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Memory complaints are highly prevalent among middle-aged and older adults,

and they are frequently reported in individuals experiencing subjective cognitive

decline (SCD). SCD has received increasing attention due to its implications for

the early detection of dementia. This study aims to advance our comprehension

of individuals with SCD by elucidating potential cognitive/psychologic-

contributing factors and characterizing cerebral hubs within the brain network.

To identify these potential contributing factors, a structural equation modeling

approach was employed to investigate the relationships between various factors,

such as metacognitive beliefs, personality, anxiety, depression, self-esteem, and

resilience, and memory complaints. Our findings revealed that self-esteem

and conscientiousness significantly influenced memory complaints. At the

cerebral level, analysis of delta and theta electroencephalographic frequency

bands recorded during rest was conducted to identify hub regions using a

local centrality metric known as betweenness centrality. Notably, our study

demonstrated that certain brain regions undergo changes in their hub roles

in response to the pathology of SCD. Specifically, the inferior temporal gyrus

and the left orbitofrontal area transition into hubs, while the dorsolateral

prefrontal cortex and the middle temporal gyrus lose their hub function in the

presence of SCD. This rewiring of the neural network may be interpreted as

a compensatory response employed by the brain in response to SCD, wherein

functional connectivity is maintained or restored by reallocating resources to

other regions.

KEYWORDS

memory complaints, subjective cognitive decline, structural equation modeling,
cognitive factors, graph theory

Introduction

As individuals reach middle-age and beyond, it is common for them to report memory
complaints, with the frequency of these complaints increasing as they age (Jonker et al.,
2000). Such complaints may be indicative of early cognitive impairment or dementia (Jessen
et al., 2014), as well as depression or anxiety symptoms (Balash et al., 2013). In 2014,
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an international group of researchers and clinicians, known as
the SCD-initiative (SCD-I) (Jessen et al., 2014), termed these
complaints subjective cognitive decline (SCD) (many others terms
exist for these perceived cognitive problems, including subjective
memory complaints, subjective cognitive impairment, subjective
memory impairment, functional memory disorder and other
terminology). Interestingly, individuals with SCD typically perform
within the normal range on neuropsychological tests of memory
and attention (Jonker et al., 2000), despite experiencing everyday
memory failures such as forgetting names or struggling to find
the right word and lack of the ability to concentrate (Snitz et al.,
2012). However, the awareness of these memory failures can cause
distress, leading to increased stress levels and further lapses in
memory (Mizuno et al., 2018). Warwick and Salkovskis (1990)
well describe a harmful cycle that individuals with SCD can
experience. Because of the lack of impairment on objective tests,
cognitive difficulties can only be measured through self-report
measures (Rabin et al., 2015). However, these measures vary and
can include tasks such as self-ratings of memory or comparing
current and past performance. This variation makes it challenging
to compare study results and can lead to the interference of
other factors. The factors susceptible to interacting with SCD are
numerous. One possible factor is the presence of anxiety and
depression states. While many older adults are aware of age-related
changes in cognition, those with anxiety and/or depression may
exhibit hypersensitivity to perceived cognitive failures, potentially
leading to an overreporting of complaints. Emotional distress is
frequently observed in subjects with SCD (for a comprehensive
review, see Knight and Durbin, 2015; Rabin et al., 2015; Desai
et al., 2021). Metacognitive beliefs are associated with SCD. Jenkins
et al. (2021) propose that individuals with more pronounced SCD
tend to exhibit poorer metacognitive function, negative affective
symptoms, and higher stress levels. People with SCD commonly
experience low self-esteem in memory-related tasks and anxiety
regarding their memory in demanding situations (Metternich et al.,
2009; Liew, 2020), reinforcing the role of anxiety and highlighting
the influence of self-esteem in SCD. The role of personality factors
in SCD has been well-documented (for a comprehensive review, see
Koller et al., 2019). Notably, neuroticism has been identified as a
significant factor in SCD (Comijs et al., 2002). Resilience, denoting
the ability to cope in the face of adversity, has been extensively
studied in the context of coping with Alzheimer’s disease (AD)
pathologies. It has been identified as a factor that may contribute to
delaying the onset of cognitive impairment (Arenaza-Urquijo and
Vemuri, 2018). In summary, the factors contributing to SCD are
numerous and complex, necessitating further evaluation.

SCD has gained attention as a potential early indicator of
dementia. Research has shown that SCD is linked to an elevated
risk of developing AD and progressive cognitive impairment, as
evidenced by various clinical and neuroimaging studies (Jessen
et al., 2020; Liew, 2020). Inconsistencies in results were occasionally
observed, and these discrepancies may be linked to variations in
subject recruitment types. The methods employed in sampling and
recruitment play a crucial role in SCD research (Rodríguez-Gómez
et al., 2015). Notably, patients sourced from memory clinics often
exhibit higher levels of cognitive impairment compared to those
from population samples (Kuhn et al., 2019). According to the
findings reviewed by Pini and Wennberg (2021), structural imaging
studies indicate significant differences in brain atrophy patterns

between SCD clinical and community samples. To investigate the
key brain regions involved in SCD, biochemical, structural, and
functional approaches have been utilized, with several regions
such as the medial temporal and occipitoparietal regions being
implicated (for review, see Wang et al., 2020). Graph theory is
a useful methodology for investigating the human connectome.
With this approach, the brain can be conceptualized as a set of
nodes interconnected by a set of edges (Bullmore and Bassett,
2011). Graph theory metrics, which are used to assess the functional
properties of brain networks at global and nodal levels, provide
information on the network’s ability to process information within
densely interconnected groups of brain regions (Pereira et al.,
2016). These metrics have been used to examine network topology
in healthy individuals as well as in those with neuropsychiatric and
neurodegenerative conditions such as depression, schizophrenia,
and AD (Achard et al., 2006; Kabbara et al., 2017). In SCD,
recent investigations have examined brain alterations using graph
network properties with functional MRI (Li et al., 2018) and
structural MRI data (Fu et al., 2022) during rest. These studies have
consistently demonstrated that SCD patients exhibit lower values in
local network metrics (e.g., degree, shortest path length, clustering
coefficient, local efficiency) compared to controls. However, they
also indicate preserved global network properties such as small-
worldness, modularity, and transitivity. Notably, only a limited
number of studies have investigated graph metrics in SCD and non-
SCD populations using magnetoencephalography (MEG) data.
López-Sanz et al. (2017, 2018) found decreased clustering in the
theta and beta bands, as well as increased transitivity in the alpha
band in SCD individuals. Furthermore, at a nodal level, SCD
patients exhibited increased activity in the left post-central node
in the beta band. Resting-state electroencephalographic (EEG)
studies are relatively scarce in this area. EEG stands as a distinctive
non-invasive method that, when coupled with advanced signal
processing algorithms, is progressively evolving into a promising
neuroimaging approach (Michel and Murray, 2012; Hassan and
Wendling, 2018). In SCD individuals, using graph theory on EEG
data, Lazarou et al. (2020) reported no statistically significant
differences at the global level using a wide frequency range (0.3 Hz
to 75 Hz), but at the nodal level, SCD individuals showed lower
clustering and strength, as well as higher betweenness centrality
compared to healthy older individuals. It is important to note that
nodal analyses in these studies were only focused on the parietal
lobe, highlighting the need for further exploration of network
topographical properties in individuals with SCD.

