Khalid Hamada
email: khalid.hamada@lis-lab.fr

Rabah Ammour
email: rabah.ammour@lis-lab.fr

Leonardo Brenner
email: leonardo.brenner@lis-lab.fr

Isabel Demongodin
email: isabel.demongodin@lis-lab.fr

Attack Synchronizing Sequence Computation for Output Synchronized Petri Nets with Multiple Deadlocks

Keywords: Discrete event systems, Petri net, Automata, Attack synchronizing sequence, Cyber-attacks

This paper deals with discrete event systems modeled by output synchronized Petri nets. This formalism allows to represent the system behavior along with the received control inputs and sensors outputs that circulate through a communication network. We suppose that the system includes multiple deadlocks and is vulnerable to cyber-attacks that aim to drive this system to one of these deadlocks. We assume that the attacker is able to insert control inputs and to read/delete the sensors outputs. Moreover, the current state of the system is supposed to be unknown by the attacker. In this case, a synchronizing sequence, which is a set of input control events, can be used to drive the system to a known state. In this work, an attacker's perspective is adopted and a method to compute an attack Synchronizing Sequence (attack SS) is proposed. To do so, all deadlocks are merged into a single one and attack SS that drive the system state to one of its deadlocks without knowing the actual state of the system are computed. For each computed SS, the associated sensors outputs are generated. This allows the attacker to choose the best synchronizing sequence.

I. INTRODUCTION

Within the framework of Discrete Event Systems (DES), extensive research has been conducted on cyber attacks. In [START_REF] Ammour | Robust stealthy attacks based on uncertain costs and labeled finite automata with inputs[END_REF], the objective of the attacker is to maliciously manipulate the control symbols transmitted to the actuators and the output labels received from the sensors, with the intention of driving the system from a known normal state to a forbidden state. In the work [START_REF] Lin | Synthesis of covert actuator attackers for free[END_REF], the attacker has the capability to modify the control commands issued by the supervisor (actuator attack). The considered control manipulation is restricted to a specific subset of controllable events that are vulnerable to attacks. Various deception attacks involving the alteration of sensor readings have been discussed, as the works in [START_REF] Su | Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations[END_REF] and [START_REF] Meira-Góes | Synthesis of sensor deception attacks at the supervisory layer of cyber-physical systems[END_REF] where the attacker has the ability to manipulate sensor readings after intercepting them from a targeted system. The attacker's intention is to deceive a specific supervisor into issuing incorrect control commands to drive the system to an undesirable state. The authors of [START_REF] Zhang | A framework for the analysis of supervised discrete event systems under attack[END_REF] have considered the sensor/actuator attack where the attacker may act in two different ways, he can corrupt the observation of the supervisor editing the sensor readings, and can enable events that are disabled by the supervisor keeping this last unaware before an unsafe state is reached. Similarly with the above mentioned works, we adopt an attacker viewpoint with the objective to drive the system to a forbidden state. We suppose that the attacker is able to insert control inputs (actuator attack) and to delete sensors outputs. However, and unlike the previous works, we suppose that the attacker do not know (or is unable to estimate) the current state of the system. To deal with this issue, first we model the system with a particular class of bounded Synchronized Petri Nets (SynPN) that generates output events, called Output Synchronized Petri Nets (OutSynPN) [START_REF] Ammour | Observer design for bounded output synchronized Petri nets[END_REF]. This formalism allows the system to be controlled through input events associated with transitions and to be observed thanks to output events related to marking changes and possibly with marking states. Moreover, the forbidden states are given by one or multiple deadlocks and the objective of the attacker is to drive the system to one of these deadlocks without information about the system's current state. The attacker also deletes the generated traces (outputs) to remain stealthy. In order to find the appropriate control sequence to be injected by the attacker, we exploit the notion of synchronizing sequence. The Synchronizing Sequence (SS) has been proposed to solve object orientation problems [START_REF] Broy | Modelbased testing of reactive systems[END_REF], and testing problems [START_REF] Eppstein | Reset sequences for finite automata with application to design of parts orienters[END_REF], [START_REF] Lee | Principles and methods of testing finite state machines-a survey[END_REF]. Authors of [START_REF] Pocci | Test and diagnosis of discrete event systems using Petri nets[END_REF] and [START_REF] Pocci | Testing experiments on synchronized Petri nets[END_REF] investigate the SS computation issues for systems modeled by bounded SynPN, in which only a single deadlock could appear. In this paper, we extend the SS computation to OutSynPN, i.e., the associated sensors outputs are also computed and, we consider multiple deadlocks in the model's behaviour. Moreover, from a set of attack Synchronizing Sequences (attack SS), a selection criterion is presented to choose the ones that require the less effort from the attacker to remain stealthy in the worst case.

