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ABSTRACT
Drawing inspiration from linear logic, quantitative semantics aim
at representing quantitative information about programs and their

executions: they include the relational model and its numerous

extensions, game semantics, and syntactic approaches such as non-

idempotent intersection types and the Taylor expansion of _-terms.

The crucial feature of these models is that programs are interpreted

as witnesses which consume “bags” of resources.

“Bags” are often taken to be finite multisets, i.e. quotiented struc-
tures. Another approach typically seen in categorifications of the

relational model is to work with unquotiented structures (e.g. se-
quences) related with explicit morphisms referred to here as sym-
metries, which express the exchange of resources. Symmetries are

obviously at the core of these categorified models, but we argue

their interest reaches beyond those – notably, symmetry leaks in
some non-categorified quantitative models (such as the weighted

relational model, or Taylor expansion) under the form of numbers

whose combinatorial interpretation is not always clear.

In this paper, we build on a recent bicategorical model called

thin spans of groupoids, introduced by Clairambault and Forest. No-

tably, thin spans feature a decomposition of symmetry into two

sub-groupoids of polarized – positive and negative – symmetries. We

first construct a variation of the original exponential of thin spans,

based on sequences rather than families. Then we give a syntactic

characterisation of the interpretation of simply-typed _-terms in

thin spans, in terms of rigid intersection types and rigid resource

terms. Finally, we formally relate thin spans with the weighted rela-

tional model and generalized species of structure. This allows us to

show how some quantities in those models reflect polarized sym-

metries: in particular we show that the weighted relational model

counts witnesses from generalized species of structure, divided by

the cardinal of a group of positive symmetries.

1 INTRODUCTION
Denotational semantics is an approach to the semantics of program-

ming languages that consists in associating to every program a

denotation in an adequate mathematical universe; crucially this is

done compositionally, by induction on syntax. Most denotational

models are qualitative: a term ⊢ 𝑀 : 𝐴 → 𝐵 is typically represented

by a function from the denotation of 𝐴 to the denotation of 𝐵, giv-

ing us the input/output behaviour of𝑀 , but omitting quantitative
information, such as resources, time, probabilities. . .

Within denotational semantics, quantitative semantics is a family

of models whose distinguishing feature is to record quantitative

information – first and foremost, displaying how many times a
function ⊢ 𝑀 : 𝐴 → 𝐵 must evaluate its argument in order to

produce a given result. Originally prompted by Girard’s linear logic

[15], quantitative semantics has developed into a wide research

topic with numerous models and approaches, including the rela-

tional model [15] and its weighted [8, 19, 20] or categorical [3, 12]

extensions, resource terms and the Taylor expansion of _-terms

[10], non-idempotent intersection types [5, 14], game semantics

[1, 17], and others. This is not merely a subjective methodological

difference: quantitative models are well-suited to model quantita-

tive features such as probabilistic [9] or quantum [26] primitives,

reflecting quantitative property such as execution time [7], or the

number of non-deterministic branches [19], and many others.

To keep track of quantitative information, quantitative models

must represent all individual resource accesses, but this is trickier

than it might seem. Linear logic decomposes the intuitionistic arrow

𝐴→ 𝐵 as !𝐴 ⊸ 𝐵 where⊸ is the linear arrow (for functions call-

ing their argument exactly once), and ! is the exponential modality,
allowing arbitrary duplications of resources. Typically, the diffi-

culty in designing a quantitative model arises with handling the

exponential: how to keep track of all individual resource accesses

while ensuring the laws required for a ! in models of linear logic?

Quotients. If resource accesses in !𝐴 are ordered in a sequence

⟨𝛼1, . . . , 𝛼𝑛⟩ ,

then this will generally fail the commutations laws for the expo-

nential, which require a commutative comonoid [23]
1
. So sequences

are often quotiented out by commutativity, as in the relational

model [15] (and in general the so-called web-based models of linear

logic), where !𝐴 =M(𝐴) the set of finite multisets. This quotient

is also found in quantitative notions of program approximation:

for instance, the Taylor expansion of _-terms [10] approximates

_-terms via the resource calculus, a strongly finitary calculus where

an application𝑀 𝑁 from the _-calculus is approximated with

𝑚 [𝑛1, . . . , 𝑛𝑘 ]

the application of a resource term𝑚, approximating𝑀 , to a finite
multiset of resource terms 𝑛1, . . . , 𝑛𝑘 , all approximating 𝑀 . This

expresses one of the possible behaviours of𝑀 𝑁 , where𝑀 will call

its argument exactly 𝑘 times, each call associated to one of the 𝑛𝑖 ’s.

This quotient, at the heart of quantitative semantics, is by no

means innocent: in situations when quantitative semantics manipu-

late numerical coefficients, the underlying symmetries on multisets

leak, yielding scalars which are not clearly related to the computa-

tional situation, but instead reflect some aspect of its underlying

symmetries. For instance, the relational model weighted by (com-

pleted) natural numbers [19], which in this paper we refer to as

WRel!, counts distinct execution branches for non-deterministic

programs when applied at ground type. But at higher-order type it

yields non-trivial coefficients, even for plain simply-typed _-terms:

1
Though some games models, notably simple games with the Hyland exponential [18],

get away with that exploiting that copy accesses are totally chronologically ordered.
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what do these numbers mean? Are those numbers related to the

coefficients appearing in the Taylor expansion of _-terms?

Rigid structures. It is tempting to avoid these quotients: in the

quantitative semantics literature, the corresponding structures are

often called rigid. Developping rigid models is subtle; for instance

naively replacing finite multisets with sequences in the resource

calculus yields a non-confluent reduction [25]; while naive rigid

non-idempotent intersection types fail subject reduction.

Proper treatments of rigid structures may be found in categorifi-
cations of the relational model, the prime example being the carte-

sian closed bicategory Esp of generalized species of structure [12].

There, types are interpreted as categories (or groupoids) and the ex-

ponential !𝐴 is the free strict symmetric monoidal category Sym(𝐴)
on 𝐴, where objects are sequences ⟨𝑎1, . . . , 𝑎𝑛⟩ of objects of 𝐴, and
where a morphism from ⟨𝑎1, . . . , 𝑎𝑛⟩ to ⟨𝑎′

1
, . . . , 𝑎′𝑚⟩ is a bijection

𝜎 : 𝑛 ≃𝑚 along with 𝑓𝑖 : 𝑎𝑖 → 𝑎′
𝜎 (𝑖 ) in 𝐴 for all 1 ≤ 𝑖 ≤ 𝑛. A term

Γ ⊢ 𝑀 : 𝐴 is interpreted as a distributor from Sym(⟦Γ⟧) to ⟦𝐴⟧, i.e.

⟦𝑀⟧Esp : Sym(⟦Γ⟧)op × ⟦𝐴⟧ → Set ,

a functor which to ®𝛾 ∈ Ob(Sym(⟦Γ⟧)) and 𝑎 ∈ Ob(⟦𝐴⟧) associates
a set ⟦𝑀⟧Esp (𝛾, 𝑎) of witnesses – crucially, ⟦𝑀⟧Esp also has a func-

torial action, making the symmetries (morphisms) of Sym(⟦Γ⟧)
and ⟦𝐴⟧ act on witnesses. Tsukada et al. [27] and Olimpieri [24]

have studied the nature of these witnesses, showing that they can

be regarded as terms of a rigid resource calculus. Their calculi are

not the naive rigid resource calculus mentioned above: they refine

it by letting resource terms carry morphisms/symmetries from the

types – but the precise location of these symmetries in the term is

irrelevant, and it must be forgotten by yet another quotient!

Nevertheless, as Esp is a generalization of Rel properly account-

ing for symmetries, it looks a natural candidate to illuminate the

scalars arising from the weighted relational model: we may expect

(⟦𝑀⟧WRel! )𝛾,𝑎 = # (⟦𝑀⟧Esp) (𝛾, 𝑎) (1)

(conflating for now objects and symmetry classes). But this fails,

and we shall see that the link between the two involves data that is

missing from the theory of Esp: polarized symmetries.

Contributions. Recently, Clairambault and Forest have introduced

a new bicategorical modelThin, called thin spans of groupoids [3],
also a categorification of the relational model, inspired concur-

rent game semantics [2] – our first contribution is to show that it

supports an exponential based on sequences rather than families.

We then delve deeper into the interpretation of the simply-typed

_-calculus in the Kleisli bicategory Thin!. Just like for Esp [24, 27],

we show that an intersection type system (and matching resource

terms) is implicit in thin spans. Perhaps surprisingly, it turns out

to be the naive rigid intersection type system discussed above, ob-

tained by merely replacing finite multisets with sequences (or the

similarly naive rigid resource calculus), not carrying any symme-

tries, and without any quotient. Though subject reduction fails on

the nose, our results entail that it does hold in a relaxed sense, up to
symmetry. Beyond just characterising the witnesses as in [24, 27],

we go further and also give a syntactic description of symmetries
between derivations, obtaining a syntactic description of the full

groupoid obtained as the interpretation of a term.

A central feature of Thin is that objects are certain groupoids 𝐴

admitting two sub-groupoids 𝐴− and 𝐴+, respectively of negative
and positive symmetries. Those are reminiscent from ideas in game

semantics: negative symmetries exchange resources controlled by

the environment, while positive symmetries exchange resources

controlled by the program. Not every symmetry is negative or pos-

itive, but every symmetry factors uniquely as a negative composed

with a positive. Far from being a technicality of the model construc-

tion, we argue that these polarized sub-symmetries are fundamental.
In particular, they are the key to illuminate some of the questions

mentioned earlier: in this paper, we characterise the coefficients ob-

tained byWRel! as counting witnesses inThin! – i.e. rigid resource
terms – up to positive symmetry, or symmetry classes of witnesses –

i.e. standard resource terms – with a correcting coefficient involving

negative symmetries. Drawing inspiration from recent work linking

thin concurrent games with generalized species of structure [4],

we also construct an interpretation-preserving pseudofunctor from

Thin! to Esp, allowing us overall to express the coefficients obtained

through WRel! directly in terms of Esp, correcting (1) – again, the

correct equation involves polarized symmetries.

Related work. Polarized symmetries are central to the construc-
tion of thin spans of groupoids (and before that, thin concurrent

games [2]), but they predate those models: to our knowledge, they

first appear in Melliès’ approach to uniformity by bi-invariance, in

the setting of asynchronous games [22]. They also make an appear-

ance in Tsukada et al.’s study of weighted generalized species [28],
though they are not part of the general theory but computed a
posteriori for groupoids arising from simple types.

This work is part of an ongoing effort from the community to

refine our understanding of resources in quantitative models, replac-

ing quotients with rigid structures related with explicit morphisms

and explore the corresponding categorical structures. Aside from

work on generalized species of structure, a work complementary

to ours is Melliès’ homotopy template games [21], also based on

categorical spans, focusing on links with homotopy theory.

Outline. In Section 2 we recall the definition ofThin from [3], re-

placing their exponential with a new one based on Sym. In Section

3, we give our syntactic characterisation of the interpretation of

the simply-typed _-terms in Thin!. Finally, in Section 4 we explore

the link between Thin! and relational models: first the plain rela-

tional modelRel, then the weighted (by completed natural numbers)

relational modelWRel, and finally generalized species Esp.

2 THIN SPANS ON SEQUENCES
We start with a brief reminder onThin [3], along with the defini-

tion of the new exponential based on sequences. In the following,

we write Gpd for the 2-category of groupoids, functors between

groupoids and natural transformations between such functors. We

will also often call symmetries the morphisms of a groupoid.

2.1 Reminder on Thin Spans of Groupoids
A span from 𝐴 to 𝐵 in a category C is simply a diagram like

𝐴 𝑆 𝐵
𝜕𝑆
𝑙 𝜕𝑆𝑟
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which in Set (or Cat, of Gpd) is regarded as a generalized relation:

a pair (𝑎, 𝑏) may be related via a number of distinct witnesses,
i.e. elements 𝑠 ∈ 𝑆 s.t. 𝜕𝑆

𝑙
(𝑠) = 𝑎 and 𝜕𝑆𝑟 (𝑠) = 𝑏 – in this paper, we

often write 𝜕𝑆
𝑙
(𝑠) = 𝑠𝐴 and 𝜕𝑆𝑟 (𝑠) = 𝑠𝐵 , keeping 𝜕𝑆𝑙 and 𝜕𝑆𝑟 implicit.

Here we focus on spans over groupoids: those form a bicategory

Span where objects are groupoids, and a morphism from𝐴 to 𝐵 is a

span 𝐴← 𝑆 → 𝐵. The identity span Id𝐴 is 𝐴← 𝐴→ 𝐴 with two

identity functors, and spans are composed by pullback.

In Span, the 2-cells from a span 𝐴 ← 𝑆 → 𝐵 to 𝐴 ← 𝑇 →
𝐵 are functors 𝑆 → 𝑇 making the two triangles commute, and

their horizontal composition is given by the universal property

of pullbacks. Unfortunately, these 2-cells are too strict for many

purposes; in particular they are incompatible with the laws required

for the exponential modality of linear logic. Alternative 2-cells relax

the hypothesis that the two triangles commute, asking instead for

𝑆

ww &&
��

𝐴 ⇓ 𝐵⇓

𝑇

gg 88

two natural isomorphisms. This allows us to relate more spans and

indeed supports the laws for the exponential modality. However,

the universal property of pullbacks then fails to provide a definition

of horizontal composition for those. This mismatch has different

solutions, either replacing the pullbacks with adequate notions of

homotopy pullbacks, or requiring additional fibrational conditions

on spans – in almost all cases this concretely means importing the

morphisms of groupoids inside witnesses, as in generalized species

of structure or in template games [21].

In [3], an alternative idea was introduced. In Span, some pull-

backs happen to behave well w.r.t. homotopy (they are bipullbacks,
see below). The key observation is that as it turns out, the pullbacks

arising from the denotational interpretation of programs actually

always are bipullbacks! The bicategory Thin of thin spans captures
this via a biorthogonality construction, morally cutting Span down

and keeping only certain spans – those deemed “uniform” – ensur-

ing that their composition pullbacks are always bipullbacks.

2.1.1 Uniformity. Given a groupoid 𝐴, a prestrategy2 on 𝐴 is a

pair (𝑆, 𝜕𝑆 ) of a groupoid 𝑆 and a functor 𝜕𝑆 : 𝑆 → 𝐴, the display
map. We write PreStrat(𝐴) for the class of prestrategies on 𝐴.

Given two prestrategies (𝑆, 𝜕𝑆 ) and (𝑇, 𝜕𝑇 ), we write (𝑆, 𝜕𝑆 ) ⊥
(𝑇, 𝜕𝑇 ) (or, more simply, 𝑆 ⊥ 𝑇 ), when the following pullback

𝑃

𝑆 𝑇

𝐴

𝑟𝑙

𝜕𝑆 𝜕𝑇

(2)

is a bipullback. In Gpd, this means that for every 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 and

\ : 𝑠𝐴 → 𝑡𝐵 , there is 𝑢 : 𝑠 → 𝑠′ ∈ 𝑆 and 𝑣 : 𝑡 ′ → 𝑡 ∈ 𝑇 such that

\ = 𝑣𝐴 ◦𝑢𝐴 in𝐴: when two states can synchronize up to symmetry,

we can find symmetric states that can synchronize on the nose,

coherently. Given a set, or even a class S of prestrategies on 𝐴, we
write S⊥ for the class {𝑇 ∈ PreStrat(𝐴) | ∀𝑆 ∈ S, 𝑆 ⊥ 𝑇 }.

Auniformgroupoid is a pair𝐴 = (𝐴,U𝐴)where𝐴 is a groupoid

and U𝐴 ⊆ PreStrat(𝐴) is a class of prestrategies such that S⊥⊥ = S.
One can define several constructions on uniform groupoids [3]. The

2
Some terminology in [3] is game-theoretic, reflecting the game semantics inspirations.

dual 𝐴⊥ of the uniform groupoid 𝐴 has (𝐴,U⊥
𝐴
). Given another

uniform groupoid 𝐵 = (𝐵,U𝐵), one can define binary constructions

like the tensor 𝐴 ⊗ 𝐵 and its de Morgan dual the par 𝐴` 𝐵, both

having underlying groupoid 𝐴 × 𝐵. From these two constructions,

one then defines the linear arrow 𝐴 ⊸ 𝐵 as 𝐴⊥ ` 𝐵. Finally, the

with 𝐴 & 𝐵 has underlying groupoid 𝐴 + 𝐵.

2.1.2 Spans. The underlying groupoid of 𝐴 ⊸ 𝐵 is 𝐴 × 𝐵 so that

𝑆 ∈ U𝐴⊸𝐵 is a prestrategy on 𝐴 × 𝐵, equivalently seen as a span

𝐴← 𝑆 → 𝐵

in Gpd. In the following, we call such 𝑆 a uniform span to empha-

size that it is a prestrategy of U𝐴⊸𝐵 . Notably, the identity span on

a uniform groupoid 𝐴, is uniform. Given uniform groupoids 𝐴, 𝐵,𝐶 ,

𝑆 ∈ U𝐴⊸𝐵 and 𝑇 ∈ U𝐵⊸𝐶 , the composition via the pullback

𝑇 ⊙ 𝑆

𝑆 𝑇

𝐴 𝐵 𝐶 .

𝑙 𝑟

𝜕𝑆
𝑙 𝜕𝑆𝑟 𝜕𝑇

𝑙 𝜕𝑇𝑟

is uniform (i.e. in 𝑈𝐴⊸𝐶 ) by [3, Lem. 2] – and the composition

pullback is a bipullback, as stated in our motivation forThin.

2.1.3 Morphisms of spans. As introduced above, uniform spans

must be related via adequate notions of morphisms between spans:

Definition 2.1 ([3, Def. 1]). Aweakmorphism from𝐴← 𝑆 → 𝐵

to 𝐴← 𝑆 ′ → 𝐵 is (𝐹, 𝐹𝐴, 𝐹𝐵), with 𝐹𝐴 and 𝐹𝐵 natural isos, and

𝑆

𝐴 𝐹𝐴 ⇓ ⇓𝐹𝐵 𝐵

𝑆 ′

𝜕𝑆
𝑙 𝜕𝑆𝑟

𝐹

𝜕𝑆
′

𝑙
𝜕𝑆
′

𝑟

We call this a strong morphism if 𝐹𝐴 and 𝐹𝐵 are identities.

The bipullback property, for the composition pullback, ensures

the existence of candidates for the horizontal composition of weak

morphisms. However, it is not uniquely defined, and the bipullback

property is insufficient to guarantee a canonical choice satisfying

the laws of a bicategory (see [3, Par. III-B4]).We thus need additional

structure in order to ensure the existence of a canonical choice.

2.1.4 Thinness. For this we must capture a more subtle property

observed in the denotational interpretation of programs: non-trivial

symmetries between states always originate from the environment

– in a closed world interaction, no non-trivial symmetry is left. This

is called thinness, and again is captured by orthogonality.

Given a uniform groupoid𝐴, 𝑆 ∈ U𝐴 and𝑇 ∈ U⊥
𝐴
, we write 𝑆‚𝑇

when the pullback vertex of (2) is a discrete groupoid. Given a class

S ⊆ U𝐴 , we write S‚ for the class {𝑇 ∈ U⊥
𝐴
| ∀𝑆 ∈ S, 𝑆‚𝑇 }.

Definition 2.2 ([3, Def. 10]). A thin groupoid is a tuple 𝐴 =

(𝐴,𝐴−, 𝐴+,U𝐴,T𝐴) where (𝐴,U𝐴) is a uniform groupoid, and

• 𝐴− and 𝐴+ are subgroupoids of 𝐴 with the same objects,

with embedding functors id
−
𝐴

: 𝐴− → 𝐴 and id
+
𝐴

: 𝐴+ → 𝐴;

• T𝐴 ⊆ U𝐴 is a class of prestrategies such that T‚‚
𝐴

= T𝐴 ,
satisfying that (𝐴−, id−𝐴) ∈ T𝐴 and (𝐴+, id+𝐴) ∈ T

‚
𝐴
.

In a groupoid 𝐺 with 𝑥,𝑦 ∈ 𝐺 , we often write \ : 𝑥 �𝐺 𝑦

to mean that \ ∈ 𝐺 [𝑥,𝑦]. For 𝐴 a thin groupoid, \ : 𝑎 �+
𝐴
𝑎′
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indicates that \ ∈ 𝐴+ [𝑎, 𝑎′] – we say that \ is a positive symmetry

– likewise, \ : 𝑎 �−
𝐴
𝑎′ indicates that \ ∈ 𝐴− [𝑎, 𝑎′], and we say

that \ is negative. Intuitively, this polarity tells us who, among the

program or the environment, is responsible for a permutation. If it

is a permutation among resources called upon by the environement

(e.g., coming from an occurrence of ! in covariant position), then

the symmetry is negative. If it permutes resources controlled by the

program (e.g.with a ! in contravariant position), then the symmetry

is positive. In general a symmetry may mix the two and can be

neither negative nor positive, but from Defininition 2.2 we get:

Lemma 2.3. For any \ : 𝑎 �𝐴 𝑎
′ in a thin groupoid 𝐴, there are

unique 𝑎′′ ∈ 𝐴 and \+ : 𝑎 �+
𝐴
𝑎′′, \− : 𝑎′′ �−

𝐴
𝑎′ s.t. \ = \− ◦ \+.

See [3, Lem. 3]. The constructions introduced before on uniform

groupoids ((−)⊥, ⊗,`,&) extend to thin groupoids [3].

2.1.5 Thin spans. Given thin groupoids 𝐴 and 𝐵, a thin span is a

prestrategy 𝑆 ∈ T𝐴⊸𝐵 . As above the underlying groupoid of𝐴 ⊸ 𝐵

is 𝐴 × 𝐵, so 𝑆 can be seen as a span between 𝐴 and 𝐵. Given a thin

groupoid 𝐴, we have Id𝐴 ∈ T𝐴⊸𝐴; and for thin spans 𝐴← 𝑆 → 𝐵

and 𝐵 ← 𝑇 → 𝐶 , we have 𝑇 ⊙ 𝑆 ∈ T𝐴⊸𝐶 (see [3, Prop. 2]).

Together, uniformity and thinness guarantee strong properties

for the composition of thin spans. For thin spans 𝐴 ← 𝑆 → 𝐵

and 𝐵 ← 𝑇 → 𝐶 , recall that (following the obvious pullback con-

struction in Gpd) elements of 𝑇 ⊙ 𝑆 are simply pairs (𝑠, 𝑡) such
that 𝑠𝐵 = 𝑡𝐵 . However, it is central in the construction ofThin (in

particular for the horinzontal composition of 2-cells that we shall

not detail here) that thin spans may synchronize up to symmetry:

Lemma 2.4. Consider 𝐴 ← 𝑆 → 𝐵 and 𝐵 ← 𝑇 → 𝐶 thin spans,
𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , linked with a symmetry \ : 𝑠𝐵 �𝐵 𝑡𝐵 .

Then there are unique 𝑠′ ∈ 𝑆, 𝑡 ′ ∈ 𝑇 and 𝜑 : 𝑠 �𝑆 𝑠
′, 𝜓 : 𝑡 ′ �𝑇 𝑡

such that 𝜑𝐴 negative,𝜓𝐶 positive, and \ = 𝜓𝐵 ◦ 𝜑𝐵 .

