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Abstract. Melanoma, a highly aggressive form of skin cancer noto-
rious for its rapid metastasis, necessitates early detection to mitigate
complex treatment requirements. While considerable research has ad-
dressed melanoma diagnosis using convolutional neural networks (CNNs)
on individual dermatological images, a deeper exploration of lesion com-
parison within a patient is warranted for enhanced anomaly detection,
which often signifies malignancy. In this study, we present a novel ap-
proach founded on an automated, self-supervised framework for compar-
ing skin lesions, working entirely without access to ground truth labels.
Our methodology involves encoding lesion images into feature vectors us-
ing a state-of-the-art representation learner, and subsequently leveraging
an anomaly detection algorithm to identify atypical lesions. Remarkably,
our model achieves robust anomaly detection performance on ISIC 2020
without needing annotations, highlighting the efficacy of the represen-
tation learner in discerning salient image features. These findings pave
the way for future research endeavors aimed at developing better predic-
tive models as well as interpretable tools that enhance dermatologists’
efficacy in scrutinizing skin lesions.

Keywords: Melanoma, Skin Cancer, Lesion Comparison, Representa-
tion Learning, Anomaly Detection, Early Detection.

1 Introduction

The concept of comparing skin lesions within a single patient, known as the “ugly
duckling sign”, was introduced by Grob et al. [3] in 1998. According to this con-
cept, visually distinct skin lesions within a patient are more likely to be indicative
of cancers. Despite the extensive research on skin lesion classification, the explo-
ration of lesion comparison within patients remains relatively limited, hampering
the detection of anomalies that may signify malignancy. Concurrently, convolu-
tional neural networks (CNNs) applied to dermoscopic images have exhibited
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remarkable success in diagnosing skin diseases [5, 13], yet the incorporation of
lesion comparison remains underutilized. We posit that integrating the “ugly
duckling sign” concept can significantly enhance these diagnostic outcomes.

Previous studies investigating the comparison of skin lesions for melanoma
detection [2,4,12] have shown promising results, demonstrating increased detec-
tion rates when leveraging the “ugly duckling sign”, whether analyzed by derma-
tologists or artificial intelligence algorithms. Automating this process commonly
involves extracting features from a base model trained on the dataset, followed
by comparing these features—an approach shared by our work. However, several
crucial parameters must be considered in pursuit of this goal.

Soenksen et al. [10] utilize a CNN for classification, extracting features re-
duced to two dimensions using PCA and compared with Euclidean distance.
Yu et al. [14] propose a hybrid model combining classification CNNs and trans-
formers for lesion comparison. However, classification CNNs rely exclusively on
labelled data and exhibit bias towards the primary task. Surprisingly, represen-
tation learners, purpose-built models for generating comparable feature vectors,
have not been explored in prior work. These models employ a modified CNN
architecture with a distinct training setup, comparing vector representations of
two images. By bringing similar images closer and pushing dissimilar images
apart, representation learners offer a promising approach for lesion comparison,
distinct from the traditional use of classification CNNs in existing skin lesion
studies.

In our approach, we take a significant stride by conducting our analysis with-
out relying on any annotations. The underlying concept is rooted in the under-
standing that melanoma, like any cancer, entails the uncontrolled proliferation
of malignant cells. Given a sufficient amount of data, the aberrant growth pat-
terns exhibited by cancerous cells can be viewed as anomalies, especially when
compared to other lesions of a patient. Thus, we posit that with a substantial
volume of medical images, cancer detection could potentially be achieved with-
out the need for annotations, as exemplified by our current methodology. To
carry out our experiments, we employed the SimSiam [1] siamese neural net-
work, leveraging the ResNet-50 [6] architecture as the backbone. This choice
offers the advantage of reduced computational complexity compared to alterna-
tive models, while still yielding a robust representation of the skin lesion images.

By addressing the research gaps outlined above, we strive to develop more
intelligent and interpretable tools that augment dermatologists’ capabilities in
analyzing skin lesions, facilitating early melanoma detection and improving pa-
tient outcomes.

2 Methods

Our study comprises two modules, as illustrated in Figure 1. Firstly, we train an
encoder, employing a representation learner, to generate vector representations
of images in the latent space. Subsequently, for each patient, we compare the
generated vectors of their lesions using a k-nearest neighbors-inspired algorithm.
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This anomaly detection process yields an “Ugly-Duckling Index” (UDI) which
quantifies the degree of atypicality of a lesion compared to others.

