered. When y has been numbered, necessarily, it had to form a
clique containing both x, but also, all the vertices of Sep not yet numbered, including the last vertex of Sep that
has been numbered. This leads to a contradiction because x should then have at least one neighbor in Sep not
numbered, or x was not numbered before all the vertices of Sep were numbered.

In cases (i) and (ii), we have thus shown that there is a clique consisting of all the vertices of Ni and at least one vertex
of Sep in 2SEC (H ′[B1 ∪Xi]). Thus, because of the conformity of H ′[B1 ∪Xi], there is at least one of its hyperedges
Ei which contains all these vertices.

Assume now that what is valid for this first stage holds for any stage, namely that for any Xi memorized in Q, Xi

was built then inserted in Q starting from a bag Bℓ such that the hypergraph H ′[Bℓ ∪Xi] to which one adds a hyperedge
formed by the vertices of Bℓ is α-acyclic (this hypergraph is denoted H ′[Bℓ ∪Xi] + Bℓ). Moreover, there is at least one
hyperedge Ei of H

′[Bℓ ∪Xi] +Bℓ such that Ei ∩Xi ̸= ∅ and Bℓ ∩ Ei = Ni.
Now, for the ith step (1 < i), B contains the bags B1, . . . Bi−1. Let Xi be the connected component removed from

Q, and let Bℓ be the existing bag used to build Xi. We recall that the heuristic Hα first chooses as bag Bℓ the existing
bag having the largest intersection with Ni and then, chooses as the first new hyperedge to be in Bi the one that shares
the maximum number of vertices with Ni. First, the previous bag selected by Hα is necessarily the same bag Bℓ that
was used to construct Xi and insert it into Q (or a bag with the same intersection with Ni). By induction hypothesis, we
know that the hypergraph H ′[Bℓ ∪Xi] +Bℓ is α-acyclic and that there is at least one hyperedge Ei of H

′[Bℓ ∪Xi] +Bℓ

such that Ei ∩Xi ̸= ∅ and Bℓ ∩ Ei = Ni.

So, for the calculation of Bi, necessarily such a hyperedge Ei is chosen by the heuristic Hα and belongs to the new
bag Bi (Ei ⊆ Bi). Other hyperedges from Si can be added to Bi. By induction hypothesis, since Bℓ ∩ Ei = Ni, we
have Ni ⊂ Ei. Thus, all the hyperedges Ej of class 2 verify Ej ∩ Ni ⊆ Ei and as by construction Ei ⊆ Bi, necessarily
Ej ∩Ni ⊆ Bi. As the hyperedges Ej ∈ Si that are deleted are such that Ej ∩Ni ̸⊂ Bi (and Ej ∩Bi ̸⊂ Ni), no hyperedge
of H ′ is deleted.

So, after the calculation of the new connected components induced by Bi, we must ensure that the induction property
holds. First, for the connected components of H ′[[Xi\Bi]], that is Xi1 , Xi2 , . . . Xini

which will then be inserted into Q,
we must verify that each hypergraph H ′[Bi ∪Xij] + Bi (with 1 ≤ j ≤ ni) is α-acyclic and that there exists at least one
hyperedge Eij belonging to H ′[Bi ∪Xij] +Bi such that Eij ∩Xij ̸= ∅ and Bi ∩ Eij = Nij .

We prove first that ∀j, 1 ≤ j ≤ ni, the hypergraph H ′[Bi ∪Xij] +Bi is α-acyclic. The proof is close to the one given
above for B1 but slightly more complicated because of the existence in H ′[Bi ∪Xij] +Bi of the hyperedge Bi. We know
that a hypergraph is α-cyclic if and only if it is conformal and chordal.

• (Chordal). As H ′[Bℓ ∪Xi] +Bℓ is α-acyclic, so the graph 2SEC (H ′[Bℓ ∪Xi] + Bℓ) is chordal. Contrary to the basic
case where B1 is both a bag and a hyperedge of H, here Bi is not necessarily a hyperedge of H and therefore
2SEC (H ′[Bi ∪Xij] + Bi) is not necessarily a subgraph of 2SEC (H ′[Bℓ ∪Xi] + Bℓ) because edges that are not in
2SEC (H ′[Bℓ ∪Xi] + Bℓ) may belong to 2SEC (H ′[Bi ∪Xij] + Bi) due to the existence of the hyperedge Bi and its
completion in the 2-section. We show that no chordless cycle can have been created by the addition of such edges.
For such a cycle to be created, it must contain at least 4 vertices of which two vertices x and y belong to Bi, and
two other vertices u and v belong to Xij , with {x, u} et {y, v}, edges of 2SEC (H ′[Bi ∪Xij] + Bi) considering that x
and y are not neighbors in 2SEC (H ′[Bℓ ∪Xi] + Bℓ) but are neighbors in 2SEC (H ′[Bi ∪Xij] + Bi) (by completion of
the hyperedge Bi). We know that there is necessarily a path from u to v internal to Xij in 2SEC (H ′[Bi ∪Xij] + Bi)
(and thus already in 2SEC (H ′[Bℓ ∪Xi] + Bℓ)) because Xij is a connected component.

Adding the edge {x, y} would then create a chordless cycle in 2SEC (H ′[Bi ∪Xij] + Bi). By construction of Xij , x
and y necessarily appear in a separator of Xij , and more precisely, in a minimal separator of Xij because of the
existence of the edges {x, u} and {y, v}. But since 2SEC (H ′[Bℓ ∪Xi] + Bℓ) is chordal, and any minimal separator in
a chordal graph is a clique, necessarily, x and y are neighbors in that graph, and the edge {x, y} has not been added
by completion of Bi, and therefore cannot have created a new cycle without a chord in 2SEC (H ′[Bi ∪Xij] + Bi).
Therefore, this graph is chordal.