See [3, Lem. 2]. Another important consequence of the definition

of thin spans is that symmetries act on thin spans:

Lemma 2.5. Consider 𝐴 ← 𝑆 → 𝐵 a thin span, 𝑠 ∈ 𝑆 , with
\𝐴 : 𝑎 �𝐴 𝑠𝐴 and \𝐵 : 𝑠𝐵 �𝐵 𝑏. Then, there are unique 𝑠′ ∈ 𝑆 ,
𝜑 : 𝑠 �𝑆 𝑠

′, 𝜗−
𝐴
and 𝜗+

𝐵
such that the two triangles commute:

𝑠𝐴

𝜑𝐴
��

𝑎

\𝐴 66

𝜗−
𝐴
''
𝑠′
𝐴

𝑠𝐵

𝜑𝐵

��

\𝐵

((
𝑏

𝑠′
𝐵

𝜗+
𝐵
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See Appendix A.1. So 𝑠 ∈ 𝑆 may be reindexed by symmetries \𝐴
and \𝐵 , though we will not exactly hit the targets 𝑎 and 𝑏: only up

to positive (or negative, depending on the variance) symmetry.

2.1.6 Positive weak morphisms. This additional structure may be

leveraged to get the canonicity of horizontal composition of 2-cells

– modulo a final fine-tuning of their definition:

Definition 2.6. Given two thin groupoids 𝐴 and 𝐵, a weak mor-

phism (𝐹, 𝐹𝐴, 𝐹𝐵) between 𝐴 and 𝐵 as in Definition 2.1 is positive
when, for every 𝑠 ∈ 𝑆 , 𝐹𝐵𝑠 : 𝑠𝐵 �

+
𝐵
𝐹 (𝑠)𝐵 and 𝐹𝐴𝑠 : 𝑠𝐴 �

−
𝐴
𝐹 (𝑠)𝐴 .

We call it positive since it is positive on 𝐴 ⊸ 𝐵. Positivity lets us

use the uniqueness property of Lemma 2.4 to give a unique choice
for horizontal composition of positive weak morphisms, and:

Theorem 2.7 ([3, Thm 2]). There is a bicategory Thin of thin
groupoids, thin spans, and positive weak morphisms. The identity on
𝐴 is Id𝐴 , and the composition of thin spans is given by plain pullbacks.

2.2 The Sym Exponential on Thin
Thin was originally developped using the Fam functor as exponen-

tial, mapping a groupoid 𝐴 to Fam(𝐴) with objects families (𝑎𝑖 )𝑖∈𝐼
indexed by finite sets of integers 𝐼 . Instead, we consider here the

Sym functor (used as exponential modality on distributors to con-

struct generalized species of structure), which extends to groupoids

the list functor of Set. This seems a minor difference since Fam
and Sym are equivalent as endofunctors of Gpd, but it is actually
a non-trivial shift since thin spans do not respect the principle of

equivalence, by relying on strict pullbacks in a 2-categorical setting.

2.2.1 The Symmonad onGpd. We start by considering the functor

Sym : Gpd→ Gpd

mapping𝐴 to the free strict symmetric monoidal groupoid Sym(𝐴).
Concretely, the objects of Sym(𝐴) are sequences ⟨𝑎𝑖 ⟩𝑖∈{1,...,𝑛} =
⟨𝑎1, . . . , 𝑎𝑛⟩ of objects of 𝐴, and its morphisms from ⟨𝑎1, . . . , 𝑎𝑛⟩
to ⟨𝑏1, . . . , 𝑏𝑚⟩ are pairs (𝜋, ⟨𝑓𝑖 ⟩𝑖∈{1,...,𝑛} ) where 𝜋 is a bijection

between {1, . . . , 𝑛} and {1, . . . ,𝑚}, and ⟨𝑓𝑖 ⟩𝑖 is a sequence of mor-

phisms 𝑓𝑖 : 𝑎𝑖 → 𝑏𝜋 (𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛}. Sym can be extended to a

monad (Sym, [, `) on Gpd: on objects, the unit [𝐴 : 𝐴→ Sym(𝐴)
maps 𝑎 ∈ 𝐴 to ⟨𝑎⟩, and `𝐴 : Sym(Sym(𝐴)) → Sym(𝐴) concate-
nates sequences – this extends to symmetries as expected.

2.2.2 The pseudocomonad. The definition of a pseudocomonad !

for Thin based on Sym is done as in [3, Sec. IV-A], we recall the

salient elements here. Given 𝐴 = (𝐴,𝐴−, 𝐴+,U𝐴,T𝐴), we set

!𝐴 = (Sym(𝐴), Sym(𝐴−), Sym+ (𝐴+), (SymU𝐴)⊥⊥, (SymT𝐴)‚‚)

where Sym+ (𝐴+) is a subgroupoid of Sym(𝐴+) with the same ob-

jects but morphisms only the (id, ⟨𝑓𝑖 ⟩𝑖 ); where SymU𝐴 has all

(Sym(𝑆), Sym(𝜕𝑆 )) for all (𝑆, 𝜕𝑆 ) ∈ U𝐴 , and likewise for SymT𝐴 .
Sym lifts to a pseudofunctor ! onThin via the functorial action

!
©«

𝑆𝜕𝑆
𝑙

��
𝜕𝑆𝑟
��

𝐴 𝐵

ª®¬ =

Sym(𝑆)Sym(𝜕𝑆
𝑙
)
zz

Sym(𝜕𝑆𝑟 )
$$

Sym(𝐴) Sym(𝐵)

on thin spans, defining similarly the image of 2-cells as the image

by Sym of their underlying components.

When instantiated on the underlying groupoid of a thin groupoid

𝐴, the natural transformations [𝐴 and `𝐴 are not only functors, but

renamings in the sense of [3]. Recall from there the pseudofunctor

−̌ : Renop →Thin from the (dualized) 2-category of renamings to

the bicategory of thin spans, mapping a renaming 𝑓 : 𝐴→ 𝐵 to

𝐵
𝑓
← 𝐴

id𝐴→ 𝐴

a thin span, yielding a counit [̌𝐴 ∈Thin[!𝐴,𝐴] and a comultiplica-

tion ˇ̀𝐴 ∈Thin[!𝐴, ‼𝐴] for !. We have (see Appendix B):

Theorem 2.8. We have a pseudocomonad ! onThin based on Sym.
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2.2.3 The exponential. Sym enjoys a Seely equivalence in Thin,
derived from an equivalence already existing in Gpd:

Sym(𝐴 + 𝐵) Sym(𝐴) × Sym(𝐵)
𝑠𝐴,𝐵

𝑠𝐴,𝐵

∈ Gpd (3)

for groupoids 𝐴, 𝐵, with 𝑠𝐴,𝐵 mapping the sequence ⟨𝑎1, 𝑏1, 𝑏2, 𝑎2⟩
to (⟨𝑎1, 𝑎2⟩, ⟨𝑏1, 𝑏2⟩), and with 𝑠𝐴,𝐵 mapping (⟨𝑎1, 𝑎2⟩, ⟨𝑏1, 𝑏2⟩) to
⟨𝑎1, 𝑎2, 𝑏1, 𝑏2⟩ for instance. When 𝐴 and 𝐵 are thin groupoids, 𝑠𝐴,𝐵
and 𝑠𝐴,𝐵 are moreover renamings, so that we can take the image of

the above equivalence by −̌ to obtain the Seely equivalence

!𝐴 ⊗ !𝐵 !(𝐴 & 𝐵)
𝑠𝐴,𝐵

ˇ̄𝑠𝐴,𝐵

∈Thin.

2.2.4 The cartesian closed bicategory. Equipped with the pseudo-

comonad !, we derive a Kleisli bicategoryThin!, whose 1-morphisms

are thus thin spans of the form !𝐴← 𝑆 → 𝐵, composed using the

comonadic structure. By following the proofs in [3], which were

mostly non-specific to the Fam pseudomonad used there, we get:

Theorem 2.9. Thin! is a cartesian closed bicategory.

3 INTERSECTIONS AND RESOURCE TERMS
3.1 Interpreting programs as spans
Theorem 2.9 automatically provides an interpretation of simply-

typed _-terms. Suppose fixed a countable set Var of variables.
The _-terms are defined by the inductive grammar

𝑀, 𝑁, . . . ::= 𝑥 ∈ Var | 𝑀 𝑁 | _𝑥.𝑀 ,

and the simple types are 𝐴, 𝐵, . . . ::= 𝑜 | 𝐴 → 𝐵. A context is a
sequence of bindings 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 where the 𝑥𝑖 are (distinct)

elements of Var and the 𝐴𝑖 are simple types. We write 𝑥 ∈ Γ when

there is a binding 𝑥 : 𝐵, for some 𝐵, appearing in the sequence

of Γ. We consider the standard typing relation Γ ⊢ 𝑀 : 𝐴 for the

simply-typed _-calculus.

3.1.1 Kleisli interpretation. Given a simple type 𝐴 we define in-

ductively its interpretation (|𝐴|), by (|𝑜 |) = 1 the unique thin

groupoid based on the terminal (singleton) groupoid, and (|𝐴 →
𝐵 |) = !(|𝐴|) ⊸ (|𝐵 |). Given a context Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 , we

define its Kleisli interpretation (|Γ |) as (|𝐴1 |) & · · · & (|𝐴𝑛 |). The
underlying groupoid of !(|Γ |) has a monoid structure in the carte-

sian category Gpd giving resource management operations: the

“multiplication” 𝛾 •𝛾 ′ of 𝛾 and 𝛾 ′ in !𝐺 is simply their concatenation

as sequences; the neutral element of !𝐺 is the empty sequence ⟨⟩.
A simply-typed _-term Γ ⊢ 𝑀 : 𝐴 then admits an interpretation

(|𝑀 |) = !(|Γ |) (|𝑀 |) (|𝐴|)
inThin! via the standard clauses of the interpretation of the simply-

typed _-calculus into a cartesian closed category – we call this the

Kleisli interpretation. The soundness theorem of cartesian closed

categories ensures that 𝛽[-equivalent terms map to positively iso-

morphic thin spans; the results of Fiore and Saville [13] even yield

a coherent interpretation of reduction sequences as positive isos.

We now set to show that this interpretation is a rigid intersection

type system in disguise; but this will be more visible after we cope

with two aspects of the Kleisli interpretation: (1) elements of !(|Γ |)
are sequences over the whole context, interleaving accesses to all

variables – whereas in intersection type systems it is more natural

to have a distinct sequence for each variable; and (2) unfolding the

categorical interpretation of _-terms in a cartesian closed category

itself constructed as a Kleisli category yields some heavy bureau-

cracy, involving compositions with many structural maps, blurring

out the connection with syntax. To mitigate these, we first give a

more syntax-directed characterisation of the interpretation.

3.1.2 Direct interpretation. We first change the interpretation of

contexts: the interpretation of Γ as above is the thin groupoid ⟦Γ⟧ =
!⟦𝐴1⟧ ⊗ · · · ⊗ !⟦𝐴𝑛⟧ – for 𝐴 a type, we write ⟦𝐴⟧ as a synonym
for (|𝐴|). Note ⟦Γ⟧ still has a monoid structure: the multiplication

of 𝛾 = (𝛼1, . . . , 𝛼𝑛) and 𝛾 ′ = (𝛼 ′
1
, . . . , 𝛼 ′𝑛), two elements of ⟦Γ⟧, is

𝛾 • 𝛾 ′ = (𝛼1 • 𝛼 ′1, . . . , 𝛼𝑛 • 𝛼
′
𝑛) ∈ ⟦Γ⟧

and the neutral element is the 𝑛-tuple of empty sequences.

Given a typed _-term Γ ⊢ 𝑀 : 𝐴, we now describe its direct
interpretation in Thin! as a span ⟦Γ⟧ ← ⟦𝑀⟧ → ⟦𝐴⟧ given by

induction on the typing derivation. In the case of a variable 𝑥𝑖 typed

in a context Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 , we define ⟦𝑥𝑖⟧ as

!⟦𝐴1⟧ × · · · × !⟦𝐴𝑛⟧ ⟦𝐴𝑖⟧ ⟦𝐴𝑖⟧.
(⟨⟩,...,[⟦𝐴𝑖 ⟧,...,⟨⟩) id⟦𝐴𝑖 ⟧

For Γ ⊢ 𝑀 𝑁 : 𝐵 where Γ ⊢ 𝑀 : 𝐴→ 𝐵 and Γ ⊢ 𝑁 : 𝐴, we set:

⟦𝑀 𝑁⟧

⟦𝑀⟧ × ⟦𝑁⟧!
!⟦𝐴⟧ × ⟦𝐵⟧

⟦Γ⟧ (!⟦𝐴⟧ × ⟦𝐵⟧) × !⟦𝐴⟧ ⟦𝐵⟧

𝑙 ′ 𝑟 ′

(•)◦(𝜕⟦𝑀⟧
𝑙
×𝜕⟦𝑁 ⟧

!

𝑙
)

𝜕
⟦𝑀⟧
𝑟 ×𝜕⟦𝑁 ⟧

!

𝑟
( (𝑙,𝑟 ),𝑙 ) 𝑟

where we used ⟦𝑀⟧!
, the promotion of ⟦𝑀⟧, defined as the span

⟦Γ⟧ !⟦Γ⟧ !⟦𝑀⟧ !⟦𝐴⟧˜̀Γ !𝜕
⟦𝑀⟧
𝑙 !𝜕

⟦𝑀⟧
𝑟

where ˜̀Γ : !⟦Γ⟧ → ⟦Γ⟧ is the obvious functor sending a sequence

of tuples of sequences into the tuple of concatenated sequences.

Finally, for Γ ⊢ _𝑥. 𝑀 : 𝐴→ 𝐵, we set ⟦_𝑥. 𝑀⟧ to be the span

⟦Γ⟧ ⟦𝑀⟧ !⟦𝐴⟧ × ⟦𝐵⟧
𝜕
⟦𝑀⟧
𝑙𝑙

(𝜕⟦𝑀⟧
𝑙𝑟

,𝜕
⟦𝑀⟧
𝑟 )

where 𝜕
⟦𝑀⟧
𝑙𝑙

and 𝜕
⟦𝑀⟧
𝑙𝑟

are obtained from 𝜕
⟦𝑀⟧
𝑙

by adequately pro-

jecting from ⟦Γ, 𝑥 : 𝐴⟧ � ⟦Γ⟧ × !⟦𝐴⟧.
We relate the two interpretations: given a context Γ, we write

𝑠Γ : !(⟦𝐴1⟧ + · · · + ⟦𝐴𝑛⟧) → !⟦𝐴1⟧ × · · · × !⟦𝐴𝑛⟧

for the evident generalization of the Seely functor from (3). Then:

Theorem 3.1. Given a simply-typed term Γ ⊢ 𝑀 : 𝐴, the span

!⟦𝐴1⟧ × · · · × !⟦𝐴𝑛⟧ (|𝑀 |) ⟦𝐴⟧
𝑠Γ◦𝜕 (|𝑀 |)𝑙 𝜕

(|𝑀 |)
𝑟

is thin and moreover strongly isomorphic to the span ⟦𝑀⟧.

3.2 Intersection types for spans
As the direct interpretation is syntax-directed, it is fairly easy to

represent it purely syntactically as an intersection type system.
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(𝛼 ⊳𝐴𝑖 )
. . . , 𝑥𝑖 : ⟨𝛼⟩ ⊳𝐴𝑖 , . . . ⊳ 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑥𝛼𝑖 ⊳ 𝑥𝑖 : 𝛼 ⊳𝐴𝑖

Θ ⊳ Γ ⊢𝑚 ⊳𝑀 : ®𝛼 ⊸ 𝛽 ⊳𝐴→ 𝐵 Θ′ ⊳ Γ ⊢ ®𝑛 ⊳ 𝑁 : ®𝛼 ⊳𝐴

Θ • Θ′ ⊳ Γ ⊢𝑚 ®𝑛 ⊳𝑀 𝑁 : 𝛽 ⊳ 𝐵

∀𝑖 ∈ {1, . . . , 𝑘}, Θ𝑖 ⊳ Γ ⊢𝑚𝑖 ⊳𝑀 : 𝛼𝑖 ⊳𝐴

Θ1 • · · · • Θ𝑛 ⊳ Γ ⊢ ⟨𝑚1, . . . ,𝑚𝑘 ⟩ ⊳𝑀 : ⟨𝛼1, . . . , 𝛼𝑘 ⟩ ⊳𝐴

(Θ, 𝑥 : ®𝛼 ⊳𝐴) ⊳ Γ, 𝑥 : 𝐴 ⊢𝑚 ⊳𝑀 : 𝛽 ⊳ 𝐵

Θ ⊳ Γ ⊢ _𝑥.𝑚 ⊳ _𝑥. 𝑀 : ®𝛼 ⊸ 𝛽 ⊳𝐴→ 𝐵

Figure 1: Intersection types and approximation

3.2.1 Rigid intersection types. The rigid intersection types are:

𝛼, 𝛽, . . . ::= ★ | ®𝛼 ⊸ 𝛽

®𝛼, ®𝛽, . . . ::= ⟨𝛼1, . . . , 𝛼𝑛⟩ (𝑛 ∈ N).
As we study the simply-typed _-calculus, we shall not consider

these intersection types as standalone objects but only as refine-

ments of simple types – we now move to the refinement relation.

3.2.2 Refinement. The refinement relation is defined with

★ ⊳ 𝑜

®𝛼 ⊳𝐴 𝛽 ⊳ 𝐵

®𝛼 ⊸ 𝛽 ⊳𝐴→ 𝐵

∀𝑖 ∈ {1, . . . , 𝑛} 𝛼𝑖 ⊳𝐴

⟨𝛼1, . . . , 𝛼𝑛⟩ ⊳𝐴
,

noting that both intersection and sequence types may refine simple

types. This refinement judgement correctly captures the objects in

the groupoid interpreting a type 𝐴, as expressed by the following:

Proposition 3.2. For every simple type 𝐴, there are bijections

𝐾𝐴 : Ob(⟦𝐴⟧) ≃ {𝛼 | 𝛼 ⊳𝐴} , 𝐾 !

𝐴
: Ob(!⟦𝐴⟧) ≃ { ®𝛼 | ®𝛼 ⊳𝐴}.

3.2.3 Resource contexts. To extend this to contexts, it is convenient
to introduce resource contexts. A resource context for Γ = 𝑥1 :

𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 is a sequence of bindings Θ = (𝑥1 : ®𝛼1 ⊳𝐴1, . . . , 𝑥𝑛 :

®𝛼𝑛 ⊳𝐴𝑛) – we then write Θ ⊳ Γ. Clearly, the bijections above extend
to 𝐾Γ : Ob(⟦Γ⟧) ≃ {Θ | Θ ⊳ Γ}. Given resource contexts for Γ

Σ = (𝑥𝑖 : ®𝛼𝑖 ⊳𝐴𝑖 )1≤𝑖≤𝑛 and Θ = (𝑥𝑖 :
®𝛽𝑖 ⊳𝐴𝑖 )1≤𝑖≤𝑛 ,

their concatenation Σ • Θ is the resource context (𝑥𝑖 : ( ®𝛼𝑖 • ®𝛽𝑖 ) ⊳
𝐴𝑖 )𝑖 , where ®𝛼𝑖 • ®𝛽𝑖 is the concatenation of sequence types.

3.2.4 Intersection type judgements. Wenow introduce typing judge-

ments for rigid intersection types. There are two kinds of judge-

ments, respectively for single intersection types and for sequences:

Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳𝐴 and Θ ⊳ Γ ⊢ 𝑀 : ®𝛼 ⊳𝐴.

The rules appear in Figure 1 ignoring, for the moment, the

· · ·𝑢/®𝑣 ⊳ · · · parts in the middle. In the variable rule, we only display

variables with non-empty sequences. The rules may appear heavy

due to the multiple components of jugdments as required for the

simple type refinement. But ignoring simple type refinements, what

remains is the standard ruleset for non-idempotent intersection

types as appears e.g. in [6], just without commutativity.

Given a derivation Γ ⊢ 𝑀 : 𝐴, 𝛾 ∈ Ob(⟦Γ⟧) and 𝑎 ∈ Ob(⟦𝐴⟧),
we write ⟦𝑀⟧𝛾,𝑎 for the witnesses of 𝛾, 𝑎, i.e. the objects of ⟦𝑀⟧
that project on 𝛾 and 𝑎 through 𝜕

⟦𝑀⟧
𝑙

and 𝜕
⟦𝑀⟧
𝑟 . As the definition

of ⟦𝑀⟧ directly follows the syntax, it is relatively direct that:

Proposition 3.3. Given a simply-typed Γ ⊢ 𝑀 : 𝐴, for every
𝛾 ∈ Ob(⟦Γ⟧), for every 𝑎 ∈ Ob(⟦𝐴⟧), we have a bijection

⟦𝑀⟧𝛾,𝑎 ≃ {𝜋 | 𝜋 is a derivation of 𝐾Γ (𝛾) ⊳ Γ ⊢ 𝑀 : 𝐾𝐴 (𝑎) ⊳𝐴}.

Combined with Theorem 3.1, this shows that for any simply-

typed _-term Γ ⊢ 𝑀 : 𝐴, for any 𝛾 ∈ ⟦Γ⟧ and 𝑎 ∈ ⟦𝐴⟧, the set

of 𝑚 ∈ Ob((|𝑀 |)) mapping to 𝛾, 𝑎 may be regarded as the set of

derivations of𝐾Γ (𝛾)⊳Γ ⊢ 𝑀 : 𝐾𝐴 (𝑎)⊳𝐴 in our rigid intersection type

system. This result is to be compared with existing works providing

similar characterisations in generalized species of structure [24, 27],

where the rigid intersection type systems considered are much

more complex, in particular importing symmetries in derivations

– and derivations must be quotiented by relations forgetting the

exact position of symmetries in the derivations. In contrast, our

derivations are the simple inductive structures they appear to be,

no quotient is required to obtain our characterisation.

3.3 Extension to symmetries
Proposition 3.3 is analogous to earlier results of Tsukada et al. [27]
and Olimpieri [24] set in generalized species of structures, but here

we go further and characterise the full groupoid by also giving an

inductive, syntax-directed presentation of the symmetries.

3.3.1 Intersection type morphisms. The linear, sequence and multi-

linear intersection type morphisms are defined by the grammar

𝜙,𝜓, . . . ::= id★ | 𝜙 ⊸ 𝜓

®𝜙, ®𝜓, . . . ::= ⟨𝜙1, . . . , 𝜙𝑛⟩ (𝑛 ∈ N)
𝜙,𝜓, . . . ::= (𝜎, ®𝜙) (𝜎 ∈ S𝑛, | ®𝜙 | = 𝑛)

where S𝑛 is the symmetric group on 𝑛 elements. Given two mul-

tilinear morphisms 𝜙1 and 𝜙2 where 𝜙𝑖 = (𝜎𝑖 , ⟨𝜙𝑖,1, . . . , 𝜙𝑖,𝑛𝑖 ⟩), we
define their concatenation 𝜙1 • 𝜙2 as (𝜎1 ⊕ 𝜎2, ⟨𝜙1,𝑖 ⟩𝑖 • ⟨𝜙2,𝑖′ ⟩𝑖′ ).

3.3.2 Groupoids of refinements for types. We extend our refine-

ment relations to morphisms and introduce the linear and mul-
tilinear morphism refinement judgements , of the form 𝜙 ::

𝛼 ⇒ 𝛼 ′ ⊳𝐴 and 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴. The former states that 𝜙 is a linear

morphism from 𝛼 to 𝛼 ′ within refinements of simple type 𝐴, and

likewise for the latter. Those are defined inductively through:

id★ :: ★⇒ ★ ⊳ 𝑜

𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴 𝜓 :: 𝛽 ⇒ 𝛽′ ⊳ 𝐵

(𝜙 ⊸ 𝜓 ) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′ ⊸ 𝛽′) ⊳𝐴→ 𝐵

𝑛 ∈ N 𝜎 ∈ S𝑛 ∀𝑖 ∈ {1, . . . , 𝑛} 𝜙𝑖 :: 𝛼𝑖 ⇒ 𝛼 ′
𝜎 (𝑖 ) ⊳𝐴

(𝜎, ⟨𝜙1, . . . , 𝜙𝑛⟩) :: ⟨𝛼1, . . . , 𝛼𝑛⟩ ⇒ ⟨𝛼 ′1, . . . , 𝛼
′
𝑛⟩ ⊳𝐴

It is immediate that if 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴, then 𝛼 ⊳𝐴 and 𝛼 ′ ⊳𝐴, and
that likewise, if 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴, then ®𝛼 ⊳𝐴 and ®𝛼 ′ ⊳𝐴.

