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Abstract

Background: Intracranial EEG biomarkers are under investigation to help local-
ize the seizure onset zone (SOZ) using ictal activity. Existing methods: Biomarkers
developed to date can be classified depending on whether they target abnormali-
ties in signal power or the functional connectivity between signals, and they may
be optimized depending on the frequency and the time window of interest. New
method: This work aimed to systematically compare the performance of power- and
connectivity-based biomarkers to identify SOZ contacts from ictal iEEG record-
ings as a function of these parameters. To do so, we use a previously introduced
power-based measure, the normalized mean activation (nMA), which quantifies the
average power activation with respect to baseline activity in a frequency band and
time window of interest. Similarly, we define the normalized mean strength (nMS),
to quantify the mean functional connectivity (cross-correlation) of every contact
with the rest of the signals in a frequency band and time window of interest. Re-
sults: The biomarker comparison was performed on a dataset of 67 seizures from
10 patients with pharmacoresistant temporal lobe epilepsy. Our results suggest
that power-based biomarkers generally perform better for the detection of SOZ
than connectivity-based ones. However, a similar performance level can be achieved
when both biomarkers are independently optimized over frequency bands and time
windows. Optimal performance was achieved in broadband or in the beta range
for power-based biomarkers, and in the lower-gamma range for connectivity. Both
biomarkers maximized their performance when using a 20-30 s period after seizure
onset. Conclusions: The results of this study highlight the importance of this opti-
mization step when comparing different SOZ discrimination biomarkers. This infor-
mation should be considered when designing seizure onset zone algorithms in clinical
applications.

Keywords: Epilepsy, Intracranial EEG, SEEG, Seizure onset zone identification,
Power spectrum analysis, Functional connectivity
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1 Introduction

Presurgical evaluation of drug-resistant epilepsy often involves the use of intracranial
EEG (iEEG) to accurately localize the seizure onset zone (SOZ) (Bancaud, 1980).
Recordings from hundreds of sensors are continuously acquired for up to three weeks
and visually inspected by highly specialized neurologists. This can be a very challenging
procedure given that seizure onset patterns may involve several frequencies (Perucca
et al., 2014; Lagarde et al., 2016; Vila-Vidal et al., 2020) and may have complex spatial
distributions (Bartolomei et al., 2017).

Several iEEG biomarkers have been developed to help localize the SOZ using ictal ac-
tivity. These biomarkers can be classified into two groups, depending on their target fea-
tures: power or connectivity (for an extensive review see (Vila-Vidal and Tauste Campo,
2023)). On one hand, power-based biomarkers target abnormal activity patterns that
might correlate with the SOZ. These methods are based on a spectral analysis of the
iEEG signals of each region, from which changes or activations at specific frequencies
are then extracted and evaluated. Some methods in this group, such as the Epilepto-
genicity Index (Bartolomei et al., 2008), rely on detecting changes at specific frequency
bands, often in the beta and gamma ranges (David et al., 2011; Murphy et al., 2017).
Other methods offer more flexibility and can adapt to or combine different frequencies
of interest (Gnatkovsky et al., 2011, 2014; Vila-Vidal et al., 2017, 2020).

On the other hand, connectivity-based biomarkers target abnormal changes in func-
tional connectivity, i.e., statistical dependencies of signals between pairs of electrodes.
The rationale behind this approach is based on a conceptualization of epilepsy as a
disease affecting a network of interconnected regions that generate and propagate ictal
activity across the brain (Bartolomei et al., 2017). Different types of statistical relation-
ships have been used to build biomarkers that capture alterations in these functional
relationships during ictal periods (Gotman and Levtova, 1996; Bartolomei et al., 2004;
Mierlo et al., 2013; Nahvi et al., 2023; Balatskaya et al., 2020).

The studies mentioned above built their biomarkers based on either power or connec-
tivity alone. One of the few exceptions in this regard is the work done by (Balatskaya
et al., 2020), which combined the two types of measures to define a joint biomarker.
A major limitation of this study, however, was the use of a predefined frequency band
(beta-gamma range) and a predefined period of interest (20-30 s after seizure onset),
which may fall short of capturing relevant activity given the heterogeneity observed
across seizures (Perucca et al., 2014; Lagarde et al., 2016). Up to now, no study has
systematically explored the performance of these biomarkers as a function of spectral
parameters such as the frequency and the time of interest.

This study aimed to systematically compare the performance of power- and connectivity-
based biomarkers to identify SOZ contacts from ictal iEEG recordings. As a general
power-based measure, we used the normalized mean activation (Vila-Vidal et al., 2017),
which quantifies the average power activation with respect to baseline activity in a fre-
quency band and time window of interest. For the sake of comparison, we defined an
analogous connectivity-based measure based on the cross-correlation (Mierlo et al., 2014;
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Khambhati et al., 2017). The normalized mean strength (nMS) corresponds to the mean
functional connectivity (cross-correlation) of every contact with the rest of signals in a
frequency band and time window of interest. Optimal frequency bands and time win-
dows to identify the SOZ may be different for both types of measures. To account for
such potential differences, we assessed the discrimination power of both metrics across
various frequency bands and time windows of interest and selected the combination that
maximized the observed effect in each case independently. This method was tested with
a dataset of 67 seizures from 10 patients diagnosed with pharmacoresistant temporal lobe
epilepsy that underwent stereo-electroencephalography (SEEG), a particular type of in-
tracranial EEG technique (Talairach et al., 1974; Munari and Bancaud, 1985; Guenot
et al., 2001; Cardinale et al., 2013).