• (Conformal). It is necessary to show thatH ′[Bi∪Xij]+Bi is conformal, and thus that any clique of 2SEC (H ′[Bi ∪Xij] + Bi)
is included in a hyperedge of H ′[Bi ∪ Xij] + Bi. We know that all the cliques included in Bi are covered by the
hyperedge Bi. In the same way, all the cliques included in Xij are covered by a hyperedge appearing in this part of
H ′[Bi ∪Xij] +Bi since it was the case before the computation of Bi as H

′[Bℓ ∪Xi] +Bℓ is by hypothesis α-acyclic
and thus conformal, and that no edge has been added in 2SEC (H ′[Bi ∪Xij] + Bi) between vertices of Xij . The only
cliques that may appear when creating the Bi hyperedge are therefore overlapping Bi and Xij , and must therefore
concern at least 3 vertices, two vertices x and y of Bi initially non-neighboring, and a vertex z of Xij such that
{x, z} and {y, z} appear in 2SEC (H ′[Bℓ ∪Xi] + Bℓ). It is thus necessary to prove that x, y and z are covered by

12

a hyperedge of H ′[Bi ∪Xij] + Bi. By reasoning like for the proof of the chordality of 2SEC (H ′[Bi ∪Xij] + Bi), we
show that the edge {x, y} was not added by completion of Bi (addition of all possible edges), because here again,
due to the presence of the edges {x, z} and {y, z}, x and y are necessarily in a minimal separator of Xij and thus are
already connected. Thus, as x, y and z already constitute a clique appearing in 2SEC (H ′[Bℓ ∪Xi] + Bℓ) and that
the hypergraph H ′[Bℓ ∪Xi] +Bℓ was conformal before completion of Bi, there is a hyperedge of H ′[Bi ∪Xij] +Bi

which covers this clique.

It remains now to be proved that there exists at least one hyperedge Eij belonging to H ′[Bi ∪ Xij] + Bi such that
Eij ∩Xij ̸= ∅ and Bi ∩Eij = Nij . In fact, it is sufficient to use the same scheme of proof as in the basic case. Indeed, and
unlike the case of the α-acyclicity of the hypergraph H ′[Bi ∪Xij] +Bi, here the conditions of the basic case are preserved
and the proof is identical. 2

Surprisingly, unless the basic heuristic proposed here is modified, the class of chordal graphs is unfortunately not
processed optimally by this algorithm. One can very easily find counter-examples based on a few vertices (e.g. a k-tree
with k = 2).

The following section presents an evaluation of the performance of this algorithm both in terms of computation times
and the quality of the computation results, and thus the proportion of hyperedges belonging to the obtained partial
hypergraph.

4 Experimental Evaluation

In this section, we study the behavior of k-PH on a large benchmark of hypergraphs from various communities. We first
describe our experimental protocol. Then, we assess its efficiency by considering its capacity to get closer to the optimum
and its runtime. Finally, we consider the behavior of k-PH depending on the value of k.

4.1 Experimental Protocol

We implement k-PH in our own C++ hypergraph library. The experiments are performed on Dell PowerEdge R440
servers with Intel Xeon Silver 4112 processors (clocked at 2.6 GHz) under Ubuntu 18.04. For each instance and a given
integer k, k-PH with a given heuristic H is allocated a slot of 30 minutes and at most 16 GB of memory per instance.

We describe below the heuristics H we consider in k-PH and the benchmark exploited in our experimentations.

4.1.1 The Considered Heuristics

We considered and implemented several heuristics. In this section, we only report the results obtained by the two more
interesting ones. Moreover, in the following definitions, we assume that the hyperedges whose size exceeds the parameter
k of k-PH have been deleted first.

The first heuristic we consider is the heuristic Hα defined for the need of Theorem 3 and which is used in the description
of the k-PH algorithm. We give some more details about this heuristic. Hα constructs the first bag B1 by choosing as
many maximum size hyperedges as possible while making sure that the condition |B1| ≤ k holds. Then, for building a
bag Bi, it first chooses as bag Bℓ the existing bag having the largest intersection with Ni. Once Bℓ is selected, it selects
as the first hyperedge to be in Bi the one that shares the maximum number of vertices with Ni. Finally, this latter step is
repeated until no hyperedge can be added without violating the condition |Bi| ≤ k. As mentioned above, Hα is designed
in order to ensure the optimality of k-PH on α-acyclic hypergraphs when k = m.

The second one, denoted H∩, starts the construction of B1 like Hα by choosing a hyperedge of maximum size. Then it
adds as many hyperedges as possible in B1 (that is under the condition |B1| ≤ k) by selecting first the hyperedges having
the largest intersection with B1. Regarding the build of Bi, it first chooses as bag Bℓ the existing bag which intersects
the largest number of candidate hyperedges from Si. By so doing, we want to preserve as many hyperedges as possible
among the hyperedges of Si. Finally, H∩ builds Bi like B1 but by only considering the hyperedges of Si which intersect
Bℓ. In some manner, H∩ aims to built bags whose hyperedges overlap each others. Such a property may be notably of
interest when we consider the problems related to these hypergraphs (e.g. solving graphical models). Whereas solving the
related problems is out of the scope of this paper, studying such a heuristic has sense here.

Regarding the time complexity, Hα and H∩ run respectively in O(n · k + e · r) and O(n2 · e+ k2 · e2). For H∩, using
the Bag list data structure, the selection of Bℓ can be achieved in O(N · |Si|). Indeed we have to count the number of
hyperedges of Si which intersect each existing bag and the number of existing bags is bounded by N . Building a bag Bi

can be achieved in O(k2 · |Si|2). Indeed, computing the intersection of each candidate hyperedge with Bi is feasible in
O(k2) because the hyperedges and the bag have a size bounded by k and this is done at most |Si| times. So it results that
H∩ has a time complexity in O(N · |Si|+ k2 · |Si|2) = O(n · e+ k2 · e2) knowing that N ≤ n and |Si| ≤ e.

13

4.2 Benchmarks

In order to make our experimentations as representative as possible, we consider hypergraphs from various communities.
The considered hypergraphs are produced from instances that are usually exploited for benchmarking by these commu-
nities. Notably, in each community, these instances make it possible to compare solving methods for different problems
which are generally at least NP-complete. They model both academic and real-world problems. We divide the benchmark
into five categories depending on their origin. In each category, we only consider hypergraphs whose treewidth can be
computed by the method of Tamaki3 [33]. We now describe each category:

• BCSP : We consider 5,996 instances from the CSP3 repository4. From each CSP instance I, we build a hypergraph
(called the constraint hypergraph) whose vertices correspond to the variables of I and the hyperedges correspond to
the scopes of its constraints.

