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Part of hippocampal and cortical plasticity is characterized by synaptic modifications

that depend on the joint activity of the pre- and post-synaptic neurons. To which extent

those changes are determined by the exact timing and the average firing rates is still

a matter of debate; this may vary from brain area to brain area, as well as across

neuron types. However, it has been robustly observed both in vitro and in vivo that

plasticity itself slowly adapts as a function of the dynamical context, a phenomena

commonly referred to as metaplasticity. An alternative concept considers the regulation

of groups of synapses with an objective at the neuronal level, for example, maintaining

a given average firing rate. In that case, the change in the strength of a particular

synapse of the group (e.g., due to Hebbian learning) affects others’ strengths, which

has been coined as heterosynaptic plasticity. Classically, Hebbian synaptic plasticity is

paired in neuron network models with such mechanisms in order to stabilize the activity

and/or the weight structure. Here, we present an oriented review that brings together

various concepts from heterosynaptic plasticity to metaplasticity, and show how they

interact with Hebbian-type learning. We focus on approaches that are nowadays used

to incorporate those mechanisms to state-of-the-art models of spiking plasticity inspired

by experimental observations in the hippocampus and cortex. Making the point that

metaplasticity is an ubiquitous mechanism acting on top of classical Hebbian learning

and promoting the stability of neural function over multiple timescales, we stress the

need for incorporating it as a key element in the framework of plasticity models. Bridging

theoretical and experimental results suggests a more functional role for metaplasticity

mechanisms than simply stabilizing neural activity.

Keywords: synaptic plasticity, metaplasticity, Hebbian learning, homeostasis, STDP

1. INTRODUCTION

The brain is made of billions of neurons able to efficiently process the huge flow of
information impinging continuously on sensory modalities, extracting relevant data, and
producing appropriately timed responses. Even during development (Corlew et al., 2007; Wang
et al., 2012) or when lesioned (Young et al., 2007; Beck and Yaari, 2008), the brain has the striking
capability to adapt in order to maintain the stability of neural functions. Importantly, this slow
adaptation, acting at a timescale of hours or days (Turrigiano and Nelson, 2000; Davis, 2006)
is performed in conjunction with fast changes often observed in the so called Hebbian learning
(Hebb, 1949). Understanding the mechanisms leading to the dynamical organization of neuronal
network via the fine interactions of those two competing processes is therefore a crucial step toward
analyzing the stability of the computations performed by cerebral activity.
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Following the seminal idea that neurons firing together should
wire together (Hebb, 1949), numerous experimental studies have
been conducted to unravel part of the links between plasticity
and neuronal activity. Nowadays, this so-called Hebbian form of
plasticity in the brain has been characterized experimentally in
many areas, involvingmultiple but still misunderstoodmolecular
pathways (see Abbott and Nelson, 2000; Caporale and Dan,
2008, for reviews). While it is commonly assumed that NMDA
receptors are the primary actors in long-term potentiation, or
LTP (Feldman, 2012), the biochemical pathways for long-term
depression (LTD) seem to differ in cortex and in hippocampus
(Wang et al., 2005; Bender et al., 2006; Nevian and Sakmann,
2006). In controlled in vitro experiments, it has also been shown
that LTP and LTD depend on the precise timing of pre- and post-
synaptic spikes (Markram et al., 1997; Bi and Poo, 1998), leading
to the concept of timing-LTP/LTD or spike-timing-dependent
plasticity (STDP).

By acting independently at each synapse without spatial
or temporal crosstalk among synapses, Hebbian learning is a
form of homosynaptic plasticity that is intrinsically unstable.
In point of fact, provided synapses are reinforced when both
the pre- and post-synaptic neurons are active, nothing prevents
the synapses from strengthening themselves boundlessly, which
causes the post-synaptic activity to explode (Rochester et al.,
1956; von derMalsburg, 1973;Miller, 1996).While this instability
can be avoided by artificially imposing hard boundaries onto
the synaptic weights, several learning models came with intrinsic
mechanisms regulating the synaptic efficacies (Bienenstock et al.,
1982; Oja, 1982) in order to solve this issue in a less fine-tuned
manner.

The present paper reviews such mechanisms that aim to
tame the positive feedback provided by Hebbian plasticity.
In the biology, some homeostatic mechanisms can be
viewed as independent from the Hebbian learning that they
counterbalance. For example, the sum of synaptic strengths may
be up or down regulated to maintain the average post-synaptic
firing rate; see Vitureira and Goda (2013) for a review of the
biophysics of such mechanisms. In contrast, other processes
directly modulate the learning rule itself as a function of the
dynamical context, which is referred to as metaplasticity. This
concept is the plasticity of the synaptic plasticity itself (Abraham
and Bear, 1996; Abraham, 2008), and it is tightly related to
the notion of homeostasis (O’Leary and Wyllie, 2011). To
ensure the overall stability of the neuronal system, a key role
for metaplasticity is to regulate the synaptic update rules in
terms of the past history of the activity at the whole neuronal
level. Many experiments have demonstrated metaplasticity using
distinct protocols (Abraham, 2008). Quite often, it also involves
some form of heterosynaptic plasticity, in the sense that the
local changes affecting a particular synapse onto a post-synaptic
neuron influence the plasticity for neighboring synapses.

The study of the dynamical implications of the interaction
between homeostatic mechanisms and Hebbian plasticity
requires the integration of experimental data in model
studies (Marder and Goaillard, 2006). From a modeler’s
point of view, interactions between Hebbian learning and its
regulating counterpart, either by homeostatic mechanisms or

by metaplasticity, is problematic. The principal reason being
that those two distinct forms of plasticity do not act on similar
timescales. Following experimental results, it is commonly
assumed that synaptic changes triggered by Hebbian plasticity
protocols are rather fast (Bliss and Lomo, 1973; Sjöström et al.,
2001, 2003; Wang et al., 2005), occurring in the timescale of
minutes or faster, while metaplasticity or homeostatic changes
are much slower (Abraham and Bear, 1996), in the order of days.
The present paper provides a theoretical framework to analyze
the interaction between Hebbian and homeostatic plasticities
at different timescales. In this way it gives an overarching view
of different methods used in the literature to solve the above-
mentioned instability issue of Hebbian plasticity. Maintaining
the stability only being one of the requirements for proper
behavior, we will discuss how homeostatic constraints can also be
used to adjust the function implemented by the neural circuits.

