
HAL Id: hal-04487135
https://amu.hal.science/hal-04487135

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Chunking as a function of sequence length
Laure Tosatto, Joël Fagot, Dezso Nemeth, Arnaud Rey

To cite this version:
Laure Tosatto, Joël Fagot, Dezso Nemeth, Arnaud Rey. Chunking as a function of sequence length.
Animal Cognition, 2024, �10.1007/s10071-024-01835-z�. �hal-04487135�

https://amu.hal.science/hal-04487135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Vol.:(0123456789)

Animal Cognition 
https://doi.org/10.1007/s10071-024-01835-z

ORIGINAL PAPER

Chunking as a function of sequence length

Laure Tosatto1,2,7   · Joël Fagot1,2,3,8 · Dezso Nemeth4,5,6 · Arnaud Rey1,2,8

Received: 25 August 2022 / Revised: 10 September 2023 / Accepted: 1 November 2023 
© The Author(s) 2024

Abstract
Chunking mechanisms are central to several cognitive processes. During the acquisition of visuo-motor sequences, it is 
commonly reported that these sequences are segmented into chunks leading to more fluid, rapid, and accurate performances. 
The question of a chunk’s storage capacity has been often investigated but little is known about the dynamics of chunk size 
evolution relative to sequence length. In two experiments, we studied the dynamics and the evolution of a sequence’s chunking 
pattern as a function of sequence length in a non-human primate species (Guinea baboons, Papio papio). Using an operant 
conditioning device, baboons had to point on a touch screen to a moving target. In Experiment 1, they had to produce repeat-
edly the same sequence of 4 movements during 2000 trials. In Experiment 2, the sequence was composed of 5 movements 
and was repeated 4000 times. For both lengths, baboons initially produced small chunks that became fewer and longer with 
practice. Moreover, the dynamics and the evolution of the chunking pattern varied as a function of sequence length. Finally, 
with extended practice (i.e., more than 2000 trials), we observed that the mean chunk size reached a plateau indicating that 
there are fundamental limits to chunking processes that also depend on sequence length. These data therefore provide new 
empirical evidence for understanding the general properties of chunking mechanisms in sequence learning.

Keywords  Chunking · Sequence learning · Non-human primates · Associative learning

Introduction

A key mechanism allowing our cognitive system to com-
press information and increase short term memory capacity 
is the formation of chunks (Mathy and Feldman 2012; Miller 
1956). Chunking is defined as the process of associating 
and grouping several items together into a single processing 
unit (Gobet et al. 2001, 2016). Several studies have ques-
tioned the maximum number of chunks that can be stored 
in short-term memory. While Miller (1956) initially pro-
posed that humans have a short-term storage capacity of 7 
plus or minus 2 chunks, Cowan (2001) suggested that this 
capacity might be more limited to a set of approximately 
four chunks. Other studies were concerned by the number of 
items that can be stored into a single chunk and have shown 
that chunks seem to have their own limits regarding storage, 
seemingly 3 or 4 items per chunk (Allen and Coyne 1988; 
Chase and Simon 1973; Johnson 1970). Yet, this absolute 
number of chunk size varies depending on experimental 
paradigms and factors such as expertise. For example, Gobet 
and Clarkson (2004) found that chess Masters were able to 
chunk many pieces of information (up to 15 items). Here, 
we aim to investigate the size of chunks and their evolution 
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during sequence learning and the effect of sequence length 
on the chunking pattern.

In the field of perceptual-motor learning, chunking has 
been considered as the main motor sequence integration 
mechanism (Diedrichsen and Kornysheva 2015; Wymbs 
et al. 2012). Motor sequence learning is commonly described 
as the process by which a sequence of movements is acquired 
and executed with increased speed and accuracy (Willing-
ham 1998). This process is largely related to the question 
of chunking as individuals spontaneously parse sequences 
of movements into chunks corresponding to subparts of 
the sequence. This process of parsing into chunks becomes 
clear when studying the pattern of successive response 
times (RTs) in typical sequential button-press tasks: long 
temporal gaps between two successive responses are usu-
ally observed and are assumed to mark chunk boundaries 
(Abrahamse et al. 2013; Bottary et al. 2016). The resulting 
chunking pattern therefore reflects the sequence’s organiza-
tion in memory (Sakai et al. 2003) and inform us about the 
length chunks can have.