The content of this paper is as follow. Section II is about the backgrounds. Section III proposes an algorithm for computing a SS with outputs for one target state. Before conclusions, Section IV introduces the proposed method of SS with outputs computation for OutSynPN model with multiple deadlocks and, focuses on attack synchronizing sequences.

II. BACKGROUNDS

This section introduces the formalism of output synchronized Petri nets and that of the labeled finite state automaton with inputs. But prior to that, let us recall the definition of synchronized Petri nets, from which the output synchronized Petri nets are obtained. For the rest of this paper, it is assumed that readers are familiar with Petri Nets (PN) and automata (more details can be found in [START_REF] David | Discrete, continuous, and hybrid Petri nets[END_REF], [START_REF] Moalla | Synchronized Petri nets : A model for the description of non-autonomous sytems[END_REF] and [START_REF] Pocci | Testing experiments on synchronized Petri nets[END_REF]).

A Synchronized Petri Net (SynPN) is a structure, N s = ⟨N, E, f ⟩, such that:

• N = ⟨P, T, P re, P ost⟩ is a Petri net, where P is a set of m places, T is a set of n transitions, P re : P × T → N and P ost : P ×T → N are the preand postincidence matrices that specify the weights of directed arcs from places to transitions and vice versa. C = P ost -P re is the incidence matrix, • E is an alphabet of external input events,

• f : T → E λ = E ∪ {λ} is a labeling function that associates with each transition t either an external input event f (t) ∈ E or λ, where λ is the "always occurring" event which has priority over all input events. A marking is a vector, M : P → N m , that assigns to each place a non-negative integer. M (p i), or simply m i , denotes the marking of place p i . A marked SynPN N s , M 0 is a SynPN N s with an initial marking M 0 .

In the rest of this paper, we only consider a class of bounded SynPN associated with a single server semantics. Moreover, we consider that transitions which are in structural conflict, do not share the same input event.

Definition 1: An output synchronized Petri net (OutSynPN) is a structure, N os = ⟨N s , Σ, Γ, Q, g⟩, such that:

• N s is a Synchronized Petri net; • Σ ⊆ {↑ m i , ↓ m i | p i ∈ P } is
a non empty set of events associated with a marking change of places, where ↓ and ↑ represent a decreasing and an increasing of a place marking, respectively;

• Γ ⊆ {m i ∼ h, | p i ∈ P, h ∈ N, ∼∈ {=, ̸ =, ≥, ≤, >, <}}
is a set of conditions on the place marking; • Q is an alphabet of output events;

• g : Q → {0, 1} is an output function such that q i ∈ Q, g(q i) = Υ(F Γ (q i)) ∧ Θ(F Σ (q i)) where F Γ (q i) ∈ F |Γ| , F Σ (q i) ∈ F |Σ| and: -Υ : F |Γ| → {0, 1}
is a boolean function depicting the conditions on the marking value of places to generate output q i and Υ() = 1 when no condition on the marking values is involved for output q i ; -Θ: F |Σ| → {0, 1} is a boolean function depicting the conditions on the marking change events to generate output q i and Θ() = 0 when no event on the marking change is involved for output q i . ■ The reachability set of an OutSynPN is represented by a particular class of finite automaton called a labeled finite state automaton with inputs [START_REF] Ammour | Observer design for bounded output synchronized Petri nets[END_REF].

