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Generalization to di�erential-algebraic equations of

Lyapunov-Schmidt type reduction at Hopf bifurcations

Uwe Ehrenstein

Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France

Abstract

The Lyapunov-Schmidt procedure, a well-known and powerful tool for the
local reduction of nonlinear systems at bifurcation points or for ordinary dif-
ferential equations (ODEs) at Hopf bifurcations, is extended to the context of
strangeness-free di�erential-algebraic equations (DAEs), by generalizing the
comprehensive presentation of the method for ODEs provided in the classical
textbook by Golubitsky and Schae�er [Applied mathematical sciences, 51,
Springer (1985)]. The appropriate setting in the context of DAEs at Hopf
bifurcations is �rst detailed, introducing suitable operators and addressing
the question of appropriate numerical algorithms for their construction as
well. The di�erent steps of the reduction procedure are carefully reinter-
preted in the light of the DAE context and detailed formulas are provided
for systematic and rational construction of the bifurcating local periodic so-
lution, whose stability is shown, likely to the ODE context, to be predicted
by the reduced equations. As an illustrative example, a classical DAE model
for an electric power system is considered, exhibiting both supercritical and
subcritical Hopf bifurcations, demonstrating the prediction capability of the
reduced system with regard to the global dynamics.

Keywords: Di�erential-Algebraic Equations; Hopf bifurcation;
Lyapunov-Schmidt Reduction

1. Introduction

There are mainly two types of reduction procedures at bifurcation points
of nonlinear dynamical systems, that is the celebrated center manifold re-
duction (for detailed presentations of this theory see for instance [1�3]) as
well as the no less well known Lyapunov-Schmidt reduction. The mathe-
matical framework for this latter method, which goes back to the early 20th
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century, has been reviewed in the near past by [4], while for instance in [5]
the Lyapunov-Schmidt reduction and related formulas are developed for pa-
rameterized nonlinear systems as well as to Hopf bifurcations in autonomous
ordinary di�erential equations (ODEs). This procedure appears to be partic-
ularly adapted when considering bifurcations of di�erential-algebraic equa-
tions (DAEs), given that it both applies to nonlinear algebraic equations and
to dynamical systems.
Here DAEs of the form

M�u,α�du
dt

�G�u,α� � 0

are considered with the solution u�t� > Rn, G�u,α� > Rn is a (nonlinear
in general) function, the system is governed by a set of parameters α and
M�u,α� > Rn,n is a n � n matrix operator which does not admit an inverse
(because if it were of rank n, one could recover a ODE-like system by inver-
sion of this matrix). Such nonlinear systems naturally arise in engineering
and science in general, for instance in classical mechanics where constrained
motions of systems are ubiquitous, they occur for instance in chemical engi-
neering due to process constraints, circuit theory models and power systems
are classical examples for DAEs, they appear naturally in bioeconomic sys-
tems when for example economic pro�t is taken into account. The recent
monograph [6] provides an exhaustive review on applied DAEs with numer-
ous references therein.
The existence of Hopf bifurcation in such systems has found a lot of attention,
for instance in [7] with application to circuit theory, in [8] considering a bench-
mark model of chemical engineering, for predator-prey models with nonlinear
prey harvesting (e.g. [9] and references therein), and when DAE models for
electric power systems are considered the question of local bifurcations has
largely been addressed (see for instance [10�12]). In [7] a Hopf bifurcation
theorem is assessed for DAEs such that the rank�M�u,α�� � p @ n, whereas
in [13] the situation is considered where DAEs have singular solutions, that
is the rank of the matrix varies with u�t�.
The dynamic response to perturbations of ODEs and DAEs cannot always
be reliably inferred from mere numerical integration of the global system
and semi-analytic tools are still valuable, in particular to anticipate for in-
stance the supercritical or subcritical behavior in the neighborhood of Hopf
bifurcations. The center manifold theory as well as the Lyapunov-Schmidt
reduction are such tools, providing a reduced equation from which the local
behavior can be inferred and they have largely been applied to ODEs and
in particular the center manifold theory (see for instance [14, 15], just to
mention two recent publications).
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The present work aims at providing a rigorously de�ned reduction tool for
DAEs with a nonlinear algebraic part, by extending the well known Lyapunov-
Schmidt reduction algorithm for ODEs at Hopf bifurcations. In Section 2 it
is shown, which operators are conveniently to be introduced to assess a Hopf
bifurcation by focusing on so-called strangeness-free DAEs. In Section 3 the
theoretical framework for a Lyapunov-Schmidt reduction as exposed in [5]
(chapter VIII) for ODEs is reinterpreted in the light of DAE systems and
in Section 4 the formulas are derived to compute the expansion of the local
bifurcating solution as well as the reduced equations. It is well known for
ODEs that in the normal form associated to the reduced equation the sign
of the coe�cient of the cubic term in the amplitude indicates whether the
local bifurcating solution is stable or unstable. The proof of this stability
criterion will be readdressed in the DAE context. As case study, in Section 5
a power electric model is considered exhibiting both a supercritical and sub-
critical Hopf bifurcation. Some general considerations about the proposed
local reduction approach are provided in the conclusion Section 6.

2. System setting and Hopf bifurcation

The DAE systems to be considered are

M�u,α�du
dt

�G�u,α� � 0, u, G�u,α� > Rn, M�u,α� > Rn,n, (2.1)

with α > Rk a parameter vector, the matrix M�u,α� being rank de�cient.
Such systems are called quasi-linear, given that the formal di�erential with
respect to du~dt only depends on �u,α�. When addressing the existence and
uniqueness of solutions of DAEs, the di�erentiation index (see for instance
[16]) is often considered: the DAE is di�erentiated with respect to t and
the system is in�ated by the resulting equations. If du~dt may be uniquely
determined by �t,u� and the augmented system, the DAE is said to have
di�erentiation index one. If however one has to di�erentiate once again to
still in�ate the system, the index is two, so on and so forth. A more or less
equivalent de�nition is the strangeness index and as discussed for instance
in [17], strangeness index l would correspond to di�erentiation index l � 1.
Here we suppose l � 0, that is the system is supposed to be strangeness-
free. Index reduction methods for DAEs with di�erentiation index C 2 are
for instance discussed in [17], but it seems that those approaches are rather
case-dependent, in particular in the presence of nonlinearities: therefore,
whatever possible higher-index system is considered, it must be assured that
it may be transformed to become strangeness-free.
As will be seen hereafter, to apply a Lyapunov-Schmidt reduction to the DAE
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system and in contrast to the ODE case, rank and nullspace computations
of square or rectangular linear operators are necessary. For the present work
to be self-consistent, in Appendix A the classical LU -type decomposition,
however with complete pivoting, is proposed as a reliable procedure for these
computations. The starting point of the present analysis is a Hopf bifurcation
occurring at a steady state solution ũ for speci�c parameters α̃, that is

G�ũ, α̃� � 0. (2.2)

The matrixM�ũ, α̃� is supposed to have rank p � n�m (with m A 0). De�ne
Z2 > Rn,m such that its m columns form an orthonormal basis of the kernel
ofM�ũ, α̃�T , the superscript T meaning transposition (see Appendix A for
an algorithm to compute Z2), that is

ZT
2M�ũ, α̃� � 0. (2.3)

Let DG�ũ, α̃� be the Jacobian matrix of G (with respect to u). Some
assumptions have to be made, the �rst one being

Assumption 2.1. The rectangular operator

ZT
2 DG�ũ, α̃� > Rm,n

is supposed to be of maximum rank m.

Its nullspace is represented by the matrix T > Rn,p (recall that p � n�m)
and

ZT
2 DG�ũ, α̃�T � 0. (2.4)

The second assumption is

Assumption 2.2. The operator

M�ũ, α̃�T > Rn,p

is of maximal rank r � p. Accordingly the nullspace of �M�ũ, α̃�T �T is of
dimension m � n � p and hence represented by Z2 > Rn,m de�ned by (2.3).

Now de�ne Z1 > Rn,p such that its columns generate the subspace in Rn

orthogonal to the subspace generated by Z2. The column-vectors of Z1 can
be computed as the nullspace of ZT

2 (followed by Gram-Schmidt orthonor-
malization) and accordingly the direct sum generates the entire vector space
which is formally written as

Z1 `Z2 � Rn. (2.5)
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From Assumption 2.2 it follows that the square p�p operator �M�ũ, α̃�T �T Z1

has maximal rank and hence its transposition too, that is the operator

B1 � Z
T
1M�ũ, α̃�T > Rp,p (2.6)

admits an inverse. When the DAE is strangeness-free (and it is recalled that
only those systems are considered in the present work) the two assumptions
above are precisely ful�lled (see [17], chapter 4).
Now let x�t� be the perturbation of the steady state, that is u�t� � ũ�x�t�,
for a deviation noted λ of one of the parameters, say α � α̃�λel. The general
strangeness-free assumption implies thatM�ũ�x, α̃�λel� remains of rank
p � n�m, but in the most general case Z2 de�ned by (2.3) at the steady state
could evolve with the perturbation. However, the local reduction procedure
as exposed here is tractable only when this operator can be de�ned once for
all and hence a further assumption has to be made.

Assumption 2.3. It is supposed that Z2 de�ned by (2.3) represents the
kernel of M�ũ �x, α̃ � λel�T in the neighborhood of the steady state, that is

ZT
2 M�ũ �x, α̃ � λel� � 0.

