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Abstract

The tuning mechanism of pH can be extremely challenging to model computation-

ally in complex biological systems, especially with respect to photochemical properties.

This article reports a protocol aimed at modeling pH-dependent photodynamics, us-

ing a combination of constant-pH molecular dynamics and semi-classical nonadiabatic

molecular dynamics simulations. With retinal photoisomerization in Anabaena Sen-

sory Rhodopsin (ASR) as a testbed, we show that our protocol produces pH-dependent

photochemical properties such as the isomerization quantum yield or decay rates. We

decompose our results in single titrated residue contributions, identifying some key

tuning amino acids. Additionally, we assess the validity of the single protonation state
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picture to represent the system at a given pH and propose the most populated protein

charge state as a compromise between cost and accuracy.

1 Introduction

The pH is one of the main intensive properties that can influence the outcome of chemical

processes in biomolecules, e.g., in terms of rate and yield.1,2 While a famous mechanism

of action is proton transfer and related acid-base equilibria, pH changes can also impact

transformations in a more indirect fashion. For instance, the photoisomerization in rhodopsin

proteins is pH-dependent, even if the protonation state of the retinal chromophore does not

change under non-extreme pH conditions.3–6 In fact, changing the macroscopic pH value

translates microscopically into potentially modifying the protonation state, and hence the

electric charge, of each titratable group in the (macro)molecule. In photoactive proteins,

this modifies the electrostatic potential acting on the chromophore and eventually tunes the

energy gap between the ground and some excited electronic state, especially when charge

transfer states are involved.

The modeling of the pH dependence of excited state properties in photoactive proteins

faces several challenges. Besides the usual question regarding the electronic structure method

required to reach a good accuracy for excitation energies, excited electronic state characters,

and potential energy surface topologies,7–9 the most challenging issue involves statistics. In

fact, not only does the conformational space of the system need to be sampled extensively

through, for instance, classical molecular dynamics, but the ensemble of protonation mi-

crostates also requires proper sampling.10 When the number of titrated residues is large,

as is usually the case with medium and large-size proteins, the latter sampling becomes

incredibly demanding since the ensemble size scales exponentially with the number of titrat-

able residues. However, successfully modeling the impact of pH on protein photochemical

properties would provide a comprehensive atomistic-level understanding of the pH tuning
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mechanisms and crucial information to develop or enhance control of protein activity and

rationally design improved mutants.

Some pH-dependent photochemical properties have been successfully modeled and stud-

ied in silico. One example is the pH-dependence of absorption spectra in polypeptides and

proteins.11–15 A convenient approach consists of modeling the titration of only the residues

whose change of protonation state modifies the excitation energy significantly, which could

be identified using a minimal electrostatic model.12 Alternatively, constant-pH molecular

dynamics (CpHMD) simulations can be used to sample simultaneously the conformational

and protonation state spaces.16,17 This yields thousands of snapshots that can be used for hy-

brid quantum mechanics/molecular mechanics (QM/MM) calculations of excitation energies

to convolve absorption spectra. This workflow (called CpHMD-then-QM/MM)13 has been

successfully applied to the pH-dependent absorption spectrum of ASR.14 For this protein,

Pieri et al. reproduced the pH-induced variation of the maximum absorption wavelength

λmax, and analyzed its molecular origin in terms of titrated amino acids. The robustness of

such an approach has also been demonstrated in the case of a titratable chromophore, as it

is the case for the oxyluciferin luminophore involved in the bioluminescence phenomena.18,19

While it is possible to obtain theoretical absorption spectra with the tools mentioned

above, the pH-dependent quantum yield and excited state lifetime of photo-active proteins

have never (to our knowledge) been accurately modeled before. In fact, typically a pH

value is modeled by choosing (and fixing) the protonation state of each titratable amino

acid in the protein; in other words, only one protonation microstate is assumed to be rep-

resentative of the system at a given pH value, which can be a gross simplification. In this

work, we want to assess whether the methodology we developed13 and successfully applied

to study pH-dependent λmax variations,14,18,19 which considers large numbers of microstates,

can be extended to study the pH-dependent photochemistry of photo-active biomolecules.

Therefore, using Anabaena Sensory Rhodopsin (ASR) as a testbed, we hereafter present an

enhanced CpHMD-then-QM/MM nonadiabatic molecular dynamics protocol meant to in-
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vestigate the effects of changing pH on its excited state lifetime and isomerization quantum

yield. This new computational protocol is specially designed to address the following main

questions:

1. When is a single protonation microstate sufficient to reproduce photochemical proper-

ties at a given pH value? When it is not sufficient, how the conventional models could

be modified?

2. How much can these properties vary when the pH changes?

3. Is it possible to rationalize the molecular origin of such effects?

In a nutshell, thousands of carefully selected snapshots extracted from CpHMD trajectories

are used as initial conditions for a statistically relevant ensemble of QM/MM semi-classical

non-adiabatic MD simulations. We emphasize that our main goal is not to produce accurate

quantum yields or excited state lifetimes, but rather to design a methodology suitable for

qualitatively investigating how pH modifies photochemical properties of large (bio-) molec-

ular systems. In the next section, we present the selected biomolecular model together with

its titratable amino-acids, as well as the main strategies and tools we take advantage of. All

the technical details, necessary for ensuring the reproducibility of our results, are given as

Supporting Information.

2 Methods and Computational Details

The protein used to develop and test our protocol is Anabaena Sensory Rhodopsin (ASR),20

a photoactive transmembrane protein in which the retinal chromophore can exist in two

conformations (Figure 1): all-trans (AT) and 13-cis (13C).21

AT is the only conformation found in the dark-adapted ASR. Upon light absorption,

all-trans retinal can photoisomerize to 13-cis. Therefore, light-adapted ASR exists as a

mixture of AT and 13C conformations, the respective concentrations of which depend on
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Figure 1: AT and 13C conformations of the retinal chromophore in ASR. Retinal is bound to
the opsin through a protonated Schiff base with the Lysine 210 residue. The photoinduced
isomerization involves the dihedral angle defined by carbon atoms 12, 13, 14, and 15.

the pH. As a consequence, the ASR photophysical and photochemical properties have been

measured to be pH-dependent.22,23 ASR absorption maximum wavelength (λmax) features a

small but sizable (∼2 nm) red-shift between pH=3 and pH=5, then a larger (6 nm or more,

depending on the isomer) blue-shift between pH=5 and basic pH. Two main properties are

often used to characterize the ASR photochemical behavior:24–26 its excited state lifetime

and the retinal isomerization quantum yield.27 At pH=7, the latter one is significantly larger

for the AT→13C (0.38) than for the reverse transformation (0.24). However, as of today,

available experimental information regarding the pH dependence of such properties in ASR

remains scarce.

