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A B S T R A C T   

Brain [18F]FDG-PET scans have revealed a glucose hypometabolic pattern in patients with long COVID. This 
hypometabolism might reflect primary astrocyte dysfunction. Astrocytes play a key role in regulating energy 
metabolism to support neuronal and synaptic activity, especially activity involving glutamate as the main 
neurotransmitter. Neuroinflammation is one of the purported mechanisms to explain brain damage caused by 
infection with SARS-CoV-2. Microglial activation can trigger reactive astrogliosis, contributing to neuro-
inflammatory changes. These changes can disturb glutamatergic homeostasis, ultimately leading to cognitive 
fatigue, which has been described in other clinical situations. We hypothesize that glutamatergic dysregulation 
related to astrocyte dysfunction could be the substrate of brain PET hypometabolism in long COVID patients with 
brain fog. Based on these elements, we propose that therapeutics targeting astrocytic glutamate regulation could 
help mitigate long COVID neurological manifestations.   

Introduction 

Long COVID, also called post-COVID condition (PCC) or post-acute 
sequelae of SARS-CoV-2 infection (PASC), is defined by the persistence 
of symptoms for at least 2 months, usually 3 months from the onset of 
COVID-19, that cannot be explained by an alternative diagnosis in the 
context of a probable or confirmed SARS-CoV-2 infection [1]. These 
symptoms encompass various manifestations, including cognitive fa-
tigue and brain fog. [18F]Fluorodeoxyglucose (FDG) positron emission 
tomography (PET) brain imaging has been proposed as a tool to 
demonstrate brain impairment in this condition [2]. 

[18F]FDG is a safe fluorine-18 radiolabelled analog of glucose that 
takes part like glucose in its metabolism. It is the most used radiotracer 
for brain PET imaging. The brain is a major glucose consumer, as glucose 
is needed to support cerebral function [3,4]. Brain [18F]FDG-PET im-
aging is commonly employed for the diagnosis of neurological disorders, 
as alterations in brain metabolism can occur under many pathological 
conditions. In neurodegenerative diseases, a reduced brain [18F]FDG- 
PET signal has been associated with neuronal loss, although there is 

clear evidence that [18F]FDG-PET hypometabolism can precede signif-
icant neuronal death by several years [5]. In long COVID, specific re-
gions of the brain have been found to be hypometabolic using [18F]FDG- 
PET imaging, such as the limbic/paralimbic circuit (including the ol-
factory grooves, cingulate, temporal cortex, amygdala, hippocampus, 
insular cortex, and hypothalamus), the brainstem, and the cerebellum 
[2,6,7]. 

Glucose metabolism assessed using [18F]FDG-PET is thought to 
reflect synaptic activity, the regulation of which depends on functional 
interactions between neurons and astrocytes [8]. Astrocytes are abun-
dant glial cells of the central nervous system that crucially adapt energy 
metabolism to synaptic activity and regulate glutamatergic synapses. 
Glutamatergic neurons heavily rely on astrocytes to support the syn-
thesis and release of glutamate, which is the neurotransmitter respon-
sible for 90 % of excitatory neurotransmissions in the human brain [9]. 
Astrocytes play a pivotal role in this metabolic cooperation by taking up 
glutamate from the synaptic cleft and converting it into glutamine 
through the enzyme glutamine synthetase. This process not only facili-
tates efficient glutamate recycling but also ensures the replenishment of 
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glutamine, which can be transported back to the neurons to serve as a 
precursor for the synthesis of amino acid neurotransmitters, including 
glutamate. Additionally, astrocytes provide energy substrates to neurons 
through the astrocyte-neuron lactate shuttle, through which astrocytes 
metabolize glucose into lactate and release it to be used as a prominent 
fuel for neuronal metabolism [4,9,10]. This exchange of metabolites 
between astrocytes and neurons is essential for maintaining synaptic 
homeostasis and supporting neuronal activity. Disruption of this meta-
bolic coupling, such as reduced astrocytic glutamate uptake or impaired 
lactate supply to neurons, can lead to glutamatergic excitotoxicity and 
impaired neurotransmission and ultimately contribute to brain 
dysfunction [11]. 