Definition 2: A Labeled Finite Automaton with Inputs (LFAI) is a 6-tuple, G = ⟨X, E, δ, M 0 , Q, Obs⟩, where:

• X is a finite set of states, • E is a finite set of input events and E λ = E{λ}, • δ : X × E λ → X is a (possibly partially defined) transition function, • M 0 ∈ X is an initial state,
• Q is a finite set of output labels and Q ε = Q∪{ε}, where ε denotes the absence of label,

• Obs : X × E λ → 2 Q ∪ {ε} is a labeling function.
■ Since we consider that transitions which are in structural conflict do not share the same input event in the OutSynPN, the resulting LFAI is thus deterministic. Moreover, a state in a LFAI, M d ∈ X, is a deadlock if δ(M d , e) is not defined ∀e ∈ E λ . Note that a LFAI could be reduced with respect to the λ events. In the rest of the paper and without loss of generality, we apply and illustrate the proposed approaches directly to the reduced LFAI such that E λ = E. Another notion involved in this paper is the concept of completely specified LFAI. It is completely specified if and only if ∀M ∈ X, ∀e ∈ E, δ(M, e) is defined. One way to complete a LFAI is to consider each state M ∈ X such that δ(M, e) is not defined for e ∈ E and add a self loop δ(M, e) = M with Obs(M, e) = ε. In this case, it is completely specified and denoted by G in the next.

Example 1: Let us consider the OutSynPN ⟨N os , M 0 ⟩ of Figure 1 composed of 4 places and 7 transitions with M 0 = (3 0 0 0) T . The set of input events is E = {e 1 , e 2 , e 3 } and the set of output labels is Q = {A, B, C, D}. The labeling function associates inputs events to transitions as depicted on the figure. For instance, we have f

(t 1) = f (t 6) = f (t 7) = e 1 .
The marking events and conditions to deliver output labels are also given in the figure. For instance, output label A is generated when a firing leads to a decrease of m 1 and the reached marking satisfies m 2 = 0. The LFAI, noted G 1 , obtained from OutSynPN 1, is depicted on Figure 2 with: M 0 = (3 0 0 0) T , M 1 = (1 1 0 0) T , M 2 = (0 0 1 0) T and M 3 = (0 0 0 1) T . The plenty arrows correspond to the defined transition function while the dash arrows allow the LFAI to be completely specified. Note

III. SYNCHRONIZING SEQUENCES WITH OUTPUTS FOR ONE TARGET STATE

A Synchronizing Sequence (SS) is defined as a sequence of input events that drives the system from any unknown state to a target one. Taken from [START_REF] Pocci | Testing experiments on synchronized Petri nets[END_REF], we adapt the definition of a synchronizing sequence for a LFAI, as follow.

Definition 3 (Synchronizing sequence): Consider a completely specified LFAI, G = ⟨X, E, δ, M 0 , Q, Obs⟩, and a target state M ∈ X. The input sequence ω = e 1 e 2 . . . e k ∈ E * is called synchronizing for state M if it drives the LFAI G to the target state M , regardless of the initial state, i.e., ∀M ∈ X it holds δ * (M, ω) = M . ■ In this definition, E * is the Kleen star of E and δ * is the extension of δ for an input sequence ω. Note that in the next, Obs * (M i , ω) is the extension of the labeling function Obs for a synchronizing sequence ω, that we call an outputs sequence in the rest of this paper.

When a synchronizing sequence is applied, a different outputs sequence is generated depending on the (unknown) current state from which it is executed. The following definition introduces the set of all possible outputs sequences associated to a given SS.

Definition 4 (Outputs sequences set): Let G = ⟨X, E, δ, M 0 , Q, Obs⟩ be a completely specified LFAI of an OutSynPN ⟨N os , M 0 ⟩ and, ω = e 1 e 2 . . . e k ∈ E * be a synchronizing sequence for state M . The outputs sequences set of synchronizing sequence ω, denoted ϑ ω , represents all the outputs sequences generated from all states of G, i.e.,

ϑ ω = {θ i ω |θ i ω = Obs * (M i , ω), M i ∈ X}.
■ An important step for the SS computation is the construction of an auxiliary graph [START_REF] Pocci | Testing experiments on synchronized Petri nets[END_REF]. However, for considering outputs of the LFAI, it is necessary to extend the definition of the auxiliary graph as bellow.