2 Methodology

2.1 Patients and recordings

In this study, we analyzed SEEG recordings from a total of 67 seizures from 10 patients
with pharmacoresistant focal-onset epilepsy who underwent presurgical evaluation at
the Epilepsy Centre of Hospital del Mar (Barcelona, Spain) between 2012 and 2017.
In this study, we included only patients for which epileptologists had marked a single
and spatially confined seizure onset zone. Patients’ characteristics are summarised in
Table 1. Seizure onset and termination times were marked by two epileptologists using
standard clinical assessment and a consensus decision was reached. For each seizure we
analyzed SEEG recordings from the marked ictal epoch together with 60 s of pre-ictal
and 60 s of post-ictal epochs.

Stereo-EEG monitoring was performed using a standard clinical intracranial EEG
system (XLTEK, a subsidiary of Natus Medical) with a sampling rate of 500 Hz,(in
patient P3, the sampling rate was 250 Hz). Recordings were obtained using intracra-
nial multichannel electrodes (Dixi Medical, Besançon, France; diameter: 0.8 mm; 5–15
contacts, 2 mm long, 1.5 mm apart) that were stereotactically inserted using robotic
guidance (ROSA, Medtech Surgical, Inc). The decision to implant, the selection of the
electrode targets and the implantation duration were entirely made on clinical grounds.

2.2 Data preprocessing

EEG signals were processed in the referential recording configuration (i.e., each signal
was referred to a common reference). The electrodes per patient included in the analysis
are reported in Table 1. We visually identified noisy electrodes and removed them from
the analysis. Signals were band-pass filtered between 1 to 150 Hz using a zero-phase
FIR filter (53 dB stopband attenuation, maximal ripples in passband 2%) to remove
slow drifts and aliasing effects. A notch filter was applied to 50 Hz and its multiples
to remove the power line interference (band-stop FIR filter with band-stop width of
1/10 and 1/35 of the central frequency for 50 Hz and its harmonics, respectively; 53 dB
attenuation at center frequency, maximal ripples in passband 2 %).
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2.3 General procedure

Our approach was to define and systematically compare two biomarkers, one based on
signal power and the other based on functional connectivity, to identify the seizure onset
zone in the cohort of patients described above. The first biomarker used in this study
is the previously introduced normalized mean activation (nMA) (Vila-Vidal et al., 2017,
2020). The nMA quantifies the average power activation of each contact with respect
to baseline activity within a frequency band and time window of interest. Similarly,
we defined the normalized mean strength (nMS) to quantify each contact’s average
functional connectivity strength (i.e., its average functional connectivity to all other
contacts) over the same time-frequency ranges. The rationale is that, instead of and
in parallel to changes in signal power at electrode contacts, the statistical dependencies
of signals between pairs of contacts may change differently depending on each contact’s
location with respect to the SOZ (Bartolomei et al., 2004; Varotto et al., 2012; Mierlo
et al., 2013). In addition, these changes are known to evolve over time (Courtens et al.,
2016) and using different temporal windows may capture different stages of the seizure
and its propagation.

Both biomarkers are thus expected to depend on frequency bands and time windows
and thus their respective level of SOZ discrimination might be optimized over the time-
frequency space. We defined 6 frequency bands of interest (FOIs) and 9 time windows of
interest (TOIs) to account for this parameter-dependence. FOIs were defined based on
canonical bands: broadband (3-160 Hz), δ-θ (3-8 Hz), α (8-12 Hz), β (12-30 Hz), low-γ
(30-70 Hz) and high-γ (70-160) Hz. All time windows of interest started at the annotated
seizure onset time (reference time, 0 s) and were defined by 9 different window lengths:
0-1 s, 0-2 s, 0-3 s, 0-4 s, 0-5 s, 0-10 s, 0-20 s, 0-30 s and whole seizure. Seizure onset zone
discrimination was independently evaluated for all possible FOI-TOI combinations with
nMA and nMS. The processing steps for each biomarker are described in the following
paragraphs.

2.4 Power-based biomarker: normalized mean activation

The processing used to compute the normalized mean activations (nMA) in each FOI
and TOI was very similar to previous works (Vila-Vidal et al., 2017, 2020). In brief,
signals were first filtered in 42 non-overlapping logarithmically-spaced narrow frequency
bands, each with a bandwidth of 10% of its lower frequency bound, covering the whole
spectrum of interest 3-160 Hz. The Hilbert transform was then used to obtain the
continuous power in each narrow band. Summation of signal power across narrow bands
was used to obtain the total power of each contact in each FOI. Note that using a fixed
bandwidth of 10% determines the cutting points of each band, which causes the resulting
bands to have small deviations from the predefined FOIs. The resulting cutting points
were: 3, 7.8, 12.5, 29.5, 69.7, 160. Following (Vila-Vidal et al., 2017), we used a pre-ictal
baseline of activity from 60 to 20 s before ictal onset. Baseline power values from all
contacts were pooled together to build a baseline distribution. We then normalized each
contact’s power with respect to this baseline and defined the instantaneous activation
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as the resulting z-score. This procedure was independently done for each FOI.
The mean activation (MAi,f,t) was then defined for each FOI f , TOI t and contact

i as the average of its instantaneous activation in FOI f and across TOI t. This step
was repeated for each seizure, thus obtaining a mean strength profile across contacts for
each seizure, frequency, and time of interest. To allow for cross-seizure comparison, we
normalized mean activation values within each seizure, frequency, and time of interest.
We computed the mean µMA,f,t and standard deviation σMA,f,t of MA values in each
frequency f and time window t across contacts. We then defined the normalized mean
activation (nMA) for each contact i, FOI f and TOI t as the z-score the mean strength:

nMAi,f,t =
MAi,f,t − µMA,f,t

σMA,f,t
(1)

