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Abstract

The discrete dipole approximation (DDA) is used to compute the electromagnetic diffraction
of a three-dimensional object. Computationally, the DDA involves solving large, dense systems
of linear equations through iterative methods such as QMR, GPBiCG and BiCGstab. In this
paper, we propose to study two new methods (IDR(s) and GPBiCGstab(L)) for objects larger than
the wavelength of illumination. We show that while IDR(s) can present a reduced computation
time compared to other methods, it may not converge in some cases. Conversely, GPBiCGstab(L)
always converges and also has a reduced computation time compared to QMR, GPBiCG and
BiCGstab.
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1. Introduction

The discrete dipole approximation (DDA) is a method used to compute the electromagnetic
diffraction for three-dimensional objects. For more information, please refer to Refs. [1, 2] or
more recent references such as Refs. [3, 4]. While DDA is a simple and versatile tool, its main
weakness is having to solve a linear system of size (3N×3N), where N is the number of discretiza-
tion elements of the objet under study. For objects larger than the wavelength of illumination,
this can be more than a million, with in addition, a matrix with the property of being dense [5]. It
is clear that inverting such a matrix is impossible. Therefore, Purcell et al. [1] suggested solving
the linear equation system using a simplistic iterative method, while Draine proposed the use of
a conjugate gradient method [2]. In the literature there are numerous iterative methods, but it is
impossible to say which one is the best because it depends on the considered matrix. However,
all of them require performing many matrix vector product (MVP) to converge on the correct so-
lution. Goodman et al. have shown that, thanks to the block Toeplitz structure of the matrix, the
MVPs could be performed quickly using three-dimensional fast Fourier transforms (FFT) [6],
but it remains nevertheless essential to find the most suitable iterative method to obtain the result
as quickly as possible. A bad iterative method for the DDA can result in a long calculation times,
sometimes taking hours, or the method may not converge at all. Today, the iterative methods used
for the DDA are often based on Krylov subspace [7], which are well adapted for solving linear
systems with nonsymmetric matrices [8, 9, 10, 11]. Currently, the most used iterative method for
the DDA are the quasi-minimal residual, the stabilized version of the biconjugate gradient and
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the Generalized Product Bi-Conjugate Gradient. In this article, we compare to these three iter-
ative methods, two other iterative methods: the induced dimension reduction (IDR) [12], which
is a method which has never been tested before for the DDA, and the generalized product-type
methods based on bi-conjugate gradient (GPBiCG) which uses a novel stabilizing polynomials
of degree L, which is a very recently published method [13, 14].

2. The discrete dipole approximation

2.1. Principle of the DDA
As the DDA has been previously presented, we will only briefly review the method’s prin-

ciple. More details can be found in Ref. [4]. The object is discretized into a set of N small
cubic subunits of size d. Under the influence of the incident wave, each subunit is polarized and
radiates an electromagnetic field. To determine the field at each subunit position, taking into ac-
count the coupling between each element of the discretization, we must solve a system of linear
equations of the following form:

E = Eref + ADαE (1)
(I − ADα) E = Eref , (2)

where A is a matrix of size (3N × 3N) containing all the Green’s tensors, [15] E and Eref are
3N vectors containing the local and reference fields (i.e. filed in the absence of the object) at the
position of each element of discretization. Dα is a diagonal matrix of size (3N × 3N) containing
the polarizabilities of each subunits, and I is the identity matrix of size (3N × 3N). Once Eq. (2)
is solved, it is easy to quickly calculate the diffracted field in all space [16].

The cornerstone of the DDA is to quickly solve Eq. (2), knowing that the value of N can be
very large (it may be larger than one million for objects larger than the wavelength of illumina-
tion) and A being a dense matrix. Due to the size of the matrix, compute the inverse of (I−ADα)
is not possible. Therefore, the solution is to use an iterative method to solve the linear system
AE = Eref , where A = (I − ADα).

2.2. Solve iteratively the system of linear equations of the DDA
The principle of an iterative method for solving the system of linear equations AE = Eref is

to create a sequence Ek such that:

rk =
∥AEk − Eref∥
∥Eref∥

, (3)

with the residue rk tending towards zero when k increases, in which the k-th approximation is
derived from the previous ones [17]. The iterative process is stopped when rk < η, where the
value of η is set by the user and depends on the desired precision of the field.