Definition 5 (Auxiliary graph with outputs): Given a completely specified LFAI, G = ⟨X, E, δ, M 0 , Q, Obs⟩, the auxiliary graph with outputs, A(G) consists of (|X|. Example 2: For the LFAI in Figure 2, with G1 its corresponding completely specified automaton, the auxiliary graph with outputs A(G1) (see Figure 3) consists of (|X|.(|X| + 1)/2) = 10 nodes, i.e., unordered pairs (M i , M j) of states, for i, j = 0, 1, 2, 3. One arc, labeled by e 1 : (ε, C), is created from node (M 1 , M 2) to node (M 1 , M 3), as δ(M 1 , e 1) = M 1 , δ(M 2 , e 1) = M 3 , Obs(M 1 , e 1) = ε and, Obs(M 2 , e 1) = C. In the same way, one arc e

2 : (A, ε) is created from (M 1 , M 2) to (M 2 , M 2), since δ (M 1 , e 2) = M 2 , δ (M 2 , e 2) = M 2 , Obs (M 1 , e 2) =
Let i ← 0; ω 0 ← ε; ϕ (ω 0) ← X; θ k ω0 ← ε for k = 0, . . . , |X| -1 2 while ϕ (ω i) ̸ = { M } do 3 i ← i + 1; 4 pick two states M ′ , M ′′ ∈ ϕ (ω i-1) such that M ′ ̸ = M ′′ ; 5 if there does not exist any path in A(G) from node (M ′ , M ′′) to node (M , M) then 6
stop the computation, there exists no SS for M . ′′ to (M , M) and let ω be the input sequence along this path, do For a bounded OutSynPN ⟨N os , M 0 ⟩, a synchronizing sequence with outputs for multiple deadlocks as targets is determined by the following steps:

9 ω i ← ω i-1 ω; 10 ϕ (ω i) ← δ * (ϕ (ω i-1) , ω); 11 for all M k ∈ X do 12 θ k ωi ← θ k ωi-1 Obs * (δ * (M k , ω i-1), ω) 13 ω ← ω i 14 ϑ ω ← {θ k ω | k = 0, . . . ,
1) Compute G, the LFAI of ⟨N os , M 0 ⟩.

2) Construct the restricted LFAI G r by applying Algorithm 2 to G. 3) Deduce Gr from G r . 4) Construct A(Gr). 5) Determine a SS for target marking M d by Algorithm 1. Since the restricted LFAI differs from the original LFAI from which it is computed, the following proposition states that a SS computed on the restricted LFAI, with a single deadlock M d as a target state, necessarily drives the system to one of its deadlocks.

Proposition 1: Let a completely specified LFAI G = ⟨X, E, δ, M 0 , Q, Obs⟩ that includes multiple deadlocks {M d 1 , ..., M d k } with k ≥ 1 and its corresponding restricted LFAI Gr = ⟨X r , E, δ r , M 0 , Q, Obs⟩ that includes the sink state M d as a unique deadlock. The SSs computed on Gr with M d as a target state drive the LFAI G to one of its deadlocks {M d 1 , ..., M d k }. Proof : Let us rewrite this proposition by the following implication. Let ω be a SS computed on completely specified

Gr , ∀M ∈ X r , δ * r (M, ω) = M d ⇒ ∀M ∈ X, δ * (M, ω) ∈ {M d 1 , ..., M d k }.
Two cases are considered for the proof. 1) M = M d ∈ X r . According to Definition 6, M d = M d i with i ∈ {1, . . . , k}, i.e., one of the deadlocks of G. Note that in a completely specified LFAI, a deadlock X implies δ(X, e) = X, ∀e ∈ E. Thus, it holds δ * r (M d , ω) = M d , and consequently,

∀M ′ ∈ {M d 1 , ..., M d k }, δ * (M ′ , ω) = M ′ . 2) M ∈ X r
= ω2 , ∀M ′ ∈ {M d 1 , ..., M d k }, δ * (M ′ , ω2) = M ′ . Finally, ∀M ∈ X\{M d 1 , ..., M d k }, δ * (M, ω) ∈ {M d 1 , ..., M d k }.
□ Example 5: Following the steps (1, 2, 3, 4) described above, from the restricted LFAI G r 2 and its completely specified one Gr 2 (see Figure 6), the auxiliary graph with outputs A(Gr 2) can be constructed, as shown in Figure 7. Recall that self loop arcs, e : (ε, ε), are not represented on the figure.