2.5 Functional connectivity-based biomarker: normalized mean strength

We first filtered each contact’s signal in the six FOIs using a zero-phase FIR filter (53 dB
stopband attenuation, maximal ripples in passband 2%, Fig. 1A). We then estimated
the functional connectivity between each pair of contacts in slicing windows of length 1
s. Within each time window, the functional connectivity was estimated as the maximum
of the absolute value of the cross-correlation for lags between -0.1 and 0.1 s (Fig. 1B).
We then defined a strength value (S) for each contact as the mean of its connectivity
with all other contacts in each sliding window (Fig. 1C).

The mean strength (MSi,f,t) was then defined for each FOI f , TOI t and contact i
as the mean strength in frequency band f across time window t. This step was repeated
for each seizure, thus obtaining a mean strength profile across contacts for each seizure,
frequency and time of interest (Fig. 1C). To allow for cross-seizure comparison, we
normalized mean strength values within each seizure, frequency, and time of interest.
We first transformed all MS values using the Fisher z-transform (MS′i,f,t). We then
computed the mean µf,t and standard deviation σf,t of the transformed values in each
frequency f and time window t across contacts. We then defined the normalized mean
strength (nMS) for each contact, FOI f and TOI t as the z-score of its Fisher-transformed
mean strength (Fig. 1E):

nMSi,f,t =
MS′i,f,t − µf,t

σf,t
(2)

2.6 Statistical analyses

Before performing patient-level analysis, we aimed to assess homogeneity across seizures
in each patient. Broadband nMA similarity across seizures was previously shown (Vila-
Vidal et al., 2017). Here, we aimed to systematically assess the similarity of nMA and
nMS profiles across seizures within each FOI (using the whole seizure as the time window
of interest). To do so, we computed the Pearson correlation of nMA between each pair of
seizures for each FOI. We then average these values across all pairs of seizures to obtain
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a measure of inter-seizure similarity for each patient and FOI. The same procedure was
used to quantify the inter-seizure nMS similarity.

Next, we assessed the statistical power of these variables (nMA and nMS) to differ-
entiate between SOZ and non-SOZ contacts at the patient level. To do so, we computed
the median nMA (resp. nMS) across seizures and obtained a single value for each contact
in each FOI-TOI combination. We then assessed the effect size of differences between
between SOZ and non-SOZ contacts using Cohen’s d (Cohen, 2016). In addition, we also
tested for statistical differences using a non-parametric test (Wilcoxon rank-sum test).

Finally, we compared nMA and nMS as features of a binary classifier for SOZ identifi-
cation. Specifically, for each variable (nMA and nMS) we computed a receiver operating
characteristic (ROC) curve and extracted the area under the curve (AUC) for each FOI-
TOI combination. This procedure was done in each patient separately. We then aimed
to maximize each classifier’s performance under two criteria. The first criterion was
to maximize the average performance across patients. This was done by finding the
parameter combination (FOI-TOI) which maximized the patient-average AUC for each
classifier. The second criterion was to maximize the worst performance across patients.
Here, we found the parameter combination (FOI-TOI) which maximized the minimum
AUC across patients for each classifier.

2.7 Ethics statement

The study was conducted following the Declaration of Helsinki and informed consent
was explicitly obtained from all participants prior to the recordings. All diagnostic and
surgical procedures were approved by The Clinical Ethical Committee of Hospital del
Mar (Barcelona, Spain).

3 Results

3.1 Computation of nMA and nMS in the time-frequency space

We analyzed 67 seizures from a total of 10 patients to compare the statistical power
of a power-based and a connectivity-based biomarker to identify seizure onset contacts
across a range of distinct frequencies of interest (FOI) and time windows of interest
(TOI). For each seizure and contact, we first computed the time-varying power activation
(A) and connectivity strength (S) in each FOI separately. Fig. 2A shows the time
evolution of these metrics in the frequency range 3-160 Hz. We then computed each
contact’s normalized mean activation (nMA) and normalized mean strength (nMS) in
each TOI (2B). As an example, Fig. 2B shows the nMA and nMS contact profiles in
the frequency range 3-160 Hz and over the whole seizure. In general, SOZ contacts
consistently displayed increased power (nMA) and decreased connectivity (nMS) values
with respect to other contacts for a wide range of FOI-TOI combinations. Increased nMA
indicates the presence of enhanced oscillations at the contact, which in turn becomes
less synchronized with the rest of the network, as captured by decreased connectivity.
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In addition, for this exemplary patient, both nMA and nMS profiles displayed a high
degree of similarity across seizures.