As suggested by the syntax, the linear (resp. multilinear) inter-

section types and the associated morphisms that refine a common

simple type 𝐴 organize into a groupoid IT(𝐴) (resp. IT! (𝐴)). The
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composition operation is defined by induction on derivations, with:

id★ ◦ id★ = id★

(𝜙 ′ ⊸ 𝜓 ′) ◦ (𝜙 ⊸ 𝜓 ) = (𝜙 ′ ◦ 𝜙) ⊸ (𝜓 ′ ◦𝜓 )
(𝜎′, ⟨𝜙 ′

𝑖
⟩1≤𝑖≤𝑛) ◦ (𝜎, ⟨𝜙𝑖 ⟩1≤𝑖≤𝑛) = (𝜎′ ◦ 𝜎, ⟨𝜙 ′

𝜎 (𝑖 ) ◦ 𝜙𝑖 ⟩1≤𝑖≤𝑛)

The inverse of a morphism is defined by induction similarly. This

allows us to extend the correspondence of Proposition 3.2:

Proposition 3.4. For 𝐴 a simple type, there are groupoid isos:

𝐾𝐴 : ⟦𝐴⟧ � IT(𝐴) and 𝐾 !

𝐴
: !⟦𝐴⟧ � IT! (𝐴).

As ⟦𝐴⟧ is a thin groupoid, it comes equipped with its two po-

larized sub-groupoids ⟦𝐴⟧− and ⟦𝐴⟧+ – via the proposition above,

they transport to two sub-groupoids IT− (𝐴) and IT+ (𝐴) of IT(𝐴).

3.3.3 Groupoids of refinements for contexts. Consider Γ a context

and Θ,Θ′ ⊳ Γ. A context morphism from Θ to Θ′ is a sequence

Ξ = (𝑥1 : 𝜙1 :: ®𝛼1 ⇒ ®𝛼 ′1, . . . , 𝑥𝑛 : 𝜙𝑛 :: ®𝛼𝑛 ⇒ ®𝛼 ′𝑛)
where Θ = (𝑥𝑖 : ®𝛼𝑖 ⊳ 𝐴𝑖 )1≤𝑖≤𝑛 and Θ′ = (𝑥𝑖 : ®𝛼 ′

𝑖
⊳ 𝐴𝑖 )1≤𝑖≤𝑛 –

we also write Ξ :: Θ⇒ Θ′ ⊳ Γ to mean that Ξ is a morphism of

refinements of Γ from Θ to Θ′; in that case we write Θ = dom(Ξ)
andΘ′ = cod(Ξ). Given two suchmorphismsΞ1 :: Θ1 ⇒ Θ′

1
⊳Γ and

Ξ2 :: Θ2 ⇒ Θ′
2
⊳ Γ for a common context Γ, their concatenation

Ξ1 • Ξ2 :: Θ1 • Θ2 ⇒ Θ′
1
• Θ′

2
⊳ Γ

is defined by componentwise concatenation. The resource contexts

and resource context morphisms form a groupoid IT(Γ) which can

be seen as the product of the IT! (𝐴𝑖 ), so we have a groupoid iso

𝐾Γ : ⟦Γ⟧ � IT(Γ) .

3.3.4 Morphisms between derivations. We finally set to construct a

groupoid of derivations in our rigid intersection type system. The

morphisms will be given by two kinds of judgements, of the form

Ξ ⊳ Γ ⊢ 𝑀 : 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴 and Ξ ⊳ Γ ⊢ 𝑀 : 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴
read as stating that 𝜙 is a morphism from dom(Ξ) ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳𝐴 to

cod(Ξ) ⊳ Γ ⊢ 𝑀 : 𝛼 ′ ⊳𝐴, and likewise for multilinear refinements.

The rules appear in Figure 2. The most subtle case is the last,

corresponding to promotion and introducing new symmetries fol-

lowing an arbitrary permutation 𝜎 . In particular, swapping deriva-

tions for 𝑀 by 𝜎 requires swapping accordingly the resource ac-

cesses in the context. This uses an operation that to a family (𝜙𝑖 ::

®𝛼𝑖 ⇒ ®𝛼 ′𝑖 ⊳𝐴)1≤𝑖≤𝑛 of morphisms of refinements of 𝐴 associates

𝜎 R (𝜙𝑖 )1≤𝑖≤𝑛 :: ®𝛼1 • . . . • ®𝛼𝑛 ⇒ ®𝛼 ′𝜎−1 (1) • . . . • ®𝛼
′
𝜎−1 (𝑛) ⊳𝐴

a single morphism defined in the obvious way. This generalizes to

context refinement morphisms transparently, variable by variable.

Now, given a derivation Γ ⊢ 𝑀 : 𝐴, its associated intersection

type derivations Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳𝐴 and intersection type morphism

derivations Ξ ⊳ Γ ⊢ 𝑀 : 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳ 𝐴 organize into a groupoid

IT(𝑀), whose composition is directly derived from the ones of

refinement types and resource contexts. By considering the two

projection functors defined in the obvious way, we get a span

IT(Γ) IT(𝑀) IT(𝐴)
𝜕𝑀
𝑙 𝜕𝑀𝑟

which can be seen as a syntactic description of ⟦𝑀⟧ by the result:

Theorem 3.5. For any simply-typed _-term Γ ⊢ 𝑀 : 𝐴, there is an
iso of groupoids 𝐾𝑀 : ⟦𝑀⟧ → IT(𝑀) making the diagram commute:

⟦Γ⟧ ⟦𝑀⟧ ⟦𝐴⟧

IT(Γ) IT(𝑀) IT(𝐴)

𝐾Γ

𝜕
⟦𝑀⟧
𝑙 𝜕

⟦𝑀⟧
𝑟

𝐾𝑀 𝐾𝐴

𝜕𝑀
𝑙

𝜕𝑀𝑟

By Theorem 3.1, this also applies to the Kleisli interpretation.

From this connection to the interpretation in the cartesian closed

bicategoryThin!, we immediately get the following corollary:

Corollary 3.6. Consider Γ ⊢ 𝑀,𝑀′ : 𝐴 simply-typed _-term, s.t.
𝑀 →𝛽 𝑀

′. Then, there is a weak iso of spans IT(𝑀) � IT(𝑀′).

This shows that although rigid intersection types do not enjoy

subject reduction as observed in the introduction, the interpretation

in Thin! associates to every 𝛽-reduction 𝑀 →𝛽 𝑀′ a bijective

transport between derivations of𝑀 and𝑀′ “correcting” the error,
up to some residual symmetries in the groupoids for Γ and 𝐴.

3.4 Rigid Resource Calculus
As derivations are somewhat heavy, it seems helpful to remark that

they can be equivalently presented as certain rigid resource terms.

3.4.1 Resource terms. The grammar for rigid resource terms is:

𝑚,𝑛, . . . ::= 𝑥𝛼 | _𝑥.𝑚 | 𝑚 ®𝑛
®𝑚, ®𝑛 . . . ::= ⟨𝑚1, . . . ,𝑚𝑘 ⟩ ,

where 𝑥𝛼 is the data of a variable 𝑥 ∈ Var and of a labelling inter-

section type 𝛼 . Our resource terms depart from standard resource

terms [11] in two significant ways. Firstly, as in [25] our calculus is

rigid: argument subterms are sequences rather than finite multisets.

Secondly, we label variable occurrences with intersection types, so

as to guarantee the correspondence with derivations.

3.4.2 Approximation relations. Those resource terms are already

implicitely present in our derivations. To formalize that, we intro-

duce the linear and multilinear approximation judgements

Θ ⊳ Γ ⊢𝑚 ⊳𝑀 : 𝛼 ⊳𝐴 and Θ ⊳ Γ ⊢ ®𝑚 ⊳𝑀 : ®𝛼 ⊳𝐴

which are defined by the (full) rules of Figure 1. We have a canonical

forgetful function𝑈 mapping a derivation 𝜋 of Θ ⊳ Γ ⊢𝑚 ⊳𝑀 : 𝛼 ⊳𝐴

to the corresponding derivation 𝑈 (𝜋) of Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳ 𝐴 and

similarly for multilinear judgements. We easily check that:

Proposition 3.7. The following two properties hold:
(a) Given a term Γ ⊢ 𝑀 : 𝐴 and resource term𝑚, there is at most

one (Θ, 𝛼, 𝜋) with 𝜋 a derivation of Θ ⊳ Γ ⊢𝑚 ⊳𝑀 : 𝛼 ⊳𝐴,
(b) For a derivation 𝜋 of Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳ 𝐴, there is a unique
(𝑢, �̃�) s.t. �̃� is a derivation of Θ ⊳ Γ ⊢ 𝑚 ⊳ 𝑀 : 𝛼 ⊳ 𝐴 and
𝑈 (�̃�) = 𝜋 .

For a term Γ ⊢ 𝑀 : 𝐴, we write Res(𝑀) for the set of resource
terms𝑚 such that Θ ⊳ Γ ⊢𝑚 ⊳𝑀 : 𝛼 ⊳𝐴 is derivable, for some rigid

intersection types / contexts 𝑎,Θ. The proposition above gives

Res(𝑀) ≃ Ob(IT(𝑀))
a bijection showing that up to isomorphism, Thin! interprets a

simply-typed _-term as a set of rigid resource terms.
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(𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴𝑖 )
. . . , 𝑥𝑖 : (id{1} , ⟨𝜙⟩) :: ⟨𝛼⟩ ⇒ ⟨𝛼 ′⟩ ⊳𝐴𝑖 , . . . ⊢ 𝑥𝑖 : 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴𝑖

Ξ ⊢ 𝑀 : (𝜙 ⊸ 𝜓 ) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′ ⊸ 𝛽′) ⊳𝐴→ 𝐵 Ξ′ ⊢ 𝑁 : 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴
Ξ • Ξ′ ⊢ 𝑀 𝑁 : 𝜓 :: 𝛽 ⇒ 𝛽′ ⊳ 𝐵

Ξ, 𝑥 : 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴 ⊢ 𝑀 : 𝜓 :: 𝛽 ⇒ 𝛽′ ⊳ 𝐵

Ξ ⊢ _𝑥 .𝑀 : (𝜙 ⊸ 𝜓 ) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′ ⊸ 𝛽′) ⊳𝐴→ 𝐵

𝑛 ∈ N 𝜎 ∈ S𝑛 ∀𝑖 ∈ {1, . . . , 𝑛}, Ξ𝑖 ⊢ 𝑀 : 𝜙𝑖 :: 𝛼𝑖 ⇒ 𝛼 ′𝑖 ⊳𝐴

𝜎 R (Ξ𝑖 )1≤𝑖≤𝑛 ⊢ 𝑀 : (𝜎, ⟨𝜙1, . . . , 𝜙𝑛⟩) :: ⟨𝛼1, . . . , 𝛼𝑛⟩ ⇒ ⟨𝛼 ′𝜎−1 (1) , . . . , 𝛼
′
𝜎−1 (𝑛) ⟩ ⊳𝐴

Figure 2: The rules for rigid intersection type morphisms

3.4.3 Resource terms and reduction. This representation lets us

examine the action of the interpretation of reduction steps given

by Corollary 3.6. Consider a 𝛽-redex ⊢ (_𝑥 .𝑀) 𝑁 . There is an iso

(| (_𝑥. 𝑀) 𝑁 →𝛽 𝑀 [𝑁 /𝑥] |) : (| (_𝑥. 𝑀) 𝑁 |) � (|𝑀 [𝑁 /𝑥] |)

obtained via the cartesian closed bicategorical structure ofThin! [13],

and through our results it yields a bijection Ω : Res((_𝑥. 𝑀) 𝑁 ) ≃
Res(𝑀 [𝑁 /𝑥]) which we can compute. Considering a resource term

𝑢 = (_𝑥.𝑚) ⟨𝑛1, . . . , 𝑛𝑘 ⟩ ∈ Res((_𝑥. 𝑀) 𝑁 ) for𝑚 ⊳𝑀 , ®𝑛 ⊳𝑁 , we get

Ω((_𝑥.𝑚) ⟨𝑛1, . . . , 𝑛𝑘 ⟩) = 𝑚[𝑛1/𝑥1, . . . , 𝑛𝑘/𝑥𝑘 ] (4)

where 𝑥1, . . . , 𝑥𝑘 are the occurrences of 𝑥 in𝑚, in order from left to
right – there must indeed be 𝑘 occurrences with the right intersec-

tion types, because 𝑢 matches an intersection type derivation.

But this apparent simplicity for toplevel 𝛽-reductions is mislead-

ing: Thin! interprets reduction as weak span isos. If we have

Θ ⊳ Γ ⊢𝑚 ⊳𝑀 : 𝛼 ⊳𝐴 ,

for Γ ⊢ 𝑀 : 𝐴with𝑀 →𝛽 𝑀
′
, then we do not haveΘ⊳Γ ⊢ 𝑀′ : 𝛼 ⊳𝐴

but only Θ′ ⊳ Γ ⊢ 𝑀′ : 𝛼 ′ ⊳ 𝐴 for Θ′ �−Γ Θ and 𝛼 ′ �+
𝐴
𝛼 ; so we

cannot directly perform (4) deep within𝑚 as the resulting resource

term would fail to typecheck in our rigid intersection type system.

Thin! does provide some 𝑚′ = (|𝑀 →𝛽 𝑀′ |) (𝑚), obtained
through an interactive reindexing of all components of 𝑚, cor-

recting the typing mismatches. But its construction fully exploits

the bicategorical structure ofThin!, and in particular the horizontal

composition of 2-cells (via the uniqueness property of Lemma 2.4)

and it does not seem to have a simple syntactic presentation.

3.4.4 Link with multiset resource terms. To conclude this section,
we show how our rigid resource terms do not have a self-contained

rewriting theory; however we show here how they can be used as

representatives for more standard (multiset-based) resource terms.

We consider multiset resource terms generated by the gram-

mar:

u, v, . . . ::= 𝑥𝜶 | _𝑥.u | u v∗

u∗, v∗ . . . ::= [u1, . . . , u𝑛]

using the (multiset) non-idempotent intersection types defined by

𝜶 , 𝜷, . . . ::= ★ | 𝜶 ∗ ⊸ 𝜷
𝜶 ∗, 𝜷∗, . . . ::= [𝜶1, . . . ,𝜶𝑛] (𝑛 ∈ N)

where, as expected, we use multisets [· · · ] instead of sequences

⟨· · ·⟩. Given a rigid intersection type 𝛼 , one can obtain a multiset

intersection type 𝛼 by replacing inductively the sequences ⟨· · ·⟩
with multisets [· · · ]. Similarly, given a rigid resource term𝑚, one

obtains a multiset resource term𝑚 with the same operation. Then:

Proposition 3.8. Take 𝛽-normal Γ ⊢ 𝑀 : 𝐴, and𝑚,𝑛 ∈ Res(𝑀).
Then,𝑚 � 𝑛 if and only if𝑚 = 𝑛.

This is direct by induction – here 𝑚 � 𝑛 is defined via the

correspondencewith derivations. This shows that standard resource

terms fit in the theory of thin spans of groupoids as symmetry

classes in the interpretation of terms, albeit for 𝛽-normal terms. For

non-normal terms this correspondence fails: we have

(_𝑦. 𝑥 𝑦 𝑦) ⟨𝑧,𝑤⟩ ̸� (_𝑦. 𝑥 𝑦 𝑦) ⟨𝑤, 𝑧⟩
though they both map to (_𝑦. 𝑥 𝑦 𝑦) [𝑤, 𝑧] – in rigid resource terms,

𝛽-redexes explicitly match variable occurrences and resources in

the argument sequence, while usual resource terms do not.

4 THIN SPANS AND RELATIONAL MODELS
Now, we relate thin spans and other extensions of the relational

model. This shall let us re-interpret what these compute in terms

of rigid resource terms and symmetries of rigid intersection types.

4.1 The Relational Model
First of all, we start by describing the relationship between thin

spans of groupoids and the relational model [16]. It is fairly straight-

forward, but is hopefully helpful for the generalizations to come.

4.1.1 Introducing the relational model. The relational model builds

on the category Rel of sets and relations. Rel has a symmetric

monoidal structure, obtained by defining the tensor 𝐴 ⊗ 𝐵 = 𝐴 × 𝐵
as the cartesian product of sets – the unit is any singleton set. Rel
is actually compact closed: the dual 𝐴∗ of a set 𝐴 is itself, and there

are a unit 𝐼 → 𝐴⊗𝐴∗ and co-unit𝐴∗ ⊗𝐴→ 𝐼 given by the obvious

diagonal relations. This turns Rel into a symmetric monoidal closed

category, and as such a model of the linear _-calculus – in particular,

it supports a linear arrow defined as 𝐴 ⊸ 𝐵 = 𝐴 × 𝐵.
But Rel also has an exponential modality, given by !𝐴 =M(𝐴)

the set of finitemultisets of elements of𝐴. This extends to a comonad

! on Rel and for each𝐴, 𝐵 there is an isomorphism !(𝐴&𝐵) � !𝐴⊗!𝐵,

the Seely isomorphism. Together with additional coherence condi-

tions [23], this makes Rel a Seely category, a model of intuitionistic

linear logic, and the Kleisli category Rel! is cartesian closed.

4.1.2 FromThin to Rel. It seems clear how to relateThin and Rel:
on objects, simply send a thin groupoid 𝐴 to |𝐴| = 𝐴/� its sym-
metry classes (or connected components) – clearly, |Sym(𝐴) | =
M(|𝐴|). Likewise, given a thin span 𝐴← 𝑆 → 𝐵, we can obtain

|𝑆 | = {(𝑠𝐴, 𝑠𝐵) | 𝑠 ∈ 𝑆} ∈ Rel[|𝐴|, |𝐵 |]
called its relational collapse, for (−) the equivalence class. Then:

Proposition 4.1. This yields a functor | − | : Thin→ Rel.
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Proof. This requires us to compose witnesses up to symmetry,
which we do thanks to Lemma 2.4 – see Appendix D.1. □

4.1.3 Preservation of further structure. From the definition, it is

straightforward that we have bijection yielding isos in Rel:

𝑡⊗
𝐴,𝐵

: |𝐴| ⊗ |𝐵 | � |𝐴 ⊗ 𝐵 |
𝑡&
𝐴,𝐵

: |𝐴| & |𝐵 | � |𝐴 & 𝐵 |
𝑡 !
𝐴

: !|𝐴| � |!𝐴|

for 𝐴 and 𝐵 thin groupoids; in particular the third amounts to

|!𝐴| ≃ M(|𝐴|) for 𝐴 any thin groupoid. It is a routine verification

that these components satisfy the coherence conditions required to

make | − | : Thin→ Rel a Seely functor (see Appendix E), so that:

Theorem 4.2. Setting, for any !𝐴← 𝑆 → 𝐵 inThin! [𝐴, 𝐵],

|𝑆 |! = |𝑆 | ◦ 𝑡 !𝐴 ∈ Rel! [|𝐴|, |𝐵 |] ,

yields | − |! : Thin! → Rel! a cartesian closed functor.

It follows that this preserves the interpretation of the simply-

typed _-calculus: for every simple type 𝐴 there is a bijection 𝑡𝐴 :

⟦𝐴⟧Rel! ≃ |(|𝐴|) | – and likewise for contexts – so that if Γ ⊢ 𝑀 : 𝐴,

𝛾 ∈ ⟦Γ⟧Rel! , 𝑎 ∈ ⟦𝐴⟧Rel! , (𝛾, 𝑎) ∈ ⟦𝑀⟧Rel! iff (𝑡Γ 𝛾, 𝑡𝐴 𝑎) ∈ |(|𝑀 |) |!.

4.2 Weighted Relations
The weighted relational model is due to Larmarche [20], though

its application to semantics was fleshed out by Laird et al. [19].
In full generality, its construction is parametrized by a complete

semiring; but for the purposes of this paper we will only work with

the semiring N∞ = N ∪ {+∞} of completed natural numbers.

4.2.1 The weighted relational model. Rather than merely collecting

the completed executions, the weighted relational assigns a weight
– here, an element of N∞ – to any execution. In other words, a

weighted relation from set 𝐴 to set 𝐵 is a function 𝐴 × 𝐵 → N∞.
This lets us count properties of execution: for instance, it is shown

in [19] how the relational model weighted byN∞ counts how many

distinct executions may lead to a given result at ground type, for

a non-deterministic extension of PCF. But even for purely deter-

ministic programs (in fact, simply-typed _-terms), the weighted

relational model computes non-trivial coefficients.

Example 4.3. Considering the simply-typed _-term

𝑓 : 𝑜 → 𝑜 → 𝑜, 𝑥 : 𝑜,𝑦 : 𝑜 ⊢ 𝑓 (𝑓 𝑦 𝑥) (𝑓 𝑥 𝑦) : 𝑜 ,

then the point of the web written in intersection type notation as

𝑓 : [[★] ⊸ [] ⊸ ★, [] ⊸ [★] ⊸ ★], 𝑥 : [★], 𝑦 : [] ⊢ ★

has a weight of 2 in the weighted relational model – this reflects

the fact that this point can be realized in two distinct ways, depend-

ing on which occurrence of 𝑓 calls which argument; seemingly

corresponding to two distinct normal resource terms:

𝑓 [𝑓 [] [𝑥★]] [] 𝑓 [] [𝑓 [𝑥★] []] ,

or (via Section 3.4.4) to two symmetry classes of rigid terms.

This suggests that, maybe, the weighted relational model counts

the number of resource terms inhabiting a certain intersection type.

But that is not actually the case, as illustrated by this next example.

Example 4.4. Considering now the simply-typed _-term

𝑓 : 𝑜 → 𝑜, 𝑔 : 𝑜 → 𝑜,𝑦 : 𝑜 ⊢ 𝑓 (𝑔𝑦) : 𝑜 ,

then the point of the web written in intersection type notation as

𝑓 : [[★,★] ⊸ ★], 𝑔 : [[] ⊸ ★, [★] ⊸ ★], 𝑦 : [★] ⊢ ★

is also assigned a weight of 2 by the weighted relational model,

even though the reader can check that there is only one resource

term inhabiting that type. Clearly here we are somehow accounting

for the symmetries of this resource term – but which symmetries?

4.2.2 Categorical structure. The weighted relational model is struc-

tured around the category WRel: its objects are sets, and a mor-

phism from 𝐴 to 𝐵 is 𝛼 ∈ N𝐴×𝐵∞ – for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, we write
𝛼𝑎,𝑏 ∈ N∞ for 𝛼 (𝑎, 𝑏). Identity is (id𝐴)𝑎,𝑎′ = 𝛿𝑎,𝑎′ . Composition is

(𝛽 ◦ 𝛼)𝑎,𝑐 =
∑︁
𝑏∈𝐵

𝛼𝑎,𝑏 · 𝛽𝑏,𝑐

for 𝛼 ∈ WRel[𝐴, 𝐵], 𝛽 ∈ WRel[𝐵,𝐶], 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 . This
potentially infinite sum always “converges” because our set of

weights N∞ includes the infinity. Just like Rel,WRel is a compact

closed category with biproducts, see [19] for details.

