Sara Hsaini 
email: sara.hsaini@lis-lab.fr
  
Rabah Ammour 
email: rabah.ammour@lis-lab.fr
  
Leonardo Brenner 
email: leonardo.brenner@lis-lab.fr
  
Moulay El 
  
Hassan Charaf 
email: charaf@gmail.com
  
Isabel Demongodin 
email: isabel.demongodin@lis-lab.fr
  
  
  
  
  
  
A Decentralized based Approach using Hybrid Filtered Beam Search Algorithm for Monitoring Patrols

Keywords: tasks allocation, HFBS algorithm, trajectory planning, monitoring patrol

This paper addresses the problem of task allocation for monitoring patrols in industrial areas. The objective is to decentralize the process of task allocation so that each robot can make decisions based on its configuration and environmental information. In this context, we introduce a distributed heuristic approach based on the Hybrid Filtered Beam Search (HFBS) algorithm to determine the optimal trajectory of each robot. In order to validate our approach, a case study in the industrial port area of Le Havre city is presented. The results are therefore promising since each robot calculates its optimal trajectory using only measurements from sites it can process rather than using all environmental data.

I. INTRODUCTION

The problem of task allocation for monitoring patrols in industrial areas is considered complex as it involves heterogeneous robots designed to meet a variety of requirements and constraints [START_REF] Khamis | Multi-robot task allocation: A review of the state-of-the-art[END_REF], [START_REF] Gerkey | A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems[END_REF]. In addition, determining the sequence of each robot's tasks is not sufficient to accomplish the monitoring mission. Rather, it is necessary to determine the optimal trajectory to reach the task locations. Specifically, the objective is to efficiently route a number of mobile agents in order to accomplish a variety of tasks.

The problem of task allocation is obviously NP-hard since no polynomial-time algorithm can produce an optimal solution and thus, the use of heuristic algorithms is deemed to be effective in such a context [START_REF] Gam | Hybrid Filtered Beam Search Algorithm for the Optimization of Monitoring Patrols[END_REF]. Besides, a successful monitoring mission requires robots and allocation programs to be coordinated. In the literature, centralized control has been widely used to ensure coordination, which relies on information from all components of the environment to make common decisions [START_REF] Liu | A Centralized Multi-robot Task Allocation for Industrial Plant Inspection by Using A * and Genetic Algorithms[END_REF]. However, the main drawback of such an approach is that in the event of a major failure of the central controller, the entire system will fail as well. Especially when large amounts of data are involved and the network becomes congested due to communication between the robots and the controller [START_REF] Aziz | Task Allocation Using a Team of Robots[END_REF], [START_REF] Korsah | A comprehensive taxonomy for multi-robot task allocation[END_REF].

As for the use of distributed approaches, many attempts have been made to solve the task allocation problem. Accordingly, the authors of [START_REF] Sun | Decentralized hungarian-based approach for fast and scalable task allocation[END_REF] suggest a decentralized strategy for resolving the multi-robot task allocation problem based on the Hungarian algorithm. Each robot performs a sub-step of the algorithm autonomously through the exchange of messages and environmental information with other agents.

The work described in [START_REF] Lyu | A Multi-Target Consensus-Based Auction Algorithm for Distributed Target Assignment in Cooperative Beyond-Visual-Range Air Combat[END_REF] proposes another distributed algorithm called Consensus Based Parallel Auction and Execution for task allocation within a heterogeneous multirobotic healthcare system. As part of their proposed approach, robots automatically select and perform tasks based on auction principles and resolve conflicts using consensus tools.

Another study [START_REF] Zitouni | A Distributed Approach to the Multi-Robot Task Allocation Problem Using the Consensus-Based Bundle Algorithm and Ant Colony System[END_REF] proposes a distributed approach to deal with the task allocation problem in a rescue mission with unmanned aerial vehicles and robots. A survivor package is built by each robot using the ant colony algorithm in the first stage, whereas a consensus phase uses coordination to resolve conflicts between robots. The problem is also addressed with a decentralized genetic algorithm approach in [START_REF] Patel | Decentralized Task Allocation in Multi-Agent Systems Using a Decentralized Genetic Algorithm[END_REF]. As described in their proposal, each robot searches for optimal solutions and shares the obtained results with the others using a parallel genetic algorithm. A similar approach is presented by the authors in [START_REF] Patrinopoulou | A Multi-Agent System Using Decentralized Decision-Making Techniques for Area Surveillance and Intruder Monitoring[END_REF] for solving the multi-robot task allocation problem by utilizing a decentralized intelligent system based on a swarm algorithm. In this context, an intelligent decisionmaking system is provided that enables quadcopters to monitor open areas and detect suspicious activity.