2. THE APPARENT ANTAGONISM
BETWEEN HEBBIAN AND HOMEOSTATIC
PLASTICITY

2.1. Two Divergent Goals
As it has already been observed (Turrigiano and Nelson, 2000;
Watt and Desai, 2010; Vitureira and Goda, 2013), Hebbian and
homeostatic plasticities are two apparently opposing processes,
which compete at the synaptic level to fulfill different goals.
Hebbian learning promotes strong or synchronous firing among
neurons, which is hypothesized to be a building block for
memory storage (Nabavi et al., 2014). In contrast, homeostatic
processes counterbalance such intense spiking activity to
maintain the global stability in neuronal networks (Turrigiano
and Nelson, 2000; Turrigiano, 2008; Pozo and Goda, 2010).
Several types of homeostatic processes have been observed at
the neuronal level in many brain areas, such as synaptic scaling
(Turrigiano et al., 1998) and intrinsic plasticity (Zhang and
Linden, 2003).

It has been long known that Hebbian plasticity alone is
intrinsically unstable (Rochester et al., 1956; von der Malsburg,
1973; Miller, 1996). The entrainment between synapses often
force all to grow boundlessly or to a maximal set value; in other
cases, they may all become silent. To circumvent these issues
of traditional rate-based Hebbian learning, weight normalization
can be introduced to prevent the runaway of synapses (Oja, 1982;
Miller, 1996). In the context of spiking activity, STDP has been
termed “temporally Hebbian” when it promotes synchronous
firing. Weight-dependent STDP update rules, which induces
more LTD than LTP for strong synapses, provide a fixed point
in the learning dynamics (van Rossum et al., 2000; Gütig
et al., 2003). Although this ensures some stability, it may
dramatically change the weight distribution from being bimodal
to being unimodal. In the case of a narrow unimodal weight
distribution, competition induced by STDP among synapses
is weakened between pathways with distinct characteristics
(e.g., rate, correlation), which is not functionally interesting.
For weight-dependent STDP, this trade-off compromise is only
fulfilled in a given parameter range. In recurrent networks
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especially, the synaptic specialization by competition may be
severely impaired without fine tuning (Morrison et al., 2007;
Gilson and Fukai, 2011).

2.2. Two Different Timescales
Most of the plasticity protocols performed in vitro are based
on either input stimulation at a high/low frequency leading to
LTP/LTD (Bliss and Lomo, 1973) or STDP-type pairings of pre-
post spikes (Markram et al., 1997; Bi and Poo, 1998; Sjöström
et al., 2001; Froemke and Dan, 2002; Wang et al., 2005). The
typical protocol used in cortical or hippocampal slices to elicit
STDP in vitro using spike pairs is represented in Figure 1A: a
spike is triggered at the pre-synaptic neuron and another at the
post-synaptic neuron with time difference δt = tpre − tpost.
This pairing is repeated approximately 60 times with frequency
fpairing = 1 Hz in order to see a robust change in the weight: it
has been shown that after an induction phase, the total weight
change evolves non-linearly up to a saturation plateau, at around
60–100 pairings (Froemke et al., 2006), which corresponds to the
number of protocol repetitions in most studies.

For modelers, this STDP protocol leads to the simplified view
of the time-difference window in Figure 1B, where a single pre
spike followed by a post spike will trigger LTP, whereas post
followed by pre causes LTD. This is clearly an over-simplification
of a much more complex phenomenon. Just to mention some
limitations of this simplified view, it has been shown that if the
frequency fpairing of the pairing is changed, the typical STDP
curve with LTP for δt < 0 and LTD for δt > 0 is dramatically
modified (Sjöström et al., 2001). Depression is only visible for low

frequency pairings, when pairings are performed with δt < 0 and
fpairing < 20Hz. For fpairing > 20Hz , however, synapses undergo
LTP irrespective of the sign for δt. Moreover, several in vitro
studies on cortical pyramidal neurons showed that the canonical
shape of the STDP curve for such pre-post pairings strongly
depends of the position of the synapse along the dendritic tree
(Froemke et al., 2005; Letzkus et al., 2006; Kampa et al., 2007),
as well as the post-synaptic voltage (Artola et al., 1990). Those
experimental findings led to the refinements of initial STDP
models based on the curve, in order to incorporate the observed
effects for triplets of spikes, spike bursts, clamping the post-
synaptic membrane potential and so on (Pfister and Gerstner,
2006; Clopath et al., 2010; El Boustani et al., 2012; Graupner and
Brunel, 2012; Yger and Harris, 2013).

Despite those efforts, there is a point that is almost never
considered: STDP changes are not instantaneous. In most
experiments, when plasticity protocols are performed, the
resulting weight is recorded up to 30 min later. The curve
in Figure 1B corresponds to the corresponding weight change
divided by the number of pairings. In models of classical (van
Rossum et al., 2000; Song and Abbott, 2001) and weight-
dependent (van Rossum et al., 2000; Gütig et al., 2003; Morrison
et al., 2007; Gilson and Fukai, 2011) STDP, its final value is
the results of additive instantaneous and independent weight
updates following each pairing. In fact, even elaborate models
consider the linear summation of weight updates, even when
contributions are restricted to neighboring spikes (Burkitt et al.,
2004). Only a few attempts have been done to change this
property that is convenient for theory, such as probabilistic

FIGURE 1 | Intrinsic timescale of Hebbian learning. (A) The classical STDP pairing protocols widely used in the literature. (B) Synaptic modification for one pair of

pre- and post-synaptic spikes, as a function of their relative timing. (C) Evolution as a function of time of a single synaptic weight, after an STDP protocol, for various

papers taken from the literature, both for LTP of LTD protocols [dash-dotted thin black line is the null-line for Sjöström et al. (2001)]. (D) Adapted from Keck et al.