Finally, there is an exponential modality !𝐴 =M(𝐴) on sets. On

morphisms, the critical definition is that of functorial promotion:

(!𝛼)`,[𝑏1,...,𝑏𝑛 ] =
∑︁

(𝑎1,...,𝑎𝑛 )
s.t. `=[𝑎1,...,𝑎𝑛 ]

𝑛∏
𝑖=1

𝛼𝑎𝑖 ,𝑏𝑖 .

Altogether, just like Rel, WRel is a Seely category, and thus the

associated Kleisli categoryWRel! is cartesian closed.

4.2.3 Positive witnesses. Wemust make the functor of Section 4.1.2

quantitative – from a thin span 𝐴← 𝑆 → 𝐵 and symmetry classes

a ∈ |𝐴|, b ∈ |𝐵 |, we must assign a number |𝑆 |a,b ∈ N∞. We naturally

expect this number to be the cardinal of a set of witnesses

|𝑆 |a,b = #wit𝑆 (a, b) ,

thus our question boils down to the following: what is the adequate

notion of witnesses, in a thin span, for symmetry classes a, b? It is
tempting to count symmetry classes in 𝑆 , however we have seen in

Section 3.4.4 that (for normal terms) those correspond to resource

terms, and Example 4.4 shows that it is not what the weighted

relational model counts; in fact we shall see it accounts for

𝑓 ⟨_𝑥 . 𝑔 ⟨𝑦⟩, _𝑥 𝑔 ⟨⟩⟩ , 𝑓 ⟨_𝑥 . 𝑔 ⟨⟩, _𝑥 . 𝑔 ⟨𝑦⟩⟩ , (5)

the two rigid resource terms that intuitively inhabit the intersection

type of Example 4.4 – even though the two are symmetric. But it is

not the case that we are simply counting rigid resource terms! If we

were to replace 𝑦 with 𝑥 in Example 4.4, then the weight given by

WRel becomes one and thus the two rigid resource terms displayed

in (5) with 𝑥 instead of 𝑦 should suddenly just account for one...

Thin will help sort this out. Assume that all groupoids interpret-

ing types come equipped with a function (−) associating to each
symmetry class a ∈ |𝐴| a representative a ∈ a. Then we set

wit+𝑆 (a, b) = {𝑠 ∈ 𝑆 | a �−𝐴 𝑠𝐴 & 𝑠𝐵 �
+
𝐵 b} (6)

where 𝑎 �+
𝐴
𝑎′ means there is \+ ∈ 𝐴+ [𝑎, 𝑎′] and likewise for �−

𝐴
;

we call those the positive witnesses of a and b in 𝑆 . This depends
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on a choice of representatives for symmetry classes – our develop-

ment will apply for thin groupoids equipped with representatives:

Definition 4.5. A representation for a thin groupoid 𝐴 is a

function (−) : (a ∈ |𝐴|) → a such that for all a ∈ 𝐴, a is canonical,
in the sense that for all \ ∈ 𝐴[a, a], the unique factorization \ = \−◦
\+ given by Lemma 2.3 satisfies \− ∈ 𝐴− [a, a] and \+ ∈ 𝐴+ [a, a].

If 𝐴 is a thin groupoid with a representation and a ∈ 𝐴, we
write m(a) = #𝐴(a, a) the symmetry degree of a. Likewise, we
write m+ (a) = #𝐴+ (a, a) (resp. #𝐴− (a, a)) the positive symmetry
degree (resp. negative) of a. From Definition 4.5, we then have

m(a) = m+ (a) ·m− (a) (7)

reflecting quantitatively the factorization of Lemma 2.3.

One can build a representation for all constructions on thin

groupoids so far. The non-trivial case is the exponential: if we have

canonical 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴, then so is ⟨𝑎1, . . . , 𝑎𝑛⟩ ∈ !𝐴, provided that

whenever 𝑎𝑖 �𝐴 𝑎 𝑗 then 𝑎𝑖 = 𝑎 𝑗 . Thus given a = [a1, . . . , a𝑛] ∈ |!𝐴|
we first consider [a1, . . . , a𝑛], which we present in a sequential

ordering, following some total order on objects of 𝐴 that we as-

sume globally fixed in advance. From now on, we consider all thin

groupoids equipped with a canonical representation.

Summing up, to any thin span 𝐴← 𝑆 → 𝐵 we associate |𝑆 |a,b =

#wit+
𝑆
(a, b), and we now aim to prove that this extends to a functor.

4.2.4 Functoriality. Preservation of the identity is obvious by the

factorization property of Lemma 2.3. Composition is more subtle.

Naturally, for 𝐴← 𝑆 → 𝐵 and 𝐵 ← 𝑇 → 𝐶 we expect a bijection

wit+𝑇⊙𝑆 (a, c) ≃
∑︁
b∈ |𝐵 |

wit+𝑆 (a, b) × wit
+
𝑇 (b, c) , (8)

and while our results imply that such a bijection exists for cardi-

nality reasons, it is not actually what we shall build directly. In

fact, there appears to be no natural function from the right-hand

side to the left-hand side. We must assemble 𝑠 ∈ wit+
𝑆
(a, b) and

𝑡 ∈ wit+
𝑇
(b, c) into an element of wit+

𝑇⊙𝑆 (a, c) but we cannot do
that directly, as we only have 𝑠𝐵 �𝐵 𝑡𝐵 and not 𝑠𝐵 = 𝑡𝐵 . We can, as

in the proof of Proposition 4.14, compose 𝑠 and 𝑡 via any symmetry

\𝐵 : 𝑠𝐵 �𝐵 𝑡𝐵 to obtain an element of wit+
𝑇⊙𝑆 (a, c); but this does

not yield a function as the result depends on the choice of \𝐵 .

To address this dependency in the undetermined mediating sym-

metry, we consider instead the composition of witnesses carrying

explicit symmetries: the ∼-witnesses from a to b are triples

∼-wit+𝑆 (a, b) = {(\
−
𝐴 , 𝑠, \

+
𝐵) | \𝐴 : a �−𝐴 𝑠𝐴 & 𝑠𝐵 �

+
𝐵 b} ;

so (\−
𝐴
, 𝑠, \+

𝐵
) ∈ ∼-wit+

𝑆
(a, b) and (𝜗−

𝐵
, 𝑡, 𝜗+

𝐶
) ∈ ∼-wit+

𝑇
(b, c) provid-

ing 𝜗−
𝐵
◦ \+

𝐵
used to compose 𝑠 and 𝑡 via Lemma 2.4.

While in a thin span 𝐴← 𝑆 → 𝐵 the display 𝑆 → 𝐴 × 𝐵 is not a

fibration, ∼-witnesses do enjoy a fibration-like property:

Proposition 4.6. Consider 𝐴← 𝑆 → 𝐵 a thin span, 𝑠 ∈ 𝑆 , and

\−𝐴 : 𝑎 �−𝐴 𝑠𝐴 \+𝐵 : 𝑠𝐵 �
+
𝐵 𝑏 .

For Ω𝐴 : 𝑎′ �𝐴 𝑎 and Ω𝐵 : 𝑏 �𝐵 𝑏
′, there are unique 𝜑𝑆 : 𝑠 �𝑆 𝑠

′

and 𝜗−
𝐴

: 𝑎′ �−
𝐴
𝑠′
𝐴
, 𝜗+
𝐵

: 𝑠′
𝐵
�+
𝐵
𝑏′ s.t. the diagrams commute:

𝑎
\−
𝐴 //OO

Ω𝐴

𝑠𝐴

𝜑𝑆
𝐴��

𝑎′
𝜗−
𝐴

// 𝑠′
𝐴

𝑠𝐵
\+
𝐵 //

𝜑𝑆
𝐵 ��

𝑏

Ω𝐵��
𝑠′
𝐵 𝜗+

𝐵

// 𝑏′

This follows from Lemma 2.5. We can now establish the bijection

patching (8). Consider 𝐴 ← 𝑆 → 𝐵 and 𝐵 ← 𝑇 → 𝐶 , a ∈ |𝐴|, b ∈
|𝐵 | and c ∈ |𝐶 |, we write ∼-wit+

𝑆,𝑇
(a, b, c) for the ∼-interaction

witnesses, i.e. tuples (\−
𝐴
, 𝑠,Θ, 𝑡, \+

𝐶
) where \−

𝐴
: a �−

𝐴
𝑠𝐴, 𝑠𝐵 = 𝑡𝐵 =

𝑏 and \+
𝐶

: 𝑡𝐶 �
+
𝐶
c so that (𝑠, 𝑡) ∈ 𝑇 ⊙ 𝑆 ; and Θ : b �𝐵 𝑏.

Proposition 4.7. For 𝑆,𝑇 , a, b, c as above, there is a bijection

Υ : ∼-wit+𝑆 (a, b) × ∼-wit
+
𝑇 (b, c) ≃ ∼-wit

+
𝑆,𝑇 (a, b, c)

s.t. for any Υ((\−
𝐴
, 𝑠, \+

𝐵
), (Ω−

𝐵
, 𝑡,Ω+

𝐵
)) = (𝜓−

𝐴
, 𝑠′,Θ, 𝑡 ′,𝜓+

𝐶
), there are

unique 𝜔𝑆 : 𝑠 �𝑆 𝑠
′ and a𝑇 : 𝑡 �𝑇 𝑡

′ making the diagrams commute:

𝑠𝐴77\−
𝐴

𝜔𝑆
𝐴��

𝑠𝐵
\+
𝐵 //

𝜔𝑆
𝐵 ��

b
Θ��

𝑡𝐵

a𝑇
𝐵��

//Ω−
𝐵

𝑡𝐶 Ω+
𝐶

''
a𝑇
𝐶 ��a

𝜓 −
𝐴

''
c

𝑠′
𝐴

𝑠′
𝐵

𝑏 𝑡 ′
𝐵

𝑡 ′
𝐶

𝜓+
𝐶
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This is direct from Lemma 2.4 and Proposition 4.6, see App. D.2.

We now have a bijection that somewhat looks like (8), but we

must sum over all symmetry classes in 𝐵 and check that the cardi-

nality of added symmetries cancels out. Indeed it is easy that

#∼-wit+𝑆 (a, b) = m− (a) · #wit+𝑆 (a, b) ·m+ (b) ;
from the definition, and since ∼-interaction witnesses carry a sym-

metry class in 𝐵 and an endo-symmetry, it is also direct that

#∼-wit+𝑇⊙𝑆 (a, c) =
∑︁
b∈ |𝐵 |

1

m(b) · #∼-wit
+
𝑆,𝑇 (a, b, c) .

From there and (7), (8) follows from a simple computation. So:

Corollary 4.8. This yields a functor | − | : Thin→WRel.

4.2.5 Exponential. The crucial point remaining is that the functo-

rial action of ! is preserved. For this section, we adopt notations

inlining the bijections of Section 4.1.3: in particular, we write ele-

ments of |!𝐴| as finite multisets of elements of |𝐴|. We must give

wit+
!𝑆 (𝝁, [b1, . . . , b𝑛]) ≃

∑︁
⟨a1,...,a𝑛 ⟩

s.t.[a1,...,a𝑛 ]=𝝁

𝑛∏
𝑖=1

wit+𝑆 (a𝑖 , b𝑖 ) (9)

a bijection, for any thin span 𝐴← 𝑆 → 𝐵.

From left to right, recall that writing𝝂 = [b1, . . . , b𝑛],wit+
!𝑆
(𝝁,𝝂)

comprises those ®𝑠 such that 𝝁 �−
𝐴
®𝑠!𝐴 and ®𝑠!𝐵 �+𝐵 𝝂 . Let us write

𝝂 = ⟨𝑏1, . . . , 𝑏𝑛⟩. On the right-hand side, as positive symmetries

cannot exchange elements of a sequence, we have ®𝑠 = ⟨𝑠1, . . . , 𝑠𝑛⟩
where 𝑠𝑖

𝐵
�+
𝐵
𝑏𝑖 . However on the left-hand side symmetries can

exchange elements, so that there must exist an (unspecified) permu-

tation 𝜎 ∈ 𝜍 (𝑛) such that a𝜎 (𝑖 ) �−𝐴 𝑠
𝑖
𝐴
, informing ⟨a𝜎 (1) , . . . , a𝜎 (𝑛) ⟩

satisfying [a𝜎 (1) , . . . , a𝜎 (𝑛) ] = 𝝁 as needed. Reciprocally, it is clear

that data on the right-hand side can be assembled into an element

of wit+
!𝑆
(𝝁,𝝂) and that those operations are inverse of one another.
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This shows that modulo the bijection 𝑡 !
𝐴
of Section 4.1.3, the

functorial action of ! is preserved. The other bijections of Section

4.1.3 still yield isomorphisms inWRel – for which, by a slight abuse,
we keep the same notation. All necessary coherence conditions are

satisfied, so that this operation lifts to the Kleisli (bi)categories.

Theorem 4.9. We have | − |! : Thin! →WRel! cartesian closed.

4.2.6 Consequences. Since a cartesian closed functor preserves

the interpretation of the simply-typed _-calculus, this gives us a

combinatorial description of the coefficients computed byWRel!:

Corollary 4.10. Consider Γ ⊢ 𝑀 : 𝐴 a simply-typed _-term.
For every 𝜸 ∈ ⟦Γ⟧WRel! and a ∈ ⟦𝐴⟧WRel! , we have

(⟦𝑀⟧WRel! )𝜸 ,𝑎 = #wit+(|𝑀 |) (𝑡Γ 𝜸 , 𝑡𝐴 a) .

By the results in Section 3.2, this is also the number of deriva-

tions Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳ 𝐴 (or their representations as rigid resource

terms) where Θ is negatively symmetric (resp. 𝛼 is positively sym-

metric) to the intersection type matching a chosen canonical rigid

representative for 𝜸 (resp. for a). Note that we can also derive:

Proposition 4.11. Consider Γ ⊢ 𝑀 : 𝐴 a simply-typed _-term.
For every 𝜸 ∈ ⟦Γ⟧WRel! and a ∈ ⟦𝐴⟧WRel! , we have

(⟦𝑀⟧WRel! )𝜸 ,a =
∑︁
w∈𝑊

m+ (𝑡Γ 𝜸 ) ·m− (𝑡𝐴 a)
m(w)

where𝑊 is the set of symmetry classes in (|𝑀 |) mapping to (𝑡Γ 𝜸 , 𝑡𝐴 a),
and m(w) is the size of the group of symmetries on w.

This is because to each symmetry classw correspond a number of

positive witnesses equal to the negative symmetries of the matching

rigid intersection type, divided by the symmetries of w – the proof

appears in Appendix A. Thus, one can obtain the right coefficient

from symmetry classes (and therefore for normal standard resource

terms following Section 3.4.4), but the weight of each symmetry

class must be corrected suitably accounting for symmetries.

4.3 Distributors and Generalized Species
We now establish a link between thin spans and the bicategory of

distributors (i.e. profunctors). We keep this section succinct; to a

large extent, it is a simplification of the construction in [4].

4.3.1 The bicategory of groupoids and distributors. A distributor
from groupoid 𝐴 to 𝐵 (a.k.a. profunctor) is a functor 𝛼 : 𝐴op × 𝐵 →
Set giving, for all 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, a set 𝛼 (𝑎, 𝑏) of witnesses, along with
an action of symmetries: if 𝑥 ∈ 𝛼 (𝑎, 𝑏) and \ ∈ 𝐵(𝑏, 𝑏′), we write
\ · 𝑥 for the functorial action 𝛼 (id, \ ) (𝑥) ∈ 𝛼 (𝑎, 𝑏′). Similarly, if

𝜗 ∈ 𝐴(𝑎′, 𝑎), we write 𝑥 · 𝜗 ∈ 𝛼 (𝑎′, 𝑏) for 𝛼 (𝜗, id).
The bicategory Dist has groupoids as objects, distributors as

morphisms, and natural transformations as 2-cells. The identity
distributor on𝐴 is the hom-set functor id𝐴 = 𝐴[−,−] : 𝐴op×𝐴→
Set. The composition of two distributors 𝛼 : 𝐴op × 𝐵 → Set and
𝛽 : 𝐵op ×𝐶 → Set is defined in terms of the coend formula:

(𝛽 • 𝛼) (𝑎, 𝑐) =
∫ 𝑏∈𝐵

𝛼 (𝑎, 𝑏) × 𝛽 (𝑏, 𝑐) ,

meaning that concretely, (𝛽 •𝛼) (𝑎, 𝑐) consists in pairs (𝑥,𝑦), where
𝑥 ∈ 𝛼 (𝑎, 𝑏) and𝑦 ∈ 𝛽 (𝑏, 𝑐) for some 𝑏 ∈ 𝐵, quotiented by (𝑔 ·𝑥,𝑦) ∼
(𝑥,𝑦 ·𝑔) for 𝑥 ∈ 𝛼 (𝑎, 𝑏),𝑔 ∈ 𝐵(𝑏,𝑏′) and𝑦 ∈ 𝛽 (𝑏′, 𝑐). The bicategory
Dist has cartesian products given by the disjoint union 𝐴 + 𝐵.

4.3.2 Extracting distributors from thin spans. On objects, we send

a thin groupoid (𝐴,𝐴−, 𝐴+,U𝐴,T𝐴) to its underlying groupoid 𝐴.

On morphisms, given a thin span 𝐴← 𝑆 → 𝐵, for all 𝑎 ∈ 𝐴 and

𝑏 ∈ 𝐵 we must specify a set ∥𝑆 ∥(𝑎, 𝑏). It is tempting to set simply

the pre-image (𝜕𝑆 )−1 (𝑎, 𝑏), but there is no functorial action

∥𝑆 ∥(\𝐴, \𝐵) : ∥𝑆 ∥(𝑎, 𝑏) → ∥𝑆 ∥(𝑎′, 𝑏′)

for \𝐴 ∈ 𝐴(𝑎′, 𝑎) and \𝐵 ∈ 𝐵(𝑏,𝑏′) as 𝜕𝑆 is not a fibration. We

need a finer symmetry lifting property of thin spans – and we have

one, seen in Proposition 4.6. Thus, we set instead ∥𝑆 ∥(𝑎, 𝑏) as the
set ∼-wit+

𝑆
(𝑎, 𝑏) of ∼-witnesses of (𝑎, 𝑏) in 𝑆 , i.e. triples (\−

𝐴
, 𝑠, \+

𝐵
)

s.t. 𝑠 ∈ 𝑆 , \−
𝐴
∈ 𝐴− (𝑎, 𝑠𝐴) and \+𝐵 ∈ 𝐵+ (𝑠𝐵, 𝑏). Though we keep

the same terminology and notation as in Section 4.2.4, those are ∼-
witnesses of specific objects of the groupoids𝐴 and 𝐵, not symmetry

classes.

We get a functorial action by setting ∥𝑆 ∥(Ω𝐴,Ω𝐵) (\−𝐴 , 𝑠, \
+
𝐵
) as

the positive witness (𝜗−
𝐴
, 𝑠′, 𝜗+

𝐵
) as in the statement of Proposition

4.6, yielding a distributor for every thin span 𝐴← 𝑆 → 𝐵:

Proposition 4.12. We have a distributor ∥𝑆 ∥ : 𝐴op × 𝐵 → Set.

4.3.3 Constructing natural transformations. Consider 𝑆,𝑇 thin spans

from 𝐴 to 𝐵, and (𝐹, 𝐹𝐴, 𝐹𝐵) : 𝑆 → 𝑇 a positive morphism; consist-

ing for each 𝑠 ∈ 𝑆 of 𝐹𝐴𝑠 ∈ 𝐴− (𝑠𝐴, (𝐹𝑡)𝐴) and 𝐹𝐵𝑠 ∈ 𝐵+ (𝑠𝐵, (𝐹𝑠)𝐵).
To each w = (\−

𝐴
, 𝑠, \+

𝐵
) ∈ ∥𝑆 ∥(𝑎, 𝑏), we set ∥𝑆 ∥(𝐹, 𝐹𝐴, 𝐹𝐵) (w) to

(𝑎
\−
𝐴→ 𝑠𝐴

𝐹𝐴𝑠→ (𝐹𝑡)𝐴, 𝐹𝑡, (𝐹𝑡)𝐵
𝐹𝐵𝑠→ 𝑠𝐵

\+
𝐵→ 𝑏)

which by the uniqueness property of Proposition 4.6 can be easily

verified to give a natural transformation from ∥𝑆 ∥ to ∥𝑇 ∥.

4.3.4 Further components. To complete the pseudofunctor, we

need two natural isomorphisms, the unitor and the compositor.

Proposition 4.13. Given a thin span 𝐴, there is a natural iso

pid𝐴 : ∥Id𝐴∥
�⇒ 𝐴[−,−] : 𝐴op ×𝐴→ Set .

This is straightforward from the factorization result of Lemma

2.3. Now, we focus on the preservation of composition. For two thin

spans 𝐴← 𝑆 → 𝐵 and 𝐵 ← 𝑇 → 𝐶 , we have the compositor:

Proposition 4.14. There is a natural isomorphism:

pcomp𝑆,𝑇 : ∥𝑇 ⊙ 𝑆 ∥ ⇒ ∥𝑇 ∥ • ∥𝑆 ∥ : 𝐴op × 𝐵 → Set .

Proof. The map pcomp𝑆,𝑇𝑎,𝑐 sends (\−
𝐴
, (𝑠, 𝑡), \+

𝐶
) ∈ ∥𝑇 ⊙𝑆 ∥(𝑎, 𝑐)

(with 𝑠𝐵 = 𝑡𝐵 = 𝑏) to (the equivalence class of) the pair

((\−𝐴 , 𝑠, id𝑏 ), (id𝑏 , 𝑡, \
+
𝐶 )) ∈ (∥𝑇 ∥ • ∥𝑆 ∥)(𝑎, 𝑐) .

For each 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 , this forms a bijection. Consider indeed

w𝑆 = (\−𝐴 , 𝑠, \
+
𝐵) ∈ ∥𝑆 ∥(𝑎, 𝑏) w𝑇 = (\−𝐵 , 𝑡, \

+
𝐶 ) ∈ ∥𝑇 ∥(𝑏, 𝑐)

composable witnesses. By Lemma 2.4 we compose 𝑠 and 𝑡 through

\−
𝐵
◦ \+

𝐵
, yielding unique 𝜑𝑆 ∈ 𝑆 [𝑠, 𝑠′], 𝜑𝑇 ∈ 𝑇 [𝑡, 𝑡 ′], 𝜗−

𝐴
, 𝜗+
𝐶
s.t.:

𝑠𝐴 𝑠𝐵 𝑏 𝑡𝐵 𝑡𝐶

𝑎 𝑐

𝑠′
𝐴

𝑠′
𝐵

𝑏′ 𝑡 ′
𝐵

𝑡 ′
𝐶

𝜑𝑆
𝐴

𝜑𝑆
𝐵

\+
𝐵

\−
𝐵

𝜑𝑇
𝐵

𝜑𝑇
𝐶

\+
𝐶

\−
𝐴

𝜗−
𝐴

𝜗+
𝐶
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which, writing Θ𝐵 = 𝜑𝑆
𝐵
◦ \+

𝐵
−1

= 𝜑𝑇
𝐵
◦ \−

𝐵
, entails

v𝑆 = (𝜗−
𝐴
, 𝑠′, id𝑦𝐵 ) = Θ𝐵 · (\−𝐴 , 𝑠, \

+
𝐵
)

v𝑇 = (id𝑦𝐵 , 𝑡 ′, 𝜗+𝐶 ) = (\−
𝐵
, 𝑡, \+

𝐶
) · Θ𝐵

so (v𝑆 , v𝑇 ) = (Θ𝐵 · w𝑆 , v𝑇 ) ∼ (w𝑆 , v𝑇 · Θ𝐵) = (w𝑆 ,w𝑇 ). Now
(v𝑆 , v𝑇 ) = pcomp𝑆,𝑇 (𝜗−

𝐴
, 𝑡 ′ ⊙ 𝑠′, 𝜗+

𝐶
), showing surjectivity – injec-

tivity also follows from the uniqueness clause in Lemma 2.4. □

The naturality and coherence requirements hold, and altogether:

Theorem 4.15. This yields a peudofunctor ∥ − ∥ : Thin→ Dist.