A macromolecule with n titratable sites has at least 2n available protonation microstates,

defined as combinations of individual protonation states; this number can be even larger in

proteins since histidine residues feature three possible protonation states. Even if not all of

the microstates are populated at a given pH value, the number of significantly populated

microstates can be extremely high under non-extreme pH conditions.14 Moreover, often the

population is evenly distributed in the microstates, making it almost impossible to select a

handful of microstates capable of accurately representing the system.

One way to circumvent this issue in simulations is reducing as much as possible the

number of titrated sites. Our previous study indicates that, even though many minor contri-

butions are present, only a few amino acids are capable of tuning the absorption maximum

of ASR with their protonation state change.14 For this reason, we decided to titrate only

four residues at pH=3 (D57, E62, D98, and D120) and four residues at pH=7 (H21, E36,
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D217, and H219). The pH=5 case represents a peculiarity since it stands exactly at the

frontier between the pH range where the glutamic and aspartic acid residues typically finish

their titration process and the one where histidine residues start theirs. For this reason, we

decided to titrate a larger number of amino acids, for a total of twelve: E4, H8, D57, E62,

H69, D98, E123, D125, E160, D217, H219, and D226. The location of the titrated residues

is represented in Figure 2.

Figure 2: Location of the titrated residues in ASR at pH=3.0-4.5 (left, in red), pH=4.5-6.0
(right; in green) and pH=6.0-7.5 (left, in blue). The retinal+K210 moiety is represented in
grey.

Our first step to get a reasonable sampling of the phase and protonation state spaces is

CpHMD. Briefly, CpHMD is a molecular dynamics method in which the protonation state of

some titratable amino-acids can be periodically changed, using a Metropolis decision based

on the free energy of (de)protonation. The Replica-Exchange extension of CpHMD (pH-

REMD) takes advantage of the embarrassingly parallel trajectories (one per pH value) to

improve the convergence of the protonation microstate space sampling. This is achieved

by periodically exchange information between ”neighbor” trajectories.28 After the system
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preparation, heating, and equilibration (see Supporting Information), we calculated four

20 ns long CpHMD trajectories with pH-REMD (using a 0.5 pH step) in three distinct

pH ranges, hereafter called windows, (3.0-4.5, 4.5-6.0, 6.0-7.5) titrating the aforementioned

residues and keeping the protonation state of the remaining titratable sites fixed. In other

words, each pH window is sampled by 4 replicas separated by 0.5 units of pH. The fixed

protonation states were decided using the results presented in our previous article in order to

reflect the most probable situation14 (see Supporting Information). This step yielded 20000

snapshots per trajectory and provided us with statistical information about the population

of the available microstates at each pH value.

To select initial conditions for the nonadiabatic dynamics, we used data from our pre-

vious work on ASR where we modeled pH-dependent absorption spectra.14 In said work,

we extracted 20,000 snapshots (intended as a geometry and a distribution of charges repre-

senting the corresponding protonation microstate) from each CpHMD simulation at pH=3,

pH=5 and pH=7 and for both isomers, and computed the excitation energy using PM7 to

model the electronic structure of the retinal chromophore. Therefore, for each isomer and pH

value, we have a full dataset D consisting of 20,000 excitation energies. The initial condition

selection procedure was conducted as follows:

1. We computed the average λ̄D
max and standard deviation σD for the excitation energies

in D.

2. We created a smaller dataset d containing 1,000 snapshots for each D. The selection

of d was different depending on the pH value. At pH=3 and pH=7, we randomly chose

a certain number of snapshot ni within each populated microstate i. ni is proportional

to the population Ni of microstate i:

ni =
Ni ∗ 1, 000
20, 000

=
Ni

20

where ni is rounded to the closest integer. This procedure allowed us to maintain in
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d the same microstate distribution as in D. At pH=5, each microstate is represented

by a number of snapshots between 0 and ∼20: such a spread out population makes it

impossible to use the same selection scheme mentioned above. Therefore, at this pH

value snapshots were selected randomly and regardless of their microstate of belonging.

3. We computed λ̄d
max and σd and compared these values to λ̄D

max and σD . In all cases,

d and D proved to have an extremely similar distribution of excitation energies, since∣∣λ̄D
max − λ̄d

max

∣∣ < 0.01 eV and |σD − σd | < 0.01 eV, ultimately verifying that our smaller

datasets are a good representation of the larger datasets.

Using the selected 1000 structures per pH value as initial conditions, we perform ex-

cited state semi-classical QM/MM-MD simulations using COBRAMM 2.029 with the retinal

chromophore as the QM part and the remaining protein and lipid layer as MM. It is worth

mentioning that pH is essentially maintained since the protonation state of each residue is

fixed when ASR is promoted to its excited state. This restriction is essentially motivated

by the proton transfer time scale, much slower than the retinal isomerization one and by

the absence of retinal deprotonation in the considered pH range. Retinal itself and residues

within 5 Å of the retinal chromophore were movable during our photodynamics simulations,

while the rest of the system was frozen. The initial velocities were set to zero (see Support-

ing Information for details). The trajectories were propagated for up to 2.5 ps on QM/MM

potential energy surfaces, starting on S1 and allowing hops to S0 and S2 using Tully’s fewest

switches surface hopping algorithm.30 S2 was included to describe the strong state mixing

already demonstrated in the case of ASR.31,32 In fact, describing S1 as a charge-transfer

excited state and S2 as a diradical state in the Franck-Condon region, Manathunga et al.’s

CASPT2//CASSCF semi-classical MD simulations highlighted their proximity during the

early part of the photo-induced retinal isomerization,32 leading to state mixing between S1

and S2. The chosen QM level of theory scheme is OM3/MRCI,33,34 since it has been shown

to provide good excited state properties35 and has been already used to study rhodopsins

yielding reasonably good results with an acceptable compromise between accuracy and com-
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putational effort;36,37 this choice is motivated by the extremely large amount of trajectories