Astrocytes are also key responders to neuroinflammatory changes via 
pro- and anti-inflammatory actions [12]. Under certain conditions, as-
trocytes undergo molecular, morphological and functional changes and 
gain a reactive state, termed reactive astrogliosis [13]. Astrocytes 
become hypertrophic or atrophic [14], exhibiting an altered release of 
signalling molecules and changes in their ability to support neuronal 
function. Neuroinflammation, along with microglial activation and 
mitochondrial dysfunction, plays a role in numerous neurological dis-
orders, and all three conditions are thought to be involved in long 
COVID [15]. 

Overall, brain hypometabolism reported using [18F]FDG-PET imag-
ing may be interpreted as arising from two underlying mechanisms, 
based on recent advances in the field [8,16,17]:  

(i) Astrocytes undergo reduced glucose utilization secondary to 
decreased activity of neurons/synapses, which are primarily 
impaired. This functional mechanism is nonspecific and 
commonly observed in various cerebral diseases, independent of 
the pathological process affecting the brain.  

(ii) Astrocytes undergo a more specific process primarily linked to 
their reduced capacity to take up glutamate, subsequently 
resulting in decreased lactate supply to neurons as a key energy 
source [9]. This leads to the accumulation of glutamate in the 
extracellular space, causing interference with normal neuro-
transmission and eventually resulting in glutamatergic excito-
toxicity and neuronal death [16,18]. In these cases, astrocyte 
reactivity might be both a sign of their dysfunction and a 
contributing factor to the deleterious effects on neurons. 

The hypothesis for long COVID 

We hypothesize that the hypometabolism pattern observed in long 
COVID patients with brain fog using [18F]FDG-PET might primarily be a 
signature of astrocyte-related glutamatergic dysregulation (Fig. 1). 

Evaluation of the hypothesis and empirical data 

Long COVID is classically associated with cognitive dysfunction 
described as brain fog [19], characterized by a lack of mental clarity, 

Fig. 1. Hypometabolism detected with 18F[FDG]-PET in long COVID patients: putative astrocyte dysfunction and glutamatergic dysregulation. (A) 18F[FDG]-PET 
scan of a healthy subject. (B) 18F[FDG]-PET scan of a long COVID patient. Hypometabolic areas are indicated with arrows. (C) A diagram showing a healthy 
condition in which an astrocyte has a normal capacity to take up glutamate and recycle it to sustain glutamatergic neurotransmission, giving rise to normal glucose 
utilization and lactate production to ensure adequate neuronal energy supply. (D) A diagram showing a long COVID condition in which an astrocyte has reduced 
glutamate uptake capacity, leading to reduced glutamate recycling, lower glucose utilization (observed with 18F[FDG]-PET as hypometabolism) and lower lactate 
production, dysregulating glutamatergic neurotransmission and possibly endangering neuronal survival. 

T. Horowitz et al.                                                                                                                                                                                                                               



Medical Hypotheses 180 (2023) 111186

3

difficulty concentrating, and an inability to focus, with cognitive activ-
ities becoming effortful. Interestingly, a link between cognitive fatigue 
and glutamate dysregulation has been suggested in other clinical con-
ditions [20]. In a recent magnetic resonance spectroscopy study, 
Wiehler and colleagues proposed a neurometabolic basis for cognitive 
fatigue [20]. They found an increase in the accumulation of substances 
requiring clearance, including glutamate, during high-demand cognitive 
tasks compared to low-demand tasks. This elevated level of glutamate 
suggests that the activation of certain brain regions is more energetically 
demanding and susceptible to astrocyte dysfunction. Moreover, this 
brain fog seems similar to that reported as “chemo-fog” in patients with 
cancer, with possible common immunological mechanisms induced by 
the tumour or its treatment [21,22], also involving astrocytes and 
microglial activation [23]. Interestingly, a similar brain FDG-PET frontal 
hypometabolic pattern to that of long COVID has been recently reported 
in patients with immune-effector cell-associated neurotoxicity syn-
drome after chimeric antigen receptor T-cell therapy, suggesting shared 
cytokine-induced inflammation [24]. Furthermore, fatigue has previ-
ously been linked to apathy, olfactory dysfunction, and cognitive 
impairment in other clinical conditions, such as Parkinson’s disease 
[25]. In this disease, the symptoms are interestingly supported by a 
similar brain network to that of long COVID [26] involving the same two 
presumptive models of propagation, descending (“top-down”) from the 
nose to the brain and ascending (“bottom-up”) from the autonomic 
nervous system to the brain. 

