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Short communication 
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A B S T R A C T   

Head fixation allows the recording and presentation of controlled stimuli and is used to study neural processes 
underlying spatial navigation. However, it disrupts the head direction system because of the lack of vestibular 
stimulation. To overcome this limitation, we developed a novel rotation platform which can be driven by the 
experimenter (open-loop) or by animal movement (closed-loop). The platform is modular, affordable, easy to 
build and open source. Additional modules presented here include cameras for monitoring eye movements, vi-
sual virtual reality, and a micro-manipulator for positioning various probes for recording or optical interference. 
We demonstrate the utility of the platform by recording eye movements and showing the robust activation of 
head-direction cells. This novel experimental apparatus combines the advantages of head fixation and intact 
vestibular activity in the horizontal plane. The open-loop mode can be used to study e.g., vestibular sensory 
representation and processing, while the closed-loop mode allows animals to navigate in rotational space, 
providing a better substrate for 2-D navigation in virtual environments. The full build documentation is main-
tained at https://ranczlab.github.io/RPM/.   

1. Introduction 

Head-fixation of mice proved exceedingly useful in recent years to 
allow acute electrophysiological and optical recordings in awake, 
behaving animals (Harvey et al., 2009; Helmchen et al., 2018; Russell 
et al., 2022). Furthermore, it facilitates camera-based tracking of 
behaviourally relevant features (e.g. eye movements) and allows for the 
controlled delivery of sensory stimuli and rewards. On the other hand, 
head-fixation disables the vestibular system, a key sensory component 
underlying navigation (Smith et al., 2009), largely limiting experimental 
environments to one-dimensional corridors (Minderer et al., 2016). 
Activation of the head-direction (HD) network is particularly needed for 
spatial navigation (Gibson et al., 2013; Winter et al., 2015) and depends 
on information from the horizontal semicircular canals (Valerio and 
Taube, 2016). Thus the lack of vestibular input evoked by horizontal 
rotation is a plausible reason for a lower percentage of place cells in 
head-fixed, virtual environments (Chen et al., 2013; Aghajan et al., 
2015). Compared to visual VR environments, using a floating real-world 
environment improves spatial information rates in hippocampal place 
cells (Go et al., 2021). While the orientation of an animal in a floating 

environment was shown to be accurately encoded in the retrosplenial 
cortex if visual and proprioceptive input was present, a subset of pre-
sumed HD cells showed dependence on vestibular input to represent 
spatial orientation accurately (Sit and Goard, 2023). 

Our motivation for developing a novel rotation platform was to 
control horizontal angular vestibular input in head-fixed mice. Previous 
approaches were limited to passive rotation (Vélez-Fort et al., 2014) and 
thus lacked the ability of the animals to control rotation, i.e. navigate. 
When navigation in rotation space was allowed by fixing the animal’s 
head to a bearing (Chen et al., 2018), there was no option to control the 
rotation either passively or actively. An elegant alternative approach 
was used by Voigts et al. (Voigts and Harnett, 2020) where headpost 
torque was used to read out the animal’s intention to rotate its head and 
fed back through a rotational motor. However, this approach is difficult 
to combine with visual virtual reality, requires frequent calibration, is 
not documented in detail and requires significantly more expertise to 
build. Here we present an open-source rotational platform which can be 
used to control and interfere with the sensory environment. We provide 
documentation for building it and two use cases for studying vestibular 
evoked eye movements and head-direction cell activity during 
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Fig. 1. RPM: Rotation Platform for Mice (a) High-level I/O, (b) algorithmic implementation, (c) RPM device, 3D model (left) and photograph (right), (d) Top view 
with VR screens and recording assembly. A - screens; B - optical sensor; C - styrofoam ball; D - mouse head; E - extracellular recording headstage; F - microma-
nipulator assembly. 
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Fig. 2. Rotary stage performance. (a) Rotary encoder and stepper motor signals during full revolution cycles. (b) Minimum incremental motion measurement. (c) A 
sequence of bi-directional movements to measure accuracy and repeatability. (d) Average absolute position deviation (◦) across all angular speed and acceleration 
conditions tested. (e) Example step responses at two different angular velocities (20 and 100◦*s-1), (f) Average position deviation map (◦) across all angular velocity/ 
acceleration settings. 
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head-fixed, animal-controlled rotation. 