4.3.5 Lifting to Kleisli bicategories. Recall that Esp is the Kleisli

bicategory DistSym. Composition of 𝐹 : Sym(𝐴)op × 𝐵 → Set and
𝐺 : Sym(𝐵)op ×𝐶 → Set is 𝐺 • 𝐹 Sym, where the promotion is

𝐹 Sym ( ®𝑎, ⟨𝑏1, . . . , 𝑏𝑛⟩) =
∫ ®𝑎′

1
,...,®𝑎′𝑛

𝐴[®𝑎, ®𝑎′
1
. . . ®𝑎′𝑛] × Π𝑛𝑖=1

𝐹 ( ®𝑎′𝑖 , 𝑏𝑖 )

comprising a morphism in 𝐴[®𝑎, ®𝑎′
1
, . . . , ®𝑎′𝑛] along with a family in

Π𝑛
𝑖=1
𝐹 ( ®𝑎′

𝑖
, 𝑏𝑖 ), quotiented by an equivalence relation.

Likewise, the promotion 𝑆Sym of a thin span, constructed as

Sym(𝐴) ← Sym(Sym(𝐴)) ← Sym(𝑆) → Sym(𝐵) ,

yields by ∥ − ∥ the distributor associating to ®𝑎, ⟨𝑏1, . . . , 𝑏𝑛⟩ triples

(\−Sym(𝐴) , ⟨𝑠1, . . . , 𝑠𝑛⟩, \
+
Sym(𝐵) ) ∈ ∥𝑆

Sym∥( ®𝑎, ®𝑏) , (10)

but \+Sym(𝐵) is positive, so cannot reindex the 𝑏𝑖s and must be

(id1...𝑛, (\+𝑖 )1≤𝑖≤𝑛) for \
+
𝑖
is positive in 𝐵. So we map (10) to

(\−Sym(𝐴) , ⟨(id, 𝑠𝑖 , \
+
𝑖 ) | 1 ≤ 𝑖 ≤ 𝑛⟩) ∈ ∥𝑆 ∥

Sym ( ®𝑎, ®𝑏)

inducing a natural bijection ∥𝑆Sym∥ ®𝑎,®𝑏 ≃ ∥𝑆 ∥
Sym
®𝑎,®𝑏

.

Combinedwith pcomp𝑆,𝑇 this provides a natural iso for preserva-

tion of Kleisli composition. Together with a straightforward natural

isomorphism for Kleisli identity laws and lengthy verifications for

coherence, we obtain a pseudofunctor ∥ − ∥ : Thin! → Esp.

4.3.6 A cartesian closed pseudofunctor. We check that this extends

to a cc-pseudofunctor [13]. First, ∥− ∥ preserves constructions on ob-

jects strictly. The notion of a fp-pseudofunctor [13] requires that for
each (𝐴𝑖 )1≤𝑖≤𝑛 , ⟨∥𝜋1∥, . . . , ∥𝜋𝑛 ∥⟩ is part of an adjoint equivalence∏𝑛

𝑖=1
𝐴𝑖

⟨ ∥𝜋1 ∥,...,∥𝜋𝑛 ∥ ⟩ **
⊥ ∏𝑛

𝑖=1
𝐴𝑖

q×®𝐴
jj

in Esp: here q× can be taken to be the identity in Esp, completed

to an adjoint equivalence in the obvious way. On top of that, the

definition of a cc-pseudofunctor [13] then additionally requires that

e𝐴,𝐵 = Λ(∥ev𝐴,𝐵 ∥ •Sym q×) : 𝐴⇒ 𝐵 → 𝐴⇒ 𝐵 is also part of

𝐴⇒ 𝐵

e𝐴,𝐵 ))
⊥ 𝐴⇒ 𝐵

q⇒
𝐴,𝐵

ii

an adjoint equivalence. But e𝐴,𝐵 can be computed to be naturally

isomorphic to the identity on 𝐴 ⇒ 𝐵 in Esp; constructing the

adjoint equivalence is then straightforward. Altogether:

Theorem 4.16. ∥ − ∥ : Thin! → Esp is a cc-pseudofunctor.

4.3.7 Consequences. Fix a simply-typed _-term Γ ⊢ 𝑀 : 𝐴.

By Theorem 4.16, we have a natural isomorphism 𝐼 : ⟦𝑀⟧Esp �
∥(|𝑀 |) ∥ showing that up to iso, generalized species of structure

compute positive witnesses in the sense of thin spans of groupoids.

By the results of Section 3, this can be reformulated as:

Corollary 4.17. For 𝛾 ∈ (|Γ |) and 𝑎 ∈ (|𝐴|), we have a bijection

⟦𝑀⟧Esp (𝛾, 𝑎) �
(\−Γ ,w, \+𝐴)

������
\−Γ ∈ IT− (Γ) [𝐾Γ (𝑠Γ 𝛾),Θ],
w ∈ IT(𝑀)Θ,𝛼 ,
\+
𝐴
∈ IT+ (𝐴) [𝛼, 𝐾𝐴 𝑎]

 .

This captures the interpretation of simply-typed _-terms in Esp
syntactically. This is analogous to results by Tsukada et al. [27] and
Olimpieri [24], except our derivations are simpler, without quotient.

Finally, altogether, the isomorphism 𝐼 and Corollary 4.10 entail:

Corollary 4.18. For any 𝜸 ∈ ⟦Γ⟧WRel! and a ∈ ⟦𝐴⟧WRel! ,

(⟦𝑀⟧WRel! )𝜸 ,a =
#⟦𝑀⟧Esp (𝑡Γ 𝜸 , 𝑡𝐴 a)
m− (𝑡Γ 𝜸 ) ·m+ (𝑡𝐴 a)

where #⟦𝑀⟧Esp (𝑡Γ 𝜸 , 𝑡𝐴 a) is defined for any representative.

This is independent ofThin!, though it does require the positive

and negative symmetries – this shows that these are fundamental

in quantitative semantics, independently of their role inThin.

5 CONCLUSION
We have illustrated our results on the simply-typed _-calculus

for the economy of presentation and since it already features the

phenomena of interest, butThin readily supports non-determinism

and can be easily extended with quantitative (probabilistic and

quantum) primitives, for which we expect our results still hold.

Our results show that the interpretation of the simply-typed _-

calculus inThin can be regarded as a rigid Taylor expansion. Section

3.4.4 then suggests a link with the standard Taylor expansion of

_-terms which may illuminate the coefficients appearing there;

however we could not find an exposition of the simply-typed Taylor

expansion in the literature, so we had to omit this by lack of space.

Detailing that, and the untyped case, is left for future work.
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Appendix

A ADDITIONAL PROPERTIES INThin
Here, we provide the proofs of properties of thin spans of groupoids that this paper need, which were not

provided in [3].

A.1 Reindexing by a symmetry
Here, we show the detailed proof of Lemma 2.5, which expresses howThin lets us reindex witnesses by

symmetries.

Lemma 2.5. Consider 𝐴← 𝑆 → 𝐵 a thin span, 𝑠 ∈ 𝑆 , with \𝐴 : 𝑎 �𝐴 𝑠𝐴 and \𝐵 : 𝑠𝐵 �𝐵 𝑏. Then, there are
unique 𝑠′ ∈ 𝑆 , 𝜑 : 𝑠 �𝑆 𝑠

′, 𝜗−
𝐴
and 𝜗+

𝐵
such that the two triangles commute:

𝑠𝐴

𝜑𝐴
��

𝑎

\𝐴 66

𝜗−
𝐴
''
𝑠′
𝐴

𝑠𝐵

𝜑𝐵

��

\𝐵

((
𝑏

𝑠′
𝐵

𝜗+
𝐵

77

Proof. We show this ignoring the left-hand side, for 𝑆 ∈ T𝐵 , 𝑠 ∈ 𝑆 , \𝐵 : 𝑠𝐵 �𝐵 𝑏; the general case
follows by applying this to 𝐴⊥ ` 𝐵.

Existence. By hypothesis, we know that 𝑆 ∈ T𝐵 ⊆ U𝐵 . By definition of thin groupoids, we know that

(𝐵+, id+𝐵) ∈ T
‚
𝐵
⊆ U⊥

𝐵
, so that 𝑆 ⊥ (𝐵+, id+𝐵). Hence, the pullback

·
𝑆 𝐵+

𝐵

𝑟𝑙

𝜕𝑆 id
+
𝐵

is a bipullback. By our concrete characterisation of bipullbacks in Gpd, applying this to 𝑠 ∈ 𝑆 , 𝑏 ∈ 𝐵+ and
\𝐵 : 𝑠𝐵 �𝐵 𝑏, this gives us 𝜑 : 𝑠 �𝑆 𝑠

′
and 𝜗+

𝐵
: 𝑠′
𝐵
�+
𝐵
𝑏 such that \𝐵 = 𝜗+

𝐵
◦ 𝜑𝐵 as required.

Uniqueness. Consider another solution, comprising𝜓 : 𝑠 �𝑆 𝑠
′′
and a+

𝐵
: 𝑠′′
𝐵
�+
𝐵
𝑏 such that a+

𝐵
◦𝜓𝐵 = \𝐵 .

Then, a+
𝐵
◦𝜓𝐵 = 𝜗+

𝐵
◦ 𝜑𝐵 , so

(𝜓 ◦ 𝜑−1)𝐵 = 𝜓𝐵 ◦ 𝜑−1

𝐵 = (𝜗+𝐵)
−1 ◦ a+𝐵

a positive morphism. But by [3, Lem. 3], a morphism𝜓 ◦ 𝜑−1
in 𝑆 which maps to a positive morphism in

𝐵 must be an identity; hence 𝑠′ = 𝑠′′ and𝜓 ◦ 𝜑−1 = id𝑠′ , so that 𝜑 = 𝜓 . Additionally, 𝜗+
𝐵
= \𝐵 ◦ (𝜑𝐵)−1 =

\𝐵 ◦ (𝜓𝐵)−1 = a+
𝐵
as desired, concluding the proof. □

A.2 Counting symmetry classes
Our aim here is to provide a characterisation of the number of positive witnesses inhabiting a given

symmetry class; providing the missing brick for the proof of Proposition 4.11. For this section, let us fix a

thin groupoid 𝐴 and some 𝑆 ∈ T𝐴; we shall derive the two-sided version of the result by simply applying it

to 𝐴⊥ ` 𝐵.

First, we show that any symmetry class in 𝑆 has a representative that is positively symmetric to (the

chosen representative) of the corresponding symmetry class in 𝐴:

Lemma A.1. Consider s ∈ 𝑆/�𝑆 , and consider a its display.
Then, there is 𝑠 ∈ s such that 𝑠𝐴 �+𝐴 a.

Proof. Consider first any 𝑠 ∈ s. By hypothesis, there is \𝐴 : 𝑠𝐴 �𝐴 a. It might not be positive, but by

Lemma 2.3 (applied to \−1

𝐴
) it factors uniquely as 𝑠𝐴

\−
𝐴

�−
𝐴
𝑎

\+
𝐴

�+
𝐴
a and now, by Proposition 4.6, there are

unique 𝜑 : 𝑠 �𝑆 𝑠
′
and 𝜗+

𝐴
: 𝑠′
𝐴
�+
𝐴
𝑎 such that \−

𝐴
= 𝜗+

𝐴
◦ 𝜑𝐴 . But then 𝑠′ ∈ s and 𝑠′𝐴 �

+
𝐴
𝑎 �+

𝐴
a. □

So, for each s ∈ 𝑆/�𝑆 , we choose a representative s ∈ s such that (s)𝐴 �+𝐴 a; and we also choose a

“reference” positive symmetry \+s : (s)𝐴 �+𝐴 a. Finally, for every 𝑠 ∈ s we choose some ^𝑠 : s �𝑆 𝑠 .
Our aim is, for a fixed a ∈ |𝐴| and for every symmetry class s such that s𝐴 = a, to count the number of

concrete positive witnesses in s. We introduce some notations for this set – let us write

wit+𝑆 [s] = {𝑠 ∈ s | 𝑠𝐴 �+𝐴 a}
∼-wit+𝑆 [s] = {(𝑠, \+𝐴) | 𝑠 ∈ s & \+𝐴 : 𝑠𝐴 �

+
𝐴 a}

for the concrete witnesses (resp. ∼+-witnesses) within a symmetry class s for a.
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Then, we prove the following bijection, for S(s) = 𝑆 [s, s] and S(a) = 𝐴[a, a].

Proposition A.2. There is a bijection ∼-wit+𝜎 [s] × S(s) ≃ S(a).

Proof. First we show that for every (𝑠, 𝜗+
𝐴
) ∈ ∼-wit+

𝑆
(a) and 𝜑 ∈ S(s), there is a unique 𝜓𝐴 ∈ S(a)

such that the following diagram commutes:

(s)𝐴
\+s //

(^𝑠◦𝜑 )𝐴
��

a
𝜓𝐴

��
𝑠𝐴

𝜗+
𝐴

// a

but this is obvious, as𝜓𝐴 is determined by composition from the other components.

Reciprocally, we show that for all𝜓𝐴 ∈ S(a), there are unique (𝑠, 𝜗+𝐴) ∈ ∼-wit
+
𝑆
(a) and 𝜑 ∈ S(s) such

that the same diagram above commutes. First, by canonicity of a,𝜓𝐴 factors as𝜓𝐴 = 𝜓+
𝐴
◦𝜓−

𝐴
for𝜓−

𝐴
∈ S(a)

negative and𝜓+
𝐴
∈ S(a) positive. By Proposition 4.6, there are unique (𝑠′, 𝜔+

𝐴
) ∈ ∼-wit+

𝑆
(a) and 𝜙 : s �𝑆 𝑠′

such that the following diagram commutes:

(s)𝐴
\+𝑠 //

𝜙𝐴 ��

a

𝜓 −
𝐴

��
𝑠′
𝐴 𝜔+

𝐴

// a

We may then define 𝑠 := 𝑠′, 𝜗+
𝐴

:= 𝜓+
𝐴
◦𝜔+

𝐴
, and 𝜑 := (^𝑠′ )−1 ◦𝜙 and the diagram is obviously satisfied. It

remains to prove uniqueness, so assume we have (𝑡, a+
𝐴
) ∈ ∼-wit+𝜎 (a) and b ∈ S(s) such that the following

diagram commutes:

(s)𝐴
\+𝑠 //

(^𝑡 ◦b )𝐴
��

a
𝜓𝐴

��
𝑡𝐴

a+
𝐴

// a

But then (^𝑡 ◦ b) ◦ (^𝑠 ◦ 𝜑)−1
is a symmetry in 𝑆 displaying to a positive symmetry in 𝐴, so must be an

identity by [3, Lem. 3]. Thus 𝑠 = 𝑡 , b = 𝜑 , and so also 𝜗+
𝐴
= a+

𝐴
as it is uniquely determined from the other

components by the diagram. This gives constructions in both directions, and that they are inverses follows

directly from the uniqueness properties. □

From that bijection, we may conclude the following result:

Theorem A.3. Consider 𝐴 a thin groupoid, 𝑆 ∈ T𝐴 and a ∈ |𝐴|, s displaying to a. Then,

♯wit+𝑆 [s] =
♯S− (a)
♯S(s)

where S− (a) is the group of negative symmetries on a.

Proof. By Proposition A.2, we have ♯∼-wit+
𝑆
[s] × ♯S(s) = ♯S(a), so we have

♯S+ (a) × ♯wit+𝑆 [s] × ♯S(s) = ♯S+ (a) × ♯S− (a)

via the easy fact that ♯∼-wit+
𝑆
[s] = ♯S+ (a) × ♯wit+𝑆 [s] and canonicity of a. The identity follows. □

And now, we can finally deduce:

Corollary A.4. Consider 𝐴, 𝐵 thin groupoids, 𝐴← 𝑆 → 𝐵 a thin span, a ∈ |𝐴| and b ∈ |𝐵 |. Then,

|𝑆 |a,b =
∑︁
s∈𝑊

m+ (a) ·m− (b)
m(s)

for𝑊 the set of symmetry classes in 𝑆 mapping to a, b.
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Proof. We calculate:

|𝑆 |a,b = ♯wit+𝑆 (a, b)

=
∑︁
s∈𝑊

♯wit+𝑆 [s]

=
∑︁
s∈𝑊

m+ (a) ·m− (b)
m(s)

using the definition, then partitioning the positive witnesses by symmetry class, and by Theorem A.3. □

Proposition 4.11 immediately follows from Corollary 4.10 in combination with this.

B THE Sym PSEUDOCOMONAD
Here, we give additional details about the definition of the Sym pseudocomonad on Thin, derived from the

Sym monad on Gpd. Notably, we reuse the general results presented in [3, App. G], which were developed

to show that the Fam pseudomonad on Gpd lifted to a pseudocomonad, and that we recall below.

B.1 General definitions and results
A functor 𝐹 : Gpd → Gpd is called bicartesian when it preserves pullbacks and sends pullbacks that are

bipullbacks to bipullbacks. A ±-functor is a tuple (H,H+, ]) with H,H+ being functors Gpd→ Gpd where

H and H+ are bicartesian and preserve functors (between groupoids) that are bijective on objects (of the

groupoids), and such that H+ preserves discrete groupoids, and ] : H+ ⇒ H being a natural transformation

which is pointwise monomorphic (that is, such that each ]𝑋 is a monomorphism) and surjective on objects

of the groupoids, satisfying moreover that it is bicartesian, meaning that its naturality squares are both

pullbacks and bipullbacks.

Given two ±-functors H = (H,H+, ]) and K = (K,K+, ^), a ±-transformation between H and K is a pair

(𝛼, 𝛼+) of natural transformations where 𝛼 : H⇒ K and 𝛼+ : H+ ⇒ K+ are such that 𝛼 is bicartesian and

^ ◦ 𝛼+ = 𝛼 ◦ ]. (11)

Lemma B.1. Given a ±-transformation (𝛼, 𝛼+), 𝛼+ is bicartesian.

Proof. The bicartesianness of 𝛼+ can be deduced using standard properties of rectangles of pullbacks

and their adaptation to rectangles of pullbacks that are bipullbacks [3, Lemma 5]. □

Now, a ±-modification between two such ±-transformations (𝛼, 𝛼+) and (𝛽, 𝛽+) is the data of a modifica-

tion𝑚 : 𝛼 ⇛ 𝛽 in the 3-category of 2-categories.

Definition B.2. We write ±-Funct for the 3-category with one object, ±-functors as 1-morphisms, ±-trans-
formations as 2-morphisms, and ±-modifications as 3-morphisms.

Given a ±-functor (H,H+, ]) and a thin groupoid 𝐴, there is a canonical thin groupoid H𝐴 whose class of

uniform strategies isUH𝐴 = {H𝑆 | 𝑆 ∈ U𝐴}⊥⊥, whose class of thin prestrategies isTH𝐴 = {H𝑆 | 𝑆 ∈ T𝐴}‚‚
,

and whose negative and positive sub-groupoids are (H𝐴)− = H𝐴− and (H𝐴)+ = H+𝐴+ with embeddings

given by the compositions

H𝐴−
H(id−𝐴 )−−−−−−→ H𝐴 and H+𝐴+

H+ (id+𝐴 )−−−−−−−→ H+𝐴
]𝐴−−→ H𝐴.

By the conditions of ±-functors, they can be shown to be elements of TH𝐴 and T‚H𝐴 as required.

The mapping 𝐴 ↦→ H𝐴 can be extended to a pseudofunctor Ȟ : Thin→Thin by mapping a thin span

𝐴 𝑆 𝐵𝜕𝑆
𝑙 𝜕𝑆𝑟 to the thin span H𝐴 H𝑆 H𝐵H(𝜕𝑆

𝑙
) H(𝜕𝑆𝑟 ) , and by mapping weak morphisms

to their image by H.
Similarly, given a ±-transformation 𝛼 = (𝛼, 𝛼+) between two ±-functors H and K, one can define a

pseudonatural transformation 𝛼 between Ǩ and Ȟ by putting

𝛼𝐴 = K𝐴 H𝐴 H𝐴𝛼𝐴 idH𝐴

and given a ±-modification between two ±-transformations 𝛼 and 𝛽 , one can define a modification �̌�

between 𝛼 and
ˇ𝛽 the expected way. By checking all the details, we get that
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Proposition B.3 ([3, Proposition 20]). Considering ±-Funct as a strict 2-category by forgetting the
dimension 0, ˇ(−) induces a pseudofunctor

ˇ(−) : ±-Functco → Bicat(Thin,Thin)
between bicategories.

Now, one can define the notion of monad (or even pseudomonad) in ±-Funct as particular instances
of the general notion of monad (or pseudomonad) expressed in ±-Funct seen as an abstract 3-category.

While [3] considered Fam which was a pseudomonad in Gpd, this work is concerned with Sym, which is a

monad on Gpd, so that we only require results for the monadic case. In this regard, we have

Proposition B.4. The functor ˇ(−) send a monad on ±-Funct to a pseudocomonad onThin.

Proof. By a direct adaptation of the proof of [3, Theorem 3], which shows that Fam, seen as a pseu-

domonad on ±-Funct, is sent to a pseudocomonad onThin. Indeed, the proof is not specific to Fam and can

be specialized to the case of a monad on ±-Funct. □

B.2 Permutations and the multiplication of Sym
The full definition of the multiplication ` of the monad Sym on groupoids relies on operations on permuta-

tions that we introduce below. In the following, given 𝑛 ∈ N, we write [𝑛] for the set {1, . . . , 𝑛}.
The category P of permutations is defined as the category whose objects are the natural numbers 𝑛 ∈ N,

and whose morphisms from 𝑛 to 𝑛 are the elements of the symmetric group S𝑛 , that is, the bijections from
[𝑛] to itself, and with no morphisms from𝑚 to 𝑛 for𝑚 ≠ 𝑛; composition of morphisms is given by the

composition of the underlying functions, and the identity morphism on 𝑛 is the identity function on [𝑛].
We will often write P𝑛 for P(𝑛, 𝑛).