It is likely that this is ful�lled in many examples of DAE systems and of
course always when the rank-de�cient operatorM has constant coe�cients.
In the following the notations

M1�u,α� � ZT
1M�u,α�, G1�u,α� � ZT

1 G�u,α�,
G2�u,α� � ZT

2 G�u,α� (2.7)

are used. Also, for simplicity �0,0� is written for the steady state �ũ, α̃� and
the perturbation �x�t�, λ� is solution of

M1�x, λ� dx
dt

�G1�x, λ� � 0,

G2�x, λ� � 0.
(2.8)

Writing DG the Jacobian matrix of G, the linearization of this system at
the steady state is

M1�0,0� dx
dt

�DG1�0,0�x � 0,

DG2�0,0�x � 0.
(2.9)

According to the de�nition of T > Rn,p (see (2.4)), the second equation implies
that x�t� � Ty�t� with y�t� > Rp and the linear stability of the steady state
is governed by

B1
dy

dt
�DG1�0,0�Ty � 0
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the matrix B1 being de�ned by (2.6). Given that B1 admits an inverse, one
recovers a classical linear dynamical system

dy

dt
�Ay � 0, A �B�1

1 DG1�0,0�T . (2.10)

It should be remarked here that if the algebraic part of the system (2.8)
is linear, it is solved once for all when writing x�t� � Ty�t� and with the
help of the operator T the DAE reduces to the dynamic part of (2.8). It
is precisely for DAEs with a nonlinear algebraic part that the developments
in [5] (chapter VIII) for ODEs do not extend straightforwardly. In that
case and as will be seen in the next section, to generalize the Lyapunov-
Schmidt reduction a supplementary operator S > Rn,m is introduced such
that its column vectors generate the vector space in Rn orthogonal to that
represented by T and

T `S � Rn. (2.11)

Again S is obtained by computing the nullspace of T T together with or-
thonormalization. By construction the square operator

DG2�0,0� S > Rm,m (2.12)

admits an inverse. Given (2.11) the solution x�t� of the nonlinear system
(2.8) to be sought can be written

x�t� � Ty�t� �Sz�t�, y�t� > Rp, z�t� > Rm. (2.13)

Note that y�t� � T Tx�t� and z�t� � STx�t�, since T TS � 0 and T TT � Ip,
STS � Im (with the identity matrices p � p and m �m respectively).
It is now assumed that the steady state undergoes a Hopf bifurcation, that
is the matrix A de�ned by (2.10) admits a single pair of pure imaginary
eigenvalues �iω and that the other eigenvalues have positive real parts. This
is precisely the condition that at the steady state a Hopf bifurcation occurs.
Note that for the present formulation of the system the eigenvalues with posi-
tive real parts correspond to the stable part of the eigenspectrum. The linear
system (2.10) hence admits a 2π~ω-periodic solution y�t� and x�t� � Ty�t�
is the periodic solution of the linearized system (2.9).
In the next section the Lyapunov-Schmidt method as exposed in [5] for con-
ventional dynamical systems will be generalized to the present DAE setting.

3. Lyapunov-Schmidt reduction for the DAE system

If a periodic solution exists for λ x 0, its period will change and as in [5]
a parameter τ and a scaled time s is introduced such that

s � ω�1 � τ�t, (3.1)
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that is the linear perturbation at the Hopf bifurcation is 2π-periodic in the
scaled time s. Given this time scaling,M1�u,α� in (2.7) is to be multiplied
by ω and we still write

M1 for ωM1 and B1 for ωB1.

Given the decomposition (2.13), the system

F �y,z, λ, τ� � �F1�y,z, λ, τ�,F2�y,z, λ�� � �0,0� (3.2)

is to be considered with Fj, j � 1,2 de�ned as

F1�y,z, λ, τ� �B�1
1 M1�Ty �Sz, λ��1 � τ� d

ds
�Ty �Sz�

�B�1
1 G1�Ty �Sz, λ�

(3.3)

F2�y,z, λ� �G2�Ty �Sz, λ�. (3.4)

The solution �y�s�,z�s�� of the system is sought as a continuous 2π-periodic
function from R to Rp

�Rm. Let C2π be the space of these functions and C1
2π

the space of those functions which are continuously di�erentiable and with
these de�nitions

F � C1
2π �R2

� C2π

(the parameters �λ, τ� > R2). The di�erentials of (3.3) and (3.4) with respect
to y and z at �y,z, λ, τ� � �0,0,0,0� (in the following the argument �0,0,0,0�
standing for the steady state is omitted when writing the operators) are

DyF1 � L �
d

ds
I � Ã, (3.5)

where the p � p identity matrix is written I and Ã �
1
ωA with A de�ned by

(2.10),

DzF1 �B
�1
1 M1S

d

ds
�B�1

1 DG1S,

DyF2 �DG2T � 0, DzF2 �DG2S

(it is recalled that T represents the nullspace of DG2). Note that Ã in (3.5)
by construction has �i as the pure imaginary eigenvalue pair, the other eigen-
values having a positive real part. Consequently, the di�erential operator of
(3.2) at the origin has the following bloc structure

DF � � L DzF1

0 DG2S
� . (3.6)
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Note that in the case of a ODE the di�erential operator would simply be L.
Let �y,z� (with y > Rp and z > Rm) be in the kernel (the nullspace) of DF
and according to the expression (3.6) one gets

Ly � 0, z � 0

because DG2Sz � 0 implies z � 0, DG2S being invertible. Writing 0 the
nullvector of Rm, KerDF is of dimension 2 and generated by

q1 � �v1,0�, q2 � �v2,0� (3.7)

with vj > Rp, j � 1,2 the vectors which generate Ker L. Given the expression
(3.5) of L these vectors are (see [5], chapter VIII)

v1 �R�eisc� � 1

2
�eisc � e�isc̄� , v2 � I�eisc� � 1

2
��ieisc � ie�isc̄� , (3.8)

c being eigenvector with eigenvalue �i of Ã, (that is Ãc � �i c) (and c̄ is
its complex conjugate, that is eigenvector associated with i). The real and
imaginary parts are noted R and I respectively.
It is recalled that the solution space is C2π and in the present DAE setting it
is conveniently written C2πSp � C2πSm , that is as the Cartesian product of the
spaces restricted to the functions in Rp and Rm respectively. The di�erent
steps are now outlined to generalize the theory in [5], chapter VIII, to the
case of the DAE setting. De�ne the inner product for the space C2πSp

`u1,u2e � 1

2π S
2π

0
u1�s�Tu2�s� ds, with uj > Rp, j � 1,2. (3.9)

One may suppose that the operator L of the DAE system is Fredholm with
index zero, which is the assumption generally made for the linearized oper-
ators of nonlinear systems and ODEs (see [5] chapter VII), which allows to
split C2πSp as

C2πSp � Ker L ` Range L, and Range L � �KerL��Ù. (3.10)

To characterize the range of L as the space orthogonal to the nullspace of L�,
the adjoint for the inner product of L, is known as the Fredholm alternative.
This gives rise to the splitting of C2π

C2π � KerDF ` R, with R � RangeL � C2πSm (3.11)

Indeed, for �y,z� > C2π � C2πSp � C2πSm the splitting (3.10) allows to write
y � v � w, with v > Ker L and w > Range L. It follows that �y,z� �
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�v,0� � �w,z� (0 being the nullvector of Rm), that is the sum of a vector in
the kernel of DF (see (3.7) and a vector in Range L �C2πSm . The space C

1
2π

has to be splitted accordingly (the superscript 1 means that the functions
are continuously di�erentiable) and

C1
2π � KerDF ` E, E � N � C1

2πSm
with N � C1

2πSp
9Range L. (3.12)

For the Fredholm alternative, the kernel of the adjoint L� for the inner
product (3.9), that is

L�
� �

d

ds
I � ÃTy, (3.13)

has to be computed. It is easy to verify that Ker L� is generated by the two
vectors

v�1 �
1

2
�eisd � e�isd̄� , v�2 � 1

2
��ieisd � ie�isd̄� , (3.14)

d being the eigenvector of ÃT associated with i, that is ÃTd � i d. The
bi-orthogonal relation cTd � 0 holds and one can choose c and d in (3.8) and
(3.14) such that

c̄Tc � 2, cT d̄ � 2

and hence `vj,vke � δjk, `v�j ,vke � δjk, j � 1,2, k � 1,2 (3.15)

with δjk the Kronecker symbol. Note that these orthogonality conditions can
easily be proven by considering that for any integers j and k

1

2π S
2π

0
eis�j�k�ds � δjk. (3.16)

For the reduction procedure, it is essential that the solution �y,z� of (3.2)
can be written as (given the splitting (3.12))

�y,z� � �v �w,z� with

v � r1v1 � r2v2 and `v�j ,we � 0, j � 1,2,
(3.17)

vj, j � 1,2, given by (3.8) generating the kernel of L. The inner product
between w and v�j , j � 1,2, (the generators of Ker L� given by (3.14)) being
zero is equivalent to assert that w > Range L by the Fredholm alternative.
Before coming to the main result of the Lyapunov-Schmidt reduction, a pro-
jection operator P has to be de�ned for any function h > C2πSp , that is

Ph � h � `v�1 ,hev1 � `v�2 ,hev2. (3.18)

Given the relations (3.15), `v�j , Phe � 0, j � 1,2 and hence Ph is in the range
of L. The theorem hereafter is the main result of the Lyapunov-Schmidt
reduction for DAEs at Hopf bifurcations, which generalizes the corresponding
theorem for ODEs.
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Theorem 3.1. Write �y,z� � �v �w,z� the solution of (3.2) according to
(3.17) and consider the functional

φ�v,w,z, λ, τ� � �PF1�v �w,z, λ, τ�,F2�v �w,z, λ��,
P being the projection operator de�ned by (3.18). The di�erential with respect
to w and z of the functional at the origin (the steady state) is an invertible
operator from E de�ned by (3.12) onto R de�ned by (3.11) and by the implicit
function theorem �w,z� is locally solution of �v, λ, τ� such that

PF1�v �w�v, λ, τ�,z�v, λ, τ�, λ, τ� � 0

F2�v �w�v, λ, τ�,z�v, λ, τ�, λ� � 0,
(3.19)

these functions vanishing at the origin, that is w�0,0,0� � z�0,0,0� � 0.

Proof. To prove this theorem, one observes �rst of all that according to (3.11)
and (3.12)

φ � KerL �E �R2
� R

The di�erential with respect to w and z at the origin gives rise to the di�er-
ential operator

J � � PLSN PDzF1

0 DG2S
� , J � E � R

(with E � N�C1
2πSm

and R � Range L�C2πSm). Indeed, J is inferred from DF

(see (3.6)) replacing L by LSN the operator restricted to N � C1
2πSp

9Range L

and the projection operator P is applied. For any �b1,b2� > R, it has to be
shown, that there is a unique �a1,a2� > E such that

J � a1

a2
� � � b1

b2
� .

Indeed, DG2S being invertible, a2 � �DG2S��1b2 and it remains to solve

PLSNa1 � PDzF1a2 � b1.

