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Consciousness is supported by complex patterns of brain activity which are indicative of irre-
versible non-equilibrium dynamics. While the framework of stochastic thermodynamics has fa-
cilitated the understanding of physical systems of this kind, its application to infer the level of
consciousness from empirical data remains elusive. We faced this challenge by calculating entropy
production in a multivariate Ornstein-Uhlenbeck process fitted to fMRI brain activity recordings.
To test this approach, we focused on the transition from wakefulness to deep sleep, revealing a
monotonous relationship between entropy production and the level of consciousness. Our results
constitute robust signatures of consciousness while also advancing our understanding of the link
between consciousness and complexity from the fundamental perspective of statistical physics.

Animal cognition is the most sophisticated example of
information processing found in biological and technolog-
ical systems [1]. Consciousness, understood as the capac-
ity to sustain subjective experience, can be considered a
property that emerges when a sufficiently high level of
complex cognitive processing is achieved [2]. From the
perspective of physics, consciousness and cognition seem
unlikely to emerge from regular and predictable systems,
such as those which are in thermodynamic equilibrium
and obey the detailed balance equations [3]. Instead, re-
cent research draws a close parallel between the level of
consciousness and the entropy production rate of brain
activity time series, highlighting temporal irreversibility
as a landmark feature of conscious information process-
ing [4–6]. These results suggest a close link between
consciousness and non-equilibrium dynamics, prompting
a rigorous evaluation from the perspective of stochastic
thermodynamics.

In spite of these exciting results, the direct estimation
of entropy production from neural activity recordings
is undermined by insufficient spatio-temporal sampling,
leading to the adoption of heuristics and approximations
which lack rigorous justification [3, 4]. To circumvent
these limitations, we adopted a framework based on Mul-
tivariate Ornstein-Uhlenbeck (MOU) processes, that are
widely used for modeling the multivariate dynamics of
time series. The importance of MOU derives from the
fact that it is the only continuous stationary stochas-
tic process that is simultaneously Gaussian and Marko-
vian. The MOU process is at the heart of many models
used to fit fMRI data and to interpret them in terms of
whole-brain communication [7–9], in line with the present
methodology. We first characterize the non-equilibrium
steady state of a generic MOU process. The irreversibil-
ity of the process is encoded in the antisymmetric part of
the Onsager matrix, while the linearity of the Langevin
equations allows us to derive closed-form expression for
the entropy production rate in terms of the matrices that
define the MOU. As a result, we obtained a model-based

estimation of the entropy production rate for the MOU
fitted to fMRI data of subjects transitioning different lev-
els of consciousness during the descent from wakefulness
to deep sleep.

I. MULTIVARIATE ORNSTEIN-UHLENBECK
PROCESS

We consider the MOU process closely following the no-
tation in previous work [10]:

dx(t)

dt
= −Bx(t) + η(t) . (1)

Boldfaced symbols denote vectors and matrices. The in-
puts η(t) correspond to Gaussian white noise with co-
variance 〈

η(t)ηT (t′)
〉
t

= 2D δ (t− t′) . (2)

The angular brackets indicate the mathematical expec-
tation over time and the superscript T the transpose for
vectors or matrices. The N -dimensional MOU process
is thus defined by two real N × N matrices, the input
covariance matrix D, which is symmetric with positive
eigenvalues, and the friction matrix B, which is not sym-
metric in general.

A. Description of the state evolution

Knowing the initial condition x(0) and the realization
of the stochastic input η over time, the trajectory of the
solution of the Eq. (1) is given by:

x(t) = G(t)x(0) +

∫ t

0

G(t− s)η(s) ds , (3)

where G(t) = e−Bt is the Green’s function, also known
as propagator. In addition to its mean value 〈x(t)〉 =
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G(t)x(0), the process is also characterized by its covari-
ance matrix S(t, t′) = 〈x(t)xT(t′)〉. The zero-lag covari-
ance, denoted by S(t, t), obeys the following determinis-
tic differential equation:

dS(t, t)

dt
= −BS(t, t)− S(t, t)BT + 2D . (4)

Meanwhile, the lagged covariance with t′ > t exhibits an
exponential decay as a function of the lag t′ − t:

S(t, t′) = S(t, t) e−B
T(t′−t) . (5)

A standard method for analysing Eq.(1), consists in
describing the evolution of the probability distribution
P (x, t) via the Fokker–Planck equation:

∂P (x, t)