The aim of the current study was to advance our
comprehension of individuals with SCD by elucidating potential
cognitive/psychologic-contributing factors and characterizing
cerebral hubs within the brain network. To identify these potential
contributing factors, a structural equation modeling approach was
employed to examine the relationships between factors such as
metacognitive beliefs, personality, anxiety, depression, self-esteem,
resilience, and memory complaints. The composite score derived
from this analysis was used to select the participants employed
in the brain analysis. This composite score, calculated for each
participant, offers the advantage of taking into account the entirety
of the factors included in the study and their respective weights.
EEG source connectivity was utilized to reconstruct functional
brain networks across various frequency bands. Graph theory
analyses were applied to assess the topographical organization of
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brain networks during a resting state. To achieve this objective,
we initially measured the similarity between brain networks of
individuals with non-SCD and SCD using a newly developed
algorithm known as SimiNet (Mheich et al., 2018). This algorithm
incorporates the physical positions of nodes in the computation of
similarity between two brain graphs. Subsequently, we specifically
examined the nodal characteristics of these two networks by
analyzing graph centrality measures. Centrality serves as a
significant network metric as it reveals the nodes that hold critical
positions within the entire network. These nodes, commonly
known as network hubs, along with central regions, form a central
core that exhibits extensive interconnections. These regions are
particularly noteworthy as they are involved in various cognitive
functions, making them valuable for investigating network
alterations associated with neurological disorders. The exploration
of these regions has the potential to provide insights into the
underlying mechanisms of such diseases (Achard et al., 2006;
Miraglia et al., 2017). In this study, the measure of betweenness
centrality (BC) was employed to identify hubs within the brain
networks. BC is a local metric that characterizes the centrality
of a graph by considering the shortest paths and quantifies the
extent to which nodes act as intermediaries between other nodes
(Rubinov and Sporns, 2010). Building upon previous research
highlighting EEG alterations in the delta and theta frequency
bands among individuals with SCD, graph theory analyses were
conducted specifically on these two frequency bands. Notably, delta
and theta EEG signals have consistently exhibited differences in
SCD compared to non-SCD individuals, irrespective of the type of
analysis performed, be it spectral power or functional connectivity
(Gaubert et al., 2019; Babiloni et al., 2020). Dubois et al. (2016)
and Lazarou et al. (2019) have highlighted the scarcity of studies
investigating EEG analyses in individuals with SCD compared
to non-SCD individuals. Furthermore, discrepant findings have
been reported within the existing literature. Some studies have
observed an increase in delta and theta power among SCD patients
compared to healthy older individuals (Babiloni et al., 2020), while
others have demonstrated a decrease in delta power specifically in
the frontocentral regions (Gaubert et al., 2019).

The objectives of the present study were to enhance our
understanding of individuals with SCD by identifying potential
cognitive and psychological factors contributing to their condition
and by characterizing hub regions within the brain network. We
hypothesized that individuals with SCD, when compared to those
without SCD, would exhibit inferior performance in areas such
as metacognitive beliefs and personality traits. At the cerebral
level, we postulated a reassignment of roles in certain key regions,
particularly those within the resting-state networks.

Materials and methods

Participants

At first, the study recruited 116 individuals aged 60 or above
from the general population through advertisements. The study
was carried out in accordance with the Declaration of Helsinki
and was approved by the “Comité de Protection des Personnes
Sud Méditerranée” (agreement n◦ 19.09.12.44636-AF), and every

subject gave their written informed consent to participate. The
participants provided information on their medical history,
underwent a neuropsychological test battery, and were interviewed
about their functional ability and lifestyle. To be eligible for
the study, participants had to be able to live independently (as
determined by the Activities of Daily Living scale) and not have any
medical, psychiatric, or neurological conditions that could affect
brain structure or function, including depression [assessed using
the Geriatric Depression Scale (GDS), Yesavage et al., 1982] and
anxiety [assessed using the State Trait Anxiety Inventory form
Y-A and Y-B (STAI Y), Spielberger et al., 1983]. They also had to
perform normally on cognitive tests, not be taking psychoactive
medications, and not have any sensory impairments that could
interfere with cognitive testing. Participants were excluded from
the study if they had a clinical diagnosis of mild cognitive
impairment (MCI) or dementia based on self-reported medical
diagnosis, self-reported cognitive decline that could be attributed
to a psychiatric or neurological disorder, a history of head injury or
medical condition, the use of medication (both prescribed and non-
prescribed) that could affect cognitive function, or substance abuse.
Participants were submitted to a battery of neuropsychological
tests and filled out several anonymous self-report questionnaires
approximately 2 weeks before EEG experiment.

Neuropsychological tests

The neuropsychological battery included global cognition
assessment with the Mini- Mental State Examination (MMSE)
(Folstein et al., 1975), memory evaluation with the RL/RI-16 Test
(Grober and Buschke, 1987) and the Boston Naming Test (BNT)
(Kaplan et al., 2001), executive abilities with the Stroop Color
Word Test (Scarpina and Tagini, 2017), the Digit Span backward
(Wechsler, 2018), and the Trail Making Test form A and B
(Tombaugh, 2004); fluency measures with the Letter and Category
Verbal Fluency test (Benton, 1968), visuo-spatial skills with the
Rey-Osterrieth Complex Figure Copy (Berry et al., 1991).