One observes that PDzF1a2 > Range L given the projection P de�ned by
(3.18). The function b1 is in Range L (by de�nition of R) and hence a1 is
uniquely determined because

PLSN � N � Range L

is invertible (the kernel of LSN being zero by construction). The di�eren-
tial operator J being invertible, one can indeed apply the implicit function
theorem, giving rise to the system (3.19).
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Finally, to solve the DAE, the equation

�I � P �F1�v �w�v, λ, τ�,z�v, λ, τ�, λ, τ� � 0 (3.20)

is to be added to the system (3.19). Note that according to (3.18)

�I � P �F1 � `v�1 ,F1ev1 � `v�2 ,F1ev2.
Periodic functions are de�ned up to an arbitrary phase shift θ and consider
v�s� � r1v1�s� � r2v2�s�. Given the expressions (3.8) it can easily be shown
that

v�s � θ� � �r1 cos�θ� � r2 sin�θ��v1�s� � �r1 sin�θ� � r2 cos�θ��v2�s�.
This means that one may only consider (see [5])

v � rv1, r C 0,

because any �r1, r2� may be written �r cos�θ�, r sin�θ�� and rv1�s � θ� �

r1v1�s� � r2v2�s�. One can therefore write v � rv1 in (3.19), (3.20) and
from now on the dependence on rv1 of w,z is simply written as dependence
on r. Summarizing, (3.19) is to be solved as well as (3.20), the latter system
being equivalent to the two so-called reduced equations

ϕ1�r, λ, τ� � `v�1 ,F1�rv1 �w�r, λ, τ�,z�r, λ, τ�, λ, τ�e � 0

ϕ2�r, λ, τ� � `v�2 ,F1�rv1 �w�r, λ, τ�,z�r, λ, τ�, λ, τ�e � 0.
(3.21)

In the next section details of the algorithm are provided to solve these equa-
tions by performing appropriate Taylor expansions.

4. Lyapunov-Schmidt reduction algorithm and stability

In the following the procedure as exposed in [5] (chapter VIII) for ODEs
will be closely followed, emphasizing however the di�erences giving rise to
necessarily more complex formulas in the DAE context. The algorithm con-
sists in computing the successive terms in r as well as the parameters λ and τ
in the Taylor expansions of w�r, λ, τ� and z�r, λ, τ� and these computations
involve the classical multivariable derivative formula, which is recalled for
any multivariable vector function h�x� > Rq, x > Rr, that is

Djh�0��x1,�,xj� � ∂j

∂t1�∂tj
h �t1x1 �� � tjxj�St1���tj�0 , (4.1)

(j a positive integer), this operator being multilinear and symmetric in the
argument vectors xk, k � 1,�, j.
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4.1. Taylor expansion of the local solution

First of all, the expansions of F1 and F2 given by (3.3) and (3.4) have
to be considered and only the terms necessary to obtain meaningful reduced
equations are written out. The notation is that of the multivariable deriva-
tive formula, the argument �0,0,0,0� being again omitted when writing the
operators. Considering (3.3), the expansion for F1�y,z,0,0� up to the second
order in the state variable is (it is recalled that y � rv1 �w)

B�1
1 �M1

d

ds
�T �rv1 �w� �Sz� �DG1�T �rv1 �w� �Sz�

�DM1�T �rv1 �w� �Sz� d
ds

�T �rv1 �w� �Sz�
�

1

2
D2G1�T �rv1 �w� �Sz,T �rv1 �w� �Sz�� ��

(4.2)

(it is not necessary to write the third order term at this point, it is provided in
Appendix B). Note that the expression DM1��� means that the multivariable
derivative formula (4.1) is applied to each component of the matrix M1, if
it depends explicitly on the variables. For the expansion in the parameter
λ, the term λF1λ�y,z,0,0� (the subscript λ meaning the derivative with
respect to the parameter) has only to be expanded to the �rst order in the
state variable which yields

λB�1
1 �G1λ �M1λ

d

ds
�T �rv1 �w� �Sz� �DG1λ�T �rv1 �w� �Sz�� (4.3)

Concerning the dependence on the variable τ , of course F1�0,0,0, τ� � 0 and
the term combined with the �rst order term in the state variable is

τB�1
1 M1

d

ds
�T �rv1 �w� �Sz� (4.4)

Concerning the expansion of F2, according to (3.4) one gets for the expansion
of F2�y,z,0� up to the third order in the state variable

DG2�Sz� � 1

2
D2G2�T �rv1 �w� �Sz,T �rv1 �w� �Sz�

�
1

6
D3G2�T �rv1 �w� �Sz,T �rv1 �w� �Sz,T �rv1 �w� �Sz�� (4.5)

(it is recalled that DG2T � 0). The expansion in the parameter λ to be
retained for F2 is

λ �G2λ �DG2λ�T �rv1 �w� �Sz�� (4.6)
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For the Taylor expansions of w�r, λ, τ� and z�r, λ, τ�, in the following the
subscripts r, λ, τ mean the derivatives with respect to these variables and
the argument �0,0,0� is omitted (that is for instance wr,τ corresponds to the
successive derivatives with respect to r and τ). The terms at the successive
orders are computed by considering the system (3.19), taking into account
the expansions above. First of all it is shown that a certain number of terms
are zero.

Proposition 4.1. The terms rwr, rzr, τwτ , τzτ , rτwr,τ , rτzr,τ in the
Taylor expansion of w, z are equal to zero.

Proof. In the expansion (4.5) the term in r is rDG2�Szr� and to put it to
zero one gets zr � 0 because DG2S admits en inverse. Retaining the term
in r in the expansion (4.2) and putting it to zero by applying P (see system
(3.19)) one gets (it is recalled that B�1

1 M1T � I and L is de�ned in (3.5))

PL �v1 �wr� � PLwr � 0.

By construction wr > N (with N � C1
2πSp

9Range L) and consequently wr � 0,

PLSN being invertible. The term zτ � 0, the parameter τ appearing explicitly
only in F1. Considering wτ in (4.2) one recovers τLwτ at order τ and by
(3.19) one gets PLwτ � 0, that is wτ � 0. Consequently the term of order rτ
in (4.5) is rτDG2�Szr,τ � and putting it to zero, one gets zr,τ � 0. Isolating
the term in rτ in the expansion (4.2) and adding the term in (4.4), by (3.19)

P �Lwr,τ �
d

ds
v1� � 0.

It is easy to see that dv1~ds � �v2 (see (3.8)) and Pv2 � 0, P , being the
projection on the range of L and one can conclude that wr,τ � 0.

It follows from the proposition, that the Taylor expansions of w and z
are, where now the subscripts j � 1,2,3 mean the �rst, second and third
derivative with respect to r

w � λwλ � rλw1,λ �
1

2
r2 w2 �

1

6
r3 w3 ��

z � λ zλ � rλ z1,λ �
1

2
r2 z2 �

1

6
r3 z3 ��

(4.7)

It will be seen that it is su�cient to retain these terms in the expansions to
ultimately recover the reduced equations at relevant order.
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Proposition 4.2. The term zλ in the expansion (4.7) is

zλ � ��DG2S��1G2λ (4.8)

and wλ is solution of

Ãwλ � �B
�1
1 �G1λ �DG1�Szλ�� , (4.9)

Ã being invertible (because 0 is not an eigenvalue).

Proof. Adding the terms at order λ of (4.5) and (4.6), one gets

λ �G2λ �DG2�Szλ��
and putting it to zero (see (3.19)) one obtains indeed (4.8). Knowing zλ, the
term in λ of (4.2) together with that of (4.3) writes

λÃwλ � λB
�1
1 �DG1�Szλ� �G1λ�

(where it has been taken into account that zλ and hence wλ do not depend
on s, the DAE being autonomous). The projection P acts as identity on
functions independent of s and to solve the �rst equation of (3.19) leads
indeed to (4.9).

Note that when the steady state is solution for all λ (that is G�0, λ� � 0),
then of course zλ � wλ � 0. Now the terms z1,λ and w1,λ are addressed.
Given that

v1 �
1

2
eisc � cc

(see (3.8), where cc means the complex conjugate expression), one observes
that w1,λ and z1,λ are of the form

w1,λ � e
isw

�1�
1,λ � cc, z1,λ � e

isz
�1�
1,λ � cc (4.10)

Also, some remarks are necessary concerning the projection operator (3.18).
Given (3.16) and the expressions (3.14) of v�j , j � 1,2, it is clear that only
terms containing eis or e�is have a nonzero contribution when performing the
inner product of P . Let therefore γ be any expression of the type

γ � eisb � e�isb̄

(with b > Cp) then it is easy to verify that

Pγ � eisP̃b � cc with P̃b � b �
1

2
�bT d̄�c (4.11)

given the expressions (3.8) and (3.14).
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Proposition 4.3. The term z
�1�
1,λ in (4.10) is solution of

DG2S z
�1�
1,λ � �

1

2
DG2λ�Tc� � 1

2
D2G2�Tc,Twλ �Szλ� (4.12)

DG2S being invertible, whereas the term w
�1�
1,λ is solution of

�iI � Ã�w�1�
1,λ � �P̃b with

b �B�1
1 �iM1Sz

�1�
1,λ �

i

2
M1λTc �

i

2
DM1�Twλ �Szλ�Tc

�DG1�Sz�1�
1,λ� � 1

2
DG1λ�Tc� � 1

2
D2G1�Tc,Twλ �Szλ��

(4.13)

with P̃ de�ned by (4.11), which projects the right-hand side on the range of

the matrix iI � Ã which is singular, �i being eigenvalue of Ã, w
�1�
1,λ being the

(unique) solution such that P̃w
�1�
1,λ �w

�1�
1,λ.

Proof. First, one adds the expressions at order rλ in (4.5) and (4.6), retaining

for z1,λ and v1 the terms eisz
�1�
1,λ and 1

2e
isc. Putting to zero the resulting

expression, one can convince oneself that z
�1�
1,λ must be solution of (4.12). For

the term w
�1�
1,λ , one has to select in (4.2) the terms in rλ and to add those in

(4.3). Again, only the terms in eis are then retained and it has to be observed
that in particular

Lw1,λ � e
is �iI � Ã�w�1�

1,λ � cc

The projection P becomes P̃ de�ned by (4.11), as the projection on the range
of iI � Ã (the matrix being singular, having �i as eigenvalue). Putting to
zero the total expression at order rλ after projection, one recovers indeed the
solution (4.13), which has to verify P̃w

�1�
1,λ �w

�1�
1,λ .