Although these decentralized approaches address the issue of assigning tasks to heterogeneous robots, they do not tackle the routing problem, which is considered a significant issue in multi-robot systems, particularly in monitoring high-risk industrial environments.

Using the Hybrid Filtered Beam Search algorithm, this paper presents a decentralized approach for solving the task allocation problem and minimizing monitoring mission time in a high-risk industrial area. As further described herein, the robots will have the ability to make autonomous decisions regarding the tasks they will perform and the trajectory they will follow in response to the information they receive from their environment.

The remainder of this paper is organized as follows. Modeling and some preliminaries are briefly summarized in Section 2. The proposed design and implementation of the decentralized allocation approach are described in Section 3. Afterwards, simulations results are presented and discussed in Section 4 and conclusions are drawn in Section 5.

II. SYSTEM MODELLING

The environment is represented by a rectangular mesh of size N X × N Y cells. Each cell (x, y) defines a site and represents a spatial area where an agent can stay. Each cell can be visited by several agents at the same time. The environment may include several types of obstacles or one-way paths. Thus, we consider an environment constituted of N cells identified by their addresses a k , k = 1, . . . , N with N = N X × N Y . Each task should be performed in some specific cells of the environment. The set of tasks in different cells is defined as follows:

Locations = a 1 a 2 a 3 .... a P         m 1 0 1 1 .... 1 m 2 0 0 1 .... 0 . . . . . . . . . . . . . . . m M 0 1 0 .... 1 
where a j , j = 1, . . . , P (with P ≤ N ), are the addresses of the cells where one or more measurements are required and m i , i = 1, . . . , M , are the measurements to be taken in a cell. In the following, we refer to the cells in Locations as sites. Let us note that at site a 1 , there is no measurement to be taken (i.e., Locations(•, a 1 ) = 0 ), as it corresponds to the site where the agents start and end their patrol.

Moreover, the tasks are performed by mobile agents which are initially positioned in site a 1 . There are N r types of mobile agents depending on the sensors carried on by the agents. Indeed, each type r of agent carries a specific subset of sensors, that carry out some measurements. It is assumed that each sensor performs a given measurement.The matrix Robots defines the set of sensors (or measurements) carried on by each robot r k , with k = 1, ..., R.

Robots

= r 1 r 2 r 3 .... r R         m 1 1 1 1 .... 0 m 2 1 0 1 .... 1 . . . . . . . . . . . . . . . m M 0 1 1 .... 1 

III. DECENTRALIZED ALLOCATION APPROACH

The aim of the proposed approach is to decentralize the task allocation process. In this context, each robot will be able to make decisions based on its configuration and information gathered from the environment. In this section, we firstly present the architecture of the distributed task allocation. Next, the decentralized approach operates through two different stages that are described: Allocation step and Consensus step.

A. Architecture

As shown in Figure 1, each robot has a computing unit to execute the decision-making program and collaborate with other robots using communication protocols. In a dynamic environment, only the robots closest to the location of the event during the mission will recalculate the solution and communicate with each other to determine which robot should perform the task. 

B. Allocation step

At this step, each robot selects a sequence of tasks and determines the optimal trajectory to visit all task locations. For this purpose, the robots make decisions based on environmental information retrieved from databases, such as travel time between two locations, robot autonomy, and sensor capabilities. We notice that NP-hard problems such as task allocation cannot be solved using linear programming even with small numbers of robots and tasks. Thus, we introduce a distributed heuristic approach based on the Hybrid Filtered Beam Search (HFBS) [START_REF] Mejía | A new hybrid filtered beam search algorithm for deadlock-free scheduling of flexible manufacturing systems using Petri nets[END_REF] algorithm which is defined as a graph search algorithm that combines two search algorithms namely: Beam Search and A*. To guide the search process towards the optimal solution, the HBFS uses a function heuristic and filtering technique based on two types of filter: a global filter β g , which limits the number of nodes at each level of the search tree, and a local filter that keeps only the β l best successors for each expanded node. Each node S of the graph will represent a candidate solution for the considered problem. This candidate is either complete if it meets some termination conditions, denoted as T C. The use of filters in HFBS can considerably reduce the search space and consequently improve the efficiency of the search process.