• BWCSP : We consider 1,535 WCSP instances from the EvalGM repository5 and the ERGO repository6. The Weighted
Constraint Satisfaction Problem (WCSP) allows to express optimization problems [34]. Like for CSP instances, from
each WCSP instance I, we build a hypergraph whose vertices correspond to the variables of I and the hyperedges
correspond to the scopes of its weighted constraints (or cost functions). Note that these hypergraphs are computed
after applying a preprocessing step on the original WCSP instances. This preprocessing step is performed thanks
to Toulbar27. It consists in enforcing VAC (for Virtual Arc-Consistency [35]) and applying the MSD (for Min Sum
Diffusion) algorithm with 1,000 iterations. It is usually exploited in this community and may lead to reduce the
number of variables and cost functions before solving the instances.

• BH : We consider 2,871 hypergraphs from the HyperBench repository8 [36, 37, 38, 39, 40]. These hypergraphs have
been produced from Conjunctive Queries and CSP instances with the aim in view to study their hypertree width,
generalized hypertree width and fractional hypertree width [41].

• BMC : We consider 511 instances of model counting from the Cachet repository9 [42]. Each instance models a
Bayesian Inference problem as a weighted model counting instance. From each instance I, we build a hypergraph
whose vertices correspond to the Boolean variables of I and the hyperedges correspond to its clauses.

• BMN : We consider 389 Markov networks from the Probabilistic Inference Challenge 201110. From each instance I,
we build a hypergraph whose vertices correspond to the variables of I and the hyperedges correspond to the scopes
of its functions.

Table 2 provides some information about the hypergraphs of each category, namely the minimum, maximum, average
and standard deviation for the number of vertices, the number of hyperedges, the maximum size of hyperedges and the
treewidth for each category. Finally, we denote Ball the union of the five categories. So Ball involves 11,302 hypergraphs.

4.3 Optimality and Runtime of k-PH

In this part, we aim to assess how close k-PH can be to optimality. For this purpose, we consider the percentage of
hyperedges that are retained by k-PH when the parameter k is set to the treewidth of the considered hypergraph plus
one. The higher the percentage is, the closer k-PH will be to optimality.

Table 3 presents the number of hypergraphs depending on the percentage of hyperedges retained by k-PH for Hα and
H∩. First, we can observe that about 12.5% of hypergraphs (respectively 13%) in Ball are optimally processed by k-PH
with Hα (resp. H∩). These hypergraphs are not necessarily α-acyclic. Indeed, there exist 20 α-acyclic hypergraphs in
BCSP (resp. 484 in BH and 5 in BMN) while there is none in BWCSP and BMC . Note that all the α-acyclic hypergraphs
except 20 are also β-acyclic. Now, we consider the algorithm MCS [19] in order to determine whether the 2-section of a
hypergraph is chordal. If not, we exploit the number of edges that will be added if we triangulate the 2-section according
to the elimination order produced by MCS. This number allows us to estimate how the 2-section is close to being chordal.
We then observe that 1,117 hypergraphs have a chordal 2-section among the hypergraphs which are processed optimally.
This number includes of course the 509 α-acyclic hypergraphs. Moreover, 131 hypergraphs are close to being chordal with
at most 10 edges added by the triangulation based on MCS. In the same spirit, we remark that k-PH with Hα and H∩
respectively retains more than 75% of hyperedges for about 93% and 96% of hypergraphs having a chordal 2-section (1,632

3github.com/TCS-Meiji/PACE2017-TrackA
4http://www.CSP.org/series
5http://genoweb.toulouse.inra.fr/~degivry/evalgm
6http://carlit.toulouse.inra.fr/SoftCSP/Files/cflibtars/ergo.tgz
7https://miat.inrae.fr/toulbar2/
8hyperbench.dbai.tuwien.ac.at
9https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/index.htm

10https://www.cs.huji.ac.il/project/PASCAL/

14

github.com/TCS-Meiji/PACE2017-TrackA
http://www.CSP.org/series
http://genoweb.toulouse.inra.fr/~degivry/evalgm
http://carlit.toulouse.inra.fr/SoftCSP/Files/cflibtars/ergo.tgz
https://miat.inrae.fr/toulbar2/
hyperbench.dbai.tuwien.ac.at
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/index.htm
https://www.cs.huji.ac.il/project/PASCAL/

n e m w

BCSP

min 6 5 2 1
max 9,226 77,327 181 200
avg. 97.47 506.25 4.48 20.71

std dev. 192.45 3,101.11 7.05 17.12

BWCSP

min 4 11 2 3
max 1,689 120,792 68 485
avg. 95.48 1,470.71 2.36 19.77

std dev. 108.39 6,088.28 2.45 33.11

BH

min 2 2 2 1
max 1,454 893 145 144
avg. 55.50 53.80 6.44 14.48

std dev. 72.50 47.08 6.43 12.99

BMC

min 100 250 4 10
max 672 828 5 30
avg. 172.48 332.53 4.88 22.25

std dev. 149.02 106.68 0.32 4.96

BMN

min 14 13 2 2
max 1,094 100,400 3 200
avg. 371.92 12,078.29 2.13 31.70

std dev. 367.37 23,445.22 0.33 33.59

Table 2: Minimum, maximum, average and standard deviation for the number of vertices, the number of hyperedges, the
maximum size of hyperedges and the treewidth for each category.

hypergraphs). At the same time, the corresponding percentage for non-chordal hypergraphs is about 82%. So, having a
chordal 2-section turns to be an interesting property to guarantee a result close to the optimality.

Now, if we compare the results obtained by k-PH with Hα and H∩, we can note that no heuristic outperforms the
other. Hα seems to perform better on the category BWCSP while Hα obtains better results on BH and BMN . The results
for BCSP depend on the desired percentage of retained hyperedges. Indeed, H∩ turns to be more relevant when this
percentage exceeds 90%.

Finally, we consider the runtime of k-PH. Table 4 provides the minimum and maximum runtime, the average runtime
and the standard deviation for the runtime of k-PH for Hα and H∩. Clearly, we can observe that Hα and H∩ lead to the
same behavior with respect the runtime. Indeed, on each category, the runtimes are very close. Moreover, whatever the
heuristic, applying k-PH requires very little time. In our experiments, the runtime does not exceed 3 minutes. Note that
this runtime is reached for a hypergraph from BWCSP having 500 vertices and 120,792 hyperedges and explains why the
standard deviation for BWCSP is larger than that of the other categories. Finally, it can be noted that, for 99.6% of the
considered hypergraphs, the runtime does not exceed 1 second. So our approach is very efficient.