∂t
= ∇ · [Bx(t)P (x, t) +D∇P (x, t)] , (6)

where ∇ denotes the spatial derivative with respect to x.
Eq. (6) can be rewritten as a continuity equation of the
form

∂P (x, t)

∂t
+∇ · J(x, t) = 0 . (7)

with the following expression for the probability current
(or flux)

J(x, t) = −D∇P (x, t)−Bx(t)P (x, t) (8)

B. Stationary state and probability current

The Gauss-Markov property of the Ornstein-
Uhlenbeck process ensures that the mean and covariances
converge exponentially fast toward their respective fixed
points, provided the eigenvalues of B (which may be
complex) have positive real part. The stationary state
of the MOU process exhibits Gaussian fluctuations
around a mean equal to zero. This corresponds to the
time-independent multivariate probability density

P (x) =
1

(2π)N/2(detS)1/2
exp

(
−1

2
xTS−1x

)
, (9)

where S denotes the fixed point of the zero-lag covariance
matrix S(t, t). From Eq. (9), the gradient of P (x) simply
reads

∇P (x) =
∂P (x)

∂x
= −P (x)S−1 x (10)

From Eq. (8), the stationary probability current J(x)
can thus be rewritten in a compact form

J(x) = D P (x)S−1 x−BxP (x) (11)

= µxP (x) ,

with

µ = DS−1 −B (12)

C. Entropy production rate

Going a step further, the (ir)reversibility can be de-
scribed using thermodynamic variables evaluated for the
dynamic process. Using the well-known definition for en-
tropy for the probability distribution P (x, t), now con-
sidering its time dependent version, we have

e[P ] = −
∫
Rn

P (x, t) logP (x, t) dx . (13)

It can be shown that the rate of the increase of entropy
over time can be decomposed into two factors, namely
ė[P ] = EPR−HDR, where EPR is the entropy produc-
tion rate and HDR the heat-dissipation rate [10–12]. The
EPR is the main quantity of interest here, which we de-
note by Φ. Now calculating Φ for the time-independent
distribution P (x), we have

Φ =

∫
JT(x)D−1J(x)

P (x)
dx =

〈
ΠTDΠ

〉
(14)

where Π is called the the thermodynamic force and is
related to J by the Onsager’s reciprocal relations [11]:

Π =
D−1J

P
(15)

The heat-dissipation rate can be computed as follows:

HDR =

∫
Rn

D−1Bx · Jdx (16)

In the context of the stationary MOU diffusion pro-
cesses, a general expression for the entropy production
rate per unit time in the stationary state is the following
[10, 11, 13]

Φ =

∫
(∇ logP (x)−DBx)

T
D
(
∇ logP (x)−D−1Bx

)
P (x)dx

(17)
which can be obtained from (12), (14) and (15) as follows:

µ = DS−1 −B
D−1µ = S−1 −D−1B D−1·
D−1µx = (S−1 −D−1B)x · x

D−1µxP = (S−1 −D−1B)xP · P
D−1J = (S−1 −D−1B)xP from (11)

Π = (S−1 −D−1B)x from (15)

Π = S−1x−D−1Bx

(18)

Now, as ∇ logP (x) = S−1x, we obtain (17). From
(14)

〈
ΠTDΠ

〉
=
〈
xT
(
D−1B − S−1

)T
D
(
D−1B − S−1

)
x
〉
,
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we obtain that

Φ =
〈
xT
(
D−1B − S−1

)T
D
(
D−1B − S−1

)
x
〉
, (19)

where the average is taken over the stationary state of
the process. From this equation we can verify that when
S = B−1D, then Φ = 0.

Following previous results [11, 14], a sufficient condi-
tion for the MOU process in Eq. (1) to be a time re-
versible stationary process corresponds to a specific rela-
tion between the matrices B and D:

BD = DBT. (20)

To quantify the time (ir)reversibility of the MOU pro-
cess, it is advantageous to examine the Onsager matrix
L reparameterized using the matrices B, D, and the
pairwise zero-lag covariance S = 〈x(t)xT(t)〉t:

L = BS = D +Q , (21)

LT = SBT = D −Q .

Here the antisymmetric part Q of L provides a measure
for the irreversibility of the process. When the process is
time reversible Q = 0 and L is symmetric. The following
expression for the entropy production rate Φ can then be
derived from the differential entropy of a multivariate
Gaussian, which is a well defined quantity.