The approach is used to determine the trajectory that each robot should take when performing a monitoring mission in an industrial environment. In this case, robots select the tasks they can perform according to the type of sensors they carry and their level of autonomy. Figure 2 shows an example of an HFBS with β g = 3 and β l = 2. In the exploration process to search for the best solution, we observe that the HFBS limits the number of states at each level to β g = 3 and the number of the successor of each state to β l = 2.

The HFBS uses an evaluation function f which represents the global cost of node S. Thus, the choice of the states to keep at each level, is based on this function which adds the current cost and the heuristic cost to reach the solution. The function f is computed at each node S of the graph as follows:

f (S) = g(S) + h(S). (1) 
The function g(S) is the actual cost from initial node S 0 to S and is given by:

g(S) = i=1...n C (a i , a i+1 ) (2) 
with: i = 1, .., n the sequence of sites already visited by the robot.

The function h(S) is an estimation of the cost from S to the nearest node that satisfies T C and to converge, the heuristic function h(S) should under estimate the actual cost. Furthermore, we should ignore the nature of the different measurements to be conducted at each site as well as the sensors carried by each type of agent in order to compute this estimation. In order to calculate h(S), let us define L(S) as the list of sites that still need a visit at S , a(S) as the list of agent current positions at S, and L 1 (S) = L(S) ∪ {a 1 }, L a (S) = L(S) ∪ {a(S)}. The estimation h(S) is computed as:

h(S) = max                      (C * (a(S), L 1 (S)) + a∈L(S) C * (a, L 1 (S)) h 1 (S) , a ′ ∈La(S) C * (La(S), a ′ ) h 2 (S)                      (3)
where:

• C * (a(S), L 1 (S)) is the minimal non-null cost from the current positions of the agents to the sites in L 1 (S), • C * (a, L 1 (S)) is the minimal non-null cost from the current position a of one of the agents to the sites in L 1 (S), • C * (L a (S), a ′ ) is the minimal non-null cost from the sites in the set L a (S) to the particular site a ′ .

Example 1: We consider in this example an environment composed by a depot p 1 and four sites p 2 , p 3 , p 4 , p 5 . Each site contains one or more monitoring measures m 1 , m 2 , m 3 that need to be addressed. To perform the surveillance mission, we consider two robots r 1 , r 2 with different levels of autonomy E r1 = 100, E r2 = 80, each carrying one or more sensors. The configuration of the environment is as follows:

Locations = p 1 p 2 p 3 p 4 p 5 m 1 0 1 1 0 0 m 2 0 0 0 1 0 m 3 0 0 0 1 1 Robots = r 1 r 2 m 1 1 0 m 2 1 1 m 3 0 1
The travel time matrix, described below, shows the cost of the shortest path between every two sites in the environment. This cost is calculated using the Dijkstra algorithm [?]. In the centralized approach, the system uses all environmental data to calculate the optimal trajectory for each robot. The obtained patrol in this example is as follow: σ r1 = p 1 p 2 p 3 p 1 and σ r2 = p 1 p 5 p 4 p 1 .

travel time = p 1 p 2 p 3 p 4 p 5           p 1 0 9 6 
In the proposed decentralized approach, each robot uses only the data of the sites that contain measurements it can process. For this example, robot r 1 can treat measurements m 1 and m 2 , while robot r 2 can treat measurements m 2 and m 3 . Thus, the data used by each robot is as follows.

Data processed by robot r 1 : The trajectory obtained by each robot is: σ r1 = p 1 p 2 p 3 p 4 p 1 and σ r2 = p 1 p 5 p 4 p 1 .

Robots = r 1 m 1 1 m 2 1 m 3 0 Locations = p 1 p 2 p 3 p 4 m 1 0 1 1 0 m 2 0 0 0 1 travel time = p 1 p 2 p 3 p 4       p 1 0 9 6 
The results obtained indicate that both robots move to site p 4 to process the measurement m 2 , resulting in a conflict between them. This conflict could be resolved in the consensus step as described below.

C. Consensus Step

There is a possibility that several robots may have the same sensor for a particular monitoring task, which can lead to conflicts between robots if more than one robot chooses the same task. To resolve this conflict, the robots communicate with each other through communication protocols to reach a consensus.