In step 5, by applying the greedy computation several time for target state M d , the following SSs have been found: ω1 = e 3 e 1 e 1 , ω2 = e 1 e 1 e 3 , ω3 = e 1 e 3 e 1 e 1 , ω4 = e 2 e 3 e 1 e 1 ω5 = e 1 e 2 e 3 e 1 e 1 . The generated outputs sequences for each of them are given in Table I. These sequences allow the system to be brought from any state node to any deadlock

M d ∈ {M 4 , M 5 }. ♢ θ i wj = Obs * (M i , ωj) ω1 ω2 ω3 ω4 ω5 M 0 CE CE CDCE AF CAE M 1 DCE E E AE E M 2 E CBE CF F CBCE M 3 F BCF BE BCE BF M d ϵ ϵ ϵ ϵ ϵ

C. Attack synchronizing sequences

In the context of cyber-attacks, we consider that the attacker is able to manipulate the inputs events and the outputs labels. The current state of the system is supposed to be unknown for the attacker and his objective is to drive the system to one of its deadlocks. To do so, he has to manage different attack SSs and obtain the potential outputs sequences generated by each attack SS. This raises the question of the choice of the attack sequence to use. In order to remain stealthy while performing his attack, the attacker needs to insert inputs events and delete the generated outputs. The insertion/deletion procedure requires efforts (in terms of time or energy for example).

The following proposition gives, from a set of attack SSs, the sequences with the less number of inputs and outputs to manipulate by the attacker when the worst case is considered, i.e., when the attack starts at the state from which the maximal number of outputs labels is generated. |θ i ω |}. Proof : For a given synchronizing sequence ωj ∈ Ω, the number of inputs events to be inserted by the attacker is |ω j |. In fact, since the current state is unknown, the attacker needs to insert all the events that compose the attack SS so that a deadlock is certainly reached. For the output sequence generated by ωj , its length depends on the current (unknown) state which is at maximal given by max

θ i ωj ∈ϑω j |θ i ωj |.
Hence, in the worst case, the attacker needs to manipulate |ω j |+ max

θ i ωj ∈ϑω j |θ i ωj |
inputs events and outputs labels. Thus, the sequences that have the minimum of this sum correspond to the ones that needs the minimal effort from the attacker in the worst case. □ Example 6: Let us continue the previous example, with a set of attack SSs given by: Ω = {ω 1 , ω2 , ω3 , ω4 , ω5 }. According to the outputs sequences and the lengths (see Tables I & II) generated from each attack SS of Ω, the minimal number of inputs events and outputs labels length to manipulate in the worst case is equal to 6, given by |ω In this paper, an attacker's perspective is adopted with the goal to drive the system to any deadlock without knowing its current state. The proposed method, based on extensions of the auxiliary graph and greedy algorithm computation, involves representing all deadlocks with a single state called the "sink state", that acts like a deadlock. Some future perspectives of this work include the use of costs associated with inputs and outputs to compute attack synchronizing sequences of minimal cost. Also, we plan to explore the use of synchronizing sequences from the controller's point of view which can be exploited to prevent the system from reaching an undesirable state.

Fig. 1 :

 1 Fig. 1: OutSynPN 1.The LFAI, noted G 1 , obtained from OutSynPN 1, is depicted on Figure2with: M 0 = (3 0 0 0) T , M 1 = (1 1 0 0) T , M 2 = (0 0 1 0) T and M 3 = (0 0 0 1) T . The plenty arrows correspond to the defined transition function while the dash arrows allow the LFAI to be completely specified. Note that there is no deadlock in G 1 .♢

Fig. 2 :

 2 Fig. 2: LFAI G 1 (and G1) of OutSynPN 1.

Fig. 3 :