The iterative methods necessitate the execution of one or two matrix-vector products (MVP)
during each iteration. To perform the MVP quickly, Draine et al. suggested using the 3D fast
Fourier transform because the matrix is Toeplitz [18, 6]. Then, the total computation time to ob-
tain the electromagnetic field will depend on two factors. Firstly, the computation time required
to perform the MVP. Secondly, the computation time in the iterative method itself, which in-
volves operations on vectors. This time will be multiplied by the number of iterations necessary
to achieve the desired accuracy. It should be noted that the calculation of the MVP can also be
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divided into two parts. The first part involves the calculation of FFT and inverse FFT, while the
second part involves the product of these FFTs. Notice that the entire matrix A is not stored in
memory. Indeed, when a matrix is Toeplitz, we only need to store one row of the matrix. Using
the symmetries of Green’s tensor, we therefore need to store in memory only 6 vectors of size
8N (the eight comes from the fact that for the matrix-vector convolution product, we need to
multiply the size of the Topelitz matrix by two in each direction of space).

The best iterative method for DDA is the method that, on the one hand, always converges
and, on the other hand, obtains the result as quickly as possible, i.e. generally with the least
possible number of MVPs. The best known iterative method is the conjugate gradient [19],
which was the first one used for the DDA [2, 6]. In 1997, Flatau studied different iterative
methods (conjugate gradient (CG), biconjugate gradient (BiCG), the stabilized version of BiCG
(BiCGstab), the quasi-minimal residual (QMR), the transpose-free QMR. He concluded that the
best iterative method was BiCGstab. In 1996, Rahola found that QMR was the best iterative
method for the DDA, but the objects studied were small and weakly contrasted because they
required less than 100 MVPs, whatever the iterative method chosen [20]. In 2006 Fan et al.
compared QMR, GPBiCG, BiCGstab and BiCGstab(L) and found that QMR require fewer MVPs
than GPBiCG and BiCGstab when |ε| > 4 [21]. More recently in 2007, Yurkin et al. studied three
iterative methods (QMR, BiCG and BiCGstab) for particles much larger than the wavelength of
illumination [3, 5] and conclude that QMR and BiCG were the best methods to use. In the case
of magneto-dielectric particles, the most efficient method was the general product bi-conjugate
gradient (GPBiCG) [22].

Finally, it appears that the methods generally used are QMR for the code done by Yurkin [5],
GPBiCG for the idiot friendly discrete dipole approximation (IFDDA) code [22], and BiCGstab
for the code done by Draine and Flatau [23]. These three codes are available for free.

In this article, we will compare the three iterative methods: QMR, GPBiCG and BiCGstab,
with the Induced Dimension Reduction (IDR(s)) [12], a method that has never been tested for
the DDA and GPBiCGstab(L) an iterative method developed very recently and introduced by
Aihara [13, 14] which is based on a combination of GPBiCG and BiCGstab. These two al-
gorithms have in common that they require the solution of a small system of linear equations
within the iterative method. Notice that the algorithms of IDR(s) and GPBiCGstab(L) are given
in Appendix A and Appendix B, respectively. The algorithms for QMR and BiCGstab are taken
from the parallel iterative methods package [24] (be careful, because in the QMR and BiCGstab
code, conjugated complexes are missing in some internal products). The algorithm for GPBiCG
is from Ref. [25, 26]. We will particularly focus on objects with high permittivity and larger than
the wavelength of illumination, which require a large number of MVPs, often exceeding 1000.

Note that all the calculations have been made with the software IFDDA [27] available for free
at the following address: https://www.fresnel.fr/spip/spip.php?article2735&lang=fr. The routine
IDR(s) and GPBiCGstab(L) are also available on the net in the IFDDA code. The reader can also
find all the other iterative methods used in this article in the IFDDA code. All calculations were
done with the processors: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz, and all the code
is written in FORTRAN parallelized with OpenMP on 24 processors and for the FFT we use the
FFT in the West [28].
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3. Results

3.1. Lossless spherical particle

We begin to study a lossless sphere of relative permittivity ε = 3 and radius a illuminated by
a plane wave of wave number k0. The chosen discretization is d ≈ λ/(6|n|), where n =