(2013), Normalized mEPSC amplitude in a layer 5 cell in the mice visual cortex following a lesion in the retina. (E) Adapted from Huang et al. (1992), Prior synaptic

activity triggered during the red shaded area (LTP priming, red curve) reduces LTP in CA1 hippocampus compared to control without pre-activation (black curve). (F)

Adapted from Mockett et al. (2002), Low frequency stimulation (LFS, red shaded areas) influences non-linearly the amount of LTD in CA1 hippocampus: black curve,

(control with only one LFS), red curve (two consecutive LFS).
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models of STDP (Appleby and Elliott, 2005). By re-examining
the weight traces found in the STDP literature (Bi and Poo,
1998; Sjöström et al., 2001; Froemke and Dan, 2002; Froemke
et al., 2006) and reproduced in Figure 1C, it can be seen that the
weights actually evolve continuously in vitro. Therefore, plasticity
should better be seen as a phenomenon that is triggered by a
stimulation event and evolves toward a new equilibrium with a
time constant τHebb ≃ 10 min.

Now considering that Hebbian plasticity induces such
a transient synaptic change, the question arises about its
interaction with homeostatic plasticity. Those processes, either
intrinsic or synaptic, are assumed to be much slower. For
example synaptic scaling, one of the numerous mechanisms of
homeostasis, takes place in vitro with a time constant τhomeo of
the order of a day (Turrigiano and Nelson, 2000), and in vivo
during the 2–3 days after an abrupt change, as observed for
neurons in the visual cortex following visual deprivation (Hengen
et al., 2013; Keck et al., 2013). Figure 1D, adapted from Keck
et al. (2013), shows the amplitude of miniature EPSC in V1
neurons after a bilateral lesion in the adult retina: after an initial
period of about a day, amplitudes are scaled up to compensate
for the reduced inputs. Together, these results stress the fact
that Hebbian and homeostatic processes have distinct timescales.
Understanding the biological mechanisms responsible for those
changes at the molecular level is necessary to gain a better
insight on the interaction between them, especially in vivo where
synapses are constantly bombarded by spikes.

2.3. Primings as an Evidence for
Metaplasticity
Although on a first approximation it may appear that τhomeo ≫

τHebb, several experiments show that those two timescales may
be more interleaved. In hippocampal slices, it has been shown in
so-called priming experiments that the activation of a synapse
before its reactivation modulates the plasticity triggered later
at that particular synapse (see Figures 1E,F). In Figure 1E that
is adapted from Huang et al. (1992), weak tetanic priming
stimulations can reduce the amount of LTP obtained during a
strong subsequent tetanic stimulation; note that the effects last
more than 1 h. On the contrary, the LTD pathway seems to be
facilitated when the synapse is preactivated a few hours before
the plasticity protocol (Christie and Abraham, 1992; Wang, 1998;
Mockett et al., 2002). This is illustrated in Figure 1F, adapted
from Mockett et al. (2002), where the effect lasts at least 2 h.
Those primings experiments suggest the existence of long-lasting
regulation mechanisms, acting over large time constants, which
counteracts the effect of Hebbian learning. This modulation of
the Hebbian plasticity by preactivation of the synaptic pathway is
a direct application of the so-called metaplasticity (Abraham and
Bear, 1996), i.e., the plasticity of the learning rules themselves.

3. MATHEMATICAL FORMALISM

To formally study the interactions between Hebbian and
homeostatic plasticity, we use the following mathematical
formalism. We consider a Poisson neuron (Kempter et al., 1999)
with N synapses indexed by i, corresponding to the input firing

rates ri; for STDP examples, we also define the input cross-
covariances cij between neurons i and j. The equations for the
output firing rate rpost and pre-post covariances ci−post between
synapse i and the post-synaptic spike train in a feedforward
scenario are given by

rpost =
∑

1≤ j≤N

wj rj (1)

ci−post =
∑

1≤ j≤N

wj cij

In order to compare several learning rules in the context of
metaplasticity, we consider the following general equations for
the evolution of a given weight wi and a modulation parameter θ :

ẇi =
1

τHebb
8
(

wi, ri, rpost, ci−post, θ
)

θ̇ =
1

τhomeo

[

9(rpost)− θ
]

(2)

The motivation for these expressions is to model the two
timescales explicitly, as previously done for the BCM rule
(Bienenstock et al., 1982) and for a extension of the triplet STDP
rule (Zenke et al., 2013): τHebb and τhomeo are the two time
constants at which both Hebbian and homeostatic changes are
propagated onto the synapses. The Hebbian plasticity update is
embodied in 8, which also depends on rpre, cpre−post, etc. The
parameter θ is global for all synapses of a neuron and interacts
or modulates the corresponding weight updates. Typically, it is
used to implement a homeostatic mechanism, as we will see for
several models of synaptic plasticity that are commonly used
in the literature. The present framework could be extended to
incorporate other non-linearities in the firing mechanism (e.g.,
LIF neuron), adaptation or intrinsic plasticity.

3.1. Stability Analysis for the Mean-field
Dynamical System
Ignoring correlations and inhomogeneities across synapses, we
focus on the analysis of the mean weight w̄ =

∑

j wj/N > 0 with

mean input rate rpre. The rate Equation (1) simply becomes

rpost = w̄ rpre (3)

This allows for an easy comparison of the weight dynamics
based on polynomial expressions in w̄. Other neuron models
usually give more complex mapping between input and output
rate/correlations, but the common trend is that they are
monotonically increasing function of the weight w̄. This property
is the cause for the instability of Hebbian learning, as it increases
w̄ all the more as rpost is large. Therefore, we will review through
the example of the Poisson neuron how stabilizationmechanisms
interact with the Hebbian component.

In order to examine the stability of the mean-field dynamical
system (Equation 2) where wi is replaced by w̄, we consider its
Jacobian matrix.

(

1
τHebb

[

∂8
∂w + ∂8

∂rpost
rpre

]

1
τHebb

∂8
∂θ

1
τhomeo

∂9
∂rpost

rpre
−1

τhomeo

)

=

(

a b

c d

)

(4)
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For the top-left term in the Jacobian, we have used the following
equality for the feedforward architecture corresponding to

Equation (3):
∂rpost
∂w = rpre. The eigenvalues of the Jacobianmatrix

are given by

x± =
1

2
(T ±

√

T2 − 4D) (5)

where T = a+ d is the trace andD = ad− bc is the determinant.
To ensure stability for this 2-dimensional dynamical system,
these eigenvalues must be real negative. This requires that the
following relationships are satisfied.

T < 0 (6)

0 < 4D < T2

If, however, the discriminant is positive with the trace still
negative (T < 0 and T2 < 4D) the system exhibits damped
oscillations related to the imaginary eigenvalues. With purely
imaginary eigenvalues, we may obtain a limit cycle. Finally, when
D < 0 or T > 0, at least one eigenvalue is positive and can lead
to an explosion of the mean weight.

