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Abstract: Scorpion venoms have long captivated scientific researchers, primarily due to the potency
and specificity of the mechanism of action of their derived components. Among other molecules, these
venoms contain highly active compounds, including antimicrobial peptides (AMPs) and ion channel-
specific components that selectively target biological receptors with remarkable affinity. Some of
these receptors have emerged as prime therapeutic targets for addressing various human pathologies,
including cancer and infectious diseases, and have served as models for designing novel drugs.
Consequently, extensive biochemical and proteomic investigations have focused on characterizing
scorpion venoms. This review provides a comprehensive overview of the key methodologies used in
the extraction, purification, analysis, and characterization of AMPs and other bioactive molecules
present in scorpion venoms. Noteworthy techniques such as gel electrophoresis, reverse-phase
high-performance liquid chromatography, size exclusion chromatography, and “omics” approaches
are explored, along with various combinations of methods that enable bioassay-guided venom
fractionation. Furthermore, this review presents four adapted proteomic workflows that lead to
the comprehensive dissection of the scorpion venom proteome, with an emphasis on AMPs. These
workflows differ based on whether the venom is pre-fractionated using separation techniques or
is proteolytically digested directly before further proteomic analyses. Since the composition and
functionality of scorpion venoms are species-specific, the selection and sequence of the techniques
for venom analyses, including these workflows, should be tailored to the specific parameters of
the study.

Keywords: scorpion venom; antimicrobial peptides; proteomic; separation techniques; analytical
methods; RP-HPLC; bioactive molecules; size exclusion chromatography; electrophoresis
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1. Introduction

Scorpion stings are common in tropical and subtropical regions, with an estimated
1.2 million stings per year and over 2600 deaths [1]. In nature, scorpions use the stinger
in their tail to inject venom into predators as a defense mechanism or into preys to par-
alyze and capture them. Scorpion venoms are heterogeneous mixtures composed of
salts, free amino acids, varying concentrations of proteins (including neurotoxins and
neurotoxin-related molecules such as components with lipolytic activity), enzymes (in-
cluding hyaluronidases, metalloproteinases, phospholipases and chitinases), and peptides
(comprising antimicrobial components and bradykinin-potentiating peptides, among other
components) [2–6]. Thus, upon envenomation, signs and symptoms may vary depending
on neurotoxin concentration, with clinical manifestations ranging from local effects, such as
pain and edema, to severe, life-threatening complications, mainly comprising neurological
and cardiorespiratory alterations [7]. The current treatment for scorpion envenomation
relies on the prompt administration of specific antivenoms. Hence, it is imperative to
thoroughly explore and identify scorpion venom components, which often exhibit species-
specific mechanisms of action [1,3]. This intensive investigation is crucial in order to
facilitate the design of more effective immunotherapies. Another reason that solicits the
in-depth study of scorpion venom components is their promising therapeutic potential.
Namely, scorpion antimicrobial peptides (AMPs) exert anti-bacterial effects against some
resistant bacterial strains, implying a potential role in the treatment of diseases associated
with drug-resistant bacteria. Mucroporin-M1, Imcroporin and Vejovine are some AMPs
that have shown strong anti-bacterial activity despite their hemolytic effect [8–11]. Scorpine,
a disulfide-bridged peptide (DBP) from Pandinus imperator and two non-disulfide bridged-
peptides (NDBPs), Meucin 24 and Meucin 25, from Mesobuthus eupeus, exhibited potent
antimalarial (i.e., anti-Plasmodium falciparum) effects [12,13]. Chlorotoxin (CTx), a well
characterized toxin derived from Leiurus hebraeus venom, is known for its high selectivity
towards glioma cell lines without hampering normal cells [14]. Until now, the search for
scorpion venom-derived active components that can be used for drug development is still
in progress due to the undiscovered properties of venom components from many scorpion
species worldwide. Originally focused on components derived from genera within the
Buthidae family, which include species with highly lethal venoms for humans, novel venom
molecules have been discovered from genera within the families Hormuridae, Chactidae,
Scorpionidae, Chaerilidae, Urodacidae, Liochelidae, Diplocentridae, and Hemiscorpiidae,
among others, with generally lesser medical importance (except for the genus Hemiscor-
pius), underscoring the biochemical diversity of scorpion venoms, which serve as extensive
combinatorial libraries throughout this arachnid order [15].

Scorpion venoms are complex cocktails that contain neurotoxins, particularly promi-
nent in buthid venoms, which are among the most promising, potentially therapeutic
components due to their high selectivity towards various isoforms of voltage-gated ion
channels [16]. Nonetheless, venom has arisen as a powerful tool to address different prob-
lems and develop solutions in many domains, especially pharmacological and medical [17].
Furthermore, because of the relatively small number of taxa whose venoms have been
studied in relation to the total number of world scorpion species, only 14.9% of data on
scorpions’ peptides and proteins are currently accessible. Thus, improvements in the
separation of scorpion venom components are desirable, as it constitutes the first step to
decipher and analyze the rich complexity of scorpion venoms [18,19]. In this review, we
describe the main techniques used to separate, isolate, and characterize AMPs and other
bioactive molecules present in scorpion venoms. Thus, we first detail the combinations
of electrophoresis and chromatographic techniques used to purify and identify peptides
and proteins from venom and then proceed to describe the implementation of separation
methods for venom components.
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2. Methods Used for Separation of Venom Complex Mixtures
2.1. Electrophoretic Separation Techniques
2.1.1. One-Dimension Gel Electrophoresis (1-DGE)

1-DGE, also known as sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE), is the most used qualitative technique for assessing protein separation in
scorpion venom analyses. The separated proteins appear as bands that are visualized
by Coomassie Blue Brilliant (CBB) dye or silver staining for better visualization of low
molecular mass components [20]. SDS-PAGE (generally 12–20% polyacrylamide gels) is
greatly used to compare the general composition of scorpion venoms, particularly regarding
inter- and intra-specific venom variations. Scorpion intra-species differences in protein
content were revealed by SDS-PAGE for Mesobuthus tamulus venom deriving from scorpion
populations inhabiting locations in western and southern India [21]. Similarly, another
study evaluated intra-species variation of venoms obtained from Leiurus quinquestriatus
collected from different geographical locations in Egypt. Their SDS-PAGE profiles indicated
components with population-specific electrophoretic migration, thus revealing a difference
in venom composition depending on geographical origin [22]. Furthermore, in scorpion
venom analysis, SDS-PAGE can be coupled with different techniques to gain a better
understanding of the scorpion venom composition. For instance, SDS-PAGE was used
to follow up the separation of the constituents of Mesobuthus eupeus scorpion venom in
immunogenic protein fractions by affinity chromatography, which led to determine that
immunogenic components correspond to the major part of crude M. eupeus venom, refuting
previous beliefs [23]. Moreover, Tityus pachyurus, Tityus cerroazul, Tityus obscurus, Tityus
perijanensis, Tityus discrepans, Tityus zulianus and Tityus serrulatus venom proteins were
each separated by SDS-PAGE also showing differences in venom protein composition
within the genus Tityus. Immunoblotting can follow SDS-PAGE separation to compare
venom antigenic reactivity to experimental or therapeutic antivenoms [24]. Reverse-phase
high-performance liquid chromatography (RP-HPLC) fractionation prior to SDS-PAGE
could help in narrowing and focusing the final result [20]. Additionally, SDS-PAGE can
be employed in a series of steps for protein identification and characterization, which
is commonly referred to as proteomics. SDS-PAGE can help to determine what fraction
should be further tested depending on its molecular mass. The separation result will thus
be followed directly by in-gel tryptic digestion of selected bands and a mass spectrometry
analysis; or, for a better resolution and more sensitivity, RP-HPLC can precede the in-gel
digestion [25]. SDS-PAGE can also be used as a final step to confirm the purification of a
component from a venom mixture after several fractionation steps to assess the quality
and purity of the specific separated molecule(s) prior to further analyses [26,27]. Notably,
SDS-PAGE allows processing of a small number of proteins (less than 50) which in some
cases can be a limitation [28].

