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Abstract
Vascular endothelial dysfunction is a major risk factor in the development of renal diseases. Recent studies pointed out a 
major interest for the inter-endothelial junction protein CD146, as its expression is modulated during renal injury. Indeed, 
some complex mechanisms involving this adhesion molecule and its multiple ligands are observed in a large number of 
renal diseases in fundamental or clinical research. The purpose of this review is to summarize the most recent literature on 
the role of CD146 in renal pathophysiology, from experimental nephropathy to clinical trials. 
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Introduction

Renal injury is a complex pathological process involving 
all renal compartments (endothelial, glomerular, tubule-
interstitial), leading to cell remodeling and further tissue 
fibrosis. During this process, endothelium plays a major 
role in facilitating interactions between bloodstream content 
and damaged tissue. Indeed, renal endothelium becomes 
dysfunctional contributing thus to renal structural and 
functional alterations. CD146 is an immunoglobulin pro-
tein expressed mainly in the vascular system and may inter-
act with several ligands during injury. Furthermore, after 

renal impairment, CD146 appears to be involved in renal 
endothelial activation, thus promoting tissue alterations. 
The aim of this review is to summarize the literature content 
focusing on endothelial activation and CD146 implication 
during renal damage.

The renal endothelium: structure 
and functions

Oxygen and nutriment delivery to each organ are key ele-
ments in human physiology and they are regulated by the 
vascular system, which is composed of multiple types of 
cells supporting a specific function [1]. The complexity of 
kidney function relies on multiple anatomical and/or func-
tional entities [2], composed by among others, of specific 
endothelial cells (from glomerular endothelium, microvas-
cular peritubular endothelium, or large vessels endothe-
lium) with a metabolic diversity to respond to aggression 
or modification of the local environment [3, 4]. During 
renal structural or functional damages, kidney endothe-
lial cells are implicated in vaso-modulation, inflamma-
tory response, cell adhesion, and coagulation [5, 6] until 
a breakpoint where endothelial cells are failing, causing  
dissociation of mural pericyte creating oedema and tissue 
hypoxia [7]. Furthermore, endothelial activation promotes  
endothelial-to-mesenchymal transition (endoMT) contrib-
uting to kidney fibrosis [8, 9].
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The kidney is composed of multiple anatomical enti-
ties associated with specific endothelial cell phenotypes 
exposed to different microenvironments (vascular pres-
sure, osmolarity, hypoxia) [10–12].

The vasculature of the kidney is shown in Fig. 1 and is 
composed of:

– Afferent and efferent arterioles regulating the glomerular 
blood flow and glomerular filtration rate (GFR) [13]

– Highly fenestrated glomerular capillaries, enabling ultra-
filtration of low molecular weight solutes composing the 
glomerular tuft [14]

– Cortical peritubular capillary network, implicated in 
tubular reabsorption (water, ions and nutriments, drug 
metabolites, urine acidification) [15–19]

– Descending vasa recta, interconnected with ascending 
vasa recta via capillaries involved in osmolarity regula-
tion via cortico-papillary gradient [20]

– A venous network draining into vena cava

In pathological conditions, endothelial cells play a key 
role in response to aggression and are associated with phe-
notypic changes [21] leading to various functions:

– Regulation of vascular constriction via vasoactive factors 
such as endothelin-1, prostacyclin or nitric oxide (NO) [22]

– Regulation of vascular coagulation via thrombotic regu-
lators (von Willebrand factor (vWF), tissue factor (TF), 
plasminogen activators and plasminogen activator inhibi-
tor 1 (PAI1)) [23]

– Regulation of cell infiltration via impairing endothelial 
permeability shedding of the glycocalyx, resulting in 
increased exposure of cell adhesion molecules (CAMs) 
such as platelet endothelial cell adhesion molecule 
(PECAM1), intercellular cell adhesion molecules 1 and 
2 (ICAM1 and ICAM2) and Vascular cell adhesion mol-
ecule-1 (VCAM1) [24]

– Regulation of inflammation via secretion of proinflam-
matory modulators (chemokines, activation of P-Selectin 
or E-selectin facilitating diapedesis) [25]