 3 Fig. 3: Auxiliary graph with outputs A(G1).

Algorithm 1 :

 1 A and Obs (M 2 , e 2) = ε, another one labeled with e 3 : (D, ε) from (M 1 , M 2) to (M 0 , M 2), and so on. For better readability, the self loops arcs e : (ε, ε) are not represented on the figure.♢ Greedy computation of SS and outputs sequences set for LFAI Input: Completely specified LFAI G, Auxiliary graph with outputs A(G) and, target state M ∈ X. Output: A SS ω for state M , outputs sequences set ϑ ω 1

Fig. 6 :

 6 Fig. 6: Restricted LFAI G r 2 (and Gr 2) of LFAI G 2 .

 \M d . According to Definition 6, M is also a state of G, i.e., M ∈ X\{M d 1 , ..., M d k }. As ω is a SS for M d , it holds δ * r (M, ω) = M d . Thus, it exits an input event, denoted e d ∈ E, such that ω = ω1 .e d .ω 2 with δ * r (M, ω1) ̸ = M d , δ * r (M, ω1 .e d) = M d and δ * r (M d , ω2) = M d . As δ * r (M, ω1) = δ * (M, ω1), it holds, δ * (M, ω1 .e d) = M ′ ∈ {M d 1 , ..., M d k }, consequently.Due to the first case with ω

Fig. 7 :

 7 Fig. 7: Auxiliary graph with outputs A(Gr 2)

Proposition 2 :

 2 Let us consider an OutSynPN ⟨N os , M 0 ⟩, its corresponding LFAI G = ⟨X, E, δ, M 0 , Q, Obs⟩ with a set {M d 1 , ..., M d k } ⊂ X of deadlocks and, a set of attack synchronizing sequences Ω = {ω 1 , . . . , ωl } that drives the system to one of its deadlocks. The attack synchronizing sequences ωj ∈ Ω with the minimal number of inputs events and outputs labels to manipulate in the worst case are given by ωj ∈ arg min ω∈Ω {|ω| + max θ i ω ∈ϑω

 1 | + |θ 1 ω1 | = 6 and |ω 2 | + |θ 2 ω2 | = |ω 2 | + |θ 3 ω2 | = 6. Thus, the attacker to remain stealthy and save efforts has to choose between ω1 or ω2 . ♢ ωj |ω j | max θ i ωj ∈ϑ ω |θ i ωj | |ω j | + max θ i ωj ∈ϑ ω |θ i ωj | ω1 = e 3 e 1 e 1 3 3 (DCE) 6 ω2 = e 1 e 1 e 3 3 3 (CBE/BCF) 6 ω3 = e 1 e 3 e 1 e 1 4 4 (CDCE) 8 ω4 = e 2 e 3 e 1 e 1 4 3 (BCE) 7 ω5 = e 1 e 2 e 3 e 1 e 1 5 4 (CBCE) 9TABLE II: Lengths of sequences V. CONCLUSIONS

 that there is no deadlock in G 1 .♢

	𝑒 3 : 𝜀	𝑒 2 : 𝐴	𝑒 3 : 𝜀
	𝑀 0		𝑀 3
		𝑒 2 : 𝐵	
	𝑒 1 : 𝐶 𝑒 3 : 𝐷		𝑒 1 : 𝐵 𝑒 1 : 𝐶
	𝑀 1		𝑀 2
	𝑒 1 : 𝜀	𝑒 2 : 𝐴	𝑒 2 : 𝜀, 𝑒 3 : 𝜀

TABLE I :

 I Outputs sequences

VI. ACKNOWLEDGMENT

This work has been partially funding by the French National Research Agency under grant agreement ANR-22-CE10-0002.

To compute a SS with outputs, we extend the algorithm of [START_REF] Pocci | Testing experiments on synchronized Petri nets[END_REF] for considering auxilary graph with outputs. Thus, the proposed greedy algorithm (see Algo. 1) refines a current state uncertainty ϕ(ω), and it finds (see Step 8) the shortest path, ω which is a necessary condition for the SS existence. In the mean time, the generation of outputs sequences is determined at Step 12 and the set of all outputs sequences is given at the end (see Step 14).