2.1.2. Two-Dimension Gel Electrophoresis (2-DGE)

Despite the simplicity and the high-resolution separation that is offered by SDS-PAGE,
2-DGE might be employed to analyze more complex protein mixtures with a higher resolu-
tion [29]. This method separates venom components based on two dimensions (molecular
mass and isoelectric point (pI)). 2-DGE allows the identification of venom components by
generating a spot map, where the densiometric intensity of each spot can help determine
the relative abundance of proteins [30]. It provides data about both the molecular mass
and the pI of the identified spot [27]. Hence, 2-DGE performed under identical conditions
allows the comparison of venom from different taxa/geographical origins to evidence
venom variability by comparing protein distribution [31]. This technique also aids in
narrowing down the search for specific proteins that require further analysis and purifi-
cation. In the purification process of the heterodimeric phospholipase A2 Heteromtoxin
(HmTx) from Heterometrus laoticus venom (14,018.4 Da; pI 5.6), 2-DGE was conducted to
identify four major groups of proteins that formed distinct spots with varying isoelectric
points (pIs) and molecular mass ranges. Once the spots of interest were isolated, they
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underwent tryptic digestion followed by liquid chromatography coupled with tandem
mass spectrometry (LC-MS/MS) and matrix-assisted laser desorption and ionization-time
of flight (MALDI-TOF) sequencing to provide a more comprehensive characterization of
the enzyme [32]. It should be noted that 2-DGE might cause protein loss in the spots,
so an SDS-PAGE could be applied in parallel to confirm the results [33]. Additionally,
this technique encounters difficulties in separating and identifying proteins with extreme
characteristics, for example, the smallest, the largest (in terms of mass), the highly acidic,
and the highly basic proteins [34]. In this sense, 2-DGE might not be a suitable technique for
analyzing the scorpion venom’s lowest migrating fraction in SDS-PAGE gels encompassing
neurotoxins, as they are similar in mass (3–8 kDa mol. mass, particularly in buthid venoms)
and are mostly basic components, with pIs ≥ 8 in the case of sodium channel-active toxins.
In this sense, acid-urea gel electrophoresis using 5% (v/v) acetic acid as running buffer has
provided a better resolution for low mol. mass components in the case of crude venoms
and gel filtration chromatography fractions containing sodium- and potassium-channel
active neurotoxins from venoms of the genus Tityus [35–37].

2.2. Chromatographic Separation Techniques
2.2.1. Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC)

RP-HPLC is the optimal method for the separation of various scorpion venom compo-
nents, especially peptides, due to its well established reputation for high-resolution. The
fractionation of scorpion venom using RP-HPLC involves the use of two mobile phases
with different polarities: an aqueous and an organic mobile phase. The mobile phase is
applied to the column at a specific linear or segmented gradient to allow the purification
of the target molecule. For scorpion venom separations, the most used acids are triflu-
oroacetic acid or acetic acid at 0.01% (v/v) [38]. Segmented gradients are often used in
scorpion venom separations since they provide better resolution of small peptidic and
non-peptidic components. For instance, for investigating non-peptide small molecule
venom constituents in Hormurus waigiensis, crude venom was separated by RP-HPLC using
this gradient technique: a linear gradient of 0–60% acetonitrile in 0.045%TFA for 120 min,
60–90% acetonitrile buffer for 5 min, 90% acetonitrile buffer for 10 min then 90–0% for
5 min, allowing collection of ~10 peaks, corresponding to glutamic acid, aspartic acid,
adenosine, adenosine monophosphate, citric acid and inosine [39]. The most used columns
for scorpion venom separations using RP-HPLC include C4, C8 or C18 columns [40–42].
The selection of a column depends on the specific objective of the study. For the separation
of small peptides, C18 is the preferred column due to its extensive surface area, which al-
lows for broader separation albeit at a slower retention time. This column type is commonly
employed for protein purification from scorpion venoms. On the other hand, C8 columns
yield sharper peaks and faster retention times, making them suitable for less complex
mixtures. However, they may not be ideal for highly complex sample compositions [43].
The collected peaks reflect the partition coefficient of each compound, thus allowing the
separation of molecules with close or similar molecular masses. The resulting peaks appear
sharper and more defined, with easy time-saving recovery, allowing analytical protein and
peptide purification [44,45].

RP-HPLC can be used to isolate and purify peptidic and protein components of scor-
pion venom for further characterization. The technique started to be used for buthid
scorpion venom fractionation in the 1980–90s for the isolation of components responsible
for mammalian and insect neurotoxicity from the Brazilian Tityus serrulatus and the North
African species Androctonus mauretanicus and Androctonus australis [46–48]. RP-HPLC con-
tinues to be utilized for the venom characterization of new medically important species,
such as Centruroides hirsutipalpus, for which venom chromatographic fractions were later
subjected to Edman degradation for elucidation of the primary structure of purified com-
ponents [49]. Fractionation by RP-HPLC was also applied to isolate an anti-viral scorpion
component, a Scorpine-like peptide (Smp76), from Scorpio maurus palmatus venom [50].
A sequence of RP-HPLCs, starting with the separation of the total crude venom with a
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C4 semi-preparative column and then a C18 analytical column, was applied to resolve
toxic fractions from Liocheles australasiae venom. Additionally, the resulting toxic fractions
were further separated using a C18 microbore column for the isolation of a single, novel
insecticidal peptide (LaIT3) [38]. To maximize the purification process, RP-HPLC can be
complemented with other techniques. In certain cases, it may be utilized as the final step
to achieve the highest level of purification, as demonstrated in the isolation of neurotoxic
peptides from Iranian Hemiscorpius lepturus venom and the isolation of a nontoxic peptide
(Bot33) from Buthus occitanus tunetanus [26,51]. Most commonly, during scorpion venom
analysis, RP-HPLC is followed by a mass spectrometric analysis of the fractions. As seen in
the case of Centruroides hirsutipalpus and Palamneus gravimanus venoms, separated fractions
by the C18 reverse-phase column were identified by their molecular mass using mass
spectrometry [49,52].