– Tissue remodeling, mesangial proliferation, renal fibrosis 
induction via specific protease-activated receptor [26–29]

CD146: isoforms and functions

Endothelium requires intercellular junctions to induce 
regulation mechanisms via adherent junctions (cells adher-
ence to endothelium) and tight junctions (interactions with 
cytoskeleton, implicated in permeability and cell polarity 
[30–33]. CD146 is a 113-KDa transmembrane glycoprotein 
expressed mainly in the vascular system [34]. It is also known 

Fig. 1  Variability of endothelial cells implicated in kidney physiology
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as MUC18, melanoma cell adhesion molecule (MCAM or 
MelCAM), and HEMCAM. CD146 belongs to the immuno-
globulin superfamily and is highly glycosylated, that depends 
on the pathophysiological context and modifies its stability, 
and shares similarities with adhesion molecules [35].

CD146 structure

To date, three different forms of CD146 have been 
reported (Fig. 2):

-Two transmembrane isoforms, composed of an Ig-like 
extracellular domain, a hydrophobic transmembrane region, 
and cytoplasmic tail [36] with a long cytoplasmic tail (long  
isoform) and a short cytoplasmic tail (short isoform) 
[35–37]. For the long isoform, which is the more expressed; 
the cytoplasmic domain is composed of protein kinase  
C (PKC) site recognition, an ERM binding site allowing 
interaction with the plasma membrane via actin protein 
and ERM binding proteins (Erzin, Raxidin, and Moesin), a 
motif with microvilli extension, and a motif for basolateral 
targeting [36]. The cytoplasmic domain of the short iso-
form is composed of protein kinase C (PKC) site recogni-
tion and a PDZ binding domain.CD146 can be observed as 
monomer or dimers interacting via a disulfide bond with 
cysteine residue next to the membrane [38, 39]. CD146 has 
been described as an intercellular junction protein due to its 

high presence at the inter-endothelia junctions, but outside 
tight and adherent junctions. However, later studies reported 
that it can act both as an adherent protein, once located on 
the surface of endothelial cells (adhesion and interaction 
mechanisms), and as a junctional endothelial intercellular 
protein (endothelial cell interaction and vascular perme-
ability) [40].

-The soluble form of CD146 (sCD146), generated by the 
proteolytic cleavage of the membrane isoforms, [41–43] 
which is detected in cell culture supernatants, serum, and 
interstitial fluids [44–46]. This soluble form does not seem 
to be involved in adhesion in the absence of a transmem-
brane or cytoplasmic motif [35, 37].

Localization and partners

Even if CD146 has been mainly described as an endothelial-
specific marker, few studies reported its expression in other 
cell types such as pericytes, smooth muscle cells, epithe-
lia, fibroblasts, mesenchymal stem cells, and lymphocytes 
[36]. In physiological conditions, CD146 has few adhesive 
implications compared to other CAMs [47] but its expres-
sion increases during development or in proliferating condi-
tions. In pathological conditions, CD146 is upregulated and 
has been identified as a reliable marker for specific tumors 

Fig. 2  The three CD146 forms
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or specific organ pathology via multiple ligands (Fig. 3). The 
most important are listed below:

– Laminins 411 and 421: membranous heterodimer [48, 
49] implicated in remodeling of the extracellular matrix 
and expressed along the vascular endothelium [50, 51]. 

Laminin 411 has been identified as a ligand for CD146 
on T-helper 17 (Th17) cells [52], promoting Th17 lym-
phocyte infiltration. Laminin 421 is a ligand for CD146 
in melanoma promoting tumor cell migration [53, 54].