Example 3: Consider the auxiliary graph with outputs A(G1) of Figure 3. Let marking M = M 2 be the target state. Let ω 0 = ε be the empty initial input sequence and ϕ(ω 0) = {M 0 , M 1 , M 2 , M 3 } be the corresponding initial current state uncertainty. If at the first, Algorithm 1 picks states M 1 and M 3 , it would obtain ω = e 1 e 2 , since (M 1 , M 3) e1e2 → (M 2 , M 2) in the auxiliary graph. Hence, ω 1 = ω 0 ω = e 1 e 2 and ϕ (ω 1) = {M 0 , M 2 }, which does not satisfy the condition (ϕ(ω 1) ̸ = {M 2 }) of the while loop. The outputs sequences are given by:

that implies ω = e 1 e 1 e 2 , ω 2 = ω 1 ω and the current state uncertainty is now a singleton, ϕ(ω 2) = {M 2 }. Thus, the algorithm ends and, ω = ω 2 = e 1 e 2 e 1 e 1 e 2 is a SS for target state M 2 and the outputs sequences set is given by:

, BCB} ♢ In summary, for a bounded OutSynPN ⟨N os , M 0 ⟩, a synchronizing sequence and its outputs sequences set are determined by the following steps:

1) Compute G, the LFAI of ⟨N os , M 0 ⟩.

2) Deduce G, the completely specified LFAI obtained by completing G.

3) Construct the corresponding auxiliary graph with outputs

A(G). 4) Determine (by Algorithm 1) a SS for target marking M and its associated outputs sequences sets. Note that, since the proposed greedy algorithm picks arbitrarily two nodes at each iteration, different SS could be obtained by multiple execution of the algorithm.

IV. SYNCHRONIZING SEQUENCES WITH OUTPUTS FOR MULTIPLE DEADLOCKS AS TARGET STATES

Unlike the case of one deadlock in the LFAI where a SS may be computed by setting this deadlock as a target state, the SS computation can not be completed in case of multiple deadlocks. To deal with this problem, we propose the definition of restricted LFAI and an algorithm for its computation. It allows one to obtain a SS that drives the LFAI to one of its deadlocks.

A. Restricted LFAI

Definition 6 (Restricted labeled finite automaton with inputs): Let a LFAI G = ⟨X, E, δ, M 0 , Q, Obs⟩ with a set {M d 1 , ..., M d k } ⊂ X of deadlocks (i.e., δ(M d , e) is not defined, ∀e ∈ E). A Restricted labeled finite automaton with inputs (Restricted LFAI) is defined by the following 6-tuple, G r = ⟨X r , E, δ r , M 0 , Q, Obs⟩, where:

■ Note that M d can be any deadlock of the set {M d 1 , ..., M d k } and there is no transition from M d , i.e., δ r (M d , e) is not defined, ∀e ∈ E. In the same way, as M d 1 , ..., M d k are deadlocks, there is no output generated from them or from M d . Therefore, both LFAIs have the same labeling function Obs.

From a given LFAI G containing multiple deadlocks, the following algorithm computes its corresponding restricted LFAI G r .

Algorithm 2: Restricted LFAI construction

Input: 4 and its LFAI G 2 depicted on Figure 5 with: M 0 = (3 0 0 0 0 0) T , M 1 = (1 1 0 0 0 0) T , M 2 = (0 0 1 0 0 0) T , M 3 = (0 0 0 1 0 0) T , M 4 = (1 0 0 0 0 1) T and M 5 = (0 0 0 0 1 0) T . We could remark that there are two deadlocks {M 4 , M 5 }. Computed by Algorithm 2, its restricted LFAI G r 2 , shown in Figure 6, is composed by the same states M 0 , M 1 , M 2 , M 3 and by state M d which can be any deadlock of the both deadlocks {M 4 , M 5 }. ♢

B. Synchronizing sequences with outputs for restricted LFAI

By the previous definitions, it is easy to compute a SS with outputs for a LFAI with multiple deadlocks as targets, as described bellow. The auxiliary graph with output in now established from the restricted LFAI, where only one state has been defined for representing all deadlocks.