If many studies report that chunks typically contain 3 or 4 
items, sometimes 5 (e.g., Nissen and Bullemer 1987; Sakai 
et al. 2003; Verwey 1996; Verwey et al. 2002), other studies 
found much larger chunk sizes of 7 or 8 (e.g., Kennerley 
et al. 2004). One factor that can explain this heterogeneity 
of results is practice. Indeed, some studies include a very 
limited number of repetitions of the same sequence (e.g., 
only 36 repetitions in Rosenbaum et al. 1983) whereas oth-
ers are interested in extended practice and include hundreds 
of trials (e.g., 588 in Verwey 2003). Throughout extended 
practice, chunks were found to evolve and grow larger as if 
more compression of information was possible with increas-
ing familiarity with the sequence (e.g., Acuna et al. 2014; 
Bera et al. 2021; Ramkumar et al. 2016; Wright et al. 2010). 
These conclusions are not limited to humans and identical 
results have been obtained in other animals, particularly 
non-human-primates (e.g., Ramkumar et al. 2016; Terrace 
2002; Scarf et al. 2018). Animals too appear to spontane-
ously chunk sequences and the chunking pattern can evolve 
through extended practice.

Another factor that may influence chunk size is the length 
of the sequence. Indeed, temporal gaps between items of 
the sequence seem to emerge only after sequences of 3 or 4 
items (Bo et al. 2009; Verwey and Eikelboom 2003). This 
suggests that a single chunk can be formed for very short 
sequences and that as the sequence gets longer, more chunks 
can emerge. For instance, Verwey (2003) found no segmen-
tation in 2 and 4-item sequences whereas chunking occurred 
when participants performed 6-item sequences. This experi-
ment however does not specifically study the evolution of 
chunk sizes in relationship to sequence length.

In a recent study, Tosatto et  al. (2022) studied the 
evolution of chunks during the repeated execution of a 

single visuo-motor sequence in non-human primates (i.e., 
Guinea baboons papio papio). Using a serial response 
time (SRT) task, baboons had to repeatedly produce the 
same sequence composed of 9 different locations for a 
thousand trials. Consistent with previous studies, results 
showed that baboons initially parsed the sequence into 
small chunks that progressively became fewer and longer 
throughout the task. Indeed, the average chunk size was 
initially equal to 2.2 items per chunk and it increased up 
to 3.38 items per chunk at the end of the experiment, after 
extended practice. On some occasions, longer chunks of 8 
or 9 items were also observed.

This experiment also showed that the evolution of the 
chunks was governed by two reorganization mechanisms: 
concatenation (i.e., the process by which two successive 
chunks are performed more fluidly and the temporal gap 
between them decreases leading to a single and longer 
chunk) and recombination (i.e., the emergence of a new 
segmentation pattern across chunks, such as two chunks 
of 3 items become a chunk of 4 items followed by a chunk 
of 2 items). Tosatto et al.’s (2022) study therefore informs 
us about the relative flexibility of chunks throughout learn-
ing, but this study remains limited because using only 
9-items sequences does not provide information about the 
relationship between the initial chunking pattern, its evolu-
tion and the length of the sequence.

The aim of the present research is to study the dynamics 
of chunking for shorter extensively repeated sequences, in 
comparison to the results obtained for 9-item sequences. 
We designed two experiments to study the evolution of 
chunk size for different sequence lengths. In the first 
experiment, baboons were trained on a single repeated 
sequence of 4 items for 2000 trials. This specific sequence 
length was chosen as it is generally accepted in the lit-
erature that chunks can store up to 3 or 4 items. There-
fore, we expected either no segmentation in producing 
the sequence, or an initial segmentation of the sequence 
followed by a progressive increase in chunk size up to 4 
items. The second experiment was similar to the first, but 
baboons were trained on a 5-item sequence for 4000 trials. 
This larger sequence length was used as a proxy to infer 
the evolution of chunk size for a sequence length between 
9 and 4 items, using the data already collected for these 
two latter lengths. We also increased the total number of 
trials to determine if greater extended practice would still 
lead to a linear increase of the average chunk size.
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Experiment 1

Method

Participants

Twenty-five Guinea baboons (Papio papio) from the CNRS 
primate facility in Rousset (France) were tested in this study. 
For practical reasons, we stopped the experiment after 17 
monkeys completed all scheduled trials (fourteen female and 
three male, age range 2.8–24.8 years). Water was provided 
ad libitum during the test, and the monkeys received their 
normal food ration of fruits every day at 5 PM.