3.2 Assessing seizure similarity within patients

To leverage the data obtained from several recorded seizures for designing a SOZ biomarker,
it is relevant to assess the degree of variability of each variable (nMA, nMS) across
seizures in each patient. Here, inter-seizure power (resp. connectivity) similarity was
evaluated in each patient and FOI by computing the average Pearson correlation of nMA
(resp. nMS) multivariate profiles across all pairs of seizures over the whole seizure period
(Fig. S1, top). Inter-seizure similarity was shown to be strongly patient-specific. All
patients had large nMA and nMS similarities (> 0.6), except for patients P6 and P10.
Interestingly, although patient P6 had a medium nMA similarity (0.37 ± 0.06, mean ±
SEM), its nMS similarity remained large (0.76± 0.03, mean ± SEM). Patient P10 had
similar nMA and nMS similarities (0.52±0.03, 0.558±0.018, respectively, mean ± SEM).
In addition, nMA and nMS inter-seizure similarity remained high and comparable across
frequency bands (≈ 0.8), except in the gamma range of the spectrum, where nMA simi-
larity dropped (0.6±0.1, mean ± SEM, in high-γ) while nMS similarity remained stable
and high (> 0.8). This reinforces the idea that high-frequency nMA may be associated
with local neural activity (Vila-Vidal et al., 2023; Buzsáki et al., 2012). Thus, it is more
likely to capture the specific electrical patterns of each seizure within patients.

3.3 Exploring parameter-dependent SOZ discrimination

After ensuring a sufficient degree of seizure similarity, we computed the median nMA
(resp. nMS) across seizures and tested for statistical differences between SOZ and non-
SOZ contacts using each variable. This was initially illustrated using broadband signals
and the whole seizure period (Fig. 3). In this example, nMA (nMS) differences were
statistically significant in 8 (resp. 7) out of 10 patients. When significant, differences
exhibited very large effect sizes (D > 1). In patients P2 and P9, neither nMA nor
nMS showed statistically significant differences between SOZ and non-SOZ contacts. It
is interesting to note that patients P6 and P10, that had less reliable nMA and nMS
profiles (Fig. S1, top), also achieved significance in this analysis. Overall, Fig. 3 also
shows that patients that are difficult for nMA are also difficult for nMS, suggesting that
these two variables might not be able to compensate for each other.

To explore time-frequency combinations yielding significant SOZ discrimination lev-
els, we computed the effect size for each combination of parameters (FOI and TOI) and
extracted the mean and standard deviation group values across patients. As shown in
Fig. 4, the nMA (power) exhibited on average larger effect sizes with higher variability
than nMS (connectivity) for most FOI-TOI combinations. For nMA (Fig. 4, top), the
combinations of β band within the range 0-20 s and low-γ band up to 0-5 s maximized
the patient-average effect size between SOZ and non-SOZ contacts while keeping moder-
ate variability levels. For nMS (Fig. 4, bottom), the combination of high-γ band within
the range 0-30 s maximized the patient-average effect size between SOZ and non-SOZ
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contacts but it also yielded the least consistent effect size over the analyzed patients.
For completeness, we show in Supplementary Information (Fig. S2) the nMA and nMS
effect sizes for each patient.

Overall, in Fig. 4 we generalized the patient-level statistical analysis performed in
(Vila-Vidal et al., 2017) to a larger frequency-time space and we applied it to each vari-
able (nMA and nMS) independently. This parallel analysis allowed for a fair statistical
comparison between each variable, which might be instrumental to assess the poten-
tial of each biomarker to discriminate the SOZ when integrated into classification-based
algorithms.

3.4 Classification performance between nMA and nMS

Based on the outcomes of the statistical inference, we asked ourselves how the reported
patient-average effect sizes might be translated to proper levels of SOZ discrimination
when using practical approaches relying on binary classification algorithms.

To address the above question, we quantified and compared the accuracy of a binary
classifier based on the nMA and nMS variables, respectively. In brief, for each variable,
patient and combination of parameters (TOI-FOI), we computed the area under the
curve (AUC) to measure the classifier’s performance. Optimization across parameters’
values was achieved under two different criteria. The first criterion relied on maximiz-
ing the patient-average performance (Fig. 5A). Hence, the patient-average AUC was
computed for each classifier over all TOI-FOI combinations (Fig. 5A, left column). In
this case, the maximum (squared in red) was attained in the β band over 0-30 s for the
nMA classifier (0.93± 0.03, mean ± SEM across patients, 0.7 minimum across patients)
and in low-γ band over 0-30 s for the nMS classifier (0.86 ± 0.04, mean ± SEM across
patients, 0.6, minimum across patients). We also inspected the distribution of AUC
across patients arising from each optimal parameter selection (Fig. 5A, right column),
for which nMA exhibited a slightly higher performance than nMS.

To guarantee a minimum classification performance satisfied by all patients simulta-
neously, we defined the second criterion as the maximization of the patient’s worst-case
performance (Fig. 5B). Hence, we represented the minimum AUC across patients for
each classifier over all TOI-FOI combinations (Fig. 5B, left column). In this case, the
optimal value (maximizing the patient-minimum AUC) for the nMA classifier shifted
to the broadband frequency range over 0-30 s (0.8, minimum across patients). Instead,
for the nMS classifier, the optimized value remained at the low-γ band over 0-30 s (0.6,
minimum across patients). As expected, the distribution of AUC across patients ob-
tained from optimal selections (Fig. 5B, right column) maintained (nMS) or increased
the performance of the patient with minimum AUC (nMA, from 0.7 to 0.8).

For completeness, we show the classification performance of nMA and nMS at the
patient level in Fig. S3. The best frequency band for nMA was found to be patient-
specific, which might explain why using broadband yields the best results at the group
level. In contrast, the best frequency band for nMS remained stable across patients in
the low-γ range. This, together with the increased inter-seizure nMS similarity (Fig.
S1), indicates that the results might generalize better for nMS than nMA for larger
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datasets. The best time window size was also found to be patient-specific, although
some consistency was found within each subject across measures (best time windows
were similar for nMA and nMS).