From equations (21) and (12), we have D−1B−S−1 =
D−1QS−1 = −D−1µ. Thus, from Eq. (19) considering
that S and D are symmetric and Q is anti-symmetric we
obtain:

Φ = −
〈
xTS−1QD−1QS−1x

〉
=
〈
xTµTD−1µx

〉
(22)

The entropy production rate Φ is non-negative. It is
strictly positive if the process is irreversible, and it van-
ishes only if the process is reversible. Since the stationary
state of the MOU is Gaussian with covariance matrix S,
we have the following property:

〈
xTAx

〉
= tr(SA), and

so

Φ = − tr
(
S−1QD−1Q

)
= tr

(
SµTD−1µ

)
, (23)

which can be written into the following equivalent ex-
pressions, that does not involve the covariance matrix S
nor its inverse explicitly:

Φ = tr
(
BTD−1Q

)
= − tr

(
D−1BQ

)
, (24)

The entropy production rate Φ provides a scalar mea-
sure for the (ir)reversibility of the whole network process,
vanishing only if the process is reversible.

II. METHODS

A. Empirical covariance from fMRI data

The model is fitted to reproduce the two covariance
matrices calculated from the empirical BOLD signals,

with zero lag and a lag equal to 1 TR:

Ŝij(0) =
1

T − 2

∑
1≤t≤T−1

[xi(t)− x̄i] [xj(t)− x̄j ] , (25)

Ŝij(1) =
1

T − 2

∑
1≤t≤T−1

[xi(t)− x̄i] [xj(t+ 1)− x̄j ] .(26)

Here x̄i denotes the mean empirical signal: x̄i =
1
T

∑
t xi(t) for all i, which is used to center the data as all

variables xi have mean zero in the model. These are the
empirical counterparts of the model covariances Sij(t, t)
and Sij(t, t+ 1) averaged over time t.

B. Parameter estimation of the MOU process

We fit the MOU process from the fMRI time series data
for each subject in each sleep condition. We rely on a re-
cent estimation method that tunes the MOU model such
that its covariance structure reproduces the matrices in
Eq. (25), optimizing its parameters the Jacobian matrix
−B as well as the input covariance matrix 2D [7]. Im-
portantly, this optimization procedure incorporates topo-
logical constraints on B, adjusting only existing anatom-
ical connections, also keeping the input cross-covariances
Dij = 0 for i 6= j. Note that our current notation corre-
sponds to a previous publication [7], using the following
−B ↔ J and 2D ↔ Σ; note that −B ↔ JT in the
subsequent paper [15].

The model is first calibrated by calculating the time
constant τ from the empirical signals.

τ = − N∑
1≤i≤N a (vi | u)

, (27)

where a (vi | u) is the slope of the linear regression of

vi =
[
log
(
Ŝ0
ii

)
, log

(
Ŝ1
ii

)]
by u = [0, 1].

We rely on a gradient descent to iteratively adjust B
and D until reaching the best fit [7]. At each optimiza-
tion step, we calculate the model counterparts of the co-
variance matrices in Eq. (25) S(0) and S(1), assuming
stationarity over each fMRI session. They can be cal-
culated by solving the Lyapunov equation using e.g. the
Bartels-Stewart algorithm, which yields here

BS(0) + S(0)BT = 2D , (28)

once again equating the derivative with zero in Eq. (4),
and the equation involving the propagator. We calculate
the lagged covariance rewriting Eq. (5) for the time-lag
equation here as

S(1) = S(0) e−BT

. (29)

We then calculate the difference between the model and
empirical covariances, ∆S(t) = Ŝ(t) − S(t) with t ∈
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{0, 1}. The parameter update is given by differentiating
Eqs. (29) and (28):

∆B = εB [S(0)]
−1
[
∆S(0)−∆S(1) eB

T
]
, (30)

∆D = εDB∆S(0) + εD∆S(0)BT ,

with εB and εD small learning rates. The best fit corre-
sponds to minimising the squared norm of both ∆S(0)
and ∆S(1).