Concerning the connections between the potential mechanism per-
taining to cognitive fatigue and cytokine-induced inflammation with the 
observed hypometabolism in patients with long COVID, we hypothesize 
that the reduction in astrocytic glutamate uptake capacity causing 
extracellular glutamate accumulation could contribute to brain fog. 

Implications of the hypothesis and discussion 

Hypometabolism revealed in brain [18F]FDG-PET scan is a usual 
pathological finding, for example in the interictal state of focal epilepsy 
which is associated with cognitive deficits [27]. In this case, the hypo-
metabolism is reversible after antiepileptic treatment and parallels the 
regression of possible interictal symptoms, especially cognitive impair-
ment, as illustrated in transient epileptic amnesia [28]. We notice that 
the potential benefits of ketogenic medium-chain triglyceride (MCT) 
supplementation have been similarly proposed both in epilepsy and to 
refuel the post-COVID-19 brain by compensating for defects in glucose 
metabolism in astrocytes and neurons [29]. 

More globally, therapeutics acting on glutamatergic neurotransmis-
sion are available and may reduce symptoms related to glutamatergic 
excitotoxicity [30], possibly attenuating the consequences of primary 
astrocyte dysfunction, with for example the α2A-adrenoceptor agonist 
guanfacine and N-acetylcysteine (NAC) which are currently under 
investigation in long COVID [31]. In a recent study, a promising com-
bination of guanfacine and NAC improved cognitive function in 8/12 
long COVID patients with brain fog. Researchers have proposed hy-
potheses to explain this possible drug-association mechanism, namely, 
that some regions in the brain may be more vulnerable to long COVID 
with brain fog [32]. This vulnerability could be due to unusual features 
of synapses in these regions that mostly rely on NMDA receptors, as 
these glutamatergic synapses are excitatory, and glutamate acts on 
postsynaptic NMDA receptors to activate neurons. NAC reduces oxida-
tive stress associated with excessive activation of NMDA receptors, and 
guanfacine reduces deleterious potassium-mediated channel signalling 
in neurons and enhances neuronal firing [31]. Another option to be 
considered is memantine, an NMDA channel blocker used to treat 
moderate-to-severe Alzheimer’s disease, which reduces glutamate- 
induced prolonged Ca2 + influx in neurons and may help to mitigate 
the detrimental effects of impaired astrocytic glutamate uptake [33]. 

Another therapeutic option would be to target astrocytes directly. As 
mentioned, these cells are responsible for the maintenance of glutamate 

homeostasis. They recycle glutamate via its uptake by high-affinity Na+- 
dependent glutamate transporters (e.g., excitatory amino acid trans-
porter 2 - EAAT2) and its conversion into glutamine [34]. A class of 
β-lactam antibiotics has been identified as promoting the expression of 
glutamate transporters and enhancing glutamate uptake by astrocytes 
[35]. Ceftriaxone was shown to not only stimulate glutamate uptake but 
also boost glucose utilization (and the concomitant [18F]FDG-PET 
signal) in astrocytes [8]. Ceftriaxone has been investigated as a potential 
treatment for excitatory events that occur in the brain of amyotrophic 
lateral sclerosis patients (NCT00349622; NCT00718393) [36]. Multiple 
EAAT2 activators/inducers have been identified and could be tested as 
potential glutamate uptake enhancers. These EAAT2 activators/in-
ducers are also potential candidates for PET radiopharmaceutical 
development of novel radiotracers, which would greatly help us advance 
our understanding of brain metabolic changes in long COVID and other 
brain conditions, especially other postinfectious disorders [37]. Finally, 
metformin has been recently suggested to prevent long COVID [38]. 
Metformin is well known for its effects on peripheral metabolism, but it 
also works in the central nervous system by stimulating glycolysis and 
lactate production by astrocytes [39]. 