In general, the results of the classification accuracy under each criteria showed that
the nMA outperformed nMS for most of the TOI-FOI combinations. However, when
selecting the optimal combination for each variable, we did not find significant differences
in AUC between nMA and NMS in our dataset (n=10, P>0.1) regardless of the employed
criterion. More precisely, under optimized conditions, we could differentiate patients
in which the classification performance remained approximately the same, patients in
which there was a moderate performance variation (AUC difference <0.05) and patients
in which there was a notable performance decrease from nMA to nMS (AUC difference
>0.05).

In conclusion, the application of the proposed methodology to our available dataset
suggests that power-based variables might yield slightly better SOZ identification per-
formance than (single-site) functional connectivity variables such as the connectivity
strength. Yet, larger datasets will be needed to characterize such comparison more ac-
curately and to investigate whether the combination of each type of variable can also
yield performance improvements. In any event, our methodology is aimed to provide
an in-depth and fair comparison analysis between any SOZ discrimination biomarker
candidate defined at a single-site level with respect to standard power-based variables
to identify novel intracranial EEG features that could strengthen epilepsy presurgical
diagnosis.

4 Discussion

In this work we have presented a systematic comparison of different types of biomarkers
based on intracranial EEG extracted from peri-ictal periods for SOZ identification in
patients with pharmacoresistant epilepsy. Motivated by previous works (Kramer et al.,
2008; Geier et al., 2015; Ponten et al., 2007), one of the central goals of the proposed
analysis method was to investigate whether standard power-based biomarkers (Vila-
Vidal et al., 2017, 2020; Gnatkovsky et al., 2011, 2014; David et al., 2011; Bartolomei
et al., 2008) can be outperformed by measures relying on second-order signals’ statistics
such as measures derived from delayed functional connectivity.

To study the power-connectivity comparison, we here resorted to a rather general
measure, the normalized mean activation, (nMA) (Vila-Vidal et al., 2017) as a proxy
of power-based biomarkers, and defined an analogous measure, the normalized mean
strength (nMS), as a proxy of connectivity-based biomarkers. The nMS corresponds to
the mean functional connectivity (cross-correlation) of every contact’s signal with the rest
of signals over a given time window and frequency band and it can be therefore compared
straightforwardly with the nMA. Importantly, the method may be analogously applied
to other connectivity or topological measures (Friston, 2011; Bullmore and Sporns, 2009)
provided that they are defined at a single-site level (i.e., they can be regarded as vectors
of a n-space where n is the number of channels). For each selected measure, the method
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validates that normalized measures are consistent across seizures within a single patient
and extracts a meaningful median value (over seizures) that is then used to quantify
the effect sizes and AUC of the SOZ discrimination over a grid of relevant physiological
frequency bands and nested time windows following the seizure onset.

We illustrated the application of our method to analyze the power-connectivity com-
parison in a dataset of 10 patients with pharmacoresistant temporal lobe epilepsy that
accounted for a total of 67 seizures and whose SOZ was clinically validated by epilep-
tologists. The outcomes of our analysis suggest that power-based biomarkers gener-
ally perform better than connectivity-based ones. Yet, our results also show that both
biomarkers may achieve similar performance levels when appropriately optimized over
frequency bands and time windows.

4.1 Seizure homogeneity as initial step for SOZ discrimination

A critical aspect of our method is that it leverages the data from each patient’s recur-
rent seizures for a single SOZ identification, thus accumulating statistical power across
seizures to perform inference and classification at a patient level. As demonstrated in
a previous work for power activation (Vila-Vidal et al., 2017), we here showed that the
values of connectivity strength also attained a very low variance across seizures when
they were normalized across contacts (Fig. S1). In particular, there were only a few
seizures that substantially deviated from the median value of nMA and nMS, respec-
tively, in a few patients. Overall, the degree of similarity between seizures was very high
and this trend was shown to be consistent across patients regardless of the employed
measure (Fig. S1).

Assessing seizure homogeneity was key in our method to extract a median value
per contact across seizures, which could provide a sufficiently good representation of
the patient’s ictal activity for each measure. This step was therefore instrumental in
performing statistical analysis comparing the activity (power/connectivity) between SOZ
and non SOZ contacts per patient (Fig. 3). However, it is due stating that the reported
seizure homogeneity of our dataset was possibly favored by the fact that all patients had
temporal lobe epilepsy with a clear diagnosed focus. It remained out of the scope of
this study to investigate to which degree seizure homogeneity still holds in patients with
extra-temporal lobe epilepsy or patients with heterogeneous seizures exhibit foci across
different brain areas.