A remark should be made about how to solve the system (4.13) with the
singular matrix iI � Ã. A LU decomposition with complete pivoting can
be applied (see the end of Appendix A); the numerical solution vector will
contain an arbitrary contribution belonging to the kernel of the matrix which
is removed by the projection (4.11).
Now consider the term in r2 in the developments of w and z in (4.7). Given
the dependence on rv1 of w2 and z2, one necessarily has

w2 � e
i2sw

�2�
2 � cc �w

�0�
2 , z2 � e

i2sz
�2�
2 � cc � z

�0�
2 (4.14)

(w
�0�
2 and z

�0�
2 being real vectors). Writing out the terms in r2 in the expan-

sion (4.5) as well as in the expansion (4.2) and taking into account that P
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acts as the identity operator on terms without e�is as a factor, there is no
di�culty to establish the following formulas, when considering the system
(3.19) at order r2.

Proposition 4.4. The terms z
�2�
2 and z

�0�
2 of (4.14) are solution of the sys-

tems

DG2S z
�2�
2 � �

1

4
D2G2�Tc,Tc�, DG2S z

�0�
2 � �

1

2
D2G2�Tc,T c̄� (4.15)

(DG2S being invertible), whereas w
�2�
2 and w

�0�
2 are solution of

�2iI � Ã�w�2�
2 � �B�1

1 �2iM1Sz
�2�
2 �

i

2
DM1�Tc�Tc

�DG1�Sz�2�
2 � � 1

4
D2G1�Tc,Tc��

(4.16)

and

Ãw
�0�
2 � �B�1

1 �DG1�Sz�0�
2 � �R�iDM1�T c̄�Tc�

�
1

2
D2G1�Tc,T c̄�� (4.17)

(R meaning the real part), 2iI � Ã and Ã admitting an inverse.

The third order terms in (4.7) are of the form

w3 � e
isw

�1�
3 � ei3sw

�3�
3 � cc, z3 � e

isz
�1�
3 � ei3sz

�3�
3 � cc (4.18)

Assembling the terms in r3 of the expansion (4.2), there is no major di�culty
to establish the following formulas.

Proposition 4.5. The terms z
�1�
3 and z

�3�
3 such that the second equation of

(3.19) is solved at order r3 are solution of

DG2S z
�1�
3 � �

3

2
D2G2�Tc,Tw�0�

2 �Sz
�0�
2 �

�
3

2
D2G2�T c̄,Tw�2�

2 �Sz
�2�
2 � � 3

8
D3G2�Tc,Tc,T c̄�

(4.19)

and

DG2S z
�3�
3 � �

3

2
D2G2�Tc,Tw�2�

2 �Sz
�2�
2 � � 1

8
D3G2�Tc,Tc,Tc�. (4.20)

At this point of the analysis, all the necessary quantities to compute the
expansion of the local equations (3.21) are available. For the expansions up
to the third order in r of the local solution to be complete, the expression
for w3 is provided in Appendix B.
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4.2. Reduced bifurcation equation and existence of the periodic solution
To obtain the local equations (3.21), the inner products with v�j has

to be performed and only the terms in e�is (see (3.16)) need to be taken
into account. Therefore the terms r2k with even powers of r vanish when
performing the inner product, because they are either independent of s, or the
associated exponential term is ei2qs (q integer). Furthermore, in the expansion
of F1 there is no term in r and the only term in rτ is rτ d

dsv1 � �rτv2 (see (4.4)
and the results of proposition 4.1). By (3.15) `v�1 ,v2e � 0 and `v�2 ,v2e � 1,
it follows that in the �rst local equation there is no term in rτ and in the
second equation the term is �rτ . Therefore, the reduced equations are (see
[5])

ϕ1�r, λ, τ� � rh1�r2, λ, τ� with h1 � a1λ � b1r
2
��

ϕ2�r, λ, τ� � rh2�r2, λ, τ� with h2 � �τ � a2λ � b2r
2
��

(4.21)

Formulas are now derived for the coe�cients aj, j � 1,2 and bj, j � 1,2. Note
�rst of all that the inner products with v�j , j � 1,2 of the term Lw, which
is in the range of L, cancel, the range being orthogonal to the kernel of L�.
Now, only the terms

eisF
�1�
1 � cc

in the development of F1 provide a nonzero contribution after projection.
Writing

F
�1�
1 � rλ F

�1�
1;1,λ � r

3 F
�1�
1;3

some (a bit tedious) calculation provides the formulas (the terms associated
with Lw being discarded)

F
�1�
1;1,λ �

B�1
1 �iM1Sz

�1�
1,λ �

i

2
M1λTc �

i

2
DM1�Twλ �Szλ�Tc

�DG1�Sz�1�
1,λ� � 1

2
DG1λ�Tc� � 1

2
D2G1�Twλ �Szλ,Tc��

(4.22)

and

F
�1�
1;3 �B�1

1 � i
6
M1Sz

�1�
3 �

i

4
DM1�Tw�0�

2 �Sz
�0�
2 �Tc

�
i

4
DM1�Tw�2�

2 �Sz
�2�
2 �T c̄ � i

2
DM1�T c̄��Tw�2�

2 �Sz
�2�
2 �

�
i

16
D2M1�Tc,Tc�T c̄ � i

8
D2M1�Tc,T c̄�Tc � 1

6
DG1�Sz�1�

3 �
�

1

4
D2G1�Tc,Tw�0�

2 �Sz
�0�
2 � � 1

4
D2G1�T c̄,Tw�2�

2 �Sz
�2�
2 �

�
1

16
D3G1�Tc,Tc,T c̄�� ,

(4.23)
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(the formulas for the di�erent Taylor expansion terms of w and z being those
derived in section 4.1). Given the expressions of v�j , j � 1,2 (see (3.14)) one
gets

`v�1 , eisF �1�
1 � cce �R �d̄TF �1�

1 � , `v�2 , eisF �1�
1 � cce � �I �d̄TF �1�

1 � ,
and one recovers the coe�cients in (4.21), that is

a1 �R �d̄TF �1�
1;1,λ� , b1 �R �d̄TF �1�

1;3 �
a2 � �I �d̄TF �1�

1;1,λ� , b2 � �I �d̄TF �1�
1;3 � (4.24)

Now set the local equations (4.21) to zero, the trivial solution (that is no
perturbation) is given by r � 0. The small-amplitude periodic solution is
provided by solving hj�r2, λ, τ� � 0, j � 1,2. In the following it is supposed
that a1 x 0 and b1 x 0, which are the conditions that the Hopf bifurcation
is non-degenerate (see the classi�cations in [5], chapter 8.5.). If those coef-
�cients were zero, one would have to pursue the di�erent expansions, which
are already rather tedious in the present non-degenerate case, which can
be considered as the generic situation. There are no terms in τ k, k C 2 in
the expansions of hj, j � 1,2, the function F1 depending linearly on τ and
by Proposition 4.1. It follows that ∂

∂τ h2�0,0, τ� � �1, which allows to solve
τ�r2, λ�, that is

h2�r2, λ, τ� � 0 for τ�r2, λ�. (4.25)

It remains the equation

h�r2, λ� � h1�r2, λ, τ�r2, λ�� � 0. (4.26)

Supposing a small amplitude, say r � O�ε�, and making the assumption that
the parameter deviation λ � O�ε2�, one has h�r2, λ� � a1λ � b1r2 �O�ε4� and
neglecting higher order terms one gets

r2 � �
a1
b1
λ, the sign of λ being such that

a1
b1
λ @ 0. (4.27)

This provides the link between the amplitude r and the parameter λ for a
periodic small-amplitude nonlinear solution to exist, the sign of a1~b1 deter-
mining the sign of the parameter deviation. For λ and the corresponding
r A 0 one determines τ by the second equation of (4.21) and

τ � a2λ � b2r
2 (4.28)

(where again the terms of order rq, q C 4 are discarded). Note that to only
keep these terms to qualitatively characterize the periodic solution in the
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vicinity of the bifurcation point can be justi�ed by what is called normal-
form theory (see for instance [5]). Of course, the developments performed
allow to write the periodic bifurcating solution (at the Hopf bifurcation of
the DAE's steady state) up to the third order in amplitude r, that is by
writing

ω̃ � �1 � τ�ω
(given the scaled time relation s � ω�1 � τ�t)

x�t� � Ty�t� �Sz�t� with

y�t� � λwλ �
1

2
r2w

�0�
2 � 2R �eiω̃t �r1

2
c � λrw

�1�
1,λ �

1

6
r3w

�1�
3 ��

� 2R �1

2
r2ei2ω̃tw

�2�
2 �

1

6
r3ei3ω̃tw

�3�
3 � ,

z�t� � λzλ � 1

2
r2z

�0�
2 � 2R �eiω̃t �λrz�1�

1,λ �
1

6
r3z

�1�
3 ��

� 2R �1

2
r2ei2ω̃tz

�2�
2 �

1

6
r3ei3ω̃tz

�3�
3 �

(4.29)

In the next subsection the question of stability of the small-amplitude peri-
odic solution is addressed, again following the development in [5] emphasizing
where the DAE setting di�ers from the classical dynamical system framework.