√
ε is the

refractive index of the object. Therefore, the number N of subunits changes according to k0a.
The inset in the bottom right of the Fig. 1 indicates the values of N chosen for the sphere versus
k0a. This gives 0.5 < k0d|n| < 1.05q, enough discretization to have an accuracy of the order of
10% if we compute the extinction cross-section with the DDA. For example, for k0a ∈ [20; 25]
we have almost N = 963 ≈ 1 million of dipoles, and for the largest sphere the error on the
extinction cross section computed with the DDA compared to Mie theory is about 8%. It should
also be noted that the number of iterations depends little on the discretization chosen, for more
details, see Appendix C. We plot in Fig. 1(a), in log scale the number of MVPs versus the size
parameter k0a. We can observe that the number of MVPs increases with k0a. This is due to the
fact that with the increase of the size, the multiple scattering within the object becomes more
significant, and consequently the spectrum of the matrix is broadened. To compare the efficiency
of the two new methods introduced compared to the old ones, we decided to use GPBiCG as a
reference and calculate the relative change (RC) in the number of MVP compared to GPBiCG:

RCMVP =
Number of MVPmethod − Number of MVPGPBiCG

Number of MVPGPBiCG
. (4)

Obviously, the result is equal to zero for GPBiCG (black line). In Fig. 1(b), RCMVP is plotted
versus the size parameter k0a. The BiCGstab is always close to GPBiCG, while QMR requires a
higher number of MVPs. IDR(s) is clearly the best method as it significantly reduces the number
of MVPs (≈ 40% for s = 8). The higher the value of s, the lower the number of MVPs required.
GPBiCGstab(L) is between IDR(s) and GPBiCG. If we now consider the gain in computation
time with GPBiCG as a reference, i.e.

RCt =
timemethod − timeGPBiCG

timeGPBiCG
, (5)

we can see that IDR(8) is no longer the best method, but it may even be one of the worst for large
values of k0a. GPBiCGstab(L) is, for large values of k0a, the best method whatever the value of
L. The value L = 8 gives the best result and is close to IDR(4). The reason for the substantial
slowdown of IDR(8) is in its algorithm, and will be explained in the following paragraph. While
for GPBiCGstab(L), the loss in computation time when L increases is less important. We tested
BiCGstab(L) for L=2, 4, 8, (not plotted) but the result does not change with respect to the value
of L and is always close to the GPBICG method.

Now, we study the evolution of the residue as a function of the number of MVPs for the
iterative methods seen previously, for a sphere illuminated by a plane wave of size parameter
k0a = 20 and relative permittivity of 3, see Fig. 2(a). Notice that with the chosen discretization,
the error on the extinction cross section computed with the DDA compared to Mie theory is
about 9%. QMR, GPBiCG and BiCGstab have similar behavior, with a slightly smoother curve
for QMR. For GPBiCGstab(L), the gain, compared to the three historical methods, in terms of the
number of MVPs is increasingly important as L increases. It is worth noting that after r = 10−5,
the slope becomes much steeper for GPBiCGstab(L). For IDR(s), the gain is even more spec-
tacular, with more than a factor of 2 for IDR(8) with a very fast decrease of the curves. If we
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Figure 1: Sphere of relative permittivity ε = 3 illuminated by a plane wave. The stopping criteria of the iterative method
is set to η = 10−4. (a) Number of MVPs versus k0a in log scale for the different iterative methods. (b) RCMVP (relative
change of the different iterative methods for the number of MVPs compared to GPBiCG) versus k0a. RCt (relative
change of the different iterative methods for the computation time compared to GPBiCG) versus k0a. The inset in the
bottom right of the figure indicates the values of N chosen versus k0a, N depending on sphere radius.

look at the same evolution of the residue but as a function of the computation time, Fig. 2(b), the
gains are a slightly less significant for GPBiCGstab(L) and IDR(s) due to the internal computa-
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tions within the iterative routine. For IDR(s), we can even see that IDR(8) becomes slower than
IDR(4). Nevertheless, it is clear that GPBiCGstab(L) and IDR(s) are faster than the three usual
iterative methods used in DDA codes. We have also tested BiCGstab(L) for L=2, 4, 8, but the re-
sult is always worse than the GPBICG method. To get a better understanding of the slowdown of
GPBiCGstab(L) and IDR(s) with respect to s and L, respectively, in Tab. 1, we report the compu-
tation time in the iterative method and the computation time to compute the MVP (computation
time of the FFTs plus the computation time of the product of the FFTs) for a sphere of relative
permittivity ε = 3 with a size parameter k0a = 20 illuminated by a plane wave with η = 10−4. It
is clear that as s increases, the computation time spent in the IDR(s) routine becomes more and
more consequent, which explains the slowing down of IDR(8). The same process is observed for
GPBiCGstab(L), but to a lesser extent. This is because for IDR(s), the number of scalar products
increases in s2 for one MVP, while for GPBiCGstab(L), the number of scalar products for one
MVP increases in L, see Appendix A and Appendix B for more details. For GPBiCG, QMR
and BiCGstab, the computational time spent in the iterative routine is negligible compared to the
computation time of the MVP.