Questionnaires

The test battery comprised questionnaires to measure (1)
cognitive complaints: Cognitive Change Index (Self report) (CCI-
S) evaluating one’s memory performance, executive function,
and language (Rattanabannakit et al., 2016); Self-assessment
of Cognitive Deficits (CDS) (McNair and Kahn, 1983), and
Prospective and Retrospective Memory Questionnaire (PRMQ)
evaluating one’s Prospective memory, Retrospective memory,
self-cued memory, environmentally-cued memory, short-term
memory, long-term memory (Guerdoux-Ninot et al., 2019);
(2) metacognitive beliefs: Meta-Cognitions Questionnaire 30
(MCQ-30), containing five domains which are Positive Beliefs,
Beliefs about Uncontrollability and Danger, Cognitive Confidence,
Beliefs related to Superstition, Punishment, and Responsibility,
Cognitive Self-Consciousness (Dethier et al., 2017); (3) personality
factors: 10-item Big-Five Inventory containing five factors
which are Extraversion, Agreeableness, Emotional Stability,
Conscientiousness, Openness to Experience (BFI-10) (Courtois
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et al., 2020); (4) self-esteem: French version of the Rosenberg Self-
Esteem Scale (Gana et al., 2005); (5) resilience: Connor-Davidson
Resilience Scale (CD-RISC) (Connor and Davidson, 2003).

The participants were divided into two groups, the SCD
and non-SCD groups, based on their scores on the CCI-S test.
The validated cut-off values for grouping were used, which were
established in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study and can be found on the ADNI website (Risacher
et al., 2015).1 These cut-offs were based on the first 12 items of
the CCI-S that relate to memory concerns (CCI-S memory), and
individuals scoring 20 or higher on these items were considered to
have memory concerns.

Demographic measures, neuropsychological tests, and
questionnaires were analyzed using XLSTAT software. Two-
tailed p-values were reported, and t-tests were used for normally
distributed variables, while the Mann-Whitney U test was used for
non-normally distributed variables.

Partial least squares structural equation
modeling

To identify potential contributing factors to memory
complaints and examine how they relate to each other, an advanced
statistical method known as partial least squares structural equation
modeling (PLS-SEM) was used. As described previously (Paban
et al., 2018), PLS-SEM is an advanced statistical method based on
exploratory techniques (Bollen and Lennox, 1991). Unlike other
techniques, PLS-SEM does not require making assumptions about
data distribution, and it works effectively with small sample sizes
and complex models (Hair et al., 2021). The method evaluates
the relationship among latent variables or constructs, which are
comprised of several items that measure a single concept. By
representing the relationships between constructs in a diagram,
circles denote constructs, and arrows indicate relationships. The
path model is converted into a set of equations that describe a
measurement model and a structural model (Haenlein and Kaplan,
2004). PLS-SEM computes a composite score for each participant,
which accounts for all the factors included in the model and
their respective weights. The validity of the measurement model
was assessed using internal consistency, convergent validity, and
discriminant validity. Composite reliability of the items was used
to calculate internal consistency, and the convergent validity
was evaluated based on the average variance extracted (AVE)
scores for each construct and the outer loading of each indicator.
Discriminant validity was assessed by examining the cross-loading.
Regarding the structural model, the quality of the relationships
was measured by the R2 metric, which measures the level of the
explained variance of the composites. Statistical comparisons of
path coefficients among the two groups of subjects were performed
using multigroup comparison methods offered by the XLSTAT
software within the framework of PLS path modeling presented by
Goles and Chin (2005). A non-parametric permutation test with
10,000 permutations was used, and statistical significance was set
at p ≤ 0.05.

1 http://www.adni-info.org

EEG recording and preprocessing

Fifty participants were involved in a resting-state study where
EEG data were collected. Among them, 26 participants were
classified as belonging to the SCD group, while the remaining
24 participants were categorized as the non-SCD group based
on their composite scores provided by the PLS-SEM analysis.
Each EEG session consisted of a 5-min period where participants
were instructed to close their eyes and relax. Participants were
seated in a dimly lit room, were instructed to close their eyes and
then to simply relax until they were informed that they could
open their eyes. The eyes-closed resting EEG recordings protocol
was chosen in order to minimize movement and sensory input
effects on electrical brain activity. EEG data were collected using
a 64-channel Biosemi ActiveTwo system (Biosemi Instruments,
Amsterdam, The Netherlands), following the standard 10–20
system montage. Additionally, two bilateral electro-oculogram
electrodes were employed to track horizontal eye movements.
Nasion-inion and pre-auricular anatomical measurements were
made to locate each individual’s vertex site. Data were digitized at
a sampling rate of 1,024 Hz. The impedance of the electrodes was
maintained below 20 kOhm.

To preprocess the EEG data, the EEGLAB software was used
(Delorme and Makeig, 2004). The recordings were bandpassed
(0.5–70 Hz) and undersampled to 256 Hz offline. The recorded
EEG signals underwent preprocessing following the PREP pipeline
described by Bigdely-Shamlo et al. (2015). Independent component
analysis (ICA) was applied to remove artifacts caused by eye blinks,
movement, and motion. The independent components (ICs) were
classified using the SASICA plugin, which provided detailed
information to guide the selection of artifact ICs (Chaumon et al.,
2015). The data were then segmented into consecutive epochs of
2 s. The number of rejected ICs varied among participants, ranging
from 3 to 10. An average of 100 artifact-free segments, each lasting
2 s, were used for further analysis.

Graph measures

Graph measures were obtained using several software,
including LORETA_KEY (low-resolution electromagnetic
tomography) package, SimiNet (Similarity Network), and BRAPH
(BRain Analysis using graPH theory). LORETA_KEY enabled
the researchers to estimate the intracerebral electrical sources
responsible for generating the recorded scalp activity within each
of the examined frequency bands (Pascual-Marqui et al., 2002). The
exact (e) LORETA method was employed as an inverse solution,
providing precise localization of brain activity with minimal
errors even in the presence of measured and structured biological
noise. For connectivity estimation between regions of interest
(ROIs), eLORETA intracortical lagged phase synchronization
was selected. These ROIs were defined based on the available
Brodmann areas (BAs) in both the left and right hemispheres,
resulting in a total of 58 defined ROIs. The decision to rely on
Brodmann areas was based on prior literature and the use of
software that exclusively employs this method. This approach has
been considered appropriate for computing resting-state networks
(Babiloni et al., 2016; Paban et al., 2018). Detailed information
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regarding the eLORETA connectivity algorithm can be found in a
previously published work (Pascual-Marqui, 2002). In summary,
an EEG source connectivity analysis was conducted by restricting
the source space to the gray matter, encompassing 6,239 voxels with
a spatial resolution of 5 mm, as defined by the digitized MNI152
template. We used a template source-space approach rather than
a subject-specific one, guided by prior findings indicating that
for healthy subjects, co-registration with the template resulted in
notably consistent connectivity and network estimates compared
to native MRI data (Douw et al., 2018). For each participant,
undirected weighted adjacency matrices were calculated within
two frequency bands: delta (1–4 Hz) and theta (4–8 Hz).