Fig. 1. Pipeline of our anomaly detection

2.1 Features extraction

For feature extraction, we utilized the SimSiam architecture [1] in conjunction
with a ResNet-50 model [6]. This siamese architecture consists of two identi-
cal branches, both accepting the same input image that has undergone distinct
augmentations. Notably, it does not necessitate the inclusion of negative pairs.
During training, one branch undergoes a stop-gradient operation, preventing
the model from producing identical vectors for all inputs. We maintained the
original model and architecture, making only one adjustment after feature ex-
traction: reducing the size of the vectors from 2048 to 100 by using the UMAP
algorithm [7]. This modification was made to ensure that our feature vectors
were represented in a dimension that strikes a balance between capturing perti-
nent information and avoiding excessive dimensionality, which could produce the
curse of dimensionality. We also normalize the values per feature using the Min-
Max scaler to facilitate anomaly detection. Our model is trained on 150 epochs,
the loss function is the cosine similarity, the optimizer is SGD and the learning
rate is 0.05. Before entering the model, the images are resized from their original
size to 224x224, which is the expected size for ResNet-50. We kept the original
data augmentation techniques of the original SimSiam paper which is a com-
position of random operations such as resize, crop, random grayscale, gaussian
blur, horizontal flip and color jitter. The model seems to have converged after
the 150 epochs (Figure 2).

Following the completion of training on the designated training set, we ex-
tracted the features from all images encompassing the dataset, which encom-
passed both the train and test sets. The acquired feature vectors served as the
foundation for the subsequent stage of anomaly detection, facilitating the pro-
gression of our analysis.
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Fig. 2. Loss of ResNet-50 per epoch during SimSiam training.

2.2 Deriving the ugly duckling index through k-nearest neighbors
computation

The process of feature extraction yielded a collection of vector representations
for each patient, providing the means to compare and analyze these vectors.
For this, we devise a straightforward algorithm inspired by the k-nearest neigh-
bors approach, wherein the relative distances between all lesions are compared.
Lesions that exhibit greater distance from their respective k-nearest neighbors
than other lesions are assigned a higher Ugly-Duckling Index (UDI). This index,
computed per patient, quantifies the distinctiveness of a given lesion in relation
to its k-neighbors. The higher the index, the more different the lesion is from its
neighbors. First, we compute the distances between all vectors corresponding to
the patient’s lesions, and subsequently, for each vector, we compute the average
distance to its k-nearest neighbors (Equation 1).

Di =

∑
j∈Ki

d(vi, vj)

k
(1)

with vi the features’ vector of image i, k the number of neighbours, Ki the
ensemble of k neighbours of i and d the distance function (in our case the cosine
distance). We divide the resulting values by the average of these values (denoted
as D) in order to obtain the UDI (Equation 2).

UDIi =
Di

D
(2)

In order to facilitate comparison, we also normalize the resulting values by re-
moving the mean and scaling to unit variance, considering their range in R∗

+.
Among various distance metrics available, we opt for the cosine distance, aligning
with the cosine similarity utilized by our siamese network for vector comparison.
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By leveraging this choice, we effectively capitalize on the learned representations,
as the cosine distance and cosine similarity are related by the simple equation
cosine distance = 1 − cosine similarity. Figure 3 presents an example of a
two-dimensional visualization of the results.

Fig. 3. Visualisation of our anomaly detection algorithm when using k = 1 on a 2
dimensional cloud of dots. Each point represents a lesion’s features’ vector while its
colour represents its UDI.

Our algorithm was intentionally designed to mirror the approach employed by
dermatologists when comparing lesions. Unlike a singular, ideal representation
of normal lesions, typical lesions exhibit diversity and can be characterized by
multiple clusters. Therefore, it is important to note that lesions that deviate
significantly from the average appearance of a normal lesion may not necessarily
be considered “ugly ducklings”. By analyzing the k nearest vectors, our algorithm
effectively identifies vectors that are distant from any other cluster, enabling the
accurate prediction of true “ugly ducklings”.

We manage cases where patients have a lower number of lesions than the k
parameter by computing the distance to the centroid of the lesions (similar to
prior approaches [10]). To further evaluate the effectiveness of this approach, we
conducted a comparative analysis, contrasting the outcomes obtained using this
method with those achieved through our current algorithm. The results of this
comparative assessment will be presented in the subsequent section.

3 Results

The evaluation of our model on the test set involves comparing the computed
Ugly-Duckling Index (UDI) with the ground truth annotations. In this section,
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we present details about the dataset utilized in our experiments, analyze the per-
formance of our model while varying the k parameter, and subsequently examine
the results obtained using the optimal value of k.