The category P is equipped with a tensor product ⊕ defined by putting𝑚 ⊕ 𝑛 = 𝑚 + 𝑛 for𝑚,𝑛 ∈ N
and, for _ ∈ P𝑚 and 𝜌 ∈ P𝑛 , by defining _ ⊕ 𝜌 as the bijection a : [𝑚 + 𝑛] → [𝑚 + 𝑛] such that a (𝑖) = _(𝑖)
for 𝑖 ∈ [𝑚], and a (𝑚 + 𝑖) = 𝑚 + 𝜌 (𝑖) for 𝑖 ∈ [𝑛]. More generally, given 𝑘 ∈ N, ®𝑛 = (𝑛1, . . . , 𝑛𝑘 ) ∈ N𝑘 and

bijections a𝑖 : 𝑛𝑖 → 𝑛𝑖 , we write ⊕1≤𝑖≤𝑘a𝑖 for the bijection (· · · (a1 ⊕ a2) ⊕ · · · ) ⊕ a𝑘 . The natural number 0

is the unit object for this tensor product, making ⊕ a strict monoidal category. It is even a strict symmetric

monoidal category: for𝑚,𝑛 ∈ N, one defines a bijection 𝜎𝑚,𝑛 : [𝑚 +𝑛] → [𝑛 +𝑚] by putting 𝜎𝑚,𝑛 (𝑖) = 𝑛 + 𝑖
for 𝑖 ∈ [𝑚] and 𝜎𝑚,𝑛 (𝑚 + 𝑖) = 𝑖 for 𝑖 ∈ [𝑛], and one readily verifies that it gives an adequate symmetry for

the monoidal structure. More generally, given 𝑘 ∈ N, ®𝑛 = (𝑛1, . . . , 𝑛𝑘 ) ∈ N𝑘 and 𝜌 ∈ S𝑘 , one can define a

𝑘-ary symmetry 𝜎®𝑛,𝜌 : [𝑛1 + · · · + 𝑛𝑘 ] → [𝑛𝜌 (1) + · · · + 𝑛𝜌 (𝑘 ) ] by putting

𝜎®𝑛,𝜌 (𝑛1 + · · · + 𝑛𝑙−1
+ 𝑖) = 𝑛𝜌−1 (1) + · · · + 𝑛𝜌−1 (𝜌 (𝑙 )−1) + 𝑖

for 𝑙 ∈ [𝑘] and 𝑖 ∈ [𝑛𝑙 ]. Given permutations 𝜏𝑙 ∈ P𝑛𝑙 for every 𝑙 ∈ [𝑘], we will often write 𝜌 R (𝜏𝑙 )𝑙∈[𝑘 ]
for the composite 𝜎®𝑛,𝜌 ◦ (⊕𝑙∈[𝑘 ]𝜏𝑙 ). One easily verifies the following property:

Lemma B.5. Given 𝑙 ∈ N, (𝑚𝑖 )𝑖∈[𝑙 ] ∈ N𝑙 and (𝑛𝑖, 𝑗 )𝑖∈[𝑙 ], 𝑗∈[𝑚𝑖 ] , permutations 𝜌𝑖, 𝑗 ∈ P𝑛𝑖,𝑗 for 𝑖 ∈ [𝑙], 𝑗 ∈
[𝑚𝑖 ] and 𝜎𝑖 ∈ S𝑚𝑖

for 𝑖 ∈ [𝑙] and 𝜏 ∈ S𝑙 , we have
𝜌 R (𝜎𝑖 R (𝜏𝑖, 𝑗 ) 𝑗 )𝑖 = (𝜏 R (𝜎𝑖 )𝑖 ) R (𝜏𝑖, 𝑗 )𝑖, 𝑗 .

We can now use the definition of (−) R (−) to give a precise definition of `: it is the natural transformation

` : Sym ◦ Sym⇒ Sym

defined on a groupoid 𝐴 as the functor `𝐴 , defined as follows. Given ⟨⟨𝑎𝑖, 𝑗 ⟩𝑗∈[𝑛𝑖 ]⟩𝑖∈[𝑚] ∈ Sym(Sym(𝐴)),
we have

`𝐴 (⟨𝑎𝑖, 𝑗 𝑗∈[𝑛𝑖 ]⟩𝑖∈[𝑚] ) = ⟨𝑎𝑖, 𝑗 ⟩𝑖∈[𝑚], 𝑗∈[𝑛𝑖 ]
and, given a morphism 𝑢 = (𝜎, ⟨(𝜏𝑖 , ⟨𝑓𝑖, 𝑗 ⟩𝑗∈[𝑛𝑖 ] )⟩𝑖∈[𝑚] ) ∈ Sym(Sym(𝐴)), we have

`𝐴 (𝑢) = (𝜎 R (𝜏𝑖 )𝑖∈[𝑚] , (𝑓𝑖, 𝑗 )𝑖∈[𝑚], 𝑗∈[𝑛𝑖 ] ).
One can then use Lemma B.5 to show that ` is associative in the monadic sense.

B.3 The Symmonad on ±-Funct
In order to show that the Sym monad on Gpd induces an adequate comonad ! on Thin, we just need to lift

the monadic structure on Gpd to a monadic structure on ±-Funct, and then conclude by Proposition B.4.

We first show that the Sym endofunctor on Gpd can be lifted to a 1-morphism of ±-Funct.

Proposition B.6. Sym preserves pullbacks and sends pullbacks that are bipullbacks to bipullbacks.
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Proof. Consider a pullback

𝑃 𝑅

𝐿 𝑀

𝑟

𝑙

⌜

𝑓 𝑅

𝑓 𝐿

(12)

in Gpd. In order to show that this pullback is preserved by Sym, we just need to show that a pair of

morphisms (𝜎𝐿, (𝑢𝐿
𝑖
)
1≤𝑖≤𝑛𝐿 ) ∈ Sym𝐿 and (𝜎𝑅, (𝑢𝑅

𝑖
)
1≤𝑖≤𝑛𝑅 ) ∈ Sym𝑅 which are projected to the same

morphism in Sym𝑀 lifts to a unique morphism of Sym𝑃 . But it is quite immediate, since the common

projection on Sym𝑀 implies that 𝑛𝐿 = 𝑛𝑅 , 𝜎𝐿 = 𝜎𝑅 and that 𝑓 𝐿 (𝑢𝐿
𝑖
) = 𝑓 𝑅 (𝑢𝑅

𝑖
) for every 𝑖 ∈ {1, . . . , 𝑛𝐿}.

Thus, Sym preserves pullbacks.

Now, assuming that (12) is moreover a bipullback, we are required to show that its image by Sym is

also a bipullback. For this, we use the criterion given by [3, Proposition 9]. Let ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ ∈ Sym𝐿
and
®𝑏 = ⟨𝑏1, . . . , 𝑏𝑚⟩ ∈ Sym𝑅, and a morphism 𝑣 = (𝜎, (𝑣𝑖 )1≤𝑖≤𝑛) between Sym(𝑓 𝐿) ( ®𝑎) and Sym(𝑓 𝑅) ( ®𝑏).

We need to show that 𝑣 = Sym(𝑓 𝑅) (𝑢𝑅) ◦ Sym(𝑓 𝐿) (𝑢𝐿) for some 𝑢𝐿 ∈ Sym𝐿 and 𝑢𝑅 ∈ Sym𝑅. Since 𝑣 =
(𝜎, (id)1≤𝑖≤𝑛) ◦ (id, (𝑣𝑖 )1≤𝑖≤𝑛) and that (𝜎, (id)1≤𝑖≤𝑛) is in the image of Sym𝑅, we may assume that 𝜎 = id.

Since (12) is a bipullback, we have that 𝑣𝑖 = 𝑓
𝑅 (𝑢𝑅

𝑖
) ◦ 𝑓 𝐿 (𝑢𝐿

𝑖
) for some𝑢𝐿

𝑖
: 𝑎𝑖 → 𝑎′

𝑖
∈ 𝐿 and𝑢𝑅

𝑖
: 𝑏′
𝑖
→ 𝑏𝑖 ∈ 𝑅

for every 𝑖 . By taking 𝑢𝐿 = (id, ⟨𝑢𝐿
𝑖
⟩𝑖 ) and 𝑢𝑅 = (id, ⟨𝑢𝑅

𝑖
⟩𝑖 ), we have 𝑣 = Sym(𝑓 𝑅) (𝑢𝑅) ◦ Sym(𝑓 𝐿) (𝑢𝐿) as

wanted. Thus, by [3, Proposition 9], the image of (12) by Sym is a bipullback. □

Moreover, it is immediate to check that Sym preserves functor 𝑓 : 𝐴 → 𝐵 ∈ Gpd that are bijective on

objects.

We now define Sym+ as the functor Gpd→ Gpd mapping a groupoid 𝑋 ∈ Gpd to the subgroupoid of

Sym𝑋 with the same objects but whose morphisms are restricted to be the ones of the form (id, ⟨𝑢𝑖 ⟩𝑖 ) in
Sym𝑋 , and with the evident image of functors 𝑋 → 𝑌 . This functor comes with a canonical embedding

natural transformation ] : Sym+ ⇒ Sym. Just like for Sym, we have

Proposition B.7. Sym+ preserves pullbacks and sends pullbacks that are bipullbacks to bipullbacks.

Proof. The proof for Sym of Proposition B.6 directly adapts to the case of Sym+. □

Proposition B.8. The natural transformation ] : Sym+ ⇒ Sym is bicartesian.

Proof. Given 𝐹 : 𝐴→ 𝐵 ∈ Gpd, consider the natural square

Sym+𝐴 Sym+𝐵

Sym𝐴 Sym𝐵

Sym+ (𝐹 )

]𝐴 ]𝐵

Sym(𝐹 )

(13)

and consider a pair of morphisms 𝑢 = (𝜌, (𝑢𝑖 )1≤𝑖≤𝑚) ∈ Sym𝐴 and 𝑣 = (𝜎, (𝑣𝑖 )1≤𝑖≤𝑛) ∈ Sym+𝐵 which are

projected to the same morphism in Sym𝐵. For the square (13) to be a pullback, we need to show that this

pair can be lifted to a unique morphism of Sym+𝐴. From the common projection on Sym𝐵, we get that
𝜌 = 𝜎 = id and that 𝑣𝑖 = 𝐹 (𝑢𝑖 ) for every 𝑖 . Thus, 𝑢 actually lifts to Sym+𝐴 through ]𝐴 , which is the required

unique lifting. Thus, (13) is a pullback.

We now show that (13) is a bipullback. Let ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ ∈ Sym𝐴 and
®𝑏 = ⟨𝑏1, . . . , 𝑏𝑚⟩ ∈ Sym+𝐵,

and a morphism 𝑣 = (𝜎, (𝑣𝑖 )1≤𝑖≤𝑛) between Sym(𝐹 ) ( ®𝑎) and ]𝐵 ( ®𝑏) = ®𝑏. We need to show that 𝑣 = ]𝐵 (𝑢𝑅) ◦
Sym(𝐹 ) (𝑢𝐿) for some 𝑢𝐿 ∈ Sym𝐴 and 𝑢𝑅 ∈ Sym+𝐵. Since 𝑣 = (id, (𝑣𝜎−1 (𝑖 ) )1≤𝑖≤𝑛) ◦ (𝜎, (id)1≤𝑖≤𝑛) and that
(𝜎, (id)1≤𝑖≤𝑛) is in the image of Sym(𝐹 ), we may assume that 𝜎 = id. But then, 𝑣 is in the image of ]𝐵 , so

that, by [3, Proposition 9], (13) is a bipullback. □

We thus get that

Proposition B.9. (Sym, Sym+, ]) is a ±-functor.

Proof. The other conditions for being a ±-functor are readily verified. □

Wenow provide liftings in±-Funct for the natural transformations[ : idGpd ⇒ Sym and ` : Sym◦Sym⇒
Sym. For this, we provide [+ : idGpd ⇒ Sym+ and `+ : Sym+ ◦ Sym+ ⇒ Sym+ so that ([, [+) and (`, `+)
define ±-transformations. Actually, this is easy: by the equation (11), [+ is essentially [ and `+

𝑋
is the

adequate restriction of `𝑋 to the subgroupoid Sym+ (Sym+𝑋 ) of Sym(Sym𝑋 ).
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Proposition B.10. We have ±-transformations

([, [+) : (idGpd, idGpd, ididGpd ) ⇒ (Sym, Sym
+, ])

and

(`, `+) : (SymSym, Sym+Sym+, ]]) ⇒ (Sym, Sym+, ]).

Proof. By Lemma B.1, we just need to show that [, ` are bicartesian natural transformations. We only

give the proof for `, since the bicartesianness of [ is quite easy to show.

Consider a functor 𝐹 : 𝐴→ 𝐵 ∈ Gpd and the natural square

Sym(Sym𝐴) Sym(Sym𝐵)

Sym𝐴 Sym𝐵.

Sym(Sym(𝐹 ) )

`𝐴 `𝐵

Sym(𝐹 )

(14)

In order to show that it is a pullback, we consider a pair of morphisms 𝑢 = (𝜎, ⟨𝑢𝑖 ⟩1≤𝑖≤𝑛) ∈ Sym𝐴
and 𝑣 = (𝜌, ⟨(𝜌′

𝑖
, ⟨𝑣𝑖, 𝑗 ⟩1≤ 𝑗≤𝑚𝑖

)⟩
1≤𝑖≤𝑙 ) ∈ Sym(Sym𝐵) that project on the same morphism of Sym𝐵, and

show that it can be lifted to a unique morphism of Sym(Sym𝐴) adequately projecting on 𝑢 and 𝑣 . By

the common projection on Sym𝐵, we have that 𝜎 = 𝜌 R (𝜌′
𝑖
)𝑖 , so that 𝑢 can be written `𝐴 (�̃�) for �̃� =

(𝜌, ⟨(𝜌′
𝑖
, ⟨�̃�𝑖, 𝑗 ⟩1≤ 𝑗≤𝑚𝑖

)⟩
1≤𝑖≤𝑙 ) for some adequate morphisms �̃�𝑖, 𝑗 . We moreover have that 𝐹 (�̃�𝑖, 𝑗 ) = 𝑣𝑖, 𝑗 , so

that �̃� is a lift for the pair (𝑢, 𝑣), and it can be easily proved to be unique, so that the square (14) is a pullback.

We now show that it is a bipullback. So consider ®𝑎 = ⟨𝑎𝑖 ⟩1≤𝑖≤𝑛 ∈ Sym𝐴 and
®𝑏 = ⟨⟨𝑏𝑖, 𝑗 ⟩1≤ 𝑗≤𝑚𝑖

⟩
1≤𝑖≤𝑙 ∈

Sym(Sym𝐵) and a morphism 𝑤 = (𝜏, ⟨𝑤𝑖 ⟩1≤𝑖≤𝑛) : Sym(𝐹 ) ( ®𝑎) → `𝐵 ( ®𝑏) ∈ Sym𝐵. We have to show

that 𝑤 = `𝐵 (𝑣) ◦ Sym(𝐹 ) (𝑢) for some 𝑢 : ®𝑎 → ®𝑎′ ∈ Sym𝐴 and 𝑣 :
®𝑏′ → ®𝑏 ∈ Sym(Sym𝐵). Since

𝑤 = (id, ⟨𝑤𝜏−1 (𝑖 ) ⟩1≤𝑖≤𝑛) ◦ (𝜏, ⟨id⟩1≤𝑖≤𝑛) and that (𝜏, ⟨id⟩1≤𝑖≤𝑛) is in the image of Sym(𝐹 ), we may assume

that 𝜏 = id. But then, it is clear that we may find 𝑣 :
®𝑏′ → ®𝑏 such that𝑤 = `𝐵 (𝑣), so that (14) is a bipullback

by [3, Proposition 9]. □

Proposition B.11. The triple ((Sym, Sym+, ]), ([, [+), (`, `+)) defines a monad on ±-Funct.

Proof. One just need to check the monad axioms for this triple. But they directly follow from the monad

axioms satisfied by the monad (Sym, [, `) on Gpd. □

We may now conclude that

Proposition B.12. The Sym functor defines a pseudocomonad ˇSym on Thin, with [̌ as counit and ˇ̀ as
comultiplication.

Proof. This is a consequence of Propositions B.4 and B.11. □

C DETAILS ON INTERSECTION TYPES
C.1 The correspondence for the objects

Proof of Proposition 3.2. We prove the statement by induction on 𝐴. If 𝐴 = 𝑜 , then ⟦𝐴⟧ = (1, . . .)
(the unique thin groupoid with the terminal groupoid as underlying groupoid) so that we can take 𝐾𝐴 = id1.

If 𝐴 = 𝐵 → 𝐶 , then 𝐾𝐴 is defined as the composite

Ob(⟦𝐵 → 𝐶⟧) Ob(!⟦𝐵⟧) × Ob(⟦𝐶⟧)

· · · {⟨𝛽1, . . . , 𝛽𝑛⟩ | 𝛽𝑖 ⊳ 𝐵 for 𝑖 ∈ {1, . . . , 𝑛}} × {𝛾 | 𝛾 ⊳𝐶}

· · · {𝛿 | 𝛿 ⊳ (𝐵 → 𝐶)}.

𝐾 !

𝐵
×𝐾𝐶

∼

Finally, we put𝐾 !

𝐴
= !𝐾𝐴 , assuming the same encoding of sequences for the ! construction and themultilinear

refinement types, for simplicity. □

Proof of Proposition 3.3. Let us first give some precisions on the “and similarly for ⟦𝑀⟧!
” part. By

that, we mean that, given a derivation Γ ⊢ 𝑀 : 𝐴, for every 𝛾 ∈ ⟦Γ⟧ and ®𝑎 ∈ !(|𝐴|), we have a bijection
⟦𝑀⟧!

𝛾,®𝑎 ≃ {𝜋 | 𝜋 is a derivation of 𝐾Γ (𝛾) ⊳ Γ ⊢ 𝑀 : 𝐾 !

𝐴
( ®𝑎) ⊳𝐴}.

We then prove the property by induction on the derivations Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑀 : 𝐴:
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• in the case of the variable typing rule 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑥𝑖 : 𝐴𝑖 , if 𝛾 = (⟨⟩, . . . , ⟨⟩, ⟨𝑎⟩, ⟨⟩, . . . , ⟨⟩)
then

Ob(⟦𝑥𝑖⟧𝛾,𝑎) = {𝑎} {𝜋 | 𝜋 is a derivation of

𝑥1 : ⟨⟩ ⊳𝐴1, . . . , 𝑥𝑖 : ⟨𝐾𝐴𝑖
(𝑎)⟩ ⊳𝐴𝑖 , . . . , 𝑥𝑛 : ⟨⟩ ⊳𝐴𝑛 ⊳ Γ ⊢ 𝑥 : 𝐾𝐴𝑖

(𝑎) ⊳𝐴}

{𝜋 | 𝜋 is a derivation of 𝐾Γ (𝛾) ⊳ Γ ⊢ 𝑥 : 𝐾𝐴𝑖
(𝑎) ⊳𝐴𝑖 }

∼

∼

which is canonically isomorphic by 𝐾𝐴𝑖
to {𝛼 | 𝛼 ⊳ 𝐴𝑖 }. Otherwise, for other 𝛾 ’s, we have

Ob(⟦𝑀⟧𝛾,𝑎) = ∅ and no derivations for 𝐾Γ (𝛾) ⊳ Γ ⊢ 𝑥 : 𝐾𝐴𝑖
(𝑎) ⊳𝐴𝑖 ;

• in the case of an intersection typing Γ ⊢ 𝑀 : 𝐴 derived from a proof of Γ ⊢ 𝑀 : 𝐴, and given

®𝑎 = ⟨𝑎1, . . . , 𝑎𝑙 ⟩ ∈ ⟦𝐴⟧, we have

⟦𝑀⟧!

𝛾,®𝑎 ≃
⊔

®𝛾=⟨𝛾1,...,𝛾𝑙 ⟩∈!⟦Γ⟧
𝛾1•···•𝛾𝑙=𝛾

𝑙∏
𝑖=1

⟦𝑀⟧𝛾𝑖 ,𝑎𝑖

≃
⊔

®𝛾=⟨𝛾1,...,𝛾𝑙 ⟩∈!⟦Γ⟧
𝛾1•···•𝛾𝑙=𝛾

𝑙∏
𝑖=1

{𝜋 | 𝜋 derivation of 𝐾Γ (𝛾𝑖 ) ⊳ Γ ⊢ 𝑀 : 𝐾𝐴 (𝑎𝑖 ) ⊳𝐴}

≃ {𝜋 | 𝜋 derivation of 𝐾Γ (𝛾) ⊳ Γ ⊢ 𝑀 : 𝐾 !

𝐴 ( ®𝑎) ⊳𝐴};
• in the case of an application Γ ⊢ 𝑀 𝑁 : 𝐵 constructed from two derivations of Γ ⊢ 𝑀 : 𝐴→ 𝐵 and

Γ ⊢ 𝑁 : 𝐴 for some unique simple type 𝐴, considering the definition ⟦𝑀 𝑁⟧, we have that

⟦𝑀 𝑁⟧𝛾,𝑏 ≃
⊔

𝛾1,𝛾2∈⟦Γ⟧
𝛾1•𝛾2=𝛾

⊔
®𝑎∈!⟦𝐴⟧

⟦𝑀⟧𝛾1,( ®𝑎,𝑏 ) × ⟦𝑁⟧
!

𝛾2,®𝑎

≃
⊔

𝛾1,𝛾2∈⟦Γ⟧
𝛾1•𝛾2=𝛾

⊔
®𝑎∈!⟦𝐴⟧

{𝜋1 | 𝜋1 derivation of 𝐾Γ (𝛾1) ⊳ Γ ⊢ 𝑀 : 𝐾𝐴→𝐵 ( ®𝑎, 𝑏) ⊳𝐴→ 𝐵}

× {𝜋2 | 𝜋2 derivation of 𝐾Γ (𝛾2) ⊳ Γ ⊢ 𝑁 : 𝐾 !

𝐴 ( ®𝑎) ⊳𝐴}
≃ {𝜋 | 𝜋 derivation of 𝐾Γ (𝛾) ⊳ Γ ⊢ 𝑀 𝑁 : 𝐾𝐵 (𝑏) ⊳ 𝐵};

• in case of a lambda-abstraction Γ ⊢ _𝑥 .𝑀 : 𝐴→ 𝐵, given 𝛾 ∈ ⟦Γ⟧ and (^, 𝛽) ∈ ⟦𝐴→ 𝐵⟧, we have
⟦_𝑥.𝑀⟧𝛾,(^,𝛽 ) ≃ ⟦𝑀⟧𝛾 ::̂ ,𝛽

≃ {𝜋 | 𝜋 derivation of 𝐾(Γ,𝑥 :𝐴) (𝛾 :: ^) ⊳ (Γ, 𝑥 : 𝐴) ⊢ 𝑀 : 𝐾𝐵 (𝛽) ⊳ 𝐵}
≃ {𝜋 | 𝜋 derivation of 𝐾Γ (𝛾) ⊳ Γ ⊢ _𝑥 .𝑀 : 𝐾𝐴→𝐵 ((^, 𝛽)) ⊳𝐴→ 𝐵}

where, for 𝛾 = (𝛾1, . . . , 𝛾𝑛) ∈ ⟦Γ⟧, we write 𝛾 :: ^ for (^1, . . . , ^𝑛, ^) ∈ ⟦Γ, 𝑥 : 𝐴⟧.
□

C.2 The groupoids of intersection types
Here, we give details about the structure of the groupoids IT(𝐴) (and its multilinear version) of intersection

types and the associated morphisms that refine a simple type 𝐴.

Given a simple type 𝐴, we first define Ob(IT(𝐴)) as the set of linear intersection types 𝛼 such that 𝛼 ⊳𝐴.

We then define the symmetries 𝛼 → 𝛼 ′ of IT(𝐴) as the linear intersection type morphisms 𝜙 such that

𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴. We have the convenient property that

LemmaC.1. Given a linear intersection typemorphism𝜙 , there is at most one pair (𝛼, 𝛼 ′) of linear intersection
types such that 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴, and similarly for multilinear intersection type morphisms \ .

Proof. By a simple induction on 𝜙 and \ . □

Thus, given a morphism 𝜙 of IT(𝐴), we may write 𝜕− (𝜙) and 𝜕+ (𝜙) for the unique 𝛼 and 𝛼 ′ such that

𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴.
We may define similarly (the beginning of) a groupoid IT! (𝐴), whose objects are the multilinear intersec-

tion types ®𝛼 such that ®𝛼 ⊳𝐴, and whose morphisms ®𝛼 → ®𝛼 ′ are the multilinear intersection type morphisms

are the 𝜙 ’s such that 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳ 𝐴. By Lemma C.1, we may write 𝜕− (𝜙) and 𝜕+ (𝜙) for these unique ®𝛼
and ®𝛼 ′.