Iterative Time in the Time for Total % in the
method iterative method the MVP time iterative method

GPBiCG 437 7632 8069 5.4 %
QMR 298 7298 7596 3.9 %

BiCGstab 277 7536 7813 3.6 %
IDR(2) 676 5651 6327 10.7 %
IDR(4) 833 4041 4874 17.1 %
IDR(8) 1693 3458 5151 32.9 %

GPBiCGstab(2) 663 6352 7015 9.5 %
GPBiCGstab(4) 711 5793 6504 10.9 %
GPBiCGstab(8) 878 5098 5976 14.7 %

Table 1: Sphere of relative permittivity ε = 3 with a size parameter k0a = 20 illuminated by a plane wave with η = 10−4.
Time in second in the different section of the code.

In Tab. 2, we look at the efficiency of the parallelization in OpenMP of the iterative methods
for a sphere with a size parameter k0a = 10. We observe that the gain in efficiency ranges from
a factor of 5 to 6 when using 1 to 6 processors. With 24 processors, we have a gain of a factor of
17 compared to one processor, indicating highly efficient parallelization. The percentage of time
spent in the iterative method slightly increases with the number of processors, meaning that the
parallelization of FFTW is a bit more efficient than that of the iterative routines programmed in
OpenMP, which is normal because FFTW uses MPI.

Note that we have tested other iterative methods, such as many variant of GPBiCG [29,
30, 26, 31] but they all give similar results to GPBiCG. In the same way, we have also tried
transpose-free QMR [24], QMRBiCGstab [32], the conjugate orthogonal residual squared [33],
and BiCGstab(L) [34] but they all converge much more slowly than QMR, BiCGstab, GPBiCG
or do not converge at all. We also tested a Gaussian beam illumination with a waist of λ [35]
centered at (0, a/2, 0) and the conclusions that have been drawn in this subsection remain valid.
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Iterative Time in the Time for Total % in the
method iterative method the MVP time iterative method

Number of processor 24 6 1 24 6 1 24 6 1 24 6 1
GPBiCG 1.7 3.6 20.5 21.7 68.4 391 23.4 72.0 411 7.2 5.0 8.0

QMR 1.2 3.6 18.7 23.3 75.4 407 24.5 79.0 426 5.0 4.6 4.4
BiCGstab 0.9 2.2 12.3 22.1 72.1 367 23.0 74.3 379 4.1 3.0 3.2

IDR(2) 2.3 6.8 31.6 17.7 58.9 261 20.0 65.7 293 11.3 10.3 10.8
IDR(4) 4.0 11.3 61.4 15.9 49.4 263 19.9 60.7 324 20.2 18.6 18.9
IDR(8) 7.5 22.4 122.2 11.3 40.4 204 18.8 62.8 326 40.0 35.7 37.4

GPBiCGstab(2) 2.4 5.7 28.6 19.9 61.9 316 22.3 67.6 336 10.7 8.5 8.3
GPBiCGstab(4) 2.8 6.2 31.4 19.1 56.4 302 21.9 62.6 333 12.9 9.9 9.4
GPBiCGstab(8) 3.7 8.2 39.2 17.7 56.0 339 21.4 64.2 378 17.5 12.7 10.4

Table 2: Sphere of relative permittivity ε = 3 with a size parameter k0a = 10 illuminated by a plane wave with η = 10−4.
Time is second in the different section of the code depending on the number of processors used.