(6000) we needed to calculate. The QM region is limited to the ASR retinal chromophore;

the MM interactions are modeled using the Amber forcefield38 and the QM/MM ones with

an electrostatic embedding approach, i.e., including MM point charge electrostatic potential

in the semi-empirical Hamiltonian, as implemented in COBRAMM.29

The resulting data sets are labeled as pH3-AT, pH3-13C, pH5-AT, pH5-13C, pH7-AT,

and pH7-13C. Notice that about 80% of the trajectories have been used for later analysis,

the rest is discarded for reasons explained in Supporting Information, section 1. We ana-

lyzed each ensemble of trajectories using three different statistical properties. The first one,

the isomerization quantum yield (IQY), characterizes the efficiency of the retinal photoiso-

merization. In principle, this quantity can be directly compared with the experiment, if the

number of trajectories is large enough (i.e., statistically converged). The two other properties

are related to the excited state lifetime: the average hopping time between S1 and S0 and

the time constants fitted to reproduce the S1 → S0 population decay time evolution. The

former is only defined theoretically (in the framework of surface-hopping MD simulations)

and it does not provide information about the future evolution of the trajectory (i.e. if the

isomerization will succeed or get aborted). The time constants, based on mechanistic and

kinetic assumptions we will present later, can, in principle, be compared with experimental

equivalent ones. Moreover, each of them characterizes a particular decay channel.

3 Results

3.1 Retinal isomerization mechanism

The canonical retinal isomerization mechanism in microbial rhodopsins involves the highly

selective AT↔13C reversible photoisomerization. After visible light absorption, the retinal

structure changes: its bond length alternation (BLA, difference between the double bond

lengths and the single bond lengths, from C6 to Cδ) pattern is inverted, eventually trigger-
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ing a complex space-conserving rotation around the C13−C14 bond, happening on a sub-ps

time scale. Retinal can also in some cases twist around other bonds, but these usually

lead to aborted isomerizations due to steric hindrance, confirming that the cavity shape en-

forces selectivity for the dihedral involved in the photoisomerization.6,39–41 Since a pH change

translates into modified electrostatic interactions between retinal and its surroundings amino

acids, we may first question the validity of the above-mentioned isomerization mechanism

between pH=3 and pH=7. Our simulations show this isomerization mechanism is conserved

across pH values and independently of the initial retinal configuration (AT, figure 3 or 13C,

figure 4 in Supporting Information).

The BLA values are essentially positive at t = 0, with an average value close to 0.02 Å

(see figure 3 for the case of the AT→13C retinal isomerization and Supporting Information

for the opposite case). The BLA quickly becomes negative (about −0.02 Å) after a few

tens of fs. Then, it rapidly goes back to its initial value (after about 300 fs), thanks to

the increasing number of S1 → S0 hops. Since trajectories are stopped rapidly after having

decayed to S0, the BLA value at a large time scale cannot reflect the necessary bond length

oscillations. Nevertheless, it should be emphasized that the reported BLA variation takes

place in less than 200 fs, i.e. it is ultrafast.

In the AT→13C case, the initial C13−C14 torsion angles are distributed between −150◦

and −190◦. After about 200 fs, two branches become apparent. In one, the torsion angles

remain in the same range as the initial values, indicating unsuccessful (e.g., aborted tor-

sions around other bonds) isomerizations. The other branch features torsion angles rapidly

evolving towards −90◦, corresponding to successful isomerizations. The dihedral and BLA

time evolution is perfectly in line with the ones reported for rhodopsins.42 This conclusion is

also valid for the 13C→AT case (figure 4 in Supporting Information). Accordingly, changing

the pH does not alter the usual retinal isomerization mechanism. It is worth noting that

successful isomerizations occur more often at long times when the starting retinal isomer is

AT.
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Figure 3: Time evolution of BLA (left) and torsion dihedral angle (right) during the AT→13C
retinal isomerization. S1 (pink) and S0 (green) parts of a trajectory are separated by a hop
point (black circle). The BLA instantaneous average values are also plotted in blue. Please
note that, since the trajectories are stopped shortly after reaching S0, their last BLA value
is frozen for the remainder of the averaging to avoid noise and discontinuities.

3.2 Isomerization quantum yield

Having found that the isomerization mechanism is not affected by the pH, we now investi-

gate how pH modifies the IQY, the quantity that characterizes the efficiency of the retinal

photo-isomerization. In rhodopsins, this value typically ranges between a few percent and
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almost 0.7 in bovine rhodopsin or bacteriorhodopsin.6 The ASR IQY is still debated: it is

estimated to be either 0.17 (0.06) or 0.38 (0.24) for AT→13C (13C→AT) at neutral pH.25,27

However, the IQY is known to be pH-dependent in several related systems, like bacteri-

orhodopsin.4 Accordingly, we hereafter investigate how the pH can influence the ASR IQY,

using the CpHMD-then-QM/MM protocol.13 Computationally, the IQY can be calculated as

the number of reactive trajectories, i.e., the ones featuring a completed isomerization around

the C13−−C14 bond, divided by the number of trajectories for each model. We report this

quantity for each model in Table 1.

Table 1: Isomerization quantum yields (IQY) calculated using the Full set of trajectories,
the Direct (i.e., trajectories which hop directly from S1 to S0) subset and the Indirect (i.e.,
trajectories which visit S2 before going back to S1 and then S0) subset. Uncertainties are
calculated as standard deviations, ie.

√
IQY(1− IQY)/n with n the total number of valid

trajectories.43

AT→13C 13C→AT
pH 3 5 7 3 5 7
Full 0.43± 0.02 0.39± 0.02 0.56± 0.02 0.33± 0.02 0.35± 0.02 0.36± 0.02

Indirect 0.46± 0.05 0.46± 0.04 0.63± 0.04 0.39± 0.04 0.43± 0.04 0.50± 0.04
Direct 0.43± 0.02 0.38± 0.02 0.54± 0.02 0.31± 0.02 0.34± 0.02 0.33± 0.02

Dir:Indir ratio 637:115 (5.5) 640:124 (5.2) 615:172 (3.6) 670:140 (4.8) 632:136 (4.6) 614:126 (4.9)

The 13C→AT IQY is always smaller than the AT→13C one, independent of the pH

value. This result is in line with experimental values at pH=7 (0.24 ± 0.03 and 0.36 ±

0.06, respectively).27 However, the computed IQY values at pH=7 are much larger than

the experimental ones, probably evidencing the relatively low quality of the semi-empirical

Hamiltonian-based potential energy surface. Nevertheless, the level of theory chosen as

a compromise allows us to compare properties at different pH values and extract trends.