4.3. Stability of the periodic solution

The local bifurcating perturbation x�t� of the steady state is solution of
(2.8) or equivalently (the scaled time s is considered) by solving (3.2), taking
into account the expansion

x�s� � Ty�s� �Sz�s�, y�s� > Rp,z�s� > Rm, (4.30)

the operators T , S having been de�ned in section 2. Let

x̃�s� � T ỹ�s� �Sz̃�s�
be a perturbation of the periodic solution, that is

DF �y�s�,z�s�, λ, τ�� ỹ�s�
z̃�s� � � 0, � ỹ�2π�

z̃�2π� � � γ � ỹ�0�
z̃�0� � . (4.31)

The number γ is called a Floquet multiplier. The periodic solution is asymp-
totically stable if all Floquet multipliers are such that SγS @ 1 (if however one
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Floquet multiplier is such that SγS A 1, the solution is unstable). In the DAE
setting DF � �DF1,DF2� and given the expressions (3.3), (3.4)

DF1�y�s�,z�s�, λ, τ�� ỹ�s�z̃�s� � �B�1
1 DG1�x�s�, λ� x̃�s�

� �1 � τ�B�1
1 �M1�x�s�, λ� d

ds
x̃�s� �DM1�x�s�, λ��x̃�s�� d

ds
x�s��

whereas

DF2�y�s�,z�s�, λ�� ỹ�s�z̃�s� � �DG2�x�s�, λ� x̃�s�
Now, a generalized eigenvalue relation has to be introduced for the DAE
setting. Let

q � TqT �SqS (4.32)

(the reference to time s is omitted when writing the functions) be such that

DF1�y,z, λ, τ�� qTqS � � µB�1
1 M1�x, λ� q,

DF2�y,z, λ�� qTqS � � 0, with q�2π� � q�0�,
(4.33)

then it is easy to see that

� ỹ
z̃

� � e�µs~�1�τ� � qT
qS

� with γ � e�µ2π~�1�τ�

is solution of (4.31). It follows that

µ � �
1 � τ

2π
log�γ�

and accordingly if R�µ� A 1 then SγS @ 1 and if R�µ� @ 1 then SγS A 1 (for
τ A �1, by emphasizing that Sτ S has to be supposed small). As explained in [5],
the eigenfunction of the small-amplitude periodic solution may be considered
as to be a perturbation of the steady state's eigenfunction. It is recalled
that the stability of the steady state is inferred from the eigenvalues µj of
Ã �

1
ωA (see 2.10) with µ1 � �i, µ2 � i and according to the assumptions made

µj � �µj�r � i�µj�i with �µj�r A 0, j C 3. The periodic linear perturbations of
the steady state is such that

DF �0,0,0,0�� v1
0

� � 0,
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(0 being the null vector of Rm) with v1�2π� � v1�0� and hence γ � 1 (again
phase-shift arguments justify that only v1 of (3.8) is considered). Also, it
is to be supposed that the modulus of the Floquet multipliers γ of possible
extensions to the small-amplitude periodic state of the stable part of the
steady state eigenspectrum (that is corresponding to µj, j C 3) remain smaller
than one.
Adapting the developments in [5] (chapter VIII, �4) to the present DAE
context, the relevant eigenfunction for the stability of the small-amplitude
periodic state is written as

q̃ � T �v1 � w̃� �Sz̃ (4.34)

with �w̃, z̃� 2π-periodic functions to be sought in the space E de�ned by
(3.12). Before pursuing, it has to be observed, by taking the derivative with
respect to time s of (3.2), that

DF �y,z, λ, τ�� dy~ds
dz~ds � � 0 (4.35)

that is �dy~ds, dz~ds� is eigenfunction with eigenvalue µ � 0 (and hence
Floquet multiplier γ � 1) It will be seen a little later why this is important
for the analysis. Also, it has to be taken into account that the periodic
solution x as it has been constructed can be written

x�r, λ� � T �rv1 �w�r, λ, τ�r2, λ��� �Sz�r, λ, τ�r2, λ��, (4.36)

the dependence of τ�r2, λ� on r2 and λ being such that the second of the
reduced equations (3.21), with the function h2 introduced in (4.21), is iden-
tically equal to zero (see (4.25)).
A variable η is to be introduced and a solution η, µ, w̃, z̃ is sought as function
of r and λ, such that

DF1�y,z, λ, τ�� v1 � w̃z̃ � � ηB�1
1 M1�x, λ�1

r

d

ds
x

� µB�1
1 M1�x, λ� q̃ � 0,

DF2�y,z, λ�� v1 � w̃z̃ � � 0

(4.37)

(q̃ being de�ned by (4.34)). Observe that the expression

1

r

d

ds
x�

d

ds
Tv1 � �Tv2

21



when r and λ tend to zero. Indeed, it has been seen that w and z have terms
of order r3, rλ and higher order terms, but also a term in λ, whenever the
steady state varies with λ. Given the relation (4.27) between r and λ, one
may however conclude that λ~r tends to zero too.
The system (4.37) can be considered as a functional Ψ�η, µ, w̃, z̃, r, λ� � 0, by
observing that �w̃, z̃� > E (E being de�ned by (3.12), cf. section 3). Taking
the derivative with respect to η of the functional, one obtains at the limit
the vector ��v2,0�, given that at the origin B�1

1 M1T � I (again 0 is the
null vector in Rm). For the derivative with respect to µ, one gets at the
limit ��v1,0�. For the derivatives with respect to w̃ and z̃, one recovers
for r � λ � 0 the operator DF given by (3.6) replacing L by LSN , the range
of the resulting operator being however equal to the range of DF (which is
Fredholm of index zero). Consequently the di�erential of the functional with
respect to η, µ, w̃, z̃ at the origin generates

R�v1,0�`R�v2,0�` RangeDF � C2π

(the �rst two terms of the sum being the kernel ofDF ) and is hence invertible.
By the implicit function theorem one can assert that locally η, µ, w̃, z̃ are
functions of �r, λ�, these functions vanishing at �0,0� and in particular µ�r, λ�
exists such that µ�0,0� � 0. It follows by considering (4.35) and (4.37) that
the eigenfunction (4.32) associated to µ x 0 in (4.33) is such that

qT � v1 � w̃�r, λ� � η

rµ

dy

ds
, qS � z̃�r, λ� � η

rµ

dz

ds
.

Now suppose that µ�r, λ� � 0 and consider the periodic small amplitude
solution in the form (4.36), then it can easily be veri�ed that when taking
the derivative of F with respect to r one gets (to simplify the notations
w�r, λ, τ�r2, λ�� is written w�r, λ�)

∂

∂r
F1�rv1 �w�r, λ�,z�r, λ�, λ, τ�r2, λ��

�DF1�rv1 �w�r, λ�,z�r, λ�, λ, τ�r2, λ��� v1 �wr�r, λ�
zr�r, λ� �

�
∂τ�r2, λ�

∂r
B�1

1 M1�x, λ�dx�r, λ�
ds

∂

∂r
F2�rv1 �w�r, λ�,z�r, λ�, λ, τ�r2, λ��

�DF2�rv1 �w�r, λ�,z�r, λ�, λ, τ�r2, λ�� v1 �wr�r, λ�
zr�r, λ� �
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Comparing with the system (4.37), it is seen that if indeed

∂

∂r
Fj�rv1 �w�r, λ�,z�r, λ�, λ, τ�r2, λ�� � 0, j � 1,2, (4.38)

one obtains for µ�r, λ� � 0 the (unique) solution of (4.37) with

η�r, λ� � r ∂
∂r
τ�r2, λ�, w̃�r, λ� �wr�r, λ�, z̃�r, λ� � zr�r, λ�

Recall that the local bifurcating solution is obtained by solving (3.19) and
(4.38) is veri�ed for F2 and PF1. As mentioned above, τ�x2, λ� is such that
the second of the reduced equations (3.21) is identically zero (see (4.25)) and
it hence remains zero when taking its derivative with respect to r. Taking
the derivative with respect to r of the �rst local equation of (3.21), one gets
(the subscript r meaning the derivative)

ϕr�r, λ� � ` v�1 , ∂∂rF1�x�r, λ�, λ, τ�r2, λ�� e. (4.39)

with ϕ�r, λ� � rh�r2, λ�, h being de�ned in (4.26).
It can be concluded that

ϕr�r, λ� � 0 implies µ�r, λ� � 0

because then (4.38) is indeed veri�ed. As explained in [5], one would like to
go a step further and to show that if ϕr�r, λ� x 0 then µ�r, λ� x 0 and that
in that case

ϕr�r, λ�~µ�r, λ� A 0

(that is these quantities have the same sign). In [5] (see chapter I, �4) it is
shown that this is true in some neighborhood of the origin, if when by taking
the derivative with respect to some variable (say β), the functions ϕr,β and
µβ are nonzero at the origin and have the same sign. Note that this can
only be shown here by introducing β as en extra-parameter and by adding
an extra-term in the system (3.2). In the present DAE setting this can be
conveniently done for the system (2.8) replacing G1 by

G̃1�x, λ, β� �G1�x, λ� � βB1T
Tx (4.40)

(note that T Tx corresponds in fact to y in the decomposition (2.13)) and B1

is de�ned by (2.6)). Of course, in the discussion above one has to replace ϕj
by ϕ̃j adding the parameter β and µ is replaced by µ̃. The extra terms in the
reduced equations have to be computed. Referring to the reduced equation
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algorithm of section 4.1, the function F̃
�1�
1;1,β (see (4.22), replacing λ by β) has

to be found and it is easy to see that it is simply

1

2
B�1

1 B1T
TTc �

1

2
c.