3.2. Competition between Input Pathways
Following Kempter et al. (1999); Gütig et al. (2003); Gilson
et al. (2009), we can use and rewrite Equation (1) to study the
competition between learning weights.

rpost = w1 r1 + w2 r2 (7)

Again ignoring correlations, we obtain the following 3-
dimensional learning system.

ẇ1 =
1

τHebb
8
(

w1, r1, rpost, θ
)

ẇ2 =
1

τHebb
8
(

w2, r2, rpost, θ
)

(8)

θ̇ =
1

τhomeo

[

9(rpost)− θ
]

Considering the equilibrium for the mean weight w̄ = (w1 +

w2)/2 to be satisfied, the competition between the two input
pathways can be studied for what is called “symmetry breaking,”
namely the divergence of w1 and w2. This relates to the following
differential equation for the weight difference 1w = w1 − w2,
which quantifies the tendency for splitting

1̇w =
1

τHebb

[

8
(

w1, r1, rpost, θ
)

− 8
(

w2, r2, rpost, θ
)]

(9)

≃
1

τHebb

∂8

∂w

(

w̄, r̄pre, rpost, θ
)

1w

+
1

τHebb

∂8

∂rpre

(

w̄, r̄pre, rpost, θ
)

1r

where r̄pre = (r1+ r2)/2 and 1r = r1− r2 is assumed to be small

here. The larger positive ∂8
∂w

(

w̄, r̄pre, rpost, θ
)

is, themore strongly
the weights w1 and w2 will move apart from each other.

3.3. Conditions for Joint Stability and
Competition for Hebbian Learning with
Synaptic Scaling
In general, the equations for stability and competition may turn
out to be quite complex, even for the mean-field dynamical
system. The ambition here is to describe the general trends for the
influence of τHebb and τhomeo on the behavior of the dynamical
learning system. To illustrate this, we examine the “simple”
case of an arbitrary Hebbian-type learning rule with additional
synaptic scaling. Inspired by experimental results (Turrigiano
and Nelson, 2000) and used in previous studies (van Rossum
et al., 2000; Yger and Harris, 2013; Zenke et al., 2013), synaptic
scaling is used as a homeostatic mechanism that increases or
decreases homogeneously the synaptic weights in order to reach
a given firing rate rtarget. In our generic formulation in Equation
(2), this is equivalent to including an additive scaling term Ŵ

in the expression of 8 in addition to the Hebbian contribution
H, while θ tracks the post-synaptic firing rate with a timescale
τhomeo.

8(w̄, rpre, rpost, θ) = H(w̄, rpre, rpost)+ Ŵ(w̄, θ) (10)

Ŵ(w̄, θ) = αw̄(rtarget − θ)

9(rpost) = rpost

For simplicity, we rewrite the Hebbian contribution using
Equation (3) in terms of w̄ only: H̃(w̄): = H(w̄, rpre, rpost). This
yields the following expression for the Jacobian in Equation (4):

(

H̃′(w̄)+α(rtarget−θ)

τHebb

−αw̄
τHebbrpre

τhomeo

−1
τhomeo

)

(11)

The equilibrium corresponds to the fixed point(s) where ˙̄w =

0 and θ̇ = 0, which implies that rpost = θ and H̃(w̄) =

−αw̄(rtarget − θ). The trace and determinant of the Jacobian
matrix are given by

T =
H̃′(w̄)− H̃(w̄)/w̄

τHebb
−

1

τhomeo
(12)

D =
−[H̃′(w̄)− H̃(w̄)/w̄]+ αrpost

τHebbτhomeo

As explained above, stability is ensured when the necessary
conditions T < 0 and 0 < 4D < T2 in Equation (6) are met.
These three conditions read.

H̃′(w̄) −
H̃(w̄)

w̄
<

τHebb

τhomeo
(13)

H̃′(w̄) −
H̃(w̄)

w̄
< αrpost (14)

αrpost <
1

4

{[

H̃′(w̄)−
H̃(w̄)

w̄

]

√

τhomeo

τHebb
+

√

τHebb

τhomeo

}2

(15)

The term H̃′(w̄)−H̃(w̄)/w̄ corresponds to the sub/super-linearity
of the effective weight update H̃ at the equilibrium w̄, including
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the effects of the neuron model. For the simplest Hebbian rule
H(w̄, rpre, rpost) = rpre rpost, H̃(w̄) = r2pre w̄ is linear and

we always have H̃(w̄) − H̃(w̄)/w̄ = 0. This implies that the
first two conditions Equations (13) and (14) are always true,
while the third condition Equation (15) reduces to αrpost <

τHebb/4τhomeo. For the synaptic scaling mechanism, α should be
chosen sufficiently large in order to keep the output rate rpost
close to its target rtarget. It follows that the third condition may be
violated depending on the details of the parameters, in particular
when τHebb ≪ τhomeo. This corresponds to non-real eigenvalues,
synonymous with oscillatory dynamics in the weights.

As a second example related to the BCM rule and triplet-
STDP as will be detailed later, when H̃ is a quadratic polynomial
in w̄ with positive second-order coefficient, we have H̃′(w̄) −
H̃(w̄)/w̄ > 0 for large weights. According to Equation (9),
a large positive value for H̃′(w̄) implies strong competition as
desired. However, the condition for the negativity of the trace in
Equation (13) implies that τhomeo should not be much larger than
τHebb, as shown previously (Zenke et al., 2013). Then, assuming
Hebbian learning to be relatively fast, Equations (14) and (15)
define a limited range for the choice of α, out of which divergence
or oscillations may occur. As a conclusion, those stability and
competition conditions oppose each other and make the fine
tuning of the parameters necessary.