SimiNet algorithm was used to compute the similarity scores
between brain networks (Mheich et al., 2018). The algorithm
incorporates both nodes and edges in its computation of the
similarity index. In terms of nodes, the algorithm follows four key
steps: (i) identification of common nodes shared between the two
compared graphs, (ii) substitution of nodes with a substitution
cost equivalent to the distance between the replaced nodes, (iii)
insertion of new nodes with an insertion cost equal to a constant
value, and (iv) deletion of nodes with a suppression cost equal to
the insertion cost. The second step involves calculating the distance
between edges. This entails summing the differences in weight
between corresponding edges in the two compared graphs. The
algorithm generates a normalized similarity index, where 0 signifies
no similarity and 1 represents two identical networks with the same
properties and topology. Analyses were done for the delta and theta
frequency bands.

The computation of graph measures in this study was
performed using the BRAPH software (Mijalkov et al., 2017). In this
analysis, the nodes of the graph were defined as the voxel centroids
corresponding to the 58 regions of interest (ROIs). The edges of the
graph were established based on the lagged phase synchronization
values between the nodes. Graph topological properties were
assessed on the fully weighted undirected network for the delta and
theta frequency bands. In this study, the assessment of betweenness
centrality (BC) was conducted throughout the entire brain. BC
is a local metric that captures the functional relationships of a
specific node within the entire brain’s connectivity matrix (Rubinov
and Sporns, 2010). More specifically, BC quantifies the fraction
of all shortest paths in the graph that include a particular node.
Nodes with higher BC values are involved in a greater number of
shortest paths, indicating their importance in facilitating efficient
information flow within the network. Hub regions were defined
as nodes with BC values at least 1.5 standard deviations higher
than the mean. The resulting lists of ROIs were used to construct
a Venn diagram, a graphical representation that elucidates the
relationships between different sets or groups of items, facilitating
the comprehension of how two or more sets interrelate, thereby
simplifying the identification of shared properties and distinctions.
The Venn diagram yielded quantitative information, including the
number of ROIs in both the non-SCD and SCD groups, as well as
the size of the intersection. We categorized ROIs into three types:
(1) ROIs found in non-SCD, representing hubs observed in healthy
older individuals; (2) ROIs highlighted in SCD, representing hubs
associated with memory complaints; and (3) overlapped ROIs,
indicating common hubs in older subjects, whether or not they had
memory complaints.

Results

Neuropsychological analysis

From the original sample, 95 participants, between 60 and
86 years (mean age of 69.89 ± 0.95 years; 73 woman), were
enrolled in the study. All of them completed the battery of
neuropsychological tests and questionnaires. Education ranged
from 8 years of schooling to a PhD degree. The main demographical
and neuropsychological characteristics of all subjects (N = 95)
are summarized in Table 1. There were no differences between
SCD and non-SCD participants with regard to age, gender,
and years of education. Both groups exhibited normal results
on neuropsychological evaluations, as SCD individuals typically
perform within the expected range on such tests. However, it
is noteworthy that the SCD group demonstrated significantly
lower performance compared to the non-SCD group in the free
recall portion of the RL/RI test and the Letter verbal fluency
test (p ≤ 0.03).

Partial least squares structural equation
modeling analysis

The measurement model was elaborated using data from all
95 participants. Initially, a model was tested with all variables

TABLE 1 Group means and standard deviation (SD) of demographical and
neuropsychological characteristics of non-SCD and SCD groups (N = 95).

Non-SCD SCD p

n = 45 n = 50

Men/Women:
11/34

Men/Women:
11/39

Mean (S.D) Mean (S.D)

Age 69.75 ± 5.86 71.02 ± 7.33 0.10

Education (years) 14.11 ± 3.14 14.56 ± 3.04 0.48

CCI-S memory 16.31 ± 3.41 32.34 ± 5.03 <0.0001

Neuropsychological tests

MMSE 29.51 ± 0.59 29.24 ± 1.12 0.14

RL/RI-16 test

Free recall 11.27 ± 1.68 10.09 ± 2.20 0.004

Recognition 15.87 ± 0.40 15.74 ± 0.83 0.35

Rey-Osterrieth
Complex Figure recall

20.42 ± 5.83 20.26 ± 7.22 0.91

Verbal Fluency test

Category 35.56 ± 7.75 32.78 ± 8.16 0.09

Letter 24.93 ± 7.38 21.88 ± 6.18 0.03

Trail Making Test

Form A 41.33 ± 3.66 36.91 ± 1.83 0.36

Form B 80.05 ± 6.33 77.32 ± 5.42 0.66

Stroop 54.38 ± 8.18 47.86 ± 9.70 0.29

Digit Span backward 4.36 ± 0.93 4.12 ± 0.82 0.19

Boston Naming Test 54.49 ± 4.64 56.02 ± 3.99 0.09
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included, but variables that did not significantly contribute were
eliminated, resulting in a more restrictive model. Specifically, six
of height indicators in the ‘Neuropsychological tests’ construct
were removed, leaving only scores from the free recall of the
RL/RI-16 Test and the Letter and Category Verbal Fluency test.
Agreeableness, Extraversion, and Openness to Experience were also
eliminated from the ‘Personality factors’ construct.

Table 2 presents the results of the reliability and validity
assessment of the second model, which includes five reflective
constructs: memory complaints, neuropsychological tests,
emotional distress (depression and anxiety), metacognitive beliefs,
and personality factors. The internal consistency measures, as

indicated by the composite reliability, were found to be between
0.71 and 0.96, surpassing the recommended threshold value of
0.70. The convergent validity was satisfactory, with an AVE value
above 0.5 for all four constructs. Each item’s factor loading was
significant (p < 0.05, data not shown), and all but one was above
0.6.