Percentage # instances
of retained BCSP BWCSP BH BMC BMN Ball
hyperedges Hα H∩ Hα H∩ Hα H∩ Hα H∩ Hα H∩ Hα H∩

= 100% 373 373 125 118 841 902 0 0 71 71 1,410 1,464
≥ 95% 1,512 1,524 329 308 890 975 0 0 215 225 2,946 3,032
≥ 90% 2,345 2,440 861 736 1,092 1,215 0 0 256 280 4,554 4,671
≥ 85% 3,513 3,455 1,269 1,122 1,453 1,534 2 0 313 342 6,550 6,453
≥ 80% 4,715 4,527 1,382 1,330 1,969 2,009 23 6 375 381 8,464 8,253
≥ 75% 5,249 5,243 1,412 1,389 2,297 2,331 175 142 385 388 9,518 9,493
≥ 70% 5,450 5,449 1,454 1,413 2,469 2,471 489 499 388 389 10,250 10,221
≥ 65% 5,606 5,591 1,484 1,426 2,545 2,558 511 511 388 389 10,534 10,475
≥ 60% 5,820 5,762 1,506 1,431 2,685 2,681 511 511 388 389 10,910 10,774
≥ 55% 5,889 5,847 1,526 1,451 2,762 2,757 511 511 389 389 11,077 10,955
≥ 50% 5,962 5,928 1,535 1,486 2,819 2,796 511 511 389 389 11,216 11,110

Table 3: Number of hypergraphs depending on the percentage of hyperedges retained by k-PH for Hα and H∩ when k is
equal to the treewidth of the considered hypergraph plus one.

15

BCSP BWCSP BH BMC BMN

Hα H∩ Hα H∩ Hα H∩ Hα H∩ Hα H∩
min 2.3E-5 2.2E-5 3.7E-5 3.6E-5 1.0E-5 9.0E-6 4.8E-04 5.3E-04 1.3E-4 1.3E-4
max 40.110 40.721 177.307 179.737 0.009 0.008 0.007 0.007 2.449 2.394
avg. 0.017 0.016 0.361 0.363 4.5E-04 4.6E-04 0.002 0.002 0.138 0.137

std dev. 0.598 0.599 6.654 6.640 5.1E-04 4.8E-04 0.001 0.001 0.423 0.421

Table 4: Minimum and maximum runtime, average runtime and standard deviation for the runtime of k-PH for Hα and
H∩ when k is equal to the treewidth of the considered hypergraph plus one.

4.4 Behavior of k-PH Depending on the Value of k

In this part, we evaluate the behavior of k-PH when we do not make an assumption on the value of the treewidth of
the considered instance. This makes sense from a practical viewpoint because it is not always possible to compute it
for a matter of time, depending on the size of the instances. At this aim, we assess the behavior of k-PH on the whole
benchmark Ball by varying the value of k as a percentage of the number n of vertices. For each considered category, Figures
4-8 present, for each heuristic, the percentage of instances for which k-PH retains a given percentage of hyperedges when
k varies from 5% to 100% of the number of vertices in steps of 5%. Figure 9 does the same for the whole benchmark.

Whatever the considered category, we can observe that k-PH behaves similarly with Hα and H∩. However, we can
note that for a given k, k-PH with H∩ often turns out to be able to retain a few more hyperedges than k-PH with Hα.
This trend is clearly visible for the category BMC and less marked for the other categories.

Regarding the runtime of k-PH, again the heuristics Hα and H∩ lead to similar results. Processing any hypergraph
from BH or BMC requires less than one second whatever the heuristic we consider. Likewise, about 99% (resp. 97%) of
hypergraphs of BCSP (resp. BWCSP) are processed in less than one second. Processing a hypergraph among the remaining
ones of BCSP (resp. BWCSP) require at most 154 seconds (resp. 205 seconds). These runtimes are reached for the largest
hypergraphs in terms of number of hyperedges. The trend is different for BMN . Indeed, applying k-PH requires less than
one second for a percentage of hypergraphs varying between 68% and 95% depending on the value of k. For the remaining
hypergraphs, the runtime is generally about 30 seconds and rarely exceeds 4 minutes. Again, this concerns the largest
hypergraphs in terms of number of hyperedges.

5 Conclusion

In this paper, we have proposed an algorithm called k-PH which calculates for a given hypergraph and a given constant
k, a partial hypergraph for which the width of its 2-section is at most k − 1. We have also shown that k-PH allows
constructing an optimal partial hypergraph in the sense that all the hyperedges are selected for the case of α-acyclic
hypergraphs. To assess the efficiency of k-PH with respect to the optimality criterion related to the maximum number of
selected hyperedges, we performed experiments on a large benchmark including 11,302 instances from several communities.
These experiments show for example that for about 90% of the instances, more than 70% of the hyperedges are retained
in the calculated partial hypergraph when the value of k is equal to the treewidth plus one of the instances while runtimes
being limited in practice. Moreover, this algorithm can easily be adapted according to the considered objective of selection
of hyperedges. Indeed, one can thus add to it different heuristics which make it possible, for example, to take into account
weights for hyperedge to be selected in the partial hypergraph. This should make it easier to process different types of
graphical models. To conclude, the interest of this algorithm must now be evaluated for the treatment of graphical models.

Acknowledgement

This work has been funded by the Agence Nationale de la Recherche project ANR-16-CE40-0028.

Appendix A - Complexity of k-PH

The time complexity of k-PH cannot be evaluated without knowing in details the cost of the different internal treat-
ments such as Comp-CC, the computing of a new bag Bi, the computing of the sets Ni, NH′(Ni, Xi) and Si, the cost
of the heuristic H, and also, the cost of updating H ′. In order to make these different treatments efficient, several data
structures must be implemented and these must be detailed. Thus, after their description and the time evaluation of these
treatments, we evaluate the time complexity of k-PH. Before that, we recall some notations:

• n is the number of vertices in V ;

16

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

(a) (b)

Figure 4: Percentage of instances for a given percentage of retained hyperedges when k is defined as a percentage of n for
Hα (a) and H∩ (b) (benchmark BCSP).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

(a) (b)

Figure 5: Percentage of instances for a given percentage of retained hyperedges when k is defined as a percentage of n for
Hα (a) and H∩ (b) (benchmark BWCSP).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

(a) (b)

Figure 6: Percentage of instances for a given percentage of retained hyperedges when k is defined as a percentage of n for
Hα (a) and H∩ (b) (benchmark BH).