2. Materials and methods 

2.1. Animals and headplate surgery 

All animal experiments were prospectively approved by the local 
ethics panel of the Francis Crick Institute (previously National Institute 
for Medical Research) and the UK Home Office under the Animals 
(Scientific Procedures) Act 1986 (PPL: 70/8935). Animals were housed 
in individually ventilated cages under a 12 hr light/dark cycle. Both 
male and female mice were used. Surgeries were performed under iso-
flurane anaesthesia and carprofen analgesia; every effort was made to 
minimise suffering. Briefly, the head of the animal was fixed using ear- 
bars and a nose clamp. Local analgesia over the dorsal surface of the 
head was provided by lidocaine. The scalp was opened with an incision 
in the midline and the connective tissue covering the bone was removed 
with a bone scraper. An aluminium head plate was secured to the dorsal 
surface of the skull using dental acrylic, and the skin was fixed to it using 
VetBond. Animals were allowed to recover for at least 5 days before any 
experiments. 

2.2. Eyemovement recordings 

A virtual drum consisting of gratings with a frequency of 0.16 cycles 
per degree (cpd) was displayed on 4 monitors (Dell U2412B) around the 
setup and drifted during the entire recording at 1 Hz. The vestibular 
stimulus was delivered by the rotation platform in clockwise (CW) and 
counterclockwise (CCW) directions at 40◦ \ s. Pupil images were 
recorded using an ELP-USBFHD01M web camera at 30 Hz. The pupil 
outlines were detected as illustrated in Fig. 4b using DeepLabCut (Nath 
et al., 2019). Briefly, 8 points were detected on the edge of the pupil (red 
circles), onto which an ellipse was fitted (cyan line). The pupil position 
was defined as the centre of the ellipse (red square). Data were acquired 
and analysed using custom-written Python scripts. 

2.3. HD cell recordings 

We followed the recording method from Peyrache et al. (2017). 
Acute recordings were made from the post-subiculum (AP: − 4.25 mm; 
ML: − 1 to − 2.5 mm; DV 1.25–1.75 mm from pia) from 2 adult male 
mice. The RPM apparatus was placed inside a black plexiglass cylinder 
of 50 cm diameter containing one salient visual cue (a white A3 page in 
portrait orientation). The cylinder was illuminated from above. Re-
cordings were made for at least five full bidirectional rotations in passive 
mode and at least 1, but typically 3–4 full cycles in active rotation. 
Extracellular recordings were made using a tetrode-arranged silicone 
probe (A8x1-tet-2mm-200–121, Neuronexus), connected to a digitizing 
headstage (RHD2132, Intan technologies) via an adaptor (Adpt. 
A32-Omnetics32, Neuronexus). Voltage signals were filtered (0.1 – 7.5 
kHz) and digitized at 24,414 Hz using an LR10 interface and SynapseLite 
software (both from Tucker-Davies Technologies, TDT). Data were 
extracted using the TDT python SDK; spikes were detected and clustered 
using klusta (Rossant et al., 2016) and further analysed using 

custom-written Python scripts. Tuning curves were calculated at 1◦

resolution and smoothed (6◦ Gaussian). HD cells were defined as in 
(Peyrache et al., 2015, 2017). Briefly, a von Mises function was fitted to 
the tuning curve, and only units with κ > 1, peak firing rates > 1 Hz and 
probability of non-uniform distribution < 0.001 (Rayleigh test) were 
included. Two-sided, paired Student’s t-tests were used for statistical 
comparison. 

3. Results 

3.1. Design criteria 

We set out to develop a rotation platform capable of open-loop and 
closed-loop vestibular stimulation for mice which are head-fixed but 
able to move on an air-supported spherical treadmill. We use the engi-
neering terms open- and closed-loop to represent the source of the 
rotation command: external (experimenter-driven) or internal (animal 
movement driven) to the control system, respectively. Principal re-
quirements were: 1. accurate tracking of the movement of mice; 2. 
control of the platform rotation in open- and closed-loop modes; and 3. 
compatibility with physiological and behavioural recording modalities. 
Furthermore, we aimed to develop a modular, low-cost and open-source 
device. 

3.2. Implementation 

We provide full documentation, including assembly instructions, 
design choices and characterisation of the components and the platform, 
as well as software requirements and code at https://ranczlab.github.io/ 
RPM/. 