3.2. Silver particle
In this section, we study the behavior of iterative methods with a metallic sphere, see Fig. 3.

We have chosen a silver sphere at λ = 500 nm with ε = −8.5+0.76i. The meshsize is always fixed
to d ≈ λ/(6|n|). It should be noted that the extinction cross section computed with the DDA shows
a relative error between 4 and 9% versus k0a, compared with the calculation made with Mie’s
theory. We have not represented QMR in Figs. 3(b) and 3(c) because RCMVP and RCt are always
around 1. We can notice that IDR(4) and IDR(8) do not converge when k0a > 15. GPBiCG
and BiCGstab look very similar. GPBiCGstab(L) always converges and has a lower number of
MVPs than GPBiCG and BiCGstab, as shown in Fig. 3(b). On the other hand, regarding the
computation time, Fig. 3(c), for k0a < 15, GPBiCGstab(L) is much longer and for k0a > 15, we
have RCt ≈ 0. Unfortunately, the advantage in terms of MVP is not reflected in the computation
time due to the time taken in the iterative routine.

3.3. Inhomogeneous Object
We consider an inhomogeneous cube of side a = 12λwith discretization N = 128×128×128

(d ≈ λ/10) with a random relative permittivity with variance σ2 and defined as ⟨ε(r), ε(r′)⟩ =
1 +σ2 exp

(
− ∥r−r′∥2

l2c

)
[36]. We have chosen lc = λ and in Tab. 3, we present the number of MVPs

and the computation time in seconds for different values of σ. The higher the value of σ, the
more inhomogeneous the object is and the more multiple scattering occurs. In this configuration,
IDR(s) is not a suitable method. With the case s = 8, the residue will very quickly diverge to
high values. BiCGstab does not converge on the highest σ, while QMR and GPBiCG converge
for all values of σ, with GPBiCG being slightly faster. In this case, GPBiCGstab(L) is clearly the
best method, with for the highest σ value a number of MVPs divided by 5 compared to GPBiCG
for L = 8, while the time of computation is divided by 6.

3.4. Cuboid and preconditioner
Recently, Groth et al. introduced a multilevel circulant preconditioner [37, 38] to solve the

linear system and improve the rate of convergence of the iterative method [39]. We recently
showed that the multilevel circulant introduced by Groth was well suited for flat, homogeneous
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Figure 3: Sphere of silver illuminated by a plane wave with ε = −8.5+0.76i. The stopping criteria of the iterative method
is set to η = 10−4. (a) Number of MVP versus k0a in log scale for the different iterative method. (b) RCMVP versus k0a.
(c) RCt versus k0a.

objects and for relative permittivities lower than 2 [40]. However, the preconditioned iterative
method fails to converge when ε > 2.5 [40]. In this section, we study the number of MVPs for
a flat, homogeneous cuboid of size (20λ, 20λ, 2λ) with d = λ/(7.5) without preconditioner and
with the left and right preconditioner for different values of relative permittivities, as shown in
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σ = 0.13 σ = 0.16 σ = 0.19 σ = 0.22
MVP t MVP t MVP t MVP t

GPBiCG 50 18 88 35 176 63.4 4930 1846
BiCGstab 54 19 102 39 202 75 - -

QMR 95 39 159 59 275 93 10147 3667
IDR(2) 51 15 84 25 - - 19332 4806
IDR(4) 68 23 138 41 483 134 - -
IDR(8) - - - - - - - -

GPBiCGstab(2) 50 12 86 20 162 38 2334 568
GPBiCGstab(4) 50 12 82 20 138 34 1250 306
GPBiCGstab(8) 50 12 82 21 146 38 1106 284

Table 3: Number of MVPs and computation time (t) in second for the different iterative methods versus σ for η = 10−4

and lc = λ.

Tab. 4. As seen in Ref. [40], for ε < 2.5 using the preconditioner is very efficient in decreasing
the number of MVPs by a factor of 10 and the computation time by a factor of 3. We see that the
right preconditioner is a slightly better than the left preconditioner.

When ε > 2.5, the three methods QMR, BiCGstab and GPBiCG do not converge at all with
the right or left preconditioner confirming what is said in Ref. [40]. On the other hand, IDR(s)
always converges very quickly with the preconditioner and converges faster for larger s. This is
also true for GPBiCGstab(L), but to a lesser extent because even for L = 8, the last value of ε
does not converge with the preconditioner.

3.5. Spherical particle in presence of a multilayer system

The DDA can also compute electromagnetic wave diffraction for objects in the presence of
multilayers. We chosen the configuration shown in Fig. 4, which consists of a sphere with a
radius a placed between two glass planes separated by a distance 2a. In this case, the matrix A
becomes Toeplitz only in the x and y directions. Therefore, the product of the matrix A by the
field E is done with 2D FFTs, thus slowing down the calculation of the MVP. Figure 5(a) shows
the number of MVPs, Fig. 5(b) and 5(c) show RCMVP and RCt, respectively, for a sphere of per-
mittivity ε = 3 as a function of k0a with η = 10−4. QMR is, in this case, the method that requires
the most MVP, while BiCGstab requires slightly more MVP than GPBiCG. GPBiCGSTAB(8) is
a little better than GPBiCG, and clearly IDR(8) is the best method. We note that the curves in
Fig. 5(b) are very similar to those in Fig. 5(c). The same comment can therefore be made about
the computation time.