17

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

(a) (b)

Figure 7: Percentage of instances for a given percentage of retained hyperedges when k is defined as a percentage of n for
Hα (a) and H∩ (b) (benchmark BMC).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

(a) (b)

Figure 8: Percentage of instances for a given percentage of retained hyperedges when k is defined as a percentage of n for
Hα (a) and H∩ (b) (benchmark BMN).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f
in

st
an

ce
s

k

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

(a) (b)

Figure 9: Percentage of instances for a given percentage of retained hyperedges when k is defined as a percentage of n for
Hα (a) and H∩ (b) (benchmark Ball).

18

• e is the number of hyperedges in E;

• d is the maximum degree among all the vertices in H (the degree d(v) of a vertex v is the number of hyperedges in
E containing v);

• r is the rank of the hypergraph, that is the maximum size of the hyperedges in E;

• N is the number of bags in the computed tree-decomposition.

A.1 Data structures

We present the different data structures required to run the algorithms. These data structures which were not described
in the previous section are used by k-PH in order to improve its complexity. They are updated in particular when
calculating the connected components, also for reasons of complexity. Before, note that the size of an input is in Θ(n +
e+ΣEi∈E |Ei|) which can be simplified by Θ(n+ΣEi∈E |Ei|).

(1) To represent and manage hypergraphs, we use arrays:

• One is indexed by the set of hyperedges E. For a given hyperedge Ei, it represents the list of the vertices included
in Ei. Its size and the cost of its initialization are in Θ(e+ΣEi∈E |Ei|).

• Another one is indexed by the set of vertices V . For a given vertex v, it represents the list of the hyperedges
containing v. Its size and the cost of its initialization are in Θ(n+ΣEi∈E |Ei|).

• To represent a partial hypergraph H ′ = (V,E′) of H = (V,E), we only need an array of Booleans indexed on the
set E of hyperedges which specifies the edges belonging to E′. Its size and the cost of its initialization are in Θ(e).

(2) An array B memorizes the set B of bags associated to the computed tree-decomposition. It is an array of lists in-
dexed by its rank during the computation. Each list represents the set of vertices of the corresponding bag. As the
number of bags is at most n (necessarily, we have N ≤ n), the cost of its initialization is in Θ(n) and its size is in
Θ(n+ΣBi∈B |Bi|) which is exactly the size of the result of k-PH.

(3) Throughout the execution, we manage a queue Q memorizing the connected components. So Q can express as a list
of connected component Xij , that is a list of sets. The size of such a data structure is bounded by the number of
vertices since it is a partition of a subset of the vertices of the hypergraph. The cost of its initialization is in Θ(1)
while at some point of the computation, its size is in O(n).

(4) Once Bi has been calculated, for the calculation of the associated connected components, we will use a marking table.
This array, called status[], is indexed by the set V of vertices. For a given vertex v, we have:

• status[v] = −1 if the vertex v belongs to a built bag,

• status[v] = j if the vertex v has been processed when computing the connected components of H ′ for the j-th
time,

• status[v] = 0 if the vertex v has never been considered.

The cost of its initialization and its size are in Θ(n).

(5) For the computation of bags, we use several data structures that allow to improve the efficiency of k-PH. These
data structures will be assigned after the computation of a new bag Bi, during the computation of the new connected
components Xij :

• A set of candidate hyperedges associated to each new connected component Xij . It is a list of hyperedges denoted
Sij . So, the data structure S is a list of lists of hyperedges. The cost of the initialization for S, for one Si (and
thus for one Sij) is feasible in constant time, i.e. in Θ(1). Note that in the description of the algorithm k-PH,
when a set Xi is removed from the queue Q to compute a new bag Bi, such a list Sij is denoted Si.

• For a new connected components Xij which will be considered later to find a future bag, we memorize the
possible potential parent bags (to connect it to the future new bag in the resulting tree-decomposition). These
are bags Bℓ already calculated (i.e. such that 1 ≤ l ≤ i) and such that there exists a hyperedge intersecting
simultaneously Xij and Bℓ. Such bags will be represented in a list denoted Pij . So, we need a data structure P
which is a list of lists of bags, and, the cost of the initialization for P , for one Pi (and thus for one Pij) is feasible
in constant time, i.e. in Θ(1).

19

• An array of lists called Bag lists represents the connections between hyperedges and bags: this array is indexed
by the hyperedges Ei, and for a given Ei, the associated list contains all the bags Bj such that Bj ∩Ei ̸= ∅. The
cost of the initialization of Bag lists is feasible in Θ(e) and its size is in O(e ·N).

A.2 Implementation and Time Complexity Analysis

We can now analyze the complexity of k-PH. To do so, we must analyze each of its different steps, that is computation
of a new bag Bi, update of H ′, and the computation of new connected components. In k-PH, the computation of a new
bag is realized using a heuristic H. Since different heuristics can be considered, we assume that its time complexity is in
O(h). Note however that, whatever the heuristic considered, if a vertex v belongs to a new bag Bi, status[v] takes the
value −1.

After the evaluation of the complexity of k-PH, we assess the time complexity of the heuristic considered in Theorem
3 as an illustration.

5.0.1 Update of H ′

Once Bi is calculated, H
′ has to be updated by removing hyperedges Ej ∈ Si such that Ej ∩Ni ̸⊂ Bi and Ej ∩Bi ̸⊂ Ni.

To find such edges Ej , we simply browse Si, and select the hyperedges which satisfy these two conditions:

• (Ej ∩ Bi ̸⊂ Ni) Ej must contain at least one vertex x of Xi that belongs both to Bi and Ej : such a vertex verifies
status[x] = −1;

• (Ej ∩ Ni ̸⊂ Bi) Ej must contain at least one vertex y of Ni that does not belong to Bi: such a vertex verifies
status[x] > 0.

The complexity is thus related to the size of Si, and to the cost to visit each Ej . So, the cost is in O(|Si| · r) because
the size |Ej | of the hyperedges is at most m. Finally, each hyperedge can be removed from H ′ in constant time using the
array representing this partial hypergraph.

A.3 Calculation of Connected Components

In this part, we describe the algorithm Comp-CC. This algorithm computes, in a classical way, the connected compo-
nents Xij deduced from Bi in Xi. However, at the same time, for efficiency reasons, it also computes the sets Sij of the
candidate hyperedges for the construction of the future bags, and the sets Pij of the bags already found and that will be
candidates to be bags connecting the future bags to those already obtained (they will then be called parent bags). That
is why we give below a detailed description of this algorithm.