Materials

Apparatus  This experiment was conducted with a com-
puter-learning device based on the voluntary participation 
of baboons (for details, see Fagot and Bonté 2010). Baboons 
implanted with a RFID microchip had free access to 10 auto-
matic operant conditioning learning devices equipped with 
touch screens. Each time a monkey entered a test chamber, 
it was identified by its microchip and the system resumed 
the trial list where the subject left it at its previous visit. The 
experiment was controlled by E-prime (Version 2.0, Psy-
chology Software Tools, Pittsburgh, PA, USA).

Task and  stimuli  The screen was divided into nine uni-
formly spaced predetermined locations represented by 
white crosses on a black background, virtually labeled as 
Position 1 to 9 (see Fig. 1A). A trial began with the presen-
tation of a yellow fixation cross at the bottom of the screen. 
Once pressed, the fixation cross disappeared and the nine 
white crosses were displayed, one of them being replaced 
by the target, a red circle. When the target was touched, 
it was immediately replaced by the cross. The red circle 
then replaced the next position in the sequence until it was 
touched, and a new position was displayed. Reward (grains 

of dry wheat) was provided at the end of a sequence of four 
touches (see Fig. 1B).

If baboons touched an inappropriate location (incorrect 
trial) or failed to touch the screen within 5000 ms after the 
red circle’s appearance (aborted trial), a green screen was 
displayed for 3000 ms as a marker of failure. Aborted trials 
were not retained and therefore presented again, while incor-
rect trials were not. The time elapsed between the appear-
ance of the red circle and the baboon’s touch on this circle 
was recorded as the response time (RT) for that location in 
the sequence. To learn the task, baboons initially received 
random trials that were rewarded after three touches. Then, 
the number of touches in a trial was increased to four.

Design of the sequences  To control the motor difficulty of 
the transitions to be produced in the sequence, a random 
phase of sequence production was first conducted, where 
thirteen baboons performed random sequences of six posi-
tions for 1000 trials. For each of these 13 baboons, we com-
puted all the mean transition times from one location to 
another, leading to a 9 × 9 matrix of RTs (with no values on 
the diagonal of the matrix). We then correlated each matrix 
of each baboon to the matrix of all the other baboons and, 
on average, the correlation between these matrices was 0.42 
(SD = 0.19), indicating that there was a good consistency 
between the baboons’ performances. This result allowed 
us to compute an average baseline measure for all possible 
transitions for the entire group of baboons (see Appendix 1).

Based on these baseline measures, we designed four 
sequences of four serial positions for which each transition 
T was numerically faster (or equally fast) to produce on aver-
age than the next one (i.e., T1 ≤ T2 ≤ T3). Ideally, all the 
transitions should be matched to equate each transition for 
motor difficulty and to study the segmentation/chunking of 
the sequence. This was not possible for sequences of 9 posi-
tions (i.e., in Tosatto et al. 2022) and that is why we con-
structed the repeated sequences by systematically choosing 
increasing or equal transition times from the first transition 

Fig. 1   Experimental display and stimulus presentation. A Display of the 9 uniformly spaced predetermined locations (white crosses) virtually 
labeled as position 1–9 (i.e., only the white crosses were displayed, not the numbers). B Example of a single trial (ISI = 0)
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to the last. Therefore, to make this study (with sequences of 
9 positions) comparable with the present study with shorter 
sequences, we adopted the same logic when constructing 
the sequences. However, we also made sure that there was 
no significant difference between all the transition times 
of each sequence so that at the beginning of learning there 
was no significant difference on any transition (see Supple-
mentary Materials). Appendix 2 provides the details of all 
the sequences we used, i.e., the sequence itself, the average 
response times for each transition and the number of mon-
keys that were presented with each sequence.

Procedure

To neutralize the potential effect of one specific sequence, 
baboons were exclusively presented with either Sequence 1 
(n = 4), 2 (n = 5), 3 (n = 3) or 4 (n = 5) and had to produce 
their sequence repeatedly for 2000 successive trials. RTs for 
each position of the sequence were recorded for all the trials.

Results

On average, baboons required 2.82 days (SD = 1.19) to 
complete the 2000 trials, with a mean of 708.33 trials per 
day and a mean accuracy level of 99.44% (SD = 1.65). 
Incorrect trials were removed from the dataset (0.56%). 
RTs greater than 1000 ms were excluded and an additional 
recursive trimming procedure excluded RTs greater or 
smaller than 2.5 standard deviations from the subject’s 

mean for each of the four possible positions (15%). Note 
that by not removing any outlier, this does not change the 
main trends of our results (see Supplementary Materials). 
RTs for each of the four positions and for the 2000 trials 
were divided into 20 Blocks of 100 trials.