Given 𝛼 ∈ Ob(IT(𝐴)) and ®𝛼 ∈ Ob(IT! (𝐴)), we define id𝛼 ∈ Ar(IT(𝐴)) and id ®𝛼 ∈ Ar(IT! (𝐴)) such that

id𝛼 :: 𝛼 ⇒ 𝛼 ⊳𝐴 and id ®𝛼 :: ®𝛼 ⇒ ®𝛼 ⊳𝐴 by mutual induction on the derivations of 𝛼 ⊳𝐴 and ®𝛼 ⊳𝐴:
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• in the case of the axiom ★ ⊳ 𝑜 , we put id★ = id★. We then have id★ :: ★⇒ ★ ⊳𝐴 by corresponding

rule for morphisms;

• in the case of the linear arrow ( ®𝛽 ⊸ 𝛾) ⊳ (𝐵 → 𝐶), by induction hypothesis, we get id ®𝛽 ∈ Ar(IT! (𝐵))

and id𝛾 ∈ Ar(IT(𝐶)) such that id ®𝛽 ::
®𝛽 ⇒ ®𝛽 ⊳ 𝐵 and id𝛾 :: 𝛾 ⇒ 𝛾 ⊳ 𝐶 . We then put id ®𝛽⊸𝛾 to be

id ®𝛽 ⊸ id𝛾 , for which we are able to derive id ®𝛽⊸𝛾 :: ( ®𝛽 ⊸ 𝛾) ⇒ ( ®𝛽 ⊸ 𝛾) ⊳ 𝐵 → 𝐶 using the

corresponding rule for morphisms;

• in the case of the multilinear formation ®𝛼 ⊳ 𝐴 for ®𝛼 = ⟨𝛼1, . . . , 𝛼𝑛⟩, by induction hypothesis,

we get id𝛼𝑖 ∈ Ar(IT(𝐴)) such that id𝛼𝑖 :: 𝛼𝑖 ⇒ 𝛼𝑖 ⊳ 𝐴 for 𝑖 ∈ {1, . . . , 𝑛}. We then put id ®𝛼 =

(id, ⟨id𝛼1
, . . . , id𝛼𝑛 ⟩), for which we can easily derive that id ®𝛼 :: ®𝛼 ⇒ ®𝛼 ⊳𝐴 using the corresponding

rule for morphisms.

Given 𝜙1, 𝜙2 ∈ Ar(IT(𝐴)) (resp. 𝜙1, 𝜙2 ∈ Ar(IT! (𝐴))), we say that they are composable when 𝜕+ (𝜙1) =
𝜕− (𝜙2) (resp. 𝜕+ (𝜙1) = 𝜕− (𝜙2)). It happens that two composable intersection type morphisms are very

“similar” in their construction:

Lemma C.2. Given 𝜙1, 𝜙2 ∈ Ar(IT(𝐴)) such that they are composable, we have that:

• if 𝜙1 = id★, then 𝐴 = 𝑜 and 𝜙2 = id★;
• if 𝜙1 = 𝜙1 ⊸ 𝜓1, then

– 𝐴 = 𝐵 → 𝐶 for some unique simple types 𝐵 and 𝐶 ,
– 𝜙1 ∈ Ar(IT! (𝐵)) and𝜓1 ∈ Ar(IT(𝐶)),
– 𝜙2 = 𝜙2 ⊸ 𝜓2 for some unique 𝜙2 ∈ Ar(IT(𝐵)) and𝜓1 ∈ Ar(IT(𝐶)),
– and 𝜙1, 𝜙2 (resp.𝜓1,𝜓2) are composable.

Similarly, given 𝜙1 = (𝜎1, ⟨𝜙1,1, . . . , 𝜙1,𝑛1
⟩) and 𝜙2 = (𝜎2, ⟨𝜙2,1, . . . , 𝜙2,𝑛2

⟩) in Ar(IT! (𝐴)) for some 𝑛𝑖 ∈ N,
𝜎𝑖 ∈ S𝑛𝑖 and intersection type morphisms 𝜙𝑖,1, . . . , 𝜙𝑖,𝑛𝑖 for 𝑖 ∈ {1, 2}, such that 𝜙1 and 𝜙2 are composable, we
have that 𝑛1 = 𝑛2 and 𝜙1, 𝑗 is composable with 𝜙

2,𝜎1 ( 𝑗 ) for 𝑗 ∈ {1, . . . , 𝑛1}.

Proof. By mutual induction on the derivations of 𝜙1 and 𝜙1. □

Given a simple type 𝐴 and two composable linear (resp. multilinear) intersection type morphisms

𝜙1, 𝜙2 ∈ Ar(IT(𝐴)) (resp. 𝜙1, 𝜙2 ∈ Ar(IT! (𝐴))), we now define their composition 𝜙2 ◦ 𝜙1 (resp. 𝜙2 ◦ 𝜙1) by

mutual induction. We use Lemma C.2 to give a complete definition with a minimal case analysis:

• we put id★ ◦ id★ = id★ ◦ id★;

• given composable 𝜙1 = Z1 ⊸ 𝜓1 and 𝜙2 = Z2 ⊸ 𝜓2, we put 𝜙2 ◦ 𝜙1 = (Z2 ◦ Z1) ⊸ (𝜓2 ◦𝜓1);
• given composable 𝜙1 = (𝜎1, ⟨𝜓1,1, . . . ,𝜓1,𝑛⟩) and 𝜙2 = (𝜎2, ⟨𝜓2,1, . . . ,𝜓2,𝑛⟩), we put

𝜙2 ◦ 𝜙1 = (𝜎2 ◦ 𝜎1, ⟨𝜓2,𝜎 (1) ◦𝜓1,1, . . . ,𝜓2,𝜎 (𝑛) ◦𝜓1,𝑛⟩).

Given a simple type 𝐴 and a composable linear (resp. multilinear) intersection type morphism 𝜙 ∈ IT(𝐴)
(resp. 𝜙 ∈ Ar(IT! (𝐴))), we now define its inverse 𝜙−1

(resp. 𝜙−1
) by induction on the derivations:

• we put id
−1

★ = id★;

• given 𝜙 = 𝜙 ⊸ 𝜓 , we put 𝜙−1 = 𝜙−1 ⊸ 𝜓−1
;

• given 𝜙 = (𝜎, ⟨𝜓1, . . . ,𝜓𝑛⟩), we put 𝜙−1 = (𝜎−1, ⟨𝜓𝜎−1 (1) , . . . ,𝜓𝜎−1 (𝑛) ⟩).
The above operations assemble into a groupoidal structure:

Lemma C.3. Given a simple type 𝐴, we have that

• ◦ is an associative composition operation on IT(𝐴) (resp. IT! (𝐴)) with id as unit, making IT(𝐴) (resp.
IT! (𝐴)) a category;

• for every 𝜙 ∈ Ar(IT(𝐴)) (resp. 𝜙 ∈ Ar(IT! (𝐴))), we have 𝜙−1 ◦ 𝜙 = id𝜕− (𝜙 ) and 𝜙 ◦ 𝜙−1 = id𝜕+ (𝜙 )
(resp. 𝜙−1 ◦ 𝜙 = id

𝜕− (𝜙 ) and 𝜙 ◦ 𝜙
−1 = id

𝜕+ (𝜙 ) ), so that IT(𝐴) (resp. IT! (𝐴)) is a groupoid.

Proof. By simple inductions. □

Proof of Proposition 3.4. The functors 𝐾𝐴 and 𝐾 !

𝐴
are built as the direct extensions to symmetries of

the ones built in the proof of Proposition 3.2, since the definition of multilinear intersection type morphisms

closely follows the definition of the action of ! on groupoids and their symmetries. □
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C.3 Resource context groupoid
We recall that we only consider contexts, resource contexts and resource morphism contexts that are

well-formed, so that we will often omit to precise that such contexts are well-formed for conciseness.

Given a (well-formed) context Γ = (𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛), we give some details about the definition

of the groupoid IT(Γ): its objects are the resource contexts Θ = (𝑥1 : ^1 ⊳ 𝐴1, . . . , 𝑥𝑛 : ^𝑛 ⊳ 𝐴𝑛), and its

morphisms of type Θ → Θ′, for another resource context Θ′ = (𝑥1 : ^′
1
⊳ 𝐴1, . . . , 𝑥𝑛 : ^′𝑛 ⊳ 𝐴𝑛), are the

resource morphisms contexts Ξ = (𝑥1 : \1 :: ^1 ⇒ ^′
1
⊳ 𝐴1, . . . , 𝑥𝑛 : \𝑛 :: ^𝑛 ⇒ ^′𝑛 ⊳ 𝐴𝑛). We then write

𝜕− (Ξ) for Θ and 𝜕+ (Ξ) for Θ′. Two resource morphism contexts Ξ1 and Ξ2 of IT(Γ) defined by

Ξ𝑖 = (𝑥1 : \𝑖,1 :: ^𝑖,1 ⇒ ^′𝑖,1 ⊳𝐴1, . . . , 𝑥𝑛 : \𝑖,𝑛 :: ^𝑖,𝑛 ⇒ ^′𝑖,𝑛 ⊳𝐴𝑛)
are composable when 𝜕+ (Ξ) = 𝜕− (Ξ′). In this case, we define their composite as

Ξ2 ◦ctxt Ξ1 = (𝑥1 : \2,1 ◦ \1,1 :: ^1,1 ⇒ ^′
2,1 ⊳𝐴1, . . . , 𝑥𝑛 : \2,𝑛 ◦ \1,𝑛 :: ^1,𝑛 ⇒ ^′

2,𝑛 ⊳𝐴𝑛).

Moreover, given Ξ as above, there is a resource morphism context Ξ−1
defined by

Ξ−1 = (𝑥1 : \−1

1
:: ^′

1
⇒ ^1 ⊳𝐴1, . . . , 𝑥𝑛 : \−1

𝑛 :: ^′𝑛 ⇒ ^𝑛 ⊳𝐴𝑛)
and which is the inverse of Ξ. Given a resource context Θ = (𝑥1 : ^1 ⊳ 𝐴1, . . . , 𝑥𝑛 : ^𝑛 ⊳ 𝐴𝑛), there is an
identity resource morphism context id

ctxt

Θ defined by

id
ctxt

Θ = (𝑥1 : id^1
:: ^1 ⇒ ^1 ⊳𝐴1, . . . , 𝑥𝑛 : id^𝑛 :: ^𝑛 ⇒ ^𝑛 ⊳𝐴𝑛).

Following what was done in the previous section, we readily have that

Proposition C.4. IT(Γ) has a structure of groupoid and, as such, it is isomorphic to the groupoid IT! (𝐴1) ×
· · · × IT! (𝐴𝑛).

C.4 Morphisms between derivations
Here, we give more details about the definition of the 𝜌 R (−) operation on families of multilinear

intersection type morphisms and resource morphism contexts.

Let𝑚 ∈ N, 𝜌 ∈ S𝑚 . Given a family of morphisms (𝜙 𝑗 :: ®𝛼 𝑗 ⇒ ®𝛼 ′𝑗 ⊳𝐴)1≤ 𝑗≤𝑚 where𝜙 𝑗 = (𝜎 𝑗 , ⟨𝜙 𝑗,𝑘 ⟩1≤𝑘≤𝑙 𝑗 )
with 𝑙 𝑗 the length of ®𝛼 𝑗 (and ®𝛼 ′𝑗 ) for every 𝑗 ∈ {1, . . . ,𝑚}, we write 𝜌 R (𝜙 𝑗 )1≤ 𝑗≤𝑚 for the multilinear

intersection type morphism 𝜙 defined by

𝜙 = (𝜌 R (𝜎 𝑗 )1≤ 𝑗≤𝑚, ⟨𝜙1,𝑘 ⟩1≤𝑘≤𝑙1 • · · · • ⟨𝜙𝑚,𝑘 ⟩1≤𝑘≤𝑙𝑚 )
where ⟨𝜙

1,𝑘 ⟩1≤𝑘≤𝑙1 • · · · • ⟨𝜙𝑚,𝑘 ⟩1≤𝑘≤𝑙𝑚 is the mere concatenation of the sequences of morphisms. Note

that we then have the refinement

𝜙 :: ®𝛼1 • · · · • ®𝛼𝑚 ⇒ ®𝛼 ′𝜌−1 (1) • · · · • ®𝛼
′
𝜌−1 (𝑚) ⊳𝐴.

Now, given a family

(Ξ𝑗 )1≤ 𝑗≤𝑚 = ((𝑥𝑖 : 𝜙𝑖, 𝑗 :: ®𝛼𝑖, 𝑗 ⇒ ®𝛼 ′𝑖, 𝑗 ⊳𝐴𝑖 )1≤𝑖≤𝑛)1≤ 𝑗≤𝑚
of resource morphism contexts, all refining a common context Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 , we define

𝜌 R (Ξ𝑗 )1≤ 𝑗≤𝑚 as the resource morphism context

𝜌 R (Ξ𝑗 )1≤ 𝑗≤𝑚 = (𝑥𝑖 : 𝜌 R (𝜙𝑖, 𝑗 )1≤ 𝑗≤𝑚 :: ®𝛼𝑖,1 • · · · • ®𝛼𝑖,𝑚 ⇒ ®𝛼𝑖,𝜌−1 (1) • · · · • ®𝛼𝑖,𝜌−1 (𝑚) ⊳𝐴𝑖 )1≤𝑖≤𝑛 .

C.5 The intersection type groupoid for a term
We now give some details about the definition of the groupoid IT(𝑀) for a well-typed _-term Γ ⊢ 𝑀 : 𝐴.

Given a derivation 𝜋 ofΞ⊳Γ ⊢ 𝑀 : 𝜙 :: 𝛼 ⇒ 𝛼 ′⊳𝐴, one can define a derivation 𝜕− (𝜋) of dom(Ξ)⊳Γ ⊢ 𝑀 : 𝛼⊳𝐴

and a derivation 𝜕+ (𝜋) of cod(Ξ)⊳Γ ⊢ 𝑀 : 𝛼 ′⊳𝐴 by induction on 𝜋 (and similarly for multilinear judgements).

We only give the definition of 𝜕− (𝜋) in Figure 3 since the one of 𝜕+ (𝜋) is similar. The correction of this

definition relies on the following easy compatibility property between resource contexts and the dom
operation:

Proposition C.5. Let Γ be a context. We have:
(a) given two resource morphism contexts Ξ,Ξ′ ⊳ Γ, we have dom(Ξ • Ξ′) = dom(Ξ) • dom(Ξ′);
(b) given resource morphism contexts Ξ1, . . . ,Ξ𝑛 ⊳ Γ and S𝑛 , we have

dom(𝜎 R (Ξ𝑖 )𝑖 ) = dom(Ξ1) • · · · • dom(Ξ𝑛)
and similarly for cod.
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𝜕−
(

(𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴𝑖 )
. . . , 𝑥𝑖 : (id{1} , ⟨𝜙⟩) :: ⟨𝛼⟩ ⇒ ⟨𝛼 ′⟩ ⊳𝐴𝑖 , . . . ⊢ 𝑥𝑖 : 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴𝑖

)
=

(𝛼 ⊳𝐴𝑖 )
. . . , 𝑥𝑖 : ⟨𝛼⟩ ⊳𝐴𝑖 , . . . ⊳ 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑥𝑖 : 𝛼 ⊳𝐴𝑖

𝜕−
©«

𝜋1

Ξ ⊢ 𝑀 : (𝜙 ⊸ 𝜓 ) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′ ⊸ 𝛽′) ⊳𝐴→ 𝐵

𝜋2

Ξ′ ⊢ 𝑁 : 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴
Ξ • Ξ′ ⊢ 𝑀 𝑁 : 𝜓 :: 𝛽 ⇒ 𝛽′ ⊳ 𝐵

ª®®¬ =
𝜕− (𝜋1)

dom(Ξ)⊳ ⊢ 𝑀 : ( ®𝛼 ⊸ 𝛽) ⊳𝐴→ 𝐵

𝜕− (𝜋2)
dom(Ξ′) ⊳ Γ ⊢ 𝑁 : ®𝛼 ⊳𝐴

dom(Ξ • Ξ′) ⊳ Γ ⊢ 𝑀 𝑁 : 𝛽 ⊳ 𝐵

𝜕−
©«

𝜋 ′

Ξ, 𝑥 : 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴 ⊢ 𝑀 : 𝜓 :: 𝛽 ⇒ 𝛽′ ⊳ 𝐵

Ξ ⊢ _𝑥 .𝑀 : (𝜙 ⊸ 𝜓 ) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′ ⊸ 𝛽′) ⊳𝐴→ 𝐵

ª®®¬ =
𝜕− (𝜋 ′)

dom(Ξ), 𝑥 : ®𝛼 ⊳𝐴 ⊳ Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝛽 ⊳ 𝐵

dom(Ξ) ⊳ Γ ⊢ _𝑥. 𝑀 : ( ®𝛼 ⊸ 𝛽) ⊳𝐴→ 𝐵

𝜕−
©«

𝑛 ∈ N 𝜎 ∈ S𝑛 ∀𝑖 ∈ {1, . . . , 𝑛},
𝜋𝑖

Ξ𝑖 ⊢ 𝑀 : 𝜙𝑖 :: 𝛼𝑖 ⇒ 𝛼 ′𝑖 ⊳𝐴

𝜎 R (Ξ𝑖 )1≤𝑖≤𝑛 ⊢ 𝑀 : (𝜎, ⟨𝜙1, . . . , 𝜙𝑛⟩) :: ⟨𝛼1, . . . , 𝛼𝑛⟩ ⇒ ⟨𝛼 ′𝜎−1 (1) , . . . , 𝛼
′
𝜎−1 (𝑛) ⟩ ⊳𝐴

ª®®¬ =
∀𝑖 ∈ {1, . . . , 𝑘},

𝜕− (𝜋𝑖 )
dom(Ξ𝑖 ) ⊳ Γ ⊢ 𝑀 : 𝛼𝑖 ⊳𝐴

dom(𝜎 R (Ξ𝑖 )1≤𝑖≤𝑛) ⊳ Γ ⊢ 𝑀 : ⟨𝛼1, . . . , 𝛼𝑘 ⟩ ⊳𝐴

Figure 3: The definition of 𝜕− (𝜋)

(𝜙2 :: 𝛼 ′ ⇒ 𝛼 ′′ ⊳𝐴𝑖 )
. . . , 𝑥𝑖 : (id{1} , ⟨𝜙2⟩) :: ⟨𝛼 ′⟩ ⇒ ⟨𝛼 ′′⟩ ⊳𝐴𝑖 , . . . ⊢ 𝑥𝑖 : 𝜙2 :: 𝛼 ′ ⇒ 𝛼 ′′ ⊳𝐴𝑖

◦ (𝜙1 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴𝑖 )
. . . , 𝑥𝑖 : (id{1} , ⟨𝜙1⟩) :: ⟨𝛼⟩ ⇒ ⟨𝛼 ′⟩ ⊳𝐴𝑖 , . . . ⊢ 𝑥𝑖 : 𝜙1 :: 𝛼 ⇒ 𝛼 ′ ⊳𝐴𝑖

=
(𝜙2 ◦ 𝜙1 :: 𝛼 ⇒ 𝛼 ′′ ⊳𝐴𝑖 )

. . . , 𝑥𝑖 : (id{1} , ⟨𝜙2 ◦ 𝜙1⟩) :: ⟨𝛼⟩ ⇒ ⟨𝛼 ′′⟩ ⊳𝐴𝑖 , . . . ⊢ 𝑥𝑖 : 𝜙2 ◦ 𝜙1 :: 𝛼 ⇒ 𝛼 ′′ ⊳𝐴𝑖

𝜋2,1

Ξ2 ⊢ 𝑀 : (𝜙2 ⊸ 𝜓2) :: ( ®𝛼 ′ ⊸ 𝛽′) ⇒ ( ®𝛼 ′′ ⊸ 𝛽′′) ⊳𝐴→ 𝐵

𝜋2,2

Ξ′
2
⊢ 𝑁 : 𝜙2 :: ®𝛼 ′ ⇒ ®𝛼 ′′ ⊳𝐴

Ξ2 • Ξ′2 ⊢ 𝑀 𝑁 : 𝜓2 :: 𝛽′ ⇒ 𝛽′′ ⊳ 𝐵
◦

𝜋1,1

Ξ1 ⊢ 𝑀 : (𝜙1 ⊸ 𝜓1) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′ ⊸ 𝛽′) ⊳𝐴→ 𝐵

𝜋1,2

Ξ′
1
⊢ 𝑁 : 𝜙1 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴

Ξ1 • Ξ′1 ⊢ 𝑀 𝑁 : 𝜓1 :: 𝛽 ⇒ 𝛽′ ⊳ 𝐵

=

𝜋2,1 ◦ 𝜋1,1

Ξ2 ◦ Ξ1 ⊢ 𝑀 : (𝜙2 ⊸ 𝜓2) ◦ (𝜙1 ⊸ 𝜓1) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′′ ⊸ 𝛽′′) ⊳𝐴→ 𝐵

𝜋2,2 ◦ 𝜋1,2

Ξ′
2
◦ Ξ′

1
⊢ 𝑁 : 𝜙2 ◦ 𝜙1 :: ®𝛼 ⇒ ®𝛼 ′′ ⊳𝐴

(Ξ2 • Ξ′2) ◦ (Ξ1 • Ξ′1) ⊢ 𝑀 𝑁 : 𝜓2 ◦𝜓1 :: 𝛽 ⇒ 𝛽′′ ⊳ 𝐵

𝜎2 ∈ S𝑛 ∀𝑖 ∈ {1, . . . , 𝑛},

𝜋2,𝑖

Ξ2,𝑖 ⊢ 𝑀 : 𝜙2,𝑖 :: 𝛼 ′
𝜎−1

1
(𝑖 ) ⇒ 𝛼 ′′

𝜎−1

1
(𝑖 ) ⊳𝐴

𝜎2 R (Ξ2,𝑖 )1≤𝑖≤𝑛 ⊢ 𝑀 : (𝜎2, ⟨𝜙2,1, . . . , 𝜙2,𝑛⟩) :: ⟨𝛼 ′
𝜎−1

1
(1) , . . . , 𝛼

′
𝜎−1

1
(𝑛) ⟩ ⇒ ⟨𝛼

′′
𝜎−1

1
(𝜎−1

2
(1) ) , . . . , 𝛼

′′
𝜎−1

1
(𝜎−1

2
(𝑛) ) ⟩ ⊳𝐴

◦ 𝑛 ∈ N 𝜎1 ∈ S𝑛 ∀𝑖 ∈ {1, . . . , 𝑛},
𝜋1,𝑖

Ξ1,𝑖 ⊢ 𝑀 : 𝜙1,𝑖 :: 𝛼𝑖 ⇒ 𝛼 ′𝑖 ⊳𝐴

𝜎1 R (Ξ1,𝑖 )1≤𝑖≤𝑛 ⊢ 𝑀 : (𝜎1, ⟨𝜙1,1, . . . , 𝜙1,𝑛⟩) :: ⟨𝛼1, . . . , 𝛼𝑛⟩ ⇒ ⟨𝛼 ′𝜎−1

1
(1) , . . . , 𝛼

′
𝜎−1

1
(𝑛) ⟩ ⊳𝐴

=
∀𝑖 ∈ {1, . . . , 𝑛},

𝜋
2,𝜎1 (𝑖 ) ◦ 𝜋1,𝑖

Ξ
2,𝜎1 (𝑖 ) ◦ Ξ1,𝑖 ⊢ 𝑀 : 𝜙

2,𝜎1 (𝑖 ) ◦ 𝜙1,𝑖 :: 𝛼𝑖 ⇒ 𝛼 ′′𝑖 ⊳𝐴

(𝜎2 R (Ξ2,𝑖 )1≤𝑖≤𝑛) ◦ (𝜎1 R (Ξ1,𝑖 )1≤𝑖≤𝑛) ⊢ 𝑀 : (𝜎2, ⟨𝜙2,1, . . . , 𝜙2,𝑛⟩) ◦ (𝜎1, ⟨𝜙1,1, . . . , 𝜙1,𝑛⟩) :: ⟨𝛼1, . . . , 𝛼𝑛⟩ ⇒ ⟨𝛼 ′′𝜎−1