As shown in Figure 3, the robots follow a specific process for resolving conflicts and selecting the appropriate robot to handle the task. The consensus process is based on three characteristics: the autonomy of the robots, their proximity to the task, and the number of tasks they are expected to perform.

For this purpose, the robots compare their energy levels first, and then the one with the highest level will carry out the actual task. If the robots have the same energy level, the process proceeds to the next step, and so forth. In this case, each robot processes a portion of the environmental data, which reduces the execution time significantly, especially when dealing with large amounts of data. Therefore, using the HFBS algorithm on a small dataset results in a more optimal solution with a minimal cost.

IV. CASE STUDY: THE INDUSTRIAL PORT AREA OF LE HAVRE CITY.

A. Description

In order to validate our approach, we present in this section a case study that focuses on the monitoring of the industrial port area of Le Havre city. This area comprises a number of chemical and petrochemical companies that generate highrisk activities. To successfully monitor this industrial area, we divide the environment into 1800 cells, a 1 , ..., a 1800 of size 10m × 10m, as shown in Figure 4.

A cell (also called site) may contain several monitoring measurements that require treatment by a variety of robots. We assume that all robots can avoid obstacles and walls during the surveillance mission. 

Robots = r 1 r 2       m 1 1 1 m 2 1 0 m 3 0 1 m 4 1 1
The study examines 12 sites to be visited by different robots during their surveillance missions. In Table I, we detail the environment data, i.e., the geographical location of each site and the measurements to be collected in that location. Figure 5 shows the modeling in cells of the industrial port area where the green rhombus represents the different task locations that contain one or more monitoring measurements (i.e, the 12 sites given in Table I), the blue triangle represents the depot point (i.e, site a 431 ) where all robots start and end their trajectories, and the gray squares represent different obstacles that the robots must avoid during the surveillance mission. 

B. Simulation Results

In the first step, i.e., the Allocation step, each robot chooses its task sequence and the trajectory it will follow using only information about sites containing measurements it can perform. The trajectories obtained by each robot are as follows:

• σ r1 = a 431 a 1266 a 787 a 431 a 1095 a 1472 a 1318 a 650 a 521 a 690 a 448 a 320 a 431 , • σ r2 = a 431 a 1266 a 1472 a 650 a 521 a 330 a 448 a 618 a 431 a 1095 a 431 .

These optimal trajectories are obtained by considering β l = 30 and β g = 55. Meanwhile, we can observe a conflict between robots r 1 and r 2 (in a 1266 , a 1472 , a 448 and a 650 ) since both carry sensors to handle the monitoring measurements m 1 and m 4 .

In this case, we proceed to the second step, i.e., the Consensus step via communication between the two robots and we obtain the new trajectories as follows:

• σ r1 = a 431 a 1095 a 1472 a 1318 a 521 a 690 a 448 a 320 a 431 a 787 a 1266 a 431 , • σ r2 = a 431 a 1095 a 1472 a 650 a 521 a 330 a 618 a 431 . Therefore, the conflict between r 1 and r 2 is resolved as illustrated in Figure 6. Based on our simulation results, the decentralized approach remains more efficient and costeffective as computation takes far less time when distributed over several robots. Accordingly, the decentralized approach leads to a significant reduction in the total patrol cost to f =358 TUs, compared to f =468 TUs for a centralized approach. Consequently, the use of the HFBS algorithm in such a context achieves optimal trajectory generation at minimal cost. 

V. CONCLUSION

In summary, we argue that successful monitoring missions for patrols in industrial areas require coordination between robots and assignment programs. Despite the widespread use of centralized coordination, one of the major drawbacks of such a system is that in the event that the central controller fails, the entire system fails as well. Therefore, we propose in this paper to decentralize the task allocation process so that each robot can make decisions according to its configuration and environmental conditions. For this purpose, we apply a distributed heuristic approach based on the hybrid filtered beam search (HFBS) algorithm. Accordingly, simulation results remain promising and validate our approach through a case study in the industrial port area of Le Havre city.

As prospects, we suggest adapting the proposed approach to dynamic environments where new monitoring tasks may appear during the mission. The project can also provide an opportunity to improve the way in which our approach is applied to other critical missions, such as rescue missions. In this context, agents have to carry more than just sensors, but also resources that must be transported from one point to another and distributed throughout the entire mission.
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