C. MOU-based anatomo-functional model to fit
empirical fMRI data

We fitted a MOU process to the time series of blood
oxygen level-dependent (BOLD) activity measured us-
ing fMRI for a whole-brain parcellation consisting of
N = 90 regions of interest (ROIs). The BOLD signals
were recorded from 15 healthy participants during wake-
fulness and three sleep stages of progressively deeper un-
consciousness (N1, N2, N3). Further details about the
data preprocessing like detrending and filtering can be
found in [16]. Example BOLD time series are illustrated
in Fig. 1A. Fig. 1B-C show two functional connectiv-
ity matrices, here calculated as covariances with zero lag
Ŝ(0) and lag of 1 timestep Ŝ(1). These matrices are the
empirical counterparts of the model pairwise covariance
S(l) = 〈x(t)xT(t+ l)〉t with lag l, which is symmetric for
l = 0 and was denoted above by S = S(0).

In this application, the activity xi of the MOU pro-
cess describes the BOLD activity of node i. Its friction
matrix B quantifies the propagation of BOLD activity
between ROIs, ignoring hemodynamics [18]. Specifically,
the diagonal elements Bii are related to a time constant
τ (identical for all ROIs) and the off-diagonal elements
Cij = −Bij correspond to the concept of effective con-
nectivity from ROI j to ROI i (excitatory when Cij > 0):

−Bij = −δij
τ

+ Cij , (31)

where δij is the Kronecker delta. The variance Dii re-
flects the fluctuation amplitude of ROI i.

For each subject and condition, the model was fitted
to reproduce the two covariance matrices calculated from
the empirical BOLD signals Ŝ(0) and Ŝ(1) (see Fig. 1B-
C). We used a recent estimation method based on gradi-
ent descent to iteratively adjust B and D until reaching
the best fit [7]. At each optimization step, we calcu-
late the model counterparts of the covariance matrices
S(0) and S(1), assuming stationarity over each fMRI ses-
sion. Importantly, this optimization procedure incorpo-
rates topological constraints on B, adjusting only exist-
ing anatomical connections (see Fig. 1D-E), also keeping
the input cross-covariances Dij = 0 for i 6= j. Model fit
is quantified by two measures: model error, defined us-
ing the matrix distance and Pearson correlation between
vectorized FC matrices (model versus data). All sleep
states have Pearson correlation above 0.6, corresponding
to an R2 of 0.36 (See fig S2 in the supplemetal material).

FIG. 1. A) Example of the filtered BOLD time series with
198 repetition times (TR) of 2 seconds, corresponding to the
90 ROIs of the AAL parcellation during wakefulness of one
participant. B-C) Functional connectivity matrices calculated

from the filtered BOLD signals in panel A, Ŝ(0) with zero lag

and Ŝ(1) with a lag of one timestep (TR=2 s). These matrices
are used in the objective functions used to fit the anatomo-
functional model. D) Generic structural connectivity (SC)
obtained from DTI data as described in [17]. E) Mask for
existing directional connections to constrain the topology of
the B matrix in the network model (symmetric here).

D. Robust decoding of sleep stages from MOU
parameters

Following previous work [15, 19], we used the scikit-
learn Python library for the implementations of multi-
nomial logistic regression (MLR) classifier. The input
features corresponded to the vectorized C/D/S matri-
ces after discarding zero or redundant elements. We im-
plemented a stratified cross-validation scheme with 80%
of the samples for the train set and 20% for the test
set, where the ratio of classes is the same in both sets.
We also use the subject identity as “group information”
to avoid mixing subject data between the train and test
sets. In practice, we use 100 random splits of the data
and report the distribution of the accuracies of the 100
splits.

As illustrated in Fig. 2B, both the empirical BOLD
variances and the model estimates exhibit global differ-
ences across the four sleep stages, although they do not
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FIG. 2. A) Our dynamic network model has two sets of op-
timized parameters: the matrix C (effective connectivity),
which describes the causal interaction between brain regions,
and the input variance D, which represents the spontaneous
activity of each brain region. Note that the topology of the
matrix C corresponds to the mask inferred from the SC data
in Fig. 1D-E, but the weights are estimated from the empirical
functional connectivity (FC) matrices Fig. 1B-C, resulting in
an anatomo-functional model. B) Changes in total C and D
weights across sleep stages (x-axis), pooled over the 15 sub-
jects. The sleep stages are represented by the blue contrasts,
from light for wake (W) to dark for the deepest sleep (N3).
C) Classification accuracy based on the model estimates, C
and D, and the empirical covariance matrices. The classifier
is the multinomial logistic regression (MLR), which captures
changes in individual features across sleep stages. The gray
violin plots correspond to the chance-level accuracy calculated
empirically by shuffling the labels of the sleep stages.