Consequently d̄T F̃
�1�
1;1,β � 1 because d̄Tc � 2. This means that the additional

term ã1rβ in ϕ̃1 is rβ, that is ã1 � 1. Note that ã2 � 0 (see (4.24)) and when
solving h̃2�r2, λ, τ̃ , β� � 0 in the second reduced equation (4.21) one gets
τ̃�r2, λ, β� with τ̃�0,0, β� � 0. Furthermore, ã1 = 1 implies that ϕ̃r�0,0, β� �
β. In the local solution (4.29) the additional term is βrw

�1�
1,β and it is easy to

verify (see the reduced equation algorithm)

�iI � Ã�w�1�
1,β � �P̃

1

2
c � 0

by de�nition of P̃ (see (4.11)). This implies that w
�1�
1,β � 0, because it cannot

belong to the kernel of iI � Ã, w being in range of L. This means that
x�r, λ, β� � x�r, λ� and hence x�0,0, β� � 0 and one has also

1

r

d

ds
x̃�r, λ, β�� d

ds
Tv1 � �Tv2

when �r, λ, β�� �0,0, β�.
Now the system (4.37) is to be considered with the modi�ed function F̃1. One
can convince oneself when putting r � λ � 0 (and consequently τ̃ � 0) that
DF̃ �0,0,0,0, β� has the structure (3.6), but L has to be replaced by L� βI
with I the p � p identity matrix. Taking q̃ � �v1,0�, the second equation is
veri�ed and the �rst equation becomes (putting r � λ � 0)

�L � βI�v1 � η̃�0,0, β�v2 � µ̃�0,0, β�v1 � 0.

and one can conclude that the solution is η̃�0,0, β� � 0, because Lv1 � 0 and
v1 and v2 are linearly independent, and hence µ̃�0,0, β� � β. Consequently
one gets µ̃β�0,0,0� � ϕ̃r,β�0,0,0� � 1. As mentioned above, this is precisely
the supplementary condition to conclude (going back to ϕr and µ setting
β � 0), that ϕr�r, λ� and µ�r, λ� are nonzero and of same sign in some neigh-
borhood of the origin.
It is to be recalled that µ�r, λ� A 0 implies stability and µ�r, λ� @ 0 instability.
Now,

ϕr�r, λ� � h�r2, λ� � 2r2b1 �O�r4� � 2r2b1 �O�r4�,
because the nontrivial bifurcating solution exists for h�r2, λ� � 0 with h
de�ned by (4.26). One may hence conclude for the DAE system (as for
ODEs) that the periodic solution in the neighborhood of the Hopf bifurcation
is locally

stable if b1 A 0 and unstable if b1 @ 0.
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5. Case study: an electric power system model

Electric power system models are frequently considered as examples of
DAEs (e.g. [10�12, 18]) which are likely to exhibit Hopf bifurcations, which
may be subcritical or supercritical as for instance discussed in [19]. Such
models are also discussed in chapter 4 of the monograph [6] devoted to an
overview on applied di�erential-algebraic equations. A center-manifold re-
duction for a power system model, however structured as an ODE, has been
performed in [20]. In [21] multimachine dynamic models are derived, that is
the network between generators and loads, the so-called buses being elements
(transmission lines or transformers) by which the components of the network
are connected. For the present purpose it is out of the scope to go into details
about the justi�cation of the classical model (see for instance chapters 6 and
7 in [21]) which writes for ng � 1 generators and nl loads

dβi
dt

� ωi � 0, i � 1,�, ng � 1,

hi
ωi
dt

� Ti �
ng�nl�1

Q
k�1

bik vi vk sin�βi � βk� � 0, i � 1,�, ng � 1,

Pi �
ng�nl�1

Q
k�1

bng�1�i,k vng�1�i vk sin�βng�1�i � βk� � 0, i � 1,�, nl,

Qi �

ng�nl�1

Q
k�1

bng�1�i,k vng�1�i vk cos�βng�1�i � βk� � 0, i � 1,�, nl,

where βj is the angle, ωj the frequency and vj the voltage magnitude of the
jth bus, hi is the inertia and Ti the mechanical power injection of the ith
generator, Pi and Qi are the real and reactive power loads and bjk is the
transfer susceptance between buses j and k. The quantities hi, Ti, Pi, Qi

as well as bjk (with bjk � bkj) are parameters for the system as well as the
voltage magnitudes vi, i � 1,�, ng � 1 of the generators,

u � �β1, ω1,�, βng�1, ωng�1, βng�2,�, βng�nl�1, vng�2,�, vng�nl�1�T
being the vector of the unknowns. A di�culty arises with the above system
when seeking for a steady state. Indeed, the Jacobian matrix of the nonlinear
function at any vector ũ is singular: indeed, for any constant c, the vector
x with x2i�1 � c, i � 1,�, ng � 1 and x2�ng�1��i � c, i � 1,�, nl (the other
components of x being zero) is in its nullspace. This is a consequence of
what is mentioned in [21], that is that every rotational system must have a
reference for angles. Therefore, the classical approach is to de�ne the angles
relative to generator 1 and the relative angles and frequencies

θi � βi�1�β1, Ωi � ωi�1�ω1, i � 1,�, ng, θng�i � βng�1�i�β1, i � 1,�, nl (5.1)
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are hence introduced. To recover the new system, the dynamic equations
for β1, ω1 have to be subtracted from those for βi, ωi, i � 2,�, ng � 1 and to
recover equivalent equations for θi,Ωi the assumption has to be made that
hi � h, i � 1,�, ng � 1. The (known) voltage magnitude v1 is combined with
bi1 writing

Bi � v1bi�1,1, i � 1,�, ng � nl. (5.2)

It is convenient to introduce the renumbered voltage amplitudes and the
transfer susceptance

Vi � vi�1, i � 1,�, ng � nl, Bik � bi�1,k�1, i � 1,�, ng � nl, k � 1,�, ng � nl.
(5.3)

In the following Ti is written for Ti�1 � T1 and the system becomes

dθi
dt

�Ωi � 0, i � 1,�, ng,

h
dΩi

dt
� γiΩi � Ti �BiVi sin�θi�

�

ng�nl

Q
k�1

�Bk Vk sin�θk� �Bik Vi Vk sin�θi � θk�� � 0, i � 1,�, ng,

(5.4)

the algebraic part being

Pi �Bng�iVng�i sin�θng�i�
�

ng�nl

Q
k�1

Bng�i,k Vng�i Vk sin�θng�i � θk� � 0, i � 1,�, nl,

Qi �Bng�iVng�i cos�θng�i�
�

ng�nl

Q
k�1

Bng�i,k Vng�i Vk cos�θng�i � θk� � 0, i � 1,�, nl.

(5.5)

A similar system (with ng � 2 and nl � 1) has been considered in [22]. It will
become clear later why in (5.4) damping coe�cients γi have been introduced.
The dimension of the system above is n � 2�ng � nl� and de�ning the com-
ponents of the solution vector u > Rn are as follows

u2i�1 � θi, u2i � Ωi, i � 1,�, ng,

u2ng�i � θng�i, u2ng�nl�i � Vng�i, i � 1,�, nl
(5.6)

the system is of the form (2.1) with

M > Rn,n with m2k�1,2k�1 � 1, m2k,2k � h, k � 1,�, ng
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and all other coe�cients of this matrix are zero.
The �rst task is to compute steady state solutions for speci�c parameter
values, by �rst �xing the dimension of the system and for the example to be
discussed hereafter ng � 3 and nl � 4, that is n � 14. The parameters have
been �xed (quite arbitrarily) as follows

B1j � 1, j � 2,�,7, B2j � 2, j � 3,�,7, B3j � 3, j � 4,�,7,

B44 � �2, B4j � 2, j � 5,�,7 B55 � �3, B5j � 2, j � 6,7,

B66 � 4, B67 � 1, B77 � �3,

Bi � 1, i � 1,2,3, B4 � 5, B5 � 1, B6 � 5, B7 � 1,

Vi � 1, i � 1,2,3, h � 1.

(only Bij, j C i are written given that Bji � Bij and note that Bii, i � 1,�, ng
are not speci�ed, because the corresponding terms in (5.4) are zero). It is
not pretended here to provide a meaningful parameter set in the context of
electric power engineering, but rather to illustrate for a hopefully meaningful
example the reduction procedure. Note that for instance in [22] similar pa-
rameter value magnitudes for a power system model with ng � 2 and nl � 1
have been considered (see also the examples in [6], chapter 4).
The mechanical power injection parameters for the generators have been
chosen as

T1 � 1, T2 � 2, T3 � 0.5

and the key parameters are the real and reactive power loads which have
been �xed in (5.5) as

P2 � 1.8, Q2 � 0.9, P3 � 1, Q3 � 0.5, P4 � 0.8, Q4 � 0.4.

A bifurcation parameter α̃ is introduced such that the real and reactive power
parameter of the �rst load are

P1 � 2.2 �1 � α̃�, Q1 � 1.1 �1 � α̃�. (5.7)

These parameter values proved appropriate to compute a family of steady
states for a continuous set of values α̃.
Writing the system (5.4), (5.5) in the form (2.1), the operators Z2 and Z1 of
(2.3) and (2.5) are immediately evident and (with the notations of section 2
and 3) p � 2ng � 6, m � 2nl � 8. The Matlab programming language has been
used for the computations (see Appendix A for the algorithms to reliably
compute the ranks and kernels of the operators). At the steady states �ũ, α̃�
the operatorDG2�ũ, α̃� has maximum rankm � 8 and the nullspace operator
T > R14,6 according to (2.4) is to be computed, as well as S > R14,8 in the
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decomposition (2.11). The operator B1 given by (2.6) is formed and the
linear stability at the steady state when writing x�t� � Ty�t� is provided
by the system (2.10), where A for the present case is a 6 � 6 matrix. In the
framework of the Hopf bifurcation theory there has to be only one complex
conjugate eigenvalue pair σ1� iω1 with the real part changing sign at speci�c
points, the real parts of the other eigenvalues have to be positive, which
stands for stability in the present formulation. The damping coe�cients in
(5.4) have precisely been introduced to achieve this conditions and the values

γ1 � 0.1 γ2 � 0.01, γ3 � 0

have been chosen: one may indeed consider that more or less slight damping
is also present in a real system. For α̃ in (5.7) within a certain range, steady
states could indeed be computed and the linear stability analysis provided 3
complex conjugate eigenvalue pairs

σj � iωj, j � 1,2,3

where σ2 and σ3 are positive, whereas σ1 changes sign at speci�c points. The
σ1 value as function of α̃ > ��0.8,1.1� is provided in �gure 1 and two points
are seen to exist, that is the Hopf bifurcation point marked H1 where the
system transits from stability to instability and a second point H2 where
for increasing α̃ the steady state becomes stable again. In this range of
the parameter the steady state solution evolves continuously as well as the
imaginary part of the eigenvalue pair σ1 � iω1, and its real part is such that
σ1 @ σj, j � 2,3. The steady state solution, the eigenvalues and bifurcation
parameter at point H1 are (see (5.6) for the link between the coe�cients of
u and the power system state variables)

ũ1 ��0.0283,0,0.4587,0,0.3006,0,2.2568,2.2954,2.2546,2.3911,

0.1850,0.2914,0.1069,0.1338�,
α̃1 � �0.21544 with eigenvalues:

� i1.69766, 0.0027324 � i2.28574, 0.0522676 � i1.82009

whereas at H2 one gets

ũ2 ���0.2824,0,0.2688,0,0.1495,0,2.1085,2.2030,2.2004,2.3054,

0.4500,0.3000,0.1081,0.1378�,
α̃2 � 0.9536814 with eigenvalues:

� i1.61938, 0.0029354 � i2.21595, 0.052065 � i1.66224.