General sequence learning was estimated by comput-
ing on each trial the average of RTs over the four posi-
tions in the sequence. For each participant, we averaged 
these mean RTs for each Block of 100 trials and Fig. 2 
represents the evolution of mean RTs for the entire group 
of monkeys. These values were entered in a repeated 
measures one-way ANOVA with Block (1–20) as the 
within factor. The effect of Block was highly significant, 
F(19, 304) = 21.175, p < 0.001, η2 = 0.57. A linear regres-
sion also indicates that mean RTs decreased throughout 
the blocks of trials, F(1, 38) = 255, p < 0.001, Adjusted 
R2 = 0.93, (Block 1, M = 430.43, SD = 38.25; Block 20, 
M = 340.34, SD = 34.71), suggesting that monkeys learned 
the sequence.

We adopted the same method as previously used for 
sequences composed of 9 positions (i.e., Tosatto et al. 
2022) to study the chunking pattern of the sequence by 
monkeys. We considered successive positions A and B 
to be part of the same chunk as long as the transition 
time from one position to the next did not correspond 
to a significant increase in RT, otherwise an AB transi-
tion was supposed to mark a chunk boundary (Kennerley 
et al. 2004). Statistical significance was assessed through 

Fig. 2   Evolution of mean 
response times (RT) across 
Blocks. Evolution of mean 
response times (RT) across 
Blocks by averaging within each 
Block all positions, all trials, 
and all monkeys in Experiment 
1 (with sequences of 4-items, 
blue circles) and in Experiment 
2 (with sequences of 5-items, 
orange triangles). Error bars 
represent 95% confidence 
intervals, dotted lines represent 
linear regressions fitted to each 
distribution and shaded areas 
represent predicted confidence 
intervals
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paired-sample t-tests for each pair of successive positions 
(significance threshold is set at 0.01 to correct for multi-
ple comparisons1). Each time the RT of a pair's second 
position was significantly higher than the first position, it 
marked a chunk boundary. This analysis was applied on 
the mean RTs obtained at each position, for each Block of 
100 trials and for each monkey (see Fig. 3 for an illustra-
tion of this procedure for one monkey).

With this method, we were able to quantify the number 
of chunks and their average size produced on each block 
by each monkey. Two linear regressions were conducted 

to test the effect of Block on the mean number of chunks 
and the mean chunk size respectively. These analyses 
revealed that the number of chunks significantly decreased 
across blocks (Block 1, M = 2.18, SD = 0.45; Block 20, 
M = 1.47, SD = 0.32; F(1, 18) = 98.6, p < 0.001, Adjusted 
R2 = 0.84) and that chunk size significantly increased across 
blocks (Block 1, M = 2.12, SD = 0.59; Block 20, M = 3.06, 
SD = 0.64; F(1, 18) = 83.4, p < 0.001, Adjusted R2 = 0.81). 
Note that we get exactly the same linear trends if we change 
the block size by taking 40 blocks of 50 trials or 10 blocks 
of 200 trials (see Supplementary Materials).

Additionally, for the average chunk size, we combined the 
present data on sequences of 4 items with the data collected 
in Tosatto et al. (2022) on sequences of 9 items to conduct 
a multiple regression analysis testing the effect of Block 
(1–20), Length (4 or 9) and the interaction of these two 
factors (see Fig. 4 for a representation of these data). This 
analysis revealed an effect of Block, Length and a signifi-
cant interaction between these predictors (F(3, 26) = 34.8, 

Fig. 3   Evolution of the chunking pattern for one individual (Lips) 
throughout the task. Mean RTs per position across the 20 blocks 
of 100 trials for one baboon (Lips) showing the evolution of the 
chunking pattern. This individual initially parses the sequence into 
three chunks at the beginning of the task (i.e., Block 1) before con-
catenating the 3rd position with the first two into one chunk during 

Block 3. The sequence is recombined into two chunks of two posi-
tions at Block 11, before being recombined again in Block 12. The 
two chunks are again recombined during Block 18 and the sequence 
is fully concatenated into a single chunk during Block 20 (error bars 
represent 95% confidence intervals)

1  In the case of a large number of comparisons (8 in our case), there 
is a debate over the fact that Bonferroni and Holm corrections may 
overcorrect and set a significance threshold unnecessarily low, which 
increases the risk of type II error (e.g., Lee and Lee 2018). We have 
therefore decided to adjust our alpha threshold to the stricter conven-
tional threshold of 0.01, considering that only a very significant dif-
ference between mean RTs would mark a chunk boundary.
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p < 0.001, Adjusted R2 = 0.78). The individual predictors 
showed no main effect of Block (t = − 0.01, p = 0.98) and 
no main effect of Length (t = 1.04, p = 0.31), but a significant 
interaction indicating that the increase of chunk size across 
blocks differs between 4-items and 9-items sequences, 
(t = 3.12, p = 0.004).