4. THE FAMILY OF STDP LEARNING RULES

4.1. Need for Regulation with Classical
STDP
As a first example of learning rules, we consider the family
of STDP rules to illustrate the interplay between Hebbian
learning and synaptic scaling. We show that they fall into
the mathematical framework developed in Section 3. To start,
without any additional homeostatic regulation based on θ , we
recall that the convergence of the weight depends on the fixed
points of 8 only. The original version of STDP simply describes
the effect for pairs of input-output spikes using the well-known
temporal window in Figure 1B, which determines the weight
update as a function of spike-time difference. All contributions
are then summed over time to obtain the total weight update.
The net effect denoted by H here can be decomposed into two
terms, for the neuronal firing rates and covariances, respectively
(Kempter et al., 1999; Gilson et al., 2009). In our framework based
on the Poisson neuron (see Section 3), this gives the following
differential equation for the mean weight w̄

˙̄w =
1

τHebb
H(w̄, rpre, rpost, cpre−post) (16)

=
1

τHebb
(Arprerpost + Bcpre−post)

=
1

τHebb
(Ar2pre + Bcpre)w̄

where the typical area under the curve A < 0 corresponds to
more LTD than LTP for the rate contribution, while B > 0
describes LTP due to the temporal interaction for correlated

inputs. The last line is obtained using Equation (3), where the
mean weight update can be expressed as a linear function of
the weight from a macroscopic point of view. We obtain a first-
order polynomial similar to that for classical Hebbian learning,
where the coefficient depends on the input correlation. Two
behaviors can occur for this system: for sufficiently strong input
correlations cpre, the factor for w̄ becomes positive and the
fixed point unstable, so positive weights are potentiated in a
Hebbian fashion and diverge; otherwise weights are depressed
and converge to the fixed point w̄ = 0. For a pool of synapses,
competition is ensured provided ∂H

∂w = (Ar2pre+Bcpre)/τHebb > 0,
which occurs for sufficiently strong input correlation here. In that
case, the diverging learning dynamics can result in a bimodal
distribution when a positive upper bound is set (Kempter et al.,
1999; Song and Abbott, 2001).

To change the fixed-point structure and enforce stability, one
can add a penalty term on the weight update based on the current
value of the weight (Oja, 1982). A usual example found in the
literature uses a polynomial in w̄, which leads to the following
expression for 8.

˙̄w =
1

τHebb
(Ar2pre + Bcpre)w̄− αw̄n (17)

The key point here is that ẇ is a first-order polynomial in w
for classical STDP, so n ≥ 2 stabilizes the system (Tetzlaff
et al., 2011). Synaptic scaling maintains the synaptic competition
while preventing weights from taking too high values, at the
cost of not being able to control the post-synaptic firing rate,
and without having any relationship to the real homeostatic
timescale. Although that previous work studied in depth the
interaction of synaptic scaling with more complex Hebbian
learning rule, the temporal dynamics when the two processes are
not acting on the same timescale is still poorly understood.

4.2. Synaptic Scaling Mechanism Targeting
a Fixed Firing Rate Requires Fine Tuning
In order to target a fixed firing rate, weight normalization as
previously defined is not sufficient. One must add a constraint
enforcing the post-synaptic neuron to scale all its input weights
such that, on average, a desired firing rate is maintained.
Following previous studies (van Rossum et al., 2000; Yger and
Harris, 2013; Zenke et al., 2013), it can be implemented by the
term Ŵ as in Equation (10), which depends on the difference
between a running estimate of the post-synaptic firing rate and
a desired firing rate rtarget. The expression for 8 with the STDP
contribution H and 9 then read

8(w̄, rpost, cpre−post, θ) = H(w̄, rpost, cpre−post)

+ αw̄(rtarget − θ) (18)

9(rpost) = rpost

The constant α defines the strength of the homeostasis on the
mean weight w̄, while τhomeo determines the timescale of the
smoothing of the rpost estimate tracked by θ .

The analysis in Section 3 states that τHebb, τhomeo and α must
be chosen so as to avoid instability and trivial solutions where all
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weights become silent. As it has been shown for other learning
rules (Cooper et al., 2004; Zenke et al., 2013), the running
estimate θ of the post-synaptic firing rate have to be rather fast,
otherwise the system is subject to strong oscillations. To illustrate
the problem, suppose we have a neurons targeting rtarget = 1 Hz,
with rpre = 0.9 Hz, cpre = 0.1, A = −0.1 and B = 1 (see
Section 4.1). The value of α is varied between 0.01, 0.1, and 1.
As we can see on Figure 2A, the convergence to the fixed point
can be pretty fast if τHebb = τhomeo, and if α is strong enough
to counterbalanced the Hebbian force that depresses synapses
here; see panels with α ≥ 0.1, insets show the trajectory in the
phase space (w̄, θ) as function of time. However, we can see on
Figure 2B that when τhomeo ≫ τHebb, as it is found in vivo (Keck
et al., 2013), strong oscillations emerge for strong value α = 1.
There is a fine tuning required between those two competing
forces. To circumvent the problem, the use of a Proportional-
Integral (PI) controller was incorporated in some study (van
Rossum et al., 2000; Yger and Harris, 2013), but even when it
prevents some oscillations from occuring, it does not abolish
the requirement that τHebb and τhomeo should not be order of
magnitudes apart.

4.3. Similar Stability Issues Occur for
Weight-dependent and Triplet STDP
The analysis and the observations performed previously can be
extended to several STDP-like learning rules. For example, a
simple version of the weight-dependent STPD learning rule (van
Rossum et al., 2000; Morrison et al., 2007; Gilson and Fukai,
2011) with linearly increasing LTD as a function of the weight
and constant LTP gives

H(w̄, rpost, cpre−post) = (A+ + A−w̄)rprerpost

+Bcpre−post (19)

= (A+r
2
pre + Bcpre)w̄+ A−r

2
prew̄

2

Again Equation (3) was used to obtain the second-order
polynomial in w̄. In Figure 3B that depicts the convergence of
the system in a similar fashion to Figure 2 with typical values for
the parameters (A+ = 0.1, A− = −0.3, B = 1, cpre = 0.1), the
convergence is achieved if homeostatic coupling is weak (α =

0.1). However, large oscillations arise for strong coupling (α =

1) and when the ratio between the homeostatic and Hebbian
timescales is large.

Likewise, the triplet STDP model (Pfister and Gerstner, 2006)
corresponds to

H(w̄, rpost, cpre−post) = (A+rpost + A−)rprerpost

+Bcpre−post (20)

= (A−r
2
pre + Bcpre)w̄+ A+r

3
prew̄

2

where A+ > 0, A− < 0 for the LTP and LTD rate contributions,
respectively, as well as B > 0 for the correlation contribution.
Again, for standard values of the parameters A+ = 0.05,
A− = −0.2, B = 1, cpre = 0.1 (Pfister and Gerstner, 2006), we
see in Figure 3B the same qualitative behavior as with weight-
dependent STDP.