exhibit a clear trend. These differences in global mea-
sures, which are averages over all ROIs, may hide more
specific changes at the ROI level, as well as interactions
between them. Supplementary Figure S1 shows the good
fit of the anatomo-functional model to fMRI data ob-
tained for all sleep stages, with mean correlation between
simulated and empirical FC matrices exceeding 0.6 for
all stages. Fig. 2C shows that the model estimates give
good classification accuracy, both for C (in red) and D
(in purple). This indicates that the model captures the
differences in brain dynamics across the sleep stages. No-
tably, the matrix C gives a better classification accuracy
than the empirical functional connectivity Ŝ(0) (in blue),
meaning that the model inversion is robust and cap-
tures refined information about the sleep stages. Note
that the MLR has better accuracy than the 1-nearest-
neighbor (1NN) in Suppl Fig S1A, indicating that the
changes across sleep stages concern specific features, i.e.
connectivity weights (C) or nodal spontaneous activity
(D), rather than their global profile.

FIG. 3. A) Violin plots comparing the entropy production
rate across sleep stages. Same color coding used in previous
plots. The average entropy production values across subjects
are for the four sleep stages are 1.99, 1.65, 1.54, and 1.49,
respectively. The stars indicate statistical significance for the
Mann-Whitney test with p < 0.05. B) Comparison of the
nodal irreversibility for each ROI (x-axis) between the W and
N3 states (in light and dark blue, respectively). The plotted
values correspond to the absolute value of sums over rows of
Q, averaged for homotopic regions; error bars indicate the
variability across subjects measured as the standard error of
the mean. C) Heatmap plots of the nodal irreversibility on
the cortical surface for the W and N3 sleep stages. Note the
different color scales for the two stages, for the purpose of
better readability. D) To gain insight into the effects of the
matrices C and D on Φ, we shuffle their values as a way to
destroy their detailed structures (redistributing their values
keeping the topology). We plot Φ for the estimated C and
D matrices across subjects and sleep stages in blues (same
color code used in previous plots), and the shuffled C matrices
(light gray), D matrices (middle gray) and both (dark gray),
as a function of the sum of C values (left panel), the time
constant τ (middle panel) and the sum of D variances (right
panel).

E. Reduced entropy production in the transition
from wakefulness to deep sleep

Using the condition-specific estimated parameters, we
calculated the entropy production rate in the MOU
model using Eq. (24). These results in Fig 3A show
that entropy production decreases as a function of sleep
depth, which in turn implies that dynamics become closer
to equilibrium.

The model-based approach allows us to dissect this
phenomenon. For all ROIs, we observe that the contri-
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bution to Φ, as measured via the nodal irreversibility,
defined as

∑
j |Qij | for each ROI i, decreases, as illus-

trated in Fig 3B. This suggests that the reduction of Φ
from W to N3 is a rather global phenomenon, but with a
differentiated magnitude across brain regions. Notably,
regions in the occipital lobes (cuneus, calcarine, lingual),
as well as regions associated to hubs in the default-mode
network (precuneus, post cingulate), and the thalamus,
remain at a high level of nodal irreversibility in the deep
sleep N3; these regions have been shown to exhibit sleep-
related changes in previous studies [20–22]. See Suppl
Fig S3 for a more detailed comparison across sleep stages.

Last, we examine how the model parameters C and
D contribute to Φ and its reduction across sleep stages.
Fig 3D shows a positive relationship between Φ and the
sum of weights in C, as well as the sum of variances in D;
conversely, a larger τ (directly calculated from the em-
pirical BOLD signals) corresponds to a lower Φ. Then
we assess the importance of the detailed structures in
the C and D estimates by randomizing them spatially,
namely redistributing the total weight/variances across
non-zero elements while keeping the same topology and
overall sum. We observe the same trends with respect to
the C and D sums, but shifted up or down depending on
the surrogates in Fig 3C: randomizing C (light gray) de-
creases slightly Φ, whereas randomizing D (middle gray)
increases Φ; randomizing both (dark gray) decreases Φ.
This indicates that Φ strongly depends on the detailed
structures of the C and D estimates, being larger in the
data than in the randomized surrogates. The opposing
effects in randomizing C and D also suggest a balance
implemented by the detailed brain dynamics, which re-
sults in a controlled level of Φ. Together, our results hint
at a positive relationship between the measured Φ and
the different levels of consciousness.