In brief, the movement of the spherical treadmill is read out by op-
tical sensors and fed through the rotary joint to connect to a micro-
controller (PJRC Teensy3.5). In addition, the microcontroller receives 
information from a homing sensor and a rotary encoder (Fig. 1a). The 
microcontroller, in turn, controls the platform movement through the 
motor controller (Fig. 1b) and outputs the position of the spherical 
treadmill and the platform for recording. Other signals recorded on the 
platform, e.g. from cameras, or signals to the platform to control addi-
tional devices, can also be fed through the rotary joint (Fig. 1c). Ulti-
mately the device can be configured to run different types of 
experiments and attach a micro-manipulator for extracellular recordings 
(Fig. 1d). 

3.3. Characterisation and validation of platform in closed- and open-loop 

3.3.1. No load performance, minimal incremental motion and backlash 
The rotary platform’s accuracy and repeatability have been evalu-

ated by recording the platform’s actual position using an incremental 
encoder and comparing it to the target position set by the microcon-
troller. Fig. 2a shows an example test of the stage performance without 
the load of the head-plate holder. The stage was repeatedly (n = 7) sent 
to two set points (0 and 360◦). The final positions were highly accurate 
(360.06 ± 0.11◦ and 0.04 ± 0.07◦), suggesting little error accumulation 
(Fig. 2a). This data also show that the stepper counter in the micro-
controller provides an accurate measure of the platform position. 
Further characterisation was carried out with a typical load condition (i. 
e. head-plate holder included). 

The measured minimum incremental motion (MIM) was 0.1◦

(Fig. 2b). The backlash, in the worst-case scenario corresponding to the 
offset created by the change in the direction of the MIM tests, has been 
0.04◦. 

3.3.2. Accuracy and repeatability 
In order to evaluate the accuracy and repeatability of the rotary 

platform, a sequence of increments of 45◦. in both rotation directions 
have been performed, collecting 8 position deviations in each direction 

Table 1 
Rotary stage specifications.   

Value Units 

Motor resolution 0.0024 ◦

Encoder resolution 0.025 ◦

Accuracy 0.37 ◦

Repeatability 0.10 ◦

Minimum incremental motion 0.10 ◦

Backlash 0.04 ◦

Maximum angular velocity tested 100 ◦*s-1 

Maximum angular acceleration tested 1200 ◦*s-2  
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in a trapezoidal motion profile (Fig. 2c). The results show a high 
directional accuracy (0.37◦) and repeatability (0.10◦) in experimental 
load conditions. Fig. 2d show the distribution of the absolute average 
position deviation mapped across the range of angular velocity and ac-
celeration values (20–100◦*s-1 and 200–1200◦*s-2). The equations for 

the calculation of these measures can be found in the supplementary 
methods section. 

3.3.3. Closed-loop stability 
The closed-loop algorithm drives motor rotation in response to the 

Fig. 3. Platform add-ons. (a) 3D printable head-plate holder modified to attach a micro-manipulator, (b) a micro-manipulator with the extracellular recording probe 
holder, (c) a micro-manipulator in the optogenetics fibre holder configuration, (d) the rotary platform with two embedded displays, (e) head-plate holder modified to 
have two pupil tracking cameras and the rotary platform with two hot mirrors. 
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motion sensed by the optical sensor, i.e., due to the Styrofoam ball 
rotation actuated by the animal. The system thus has to respond to rapid 
changes in the target position. We have simulated sudden and unpre-
dictable changes in the input angle as a step function of 90◦. The 
experiment has been performed with the same load conditions as the 
closed-loop algorithm. Stability has been evaluated by the analysis of the 
step response for all previously described conditions (20–100◦*s-1 and 
200–1200◦*s-2, Fig. 2e). The contour plot has been extracted to be used 
as a map to avoid regions of inaccuracy and instability. Sometimes even 
achieving a small error, the stage can overshoot, as shown in Fig. 2e. The 
regions with more instability correspond to the regions where the 
average absolute position deviation is higher (Fig. 2f). This behaviour 
usually corresponds to conditions of high speed and not high enough 
acceleration. These performance measures should be conducted when-
ever the load or load distribution on the platform is altered. 