The similarity can be explained by the fact that both Equations
(19) and (20) are quadratic polynomials in w̄. The difference
between the two rules lies in the signs of the coefficients.
Nevertheless, we have for the scaling term Ŵ(w̄, θ) = αw̄(rtarget−
θ) ≃ αrtargetw̄− αrprew̄

2, where we have used θ ≃ rpost = rprew̄.
This means that, when Ŵ overpowers the STDP contribution
to enforce stability with a large α, the coefficient for w̄ in
8 is negative in both cases. It ensures stability, but generates
similar oscillations for large τhomeo. The intuitive explanation
is that large values for τhomeo cause the gradient to have
a strong horizontal component in the phase space (w̄, θ) of
Figure 3, which often implies oscillations around the fixed
point.

4.4. Trade-off between Stability and
Competition
While we analyzed the dynamical behavior of the learning
rules for the mean weight to assess their implications for
stability, we now examine the situation for two inputs in order
to study how competition can be affected by this interaction
between homeostatic and Hebbian learning. This yields an extra
differential equation as explained in 3.2. Figure 4 illustrates
the evolution of the weights w1 and w2, as well as θ , for
the three learning rules previously mentioned combined with
synaptic scaling, and show how competition can take place.
We consider two input pathways with the same input rates
r1/2, but different levels of correlation: c

1
pre = 0.1 and c2pre =

0.05. The homeostatic mechanism targets the fixed firing rate
rtarget = 2 Hz. As shown in Figures 4A,C, strong competition
is observed for both classical STDP and triplet STDP, leading
to w2 = 0 for the pathway with weaker correlation c2 < c1
(Kempter et al., 1999; van Rossum et al., 2000; Song and Abbott,
2001). For weight-dependent STDP, the competition is much
weaker in Figure 4B. Nevertheless, in all cases, increasing the
ratio τhomeo/τHebb introduces oscillations of the weights during
competition, exactly as previously observed for the mean weight
w̄. We also see that an increased strength for the homeostatic
force (α = 0.5 in the bottom row of Figure 4) does not
solve the stability issue when τhomeo ≫ τHebb, but causes larger
fluctuations.

5. METAPLASTIC LEARNING RULES

The previous section showed the common trend for STDP
learning rules paired with synaptic scaling targeting a desired
firing rate: a large time constant to estimate the post-
synaptic firing rate gives rise to instability or potentially
large oscillations in the weights. Now we examine a second
category of stabilizing mechanisms, where the homeostatic
mechanism is implemented directly in the metaplastic learning
rule; see Yeung et al. (2004) for an example for calcium-
based regulation. Metaplasticity is often used to enforce a
homeostatic behavior on the neural system and we will stick
to this function here. Without loss of generality, we ignore
correlations in the learning rules and focus on rate-based
rules.
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5.1. The Bienenstock-Cooper-Munro (BCM)
Learning Rule
In order to extend rules based on correlations of rates (Oja,
1982) and approach the problem of synaptic competition
via weight normalization, Bienenstock et al. (1982) designed
a model of synaptic plasticity that was able to reproduce
phenomenologically several observations made in vivo. Their so-
called BCM rule is a physical theory of learning in the visual
cortex; see Cooper and Bear (2012) for a review. The mechanism

consists in an efficient way to balance and regulate the amount of
plasticity according to past activity by means of a heterosynaptic
process.

Practically, a sliding threshold determines the boundary
between LTP above and LTD below, and evolves according to the
square of the postsynaptic firing rate (Bienenstock et al., 1982). In
our formalism, this can be taken care of by a temporal tracking
of r2post using θ as the threshold variable with τhomeo ≫ τHebb,

such that θ ≃ 〈r2post〉 with the angular brackets indicating the

FIGURE 2 | Interplay between Hebbian and homeostatic timescales for pairwise STDP. (A) Evolution of the weight w and the running estimate θ of the

post-synaptic firing rate as function of time, for τHebb = τhomeo = 10 min and various gain α for the heterosynaptic scaling. Insets shows the trajectory in the phase

space (w, θ ). (B) Same as (A) with a slower homeostatic scaling: τhomeo = 10 τHebb = 100 min.

FIGURE 3 | Interplay between Hebbian and homeostatic timescales for different learning rules and homeostatic forces. (A) Pairwise STDP with weight

dependent modification in Equation (19). Left column: convergence in the phase space (w, θ ) for a fast homeostatic force (τHebb = τhomeo = 10 min, upper row), or

for a slow homeostatic force (τhomeo = 10τHebb, lower row). Right column is the same, but with a stronger drive α = 1 for the homeostatic force. (B) Same as (A) for

the triplet learning rule (Pfister and Gerstner, 2006), see Equation (20).
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average over the randomness. The expression for 8 is a second-
order polynomial in rpost (Bienenstock et al., 1982), which finally
gives

8(w̄, rpost, θ) = rprerpost(rpost − θ)

9(rpost) = r2post

Here 8 has a similar form to that for the triplet rule in Equation
(20), but the boundary between potentiation and depression is
now given by θ .

It is known that the BCM formalism can be subject to
strong oscillations, when the timescales for the two differential
equations are too far apart (Cooper et al., 2004; Toyoizumi
et al., 2014). In Figure 5A, even when τHebb = τhomeo, weight
oscillations are present. Moreover, for a slightly larger ratio
τHebb/τhomeo, the oscillations can destroy the convergence of the
system when the weights hit the lower bound 0, as illustrated in
Figure 5B.

5.2. Modulation of STDP Depending on the
Post-synaptic Firing Rate
In order to stabilize the triplet STDP rule (Pfister and Gerstner,
2006) in recurrent networks, further studies (Clopath et al., 2010;

Zenke et al., 2013) scaled the amount of LTD in terms of a
smoothed average of the firing of the post-synaptic neuron. This
modulation of LTD actually brings the triplet STDP rule closer
to the BCM rule, by implementing a regulation of the threshold
between effective LTP and LTD. In our formalism, the rule used
by Zenke et al. (2013) can be implemented for rates as

8(w̄, rpost, θ) = rprerpost
(

A+rpost + A−θ2/rtarget)

9(rpost) = rpost

Note that the difference here compared to BCM is that θ

tracks rpost and not r2post, and the limit between depression and

potentiation is related to θ2. As in Equation (20), we haveA+ > 0
and A− < 0.