The Comp-CC algorithm actually considers as inputs the partial hypergraph H ′ = (V,E′), the set of vertices Xi,
the newly created bag Bi, the array status and the array of bags Bag lists. Note that the version we give here of the
Comp-CC algorithm has more arguments than the one used in the k-PH algorithm. This now makes it possible to specify
the implementation details needed for complexity analysis, details that had been deliberately omitted before in order to
lighten the presentation of the k-PH.

As outputs (and inputs) of the algorithm, we have:

• the set CC of connected components of the expanded subhypergraph H ′[[Xi \ Bi]]. These connected components
are noted Xij ;

• the set of sets S, where each set Sij ∈ S is associated with the connected component Xij and such that Sij represents
the candidate hyperedges for this component;

• the set of sets P , where each set Pij ∈ P is associated with the connected component Xij and such that Pij represents
the candidate parent bags for this component.

This algorithm (see Algorithm 2) works in a similar way to the one that calculates the connected components in graphs,
with a depth first search, except that it is adapted to the case of hypergraphs, and that it must update data structures
used in our framework. Note that in the code of the algorithm, the index j will be noted x, x being the vertex from which
a new descent will be made to find a new connected component.

The first step (lines 1-5) is devoted to initialize and update some data structures. Before, recall that the value of
i denotes the number of times the algorithm Comp-CC has been called since the beginning of the computation of the
partial hypergraph. In this step, we also update status (lines 4-5) in order to take into account the last computed bag (if
any). Then a new descent in the hypergraph is performed (line 7) for each vertex x of Xi which has not been reached yet
during the current call to Comp-CC (i.e. status[x] < i) and which does not belong yet to a built bag (i.e. status[x] ≥ 0).
It allows us to build a new connected component Xix for which x constitutes the first vertex (line 12). This vertex is

20

inserted in a stack called Sta and initializations are realized (lines 8-10). At the same time, x is marked as visited for
the current call to Comp-CC (line 11). From there, the connected component Xix is computed starting from vertex x
(lines 13-27). To do this, we first select an untreated vertex y in Sta and remove it from Sta (line 14). From this vertex,
all hyperedges Ej containing y must be considered (note that the considered hyperedges Ej are those of which a part
appears in the expanded subhypergraph H ′[[Xi \ Bi]]). First, if all the vertices of Ej which belong to a computed bag
appears in Bi, it means that Ej is necessarily connected to Bi (lines 16-17). Afterwards, these hyperedges are exploited
by determining the already computed bags that intersect Ej because the latter are potential parents of the bag that will
be constructed from Xix (lines 18-19). Then, the vertices z of each Ej hyperedge are processed depending on their status
(lines 20-27). If the vertex z belongs to an already constructed bag (1 ≤ status[z] ≤ i), the hyperedges containing it must
then be selected (lines 21-22) because they will be candidate hyperedges for the future construction of a bag from Xix .
Otherwise, if z has never been reached during the current call (i.e. 0 ≤ status[z] < i), z is added both to the stack and the
component Xix and is marked as visited for the current called (lines 24-27). In another case, i.e. if status[z] = num, the
processing concerning z has already been carried out and so of course there is nothing else to do. Each descent into the
hypergraph continues until the stack is empty. Once the stack is empty, Xix contains a new connected component that
will be added to CC, and the process can continue until all the vertices of Xi have been reached. Finally the related data
structures are adequately updated (lines 28-32). Note that, in some particular cases, Pix and Six are empty at the end of
loop of lines 6-27. This occurs when the new connected component Xix cannot be linked to an existing bag (e.g. for the
first call to Comp CC). When this phenomenon happens for another call than the first one, it means that H ′ has several
connected components. In such a case, we consider for Six all the hyperedges which are included in Xix (lines 28-29).

Remark that by marking a vertex as visited by setting its status to the value of i, we avoid resetting status at each
called of Comp CC.

Algorithm 2: Comp-CC

Input: Rank i of the current call, a hypergraph H′ = (V,E′), a set of vertices Xi, a bag Bi, an array of bags Bag list, an array
status, a set of sets of hyperedges S, a set of sets of parents bags P

Output: A set of connected components CC, a set of sets of hyperedges S, a set of sets of parents bags P
1 CC ← ∅
2 Pi ← ∅
3 Si ← ∅
4 for x ∈ Bi do
5 status[x] = −1
6 for x ∈ Xi do
7 if 0 ≤ status[x] < i then
8 Sta ← {x}
9 Pix ← ∅

10 Six ← ∅
11 status[x]← i
12 Xix ← {x}
13 while Sta ̸= ∅ do
14 Select y from Sta and remove it
15 for Ej ∈ E′ | y ∈ Ej do
16 if {z ∈ Ej |status[z] = −1} ⊆ Bi then
17 Bag list[Ej]← Bi

18 for bag ∈ Bag list[Ej] do
19 Pix ← Pix ∪ {bag}
20 for z ∈ Ej \ {y} do
21 if status[z] = −1 then
22 Six ← Six ∪ {Ej}
23 else
24 if status[z] < i then
25 Add z to Sta
26 status[z] = i
27 Xix ← Xix ∪ {z}

28 if Pix = ∅ then
29 Six ← {Ej ∈ E′|Ej ⊆ Xix}
30 Pi ← Pi ∪ {Pix}
31 Si ← Si ∪ {Six}
32 CC ← CC ∪ {Xix}

33 return CC

Proposition 1. The time complexity of Comp-CC for a bag Bi is in O(|Xi| · d · n).

21

Proof: The initialization phase for the data structures (lines 1 to 3) can be done in constant time while the update of
status is achieved in O(|Bi|). There will be exactly |Xi| passes in the for loop (lines 6-27) and thus, the test of line 7 will
be realized |Xi| times. However, the number of times the test is true will be exactly equal to the number of connected
components, i.e. |CC| times. The initializations of lines 8-12 can be carried out in constant time. Overall, they will be
realized |CC| times. As all the vertices of Xi will be processed, and at most once, there will be globally less than |Xi|
passes in the while loop (because of the vertices in Bi). In fact, there will be exactly as many passes globally in this
loop as there will be vertices in the new computed connected components, namely precisely |

⋃
Xix | < |Xi|. For a given

vertex y, the loop of line 15 is performed at most d(y) times, i.e. the number of hyperedges to which it belongs in H.
This number can be bounded by d. For one pass in this loop:

• Lines 16-17 can be achieved in O(|Ej | · |Bi|), and so in O(r · k) since we have |Ej | ≤ r and |Bi| ≤ k.