Indeed, while the 13C→AT IQY seems pH-independent, the AT→13C one dramatically

increases when the pH becomes neutral.

The origin of pH-dependent IQY variations can be traced back by considering the impact

of the S1/S2 mixing.31,32 For this purpose, we split each ensemble of trajectories in (i) a direct

subset that contains trajectories that hop directly from S1 to S0; (ii) an indirect subset for

the trajectories that hop from S1 to S2 before hopping back to S1 and eventually to S0 (no
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direct hop between S2 and S0 has been observed). Each subset can be characterized by its

respective IQYs, as reported in Table 1.

The indirect IQY is larger than the direct one at all pH values and retinal isomers. This

result suggests that S2 assists the nuclear wavepacket to prepare for a successful isomeriza-

tion. This is especially true when the pH is neutral, with a direct to indirect IQY increase

equal to 0.09 (AT→13C) and 0.17 (13C→AT). While independent of the isomer, the IQY

enhancement due to the permanence on S2 does depend on pH. For instance, we find a 0.1

increase of the AT→13C IQY at pH=5 and 7, while the IQY is three times smaller at pH=3.

In the 13C→AT case, the largest IQY enhancement is found at pH=7 with a spectacular

0.17 increase in the isomerization efficiency with respect to the direct subset.

This ”S2-assisted” mechanism efficiently increases the IQY; to our knowledge, such an

effect was never reported before and further studies could give additional insights into its

mechanism and importance. However, the majority of the trajectories do not visit S2, as

shown in the last row of Table 1: the ratio between the numbers of trajectories in the direct

and in the indirect subsets is comprised between 3.6 and 5.5. Similar to the IQY, this ratio

is pH-independent in the case of the 13C→AT isomerization. However the AT→13C ratio

varies significantly with the pH: it is larger than 5 at pH=3 and 5, while it is reduced to 3.6 at

pH=7. We conclude that the S1/S2 state mixing has a noticeable (and often pH-dependent)

impact on the retinal IQY in our simulations of the ASR photochemistry.

We observe a direct correlation between the IQY and the number of trajectories hopping

to S0 when the C13−−C14 dihedral angle is close to 90◦ (Figure 4): unsurprisingly, when

the chromophore twists around the correct bond, the overall probability of completing the

isomerization increases. The 13C→AT intercept value, i.e., x = 0 in Figure 4, is close to 0,

as expected. However, the AT→13C intercept is -0.15, suggesting that a linear relationship

cannot fully represent the physics involved in the process. Extrapolating to 100% of C13−−C14

dihedral angles close to 90◦ (i.e., x = 1 in Figure 4) results in IQYs close to 0.7 as an upper

limit for the ASR photoisomerization in the present simulations.
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Figure 4: Correlation between the IQY obtained for the direct and indirect subsets of trajec-
tories and the amount of them hopping to the ground state with a C13−−C14 dihedral angle
close to 90◦ (dC13

−−C14∼90◦). The IQY uncertainties, represented as vertical bars on top of

each data point, are calculated as
√

IQY(1− IQY)/n with n the total number of trajectories
in the considered subset.

Given (i) the pH-dependence of the IQY and (ii) the correlation between the IQY and

the number of trajectories hopping at C13−−C14 torsion angles close to 90◦, we can expect

the latter to be also pH-dependent, as we demonstrate in the following.

3.3 Average hopping time

The hopping time (thop, defined as the time at which a given trajectory hops from S1 to

S0 in the context of Tully’s fewest switches surface hopping) is not an observable, i.e., it

cannot be compared directly to any experimentally measured property. Nevertheless, within

the non-adiabatic fewest-switches surface-hopping MD methodology, its average value, t̄hop,

can be related to the excited-state lifetime independently of the S1 → S0 decay channels,

at variance with decay time constants which are introduced in user-defined kinetic models.
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While we study the latter in the next section, we start here by showing how pH influences

the thop distribution and t̄hop values (per retinal isomer and per pH value).

The distribution of thop against the C13−−C14 dihedral angles at the moment of a hop is

presented in Figure 5. Independently of the pH value and isomer, we can distinguish two

behaviors. In one group (named ”alternative subset” in the following), the hops occur when

the C13−−C14 dihedral angle has a similar value to the one it had at t = 0 (yellow set in

Figure 5). The vast majority of this subset is nonreactive, i.e., is characterized by aborted

isomerizations around bonds other than C13−−C14; the corresponding thop spread between

200 fs and 2 ps, with many of them occurring after 750 fs. In the second group (indicated as

”C13−−C14 subset” in the following), the C13−−C14 dihedral angle value at the moment of a hop

is close to 90◦, indicating an attempted isomerization around the ”correct” bond. While thop

for this subset can be as large as 2 ps, most of the corresponding trajectories hop between

100 fs and 400 fs. This subset can be further split into a reactive subset (i.e., successful

isomerization, blue set in Figure 5) and a nonreactive subset (i.e., aborted isomerization,

red set in Figure 5). The kernel density functions at the right side of each panel in Figure 5

show that aborted isomerizations at large timings are mainly due to the alternative subset.

Accordingly, it is difficult to foresee a noticeable excited state lifetime difference between the

reactive and unreactive subsets.

While pH does not modify the global picture drawn in Figure 5, its effect is more evident

when looking at t̄hop (Figure 6). Within the full set of trajectories, this property is pH-

dependent only when retinal’s initial conformation is AT (see Figure 6A): t̄hop gets delayed

at pH=5 compared to both pH=3 and pH=7. Also visible in Figure 5, the 13C t̄hop has

a narrower distribution and is always shorter than the AT one for any pH value, but their

difference is particularly large (135 fs) at pH=5.