III. DISCUSSION

We measured the entropy production using our
anatomo-functional MOU process associated to resting-
state fMRI activity recorded from human subjects in dif-
ferent sleep stages. The advantage of our model-based
approach is that the entropy production has a closed-
form expression from first principles of stochastic ther-
modynamics for the MOU process, which is numerically
fitted to the fMRI data. Our results show high entropy
production rate in conscious wakefulness, i.e. correlat-
ing positively with the presumed level of cognitive pro-
cessing. This is consistent with converging theoretical
accounts that identify consciousness with an emergent
property of a highly complex physical system [2]. These
results are also consistent with previous findings relat-
ing entropy production with states of consciousness [4–6],
with the advantage that do not depend on heuristic ap-
proximations. Importantly, our approach allows for iden-
tifying the brain regions that contribute most to entropy
production. The fulfillment of detailed balance in the

brain is scale-dependent [3]. At the large scale, its viola-
tion might relate to the large-scale circuit operations crit-
ical for healthy cognition and for the global broadcasting
of information which is identified with the computational
aspect of consciousness [23]. Because of this, metrics
related to the departure from detailed balance (such as
entropy production rate) might offer valuable tools to de-
termine levels of consciousness in brain-injured patients
and other neurological populations. In summary, assess-
ing temporal irreversibility through entropy production
of MOU processes derived from fMRI signals has the po-
tential to highlight different states of consciousness and
cognition. More generally, can bridge brain dynamics
and thermodynamics, and ultimately help to understand
fundamental questions about the brain and conscious-
ness.
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SUPPLEMENTAL MATERIAL

In this supplemental material, we present details on
sleep stage decoding sleep stages, supplementary analy-
sis, and a detailed description of the fMRI data.

A. Decoding of sleep stages

We use the same approach as in previous work [15, 19].
We rely on two usual classifiers: multinomial logistic re-
gression (MLR) and the 1-nearest-neighbor (1NN). The
features correspond to vectorized C/D/S matrices after
discarding zero or redundant elements. The MLR is a
canonical tool for high-dimensional linear classification,
which tunes a weight for each feature, thus selecting the
important ones to discriminate the classes. In addition,
we use L2-regularization for the MLR (C = 1.0 in the
scikit-learn implementation). In contrast, the 1NN as-
signs to a new sample the class to which belongs its clos-
est neighbors with respect to a similarity metric, here
chosen as the Pearson correlation coefficient between the
feature vectors. It thus relies on the global profile of
features to cluster samples into classes.

Following standards, we use a stratified cross-
validation scheme with 80% of the samples for the train
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FIG. S1. A) Similar plot to Fig 2C in the main text with the
classification accuracy for the 1-nearest-neighbor (1NN) clas-
sifier, which relies on a similarity measure (here the Pearson
correlation) between the input features to predict the class of
the test sample. The x-axis indicates the features: the model
estimates C and D, as well as the empirical FC denoted by Ŝ.
B) Similar plot to Fig 2B in the main text but for the model
input variance summed over all ROIs.

set and 20% for the test set, where the ratio of classes
are the same in both sets. We also use the subject iden-
tity as “group information” to avoid mixing subject data
between the train and test sets. In practice, we use 50
random splits of the data and report the distribution of
accuracies of the 50 splits (see the violin plots).

Fig S1 shows that the decoding of the sleep states by
the 1NN classifier, which assigns to a new sample the
class to which belongs its closest neighbors with respect
to a similarity metric, here chosen as the Pearson cor-
relation coefficient between the feature vectors. It thus
relies on the global profile of features to cluster samples
into classes.

B. Model fitting and goodness of fit across sleep
stages.

The model fit was quantified using two measures. The
model error, defined by matrix distance, and the Pearson
correlation between vectorized FC matrices (model ver-
sus data). As shown in Fig S2A-B, all sleep states have
Pearson correlation above 0.6. Note that the changes in
the goodness of fit of the model, as measured by the Pear-
son correlation across sleep stages in Fig S2B, are likely
due to the stronger similarity between the correspond-
ing empirical FC matrices in the deep sleep stages than
in light sleep stages. In other words, we do not expect
this trend to indicate a much better fit of the model for
N3 than for W (which might have implications for the
calculation of entropy production).