• The processing of line 18 is possible in constant time (this is possible by using an array of Booleans for the temporary
management of this step with a global cost in Θ(n) for Comp-CC), the cost of lines 18 and 19 is of the order of
|Bag list[Ej]|, i.e. less than N .

• For one vertex y, there are exactly |Ej |−1 entries through the loop of line 20, which is bounded by r because for all
Ej ∈ E, we have |Ej | ≤ r. For a given vertex z, the processing performed in lines 21-27 can be done in constant
time (for Six as for Pix , this is possible by using an array of Booleans for the temporary management of this step
with a global cost in Θ(n) for Comp-CC).

Summarizing, this means that for a given vertex y, the cost of lines 15-27 is at most by O(d · (N + r ·k)) (N.B.: lines 18-19
can be replaced by a single line like Pix ← Pix ∪ Bag list[Ej]). As globally, we will have less than |Xi| vertices y to
process, the global cost of lines 13-27 is thus bounded by O(|Xi| · d · (N + r · k)). Finally, performing lines 30-32 is feasible
in constant time. So, their overall cost is in O(|CC|). Thus we have O(|Xi| ·d · (N +r ·k)+ |CC|+ |Xi|), and as necessarily
we have |CC| ≤ |Xi|, the complexity of Comp-CC for a Bi bag is thus O(|Xi| · d · (N + r · k)). We have N ≤ n and r ≤ k.
So, as k is a constant, we obtain a complexity in O(|Xi| · d · n). 2

A.4 Complexity of k-PH

We can now assess the complexity of k-PH. For this, we assume that the cost of the considered heuristic H is h.

Theorem 2 (proof). The time complexity of k-PH is in O(N(h+ e · r + n · d(N + r))).

Proof: First of all, it is obvious that the cost of initializing the data structures is lower than the total cost of the algorithm.
The while loop is performed at most N times, the number of bags in the resulting tree-decomposition. Each time there
is a pass through this loop, a new bag is calculated, and the cost of the calculation of a new bag in exactly Θ(h). Note
that the Bag list[] update does not appear in k-PH. This can be done just after the computation of the bag Bi and the
cost of this update is achievable in O(k · d · N). We know that the cost of updating H ′ is O(|Si| · r) with |Si| ≤ e and
that, for a new bag Bi, the cost of a Comp-CC call is O(|Xi| · d · (N + r)). Since the size of Xi is bounded by n, the cost
for each Comp-CC is actually O(n · d(N + r)). Such a size for Xi may occur if the 2-section of the input hypergraph is
a (k+1)-tree, formed by a single path. Thus, at each pass, the new connected component will contain all the vertices not
yet included in a bag, and there will be only one vertex less in the next connected component. Finally, the total cost of
k-PH is therefore O(N(h+ e · r + n · d(N + r))). 2

To give an illustration of this complexity, we now propose an evaluation of the complexity of the heuristicHα considered
for Theorem 3. This one first chooses a bag Bℓ with the largest intersection with Ni and then, chooses as the first new
hyperedge to be in Bi a hyperedge that shares the maximum number of vertices with Bℓ. The other hyperedges to be
added to Bi are chosen in descending order of the size of their intersection with Bℓ. This processing takes as inputs a
connected component Xi, the set of candidate hyperedges Si (a list stored in S), and the list of bags Pi (a list stored in
P) already calculated and which can connect the new bag to one already obtained. So, we analyze first, the selection of
Bℓ, then the computation of Bi:

• Selection of Bℓ.

– The first step is to calculate the set Ni. This is possible by browsing Si, and inserting in Ni, for each hyperedge
Ej , the vertices that are not in Xi. Note that Xi is represented by a list, but for efficiency, we can also represent
Xi by an array of Booleans indexed by the vertices. At the initialization step of k-PH, this array is initialized
to zero and when processing a new set Xi, just assign its elements to 1. Once the calculation of Bi has been
performed, all corresponding elements are reset to zero. This will result in a linear cost in the size of Xi. We

22

can do the same for Ni. Remember that the cost of visiting a hyperedge Ej is in Θ(|Ej |), and therefore in
O(r). Thus, the cost of the calculation of Ni is O(|Xi|+ |Si| · r).

– The calculation of Bℓ is performed using Ni and Pi. To do this, we have to consider each element of Pi, i.e.,
all the bags already calculated that are candidates. For each bag, its elements present in Ni are counted. As
the size of the bags is at most k, the complexity is O(|Pi| · k).

To summarize, the time complexity of the calculation of Bℓ is therefore O(|Xi|+ |Si| · r + |Pi| · k).

• Computation of Bi. All the hyperedges in Si must be visited and for each one, the size of its intersection with Bℓ is
computed. To do this, we can proceed as above, using an array of Booleans initialized to 1 for all the elements of Bℓ.
Then for each hyperedge, we consider the size of its intersection with Bℓ. Moreover, we can order the hyperedges
of Si according to the size of this intersection. To carry out this sorting, it is possible to have a data structure
which would proceed by addressing in an array of size r and whose each entry would contain a list memorizing the
hyperedges of the corresponding size. We just have to visit the set of ordered hyperedges and check which ones can
be added to Bi. This treatment can be done in O(|Si| · r) since all the hyperedges in Si will be examined and the
cost of treatment of a hyperedge is linear in its size, that is to say in O(r). Note that at the end of this treatment,
if a vertex v belongs to this new bag Bi, the value i is assigned to status[v].

Thus, the cost of executing this heuristic is O(|Xi|+ |Si| · r + |Pi| · k). Knowing that |Xi| ≤ n, |Si| ≤ e and |Pi| ≤ n,
one can thus bound the cost of this heuristic by O(n+ e · r + n · k) = O(n · k + e · r).

This gives an illustration of the time complexity of k-PH by specifying O(N(h + e · r + n · d(N + r))) = O(N(n ·
k + e · r + n · d(N + r))). This expression can be rephrased if we consider certain upper bounds. Indeed, we know that
N ≤ n, we thus obtain the complexity O(n(n · k + e · r + n · d(n+ r))) = O(n · n · k + n · e · r + n · n · d · n+ n · n · d · r) =
O(n2 · k+ n · e · r+ n3 · d+ n2 · d · r) = O(n2 · (k+ n · d+ r · d) + n · e · r). On the other hand, if we also consider that the
width k− 1 is a constant, and therefore that the treatments will only consider hyperedges whose size is less than or equal
to k, this complexity can be reduced to O(n3 · d+ n · e).