2.2.2. Size-Exclusion Chromatography (SEC)

SEC is a chromatographic technique that allows the separation of molecules based on
their size. The matrix of size exclusion columns is formed of beads of distinct pore sizes.
Therefore, depending on the target protein to be isolated, the bead and pore size should be
carefully chosen. Different column matrices can be used for SEC, such as dextran polymers
(Sephadex), agarose (Sepharose) or polyacrylamide (Sephacryl). SEC could be used as a
first step in the process of isolating scorpion proteins from the rest of the venom mixture.
For Buthidae α-toxin purification (a scorpion neurotoxin class that alters the inactivation
mechanism of voltage-gated sodium channels), SEC was used as a first step to separate
venom proteins into fractions of a narrower molecular mass range. This technique is usually
complemented by other chromatographic techniques due to its limited resolution. RP-
HPLC could be used to further purify the resulting SEC peaks before mass spectrometric
analysis [53]. For example, in order to obtain and purify the fraction with the highest
glioblastoma growth suppression effect (chlorotoxin-like activity), Androctonus australis
venom was firstly run on a Sephadex G-50 column; fractions were further separated by a
Resolution S cation exchange column, and thirdly, the selected fraction was run on a C18
column [54]. Another example showed the purification of AnCra1 toxin from the Turkish
scorpion Androctonus crassicauda; nine fractions were obtained by SEC separation using
a Sephadex G-50 column. Fraction 5, scoring the highest mammalian toxicity, was then
chosen to be further separated. Thus, fraction 5 underwent two additional fractionations
by RP-HPLC on a C18 column to obtain the finally purified toxin, AnCra1. The purified
peptide was later subjected to Edman degradation, followed by a MALDI-TOF/TOF
analysis to determine the primary structure and molecular mass [55]. SEC can also be
applied as a single separation method, allowing the collection of different protein fractions,
as shown in the case of components altering coagulation parameters from the venom of
Hemiscorpius lepturus, or exhibiting antimicrobial activities as in the case of Androctonus
australis [56,57].

Since RP-HPLC and SEC were the most applied techniques for scorpion AMPs separa-
tion, Table 1 summarizes the advantages and disadvantages of each technique, along with
examples of isolated AMPs.

Table 1. Separation techniques used for the isolation of some scorpion venom AMPs with advantages
and disadvantages.

Separation Techniques Advantages Disadvantages Example of Purified AMP References

RP-HPLC
- High precision
- High sensitivity
- High purity

- Costly
- Complex

Vejovine [11]

[58]Cytotoxic linear peptide (IsCT) [59]

Scorpine-like peptide (Smp76) [50]

SEC

- Favorable as first step for
separating complex mixture

- Fast elution
- Good reproducibility

- Overlap of AMPs in a large
quantity sample

- Time-consuming overall
- Expensive
- Not suited for tertiary structures

First step in Heteroscorpine-1
purification [27]

[60–62]First step in Scorpine purification

First step in Hadurin purification [63]



Antibiotics 2023, 12, 1380 6 of 23

2.2.3. Ion Exchange Chromatography (IEX)

IEX is a commonly used high-resolution separation technique for scorpion venom
components that could be used as a single step or included as a step in a workflow. This
method separates molecules based on their charge. The ion exchanger stationary phase
could be either cationic or anionic and favors the binding of oppositely charged molecules.
The first eluted proteins are the ones with the weakest ionic interaction, followed by the
elution of proteins with higher ionic strength simultaneously with the increase in salt
concentration. In the case of scorpion venoms, IEX is mainly applied using a linear salt
gradient of sodium chloride or ammonium bicarbonate. The choosing of chromatographic
columns varies depending on the charge of the protein that needs purification; for cations,
cationic exchange chromatography (CEX) is applied, whereas, for anions, anionic exchange
chromatography (AEX) is used. Two categories of each IEX exist: strong IEX and weak IEX;
weak IEX provides a broader selectivity, making it more favorable for scorpion protein and
peptide separation [64].

Table 2 shows examples of the implementation of different IEX column types to
separate scorpion peptides. Previously, IEX was used as a single fractionation step to isolate
a target protein [65]. Nowadays, IEX is more frequently used in bio-guided fractionation
with continuous chromatographic separation techniques in order to purify venom proteins
and peptides with an improved resolution [66,67]. For example, SEC has been followed
by IEX using a diethylaminoethyl (DEAE)-cellulose column to purify a fraction enriched
in hyaluronidase activity from Palamneus gravimanus venom. Alternatively, it can be
followed by two IEX steps: an AEX and a CEX. IEX can also be applied as an intermediate
separation step, for instance, between an SEC and an RP-HPLC, to identify the toxic
fractions, simplifying, therefore, the research for envenomation antibodies [66,68].

Table 2. Type of column used in each type of IEX with an example of purified protein using each one.

Type of IEX Column Name Scorpion Species Purified Molecule References

Strong AEX Quaternary ammonium (Q) column Scorpio maurus Phospholipase A2
(Sm-PLVG) [69]

Weak AEX Diethylaminoethyl (DEAE) column Buthotus schach BS311 and BS313 [70]

Strong CEX Sulphopropyl (SP) column Centruroides sculpturatus Proteins inhibiting
Nav1.8 [71]

Weak CEX Carboxymethyl (CM) column Mesobuthus martensii Scorpion venom
peptide (SVP-B5) [72]

2.2.4. Affinity Chromatography

Affinity chromatography is a highly used technique for the separation of proteins
based on the specific, reversible interaction between a molecule and its specific ligand. Due
to its simplicity of use, high productivity, and superior precision, this method is considered
the optimal choice for scorpion recombinant protein purification. Different types of resins
are used for scorpion proteins purification; in particular, nickel chelated resin (Ni) and
glutathione S-transferase (GST) resins for recombinant protein purification have been uti-
lized. For example, in order to circumvent the low yield of production for the recombinant
insect-selective neurotoxin BjαIT from Hottentotta judaicus, a study resorted to applying
affinity chromatography using a nitriloacetic (Ni-NTA) agarose column as the purification
method, highlighting the high efficiency of this technique for purification of the desired
neurotoxin responsible for an insecticidal effect [73]. The same goes for recombinant α-toxin
AnCra1, purified from Androctonus crassicauda, where affinity chromatography was used
for optimal purification [74]. To purify a recombinant GST fusion protein containing a
long-chain potassium scorpion toxin from Mesobuthus martensii (BmTXKβ), a GST resin
(glutathione-sepharose 4B) was used for affinity chromatography. The isolated recombinant
protein (GST-rBmTXKβ) was subjected to further testing, confirming its impact on the
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duration of rabbit myocyte action potential [75]. Streptavidin resins can also serve as a
single-step purification method for recombinant peptide antibodies. For example, it was
applied with the intent to isolate a fusion protein capable of detecting three Androctonus
australis sodium-channel toxins associated with the scorpion envenomation syndrome [76].
Affinity chromatography can be accompanied by additional chromatographic separation
techniques to achieve more homogenous purification, as seen in the case of a recombinant
analgesic peptide from Mesobuthus martensii, which required a first immobilized metal ion
affinity chromatography (IMAC) using a Nickel-chelating resin, followed by CEX as a sec-
ond purification step [77]. Thus, nowadays, affinity chromatography is a crucial technique
associated with scorpion venom analyses, which has been instrumental in increasing the
yield of available target molecules for further research and/or applications.