After establishing the validity of the measurement model,
the structural model was evaluated for each of the two groups
(SCD and non-SCD) separately, and the results are presented
in Figure 1. In the non-SCD group (Figure 1A), the model
was found to be statistically significant (F = 6.64, p < 0.0001),
with an R2 value of 0.40. Memory complaints were found to

TABLE 2 Assessment of the measurement model: internal consistency (composite reliability), convergent validity [loading and average variance
extracted (AVE)], and discriminant validity (cross-loading).

Composite reliability Outer loadings and cross loadings

Latent variables Indicators Memory Neuropsy. Emotional Metacog. Perso. AVE

Memory complaints 0.96 0.77

CDS 0.88 −0.37 0.55 0.57 −0.51

CCI-S Memory 0.81 −0.37 0.42 0.43 −0.44

CCI-S Executive 0.74 −0.27 0.53 0.43 −0.53

CCI-S Langage 0.74 −0.45 0.46 0.45 −0.5

PMRQ Prospective memory 0.93 −0.28 0.39 0.55 −0.39

PMRQ Retrospective memory 0.91 −0.29 0.34 0.49 −0.42

PMRQ short-term memory 0.93 −0.28 0.37 0.53 −0.42

QMPR long-term memory 0.94 −0.31 0.35 0.54 −0.39

PMRQ self-cued memory 0.93 −0.28 0.38 0.53 −0.38

PMRQ environmentally-cued memory 0.91 −0.31 0.33 0.53 −0.42

Neuropsychological tests 0.71 0.56

Free-Recall of the RL/RI-16 Test −0.38 0.85 −0.26 −0.31 0.16

Category Verbal Fluency test −0.21 0.75 −0.13 −0.16 0.06

Letter a Verbal Fluency test −0.18 0.62 −0.29 −0.12 0.24

Emotional distress 0.81

GDS 0.46 −0.29 0.82 0.4 −0.61 0.72

STAI Y-A 0.29 −0.3 0.84 0.38 −0.6

STAI Y-B 0.42 −0.18 0.88 0.56 −0.7

Metacognitive beliefs 0.76 0.5

MCQ-30 Positive Beliefs 0.21 −0.42 0.43 0.63 −0.23

MCQ-30 Beliefs about Uncontrollability and Danger 0.33 −0.1 0.46 0.75 −0.24

MCQ-30 Cognitive Confidence 0.64 −0.19 0.35 0.77 −0.36

MCQ-30 Punishment 0.32 −0.28 0.41 0.76 −0.23

MCQ-30 Cognitive Self-Consciousness 0.15 −0.08 0.24 0.5 −0.08

Personality factors 0.72 0.55

SES −0.42 0.14 −0.71 −0.39 0.86

CD-RISC −0.27 0.09 −0.53 −0.21 0.71

BFI-10 Conscientiousness −0.35 0.02 −0.25 −0.04 0.64

BFI-10 Emotional stability −0.34 0.18 −0.59 −0.33 0.72

CDS, self-assessment of cognitive deficits; CCI-S, cognitive change index self report; PMRQ, Prospective and Retrospective Memory Questionnaire; MCQ-30, Meta-Cognitions Questionnaire
30; BFI-10, 10-item Big-Five Inventory; GDS, Geriatric Depression Scale; STAI Y-A, Y-B: State Trait Anxiety Inventory form Y-A and Y-B; SES, Self-Esteem Scale; CD-RISC, Connor-Davidson
Resilience Scale.
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A
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FIGURE 1

Structural model of the direct effects of memory complaints on neuropsychological tests, emotional distress, metacognitive beliefs, and personality
factors in non-SCD (A) and SCD (B) participants.

have a significant link with Emotional distress and Metacognitive
beliefs (r ≥ 0.33; p ≤ 0.007). Thus, individuals with higher
levels of emotional distress are associated with increased reports
of memory complaints. Similarly, higher levels of metacognitive
beliefs are associated with higher levels of memory complaints. The
relationships between Neuropsychological tests and Personality
factors and Memory complaints were not statistically significant
(p ≥ 0.25).

In the SCD group (Figure 1B), the model was statistically
significant (F = 5.97, p < 0.001), with an explained variance of
R2 = 0.35. Memory complaints had a significant positive correlation
with both Emotional Distress and Metacognitive Beliefs (r ≥ 0.35;
p ≤ 0.02), suggesting that the greater the emotional distress or
the more substantial the metacognitive beliefs, the higher the
level of memory complaints. Memory complaints demonstrated a
significant negative correlation with Personality Factors (r = −0.38;
p = 0.01), signifying that the higher the scores on personality

factors, the lower the levels of memory complaints No significant
effect was yielded for Neuropsychological tests (p = 0.15).

The results of the permutation test revealed a significant
distinction between the two groups of subjects for the “memory
complaints – personality factors” path (p = 0.04), indicating that
among all the factors analyzed, only the relationship between
memory complaints and personality was significantly different
between the non-SCD and SCD groups. In other words, personality
factors have an influence only in the SCD group. Specifically, the
Rosenberg Self-Esteem Scale and the Conscientiousness dimension
of the BFI-10 were significantly different between the non-SCD and
SCD groups (p < 0.01), suggesting that the lower the scores on these
two factors, the higher the levels of memory complaints.

Partial least squares structural equation modeling allows for the
development of a composite score that takes into account all the
studied factors and their respective weights. Figure 2 depict the
distribution of all 95 subjects, both with and without SCD, using
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FIGURE 2

Scattergrams depicting the distribution of all 95 subjects, both with
and without SCD, using the PLS-SEM composite score. The 50
subjects (24 non-SCD and 26 SCD) chosen for subsequent EEG and
graph analysis are highlighted in black circles.

this composite score. The unit is arbitrary. The higher the score,
the higher the level of memory complaints. Based on this, only a
limited number of 50 non-SCD and SCD subjects were selected for
subsequent EEG and graph analysis (highlighted in black circles).
The underlying concept was to concentrate on subjects in the
middle of the distribution. Our primary interest was indeed to
understand the behavior and characteristics of typical or average
cases within a population. By excluding extremes, we can ensure
that our analysis focuses on the central tendencies of the data, which
may be more representative of the majority of the population.