– Galectins 1 and 3: As CD146 is a highly glycosylated 
junctional CAM [36], the galactose residues bind 

Fig. 3  Ligands of CD146
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with galectins, a soluble carbohydrate-binding lectins 
family, modulating cell-to-cell, cell-to-extracellular 
membrane adhesions, angiogenesis, and tumoral pro-
liferation [55–59]. Some studies identified that Gal-1 
interacts with CD146 expressed by endothelial [60] or 
melanoma cells [61]. Regarding interactions of CD146 
with Gal-3, the pathophysiology is more complex as 
this galectin is involved in various processes, from 
cell adhesion and migration to cell activation [62, 63]. 
Recent studies reported that CD146 binds and co-local-
izes with Gal-3 to N-linked glycans, inducing CD146 
dimerization and activation of protein kinase B (AKT) 
signaling, leading to secretion of metastasis-promoting 
cytokines from the endothelial cells [64–66].

– S100 proteins: they are secreted and bind with CD146 
[67–71] during lung metastasis of melanoma cells, 
inducing reactive oxygen species formation, via NF-kB 
mediated pathway, activating metalloprotease, and 
cytokine promoting tissue fibrosis [72, 73].

– Matriptase: this epithelial-specific membrane-anchored 
serine protease [74, 75] was identified as a ligand of 
CD146 in the brain [76]. These interactions are lead-
ing to the secretion of cytokines and chemokines via 
p38 and canonical Wnt/β-catenin pathways, which were 
prevented when CD146 was deleted.

– VEGFR2: a class IV receptor tyrosine kinase family 
expressed by endothelial cells, macrophages, hemat-
opoietic cells, and smooth muscle cells, implicated 
in tumor angiogenesis, and cell proliferation [77–81]. 
This protein interacts directly with the extracellular 
protein domain of CD146, promoting ERM proteins 
recruitment via CD146 cytoplasmic tail, leading to a 
specific transduction signal. Inhibition of CD146 pre-
vented phosphorylation of VEGFR2 in human umbili-
cal vein endothelial cells (HUVECs) [82].

– VEGF-C is implicated in lymphangiogenesis and its 
inhibition impairs vasculature development [83, 84]. 
This factor interacts with the extracellular domain of 
CD146, reducing the sprouting of lymphatic endothe-
lial cells during lympho-angiogenesis [85]

– PDGF is implicated in tumor angiogenesis and lym-
pho-angiogenesis; the interaction between CD146 
with PDGF receptor mediates pericyte recruitment by 
secreting TGFB [86–88].

– The Wnt family: Wnt5a binds CD146 during embryo-
genesis, [89] leading to a downregulation of β-catenin 
expression mediating cell migration during development. 
In pathological conditions, Wnt5 and CD146 are thought 
to directly affect cell motility and metastasis. Wnt1 is 
associated with proliferative genes by the canonical 
β-catenin pathway. CD146 interacts with Wnt1 in fibro-
blasts, inducing extra-cellular membrane component pro-
duction via canonical Wnt/β-catenin pathway [90]

– Netrin-1 is implicated in cellular migration during the 
development of the nervous system, and its dysregula-
tion is involved in pathological processes such as cancer 
and cardiovascular and kidney disease [91–95]. Netrin-1 
interaction with CD146 seems to limit proliferation and 
migration [94].

– FGFs: the members of the fibroblast growth family are 
involved in several processes such as cell proliferation, 
survival, migration, angiogenesis, wound healing, dif-
ferentiation, and endocrine secretion [96–99]. Interaction 
with CD146 leads to cell polarity and angiogenesis [100].

CD146 in the kidney

As mentioned above, due to its interactions with various 
partners, CD146 remains a significant player in organ 
physiopathology. The role of this junctional protein in renal 
disease has been reported in the last few decades. Some 
preclinical experimental models have been studied for 
this purpose. There is ample evidence in the literature that 
CD146 is present along the entire vascular tree (endothelial 
and smooth muscle cells and pericytes), regardless of vessel 
size or anatomical location. Under pathological conditions, 
tubular cells may also express CD146 at later stages of renal 
disease in humans and rodents.

CD146 in experimental nephropathy

CD146-positive cells are essential for kidney vasculature 
development. Indeed, Sefanska et al. demonstrated that 
CD146-positive cells will convert to endothelial cells 
expressing CD31 during the development of renal vascula-
ture. In embryonic kidney organ culture, inhibiting CD146 
expression prevented endothelial progenitor cells to prolif-
erate and to differentiate into endothelial cells expressing 
CD31 in the development of normal vasculature [101].