Nano-HPLC is another innovative chromatographic technique used for the separation
of scorpion venom components [78]. The use of this technique allows for a considerable
reduction in the amount of sample to be analyzed and the buffer needed for the separation.
This technique is commonly employed in coupling mode with mass spectrometry, which
enables precise mass analysis of the separated molecules and enhances ionization efficiency,
leading to increased signal intensities [79]. The advantage of this technique lies in the relia-
bility of the results achieved by handling a minimal volume of the scorpion venom sample.
This is particularly beneficial given the limited quantities of venom available, considering
the typically low yields obtained from live scorpions through electrical stimulation [80].
However, nano-RPLC is most often used in venom analytical processes where there is no
preliminary fractionation step, and the raw venom digests are analyzed directly [81].

3. Implementation of Separation Methods for Scorpion Venoms
3.1. Bioassay-Guided Fractionation

Bioassay-guided fractionation involves the separation of the crude scorpion venoms
primarily through chromatographic techniques. The resulting fractions are subjected to the
desired functional assay to identify the active fractions of interest. Eventually, an additional
fractionation step might be required to obtain a pure active fraction [82,83]. Depending on
the characteristics of the target molecule, different biological assays might be used. Scorpion
venom could be submitted to a bioassay-guided fractionation in the pursuit of isolating
biomolecules of interest. The newly discovered and purified molecules from scorpion
venom can be thus used for drug design owing to their beneficial pharmacological poten-
tial. A bioassay-guided fractionation of Hemiscorpius lepturus scorpion venom allowed the
purification of a novel anticancer protein known as Leptulipin. The process first included
fractionation by SEC, using a Sephadex G-50 column, followed by purification of the frac-
tion with the highest anticancer activity using a C18 RP-HPLC column. The final isolated
fraction with distinctive cytotoxic activity was then identified by 2-DGE. The bioactivities of
Hemiscorpius lepturus peptides discovered in specific fractions constitute novel biomolecules
with potential pharmacological use [84]. Different neurotoxins in scorpion venom are ac-
countable for the various envenomation effects in humans, especially cardiotoxic peptides
that cause severe cardiorespiratory complications to envenomation victims [85]. To identify
the cardiotoxic component of Hemiscorpuis lepturus venom, bioassay-guided fractionation
was employed. SEC using Sephadex G-50 was applied, and fractionation was followed by
measurement of optical density, allowing the collection of six peaks. Subsequently, protein
profiles were acquired by subjecting the six resulting peaks to 12% SDS-PAGE, which were
used to measure levels of specific biochemical cardiac-related enzymes after injection of
each fraction. Fraction IV and the whole crude venom were selected for having the highest
levels of cardiotoxicity and were then subjected to a histopathological examination of dam-
aged heart tissues. The series of bioassays identified fraction IV of Hemiscorpius lepturus,
containing low molecular mass peptides, as the fraction responsible for the cardiotoxic
effects [86]. Aside from the highly studied neurotoxins, non-disulfide-bridged peptides
(NDBPs) were recently put under the spotlight for their important pharmacological ac-
tivities. In this context, three Iranian scorpion species were subjected to separation by
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RP-HPLC using C18 columns to isolate fractions with bradykinin potentiating effect. The
collected fractions were evaluated for their smooth muscle contracting ability on the guinea
pig ileum and rat uterus. Thus, results confirmed the presence of bradykinin potentiating
peptides in the venom of the three scorpions, illustrating the use of the above-mentioned
fractionation scheme for making such peptides available in the quantities needed for further
molecular and structural studies [87]. Interestingly, the implementation of bioassay-guided
fractionation has underscored its effectiveness in isolating and characterizing biologically
significant compounds present in scorpion venom. Figure 1 presents a selection of essential
bioassays employed to isolate and purify molecules with noteworthy biological activity.
Given the known presence of analgesic compounds in scorpion venoms, the analgesic assay
conducted on mice proved instrumental in assessing the analgesic potential of fractions
obtained from Mesobuthus martensii venom through a sequence of five successive chromato-
graphic separations. Consequently, this systematic approach facilitated the identification
of active analgesic fractions, ultimately leading to identification of the BmKAGAP-SYPU2
component. Similarly, diverse assays such as insect toxicity evaluations contributed to the
understanding of the mechanism of action of β-insect depressant toxins derived from the
venom of Isometrus maculatus, which underwent purification via a two-stage RP-HPLC
process. Conversely, a murine toxicity assay applied to fractions derived from Androctonus
australis venom through four consecutive chromatographic steps led to the identification of
AaTx1, a potassium channel blocker belonging to the alpha-KTx family [88–90]. Table 3
displays some examples of bioassay-guided fractionation of different peptides contained
in scorpion venom using modern separation techniques. In a recent study, transcriptomic
analysis through RNA-seq followed by sequence assembly and search in BLAST provided
annotation regarding the studied peptide structure contained in Liocheles australasiae venom.
Bioassay-guided fractionation followed, in order to isolate and characterize venom peptides
exhibiting biological activity. First, Liocheles australasiae venom was separated by RP-HPLC
using a C4 column, while each obtained fraction was subjected to an anti-viral activity test
against hepatitis C virus, which allowed identification of the fraction of interest. Further
RP-HPLC purification of this fraction using a C18 column was performed. The resulting
fractions were also tested for anti-viral activity, and the eluted fraction with the highest
activity was identified as containing phospholipase A2 (LaPLA2-1). This process allowed
isolation of a newly detected phospholipase A2 in scorpion venom and its characterization
for the first time [91]. In the framework of bioassay-guided fractionation, obtaining credible
biological results remains the crucial and indispensable element for the success of this
experimental approach. This method is not currently widespread compared to conventional
analytical techniques. Some limitations and technical difficulties may be at the origin of
its slow progress in the field of identification of drug candidates from natural extracts,
specifically from scorpion venoms.

Table 3. Different separation strategies used to isolate enzyme components from scorpion venoms.
Da: Dalton.