4.2 High activation and low functional connectivity identify SOZ

By inspecting the distribution of nMA and nMS values over patients, we generally re-
produced known results in the literature (Fig. 3) pointing to the fact that the SOZ
is characterized by significantly higher power activation (Vila-Vidal et al., 2017; Bar-
tolomei et al., 2008) and lower functional connectivity following seizure onset (Kramer
et al., 2008). However, this characterization was not uniform among patients when us-
ing rather general conditions such as analyzing broadband signals over the whole seizure
period. This motivated us to explore how the discrimination of SOZ varied as a func-
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tion of clinically relevant frequency and time windows. Indeed, the comparison between
nMA and nMS over a grained space of parameters allowed us to investigate in depth its
dependence on frequency and time. In particular, we observed that for most of the pa-
tients, the SOZ discrimination of nMA was mostly maximized in the low-gamma regime
(30-50Hz) over the initial 5 seconds (Fig. 4), which reproduced previous own results
(Vila-Vidal et al., 2017). With regard to nMS, we observed that the effect size was likely
to increase from low to high frequency and from low to higher time window sizes and it
achieved its maximum at the high-gamma band within a time window of 30s following
seizure onset. Two factors might explain this frequency and time gradient. First, the fre-
quency increase indicates that functional connectivity is a more representative measure
of neural activity when inferred at high-frequency bands since it is known to capture in-
teractions across local neural population from different brain regions (Vila-Vidal et al.,
2023; Buzsáki et al., 2012). On the other hand, the temporal increase might reflect
that functional connectivity variables operate at a smaller timescale than power-based
variables over ictal epochs and they thus require larger time window for estimation.

4.3 Power-based vs. connectivity-based biomarkers for SOZ classifica-
tion

Upon reviewing the outcomes of our analysis, we may tackle again the question of how
connectivity-based biomarkers for SOZ identification compare to power-based biomark-
ers. Specifically, our results based on the low computational cost measure of cross-
correlation reinforce the idea that connectivity measures do not suffice to outperform
traditional biomarkers relying on spectral features. Our interpretation behind this be-
havior is that delayed statistical dependencies, at least at a linear level, do not necessarily
reflect information of a connectivity nature such as propagation pathways, but rather
they are a measure of signal similarity. This is specially manifested in the SOZ whose
connectivity is lower than in the rest of contacts in the gamma band when the ictal spec-
tral patterns become more differentiated from the rest of the signals after seizure onset.
Furthermore, detecting seizure propagation across contacts is not a priori an easy task
given the limited spatial sampling of intracranial EEG implantation. Hence, further
analysis relying on estimations over observed but also non-observed (latent) data are
needed to elucidate how to design connectivity-based biomarkers that can capture pat-
terns associated with seizure propagation, thus complementing the information provided
by spectral analysis.

4.4 Limitations and other considerations

In this study, we performed a comparison between a power- and a connectivity-based
measure to infer the SOZ from iEEG signals. As a result of our analyses, we could
establish the optimal parameters for each type of measure in our dataset, but we did
not build any joint biomarker that combines both power and connectivity. Further re-
search should investigate how to combine both sources of information, considering that
this might vary depending on various factors, such as the epilepsy type, the spectral
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features of the seizure onset patterns or the spatial extent of the implantation. In addi-
tion, it should be noted that our results are based on the assessment of a very specific
connectivity measure derived from cross-correlation. Cross-correlation is defined to cap-
ture linear relationships between signals with possible time delays. Other connectivity
measures might target other features of the links between signals: nonlinear dependen-
cies, phase-phase couplings or amplitude-amplitude couplings, among others. Some of
these measures might capture independent phenomena and, so, our results cannot be
generalized. The major limitation of this work, however, is that the power and con-
nectivity analyses were performed retrospectively after the SOZ was defined by clinical
electrophysiological criteria and the compromised contacts were determined ad hoc. To
ultimately assess the clinical applicability of these and other measures, in future studies,
these localization analyses should be performed prospectively in a blinded fashion with
respect to the classically defined SOZ
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Figure 1. Functional connectivity-based biomarker: normalized mean strength (nMA) A.
Data preprocessing and canonical band filtering. Raw signals were notch-filtered to remove the power
line interference at 50 and its multiples. Vertical red lines mark seizure onset and offset. Seizure onset is
used as the reference time (0 s). Signals were then band-pass filtered in six frequencies of interest (FOI),
including 5 canonical bands and a broadband component: broadband: 3-160 Hz; δ-θ: 3-8 Hz; α: 8-12 Hz;
β: 12-30 Hz; low-γ: 30-70 Hz; high-γ: 70-160 Hz. Artifacted noisy channels were visually identified in
this step and removed for the following steps. B. Time-varying functional connectivity. Using a sliding
window approach (window length and step of 1 s), we computed the time-varying functional connectivity
(FC) for each pair of contacts. The functional connectivity was estimated as the maximum absolute value
of the cross-correlation across lags ranging from -0.1 to 0.1 s. C. Time-varying connectivity strength.
The connectivity strength (S) was computed as the mean of the functional connectivity between each
channel and the rest of the channels for each time window. D. Mean strength in each time window
of interest. For each contact and time window of interest (TOI), we computed the mean connectivity
strength (MS) as the mean connectivity strength in the TOI. In particular, we explored the following
TOIs: 0-1s, 0-2s, 0-3s, 0-4s, 0-5s, 0-10s, 0-20s, 0-30s, and whole seizure period. This procedure was
repeated for each seizure. E. Normalized mean strength. To allow comparisons across seizures per
patient, MS values were Fisher transformed and normalized (z-score) in each seizure separately, thus
obtaining a normalized mean strength (nMS) for each contact over a given seizure. For each patient’s
data, steps B-E were repeated for all FOIs and TOIs.