Figure 6 studies the evolution of the residue for a sphere with a size parameter of k0a = 10
and a relative permittivity of ε = 3. QMR for high residue joins the two methods GPBiCG
and BiCGstab and confirms the fact that for a value of η > 10−6 the three methods give similar
results. GPBiCGSTAB(L) is better than the three previous methods, but the difference is small,
while IDR(s) is clearly the best method with a significant and consistent improvement in terms of
MVP and computation time. The explanation for why the curves RCMVP and RCt are so similar
is that the computation time spent in the iterative method is always less than 1% of the total time,
regardless of the method used. This is due to the fact that the MVP is significantly slowed down
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ε = 2.1 ε = 2.4 ε = 2.7 ε = 3.0
method P MVP t MVP t MVP t MVP t

GPBiCG
No 1690 62 4046 158 6764 254 18778 712
LP 146 23 144 23 - - - -
LR 112 22 112 22 - - - -

BiCGstab
No 1716 65 4380 164 6956 258 17446 650
LP 154 29 460 70 - - - -
LR 116 22 170 28 - - - -

IDR(2)
No 1770 71 4068 158 7186 280 11578 459
LP 99 18 135 22 267 40 1980 277
LR 105 20 120 30 213 47 871 132

IDR(4)
No 1678 72 3451 148 7738 331 12821 547
LP 99 18 135 22 224 35 873 127
LR 86 19 103 20 195 33 499 76

IDR(8)
No 1695 91 3956 211 6940 365 12306 651
LP 100 19 129 24 202 43 660 116
LR 66 16 103 22 183 34 571 91

GPBiCGstab(2)
No 1598 63 3982 156 6622 256 17614 688
LP 134 29 142 24 - - - -
LR 114 21 106 20 - - - -

GPBiCGstab(4)
No 1610 63 3802 151 6450 253 15170 595
LP 146 23 122 20 2794 393 - -
LR 106 21 106 20 2386 336 - -

GPBiCGstab(8)
No 1570 65 3666 149 6338 262 14290 594
LP 114 19 130 21 1266 182 - -
LR 114 22 114 22 898 136 - -

Table 4: The object under study is a cuboid of size (20λ, 20λ, 2λ) illuminated by a plane wave. Number of MVPs
and computation time (t) in second for the different iterative methods for η = 10−4 with no preconditioner (NP), left
preconditioner (LP) and right preconditioner (RP) versus ε.
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vacuum

Glass Illumination

Glass

ε=3

Figure 4: Sphere of relative permittivity ε = 3 with a radius a illuminated by a plane wave. The superstrate and the
substrate are in glass (ϵ = 2.25) separated by a distance 2a.

by using only two dimensional FFTs. Therefore, the gain in MVP translates directly into a gain
in time, contrary to objects in homogeneous space.

Now, we study the same configuration as the previous one, but with a silver sphere instead
of a glass sphere for λ = 500 nm and η = 10−4. Due to the similarity between RCMVP and RCt,
only RCt is plotted, as shown in Fig. 7. The conclusion is that IDR(s) is the best method with a
gain of up to 40 % with s = 8, and GPBiCGSTAB(L) is also a good method with a gain of 20
% with L = 8 compared to GPBiCG. We also tried the same configuration with a superstrate in
gold, and the results obtained were similar.

4. Conclusion

In this article, we have studied various iterative methods for solving the linear system of the
DDA. We compared GPBiCG, BiCGstab and QMR, which are the most used methods for the
DDA, with IDR(s) and GPBiCGstab(L). We observed that GPBiCG, BiCGstab and QMR exhibit
similar convergence, with only QMR converging slightly slower when the stopping criterion
value of the iterative method is fixed at η = 10−4.

IDR(s) can be a very fast method, especially when preconditioning is used, but it may also
not converge in some configurations. It is therefore complicated to advise to use IDR(s) as its
behavior is difficult to predict.