C. Complementary analysis

The comparison of the nodal irreversibility across sleep
states shows an overall decrease for all ROIs from W to
N3 (Fig S3A), with a pronounced decrease from W to N1
(Fig S3B) and to a lesser extent from N2 to N3 (Fig S3D),
although N1 and N2 are rather similar (Fig S3C). Im-
portantly, we can see heterogeneity in the reduction of

FIG. S2. A: Model error for each sleep stage (x-axis) across
the 15 subjects. The sleep stages are represented by the blue
contrasts, from light for wake (W) to dark for the deepest
sleep (N3). B: Goodness of fit as measured by the Pearson
correlation between the vectorized model and empirical FC
matrices: S(0) with Ŝ(0), and S(1) with Ŝ(1). The average
of the two Pearson correlation values is reported. C: Isomap
decomposition of the empirical zero lag functional connectiv-
ity matrices FC0 (or Ŝ(0)) in two dimensions to illustrate their
stronger clustering in deep sleep stages N3 (squares) and N2
(triangles), compared to N1 (dots) and W (crosses). D: Pear-

son similarity across Ŝ(0) matrices in each sleep stage (x-axis)
for all pairs of subjects

FIG. S3. A) Plot of the sum of absolute values in Q over each
row across the W and N1 states. The error bars indicate the
s.e.m. across subjects. This plot is another view of the same
data in Fig 3B (main text). B-C) Similar plots to panel A for
N1 versus N2, N2 versus N3 and W versus N3.

irreversibility across the ROIs in the transition to deep
sleep.

Fig S4 shows the correlation between the goodness of
fit and the entropy production across all subjects for each
brain state. We observe a lack of statistically significant
Spearman correlations between variables except for the
awake state, where the effect was close to the significance
threshold. Fig S2 shows the isomap decomposition of the
empirical zero lag functional connectivity matrices FC0
in two dimensions to illustrate their stronger clustering in
deep sleep stages compared to N1 and W. We also show
the Pearson similarity across FC0 matrices in each sleep
stage (to be compared with fig 3B in main text.
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FIG. S4. Correlation between the goodness of fit and the en-
tropy production across all subjects for each brain state. In
each plot, we show the Spearman correlation, denoted s, with
the corresponding p-value. The correlations are not statisti-
cally significant, except for the Awake state.

D. Resting-State fMRI signals

Participants

A total of 63 healthy subjects (36 females, mean ±
SD, 23.4±3.3 years) were selected from a data set previ-
ously described in a sleep-related study by Tagliazucchi
and Laufs [16]. Participants entered the scanner at 7
PM and were asked to relax, close their eyes, and not
fight the sleep onset. A total of 52 minutes of resting
state activity were measured with a simultaneous combi-

nation of EEG and fMRI. According to the rules of the
American Academy of Sleep Medicine , the polysomnog-
raphy signals (including the scalp potentials measured
with EEG) determine the classification of data into four
stages (wakefulness, N1, N2, and N3 sleep). We selected
15 subjects with contiguous resting-state time series of
at least 200 volumes to perform our analysis. The lo-
cal ethics committee approves the experimental protocol
(Goethe-Universität Frankfurt, Germany, protocol num-
ber: 305/07), and written informed consent was asked to
all participants before the experiment. The study was
conducted according to the Helsinki Declaration on eth-
ical research.

MRI data acquisition

MRI images were acquired on a 3-T Siemens Trio scan-
ner (Erlangen, Germany) and fMRI acquisition parame-
ters were 1505 volumes of T2-weighted echo planar im-
ages, TR/TE = 2080 ms/30 ms, matrix 64 × 64, voxel
size 3×3×3 mm3, distance factor 50%; FOV 192 mm2.
An optimized polysomnographic setting was employed
(chin and tibial EMG, ECG, EOG recorded bipolarly
[sampling rate 5 kHz, low pass filter 1 kHz] with 30
EEG channels recorded with FCz as the reference [sam-
pling rate 5 kHz, low pass filter 250 Hz]. Pulse oxime-
try and respiration were recorded via sensors from the
Trio [sampling rate 50 Hz]) and MR scanner-compatible
devices (BrainAmp MR+, BrainAmpExG; Brain Prod-
ucts, Gilching, Germany), facilitating sleep scoring dur-
ing fMRI acquisition.

Brain parcellation AAL 90 to extract BOLD time series and
filtering

To extract the time series of BOLD signals from
each participant in a coarse parcellation, we used the
AAL90 parcellation with 90 brain areas anatomically de-
fined.BOLD signals (empirical or simulated) were filtered
with a Butterworth (order 2) band-pass filter in the 0.01-
0.1 Hz frequency range.
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