Purified Molecule Scorpion Species Molecular Mass (Da) Separation Process Column Used References

Phospholipase A2

Liocheles australasiae 13,079.8
RP-HPLC
RP-HPLC
LC/MS

C4
C18
C18

[91]

Hemiscorpius lepturus 14,000
SEC
RP-HPLC
RP-HPLC

Sephadex G-50
Semi preparative C8
Analytical C8

[92]

Scorpio maurus 17,000

SEC
AEX
Hydrophobic Interaction
HPLC

Sephadex G-100
Q-Sepharose
Phenyl-Sepharose
Nucleogel GFC 300-8

[69]

Heterometrus laoticus 14,018.4
SEC
CEX
RP-HPLC

Sephadex G-50
CM-650 M
C4

[32]
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Table 3. Cont.

Purified Molecule Scorpion Species Molecular Mass (Da) Separation Process Column Used References

Hyaluronidase

Rhopalurus junceus 45,000–60,000 SEC Superdex 75 [93]

Tityus serrulatus 49,312 SEC
RP-HPLC

Sephadex G-50
Analytical C8 [94]

Palamneus gravimanus 52,000
SEC
IEX
SEC

Sephadex G-75
DEAE-cellulose [52]

Metalloproteinase Tityus serrulatus

22,000
24,000

AEX
SEC

DEAE
Diol-300 [18]

25,500 SEC
RP-HPLC

Sephadex G-50
C18 [19]

Serine proteinase

Mesobuthus martensii 33,000
SEC
CEX
RP-HPLC

Superdex G-75
UNO-Q
C8

[95]

Scorpio maurus 25,000 CEX
SECFP AEXSEC

DEAE-SephadexSephadex
G-100SP-SepharoseSephadex G-50 [96]

Neurotoxins

Mesobuthus martensii 7246.40

CEX
Hydrophobic Interaction
CEX
Hydrophobic Interaction
SEC

SP-Sepharose Phenyl
Sepharose 4
SP-Sepharose
Phenyl
Sepharose 4
Superdex Peptide HR 10/30

[88]

Centruroides suffusus suffusus

7524.9
7537.6
7588.6
13,596

RP-HPLC
CEX
RP-HPLC

C18
TSK-gel sulfopropyl
C18

[97]

Isometrus maculatus 6894 RP-HPLC
RP-HPLC

C4
C18 [89]

Androctonus australis 3849.5
SEC
SEC Exchange FPLC
RP-HPLC

Sephadex G-50
Resource S
C18

[90]

Hemiscorpius lepturus 4874
5107

SEC
AEX
CEX
RP-HPLC

Sephadex G-50
DEAE-Sepharose
CM-Sepharose
C8

[26]

AMPs

Heterometrus laoticus
(Heteroscorpine-1) 8293 SEC

CEX
Sephadex G-50
CM-Sepharose [27]

Pandinus imperator (Scorpine) 8350
SEC
CEX
RP-HPLC

Sephadex G-50
CM-Cellulose
C18

[62]

Hoffmannihadrurus aztecus
(Hadrurin) 4436

SEC
HPLC
HPLC

Sephadex G-50
C18
C18

[63]

Pandinus imperator
(Pandinin-1) 4799

RP-HPLC
CEX
RP-HPLC

C18
TSK-gel sulphopropyl
C4

[98]

Antibiotics 2023, 12, x FOR PEER REVIEW 9 of 25 
 

 
Figure 1. Schematic representation of bioassay-guided fractionation examples for isolation of three 
scorpion neurotoxins [88–90]. 

Table 3. Different separation strategies used to isolate enzyme components from scorpion venoms. 
Da: Dalton. 

Purified Molecule 
Scorpion 
Species 

Molecular  
Mass (Da) 

Separation Pro-
cess Column Used References 

Phospholipase  
A2 

Liocheles australa-
siae 13,079.8 

RP-HPLC 
RP-HPLC 
LC/MS 

C4 
C18 
C18 

[91] 

Hemiscorpius lep-
turus 14,000  

SEC 
RP-HPLC 
RP-HPLC 

Sephadex G-50 
Semi preparative C8 
Analytical C8 

[92] 

Scorpio maurus 17,000  

SEC 
AEX 
Hydrophobic In-
teraction 
HPLC 

Sephadex G-100 
Q-Sepharose  
Phenyl-Sepharose 
Nucleogel GFC 300-8 

[69] 

Heterometrus laoti-
cus 

14,018.4  
SEC 
CEX 
RP-HPLC 

Sephadex G-50 
CM-650 M 
C4 

[32] 

Hyaluronidase 
Rhopalurus junceus 45,000–60,000  SEC Superdex 75  [93] 

Tityus serrulatus 49,312 SEC 
RP-HPLC 

Sephadex G-50 
Analytical C8 

[94] 

Figure 1. Schematic representation of bioassay-guided fractionation examples for isolation of
three scorpion neurotoxins [88–90].



Antibiotics 2023, 12, 1380 10 of 23

3.2. Whole Proteome Characterization

In the quest to analyze the complete composition of various venoms, “omics” technolo-
gies have been employed. The advent of these state-of-the-art technologies has facilitated
the decomplexation of venom’s composition and the discovery of hidden biological effects.
Additionally, they have become crucial tools in the development of antivenoms, specifically
targeting the most toxic components found in animal venoms [99]. The large-scale pro-
teomic investigation of venoms is currently known as venomics. This branch of proteomics
helps understand venom’s evolution and diversity, facilitating, therefore, the profiling
and characterization of venoms [100]. To date, despite the discovery of approximately
2700 scorpion species, the percentage of manually annotated (Swiss-Prot) venom proteins
constitute only 14.9% of all the scorpion venom-derived peptide and protein recorded in the
Uni-Prot database. This highlights the need for more efficient methods of venom analysis in
order to gain more knowledge on scorpion venom components. In scorpion venomics, the
transcriptomic approach has played a crucial role in deciphering the expression levels of
individual components produced within venom glands, therefore guiding the identification
of novel structures and functions of venom proteins and peptides [101,102]. Recently, a
new transcriptomic strategy has emerged, focusing on genomics analysis that is still in its
early stages and requires further development and expansion [103]. Genomic analysis of
scorpion venom now includes full genome sequencing by implementing high-throughput
sequencing techniques named Next Generation Sequencing (NGS), revealing the genes
encoding venom proteins in a more efficient manner while also enabling the detection of
low-abundance components [82]. The implementation of new high-throughput technolo-
gies such as 454 pyrosequencing and Illumina sequencing has allowed quantitative and
qualitative inter-specific comparisons and also unveiled differential mechanisms of toxin
evolution between species [104,105]. The combination of transcriptomic and proteomic
approaches increased the protein and peptide coverage in scorpion venom analysis and
gave insights about protein composition from the gene sequences identified by transcrip-
tomic analysis [106–108]. Collectively, these approaches provide a more comprehensive
characterization of scorpion venoms, thereby enhancing the clinical assessment of scorpion
envenomation [102,109]. Proteomics has emerged as a key strategy for analyzing scorpion
venom, offering a fundamental breakdown of the complex mixture and enabling the profil-
ing and characterization of its components [110,111]. Two approaches can be employed
to perform proteomic analysis: bottom-up (BU) and top-down (TD). Unlike BU, where
protease-digested proteins are analyzed, in the TD analysis, intact proteins are studied.
In recent years, a novel approach known as the middle-down strategy has emerged as a
middle ground between bottom-up (BU) and top-down (TD) approaches. The BU approach
involves a crucial digestion step, generally using trypsin, to simplify the identification
process. In contrast, the middle-down strategy offers a compromise by retaining larger
peptide fragments for analysis. These digested peptides are subsequently identified us-
ing tandem mass spectrometry (MS/MS) [112]. The implementation of high-throughput
mass spectrometry for sequencing enhanced venom analysis, covering a larger number
of protein sequences in a faster time, making LC-MS/MS the most applied approach in
BU analysis [113,114]. The inclusion of a pre-fractionation/decomplexation step prior
to digestion is crucial in facilitating the identification of proteins. This step allows for
the detection of low-abundant proteins that are often overlooked, thereby improving the
overall protein identification process [115]. Only in shotgun BU analysis a decomplexation
step prior to protein digestion is not required, avoiding the possible loss of peptides. Other
BU workflows depend on a separation step prior to protein digestion. Both gel-based and
chromatographic separation approaches might be used [116].