Finally, we have seen that GPBiCGstab(L) always converges and requires less MVPs than
GPBiCG, BiCGstab and QMR. In all cases where the object was much larger than the wavelength
(k0a > 15), this method allowed us to save computation time. However, it should be noted
that that this method requires the storage of many intermediate vectors and requires a bit more
computation in the iterative method itself.
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Figure 5: Geometrical configuration is described in Fig. 4. The stopping criteria of the iterative method is set to η = 10−4.
(a) Number of MVP versus k0a in log scale for the different iterative method. (b) RCMVP versus k0a. (c) RCt versus k0a.

Appendix A. The IDR(s) algorithm

The IDR(s) algorithm has been introduced in Ref. [12] and a more comprehensive algorithm
is given in Ref. [42]. For the convenient of the reader, the IDR(s) algorithm is briefly presented
below:

1. Select an initial guess x
2. Compute r0 = b − Ax Compute MVP
3. for n = 0, · · · , s − 1
4. vn = Arn
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5. ω = (vn, rn)/(vn, vn)
6. qn = ωrn; en = −ωvn

7. rn+1 = rn + en; xn+1 = xn + qn

8. end;
9. Es = (es−1, · · · , e0); Qs = (qs−1, · · · ,q0)

10. P = (p1, · · · ,ps) every entries of pi are random complex numbers between 0 and 1.
11. P is orthonormalized with Gram-Schmidt method as (pi,p j) = δi j

12. n = s
13. while ∥rn∥/∥b∥ > tol
14. Solve cn from PT Encn = PT rn

15. vn = rn − Encn

16. If mod(n, s + 1) = s then
17. tn = Arn Compute MVP
18. ωn =

(tn,vn)
(vn,vn)

19. en = −Encn − ωntn

20. qn = −Qncn + ωnvn

21. Else
22. qn = −Qncn

23. en = −Aqn Compute MVP
24. End If
25. rn+1 = rn + en

26. xn+1 = xn + qn

27. En = (en−1, · · · , en−s)
15



28. Qn = (qn−1, · · · ,qn−s)
29. n = n + 1
30. End While

PT is the conjugate transpose matrix and (a,b) = aT b is the scalar product. Note that s represents
the number of previous search directions that are retained and used to construct the new search
direction in each iteration of the algorithm. Hence, in the IDR(s) algorithm we have to solve a
system of linear equations of size s × s which is not parallelized because the size of the matrix
is small. All other calculations are parallelized using OpenMP. Note that for one iteration of the
algorithm, we have to perform 1 MVP and s2 + 4s + 2 scalar products. The number of vectors
needed for the algorithm is 5 + 3s.

Note that in Ref. [42], a variant is proposed to calculate the ω factor. Our tests have shown
that in our configuration, this modification always deteriorated the convergence of the algorithm.

Appendix B. The GPBiCGstab(L) algorithm

The GPBiCGstab(L) algorithm has been developed by Aihara [13, 14]. He proposes a stabi-
lizing polynomial of degree L that combines the stabilizing polynomial of BiCGstab(L) and the
polynomial given by a three term recurrence of GPBiCG. The algorithm given by Aihara is in a
compact notation. For ease of understanding for the reader, we have rewritten it in this appendix
in a form that is directly programmable in FORTRAN or C++. We want to solve Ax = b with
an initial guess and a tolerance fixed at tol:

1. Select an initial guess x.
2. Compute the residue r0 = b − Ax and choose a vector r̃0.
3. p0 = r0

4. ρ = (r̃0, r0)
5. for j = 1, · · · , L
6. p j = Ap j−1 Compute MVP
7. σ = (r̃0,p j)
8. α = ρ/σ

9. x = x + αp0

10. for i = 0, · · · , j − 1; ri = ri − αpi+1; end
11. r j = Ar j−1 Compute MVP
12. ρ = (r̃0, r j)
13. β = ρ/σ

14. for i = 0, · · · , j; pi = ri − βpi; end
15. end
16. r′ = r0; p′ = p0

17. for i = 0, · · · , L − 2; si = ri+1; end
18. for i = 0, · · · , L − 1; qi = pi+1; end

Compute ζ to minimize ∥r0 − [r1, · · · , rL]ζ∥ with ζ = [ζ1, · · · , ζL]:

19. M = [r1, · · · , rL]; Solve MT Mζ =MT r0; size L × L
20. z = 0; for i = 1, · · · , L; z = z + ζiri−1; end
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21. x = x + z Update the solution
22. for i = 1, · · · , L; r0 = r0 − ζiri; end
23. for i = 1, · · · , L; p0 = p0 − ζipi; end

End of the initialization, the process of iteration begins

24. while ∥r0∥/∥b∥ > tol
25. y = r′ − r0; u = p′ − p0
26. ρ = (r̃0, r0)
27. for j = 1, · · · , L
28. if j > 1 then
29. for i = 0, · · · , L − j; si = si − αqi+1; end
30. for i = 0, · · · , L − j; qi = si − βqi; end
31. end
32. p j = Ap j−1 Compute MVP
33. v = q0 − p1
34. σ = (r̃0,p j), α = ρ/σ.
35. x = x + αp0, z = z − αu, y = y − αv
36. for i = 0, · · · , j − 1; ri = ri − αpi+1; end
37. r j = Ar j−1 Compute MVP
38. ρ = (r̃0, r j), β = ρ/σ
39. for i = 0, · · · , j; pi = ri − βpi; end
40. u = y − βu
41. end
42. Set r′ = r0, p′ = p0
43. for i = 0, · · · , L − 2; si = ri+1; end
44. for i = 0, · · · , L − 1; qi = pi+1; end

Compute ζ and y to minimize ∥r0 − [r1, · · · , rL]ζ − ηy∥:

45. M = [r1, · · · , rL, y]; Solve MT M
(
ζ
η

)
=MT r0; size (L + 1) × (L + 1)

46. z = ηz; for i = 1, · · · , L; z = z + ζiri−1; end
47. x = x + z Update the solution
48. Set r0 = r0 − ηy
49. for i = 1, · · · , L; r0 = r0 − ζiri; end
50. Set p0 = p0 − ηu
51. for i = 1, · · · , L; p0 = p0 − ζipi; end
52. end while

The number of vectors needed for the algorithm is 4L + 8. In this configuration, all calcu-
lations are parallelized using OpenMP, except the matrix inversion. Note that the calculation of
MT M requires only (L + 2)(L + 1)/2 scalar products because MT M is a Hermitian matrix. For
one iteration of the algorithm, we need L MVP and 3L + 2 + (L + 2)(L + 1)/2 scalar products.
Hence, for 1 MVP, we have approximately 3 + L/2 scalar products.

If we compare IDR(s) and GPBiCGstab(L), then we notice that for one MVP, the number
of scalar products increase in s2 for IDR(s) and in L for GPBiCGstab(L). This explains the
significant growth of the time spent in the iterative method as a function of s compared to L, as
shown in Tab. 1.
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Appendix C. Influence of the discretization on the number of iteration

The number of subunits representing the object has little influence on the number of iterations
required for the iterative method to converge [20, 41]. To check that this is true whatever the
iterative method chosen, we choose the configuration of Fig. 1 with k0a = 6 by varying the
number N of dipoles representing the sphere. Table C.5 presents the evolution of the number
of iterations; the relative error between the extinction cross-section computed with DDA and
that calculated with Mie’s theory; the factor k0|n|d, as a function of N. We confirm that the three

Discretization N = 323 N = 483 N = 643 N = 963 N = 1283

GPBiCG 240 238 236 238 244
QMR 321 305 307 297 275

BiCGstab 256 228 234 240 232
IDR(2) 219 234 202 207 208
IDR(4) 208 183 181 163 348
IDR(8) 162 175 174 147 -

GPBiCGstab(2) 226 226 226 230 230
GPBiCGstab(4) 226 226 226 226 226
GPBiCGstab(8) 226 226 226 210 226

Cext (%) 6.1 4.7 2.4 1.0 0.1
k0|n|d 0.65 0.44 0.33 0.22 0.16

Table C.5: Evolution of the number of iteration for the different iterative method versus N for a sphere of permittivity
ε = 3 and k0a = 6. Cext (%) gives the error between the extinction cross section computed with the DDA and the Mie’s
theory. The last line presents k0 |n|d versus N.

methods usually chosen (GPBiCG, QMR, BiCGstab) have a number of iterations that varies little
with the discretization. IDR(s) has also a stable number of iterations, but can sometimes exhibit
instability. On the other hand, GPBiCGstab(L) is highly stable as a function of N. Note that if
we change the radius of the sphere to choose a Mie resonance, then the number of iteration can
depend strongly on N [20].
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