In a model of renal ischemia–reperfusion (rIR), bone mar-
row-derived endothelial progenitor cells (EPC) and endothe-
lial cells (EC) both contributed to endothelial repair in the 
kidney immediately after rIR. The numbers of circulating 
CD34-positive EPCs and CD146-positive ECs, decreased 
1 h after rIR and increased at 35 and 73 days. This increase 
contributed to endothelial repair after rIR [102].

In another study, Bruno et  al. observed that human 
glomeruli deprived of the Bowman’s capsule contained a 
population of CD133-positive/CD146-positive cells and 
a population of CD133-negative/CD146-positive cells, 
expressing mesenchymal stem cell markers. The CD133-
positive/CD146-positive cells co-expressed endothelial 
markers, such as CD31/PECAM1 and von Willebrand 
factor (vWF), but were CD24-negative, suggesting an 



 Journal of Molecular Medicine

1 3

endothelial commitment. The glomerular mesenchymal 
CD133 negative/CD146 positive population exhibited 
self-renewal capacity and was able to differentiate into 
endothelial cells and epithelial cells, expressing podocyte 
markers such as nephrin, podocin, and synaptopodin. This 
study revealed that CD146 was associated with endothe-
lial and epithelial differentiation [103]. Moreover, CD146 
modulates intercellular permeability as a junction endothe-
lial protein, as its overexpression correlates with a more 
cohesive vessel monolayer. Indeed, CD146-deficient mice 
showed reduced permeability, which was associated with 
decreased expression of VEGFR2, CD31/PECAM-1, and 
VE-cadherin [40].

In experimental focal segmental glomerulosclero-
sis, native renin lineage cells decreased, whereas newly 
marked renin lineage cells were increasing and surrounded 
by vessels expressing CD146 suggesting a role of this junc-
tional protein in the modulation of renin pericyte regen-
eration after kidney damage [104]. CD146-expressing  
pericytes were also identified to be localized next to renin-
expressing pericytes, surrounded by juxtaglomerular and 
afferent arterioles. CD146 + /CD34-/CD45-/CD56-renal 
fetal pericytes, exhibited mesodermal differentiation 
in vitro confirming the potential role of CD146 in glo-
merular endothelial regeneration [101].

 In another experimental model of nephrotoxic serum-
induced glomerulonephritis (NTS-GN), CD146 expression 
was highly increased within glomerular endothelium and 
tubulointerstitial capillaries, since the early stages of the 
disease. CD146 increased expression in glomerular capil-
laries promoted monocyte adhesion and damage and was 
associated with the decline of renal function. The dele-
tion of CD146 protected mice from glomerular and further 
renal inflammation, but vascular permeability after NTS 
injection was similar between WT and CD146 knockout 
mice (CD146-/-). Interestingly, similar to CD146-/- mice, 
endothelial-specific deletion of CD146, improved renal 
function and limited glomerular crescents and tubular 
dilatation, which are typical structural damages described 
of the NTS-GN, illustrating the major role of endothelial 
cells in controlling glomerular damage but also interstitial 
inflammation [105].

Regarding the role of CD146 in experimental diabetic 
nephropathy, Li et al. identified in 2021 that Wnt5a signal-
ing was associated with the progression of the disease. In 
Db/Db mice and high glucose-treated HK-2 cells, the inhibi-
tion of CD146 or Wnt5a significantly reduced the inflam-
matory process. The authors identified direct interactions of 
Wnt5a with CD146 to activate noncanonical Wnt signaling 
in HK-2 cells [106]. Furthermore, in previous studies using 
these cells, both membrane and intracellular expression of 
CD146 were significantly increased upon high glucose treat-
ment. More precisely, a soluble form of CD146, sCD146, 

was detected in the supernatant of HK-2 cells in the no glu-
cose group, which was significantly elevated in the high glu-
cose group, suggesting that high glucose upregulates both 
CD146 expression and sCD146 secretion in tubular epithe-
lial cells [107]. Finally, Bueno et al., found that IGFBP-4 
activated the Wnt/ß-catenin signaling pathway and induced 
CD146 expression in human renal cell carcinoma [108].