Figure 6 compares the evolution for this metaplastic triplet
STDP rule with classical STDP combined with synaptic scaling:
we can clearly see that the resulting dynamics is strongly affected
by the ratio between Hebbian and homeostatic time constants
in both cases. The trajectories of w and θ in the same phase
space as before show several types of instability, from weight
(and rate) explosion for slow tracking with large τhomeo (Zenke
et al., 2013) to oscillations when τhomeo = τHebb. As before, slow
tracking yields a gradient with a strong horizontal component,

FIGURE 4 | Competition for several plasticity rules with different timescales for Hebbian and homeostatic forces. (A) Pairwise STDP with

weight-independent update. Convergence of two synaptic weights w1/2 with different correlation inputs and the estimate of the post-synaptic firing rate, θ as function

of time, for a fast homeostatic force (τHebb = τhomeo = 10 min, top row), for a slow homeostatic force (τhomeo = 10τHebb, middle row), or for a slow and stronger

homeostatic force (α = 0.5). (B) Same as A for the weight-dependent STDP learning rule (van Rossum et al., 2000). (C) Same as (A) for triplet learning rule (Pfister and

Gerstner, 2006).
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hence oscillations. The limit cycle in the top panel of Figure 6B
only happens for some limited range of the parameters, but
this illustrates the severe instability issues even for the simple
dynamical system considered here.

5.3. Non-linearly Gated STDP Rules
Another direction of research (Senn et al., 2001; El Boustani
et al., 2012) introduced non-linearity in the effect of the Hebbian
term, by turning it on and off depending on the past pre-
and post-synaptic activity of the neuron. Taking a simplified
version with a similar mechanism for both LTP and LTD, we
consider

8(w̄, rpost, θ) = ‖rprerpost

− f+(θ)‖+ − ‖rprerpost − f−(θ)‖+ (21)

9(rpost) = rprerpost

where ‖x‖+ is a non linear function equal to x if x >

0 and 0 otherwise. Now 9 is such that θ embodies a
smoothed average of the pre-post correlations with the time
constant τhomeo. When instantaneous correlations are higher
than thresholds f±(θ), for potentiation or depression respectively,
plasticity effectively occurs. In the general case, f± could be
any non-linear functions, and do not even need to rely on the
same timescales (El Boustani et al., 2012). The simulations in
Figure 6C correspond the simple case where f±(θ) = a± =

±0.4 are constant. The problem with those non-linearities is
that it becomes hard to perform an mathematical analysis of
the equilibrium. As with other rules, we observe the same effect

of a large τhomeo on the gradient and the same qualitative
conclusion that slow tracking implies the slow convergence of the
system.

5.4. Toward More Complex Models
The stability problem arises because, at the equilibrium state, the
Hebbian and homeostatic mechanisms compete to balance each
other, but they do not act on the same timescale. As pointed out
recently (Toyoizumi et al., 2014), a solution can be found when
considering that both do not interact linearly, i.e., summing their
effects at the synapses, but rather work in amultiplicative manner
to determine the synaptic weight. To be more precise, the model
developed by Toyoizumi et al. (2014) can be integrated within our
framework modulo a slightly more generic formulation for the
equation in θ . The model states that w = ρH, where those two
quantities are governed by the following system of differential
equations.

ρ̇ =
1

τhebb

[

(ρmax − ρ)‖rprerpost − A+‖+

− (ρ − ρmin)‖A− − rprerpost‖+
]

Ḣ =
1

τhomeo
H
(

1− rpost
)

Even if the lower and upper weight bounds ρmin and ρmax depend
on H, the model can be written in a generalized version of
Equation (2), using ẇ = Hρ̇ + Ḣρ with simply θ = H.
The final expression resembles non-linearly gated plasticity with
an additional synaptic scaling, but involves further refinements
compared to Equation (21).

FIGURE 5 | Interplay between Hebbian and homeostatic timescales for the BCM learning rule. (A) Upper row: evolution of the weight and the running

estimate 9 of the post-synaptic firing rate as function of time, for τHebb = τhomeo = 10 min. Lower row: same but in the phase space (w, θ ). (B) Same as (A) with

τhomeo = 2τHebb.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 November 2015 | Volume 9 | Article 138

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yger and Gilson Models of metaplasticity

6. DISCUSSION AND PERSPECTIVES

In this paper, we have reviewed various homeostatic mechanisms
that are used in recent state-of-the-art plasticity models to
regulate Hebbian-type learning. We have focused on two main
categories of models: (1) homeostatic synaptic scaling as an
independent process that competes with the Hebbian force via an
additive term, and (2) metaplastic rules, for which the Hebbian
contribution is modulated in an homeostatic fashion. In both
cases, the regulation is performed via an estimate of the neural
activity (often the post-synaptic firing rate rpost) smoothed with
a timescale τhomeo, whereas the Hebbian update corresponds to
another timescale τHebb. We have shown for most models that,
when τhomeo ≫ τHebb, undesired behaviors such as oscillations
in the synaptic weights occur, in particular in the case where
the homeostatic force is strong. Moreover, competition and
stability correspond to conflicting constraints on the parameters,
which requires fine-tuning. There is thus a trade-off between the
strength of the homeostatic regulation that must compete with
the Hebbian drive without perturbing the convergence to a fixed
point for the weights. Stability in the weights at a macroscopic
level is necessary to ensure stability of the neural functions; note
that we have not considered noise in the dynamics of individual
weights here, but rather their mean for given pathways.

This constraint on the timescales τHebb and τhomeo is
problematic in regards of available experimental data, as many
of them point to slow homeostatic processes (Turrigiano et al.,
1998) in comparison with Hebbian processes for which typically
τHebb ≃ 10 min. Other models not considered here exhibit
similar behavior, for example a homeostatic regulation obtained
via intrinsic plasticity (see Zheng et al., 2013) for an example
based on spike-threshold adaptation. As a conclusion, the control
of the firing rate of the post-synaptic neuron should be taken
care of by a mechanisms at a fast timescale, say few minutes
at the maximum. Conversely, we point out that homeostatic
mechanisms operating on a much slower timescale should be

related to other functions than maintaining the neural activity in
a given range.