Graph analysis

The demographic and neuropsychological characteristics of the
50 subjects used in EEG and graph analysis are shown in Table 3.
Figure 3 presents the results derived from applying SimiNet to
compare the brain networks of individuals with SCD and the
averaged healthy control network. The similarity index for both
delta (sim = 0.41 ± 0.01) and theta (sim = 0.42 ± 0.006) bands
was below 0.50 (Mheich et al., 2018), indicating that the structure
of the brain networks was different in older individuals with SCD
compared to those without SCD.

In the delta frequency band, a total of 23 regions of interest
(ROIs) were identified as hubs in non-SCD, while 25 hubs were
found in SCD (Supplementary Figure 1). The Venn diagram
revealed that 13 hubs were shared between the two groups, while
10 ROIs were exclusively identified in the non-SCD group and 12
in the SCD group only (Figure 4). These overlapping hubs were
distributed across all lobes of the brain. Specifically, within the
frontal lobe, three main hubs were uncovered: the superior (BA
8), middle (BA 6), and left inferior (BA 47) frontal gyri. In the
parietal lobe, hubs included the retrosplenial cortex (BA 30), the
precuneus (BA 7), and left supramarginal gyrus (BA 40) notably.

TABLE 3 Group means and standard deviation (SD) of demographical and
neuropsychological characteristics of the 50 subjects selected for EEG
and graph analysis.

Non-SCD SCD p

n = 24 n = 26

Men/Women:
10/14

Men/Women:
9/17

Mean (S.D) Mean (S.D)

Age 68.92 ± 4.76 71.46 ± 8.06 0.09

Education (years) 13.62 ± 3.16 14.46 ± 3.08 0.39

Composite score −0.61 ± 0.06 1.15 ± 0.16 <0.0001

Neuropsychological tests

MMSE 29.62 ± 0.64 29.31 ± 1.15 0.24

RL/RI-16 test

Free recall 12.34 ± 1.32 10.09 ± 2.20 0.05

Recognition 15.83 ± 0.38 15.57 ± 1.11 0.28

Rey-Osterrieth
Complex Figure
recall

20.11 ± 7.95 19.46 ± 7.85 0.77

Verbal Fluency test

Category 35.96 ± 8.04 31.35 ± 8.54 0.08

Letter 23.95 ± 6.98 21.57 ± 6.21 0.25

Trail Making Test

Form A 38.75 ± 2.24 40.69 ± 1.77 0.41

Form B 79.14 ± 5.83 78.82 ± 6.17 0.47

Stroop 41.51 ± 8.14 46.46 ± 7.71 0.56

Digit Span backward 4.08 ± 0.71 4.11 ± 0.76 0.87

Boston Naming Test 55.79 ± 3.78 56.38 ± 3.73 0.58

FIGURE 3

Boxplots showing similarity index of SCD vs. non-SCD in delta and
theta bands.

Within the temporal lobe, the fusiform gyrus (BA 37) and the left
inferior temporal (BA 20) were identified as hubs. Only one ROI in
the occipital lobe, specifically the right middle occipital gyrus (BA
19), was defined as a hub.
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FIGURE 4

Venn diagram analysis of hub regions of interest (ROIs) in the theta frequency band. The diagram illustrates the overlapping hubs among individuals
without (non-SCD) and with SCD, as well as the hubs exclusively identified in each group.

Other ROIs, such as the dorsolateral prefrontal cortex (BA
9/BA 46), the left angular gyrus (BA 39), the left middle temporal
gyrus (BA 21), and the left temporopolar area (BA 38) notably,
were impacted in their role as hubs due to the presence of
memory complaints. In fact, these ROIs, previously identified as
hubs in individuals without SCD, ceased to function as hubs in
individuals with SCD. In contrast, certain other ROIs emerged as
hubs specifically in individuals with SCD. These hubs included
the left orbitofrontal area (BA 11), the left dorsolateral prefrontal
cortex (BA 46), and the right inferior frontal gyrus (BA 47)
notably. In the parietal lobe, the right supramarginal gyrus (BA
40) emerged as hub. Within the temporal lobe, the hubs identified
were the anterior temporal gyrus (BA 41) and the right inferior
temporal gyrus (BA 20).

Within the Theta band, 18 ROIs were identified as hubs in non-
SCD, while 17 hubs were found in SCD (Supplementary Figure 2).
A Venn diagram demonstrated that 9 hubs were shared between
the two groups, while 9 ROIs were exclusive to the non-SCD group,
and 8 were exclusive to the SCD group (Figure 5). These overlapped
hubs were distributed across all lobes of the brain. Specifically, in
the frontal lobe, four hubs were identified: the left orbitofrontal
cortex (BA 11), the left anterior prefrontal cortex (BA 10), and left
superior (BA 8) and the right inferior (BA 47) frontal gyri. In the
parietal lobe, the right and left retrosplenial cortex (BA 30) were
highlighted as hubs. In the temporal lobe, the left fusiform gyrus
(BA 37) emerged as a hub. In the occipital lobe, only one ROI, the
right middle occipital gyrus (BA 19), was defined as a hub.

Similar to the findings in the delta band, the presence of
memory complaints affected the role of other ROIs. These included
the left and right dorsolateral prefrontal cortex (BA 9), right
superior (BA 8), right middle (BA 6), and right inferior (BA 45)
frontal gyri, as well as the right insular cortex (BA 43) and the right

angular gyrus (BA 39) notably. These ROIs, which were previously
identified as hubs in non-SCD, lost their hub status in SCD.

In contrast, a distinct set of ROIs emerged as hubs specifically
in individuals with SCD. Notably, these hubs included the left
middle (BA 6) and left inferior (BA 47) frontal gyri. In the parietal
lobe, the right precuneus (BA 7) and the left supramarginal gyrus
(BA 40) emerged as hubs. Within the temporal lobe, the identified
hubs were the right fusiform gyrus (BA 37) and the right inferior
temporal gyrus (BA 20).

Discussion

The present study aimed to examine the potential
cognitive/psychologic-contributing factors to SCD and the
neural correlates in terms of hub regions. The findings revealed
that personality factors, such as self-esteem and conscientiousness,
played a significant role. Network topography differed between the
SCD and non-SCD groups at low frequencies bands, namely delta
and theta. Another unique aspect of this study is demonstrating
that specific brain regions undergo changes in their hub roles as a
consequence of the pathology. Some regions become hubs, whereas
others lose their hub function following SCD.