Tissue fibrosis is one of the major issues of chronic kid-
ney disease. CD146 was associated with endothelial-to- 
mesenchymal transition (endoMT), a complex biological 
process in which endothelial cells lose their specific mark-
ers and acquire a mesenchymal or myofibroblast phenotype 
expression with α-smooth muscle actin (α-SMA) and type 
I collagen [109]. Roeder et al. identified in mouse kidneys 
with advanced age (27 months old) an increased CD146 
expression associated with fibrosis markers such as type 
IV collagen and heparan sulfate proteoglycan in Bowman’s 
capsules of aged glomeruli. In addition, Stasi et al. observed 
that the positive pericyte-to-myofibroblast transdifferentiat-
ing early markers of fibrosis PDGFR-β and α-SMA were 
associated with increased expression of CD146 after rIR 
[110]. Finally, Zhao et al. also described the potential inter-
action between endothelial cells and tubular cells involving 
CD146, suggesting that peritubular endothelial cells could 
contribute to kidney fibrosis through endoMT. After 2 days 
of cultures with VEGF and co-cultured with mouse proximal 
tubule, 95% of cells expressed CD146 [111].

CD146 in clinical studies

As summarized above, preclinical experimental models 
identified an important role of CD146 in renal pathophys-
iology, suggesting that this junctional protein is a poten-
tial marker and actor of the renal response to injury. Con-
sequently, some clinical studies evaluated CD146 at the 
patient’s bedside.

In diabetic nephropathy (DN), Wang et al. identified 
in 2012 that sCD146 and P-selectin were significantly 
increased in the plasma of patients with type 2 diabetes and 
were both associated with microalbuminuria compared with 
healthy controls. Moreover, sCD146 and P-selectin plasma 
levels progressively rise, with significant renal failure and 
severity [107]. This was confirmed by Fan et al., showing 
that sCD146 was upregulated and associated with renal 
dysfunction in DN; moreover, it was a better marker than 
urine albumin creatinine ratio to evaluate disease severity 
in these patients. Concerning tissue CD146, its expression 
was co-localized with the endothelial marker CD31 within 
injured kidneys, was increased in DN, and was correlated 
with the severity of the disease. Both soluble and tissue 
CD146 were correlated with renal outcome and mortality 
[112]. In 2021, in a translational study, both the expression 
of Wnt5a and CD146 in the kidney and sCD146 levels in 
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plasma and urines increased in patients with DN and were 
correlated with the inflammatory process and progression 
of renal impairment [106].

In biopsies from patients with IgA nephropathy, Ji et al. 
identified that CD146 was mainly expressed in renal tubular 
epithelial cells, in the endothelial cells of peritubular cap-
illaries and smooth muscle cells, and this expression was 
correlated with 24-h proteinuria, serum creatinine, index 
of glomerulosclerosis, and the degree of interstitial fibrosis 
[113]. CD146 expression appears to switch from endothelial 
cells to epithelial cells in glomeruli and proximal tubules 
in these clinical studies. This underlying mechanism may 
be triggered by inflammatory mediators, growth factors, 
and signaling pathways associated with kidney injury and 
inflammation.

In patients with metastatic renal cell cancer (RCC), Feng 
et al. identified that the mean value of CD146 expression in 
the renal tumor was significantly higher than in those with 
localized RCC or in controls. Among patients with localized 
RCC, CD146 expression was higher in patients with recur-
rences [114]. A panel of genes consistently upregulated by 
renal cell cancer tumor blood vessels was screened by Wragg 
et al. CD146 and Laminin-α4 were highly expressed in an 
immunological analysis and were both predictors of poor 
survival outcomes. These data were confirmed by immuno-
histochemical analysis of CD146 and Laminin-α4, showing 
their expression to be highly specific to RCC and colorectal 
carcinoma blood vessels [115].