15

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.568472doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568472
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Power- and connectivity-based biomarkers evaluated in 3-160 Hz (FOI) and over
the whole seizure period (TOI) in an exemplary seizure of patient P1. Top panels display
the broadband (3-160 Hz) time-varying power activation (A, top-left) and connectivity strength (S, top-
right). Power values are expressed as a z-score with respect to a baseline distribution built by pooling
all contacts’ power values in the time period from -60 s to -20 s. Connectivity strength (S) measures
the average functional connectivity of each contact with respect to all other contacts and is computed
using a sliding window approach (window length and step of 1 s). Seizure onset and offset times are
marked with red vertical lines. The clinically annotated seizure onset zone (SOZ) contacts are marked in
red next to the y-axis. Bottom panels display the normalized mean activation (nMA, bottom-left) and
normalized mean strength (nMS, bottom-right) computed over the whole seizure period for all seizures
of patient P1. Clinically annotated SOZ contacts are marked in red on the x-axis. As previously shown
with nMA, the nMS profile displays a high degree of similarity across seizure. SOZ contacts consistently
display increased power (nMA) and decreased connectivity (nMS) with respect to other contacts.
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Figure 3. SOZ discrimination with nMA and nMS for an example of parameters of interest
(FOI = broadband, 3-160 Hz, TOI = whole seizure period). Boxplots showing the distribution
of seizure-median nMA (top) and nMS (bottom) values across SOZ and non-SOZ contacts for each
patient. nMA and nMS were estimated for each contact and seizure of patient P1 in 3-160 Hz (FOI)
and over the whole seizure period (TOI). Seizure-median nMA and nMS values were obtained for each
contact. Differences between SOZ and non-SOZ contacts were tested for statistical significance using
a Wilcoxon rank-sum test (** P < 0.001, * P < 0.01). Effect sizes were evaluated using Cohen’s d
(reported above each comparison). For this combination of frequency band and time window of interest,
all nMA differences were statistically significant (P < 0.01) in all cases except in patients P2 and P9.
nMS differences were statistically significant (P < 0.01) in all cases except in patients P2, P8, P9. When
significant, differences exhibited very large effect sizes (D > 1). Group (SOZ/non-SOZ) sample sizes for
each patient were 6/48, 9/58, 6/50, 11/67, 8/77, 9/90, 11/96, 9/86, 4/120, 13/109.
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Figure 4. SOZ discrimination (effect size) across patients with nMA and nMS as
a function of different FOIs and TOIs. nMA and nMS were estimated for each contact
and seizure, and for each combination of FOI (broadband: 3-160 Hz, δ-θ: 3-8 Hz, α: 8-12 Hz,
β: 12-30 Hz, low-γ: 30-70 Hz, and high-γ: 70-160 Hz) and TOI (0-1s, 0-2s, 0-3s, 0-4s, 0-5s,
0-10s, 0-20s, 0-30s, and whole seizure period). Seizure-median nMA and nMS values were then
obtained obtained for each contact, FOI and TOI. The size of differences between SOZ and
non-SOZ contacts with nMA and nMS was quantified using Cohen’s d in each FOI and TOI
independently. This procedure was repeated for each patient, thus obtaining a distribution of
10 effect size values (one per patient) for each FOI and TOI. Color maps show the mean (left)
and standard deviation (right) of nMA (top) and nMS (bottom) effect sizes across patients for
every FOI (y-axis) and TOI (x-axis). nMA (power) exhibited on average larger effect sizes with
hifger variability than nMS (connectivity) for most FOI-TOI combinations. For nMA (top), the
combinations of β band within the range 0-20 s and low-γ band up to 0-5 s maximized the effect
size between SOZ and non-SOZ contacts. For nMS, the combination of high-γ band within the
range [0,30] s maximized the effect size between SOZ and non-SOZ contacts. See Supplementary
Information (A) for patient-specific nMA and nMS effect sizes.
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Figure 5. SOZ vs non-SOZ classification performance based on nMA and nMS
values. A. Parameter optimization (over a pre-defined time-frequency grid) based on patient-
average performance. The left panel shows patient-average AUC values for the SOZ classifier
based on seizure-median nMA (top) and seizure-median nMS (bottom). The maximum value of
patient-average AUC was found in the β band over 0-30 s for nMA, while in low-γ band over
0-30 s for nMS. The right panel shows the AUC values obtained in each patient with the nMA
and nMS classifiers when using the optimal parameter combinations, respectively. B. Parameter
optimization (over a pre-defined time-frequency grid) based on patient-minimum performance.
The optimization criterion used here is based on maximizing the worst-case scenario. The left
panel shows patient-minimum AUC values for the SOZ classifier based on seizure-median nMA
(top) and seizure-median nMS (bottom). The maximum value of patient-worst performance was
found when using broadband signals over 0-30 s for nMA. In contrast, maximization of patient-
worst performance with nMS was achieved at the low-γ band and 0-30 s, the same combination
found in (A). The right panel shows the AUC values obtained in each patient with the nMA
and nMS classifiers when using the optimal parameter combinations. In addition, the time
window 0-30 s was the AUC-maximizing time window in all cases. AUC values for the obtained
combinations were all above 0.6 for nMS and above 0.7 for nMA. Differences between AUC values
were not statistically significant between nMA and nMS (Wilcoxon rank-sum test).19
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A Supplementary Information