We can determine t̄hop values for the reactive, nonreactive, and alternative subsets (Figure

6B). Confirming what is observed in Figure 5, in the latter case t̄hop is always larger than

500 fs, while the reactive and nonreactive subsets feature t̄hop shorter than 300 fs. This
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Figure 5: thop as a function of the torsion angle around the C13−−C14 bond as scatter plots
and kernel distribution functions. The total set of surface hopping trajectories is divided into
reactive, nonreactive, and alternative as mentioned in the text. The subset size percentages
are calculated with respect to the total set of trajectories, which include the ones that do
not hop within 2 ps (see Supporting Information for their population size).

result suggests two different excited state lifetimes, one shorter corresponding to attempted

isomerizations around the C13−−C14 bond, and one longer for the aborted isomerizations
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Figure 6: S1 → S0 t̄hop as a function of pH for AT and 13C models; standard errors are given
as grey error bars. (A) Full set of valid trajectories. (B) Reactive, nonreactive, alternative
channels. (C) Direct and indirect subsets.

around any other double bond in the retinal. Interestingly, panel 6B also shows clearly that

the AT isomer has a higher t̄hop than 13C, independent of the deactivation mechanism or

the pH value.

We also analyzed t̄hop within the direct (i.e., trajectories not visiting S2) and indirect (i.e.,

trajectories visiting S2) subsets (Figure 6C). Intuition suggests that indirect trajectories may

take longer to decay to the ground state, given the detour. However, this is not always the

case: in the pH7-AT, pH3-13C, and pH7-13C sets, the indirect subset proves to get, on

average, faster decay. This indicates that under certain circumstances (e.g., the pH or the

chromophore isomer), the nuclear wavepacket split between S1 and S2 before recombining

on S1 may favor rapid decay to the ground state. A similar population transfer scheme has

already been documented in silico in a Channelrhodopsin Chimera, where it was hypoth-

esized it could explain the long-time component in the protein’s photokinetics.37 However,

to our knowledge, this is the first time that evidence of an accelerating action induced by

visiting S2 is found, an intriguing hypothesis that deserves further exploration in the future.

In general, the pH has the same impact on the direct and indirect subsets and on the
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two isomers: t̄hop increases by several tens of fs from pH=3 to pH=5, then decreases by a

slightly bigger amount at pH=7. The 13C direct case constitutes an exception, since its t̄hop

is virtually unaffected by the pH, as evidenced also by the analysis performed on the whole

13C set (Figure 6A).

3.4 Decay rates

Similar to other rhodopsins,44 ASR’s photochemistry involves three electronic states (S0, S1

and S2), at least in the Franck-Condon region where S1 and S2 are close in energy;45 such

a three-state model can be complex to reproduce with standard kinetic approaches, which

assume only first-order processes (if all the three states are populated at the same time). In

our case, though, a close inspection of the three state populations reveals that the population

transfers to S0 only after S2 gets depopulated. Since our goal is to assess pH effects on the

ASR photochemistry, we considered the S1 → S0 part of the population time evolution only

and denote tstart the lower bound of the corresponding time window.

Since we want to study how pH can change the retinal photodynamics, we have derived

the most compact, yet effective, kinetic model for the S1 → S0 decay. As extensively detailed

in Supporting Information, it is based on two distinct S1 populations, from now on denoted

P 1
fast and P 1

slow, which eventually decay to the ground state and increase its population P 0.

This model has been already used to experimentally fit decay rates in microbial rhodopsins,

as exemplified by Hasson et al.44 in bacteriorhodopsin. This kinetic model translates to the

following first-order differential equations:

dP 1
fast

dt
= −kfastP

1
fast(t)

dP 1
slow

dt
= −kslowP

1
slow(t) (1)

dP 0

dt
= kfastP

1
fast(t) + kslowP

1
slow(t)

Such a model contains four unknown parameters: the two decay constants kfast and kslow,
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as well as the initial populations P 1
fast(t = tstart) and P 1

slow(t = tstart). The quality of this

model depends heavily on the initial guess for the four parameters to optimize. It is difficult

to estimate it from the inspection of the trajectories. Hence, we have resorted to an indirect,

yet controlled, multi-step approach as described in Supporting Information. Most notably,

we take advantage of the result presented in the previous section, i.e. the apparent different

time scales for the alternative subset and for the reactive and unreactive subsets, to produce

a good guess for the parameters in the bi-exponential model using mono-exponential models.

The resulting models are of excellent quality, as demonstrated by the low root mean square

deviation values with respect to the S1 population evolution.

In ASR, the AT→13C and 13C→AT photoisomerizations are expected to be characterized

by different values of both decay constants and initial populations. While AT→13C exhibits

an energy barrier on S1 which can be lowered by means of the retinal–opsin interactions,

13C→AT is essentially barrierless.46 We reported the fitted time constants τi = 1/ki in

Table 2 with the corresponding populations at tstart, i.e., the time at which the ground state

population starts to increase - we included the corresponding S1 population time evolution

and their fitted curves in Supporting Information. Independently of the retinal isomer and

the pH value, two distinct channels, represented by one exponential function each, allow to fit

the 2 ps S1 population evolution. The main decay channel is ultrafast, with a time constant

always comprised between 90 and 150 fs, while the secondary channel is much slower (1.0 to

2.0 ps). The inspection of the initial populations at tstart reveals that both the fast and slow

channels are already populated, even if the fast one is always the principal one.

While the comparison of the fitted decay time constants with the ones coming out of ul-

trafast transient absorption experiments is tedious (decay models are not always the same),

we stress that our computed shortest excited state lifetimes (i.e. tstart+τfast) lie in the range

160–230 fs, in good agreement with experiments.25,26 Moreover, the quality of a decay model

featuring a single decay time constant has been found to be significantly poorer. Accord-

ingly, we emphasize that our simulations show one decay rate associated with (successful or
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Table 2: Fitted time-constants τi (in fs) and initial populations P 1
i of a bi-exponential model

(Equations 1) modeling the S1 → S0 decay in ASR. tstart, the time at which S0 starts to
be populated, indicates the lower bound of the time window used in the fitting procedure,
2000 fs being the upper bound.