It is assured that at the points H1 and H2 the real part σ1 of the �rst
eigenvalue pair is indeed computationally zero (of the order 10�10). Note that
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Figure 1: The real part σ1 of the least stable (and unstable between the points H1 and
H2) complex eigenvalue pair as function of the bifurcation parameter α̃, the points H1 and
H2 where σ1 � 0 being the Hopf bifurcation points.

the angles θj are de�ned as to be within � � π,π�. At both Hopf bifurcation
points the Lyapunov-Schmidt reduction has been performed. The di�erent
formulas are provided in section 4.1 which can directly be applied; in the
present case only G2 depends on the bifurcation parameter and the matrix
M has constant coe�cients, which means that the terms G1λ ,M1λ , DM1���
and D2M1��, �� can be discarded in the formulas. Also, in Appendix C it is
indicated how the multivariable expressions of the kind (4.1) can be computed
in the present case. The coe�cients aj, bj, j � 1,2 are computed according
to (4.24) and the local solution (4.29) associated with the reduced equation
is obtained as function of r with the frequency ω̃ � �1 � τ�ω, �i ω being
the imaginary part of the eigenvalue pair with zero real part at the Hopf
bifurcation. Let λ be the local deviation of the bifurcation parameter at the
Hopf bifurcation point. It is recalled that for small amplitudes r � O�ε� and
neglecting terms of order εq, q C 4 in the reduced equations (4.21)

r2 � �
a1
b1
λ, τ � a2λ � b2r

2,

and that the local periodic solution is stable if b1 A 0 and unstable when
b1 @ 0.
The values at the �rst Hopf bifurcation H1 are

a1 � �8.6858 10�4, b1 � 1.1521 10�4, a2 � �0.0443, b2 � �0.0194.

Given that �a1~b1 � 7.5389 is positive, λ is to be taken positive and the
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Figure 2: Phase-portrait in the �θ1�t�, V7�t��-plane for the global solution (blue, starting
with a random initial condition with 0 @ xj @ 1, j � 1,�,14 and SSx�0�SS2 � 1) near the Hopf
bifurcation point H1 (λ � 0.1) during �50T,100T � (a) and the asymptotic regime (b), the
red curve being the solution (4.29) of the theory.

value λ � 0.1 has been chosen, even though the corresponding r � 0.8683 is
not particularly small, which yields τ � �0.019. The small amplitude local
solution is predicted as to be stable, b1 being positive, and to see whether
this prediction is reliable, the global nonlinear system (2.8), where the steady
state �ũ1, α̃1� is simply written �0,0�, has been integrated in time, using a
second-order implicit backward-Euler discretization in time together with
Newton-Raphson iterations at each time step. The components of x are
noted as in (5.6). A random initial condition for the perturbation has been
considered, each component being a random number between 0 and 1, the
2-norm of x�0� being 1. The phase-portrait in the �x1, x14� � �θ1�t�, V7�t��-
plane is shown in �gure 2. Figure 2(a) shows the solution for the time
interval �50T,100T � (T � 2π~ω̃ being the period) and the integrated solution
is seen to slowly evolve, the reduced equation solution as de�ned by (4.29)
being the red contour. By stepping further on in time, the global solution
ultimately almost superimposes with the theoretical solution given by the
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Figure 3: Time history of the asymptotic regime of �gure 2(b), the V7�t� component of
the solution (blue) being shown, the red broken line being the theoretical prediction.

reduced equation as seen in �gure 2(b), which means that the local solution
up to the third order in r is already very accurate. The time evolution at the
asymptotic state for t A t0 (with t0 su�ciently large) over 5 periods is show
in �gure 3, the broken red curve being the local solution which coincides
remarkably well (in particular the predicted and computed period is almost
identical) with the computed global solution. This �rst Hopf bifurcation
point corresponds consequently to a so-called supercritical bifurcation, with
the existence of a local periodic nonlinear state.
The situation is di�erent at the second Hopf bifurcation H2, where the values
for the reduced equation are

a1 � 4.56888 10�3, b1 � �4.6387 10�4, a2 � �0.0423, b2 � �0.0258.

Now �a1~b1 � 9.8495 and λ has to be chosen as a positive value and b1 being
negative, the theoretically predicted local periodic solution is unstable. This
corresponds to what is known as a subcritical bifurcation. The gradient of
σ1 is much sti�er at H2 than at H1 and a smaller value λ � 0.01 has been
chosen for to remain in the validity region of the local prediction. Note that
for this value r � 0.3138 and τ � �0.003. A subcritical Hopf bifurcation
is characterized by the absence of small-amplitude periodic solution with
however the possible existence of large amplitude perturbations. Again, a
random initial condition for the global system has been considered, �rst
with a 2-norm of 0.7. The result is shown as a phase-portrait again in the�θ1�t�, V7�t�� plane in �gure 4(a) for the time interval �50T,100T � and the
global solution is seen to linger somehow erratically around the theoretical
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Figure 4: Phase-portrait in the �θ1�t�, V7�t��-plane for the global solution (blue, starting
with a random initial condition with 0 @ xj @ 1, j � 1,�,14 and SSx�0�SS � 0.7) near the
Hopf bifurcation point H2 (λ � 0.01) during �50T,100T � (a) and the asymptotic regime
(b), the red curve being the solution (4.29) of the theory, the � symbol in (b) being the
steady state deviation towards which the solution ultimately shrinks.

periodic solution provided by the reduced equation. But ultimately the global
solution shrinks as seen in �gure 4(b) towards an asymptotic point, which
corresponds to the small deviation from the steady state at α̃2 to that at
α̃2 � λ. When however considering a larger random initial condition with
2-norm equal to 1, the global solution is seen in �gure 5 to again linger
around the predicted but unstable solution for some time (the time-interval�50T,100T � being shown), before it ultimately converges to a large amplitude
asymptotic state far from the local state as predicted by the reduced equation.
Note that the existence of large amplitude perturbations associated with
subcritical bifurcations has often been mentioned in the literature in the
context of power system models (see for instance [18], [19] among others). It
is in such situation where a reduced equation analysis is particularly valuable
as a detection tool, because those solutions are often di�cult to �nd by merely
integrating the global system by varying the parameters.
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Figure 5: Phase-portrait in the �θ1�t�, V7�t��-plane for the global solution (blue, starting
with a random initial condition with 0 @ xj @ 1, j � 1,�,14 and SSx�0�SS � 1) near the Hopf
bifurcation point H2 (λ � 0.01) during �50T,100T � (a) and the asymptotic regime (b), the
red curve being the solution (4.29) of the theory.

6. Concluding remarks

Center manifold theory continues to be employed for reduction of dynam-
ical systems with for example very recently the application of deep learning
in this context [15]. Di�erential-algebraic systems do however not directly
enter in the framework of this theory, unless some manipulations allow to
transform the system into a pure dynamical system. This may be possible
when the algebraic constraint of the problem under investigation is linear
or in the nonlinear case, when through implicit di�erentiating of algebraic
constraints the system may be transformed by invoking the implicit function
theorem.
Here the context of nonlinear DAE systems has been addressed which exhibit
Hopf bifurcations. In this situation and given the dynamic as well as algebraic
part of the equations, the idea was to see, whether the classical Lyapunov-
Schmidt reduction could be directly applied without a priori transformations
of the system. This seems not to have been attempted so far and it is rig-
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orously shown, how the resolution of a hierarchy of systems, alternating the
algebraic and the dynamic part, leads ultimately to the reduced equations
and the local solution. The formulas are naturally more complex then in the
classical theory but the reduction procedure is numerically treatable.
The aim of the reduction is of course not to substitute itself to a direct in-
tegration of the global system. It may however be a helpful tool, given that
direct numerical integration results are not always easily interpretable, for in-
stance when questioning large amplitude deviations from the steady state (or
of course complex and chaotic behavior in time). To be capable of predicting
the nature (supercritical or subcritical) of the Hopf bifurcation and to have a
description of the small-amplitude bifurcating nonlinear periodic solution are
valuable information and inputs when treating with nonlinear DAEs. The
reliability of the method has been illustrated for an electric power system
model, whose dimension has been chosen quite arbitrarily. Given that no
speci�c assumption are made, besides the strangeness-free hypothesis, the
procedure outlined here can in principle be applied to any more or less large
DAE system.

Appendix A. Rank and kernel computation

The so-called LU decomposition of a square matrix A > Rn,n (all what
follows applies to complex matrices too) is a classical numerical recipe, the
matrix A being transformed for to be written as the product of a lower
triangular matrix L and a upper triangular matrix U . In [23] for instance it
is shown how this algorithm by performing what is called complete pivoting
(see algorithm 3.4.2 in this textbook) can be used to determine in particular
the rank of the matrix. This algorithm can be generalized to a rectangular
matrix A > Rn,m which is for instance brie�y mentioned in [23] and the
procedure is summarized hereafter, for self-consistency.
Note A�k�1� the transformed matrix at step k�1 of the algorithm (A�0� �A)
and note L�k�1� such that L�0� � In (the n � n identity matrix). At the next
step k, permutations of the rows and the columns are applied such that

S�PkA�k�1�Qk�kkS � max
k B i B n
k B j Bm

S�A�k�1��ij S

Gaussian elimination is performed such that

A�k�
� �In � lkeTk �PkA�k�1�Qk,

ek > Rn being the kth canonical basis vector and the elements of lk > Rn are

�lk�i � 0, 1 B i B k, �lk�i � �PkA�k�1�Qk�ik
vk

, k � 1 B i B n,
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where
vk � �PkA�k�1�Qk�kk

is the (non zero) pivot value, the new matrix L�k� being

L�k�
� PkL

�k�1�
� lke

T
k .