Workflow 1 (Figure 2) involves the separation of crude scorpion venom using RP-
HPLC followed by in-solution trypsin digestion of the obtained fractions. The resulting
digested peptides are then subjected to LC-MS/MS analysis. This approach is commonly
used particularly for comparing scorpion venom composition. For instance, a study
compared venoms from Chactas reticulatus, Opisthacanthus elatus, Centruroides edwardsii,
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and Tityus asthenes. It was observed that compounds from Centruroides edwardsii and
Tityus asthenes eluted below 38% acetonitrile, while those from Chactas reticulatus and
Opisthacanthus elatus eluted at higher acetonitrile percentages (50% and 60%, respectively).
This revealed similarities among Buthidae scorpion venoms and differences in comparison
to non-Buthidae scorpion venoms. However, all four venoms contained potassium channel-
active and sodium channel-active neurotoxins, AMPs, metalloproteinase-like proteins,
and phospholipase-like proteins [19]. Another example involves the determination of
primary structures of four inhibitory proteins (NaTx-22, NaTx-4, NaTx-36, and NaTx-13)
from Centruroides sculpturatus venom. These proteins were found to specifically inhibit a
sodium channel isoform (Nav 1.8) associated with inflammation and nociception [71]. This
workflow is favorable for detecting low-abundance peptides [117]. In workflow 2, the crude
venom is separated by a gel-based (SDS-PAGE) technique, followed by in-gel digestion
of the separated bands, as shown in Figure 2B. Protein bands marked by Coomassie Blue
or silver staining are then analyzed using LC-MS/MS [118]. Prior to gel separation, the
use of RP-HPLC on C18 columns can enhance fraction resolution, as demonstrated in the
analysis of Heterometrus longimanus venom [116,119]. Workflow 3, shown in Figure 2C,
involves first a separation of the crude venom using 2-DGE followed by in-gel digestion
of protein spots isolated from the gel and the analysis of their protein content by LC-
MS/MS. This workflow provides information about peptide mass and pI, enriching the
identification of venom proteins [120]. It can be preceded by chromatographic techniques
such as SEC. For example, SEC fractions of Centruroides limpidus venom were separated
by 2-DGE, followed by tryptic digestion of spots and LC-MS/MS analysis. This enabled
amino acid sequencing of peptides and a comparison of venoms from female and male
scorpions [121]. As previously mentioned, the 2-DGE approach can be utilized for the
isolation and identification of specific venom proteins and peptides [32]. One limitation of
this approach is the potential loss of proteins during gel separation, making SDS-PAGE a
more favorable option. However, despite this limitation, the fourth workflow is generally
preferred due to its capability to achieve high proteome coverage. The last workflow
(workflow 4) is known as the shotgun approach. In this workflow, scorpion venom is
directly digested by trypsin, followed by analysis using a C18 RP-HPLC column and
LC-MS/MS identification. This method provides a fast, qualitative analysis that offers a
general understanding of venom composition and diversity. For example, when Serradigitus
gertschi and Centruroides hentzi venoms were analyzed using the shotgun approach, 204 and
59 proteins and peptides were identified, respectively [108,122].

In contrast, the TD strategy focuses on analyzing proteins in their intact, native
form without a digestion step. This approach overcomes the challenges faced in BU,
particularly in terms of misidentification of isoforms and proteoforms. Additionally, it
enables the analysis of post-translation modifications, large proteins, and protein-protein
interactions [123,124]. Depending on the protein size, TD requires either a denaturation or
alkylation step before LC-MS/MS analysis for proteins below 30 kDa or a direct application
of native proteins for those above 50 kDa. Despite providing more comprehensive results,
this method is less commonly used due to the challenges associated with its execution
and the interpretation of the large amount of generated data [124]. Typically, preceding
separation methods, particularly RP-HPLC, are employed in the TD process [125]. For
example, TD analysis of Buthus occitanus venom resulted in the identification of 68 peptides,
compared to 36 for in-gel BU and 37 for in-solution BU approaches. To overcome limitations
in protein identification, a combination of BU and TD methods has been proposed to
ensure a more thorough analysis and a deeper understanding of all venom components.
This approach was employed in the analysis of Buthus occitanus venom, leading to the
identification of a total of 102 proteins [81]. Figure 2 provides a schematic representation of
the different workflows.
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Figure 2. Illustration of various proteomic approaches for scorpion venom analysis. (A) The second
workflow in the BU approach involves RP-HPLC fractionation, followed by in-solution tryptic
digestion of each peak. The resulting digested peptides are then analyzed using HPLC-MS/MS
for protein identification. (B) The third workflow in the BU approach includes the fractionation of
crude venom using SDS-PAGE, followed by tryptic digestion of the protein bands. These bands
are subsequently analyzed using HPLC-MS/MS for identification. (C) The fourth workflow in the
BU approach starts with a first fractionation of crude venom by 2-DGE, followed by spot tryptic
digestion. Protein identification is then performed using HPLC-MS/MS. (D) The shotgun approach
involves direct digestion of crude venom by trypsin, followed by analysis using HPLC-MS/MS.
(E) The TD approach entails the direct analysis of intact proteins in crude venom using HPLC
separation, followed by tandem mass spectrometry (MS/MS). These different approaches provide
a range of options for analyzing scorpion venom, allowing researchers to choose the most suitable
method based on their specific objectives and requirements.