AT 13C
tstart P 1

fast τfast P 1
slow τslow tstart P 1

fast τfast P 1
slow τslow

pH=3
Full 64 0.79 143 0.21 1368 60 0.84 129 0.16 1369

Direct 64 0.80 146 0.20 1461 60 0.83 130 0.17 1201
Indirect 108 0.83 87 0.17 913 83 0.89 100 0.11 2238

pH=5
Full 81 0.72 146 0.28 1318 61 0.79 126 0.21 1096

Direct 81 0.73 148 0.27 1257 61 0.80 130 0.20 1099
Indirect 107 0.74 107 0.26 1498 86 0.79 83 0.21 1021

pH=7
Full 71 0.86 91 0.14 1276 49 0.83 139 0.17 1677

Direct 71 0.85 93 0.15 1196 49 0.82 148 0.18 1560
Indirect 86 0.91 73 0.09 1546 90 0.91 73 0.09 2130

aborted) isomerizations around the C13-C14 bond and one (much slower) decay rate associ-

ated with aborted isomerizations around the other bonds. The important point here is that

this model can be used for both retinal isomers and for all the considered pH values, hence

facilitating the analysis of pH effects on the decay mechanisms and characteristic timings

characterizing the present model.

We repeated the same fitting procedure within the direct and indirect subsets (Table

2) to complement the data obtained in the previous sections. Predictably, the indirect

subset is always characterized by a tstart larger than the one in the direct subset or full set.

It is also characterized by time constants that are significantly different from the ones in

the corresponding direct subset or in the full set. In particular, the lifetime of the fastest

decay channel is always shorter when the system visits S2. Irrespective of the pH or of the

retinal isomer, our results confirm that the S1/S2 mixing modifies significantly the retinal

photodynamics.47 Nevertheless, in the present case where the size of the direct subset is 3

to 5 times larger than the indirect subset, the latter cannot significantly alter the overall

retinal photo-induced molecular dynamics.
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The pH does not modify the essential features of the ASR decay: two channels with

significantly different rates are present, the faster one being more populated than the slower

one. However, interesting pH effects are observed in AT retinal. Going from acidic to neutral

pH not only does the population in the fast channel increase (from 72% to 86%), but it also

accelerates the overall dynamics, hence reducing the global excited state lifetime. Large

pH-induced variations are also found in the indirect subsets, where P 1
fast can vary between

74% and 91% for AT retinal, and between 79% and 91% for 13C retinal. In the case of

AT retinal, the S1 → S0 decay is accelerated when the pH becomes neutral: the fast time

constant is significantly reduced (from about 145 fs to 90 fs) and the corresponding initial

population increases to more than 70%.

3.5 Residue-based analysis

We want to showcase another type of analysis that could be performed with the workflow

employed in this work. Up to now, we have investigated how pH impacts photochemically

relevant properties, like IQY or S1 → S0 decay time constants. In this section, we focus on

identifying the molecular origin of such pH dependence by analyzing the effect of individual

amino acids.

Changing the pH translates into changing the ratio between the protonated and deproto-

nated forms of titrated amino acids. In order to disentangle the effects of the two forms, we

can compare the photochemical behavior at very different pH values, where we can assume

the amino acid is either always protonated or always deprotonated. However, very different

pH values imply very different charge distributions around the chromophore, hence making

the comparison less reliable.

Here, we have chosen a slightly different strategy to statistically take into account the

pH-dependent electrostatic environment in the cavity: we split the trajectory ensemble at a

given pH into two subsets, one where a given amino acid is protonated, the other one where

the same amino acid is deprotonated. Such a splitting can be repeated for each titrated
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residue, yielding many pairs of subsets for further analysis. t̄hop, IQY values, and fitted

S1 → S0 decay time constants are given in Supporting Information for all the titrated amino

acids. Here, we discuss the amino acids that are responsible for the biggest variations in

these quantities (Table 3).

Table 3: Impact (in %, relative to the value in the protonated form, see Supporting Infor-
mation) on t̄hop, IQY and fitted time constant τfast of the deprotonation of several titrated
amino acids, whose deprotonated fractions at the considered pH are indicated as xdep. In the
case of D98, the deprotonated dataset size at pH3 for the 13C isomer is too small to allow
reliable fitting.

Model xdep t̄hop IQY τfast
D120

pH3-AT 0.90 +19 -2 -9
pH3-13C 0.17 +21 -34 +25

D57
pH3-AT 0.21 +10 -5 -39
pH5-AT 0.72 -25 +35 -31
pH3-13C 0.11 +10 -18 -22
pH5-13C 0.67 +16 -20 +27

D98
pH3-AT 0.19 -1 +7 -11
pH5-AT 0.89 +53 -25 +27
pH3-13C <0.001 N/A N/A N/A
pH5-13C 0.13 +30 -51 +47

D217
pH5-AT 0.12 -7 +8 -33
pH7-AT 0.93 +22 -3 +18
pH5-13C 0.23 +15 -19 +9
pH7-13C 0.85 -6 -10 -14

D120. With a low pKa value,
14 this aspartic acid was already identified as the main amino

acid responsible for the tiny red-shift in ASR λmax when going from pH=3 to pH=5. Interest-

ingly, in the present simulations, D120 is 90% deprotonated at pH=3 in the AT conformation,

while it is only 17% deprotonated in 13C. This allows us to analyze the deprotonation effect

at the same pH value, revealing a conformation-independent 20% increase of the t̄hop. Since

this value cannot distinguish between the decay channels, we hypothesize that the D120

deprotonation results in a flatter S1 potential energy surface at pH=3. In the case of 13C
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retinal, D120’s deprotonation also induces a large IQY decrease (34%). This is in agree-

ment with the general lower efficiency described previously for the 13C→AT isomerization

at higher pH values: at more neutral pH, the presence of the less efficient deprotonated

D120 increases. These effects are large enough to conclude that the D120 protonation state

impacts quantitatively ASR’s photochemistry.

D57. Similarly to D120, the titration of this aspartic acid induces a λmax red-shift at acidic

pH.14 Its higher pKa value (4.94)14 implies that its titration process barely starts at pH=3

and is fully ongoing at pH=5. In fact, in both isomers, D57 is substantially protonated at

pH=3, while the ratio between the protonated/deprotonated forms is closer to one at pH=5.

The protonation state of D57 has a large impact on the photochemistry of the AT isomer at

pH=5. Upon D57’s deprotonation, the t̄hop decreases by 25%, IQY increases by 35%, while

decay time constants become smaller by about 30%. Therefore, at pH=5, the AT→13C

photoisomerization is much more efficient and faster if a negative charge is located on D57.