Figure S1. Inter-seizure similarity across patients (frequency-average) and across
frequency bands (patient-average). The mean Pearson coefficient was computed to assess
the similarity of nMA (resp. nMS) contact profiles across seizures. Similarities across patients
with error bars related to variability across frequency bands (top) and similarities across fre-
quency bands with error bars related to variability across patients (bottom) are shown for a time
window of the whole seizure period. Patient 3 was excluded in this figure because it only had one
seizure, and therefore no inter-seizure variability could be computed. For inter-seizure variability
across patients (top), all patients had mean similarities above 0.5 except for nMA in patient 6.
Distribution of similarities across frequency bands (bottom) was similar between nMA and nMS
except for low- and high-γ frequency bands.
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Figure S2. SOZ discrimination (effect size) for each patient with nMA and nMS as
a function of different FOIs and TOIs Color maps show the seizure-median nMS (top) and
nMA (bottom) effect size (Cohen’s d) values across SOZ and non-SOZ groups for the different
frequency bands (y-axis FOIs: broadband: 3-160 Hz, δ-θ: 3-8 Hz, α: 8-12 Hz, β: 12-30 Hz,
low-γ: 30-70 Hz, and high-γ: 70-160 Hz) and time windows (x-axis TOIs: 0-1s, 0-2s, 0-3s, 0-4s,
0-5s, 0-10s, 0-20s, 0-30s, and whole seizure period). For nMS (connectivity), high-γ frequency
band and long time windows (> 20 s) maximized effect size in 7 out of 10 patients. Effect size
values were greater in nMA (color bar scales) than in nMS for all patients except for patient 4.
In nMA, mid-high frequency bands (beta and low-gamma) maximized effect size in 7 out of 10
patients, while effect size-maximizing time windows were different across patients.
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Figure S3. SOZ discrimination (AUC) for each patient with nMA and nMS as a
function of different FOIs and TOIs Color maps show the seizure-median nMS (top) and
nMA (bottom) AUC values across SOZ and non-SOZ groups for the different frequency bands
(y-axis FOIs: broadband: 3-160 Hz, δ-θ: 3-8 Hz, α: 8-12 Hz, β: 12-30 Hz, low-γ: 30-70 Hz, and
high-γ: 70-160 Hz) and time windows (x-axis TOIs: 0-1s, 0-2s, 0-3s, 0-4s, 0-5s, 0-10s, 0-20s, 0-
30s, and whole seizure period). For nMS (connectivity), high frequency bands (high- and low-γ)
and long time windows (> 20 s) maximized effect size in 6 out of 10 patients. AUC values were
greater in nMA (color bar scales) than in nMS for all patients. In nMA, mid-high frequency
bands (beta and low-gamma) maximized AUC in 7 out of 10 patients, while AUC-maximizing
time windows were different across patients.
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Table 1. Main data of patients included in the study.

Patient Gender
/Age

Epilepsy Side Duration
(years)

Electrodes
(left)

Number of
recording
sites

Number of
sites within
the SOZ

Analyzed
Seizures

MRI Surgery Treated structure Outcome
(Engel’s
class)

Follow-up
(years)

1 F/27 TLE R 10 5(0) 54 6 8 negative R TATL temporal pole, amygdala and head
of hippocampus

Ia 6

2 F/30 TLE L 25 7(7) 67 9 8 negative SAH temporal pole, inferior half of
amygdala and anterior 1/3 of hip-
pocampus

Ic 6

3 F/55 TLE L 40 6(6) 56 6 1 negative L TATL temporal pole, amygdala and head
of hippocampus

Ib 6

4 M/26 TLE R 11 7(0) 78 11 7 R amygdala en-
largement

RF-TC temporal pole, amygdala, entorhi-
nal cortex and fusiform gyrus

Rp (Ib) 4

5 M/40 TLE L 2 8(8) 85 8 7 L temporal polar
blurring

RF-TC temporal pole and hippocampal
head

uRp
(III)

4

6 F/52 TLE L 45 10(8) 99 9 6 gliosis near R
crainotomy

L TATL temporal pole, inferior half of
amygdala and anterior 1/3 of hip-
pocampus

Ib 5

7 F/40 TLE L 16 10(8) 107 11 10 L posterior hip-
pocampal lesion

L TATL 2/3 of amygdala and anterior 2/3 of
hippocampus

III 6

8 M/29 TLE R 9 0(0) 95 9 8 negative NO Ia 5
*9 M/43 TLE R 42 15(0) 124 4 5 FCDIIIa. Arach-

noid Cyst.
R TATL temporal pole, amygdala and 2/3 of

hippocampus
Ia 3

10 M/20 TLE L 12 15(15) 122 13 7 negative RF-TC anterior and posterior superior tem-
poral gyrus, transverse temporal
gyrus and supramarginal gyrus

Rp (Ib) 4

F = female; M = male; TLE = temporal lobe epilepsy; R = right; L = left; FC = frontal cingulate; R FC = right frontal cingulate; L FC = left frontal cingulate; A = amygdala; Ha = anterior
hippocampus; Hp = posterior hippocampus; TP = temporal pole; EC = entorhinal cortex, OFCm = mesial orbitofrontal cortex; TGi = inferior temporal gyrus; PHCp = posterior parahippocampal
cortex; W = Wernicke’s area; TOJ = temporal occipital junction; FBC = frontal basal cortex; MS = motor strip; TCl = lateral temporal cortex; OCm = mesial occipital cortex; FS = focal seizure; w
= with; wo = without; CA = consciousness alteration; TATL: Tailored anterior temporal lobectomy; RF-TC = Radiofrequency thermocoagulation; SAH = Selective amygdalohyppocampectomy; Rp =
Responsive; uRp = Unresponsive; NO = not-operated. *Patient 9 was initially responsive to RF-TC but experienced seizure relapse two years after the procedure. He then underwent resective surgery,
after which he achieved seizure freedom (Engel I) with a follow-up of 3 years.
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