Finally, we studied the two reorganization mechanisms 
reported in Tosatto et al. (2022). We found that 52.94% 
of the reorganizations were concatenations (which were 
observed in all monkeys) and 47.06% of the reorganizations 
were recombinations (which were observed in 15 monkeys). 
Table 1 provides the total number of concatenations and 
recombinations obtained for each block and for all monkeys 
in Experiment 1. A repeated measure ANOVA with Block 
and Mechanisms (concatenation vs. recombination) did not 
reveal any significant difference between these two reorgani-
zation mechanisms (all ps > 0.05).

Discussion

Two main findings were obtained in the present study. First, 
we confirmed the results of a previous experiment led on 
the evolution of chunks while learning a 9-item visuo-motor 

sequence. As it was the case with a longer sequence, non-
human primates learn 4-item sequences by segmenting the 
sequence into small chunks and, with extended practice, 
these chunks become longer and fewer. Second, this decrease 
in the number of chunks and this increase in chunks’ size 
is due to two types of reorganizations: the recombination 
of several preexisting chunks and the concatenation of two 
distinct chunks into one.

It is interesting to note that the final mean chunk size 
after producing the sequence 1000 times is only 2.51 (CI 
[1.88, 3.14]; Min = 1; Max = 4), and that after 2000 trials, it 
is still different from 4 (Mean = 3.06; CI [2.42, 3.7]; Min = 1; 
Max = 4), indicating that baboons continue, on average, 
to segment this short sequence in several chunks. This is 
even more interesting considering that the mean chunk size 
for 9-item sequences was 3.38 (CI [2.85, 3.91]; Min = 1; 
Max = 8) after 1000 trials, indicating that chunk size var-
ies with the length of the sequence. Chunking processes 
therefore seem to operate in interaction with the size of the 
sequence.

To further explore this interaction, we used the linear 
regressions presented in Fig. 4 to extrapolate the slope of 
the linear regression that should be obtained for a sequence 

Fig. 4   Evolution of chunk 
size for long (9-items in blue) 
and short (4-items in orange) 
sequences. The predicted evolu-
tion for 5-items sequences is 
given by the red dotted line. 
Mean chunk size (i.e., number 
of items per chunk) per block 
for long sequences (9-items, 
red dots) and short sequences 
(4-items, blue dots), error 
bars represent 95% confidence 
intervals. The red line illustrates 
the predicted mean chunk size 
per block for 5 items sequences, 
determined after Experiment 1 
via a multiple regression with 
Block, Length and interac-
tion as predictors. Dotted lines 
represent the same regression 
coefficients applied to 4 and 
9-item sequences, shaded areas 
represent predicted confidence 
intervals

1 5 10 15 20
Block

1

1.5

2

2.5

3

3.5

4

4.5

5

M
ea

n
ch

un
k
si
ze

9-items sequences
4-items sequences
Predicted evolution for 5-items sequences



Animal Cognition	

length between 4 and 9. Indeed, it is possible to use regres-
sion models as predictive models as illustrated in Eq. (1):

Here, the linear regression predicts the mean chunk size 
y as a function of the intercept β0, the slope coefficient β1 
at block x1, the slope coefficient β2 for a sequence of length 
x2 and the interaction effect β1.2 between block and length. 
Using this formula, we can replace x2 by a constant C = 5 to 
model the predicted evolution of the mean chunk size across 
blocks for a sequence of 5 items. The resulting predictive 
line is represented on Fig. 4. According to this model, a 
mean chunk size greater than 4 (4.89) should be observed 
after 4000 trials for sequences of 5-items. This indicates that 
large chunks could only be formed after greater extended 
practice. Experiment 2 was designed to assess the predictive 
power of that model and test the hypothesis that the relation-
ship between block, sequence length and chunk size is linear.