The 13C→AT is more moderately affected by the protonation state of D57.

D98. This aspartic acid represents a more extreme case than D57. An accurate pKa

value is difficult to achieve since its side-chain continuously flips between opposing dielectric

environments represented by solvent and membrane.14 Given our estimation of its pKa to 3.75

in our previous study, we only titrated it at pH=3 and pH=5. Regarding AT retinal, D98 is

81% protonated at pH=3 and becomes 89% deprotonated at pH=5. While its deprotonation

does not induce large photochemical modifications at pH=3, increasing the pH lowers the

AT→13C efficiency and speed (+53% for t̄hop, -25% for the IQY, +27% for τfast). In the

case of the 13C retinal isomer, D98 is exclusively protonated at pH=3 and becomes only 13%

deprotonated at pH=5, indicating a larger pKa value for the 13C isomer. Consistently with

the AT case, the D98 deprotonation process is predicted to largely decrease the 13C→AT

efficiency (+30% for t̄hop, -51% for the IQY, +47% for τfast). Given the position of D98,

relatively distant from the chromophore, these results confirm the importance of the long-
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range electrostatic interactions in photodynamics.

D217. While H21, E36, H219, and D217 constitute a cluster the titration of which is re-

sponsible for the λmax blue-shift occurring between pH=5 and pH=7,14 we can assume D217

is the leading titration site in the quartet.14,23 Our results indicate retinal isomer-dependent

D217 deprotonation effects. In fact, upon its deprotonation, the AT→13C IQY does not

change with the pH, while the reverse transformation becomes somehow less efficient by 10

to 19%. The pH also seems to play a part, likely due to the changes in the surrounding

electrostatic environment. For instance, while the AT→13C becomes 33% slower at pH=5,

it is 18% faster at pH=7. Conversely, D217 deprotonation induces a 9% faster 13C→AT

transformation at pH=5 and a 14% slower one at pH=7. From these results alone, it is

hard to disentangle what is the exact role of D217. However, as already mentioned, D217 is

part of a cluster of residues titrating in the same pH range, suggesting correlated deproto-

nation processes. Accordingly, we should also consider the effect due to their deprotonation,

resulting in 22× 32 = 36 different protonation microstates. A possible way to study the pro-

tonation state change effects for the cluster is to consider it as a unique titration site, and use

the most abundant microstate to represent the protein at pH=7. While this is a perfectly

viable interpretation, the most populated microstate for this cluster also corresponds almost

exactly with the most populated protein charge state, as described in the next section. In

this work, we chose to explore the latter option due to its broader relevance across different

windows and its potential to establish a new analytical framework.

3.6 Exploration of most populated protonation microstate and

charge state

As mentioned in the introduction, currently the standard procedure to model the nonadia-

batic dynamics of a protein at a given pH relies on picking and fixing the protonation state

of every titratable amino acid, or, in other words, using only one protonation microstate. In
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this work, we explored the advantages and drawbacks of using a more realistic microstate

distribution. The resulting large dataset allows us to compare the results and accuracy of

the single microstate picture compared to the full set.

Figure 7: Comparison of the results for the AT isomer when considering the full dataset, only
the most populated protonation microstate or the most populated protein charge state. (A)
Upper panel: average hop times in the three datasets and standard errors as error bars; lower
panel: IQY in the three datasets and relative standard errors as error bars. The datasets
have been slightly staggered with respect to the pH to ease the comparison. (B) A pie chart
representation of the population of each protonation microstate according to our CpHMD
simulation; only populations higher than 2% are reported; the most populated microstate is
reported in the text, where ”P” stands for ”protonated” and ”D” for deprotonated. (C) A
histogram depiction of the protein charge state population distribution along our CpHMD
simulations; the highest populated charge state is indicated in red.

We start by examining how representative of the entire system the most populated pro-

tonation microstate is (see Figure 7B). Our CpHMD simulations indicate that at pH values

where not many amino acids titrate, the most populated microstate accounts for more than

50% of the population. As such, at pH=3, where the majority of the titratable residues are

still largely protonated, and at pH=7, where ASP and GLU residues are typically depro-

tonated, while TYR, CYS, LYS, and ARG residues are mostly protonated, one microstate

might constitute a reasonable proxy to represent the system. However, at intermediate pH
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windows where several amino acids might actively titrate like at pH=5, the most populated

microstate might lose its meaning, as the population it represents might be incredibly tiny

(e.g., 2.6%). In other words, at certain pH values, the population distribution over proto-

nation microstates might be much larger. Therefore, picking one of these microstates that

carries such a small fraction of the total population might lead to artifacts.

In our case, when choosing the most populated microstate, the t̄hop gets overestimated

by 10-30 fs at both pH=5 and pH=7, and the IQY gets underestimated by 0.03 at pH=5

(see Figure 7A). This confirms a loss of accuracy when switching to the single microstate

picture. However, one needs to consider the impressive computational cost of a study that

includes comprehensive protonation space sampling like the present one and evaluate what

the best compromise is for the case in question.

A possibility might be sampling from the total protein charge space: one might use the

relatively affordable CpHMD simulations to analyze the distribution of protein charge. In

fact, one can conceptualize pH changes as changing the protonation microstate distribution,

or consider the protein as a large macromolecule for which we can calculate the total charge

at each step of the CpHMD. The advantage of this method is that sampling is confined

to a smaller microstate set, saving computational resources while still maintaining a more

accurate, realistic description of pH.

In our case, the most populated charge state represents a similar (but higher) portion of

the population with respect to the most populated microstate at pH=3 and pH=7 (see Fig-

ure 7C). However, the most populated charge state at pH=5 carries 30% of the population,

compared to the meager 2% of the most populated microstate, ensuring a more comprehen-

sive description of our system. In fact, while the most populated charge microstate does

not perfectly reproduce the t̄hop or IQY at all pH values compared to the full set, it yields

generally closer results than the microstate set (t̄hop values within 15 fs and IQY within 0.02

of the full set ones).

In conclusion, we suggest that sampling from a fixed total charge state instead of a fixed
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protonation microstate might constitute a good compromise to compute reasonably accurate

pH-dependent properties at the only added cost of initially running CpHMD.