The emergence of a new analysis concept named middle-down (MD) was influenced by
the former two approaches. It includes the digestion of peptides like in BU but with different
proteases that generate longer truncated peptides. Following that, the MD approach allows
an improvement in protein sequence coverage [126]. Table 4 contains some examples
of proteomic workflows adapted for the analysis of different scorpion venoms. To date,
the literature on scorpion venom proteomic analysis is scarce, which demands further
studies to deepen the knowledge of the use of different venomic approaches to study
scorpion venoms.



Antibiotics 2023, 12, 1380 13 of 23

Table 4. Examples of different workflows and strategies used in scorpion venom proteomic analysis
and consequent findings. Da: Dalton.

Workflow Scorpion Species No. of Proteins Main Protein Distribution/Most
Abundant Venom Components References

Workflow 1
Shotgun strategy

Tityus obscurus ND

Metalloproteinase (47.48%)
NaScTxs (13.80%)
KScTxs (11.45%)
Conserved venom components (10.26%)
AMPs (3.51%)
Other proteinases (5.74%)
Other components (7.76%) [109]

Tityus serrulatus ND

Metalloproteinase (36.55%)
NaScTxs (14.19%)
KScTxs (15.60%)
Conserved venom components (14.99%)
Hypotensin (4.91%)
Other component (15.98%)

Rhopalurus
agamemnon 230

NaScTxs (16.95%)
KScTxs (2.17%)
AMPs (1.73%)
Housekeeping proteins (40.43%)
Metalloproteinase (6.12%)
Amylase (2.825%)
Others (29.775%)

[118]

Combination of workflow 2 + 3 + 4 Mesobuthus
martensii 227

NaScTxs (9.69%)
KScTxs (5.32%)
AMPs (0.44%)
Regulation proteins (11.2%)
Structure proteins (7.04%)
Metabolism proteins (7.04%)
Other components (59.27%)

[33]

Combination of workflow 1 + 3 + TD Buthus occitanus 102

NaScTxs (77%)
KScTxs (14%)
ClScTxs (3%)
CaScTxs (1%)
Toxin Acra (1%)
Other components (4%)

[81]

Combination of workflow 2 + 3 + TD Tityus serrulatus 147

KScTxs (12.19%)
NaScTxs (10.81%)
Enzymes (32%)
AMPs (2%)
Other components (43%)

[123]

4. Scorpion Venom Antimicrobial Peptides (AMPs)

Recent proteomic analyses have illuminated the highly diversified composition of
scorpion venoms, uncovering a link to the realm of AMPs. While these venoms were
initially found to contain only small amounts of AMPs, the UniProt database now show-
cases an impressive collection of over 200 distinct scorpion venom AMPs—a significant
advancement from the mere 50 peptides documented a decade ago. This research aims to
precisely isolate and characterize these AMPs within scorpion venoms, ultimately unveiling
their potential therapeutic uses [127–129].

Notably, a significant portion of these identified peptides exhibit remarkable efficacy
against multidrug-resistant (MDR) bacteria, which holds great promise in combating the
growing threat of antibiotic resistance. Additionally, these scorpion venom-derived AMPs,
especially those derived from the Buthidae family, exhibit minimal hemolytic activity,
thereby minimizing potential harm to healthy cells [130]. A distinguishing feature of
scorpion venom AMPs is their discerning approach to microbial targets. Unlike their
counterparts from spider venoms, scorpion venom AMPs display a remarkable specificity
towards particular microorganisms rather than exhibiting a broad-spectrum anti-bacterial
activity [131]. As seen, three AMPs derived from Urodacus yaschenkoi venom recorded high
antimicrobial activity against eight MDR bacterial strains, mostly inhibiting Streptococcus
strains. The minimum bacterial concentration for Uy234, Uy17 and Uy192 against SP10
was 2.9 µM, 23.2 µM and 10.6 µM, respectively, while the minimum bacterial concentration
against ST9 was 5.9 µM, 11.6 µM and 15.9 ± 7 µM, respectively. In addition, Uy17 and
Uy192 exhibited a lower hemolytic activity (<6%) compared to Uy234 (26.18%) at 380 µM.
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Despite this, these AMPs displayed a lower hemolytic activity than most scorpion venom
AMPs. Collectively, these three peptides exhibit distinct action against MDR bacteria
while also showing a low cytotoxic effect. This combination makes them a valuable asset
in addressing the increasing prevalence of antibiotic-resistant bacterial strains. Similar
findings continue to pave the way for the discovery and development of novel antibiotic-
active biomolecules such as Uy17, Uy192, and Uy234 [132].

In scorpions, AMPs are short cationic amphipathic peptides divided into three cat-
egories according to their structure: (1) the first group contains peptides with cysteine
residues and disulfide bridges; (2) the second group lacking cysteine residues contains
members with amphipathic α-helix and (3) the third group encompasses members rich
in proline and glycine residues. The cysteine-containing AMPs are formed by three to
four disulfide bridges. For example, Heteroscorpine-1 (HS-1), from Heterometrus laoticus
scorpion venom, contains ninety-five amino acids and three disulfide bonds [133]. HS-1
possesses a broad anti-bacterial spectrum, affecting both Gram-negative and Gram-positive
strains. The purified fraction of HS-1 scored 300 times higher inhibition activity on Bacillus
subtilis, Klebsiella pneumoniae and Pseudomonas aeruginosa compared to the whole crude
venom of Heterometrus laoticus [27]. Scorpine is also a scorpion venom-derived AMP from
Pandinus imperator with three disulfide bonds that constitute only 1.4% of the crude venom.
This 75 amino acid-long AMP inhibited both Bacillus subtilis and Klebsiella pneumoniae
strains, recording a MIC of 1 and 10 µM, respectively [62].

The non-disulfide bridged AMPs can be long, intermediate or short AMPs. Long-chain
non-disulfide bridged AMPs vary in size, with an average of around 40 amino acids. For
instance, Hadurin, isolated from Hoffmannihadrurus aztecus scorpion venom, is a 41 amino
acid-long AMP that constitutes 1.7% of the total venom content. Antimicrobial activity was
mainly detected against Escherichia coli, Serratia marscencens and Enterococcus cloacae with
MICs lower than 10 µM while the hemolytic activity was significant [63]. Additionally,
Pandinus imperator venom contains an AMP identified as pandinin-1, which comprises
44 amino acids. The application of pandinin-1 demonstrated notable sensitivity against
Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, and Staphylococcus epidermidis,
with minimum inhibitory concentrations (MICs) of 1.3 µM, 5.2 µM, 2.6 µM, and 5.2 µM,
respectively. Moreover, pandinin-1 displayed minimal hemolytic effects, with only 1.4%
hemolysis observed at the highest concentration tested (44.5 µM). Another polycationic,
α-helical peptide was purified from the venom of Pandinus imperator venom, pandinin-2,
with 24 amino acids, making it an intermediate-chain AMP. This peptide acted mostly on
Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis
strains with corresponding MICs of 2.4 µM, 4.8 µM, 2.4 µM and 4.8 µM, respectively.
Nevertheless, pandinin-2 had a significant hemolytic activity [98].