It is important to acknowledge that our hypothesis does not 
discriminate among upstream mechanisms that are likely involved in 
astrocyte dysfunction. Indeed, three main mechanisms, possibly 
concomitant, have been proposed in long COVID, as follows: direct 
astrocyte infection by SARS-CoV-2, a pathogen-triggered immune re-
action, and cytokine-mediated inflammation [22,40,41]. According to 
the first mechanism, SARS-CoV-2 infects astrocytes, interestingly 
causing metabolic changes consistent with our hypothesis, and leading 
to neuronal dysfunction that contributes to the structural and functional 
alterations observed in the brains of COVID-19 patients [40]. This viral 
persistence has already been reported in other phagocytic lineages, such 
as monocytes [42], and has been suggested in the human body and brain 
after SARS-CoV-2 infection [43,44]. A preprint study using innovative 
PET target imaging reported that long COVID symptoms were associated 
with activated T lymphocytes in the spinal cord and gut wall [45], with 
concomitant detection of cellular SARS-CoV-2 RNA in the rectosigmoid 
lamina propria tissue of all patients. According to the second mecha-
nism, a structural protein derived from SARS-CoV-2 may act as a 
pathogen-associated molecular contributor to dysimmune reactions and 
lead to vascular damage and neuroinflammation [41]. According to the 
third mechanism, SARS-CoV-2 infection ultimately increases microglial/ 
macrophage reactivity [22,46] and proinflammatory cytokines in 
microglia and is associated with mitochondrial dysfunction [47,48]. It is 
important to note that astrocytes are potentially becoming reactive in 
these three proposed hypotheses. It is especially possible that the pro-
longed inflammatory response and neuroinflammation observed in long 
COVID could lead to astrocyte reactivity and possible metabolic dys-
functions. The presence of reactive astrocytes in long COVID suggests 
the involvement of astrocytes in the disease process and could poten-
tially contribute to the neurological symptoms experienced by some 
individuals with long COVID. 

Next contributions expected from molecular imaging to 
consolidate the hypothesis 

Further research is needed to establish a definitive link between 
reactive astrocytes and long COVID. Additional studies utilizing more 
specific markers or techniques targeting astrocyte function and gluta-
mate homeostasis will be necessary for a comprehensive understanding 
of the underlying mechanisms and for the development of effective 
treatments for long COVID-related brain fog. In this context, multitracer 
PET studies to explore neuroinflammation could be a useful strategy to 
understand long COVID, with concordant preliminary results 
[6,15,49–52]. Specifically, PET imaging with a TSPO tracer, used as an 
index of microglial activation, has revealed widespread longitudinal 
neuroinflammation in SARS-CoV-2-infected rhesus macaques [52], and 
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elevated TSPO binding was associated with persistent depressive and 
cognitive symptoms after initially mild to moderate COVID-19 illness . 
To our knowledge, no studies with MAO-B or I2BS PET tracers, used as 
indices of astrocyte reactivity, have been conducted yet. 

In conclusion, we hypothesize that the [18F]FDG-PET hypo-
metabolism pattern observed in long COVID patients with brain fog is 
indicative of astrocyte-related glutamatergic dysfunction. In this line, 
therapeutic approaches targeting glutamate neurotransmission and 
astrocyte function could help to alleviate astrocyte dysfunction in long 
COVID, improve cognitive fatigue, and potentially prevent further brain 
lesions. 
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