3.7 Future improvements

The results presented above demonstrate that the here-introduced enhanced CpHMD-then-

QM/MM protocol is a valuable tool for investigating how pH can tune the photochemical

properties of a photoactive protein, like ASR. Our workflow not only allowed us to estimate

pH-dependent excited state lifetimes and isomerization quantum yields but also gave us

insights into the individual role of the titratable amino acids and the importance of sampling

from the full protonation and conformational space. However, improvements can be expected

by refining some aspects:

• The CpHMD technique is computationally expensive, even when combined with the

replica-exchange approach to accelerate convergence. The CpHMD simulations per-

formed in this work, which involve the replica exchange technique and the introduction

of a membrane (which requires more expensive Generalized Born calculations in the

protonation state change attempts due to the larger number of non-solvent atoms), re-

quired an estimated 2 million CPU hours. Given the typical size of a medium protein

protonation space, the pre-selection of a subset of titratable amino acids, e.g., using a

simple approach like the Minimal Electrostatic Model,12 significantly reduces the com-

putational cost. While there is a higher risk of trapping in local minima - especially

when several titrated residues exchange a proton - such a compromise could prove

valid. Complementary to this protonation space reduction, CpHMD simulations could

be constrained in order to sample only microstates belonging to the most populated

charge state.

• Typically, running non-adiabatic MD requires accepting a compromise. This is espe-

cially true in our case, where we required thousands of QM/MM trajectories. The
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semi-empirical Hamiltonian chosen in this study is a good compromise between ac-

curacy and computational efficiency. In the future, more accurate and/or faster elec-

tronic structure methods could be used thanks to recent advances in machine learning

or GPU-accelerated code.

• We extracted snapshots (structure and protonation microstate) from CpHMD trajec-

tories and used them as initial conditions for non-adiabatic semi-classical MD. Even

if we carefully chose these structures to qualitatively reproduce the protein absorption

spectrum14 at several pH values, we set their velocities to zero, i.e., the trajectories

were produced at 0 K. At the same time, most of the protein remained frozen during

the excited state dynamics. This approximation results in biased ballistic trajectories,

initially following the steepest descent pathways, resulting in large momenta after a

few time steps. We assumed that zeroed velocities at the MM coordinates would span

the same conformational space that non-zero velocities at the QM coordinates would

do; this is undoubtedly a crude approximation, even if chosen in the interest of compu-

tational affordability. In fact, a more accurate course of action would be to run ground

state QM/MM molecular dynamics from the MM snapshots (including their veloci-

ties, or sampling them from a Boltzmann distribution) to correct possible force-field

inaccuracies in the chromophore geometry and obtain initial velocities; this approach

would result in a molecular model closer to what is achieved experimentally, e.g., in

time-resolved ultrafast spectroscopies.

4 Conclusions

We have introduced an enhanced version of our previously published CpHMD-then-QM/MM

protocol,13 aiming at investigating how pH can modify the photochemical properties of a

photoactive biomolecule. We used CpHMD to extensively sample initial conditions (positions

and protonation states) for semi-classical non-adiabatic molecular dynamics simulations.
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With this protocol, we were able to analyze the pH-dependent deactivation mechanism and

calculate the isomerization quantum yield and time constants for the excited state lifetime.

In our model, the retinal isomerization mechanism does not depend on pH in the 3-7

range: we observe an inversion of the BLA starting immediately after photoexcitation to

allow torsion around a former double bond, which returns to the original value soon after

decaying back to the ground state. The isomerization can be attempted around several

double bonds of the retinal chromophore, but only the ones around the C13=C14 double

bond are successful thanks to the constraining protein environment.

The AT→13C isomerization seems usually more efficient than the 13C→AT one in terms

of quantum yield. Additionally, while the former tends to increase towards neutral pH

values, the latter is pH-independent. In all cases, we observed a part of the trajectories

briefly visiting S2; interestingly, this less common mechanism leads to higher IQYs in our

model (+0.03 to +0.14). If the IQY increase by almost 50% that we calculated when the pH

changes from 5 to 7 (AT retinal isomer) was confirmed experimentally, it would also imply

a major correlation between pH and excited state lifetime that needs to be explored.

Similarly to the IQY, the t̄hop differs between the isomers. The 13C value is virtually

pH-independent ( 340 fs), while the AT t̄hop increases at pH=5 and is generally higher

than the 13C one. The time efficiency of the different deactivation channels is clear: while

reactive and nonreactive isomerizations are characterized by lower t̄hop values (below 300 fs),

the aborted isomerizations around bonds other than C13=C14 lead to typically higher t̄hop

values (above 550 fs). Visiting S2 might also have a slightly accelerating effect in mildly

acidic pH conditions.

Our calculations also revealed a bi-exponential decay mechanism, with one component

characterized by a faster time constant (100-150 fs) and typically carrying 70%-90% of the

population, and a slower, less used one (1 ps or more). pH effects can be observed in, for

instance, the AT isomer, where the excited state lifetime decreases at pH=7 as a combination

of an increase in the population of the fast decay channel and a decrease in its time constant.
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Our large dataset also offered the chance to analyze the impact of protonation state

changes in individual amino acids. This revealed that some residues, like D57, affect the

photochemical properties somewhat drastically. However, trends are sometimes difficult to

extract, especially when the changes in the protonation state in one residue are correlated

with other residues (i.e., interacting amino acids). As a matter of fact, such clusters would

need to be considered as a poly-acid featuring several effective pKa values that cannot be

assigned to any particular amino acid.

The ”protonation microstate” and the ”protein charge state” are two useful ways to

conceptualize and investigate pH-dependent properties in complex systems. We showed that

the former, while widely used to model proteins, may prove insufficient to accurately describe

the problem in certain situations, mainly due to the small fraction of the total population

it may represent. Therefore, using a reduced set of weighted microstates that yield the

most populated protein charge state might be an attractive option to retain a more realistic

description of the problem at a low additional computational cost.

To conclude, adding CpHMD as a preliminary step to the simulation of the photochem-

istry of proteins can provide rich insights into the complex mechanisms that regulate the

events following photoabsorption. The precious information extracted can be used to un-

derstand and tune the photoactivity of proteins, and, more ambitiously, suggest possible

mutation sites to design tunable and/or improved mutants.
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