This claim is supported by several experimental and
theoretical findings. Spiking activity of neurons in vivo is known
to be sparse and highly irregular. Most V1 neurons display
Poissonnian or supra Poisson spike-count variability in response
to low dimensional stimuli such as bars and gratings (Dean,
1981). Even in vitro, they fire as Poisson sources, irregularly, with
a coefficient of variation for their inter-spike intervals close to 1
(Nawrot et al., 2008). The origin of this irregular activity observed
in the sub-threshold voltage and/or in spiking activity is linked
to synaptic activity (Paré et al., 1998; Destexhe and Paré, 1999),
and because it has been observed experimentally that excitatory
and inhibitory conductances are closely balanced (Froemke et al.,
2007; Okun and Lampl, 2008), such a fine balance has to be
maintained by the system (Renart et al., 2010). Therefore, there is
a crucial need for compensatory mechanisms that may interfere
or act in concert with Hebbian learning to not only keep the
neuron’s firing rate within a certain range, but also guarantee this
balance (Vogels et al., 2011), or the irregularity of the spiking
discharge (Pozzorini et al., 2013). Weight normalization has also
been studied in depth in the context of emergence of ocular
dominance in order to adjust the competition between synaptic
pathways, switching from winner-take-all to winner-share-all
behaviors for example (Miller, 1996).

We should discuss several limitations of our study related
to the proposed mathematical framework. We have focused on
very simple and canonical models of synaptic plasticity, ignoring
the fine morphological structure of the neurons. It was shown
that the shape of the temporal learning window represented in
Figure 1B depends on the synaptic position on the dendritic
tree (Letzkus et al., 2006; Kampa et al., 2007). More importantly,
homeostatic regulation or plasticity thresholds exhibit variability
and affect predominantly neighboring synapses in vivo (Harvey
and Svoboda, 2007). Therefore, we only address the temporal
crosstalk between Hebbian and homeostatic plasticity at the

FIGURE 6 | Convergence of metaplastic learning rules. (A) Convergence in the phase space (w, θ ) of a classical STDP plasticity, either for a fast homeostatic

time constant (τhomeo = τHebb, upper row) or for a slow one (τhomeo = 10 τHebb, lower row). (B) Same as (A) for a metaplastic learning rule combining the triplet

learning rule and scaling of the LTD term (Zenke et al., 2013). (C) Same as (A) for a non-linear metaplastic learning rule including thresholds (El Boustani et al., 2012).
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FIGURE 7 | Memory retention problem and timescales. (A) Illustration of metaplastic thresholds stabilizing the learning. Synapses are stable at in the ongoing

regime, then a “plasticity trace” builds up during presentation of new sensory inputs, but this will eventually be stopped by a sliding activation threshold, allowing the

synapse to adapt to those novel stimuli. (B) Illustration of the multiple timescales involved in plasticity, from the membrane time constant τm to the homeostatic one

τhomeo, ranging from ms to days.

largest scale and the question of defining the spatial extent
for heterosynaptic mechanisms remains open. Nevertheless, we
expect our conclusions to hold locally for groups of synapses that
can be isolated and experience homogeneous processes.

In the general dynamical system in Equations (2) considered
here, the timescales are explicitly defined via τHebb and τhomeo. In
more complex dynamical systems involving noise and attractors,
implicit time constants can emerge in a population of synapses
(Tetzlaff et al., 2013). Usually, they are slow time constants
though, and cannot be used for fast control of the rate, but
rather to implement long-lastingmemory patterns in the synaptic
weights. Another limitation of our conclusions is that we only
consider a feedforward model. To extend those to networks
with plastic recurrent connections, the mathematical formalism
should be modified to account for the case of synapses with the
same pre- and post-synaptic firing rates rpost = rpre = rrec, and
likewise the correlations cpre−post = crec. Those quantities follow
the consistency equations.

rrec =
rin

1− w
and crec =

cin

(1− w)2

A similar analysis can be done to predict the behavior of
learning rules and compare them. The difference compared to
the feedforward case is that rates and correlations contributions
to the weight updates are not of the same order. This
implies that oscillations or other instability effects induced by
spike synchrony are more likely to be amplified in recurrent
networks than those due to firing rates. It remains that
stability can be studied similarly via the Jacobian matrix. Note
also that noise in firing and learning dynamics, as well as
heterogeneity in neuron and network parameters, may help to
prevent “pathological” weight trajectories such as limit cycles,
as they smooth the dynamical landscape and degenerate too
stereotypical situations.

Beyond those technical details, the puzzling question with
plasticity is how synapses can store relevant information while
neurons are constantly bombarded by spiking activity in vivo.
This ongoing input stimulation is quite often considered to be
noise in models, which impairs stability of dynamical systems
over long time-scales. Although this issue has been addressed
theoretically for various models (Clopath et al., 2008; Billings
and van Rossum, 2009; Gilson and Fukai, 2011; Tetzlaff et al.,
2013; Zenke et al., 2013), it suggests that additional timescales
are necessary to properly combine short-term and long-term
properties such that the system learns fast and slowly forgets.
Figure 7A recapitulates several timescales involved in learning
and memory. In essence, for the neural system to retain
memories, synaptic plasticity should only be turned on by
metaplasticity when “new” incoming stimuli impinge neurons.
Once this novelty has been learnt, metaplasticity should stop
synaptic changes. Then a selection process should trim all newly
formed memories to keep only appropriate ones (Frey and
Morris, 1997). This is illustrated in Figure 7B, where several
interleaved timescales interact to bridge all mechanisms, from
the effective membrane time constant τm (order of ms) that
interacts with STDP to the homeostatic time constants τhomeo,
which can range from hours to days (Turrigiano et al., 1998;
Turrigiano and Nelson, 2004). Calcium signals can act as activity
buffers at a timescale τCa2+ (Artola et al., 1990; Shouval et al.,
2002; Yeung et al., 2004; Graupner and Brunel, 2012), whereas
reward signals or neuromodulation would affect plasticity at a
larger timescale τreward (Izhikevich, 2007), comparable to the one
observed for Hebbian changes (τHebbian). There is also evidence
for a control of intrinsic excitability, synaptic scaling at the post-
synaptic density, adaptation of the pre-synaptic neurotransmitter
release (Davis, 2006). As most models incorporate only a few of
those at a time, we stress the need for a better understanding of
the complex interactions that may arise when bringing together
those experimentally observed mechanisms.
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