1
(𝜎−1

2
(1) ) , . . . , 𝛼

′′
𝜎−1

1
(𝜎−1

2
(𝑛) ) ⟩ ⊳𝐴

𝜋 ′
2

Ξ2, 𝑥 : 𝜙2 :: ®𝛼 ′ ⇒ ®𝛼 ′′ ⊳𝐴 ⊢ 𝑀 : 𝜓2 :: 𝛽′ ⇒ 𝛽′′ ⊳ 𝐵

Ξ2 ⊢ _𝑥 .𝑀 : (𝜙2 ⊸ 𝜓2) :: ( ®𝛼 ′ ⊸ 𝛽′) ⇒ ( ®𝛼 ′′ ⊸ 𝛽′′) ⊳𝐴→ 𝐵
◦

𝜋 ′
1

Ξ1, 𝑥 : 𝜙1 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴 ⊢ 𝑀 : 𝜓1 :: 𝛽 ⇒ 𝛽′ ⊳ 𝐵

Ξ1 ⊢ _𝑥. 𝑀 : (𝜙1 ⊸ 𝜓1) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′ ⊸ 𝛽′) ⊳𝐴→ 𝐵

=

𝜋 ′
2
◦ 𝜋 ′

1

Ξ2 ◦ Ξ1, 𝑥 : 𝜙2 ◦ 𝜙1 :: ®𝛼 ⇒ ®𝛼 ′′ ⊳𝐴 ⊢ 𝑀 : 𝜓2 ◦𝜓1 :: 𝛽 ⇒ 𝛽′′ ⊳ 𝐵

Ξ2 ◦ Ξ1 ⊢ _𝑥. 𝑀 : (𝜙2 ⊸ 𝜓2) ◦ (𝜙1 ⊸ 𝜓1) :: ( ®𝛼 ⊸ 𝛽) ⇒ ( ®𝛼 ′′ ⊸ 𝛽′′) ⊳𝐴→ 𝐵

Figure 4: The definition of composition of intersection type morphism derivations

Proof. By direct computation. □

We can now start the definition of IT(𝑀). Its objects are the derivations 𝜋 of Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳𝐴 and its

morphisms between two objects

𝜋𝑠 : Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳𝐴 and 𝜋𝑡 : Θ′ ⊳ Γ ⊢ 𝑀 : 𝛼 ′ ⊳𝐴

are the derivations 𝜋 of Ξ ⊳ Γ ⊢ 𝑀 : 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳ 𝐴 such that 𝜕− (𝜋) = 𝜋𝑠 and 𝜕
+ (𝜋) = 𝜋𝑡 . Given two

composable morphisms 𝜋1 : Ξ1 ⊳ Γ ⊢ 𝑀 : 𝜙1 :: 𝛼 ⇒ 𝛼 ′ ⊳ 𝐴 and 𝜋2 : Ξ2 ⊳ Γ ⊢ 𝑀 : 𝜙2 :: 𝛼 ′ ⇒ 𝛼 ′′ ⊳ 𝐴, their
composition 𝜋2 ◦ 𝜋1 using the rules of Figure 4. Note that these are the only required rules, since, when 𝜋1

and 𝜋2 are composable, they “have the same shape”, because they are derivations for the same term𝑀 , and

the fact that 𝜕+ (𝜋1) = 𝜕− (𝜋2) allows one to infer other constraints. The rules produce derivations of the

adequate type since we have:

Proposition C.6. The followings hold:
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(a) given composable Ξ1,Ξ2 and composable Ξ′
1
,Ξ′

2
that all refine a context Γ, we have

(Ξ2 • Ξ′2) ◦ (Ξ1 • Ξ′1) = (Ξ2 ◦ Ξ1) • (Ξ′2 ◦ Ξ
′
1
);

(b) given 𝑛 ∈ N and 𝜎1, 𝜎2 ∈ S𝑛 and resource morphism contexts Ξ1,1, . . . ,Ξ1,𝑛 and Ξ2,1, . . . ,Ξ2,𝑛 such
that they all refine a context Γ and Ξ1,𝑖 is composable with Ξ

2,𝜎1 (𝑖 ) for every 𝑖 ∈ {1, . . . , 𝑛}, we have

(𝜎2 R (Ξ2,𝑖 )1≤𝑖≤𝑛) ◦ (𝜎1 R (Ξ1,𝑖 )1≤𝑖≤𝑛) = (𝜎2 ◦ 𝜎1) R (Ξ2,𝜎 (𝑖 ) ◦ Ξ1,𝑖 )1≤𝑖≤𝑛 .

Proof. By direct computation. □

By a similar inductive definition, we can define the identity id𝜋 of a derivation 𝜋 of a judgement

Θ ⊳ Γ ⊢ 𝑀 : 𝛼 ⊳𝐴. Moreover, following the definition of inverses for intersection type morphisms, we can

define the inverse 𝜋−1
of a derivation 𝜋 of a judgement Ξ ⊳ Γ ⊢ 𝑀 : 𝜙 :: 𝛼 ⇒ 𝛼 ′ ⊳ 𝐴. It is then routine to

check that

Proposition C.7. The above operations equip IT(𝑀) with a structure of groupoid.

C.6 The correspondence interpretation/derivation correspondence
Proof of Theorem 3.5. In fact, we prove the following stronger statement:

Let Γ be a well-typed context. Given a derivation of Γ ⊢ 𝑀 : 𝐴, there is a canonical morphism of groupoid
𝐾𝑀 : ⟦𝑀⟧ → IT(𝑀) (resp. 𝐾 !

𝑀
: ⟦𝑀⟧! → IT! (𝑀)) making the squares of the following diagram commute:

⟦Γ⟧ ⟦𝑀⟧ ⟦𝐴⟧

IT(Γ) IT(𝑀) IT(𝐴)

𝐾Γ

𝜕
⟦𝑀⟧
𝑙 𝜕

⟦𝑀⟧
𝑟

𝐾𝑀 𝐾𝐴

𝜕𝑀
𝑙

𝜕𝑀𝑟

©«
resp.

⟦Γ⟧ ⟦𝑀⟧!
!⟦𝐴⟧

IT(Γ) IT! (𝑀) IT! (𝐴)

𝐾Γ

𝜕
⟦𝑀⟧!
𝑙 𝜕

⟦𝑀⟧!
𝑟

𝐾 !

𝑀
𝐾 !

𝐴

𝜕
𝑀,!

𝑙
𝜕
𝑀,!
𝑟

ª®®®®®®®¬
. (15)

We prove it by induction on a derivation of Γ ⊢ 𝑀 : 𝐴:

• in the case of the variable typing rule 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑥𝑖 : 𝐴𝑖 , 𝐾𝑀 is defined as the functor

sending 𝑢 : 𝑎 → 𝑎′ ∈ ⟦𝐴⟧ = ⟦𝑥𝑖⟧ to the unique derivation of

(𝑥1 : ⟨⟩ :: ⟨⟩ ⇒ ⟨⟩ ⊳𝐴1, . . . , 𝑥𝑖 : (id{1} , ⟨𝐾𝐴𝑖
(𝑢)⟩) :: ⟨𝐾𝐴𝑖

(𝑎)⟩ ⇒ ⟨𝐾𝐴𝑖
(𝑎′)⟩ ⊳𝐴𝑖 ,

. . . , 𝑥𝑛 : ⟨⟩ :: ⟨⟩ ⇒ ⟨⟩ ⊳𝐴𝑛) ⊳ Γ ⊢ 𝑥 : 𝐾𝐴𝑖
(𝑢) :: 𝐾𝐴𝑖

(𝑎) ⇒ ⟨𝐾𝐴𝑖
(𝑎′)⟩ ⊳𝐴𝑖 .

It is immediate that the squares of (15) commute for this definition;

• in the case of an application Γ ⊢ 𝑀 𝑁 : 𝐵, we have that there exists a unique simple type 𝐴 such

that Γ ⊢ 𝑁 : 𝐴, so that the typing of the application 𝑀 𝑁 is constructed from two derivations

Γ ⊢ 𝑀 : 𝐴 → 𝐵 and Γ ⊢ 𝑁 : 𝐴. We then have by the rules for intersection type morphism

judgements that IT(𝑀 𝑁 ) is the pullback

IT(𝑀 𝑁 ) IT! (𝑁 )

IT(𝑀) IT(𝐴→ 𝐵) IT! (𝐴).

𝑃𝑁

𝑃𝑀

⌜

𝜕𝑁𝑟

𝜕𝑀𝑟 𝑃𝐴→𝐵
𝐴

where 𝑃𝐴→𝐵
𝐴

is the functor projecting a derivation of 𝜙 ⊸ 𝜓 :: ®𝛼 ⊸ 𝛽 ⇒ ®𝛼 ′ ⊸ 𝛽 ⊳𝐴→ 𝐵 to the

associated derivation 𝜙 :: ®𝛼 ⇒ ®𝛼 ′ ⊳𝐴. Similarly, by considering again the definition of the groupoid

⟦𝑀 𝑁⟧, we see that it can be alternatively expressed as the pullback

⟦𝑀 𝑁⟧ ⟦𝑁⟧!

⟦𝑀⟧ !⟦𝐴⟧ × ⟦𝐵⟧ !⟦𝐴⟧.

𝑃 ′
𝑁

𝑃 ′
𝑀

⌜

𝜕
⟦𝑁 ⟧!
𝑟

𝜕
⟦𝑀⟧
𝑟

𝑙

Then, using 𝐾 !

𝐴
and the inductively defined 𝐾𝑀 , 𝐾 !

𝑁
, we build an isomorphism between the underly-

ing cospans of these pullbacks, so that we get a factorizing isomorphism𝐾𝑀 𝑁 : ⟦𝑀 𝑁⟧ → IT(𝑀 𝑁 ).
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Concerning the commutativity condition we have the diagram

⟦Γ⟧ ⟦Γ⟧ × ⟦Γ⟧ ⟦𝑀⟧ × ⟦𝑁⟧! ⟦𝑀 𝑁⟧

IT(Γ) IT(Γ) × IT(Γ) IT(𝑀) × IT! (𝑁 ) IT(𝑀 𝑁 )

𝐾Γ

(•)

𝐾Γ×𝐾Γ

𝜕
⟦𝑀⟧
𝑙
×𝜕⟦𝑁 ⟧

!

𝑙

𝐾𝑀×𝐾𝑁

(𝑃 ′
𝑀
,𝑃 ′

𝑁
)

𝐾𝑀 𝑁

(•) 𝜕𝑀
𝑙
×𝜕𝑁,!

𝑙
(𝑃𝑀 ,𝑃𝑁 )

where each rectangle commutes and the top row is precisely 𝜕
⟦𝑀 𝑁⟧
𝑙

and the bottom row 𝜕𝑀 𝑁
𝑙

.

On the side of 𝐵, we have the diagram

⟦𝑀 𝑁⟧ ⟦𝑀⟧ !⟦𝐴⟧ × ⟦𝐵⟧ ⟦𝐵⟧

IT(𝑀 𝑁 ) IT(𝑀) IT(𝐴→ 𝐵) IT(𝐵)

𝑃 ′
𝑀

𝐾𝑀 𝑁

𝜕
⟦𝑀⟧
𝑟

𝐾𝑀

𝑟

𝐾𝐴→𝐵 𝐾𝐵

𝑃𝑀 𝜕𝑀𝑟 𝑃𝐴→𝐵
𝐵

where 𝑃𝐴→𝐵
𝐵

is defined like 𝑃𝐴→𝐵
𝐴

, where every rectangle commutes, where the top row is 𝜕
⟦𝑀 𝑁⟧
𝑟

and the bottom row is 𝜕𝑀 𝑁
𝑟 . Which concludes the proof of the commutativity conditions;

• in the case of a _-abstraction Γ ⊢ _𝑥.𝑀 : 𝐴→ 𝐵, we get by induction the commutative diagram

⟦Γ, 𝑥 : 𝐴⟧ ⟦𝑀⟧ ⟦𝐵⟧

IT(Γ, 𝑥 : 𝐴) IT(𝑀) IT(𝐵)

𝐾(Γ,𝑥 :𝐴)

𝜕
⟦𝑀⟧
𝑙 𝜕

⟦𝑀⟧
𝑟

𝐾𝑀 𝐾𝐵

𝜕𝑀
𝑙

𝜕𝑀𝑟

so that, using the isomorphisms ⟦Γ, 𝑥 : 𝐴⟧ � ⟦Γ⟧×!⟦𝐴⟧, IT(Γ, 𝑥 : 𝐴) � IT(Γ)×IT! (𝐴), !⟦𝐴⟧×⟦𝐵⟧ �
⟦𝐴→ 𝐵⟧ and IT! (𝐴) × IT(𝐵) � IT(𝐴→ 𝐵), we are able to get a similar commutative diagram for

_𝑥.𝑀 ;

• finally, we define the multilinear interpretation of a judgement Γ ⊢ 𝑀 : 𝐴 from the above cases: we

have a commutative diagram

⟦Γ⟧ ⟦𝑀⟧!
!⟦𝐴⟧

⟦Γ⟧ !⟦Γ⟧ !⟦𝑀⟧ !⟦𝐴⟧

IT(Γ) !IT(Γ) !IT(𝑀) !IT(𝐴)

IT(Γ) IT! (𝑀) IT! (𝐴)

𝜕
⟦𝑀⟧!
𝑙 𝜕

⟦𝑀⟧!
𝑟

𝐾Γ

˜̀Γ

!𝐾Γ

!𝜕
⟦𝑀⟧
𝑙 !𝜕

⟦𝑀⟧
𝑟

!𝐾𝑀 !𝐾𝐴

˜̀
it

Γ !𝜕𝑀
𝑙 !𝜕𝑀𝑟

∼ ∼
𝜕
𝑀,!

𝑙 𝜕
𝑀,!
𝑟

where the morphism !IT(𝑀) ∼−→ IT! (𝑀) is basically the multilinear introduction rule—a se-

quence ⟨𝜋𝑖 ⟩1≤𝑖≤𝑛 of derivations 𝜋𝑖 of Θ𝑖 ⊳ Γ ⊢ 𝑀 : 𝛼𝑖 ⊳ 𝐴 is mapped to the derivation of

Θ1 • · · · • Θ𝑛 ⊳ Γ ⊢ 𝑀 : ⟨𝛼1, . . . , 𝛼𝑛⟩ ⊳ 𝐴 and similarly for sequences of morphism derivations—

and the morphism !IT(𝐴) ∼−→ IT! (𝐴) is similarly the multilinear refinement introduction rule, and

˜̀
it
is the functor mapping a sequence of resource contexts ⟨Θ1, . . . ,Θ𝑛⟩ ∈ Ob(!IT(Γ)) toΘ1• . . .•Θ𝑛

and a morphism (𝜎, ⟨Ξ𝑖 ⟩1≤𝑖≤𝑛) ∈ Ar(IT(Γ)) between two sequences ⟨Θ1, . . . ,Θ𝑛⟩ and ⟨Θ′
1
, . . . ,Θ′𝑛⟩

to 𝜎 R (Ξ𝑖 )1≤𝑖≤𝑛 . It is quite immediate to check that every rectangle commutes. □

D POSTPONED PROOFS FOR RELATIONAL COLLAPSES
D.1 Functoriality of the collapse to Rel
We give the postponed proof of the following result:

Proposition 4.1. This yields a functor | − | : Thin→ Rel.
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Proof. It is obvious that the identity span 𝐴 ← 𝐴 → 𝐴 is sent to the identity relation on |𝐴|. For
functoriality, it is obvious by definition that |𝑇 ⊙ 𝑆 | ⊆ |𝑇 | ◦ |𝑆 | – but the other direction is not, since

composition inThin is more constrained than in Rel.
So consider (a, b) ∈ |𝑆 | and (b, c) ∈ |𝑇 |. By definition, there are 𝑠 ∈ 𝑆 such that a = 𝑠𝐴 and b = 𝑠𝐵 , and

𝑡 ∈ 𝑇 such that b = 𝑡𝐵 and c = 𝑡𝐶 . Since 𝑠𝐵 = 𝑡𝐵 those two are symmetric, but they might not be equal,

meaning that the pair (𝑠, 𝑡) may not be a valid element of 𝑇 ⊙ 𝑆 . However, by Lemma 2.4 there must be

𝜑𝑆 ∈ 𝑆 [𝑠, 𝑠′] and 𝜑𝑇 ∈ 𝑇 [𝑡, 𝑡 ′] such that 𝑠′
𝐵
= 𝑡 ′

𝐵
and we can now form (𝑠′, 𝑡 ′) ∈ 𝑇 ⊙𝑆 with (𝑠′, 𝑡 ′)𝐴 = 𝑠′

𝐴
= a

and (𝑠′, 𝑡 ′)𝐶 = 𝑡 ′
𝐶
= c as required. □

D.2 Bijection for the quantitative collapse
Proposition 4.7. For 𝑆,𝑇 , a, b, c as above, there is a bijection

Υ : ∼-wit+𝑆 (a, b) × ∼-wit
+
𝑇 (b, c) ≃ ∼-wit

+
𝑆,𝑇 (a, b, c)

s.t. for any Υ((\−
𝐴
, 𝑠, \+

𝐵
), (Ω−

𝐵
, 𝑡,Ω+

𝐵
)) = (𝜓−

𝐴
, 𝑠′,Θ, 𝑡 ′,𝜓+

𝐶
), there are unique 𝜔𝑆 : 𝑠 �𝑆 𝑠

′ and a𝑇 : 𝑡 �𝑇 𝑡 ′

making the diagrams commute:

𝑠𝐴77\−
𝐴

𝜔𝑆
𝐴��

𝑠𝐵
\+
𝐵 //

𝜔𝑆
𝐵 ��

b
Θ��

𝑡𝐵

a𝑇
𝐵��

//Ω−
𝐵

𝑡𝐶 Ω+
𝐶

''
a𝑇
𝐶 ��a

𝜓 −
𝐴

''
c

𝑠′
𝐴

𝑠′
𝐵

𝑏 𝑡 ′
𝐵

𝑡 ′
𝐶

𝜓+
𝐶

77

Proof. From (\−
𝐴
, 𝑠, \+

𝐵
) and (Ω−

𝐵
, 𝑡,Ω+

𝐵
), we can apply Lemma 2.4 and compose 𝑠 and 𝑡 via Ω−

𝐵
◦ \+

𝐵
,

giving us unique 𝜔𝑆 , a𝑇 such that the big rectangle commutes, 𝜔𝑆
𝐴
negative and a𝑇

𝐶
positive. We get Θ as

either path around the rectangle, and𝜓−
𝐴
,𝜓+
𝐶
by composition. Reciprocally, from (𝜓−

𝐴
, 𝑠′,Θ, 𝑡 ′,𝜓+

𝐶
) we obtain

uniquely the remaining data by Proposition 4.6. □

E SEELY FUNCTORS AND THEIR KLEISLI LIFTING
Here we include a few folkore results that we required regarding the adequate definition of morphisms

between Seely categories, along with the fact that they admit a lifting to cartesian closed functors between

the Kleisli categories.

Definition E.1. Consider C and D two Seely categories.

A Seely functor 𝐹 : C → D is a functor, additionally equipped with isomorphisms

𝑡 !
𝐴

: !𝐹𝐴 → 𝐹 !𝐴

𝑡⊗
𝐴,𝐵

: 𝐹𝐴 ⊗ 𝐹𝐵 → 𝐹 (𝐴 ⊗ 𝐵)
𝑡&
𝐴,𝐵

: 𝐹𝐴 & 𝐹𝐵 → 𝐹 (𝐴 & 𝐵)
𝑡⊸
𝐴,𝐵

: 𝐹𝐴 ⊸ 𝐹𝐵 → 𝐹 (𝐴 ⊸ 𝐵)

such that 𝑡 !
𝐴
is natural in𝐴 and 𝑡⊗

𝐴,𝐵
is natural in𝐴 and 𝐵, and subject to the following coherence conditions:

!𝐹𝐴
𝑡 !

𝐴 //
𝛿D
𝐹𝐴

||

𝐹 !𝐴

𝐹𝛿C
𝐴

""
‼𝐹𝐴

!𝑡 !

𝐴

//
!𝐹 !𝐴

𝑡 !

!𝐴

// 𝐹‼𝐴

!𝐹𝐴
𝑡 !

𝐴 //

𝜖D
𝐹𝐴 !!

𝐹 !𝐴

𝐹𝜖C
𝐴}}

𝐹𝐴

!𝐹𝐴 ⊗ !𝐹𝐵
seeD

𝐹𝐴,𝐹𝐵

ww

𝑡 !

𝐴
⊗𝑡 !

𝐵

''
!(𝐹𝐴 & 𝐹𝐵)

!𝑡&

𝐴,𝐵
��

𝐹 !𝐴 ⊗ 𝐹 !𝐵

𝑡⊗
!𝐴,!𝐵

��
!𝐹 (𝐴 & 𝐵)

𝑡 !

𝐴&𝐵 ''

𝐹 (!𝐴 ⊗ !𝐵)

𝐹 seeC
𝐴,𝐵ww

𝐹 !(𝐴 & 𝐵)

𝐹𝐴 & 𝐹𝐵

𝜋D
1

zz
𝑡&

𝐴,𝐵

��

𝜋D
2

$$
𝐹𝐴 𝐹𝐵

𝐹 (𝐴 & 𝐵)
𝐹𝜋C

1

dd

𝐹𝜋C
2

::
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(𝐹𝐴 ⊸ 𝐹𝐵) ⊗ 𝐹𝐴
𝑡⊸
𝐴,𝐵
⊗𝐹𝐴
//

evD
𝐹𝐴,𝐹𝐵 ))

𝐹 (𝐴 ⊸ 𝐵) ⊗ 𝐹𝐴
𝑡⊗
𝐴⊸𝐵,𝐴 // 𝐹 ((𝐴 ⊸ 𝐵) ⊗ 𝐴)

𝐹evC
𝐴,𝐵vv

𝐹𝐵

The main interest of those is that they lift to cartesian closed functors between the Kleisli categories:

Theorem E.2. Consider C and D two Seely categories, and 𝐹 : C → D a Seely functor.
Then, defining 𝐹! (𝐴) = 𝐹 (𝐴) on objects and 𝐹! (𝑓 ) = 𝐹 𝑓 ◦ 𝑡 !𝐴 for 𝑓 ∈ C[!𝐴, 𝐵], we get

𝐹! : C! → D!

a cartesian closed functor.

Proof. We must show that products and arrows are preserved up to (canonical) isomorphism. For that,

we construct the following morphisms in D:

𝑘&

𝐴,𝐵
= 𝑡&

𝐴,𝐵
◦ 𝜖D

𝐹𝐴&𝐹𝐵
: !(𝐹𝐴 & 𝐹𝐵) → 𝐹 (𝐴 & 𝐵)

𝑘⇒
𝐴,𝐵

= 𝑡⊸
!𝐴,𝐵
◦ ((𝑡 !

𝐴
)−1 ⊸ 𝐵) ◦ 𝜖D

!𝐹𝐴⊸𝐹𝐵 : !(!𝐹𝐴 ⊸ 𝐹𝐵) → 𝐹 (!𝐴 ⊸ 𝐵) ,

which we regard as 𝑘&

𝐴,𝐵
∈ D! [𝐹𝐴 & 𝐹𝐵, 𝐹 (𝐴 & 𝐵)] and 𝑘⇒

𝐴,𝐵
∈ D! [𝐹𝐴 ⇒ 𝐹𝐵, 𝐹 (𝐴 ⇒ 𝐵)] where 𝐴 ⇒

𝐵 = !𝐴 ⊸ 𝐵. By construction those are isomorphisms, and to show canonicity we must prove (in D!) the

diagrams corresponding to the last two diagrams of Definition E.1, which is a lengthy diagram chase. □
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