References

[1] T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems: hard and easy problems. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence, pages 631–637, 1995.

[2] U. Montanari. Networks of Constraints: Fundamental Properties and Applications to Picture Processing. Artificial
Intelligence, 7:95–132, 1974.

[3] R. Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.

[4] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.

[5] R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms. Morgan and
Claypool Publishers, 2013.

[6] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. J. ACM, 30:479–
513, 1983.

[7] N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of treewidth. Algorithms, 7:309–322, 1986.

[8] B.-M. Bui-Xuan, J.A. Telle, and M. Vatshelle. Rank-width and vertex-minors. Theoretical Computer Science,
412(39):5187–5204, 2011.

[9] J. Jeong, S.H. Sæther, and J.A. Telle. Maximum matching width: new characterizations and a fast algorithm
for dominating set. In Proceedings of the 10th International Symposium on Parameterized and Exact Computation
(IPEC), 2015.

[10] J. Gajarsky, M. Lampis, and S. Ordyniak. Parameterized Algorithms for Modular-Width. CoRR abs/1308.2858,
2013.

[11] P. Wollan. The structure of graphs not admitting a fixed immersion. Journal of Combinatorial Theory Series B,
110:47–66, 2015.

23

[12] J. Nesetril and P. Ossona de Mendez. Bounded height trees and tree-depth. In Sparsity: Graphs, Structures, and
Algorithms, Algorithms and Combinatorics 28, pages 115–144. Springer, 2012.

[13] B. Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Information and
Computation, 85(1):12–75, 1990.

[14] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition Methods. Artificial Intelli-
gence, 124:243–282, 2000.

[15] P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint networks. Artificial
Intelligence, 146:43–75, 2003.

[16] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local Consistency in Weighted
CSP. In Proceedings of AAAI, pages 22–27, 2006.

[17] S. Arnborg, D. Corneil, and A. Proskuroswki. Complexity of finding embeddings in a k-tree. SIAM Journal of
Discrete Mathematics, 8:277–284, 1987.

[18] K. Hirata, M. Kuwabara, and M. Harao. On Finding Acyclic Subhypergraphs. In Fundamentals of Computation
Theory, 15th International Symposium, FCT 2005, Lübeck, Germany, August 17-20, 2005, Proceedings, volume 3623
of Lecture Notes in Computer Science, pages 491–503, 2015.

[19] R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hyper-
graphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13 (3):566–579, 1984.

[20] P. Jégou and C. Terrioux. A new filtering based on decomposition of constraint sub-networks. In 22nd IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2010, Arras, France, 27-29 October 2010 -
Volume 1, pages 263–270, 2010.

[21] L.W. Beineke and R.E. Pippert. Properties and characterizations of k-trees. Mathematika, 18:141–151, 1971.

[22] D. R. Karger and N. Srebro. Learning Markov networks: maximum bounded tree-width graphs. In Proceedings of
the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 392–401.
ACM/SIAM, 2001.

[23] Nathan Srebro. Maximum likelihood Markov networks: An algorithmic approach. Master’s thesis, Massachusetts
Institute of Technology, 2000.

[24] D. Shahaf, A. Chechetka, and C. Guestrin. Learning Thin Junction Trees via Graph Cuts. In Proceedings of the
Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida,
USA, April 16-18, 2009, volume 5 of JMLR Proceedings, pages 113–120. JMLR.org, 2009.

[25] A. Fix, J. Chen, E. Boros, and R. Zabih. Approximate MRF Inference Using Bounded Treewidth Subgraphs. In
Computer Vision - ECCV 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13,
2012, Proceedings, Part I, volume 7572 of Lecture Notes in Computer Science, pages 385–398. Springer, 2012.

[26] S. Nie, C. Polpo de Campos, and Q. Jih. Learning Bayesian Networks with Bounded Tree-width via Guided Search.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 3294–3300. AAAI Press, 2016.

[27] C. Berge. Graphs and hypergraphs. North-Holland, 1973.

[28] A. Hajnal and J. Suranyi. Uber die Auflosung von Graphen in vollstandige Teilgraphen. Ann. Univ. Sci. Budapest
Eotvos. Sect. Math. 1, MR21 -1944:113–121, 1958.

[29] G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, MR24 -57:71–76, 1961.

[30] D.R. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pacific J. Math., 15:835–855, 1965.

[31] C. Berge. Graphes et Hypergraphes. Dunod-France, 1970.

[32] R. Fagin. Degrees of Acyclicity for Hypergraphs and Relational Database Schemes. J. ACM, 30(3):514–550, 1983.

[33] H. Dell, C. Komusiewicz, N. Talmon, and M. Weller. The PACE 2017 Parameterized Algorithms and Computational
Experiments Challenge: The Second Iteration. In IPEC, pages 30:1–30:12, 2018.

[34] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, 2006.

24

[35] M. C. Cooper, S. de Givry, M. Sánchez, T. Schiex, and M. Zytnicki. Virtual arc consistency for weighted csp. In
AAAI, pages 253–258, 2008.

[36] W. Fischl, G. Gottlob, D. M. Longo, and R. Pichler. Hyperbench: A benchmark and tool for hypergraphs and
empirical findings. In PODS, pages 464–480, 2019.

[37] A. Bonifati, W. Martens, and T. Timm. An Analytical Study of Large SPARQL Query Logs. PVLDB, 11(2):149–161,
2017.

[38] A. Bonifati, W. Martens, and T. Timm. Navigating the Maze of Wikidata Query Logs. In WWW, pages 127–138,
2019.

[39] R. Pottinger and A. Y. Halevy. MiniCon: A scalable algorithm for answering queries using views. VLDB J., 10(2-
3):182–198, 2011.

[40] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, D. Santoro P. Papotti, and E. Tsamoura. Benchmarking the
chase. In PODS, pages 37–52, 2017.

[41] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 289–298. ACM Press, 2006.

[42] T. Sang, P. Beame, and H. A. Kautz. Performing Bayesian inference by weighted model counting. In AAAI, pages
475–482, 2005.

25

	Introduction
	Preliminaries
	Finding a Partial Hypergraph of Bounded Width
	Experimental Evaluation
	Experimental Protocol
	The Considered Heuristics

	Benchmarks
	Optimality and Runtime of k-PH
	Behavior of k-PH Depending on the Value of k

	Conclusion
	Update of H'