3.4. Add-ons 

A ring-shaped instrument platform can be mounted around the 
sphere to hold several devices, such as an animal head-holder, cameras, 
and manipulators for electrical recording and optogenetic stimulation. 
Below we present options for head-plate holders and instruments for 
manipulating recording probes or optical fibres, as well as for installing 
cameras and video screens for eye-movement tracking and virtual nav-
igation, respectively. 

3.4.1. Head-holder 
We designed a head fixation system with three degrees of freedom 

along three perpendicular translational axes (Fig. 3a). The height of the 
head-plate holder can be adjusted to accommodate mice of different 
sizes. In addition, two axes can be used to adjust the position of the 

animal’s head in the horizontal plane. This is particularly useful in 
vestibular experiments to centre the platform rotation axis on the 
vestibular organ of interest. The head-holding system consists of 3 
manual translational stages (Thorlabs Inc. MT1/M) to ensure reliability 
and repeatability across experiments. The resolution of the system is 
10 µm with a range of 13 mm in all directions. The stages are connected 
using a 3D printed linker, and various head-plate holders can be 
attached to the vertical stage (e.g. for attaching micro-manipulators and 
cameras). 

3.4.2. Micro-manipulator and probe holders 
The head-holder in Fig. 3a was designed to attach a manual micro- 

manipulator (Märzhäuser Wetzlar MM33) and provide a capability for 
attaching e.g. electrophysiological (Fig. 3b) or optical (Fig. 3c) probe 
holders. The device provides fine adjustment (0.1 mm) on the three axes 
with a finer adjustment (0.01 mm) for the vertical axis and a travel 
range of 37,20 and 25 mm for the x,y, and z axes, ideal for precise 
adjustment of the position and depth of various probes. 

3.4.3. Cameras 
On-platform cameras provide useful capability to image e.g. eye-, 

face- or body movements. We have implemented a camera system to 
monitor pupil movements (Fig. 3e). The animal’s pupil is illuminated by 
an infrared LED, and the image is reflected from a hot mirror (Thorlabs 
Inc. FM02R) with an incidence angle of 45◦. Both the mirror and camera 
position and angle can be adjusted for adequate positioning. An IR- 
sensitive camera with USB connectivity (ELP-USBFHD01M) was 
placed behind a long-pass filter (Thorlabs Inc. FEL0750) to record the 
image of the pupil without contamination from other light sources. 

Fig. 4. Analysis of vestibulo-visual evoked eye-movements (a) Recording configuration. (b) Example camera image and detection points. (c) Example trace showing 
pupil movement (y-axis) during clockwise (CW) and counterclockwise (CCW) platform rotation. Scale bar: y: 4 pixels, x: 1 s. Insert: amplitude and interval measures 
on a single saccade. (d) Distribution of peaks saccade amplitudes vs duration. Average of 16 trials across 4 different mice. 
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3.4.4. Embedded displays and virtual reality 
We attached two 8" TFT displays to the rotary platform using Thor-

labs RS6P/M posts, 3D printed parts and a laser-cut display frame so that 
the displays rotate together with the animal(Fig. 3d). The displays can 
be used to display various visual stimuli and allow navigation in a 2D 
virtual environment. 

The VR environment runs in Godot on a Raspberry Pi 4 Model B 
running Raspbian 10 (Buster). The single board computer was placed on 
the platform and connected to the screens via micro HDMI cables, while 

power was provided through the rotary joint. The optical sensor inputs 
transformed on the microcontroller to calculate the motor displacement 
were converted into HID commands on the PCB and transmitted to the 
Raspberry Pi via one of the USB connections of the rotary ring. The 
environment consisted of a virtual corridor, with regularly placed white 
cues on the right-hand side wall and terminating with a uniform green 
wall. The displacement of the ball measured by the optical sensors 
controlled both the angular displacement of the platform and the navi-
gation within the virtual environment. 