The last possible step for the rectangular matrix is l � min�n,m� � 1, if all
the pivot values vk x 0, k � 1,�, l and if the coe�cient

vl�1 � �A�l��
l�1,l�1

x 0

the matrix is of maximum rank. Suppose now that the pivot values are such
that

vk x 0, k � 1,�, r and vr�1 � 0, r � 1 B min�n,m� (A.1)

The Gaussian elimination procedure has to stop at step r and let P � Pr�P1

and Q � Qr�Q1 be the products of the successive row and column permu-
tation, one gets the decomposition

P AQT
� L�r� A�r�. (A.2)

To store the di�erent permutation, it is not necessary to construct permuta-
tion matrices, but one merely permutes the elements of index vectors p > Rn

and q > Rm (such as before starting the algorithm pi � i, i � 1,�, n and
qi � i, i � 1,�,m). The matrix A�r� has the following bloc structure

A�r�
� � U �r� A

�r�
m�r�0� �0� � , U �r�

�

���
v1 � ��0� � ����0� vr

��� (A.3)

where U �r� > Rr,r is upper triangular (the symbol � stands for the coe�cients

resulting from the Gaussian algorithm), A
�r�
m�r > Rr,m�r is the upper right

part of A�r� after the algorithm is completed and the elements in the rows
r � 1,�, n are zero. This transformed matrix has rank r (the rank of the
submatrix U �r�), which is, given that A�r� results from rows and columns
permutations and Gaussian elimination, the rank of the matrix A. The
matrix L�r� has the following bloc structure

L�r�
� � L�r�

r
�0�
In�r

� , L
�r�
r �

�����

1 �0���� � �0�
� ��� 1
� � �

�����
(A.4)
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with the submatrix L
�r�
r > Rn,r (again the symbol � stands for non zero or

zero elements) and In�r is the �n � r� � �n � r� identity matrix. Note that
if A has maximal rank, that is in (A.1) vk x 0, k � 1,�,min�n,m�, then if
n Am, the Gaussian elimination steps have to be performed up to k � r �m
(and in that case the bloc A

�r�
m�r in the decomposition (A.3) does not exist),

whereas if m C n the Gaussian elimination steps stop at n � 1 and one has
only to assure that in (A.3) for r � n the last coe�cient vn x 0. Of course,
if n � m and the rank is n one recovers conventional LU decomposition.
The mathematical rank condition (A.1) must be interpreted in terms of the
numerical zero. In practice an ε-value has to be introduced according to
machine precision in the way that vr�1 � 0 is assured through a condition
such as Svr�1S~Sv1S @ ε, given that Sv1S is the �rst maximum pivot value. Of
course, caution has always to be exerted for the numerical rank condition to
be reliable, because round-o� errors are always present, which however with
complete pivoting are bounded (see [23]).
The rank-kernel theorem for a rectangular matrix n �m states that

m � dim Ker�A� � dim Range�A�
the rank being the dimension of the range of A. The matrix A has a kernel
whenever its rank r @ min�n,m� but also if A is of maximal rank and m A n.
To compute the basis vectors of the kernel of A, one has to solve A x � 0,
that is by using the decomposition (A.2)

PAQTy � L�r�A�r�y � 0, x �QTy (A.5)

and given that L�r� sketched in (A.4) admits an inverse, one has to solve
A�r�y � 0 with A�r� given by (A.3) to recover the kernel. The linearly
independent vectors yj, j � 1,�,m � r, can by sought as to be of the form

yj � � zj
ej

�
with zj > Rr and ej > Rm�r such that �ej�k � δjk, k � 1,�,m�r (δjk being the
Kronecker symbol). Note that thesem�r vectors are by construction linearly
independent. According to the matrix structure (A.3), to solve A�r�yj � 0 it
is equivalent to �nd zj such that

U �r�zj � �A
�r�
m�r ej

and this system can be solved easily, U �r� being upper triangular and it
admits an inverse. The jth vector of the kernel is then recovered by Qxj � yj
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(see (A.5)), given that QT � Q�1 (the permutation being the product of
simple transpositions). As mentioned above, the vector of indices q provides
the permutations and accordingly

�xj�qi � �yj�i, i � 1,�,m.

The nullspace can be represented by X � �x1,�,xm�r� > Rm,m�r, where
the nullspace's basis vectors xj are the columns of X. It may often be
appropriate to perform a Gram-Schmidt orthogonalization for the standard
inner-product of these vectors (dedicated algorithms being largely available)
and a representation of the nullspace is then provided by

T > Rm,m�r, with tTk tl � δkl, 1 B k, l Bm � r

(tj being the column vectors of T ). The nullspace of the transposed matrix
AT > Rm,n can also be computed, by transposing the relation (A.2), that is

QATP T
� �A�r��T �L�r��T (A.6)

and the dimension of the kernel is now n � r if the rank of A is such that
r @ n. Now ATx � 0 if x � P Ty with

�A�r��T �L�r��Ty � 0. (A.7)

Given that L�r� is a lower triangular matrix, �L�r��T is upper triangular and
admits an inverse, while the structure of �A�r��T is

�A�r��T � � �U �r��T �0�
�A�r�

m�r�T �0� � (A.8)

Take the vectors

zj � � 0
ej

� > Rn, j � 1,�, n � r,

0 being the zero vector of length r and ej > Rn�r with coe�cients �ej�k �

δjk, k � 1,�, n � r, then according to (A.8) �A�r��Tzj � 0. Hence (A.7) is
ful�lled if �L�r��Tyj � zj, j � 1,�, n � r

and this system can easily be solved. Note that the vectors zj, j � 1,�, n� r
are linearly independent and so are the vectors yj. A vector basis for the
kernel of the transposed matrix is now formed by the vectors xj > Rn, j �
1,�, n � r such that �xj�pi � �yj�i, i � 1,�n
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Now, consider the case of a system

Ax � b

with A > Rn,n a square matrix such that r @ n. It is supposed that b is in
the range of A and performing the decomposition (A.2) one gets

L�r�A�r�y � Pb, x �QTy.

One �rst solves L�r�z � Pb and then the singular system

A�r�y � z

is to be addressed. If b is in the range of A, then necessarily the coe�cients
zj � 0, j � r � 1,�, n, given the structure (A.3) of A�r�. The solution y can
be chosen such that yj � 0, j � r � 1,�, n and yj, j � 1,�, r are obtained by
considering U �r�, the upper left r�r bloc ofA�r� (which is invertible). Finally
one recovers a solution x (which of course is not unique because de�ned up
to a contribution belonging to the nullspace of the singular matrix).

Appendix B. Computation of w3

To compute w3, the third-order term has to be added to the Taylor
expansion (4.2) which is

1

2
D2M1�Ty�Sz,Ty�Sz� d

ds
�Ty�Sz��1

6
D3G1�Ty�Sz,Ty�Sz,Ty�Sz�

and w3 is of the form

w3 �w
�1�
3 eis �w

�3�
3 ei3s � cc

Some tedious developments lead to the following expression, canceling the
terms in r3,

�iI � Ã�w�1�
3 � �P̃b with

b �B�1
1 �iM1Sz

�1�
3 �

3i

2
DM1�Tw�2�

2 �Sz
�2�
2 �T c̄

�
3i

2
DM1�Tw�0�

2 �Sz
�0�
2 �Tc � 3iDM1�T c̄��Tw�2�

2 �Sz
�2�
2 �

�
3i

4
D2M1�Tc,T c̄�Tc � 3i

8
D2M1�Tc,Tc�T c̄ �DG1�Sz�1�

3 �
�

3

2
D2G1�T c̄,Tw�2�

2 �Sz
�2�
2 � � 3

2
D2G1�Tc,Tw�0�

2 �Sz
�0�
2 �

�
3

8
D3G1�Tc,Tc,T c̄��

(B.1)
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with P̃ the projection de�ned by (4.11). The above singular system can be

solved by the method explained in Appendix A (and P̃w
�1�
3 � w

�1�
3 ). The

function w
�3�
3 can be shown to be solution of

�3iI � Ã�w�3�
3 � �B�1

1 �3iM1Sz
�3�
3 �

3i

2
DM1�Tw�2�

2 �Sz
�2�
2 �Tc

�3iDM1�Tc��Tw�2�
2 �Sz

�2�
2 � � 3i

8
D2M1�Tc,Tc�Tc �DG1�Sz�3�

3 �
�

3

2
D2G1�Tc,Tw�2�

2 �Sz
�2�
2 � � 1

8
D3G1�Tc,Tc,Tc�� .

(B.2)

Appendix C. Multivariable derivative formula for the case study

In the reduction algorithm the multivariable derivative formula of the
type (4.1) has to be computed. In the case study each component of G
given by (5.4), (5.5) is the sum of scalar function involving the product of
components of the solution vector with sine and cosine functions. Consider
for instance the highest order derivative in the reduction algorithm

D3G�ũ, α̃��q,r,s�.
where �q,r,s� stands for the arguments in the di�erent expressions. Selecting
one of the scalar function for illustration, say

ujul sin�ui � uk�,
the function

d�t1, t2, t3� � �ũj � φj��ũl � φl� sin�ũi � ũk � φi � φk�
is to be formed with φi � t1qi � t2ri � t3si and of course φj etc are de�ned
the same way by changing the subscript. This contribution to the derivative
formula according to (4.1) is

∂3

∂t1∂t2∂t3
d�t1, t2, t3�St1�t2�t3�0 .

Expanding the sine function in a Taylor series at ũi�ũk (up to the third order
for the example), the products between φj, φl, �φi�φk�p, p � 1,2,3 are devel-
oped and in the resulting multivariable polynomial the terms in t1t2t3 are to
be assembled and the resulting coe�cient is the required expression. These
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computations are more or less tedious but only simple algebra is involved.
For the example one gets

��qjrl � qlrj��si � sk� � �qjsl � qlsj��ri � rk� � �rjsl � rlsj��qi � qk�� cos�ũi � ũk�
� �ql�ri � rk��si � sk� � rl�qi � qk��si � sk� � sl�qi � qk��ri � rk�� ũj sin�ũi � ũk�
� �qj�ri � rk��si � sk� � rj�qi � qk��si � sk� � sj�qi � qk��ri � rk�� ũl sin�ũi � ũk�
� �qi � qk��ri � rk��si � sk�ũjũl cos�ũi � ũk�
Of course, for lower derivative order the expressions are simpler and when
computing D2G�ũ, α̃��q,r� one proceeds in a similar manner by extracting
the term in t1t2.
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