In a population of patients with kidney transplants and 
coronary artery disease, Malyszko et  al. identified that 
CD146 was correlated with endothelial immune cell adhe-
sion, renal dysfunction, and inflammation processes. Moreo-
ver, CD146 tended to be associated with elevated plasma 
creatinine after transplantation [116]. Karbowska et al. also 
showed that sCD146 was increased in kidney transplanted 
patients [117]. Similar studies by Boratynska et al., in 100 
patients with allograft and a stable renal function (estimated 
glomerular filtration rate (eGFR)), confirmed that plasma 
sCD146 was increased and was correlated with hyperurice-
mia and serum creatinine concentrations [118]. Finally, Liao 
et al. reported that the prediction performance of sCD146 
was better than eGFR for acute rejection in kidney trans-
plantation [119].

Concerning patients with chronic kidney disease (CKD), 
Bardin et al. identify that sCD146 plasma levels were higher 
in subjects with chronic renal failure. This increase was asso-
ciated with an increase in endothelial expression of CD146 
in kidney biopsies from these patients. Modifications of its 
basal levels could reflect alterations of junctional functions 
such as vascular permeability [41]. Daniel et al. confirmed 
the CD146 staining on endothelial cells in normal kidneys, 
but also on smooth muscle cells and mesangial cells, but 
not in tubular cells. When endocapillary proliferation was 
observed, the mesangial CD146 expression was higher and 
was correlated with proteinuria. A de novo expression of 
CD146 on tubular cells was found in 53 patients and this 

Fig. 4  Summary of CD146 implication in renal physiology and pathophysiology
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expression was correlated with the severity of the injury, 
with glomerulosclerosis, interstitial fibrosis, and renal fail-
ure [120]. Finally, Dursun et al. evaluated the relationship 
between endothelial microparticles and arterial stiffness in 
atherosclerosis in children with CKD. The levels of CD146-
positive endothelial microparticles in patients with dialy-
sis were significantly higher than in those with no need for 
dialysis and control groups [121].

All specific implications of CD146 are detailed in Fig. 4.

Perspectives

All the above-mentioned studies pointed out the role 
of CD146 in renal damage, via its overexpression in 
endothelial cells, glomerular cells, and possibly epithelial 
cells during injury. First, as CD146 interacts with mul-
tiple ligands, leading to inflammation and remodeling 
processes, it is of major interest to explore in the near 
future mechanistic insights triggered by endothelial cells. 
For instance, the interaction of Gal3, S100 proteins, or 
matriptase with CD146 promotes specific cytokine secre-
tion from endothelial cells, in a tumoral model modulating 
immune cells infiltration within injured organs [64, 65, 68, 
76]. Such a mechanism could be explored in other mod-
els of acute or chronic kidney injury to understand how 
endothelial and epithelial cells promote post-injury mech-
anisms. Second, multiple cross-interactions between renal 
endothelium and the cardiovascular system seem to be an 
important point in the pathophysiology involving CD146 
and its ligands. As CD146 is associated with endothelium 
and could be detectable as a soluble form in plasma, this 
could be a key point of crosstalk between different organs.

For example, it has been recently reported in an experi-
mental model of type 3 cardiorenal syndrome that CD146 was 
increased in both cardiac and renal tissue after rIR [122]. We 
could thus hypothesize that this junctional protein can transmit 
different messages through the vascular endothelium in the 
crosstalk between the heart and kidneys. Finally, understand-
ing the different specific roles of membranous CD146 (short 
or long isoform) and sCD146 would enhance the biomarker-
based analysis of this protein in clinical data, to precise if it is 
specific to pathophysiology or to organ dysfunction.

Conclusion

CD146 is an intercellular junction protein belonging to the 
immunoglobulin family, involved in multiple pathways. As a 
soluble form in the plasma, or as a membranous form in the 
tissue, CD146 interacts with multiple partners. These inter-
actions were observed mainly within the vascular endothe-
lium during the progression of renal disease. Few data have 

been reported in acute and chronic experimental nephropa-
thy, but also in clinical studies. CD146 may be a key media-
tor of the understanding of the crosstalks between organs, 
and the transition from acute to chronic injury, through inter-
actions with endothelial cells mediating complex molecular 
patterns that further trigger specific pathways.
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