To identify potential cognitive and psychological factors
associated with memory complaints, we employed structural
equation modeling, which encompassed neuropsychological
assessments, emotional distress (depression and anxiety),
metacognitive beliefs, and personality factors. No significant
correlation was found between the neuropsychological evaluation
and memory complaints in both individuals with SCD and
those without SCD. These findings are consistent with previous
research in the literature, which has consistently reported normal

Frontiers in Aging Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1324309
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1324309 December 16, 2023 Time: 18:4 # 10

Paban et al. 10.3389/fnagi.2023.1324309

, Middle Frontal Gyrus
, Inferior Frontal Gyrus

Right BA7, Precuneus
Right BA41, Inferior Parietal Gyrus

, Supramarginal gyrus
Right BA37, Fusiform gyrus
Right BA20, Inferior temporal gyrus

, Middle Occipital Gyrus

Right BA8, Superior Frontal Gyrus
Right BA9, Dorsolateral prefrontal cortex

, Dorsolateral prefrontal cortex
Right BA6, Middle Frontal Gyrus

Right BA45, Inferior Frontal Gyrus
Right BA43, Insular cortex

, Postcentral Gyrus
Right BA39, Angular

, Middle Temporal Gyrus

, Orbitofrontal cortex
, Anterior prefrontal cortex

, Superior Frontal Gyrus
Right BA47, Inferior Frontal Gyrus

, Paracentral Lobule
Right BA30, Retrosplenial cortex

, Retrosplenial cortex
, Fusiform gyrus

Right BA19, Middle Occipital Gyrus

FIGURE 5

Venn diagram analysis of hub regions of interest (ROIs) in the delta frequency band. The diagram illustrates the overlapping hubs among individuals
without (non-SCD) and with SCD, as well as the hubs exclusively identified in each group.

performance on standardized cognitive tests among individuals
with SCD (for review see Jessen et al., 2020). The reviews conducted
by Reid and Maclullich (2006) and Burmester et al. (2016) have
indicated that memory complaints are only weakly associated with
current cognitive impairment but show a stronger correlation with
the risk of future cognitive decline. These findings suggest that
individuals who report memory complaints may be at a higher risk
for developing cognitive decline in the future. Furthermore, the
study revealed a positive correlation between memory complaints
and emotional distress in both individuals with SCD and those
without SCD. This implies that higher levels of emotional distress
are associated with increased reports of memory complaints. It
is worth noting that the literature extensively documents the
relationship between aging and conditions such as depression
and anxiety (for review see, e.g., Knight and Durbin, 2015; Desai
et al., 2021). Anxiety and depression are highly prevalent in
later life and often co-occur as comorbid disorders, leading to
various adverse consequences for individuals (Vink et al., 2008).
In the case of participants with SCD, Balash et al. (2013) found a
significant association between SCD and affective symptomatology,
as measured by scores on the Geriatric Depression Scale (GDS)
and State-Trait Anxiety Inventory (STAI). It is important to
note that, in the current study, the anxiety and depression scores
for all participants were within the “normal” range, indicating
that the emotional distress experienced by individuals was sub-
clinical. Despite this, there was a significant correlation between
emotional distress and memory complaints in both SCD and
non-SCD participants. These findings suggest that even when the
measures of emotional distress are not elevated, they can still have
a significant impact on memory complaints. This highlights the
high sensitivity of the Partial Least Squares Structural Equation
Modeling (PLS-SEM) approach used in the analysis, as it can
detect meaningful effects even with relatively low variability in
the measures. It is noteworthy that memory complaints showed a
positive correlation with metacognitive beliefs in both individuals

with SCD and those without SCD. This indicates that higher
levels of memory complaints are associated with higher levels
of unhelpful metacognitive beliefs. In the context of traditional
cognitive models, metacognitive beliefs refer to individuals’
knowledge and beliefs about the appraisal, monitoring, and control
of their own thoughts (Flavell, 1979). According to Palmier-Claus
et al. (2011), metacognitive beliefs can be burdensome and may
sometimes be irrational or unreasonable, placing undue weight on
individuals’ own thoughts. Problematic metacognitive beliefs have
been observed in various psychopathological conditions, including
anxiety- and mood-related disorders, as well as psychotic disorders
(Cotter et al., 2017). The findings of the current study are in line
with previous research indicating that both aging individuals with
SCD and those without SCD tend to have more negative beliefs
about their memory (Hertzog and Dunlosky, 2011; Gautier et al.,
2022). These negative beliefs may contribute to their pessimistic
evaluation of everyday memory functioning and a decrease in
self-efficacy beliefs regarding their memory performance (Zanardo
et al., 2006). At the cerebral level, Zhuang et al. (2022) proposed
that variations in cortical thickness in temporal, parietal, and
medial regions may be associated with metacognitive abilities in
older adults without cognitive impairment. Our study revealed a
noteworthy finding that demonstrates a significant relationship
between memory complaints and personality factors in individuals
with SCD. Within the construct of personality factors, two variables
showed a significant impact: self-esteem and conscientiousness.
These results highlight the influence of self-perception and
conscientiousness on memory complaints in individuals with
SCD. Self-esteem comprises an individual’s self-conception,
encompassing a combination of thoughts and emotions pertaining
to their own identity (AlHarbi, 2022). Our findings regarding
the association between self-esteem and memory complaints
in individuals with SCD align with previous studies conducted
by Pearman and Storandt (2004) and dos Santos et al. (2012),
and more recently Kim et al. (2021). These studies suggest
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that individuals’ perception of their memory abilities may be
influenced by their self-esteem, or conversely, that self-esteem
may be influenced by their perceived memory abilities. The
direction of causality in this relationship remains unclear and
requires further investigation. Among the five dimensions of
personality traits, neuroticism has been extensively studied and
consistently shown to be correlated with memory complaints (for
review see Koller et al., 2019). In our study, high neuroticism
was associated with the memory complaints construct, and this
relationship was observed in both the SCD and non-SCD groups.
However, only conscientiousness showed a significant correlation
with memory complaints specifically in the SCD group, which
supports previous findings indicating a negative association
between conscientiousness and SCD (Koller et al., 2019). In
other words, individuals with higher levels of conscientiousness
may potentially experience reduced levels of subjective cognitive
decline. Conscientiousness is a personality trait characterized
by qualities such as persistence, self-discipline, organization,
achievement orientation, and a deliberate approach to tasks
and responsibilities (Carver and Connor-Smith, 2010). Growing
evidence suggests that conscientious people tend to lead longer and
healthier lives [as reviewed by Aschwanden et al. (2021)]. They tend
to engage in behaviors that support cognitive health, such as staying
physically active, participating in mentally stimulating activities,
and maintaining healthy habits. Additionally, conscientiousness
may contribute to better coping mechanisms and adaptation when
confronted with cognitive challenges. Individuals with high levels
of conscientiousness are more inclined to seek support, employ
effective problem-solving techniques, and engage in behaviors that
enhance overall wellbeing (Flynn and Smith, 2007). It could be
speculated that conscientiousness potentially lessens the impact of
subjective cognitive decline due to the health behaviors and social
environmental factors associated with being conscientious.