3.1 Dataset

We conducted our experiments using the ISIC 2020 dataset [8], which is the
largest available dataset for skin lesions (examples of images are presented Fig-
ure 4). It consists of over 32,000 dermoscopy images, which we randomly divided
into three subsets for training, validation and test. The training set comprises
70% of patients, while the validation and test sets contain 15% each. Although
the ISIC 2020 dataset is extensive, it contains images with various artifacts, in-
cluding excessive body hair, bubbles, ink, and colored marks. In a traditional
classification task, a well-trained model learns to disregard these artifacts as
they are irrelevant to the classification process. However, in the context of de-
tecting atypical images in a self-supervised manner, the model may perceive
these artifacts as significant factors when determining the atypicality of a lesion.
By utilizing the ISIC 2020 dataset, we aimed to leverage its rich diversity and
substantial size to train and evaluate our model effectively. In the subsequent
sections, we present the results of our experiments, highlighting the performance
achieved and providing insights into the effectiveness of our proposed method-
ology.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Examples of images from the ISIC 2020 dataset from a single patient are shown
above. All images except for (a) depict nevus.

3.2 Anomaly detection

We conducted a thorough analysis of our anomaly detection results, comparing
them to the ground truth annotations. The evaluation focused on determining
the optimal value for the parameter k, and the summarized findings are presented
in Figure 5. This analysis was exclusively performed on the validation data. Our
study revealed a clear trend where increasing the value of k resulted in improved
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Fig. 5. AUC comparison on the validation data with varying values of the parameter
k

performances until reaching a peak at k = 3, after which the performance gradu-
ally declined. Notably, when utilizing the distance to the centroid of all patient’s
lesions, the Area Under the ROC Curve (AUC) reached its lowest value, indicat-
ing the limited relevance of this approach to our problem. We hypothesize that
“ugly duckling” lesions, being typically isolated, can be adequately assessed by
comparing them to their three nearest neighbors to determine their deviation
from other lesions. As lesions are represented by multiple clusters, increasing
the number of neighbors may lead to the averaging out of distances, resulting
in similar values for all lesions. Using a high value of k leads to the inclusion
of the distance to the centroid, which may inadvertently diminish the potential
information from patients with a low number of lesions. Using the average of
coordinates is comparable to using a high k value, which implies the assumption
of a unique normality for lesions, located at a single point in space, which may
not accurately reflect reality. Skin lesions present a diverse spectrum of patterns
that can still be benign, suggesting that representing them as multiple distinct
clusters in the latent space would be more appropriate. Additionally, images that
do not belong to any cluster (being too far apart from any cluster) are classified
as ’ugly duckling’ and are more likely to be malignant.

Following the identification of the optimal value for k on the validation data,
we proceeded to assess the performance of our model on the test set using the
selected value of k = 3. Surprisingly, the corresponding AUC is 0.719, indicating
even higher performance compared to the validation data. The peak balanced
accuracy achieved by threshold selection is 0.70, aligning with a sensitivity of
0.77 and a specificity of 0.62, thereby illustrating the optimal discriminative
performance. Although these results remain below the performance of models
that leverage ground-truth annotations, they are notably promising, particularly
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Fig. 6. ROC curve of the model on the test set for k = 3.

when taking into account that annotations are entirely omitted from the entire
pipeline. It also demonstrates capability of the representation learner to learn
visual features in a way that can be leveraged for subsequent tasks. The threshold
also affords the flexibility to fine-tune the trade-off between detecting a greater
number of melanomas or upholding a higher level of specificity in our model. For
a visual depiction of the model’s performance, see the ROC curve in Figure 6.

4 Conclusions and future work

Our study showcases compelling outcomes by leveraging representation learners
in a fully self-supervised manner on dermoscopic images. Despite the inherent
difficulty of this task, our developed architecture demonstrates proficiency in
melanoma detection, avoiding the reliance on labeled data and relying solely on
inter-lesion comparisons within patients. Subsequent investigations can investi-
gate performance gains achieved by integrating this information into state-of-
the-art classification models, as well as exploring novel representation learning
techniques focused on the interpretability of the learnt vectors. Recent advance-
ments in one-class classification models [9] and specialized loss functions for
siamese networks [11] have diligently addressed the challenge of vector repre-
sentation, thereby facilitating more seamless image comparisons. Although our
approach presently hinges on the k-nearest neighbors algorithm, necessitating
diligent parameter tuning, we acknowledge its potential for refinement, making
it an enticing avenue for future research endeavors aimed at automating this
anomaly detection paradigm. It is noteworthy that this approach could have a
substantial impact on broader applications, particularly in the realm of diagnos-
ing various types of cancers and illnesses.
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