Intermediate-chain AMPs constitute only 9% of scorpion AMPs described to date.
On the other hand, short-chain AMPs are the most commonly found AMPs in scorpion
venoms, representing 46% of reported scorpion antimicrobial peptides [133]. Amphipathic
peptide CT2 from Scorpiops tibetanus venom falls among the short-chain, cationic, non-
disulfide bridged AMPs. This AMP has 14 amino acids and inhibits mainly Gram-positive
bacteria, especially Staphylococcus aureus, with a minimal inhibition concentration (MIC)
of 6.25 µg/mL. CT2 was also effective against methicillin-resistant bacterial strains and
had a low hemolytic activity even at high concentrations, showing major promise in drug
development [134]. A second short-chain AMP, the 13 residue-long cytotoxic linear peptide
(IsCT) isolated from Opisthacanthus madagascariensis scorpion venom, is also a potential com-
pound for novel antimicrobial drug development. This AMP was significantly more active
against Gram-positive bacteria, scoring MICs varying from 0.7 µM to 16.6 µM. Hemolytic
activity of IsCT was relatively low, not exceeding 30% at 200 µM [135]. Table 5 summarizes
some examples of scorpion venom-derived AMPs, along with their 3D structure retrieved
from the UniProt database and their proposed anti-bacterial mechanism of action. Addi-
tionally, Table 6 presents the molecular mass, net charge, length and amino acid sequence
of some scorpion AMPs.
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Table 5. Selected AMPs isolated from scorpion venom, with their 3D structure retrieved from the
UniProt database and their mechanism of action against bacterial strains [136,137]. Labeled in red is
the signal part of the structure that is later lost when the protein matures. The N- and C- terminal of
the proteins are also represented.

Scorpion Species AMP Mechanism of Action Structure Reference

Heterometrus
laoticus

Heteroscorpine-1
(HS-1)

Formation of blebs on
the membrane
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Table 5. Cont.

Scorpion Species AMP Mechanism of Action Structure Reference

Scorpiops
tibetanus

Amphipathic
peptide CT2

Immediate disruption of
bacterial membrane causing
rapid killing
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Table 6. Molecular masses, net charges, lengths and amino acid sequences of selected scorpion AMPs.

Scorpion AMPs Molecular Mass Net Charge Length Amino Acid Sequence Reference

Amphipathic peptide
CT2 7930 Da +2 69 N- MKTQFAVLIISMILMQMLVQTEAGFWGKLWEGVKSAI-

GKRSLRNQDQFDNMFDSDLSDADLKLLDDLFD -C

[136,137]

Cytotoxic linear peptide
IsCT2 1463.92 Da +2 71 N- MKTQFAILLVALVLFQMFAQSEAIFGAIWNGIKSLFGRRAL-

NNDLDLDGLDELFDGEISQADVDFLKELMR -C

Hadrurin 4436 Da +5 41 N- GILDTIKSIASKVWNSKTVQDLKRKGINWVANKLGVSPQAA -C

Imcroporin 1760 Da +2 74 N- MKFQYLLAVFLIVLVVTDHCQAFFSLLPSLIGGLVSAIKGRR-
RRQLEARFEPKQRNFRKRELDFEKLFANMPDY -C

Meucin-24 2753.95 Da +4 88 N- MMKQQFFLFLVIVMISSVIEAGRGREFMSNLKEKLSGVKEKMK-
NSWNRLTSMSEYACPVIEKWCEDHCQAKNAIGRCENTECKCLSK -C

Meucin-25 3095.56 Da +4 56 N- MFRIEYSLVQLLLRNVTIPLLLIIQMHIMSSVKLIQIR-
IWIQYVTVLQMFSMKTKQ -C

Mucroporin 2031.58 Da +2 74 N- MKVKFLLAVFLIVLVVTDHCHALFGLIPSLIGGLVSAFKGRRK-
RQMEARFEPQNRNYRKRELDLEKLFANMPDY -C

Pandinin-1 4799.2 Da +1 44 N- GKVWDWIKSAAKKIWSSEPVSQLKGQVLNAAKN-
YVAEKIGATPT -C

Pandinin-2 2612.6 Da +1 24 N- FWGALAKGALKLIPSLFSSFSKKD -C

Scorpine 8350 Da +3 94
N- MNSKLTALIFLGLIAIAYCGWINEEKIQKKIDERMGNTVLG-
GMAKAIVHKMAKNEFQCMANMDMLGNCEKHCQTSGEKGY-
CHGTKCKCGTPLSY -C

Vejovine 4873 Da +4 82 N- MNAKTLFVVFLIGMLVTEQVEAGIWSSIKNLASKAWNSDIGQ-
SLRNKAAGAINKFVADKIGVTPSQAASMTLDEIVDAMYYD -C

Uy17 1369.43 Da +2 13 N- ILSAIWSGIKGLL -C

[141]Uy192 1459.98 Da +2 13 N- FLSTIWNGIKGLL -C

Uy234 1986.19 Da +3 18 N- FPFLLSLIPSAISAIKRL -C

5. Concluding Remarks

To date, the field of venomics has witnessed significant advancements and discov-
eries, resulting in a substantial increase in our understanding of scorpion venoms. The
integration of “omics” technologies and their variants has provided a more comprehensive
and advanced insight into the structural/functional relationships in scorpion toxins and
other ancillary compounds. Concerning antimicrobial peptides, scorpion venoms have
proven to be a rich source of AMPs with a diverse range of mechanisms of action and
structural features. The key to conducting optimal scorpion venom separation analyses lies
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in the careful selection of separation techniques that align with the study’s objectives. In
the case of AMPs, these techniques should be coupled with functional assays to genuinely
identify novel compounds. This review presents four alternative workflows for venom
analysis. Workflow 1 involves venom chromatographic pre-fractionation followed by the
tryptic digestion of selected fractions. In workflow 2, venom components are separated
using SDS-PAGE, and selected bands undergo digestion. In workflow 3, venom is resolved
using 2-DGE, and selected protein spots are analyzed through LC-MS/MS. Workflow
4 employs a “shotgun” approach, where venom is directly digested by trypsin, followed by
RP-HPLC analysis and the LC-MS/MS identification of selected fractions. Each approach
has its strengths and weaknesses, highlighting that there is no singular methodology for
analyzing all aspects of scorpion venom, particularly considering their species-specific
complexity. Despite the remarkable progress in scorpion venomics, a significant gap in our
understanding of this field remains. Further structural and functional research is essential
to unravel this complexity and expand our knowledge of potential bioactive molecules for
therapeutic applications.
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