The topographical organization of brain networks in
individuals with and without SCD was analyzed at both the
global and nodal levels and at two frequency bands, delta and
theta. The subjects utilized for EEG and graph analysis were
chosen based on the composite score derived from the PLS-SEM
analysis. Therefore, the identification of individuals with SCD is
based not solely on a single criterion, which is the score obtained
from the CCI-S memory questionnaire, but rather on a broader
set of factors, each considered along with its respective influence
weight. The results indicated that, at a global level, as assessed by
the similarity index, the brain network of individuals with SCD
differed from that of individuals without SCD in both frequency
bands. The changes in subjective memory, along with personality
factors such as self-esteem and consciousness, were associated
with modifications in the overall organization of the network in
terms of node, edge, and/or spatial features. In order to go further
into our investigation, we sought to identify hub regions using
a local centrality metric known as betweenness centrality. The
originality of this study is its ability to demonstrate that certain
brain regions undergo a change in their hub role due to the
pathology. Some regions transition into hubs, while others lose
their hub function following SCD. One may speculate that such
changes in hub roles could underly a redistribution of functional
responsibilities within the brain. In other words, regions that lose
their hub function may experience a decline in their ability to
integrate and coordinate information across the brain network.

Conversely, the regions transitioning into hubs may take on new
responsibilities for information integration and become more
critical for overall brain functioning. To the best of our knowledge,
no such analysis had been conducted before. Among regions that
experienced a decline in their hub function, both the left and right
dorsolateral prefrontal cortex were found to be active in the delta
and theta frequency bands. The dorsolateral prefrontal cortex
plays a role in a wide array of cognitive processes, ranging from
goal-directed thinking and executive functions to mind-wandering
and the psychedelic experience in healthy individuals (Zamani
et al., 2022). It is a crucial component of the default-mode network
(DMN), along with the temporal pole and the middle temporal
gyrus. After experiencing memory complaints, these regions were
no longer classified as hubs. Considering their diverse functions
within the brain, one could speculate that this change in status
may explain the alterations observed in SCD, particularly the issue
with conscientiousness mentioned above. Existing literature data
have indicated that the SCD group exhibited changes in functional
connectivity within the DMN (Lee et al., 2023). Conversely, the
right inferior temporal gyrus was the sole region detected in both
the delta and theta frequency bands that became a hub in SCD.
The inferior temporal gyrus participates in the ventral streams
of visual processing and has a crucial role in cognition due to
its connections with other cortical areas (Lin et al., 2020). There
were other significant brain regions identified as hubs only in
the delta or theta frequency bands following memory complaints.
For instance, the left orbitofrontal area, which is implicated in
emotion and executive function, was highlighted (Rudebeck and
Rich, 2018). Additionally, the precuneus, which is recognized for
its involvement in a broad range of tightly integrated tasks such as
visuo-spatial imagery, episodic memory retrieval, and self-related
mental operations including self-consciousness and self-processing
during periods of rest, was also implicated (Cavanna and Trimble,
2006). Alterations in parietal regions have been reported by
Lazarou et al. (2020). Interestingly, many of the hubs identified in
this experiment have previously been reported by Lemaitre et al.
(2012) as regions that display age-related decreases in volume,
thickness, and surface area. Specifically, the left and right inferior,
middle, and superior frontal gyri, along with the precuneus and the
inferior parietal gyrus, were identified. Given that the participants
in the current study had an average age of 69.89 ± 0.95, it is not
surprising that such regions were revealed. Overall, the observed
changes in certain brain regions, particularly regarding their
hub role, suggest the possibility of neural network rewiring. This
rewiring could be seen as a response employed by the brain
in the face of SCD, wherein the brain attempts to preserve or
reinstate functional connectivity by redistributing its resources to
other regions. Identifying these hubs could hold significance in
optimizing the effectiveness of therapeutic interventions, such as
neurofeedback or transcranial stimulation, which target specific
brain regions and their activity and have been used with success in
SCD (Chen et al., 2020; Pei et al., 2020).

Study limitations

In delineating the factors within the PLS-SEM model, our study
aimed to comprehensively capture the multifactorial nature of SCD,
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guided by existing literature. However, it is crucial to acknowledge
the inherent limitations in our approach. The selection of factors,
though extensive, does not claim exhaustiveness, recognizing
the dynamic nature of SCD. Moreover, reliance on self-reports
introduces subjectivity, influenced by unexplored moderating
factors like cultures and situations.

In the EEG analysis, ROIs were defined using available
Brodmann areas due to unavailability of native MRI data,
potentially impacting spatial precision. While the template-based
method for EEG/MEG connectivity has shown reliability (Hassan
et al., 2014), the absence of native MRI for source connectivity
limits the methodological ideal. Our focus on delta and theta
frequency bands in EEG analysis, while revealing consistent
differences in individuals with SCD, emphasizes a potential
limitation as other frequency bands, notably the alpha band,
remain unexplored. A comprehensive understanding of SCD’s
neural correlates necessitates future investigations into a broader
spectrum of EEG frequency bands.
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SUPPLEMENTARY FIGURE 1

Betweenness centrality (BC) scores of the 58 regions of interest (ROIs) in
non-SCD and SCD group within the delta frequency band. The dotted line
indicates the cut-off threshold. ROIs with BC scores above this cut-off
were considered as hubs.

SUPPLEMENTARY FIGURE 2

Betweenness centrality (BC) scores of the 58 regions of interest (ROIs) in
non-SCD and SCD group within the theta frequency band. The dotted line
indicates the cut-off threshold. ROIs with BC scores above this cut-off
were considered as hubs.
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