Fig. 5. Extracellular recordings during rotation. (a) Example extracellular voltage traces showing multiunit (0.3–5 kHz) and LFP (1–100 Hz) activity recorded during 
the start of movement (left) or an abrupt change of direction (right). Note the lack of discernible artefacts. (b) Spike positions from an isolated single unit during 
passive and active (i.e. animal-driven) rotation. (c) Polar plot of firing rate as a function of direction for the unit in b. Peak firing rates are given. Black: passive 
rotation. Red: active rotation. (d) Polar plots of firing rate for a further 6 HD tuned units. (e) Bar graph showing preferred head direction (top) and peak firing rate 
(bottom) between passive (black) and active (red) rotation. 
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3.5. Use cases 

3.5.1. Eye-movement recording during open-loop configuration 
We carried out pupil recordings to illustrate the utility of the plat-

form for vestibular and visually evoked eye movements. Visual stimuli 
were provided by 4 screens surrounding the platform, and the pupil 
position was tracked using an on-platform camera (Fig. 4a). The position 
of the pupil was detected using a deep-learning-based approach (Nath 
et al., 2019, Fig. 4b). Drifting gratings were used to evoke the optoki-
netic reflex, while platform rotation was used to evoke the 
vestibulo-ocular reflex simultaneously. Eye movements showed typical 
nystagmus beating in the direction of the physical rotation (Fig. 4c-d). 
These data demonstrate the utility of the platform for open-loop 
vestibular stimulation and eye tracking. 

3.5.2. Extracellular recording in open- and closed-loop configuration 
Next, we have set out to test the suitability of the vestibular platform 

for electrophysiological recordings. We recorded extracellular voltage 
signals with acutely inserted silicone probes. We targeted the post-
subiculum (PoS) in awake mice during passive rotation (open-loop, 
rotation controlled by the experimenter) and active rotation (closed- 
loop, rotation driven by the movement of the animal). The post-
subiculum was chosen as it has been reported to contain head-direction 
cells in large proportion (Cullen and Taube, 2017). In turn, HD cells are 
known to depend on intact vestibular activity (Valerio and Taube, 2016) 
and can be activated by passive rotation as well (Shinder and Taube, 
2011). The rotation platform was placed in the middle of a black cyl-
inder containing one salient visual landmark. Animals were familiarised 
with the apparatus and the environment before the recordings. Example 
traces of unit (0.3 – 5 kHz) and LFP (1 – 100 Hz) recordings as well as 
position, velocity and acceleration, are shown in Fig. 5a. There were no 
discernible artefacts or changes in noise level at the onset of motion or 
rapid change in direction. We could readily record (HD) cells (n = 7 cells 
from 2 animals) from the PoS. We identified HD cells using established 
criteria (see Peyrache et al. (2017) and methods) during passive rotation 
with a range of ± 360◦ (Fig. 5b). Next, we allowed animals to actively 
rotate at least one (but typically 3–4) full rotations. Directional tuning 
curves between active and passive rotation showed no significant dif-
ference in the preferred direction (Fig. 5c-d; mean difference − 18 ± 25◦, 
n = 7, p = 0.1, paired t-test). Similarly, maximum firing rates between 
active and passive conditions were not significantly different (Fig. 5e; 
mean firing rate 15.5 ± 5.5 Hz vs 15.7 ± 6.8 Hz, n = 7, p = 0.9, paired 
t-test). Thus the vestibular platform is suitable for electrophysiological 
recordings, and HD activity is present during both active (closed-loop) 
and passive (open-loop) rotation. 

4. Discussion 

There are inherent limitations in angular velocities and acceleration 
achievable by the rotation platform, depending e.g. on the weight and 
distribution of the platform assembly. Furthermore, animals of higher 
weight can also cause oscillation as their posterior part can swivel the 
ball during a change of direction. This can be counteracted by installing 
guard walls at the sides of the head holder assembly, keeping the mouse 
slightly constrained. Average and sustained head motion velocities in 
natural self-motion are relatively slow ( ± 150◦*s-1, Meyer et al., 2018); 
nevertheless, mice can experience up to 1300◦*s-1 angular velocity 
(Carriot et al., 2017). The rotation platform and assembly presented 
here can reliably reach up to 100◦*s-1 angular velocity and 1200◦*s-2 

acceleration. This is adequate for most experiments, as published studies 
typically use up to 80◦*s-1 (Vélez-Fort et al., 2018; Bouvier et al., 2020). 
Finally, we show that the HD network is robustly activated during 
self-guided rotation. It is important to note that the HD system also re-
ceives proprioceptive and motor efferent signals (Medrea and Cullen, 
2013), which may be different on the device presented (especially 
regarding head-on-body motion). 

In summary, we provide an open-source device with build docu-
mentation, which can serve as a starting point for researchers interested 
in performing both closed and open-loop vestibular experiments. We 
also provide various alternatives on how to adapt the experimental setup 
to achieve different experimental scenarios. 
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