(1)y = �
0
+ �

1
x
1
+ �

2
x
2
+ �

1.2
x
1.2

Experiment 2

Method

Participants

The same twenty-five Guinea baboons from the CNRS pri-
mate facility in Rousset (France) were tested in this study. 
For practical reasons, we stopped the experiment after 21 
monkeys completed all scheduled trials (fifteen female and 
six males, age range 2.8–24.8 years). Sixteen out of these 
21 baboons also performed Experiment 1.

Materials and methods

The apparatus, task, and stimuli were identical to those of 
Experiment 1. The only exception was sequence length, 
which was 5 items in Experiment 2. In order to avoid a 
familiarity effect with specific sequences in baboons, 
we designed 3 new sequences of 5 items, using the same 
method as in Experiment 1. Appendix  3 provides the 
sequences presented to each of the 21 baboons.

Procedure

Baboons were either presented with Sequence 1 (n = 7), 
Sequence 2 (n = 6) or Sequence 3 (n = 7) and had to pro-
duce it for 4000 successive trials. The number of trials was 
chosen in order to have baboons mastering the sequence to 
a point we had never tested, and which would seemingly 
allow them to form larger chunks, according to our predic-
tions. RTs for each position of the sequence were recorded 
for all the trials. Experiment 2 occurred six months after 
Experiment 1 and to minimize the potential interference 
between the two experiments, baboons started this second 
experiment with series of random sequences.

Results

On average, baboons required 8.5 days (SD = 3.36) to com-
plete the 4000 trials, with a mean of 471.9 trials per day 
and a mean accuracy level of 92.7% (SD = 4.32). Incorrect 
trials were removed from the dataset (7.29%). RTs greater 
than 1000 ms were excluded and an additional recursive 
trimming procedure excluded RTs greater or smaller than 
2.5 standard deviations from the subject’s mean for each 
of the five possible positions (18.02%). RTs for each of the 
five positions and for the 4000 trials were divided into 40 
Blocks of 100 trials.

General sequence learning was estimated on mean RTs 
by a repeated measures one-way ANOVA with Block 

Table 1   Total number 
of concatenations and 
recombinations per block for 
Experiment 1

Block Concat-
enations

Recom-
bina-
tions

2 1 2
3 1 3
4 5 1
5 6 4
6 4 2
7 2 4
8 1 0
9 2 4
10 3 1
11 1 3
12 1 3
13 6 1
14 1 3
15 6 2
16 2 2
17 4 3
18 2 6
19 2 4
20 4 0
Total 54 48
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(1–40) as the within factor (see Fig. 2 for the evolution of 
mean RTs across Blocks).

The effect of Block was highly significant (Block 1, 
M = 412.27, SD = 18.7; Block 40, M = 309.24, SD = 42.02; 
F(39, 819) = 30.39, p < 0.001, η2 = 0.603). A linear regres-
sion also indicates that mean RTs decreased throughout 
the blocks of trials, F(1, 38) = 116, p < 0.001, Adjusted 
R2 = 0.75, (Block 1, M = 412,27 SD = 20.85; Block 20, 
M = 309.24, SD = 32.69), suggesting that monkeys learned 
the sequence.

A linear regression was conducted to test the effect of 
Block on the mean number of chunks. As in Experiment 1, 
this analysis revealed that the mean number of chunks signif-
icantly decreased across blocks, (Block 1, M = 2, SD = 0.32; 
Block 20, M = 1.52, SD = 0.39; F(1, 38) = 80.7, p < 0.001, 
Adjusted R2 = 0.67).

As for the average chunk size, Fig. 5 indicates that the 
distribution of values across blocks obeys two separate 
regimes: a first increase in chunk size that corresponds to 
the predicted line followed by a plateau. To account for these 
two regimes, we first used a broken stick linear regression 
(Quandt 1960) to determine the slope of the evolution before 
and after the plateau is reached. This analysis revealed an 
increase in chunk size during the first regime, with a slope 
coefficient of 0.05 (R2 = 0.67) and an almost flat slope of 
0.006 (R2 = − 0.04) in the second regime, with a breakpoint 
(i.e., deceleration) after the 13th Block. A logistic growth 
model completes this analysis and indicates that the plateau 
is reached (i.e., the carrying capacity) at a size of 3.109 
items (see Supplementary Fig. 5).

As for the reorganization mechanisms, we found that 
55.6% of the reorganizations were concatenations (which 

were observed in all monkeys) and 44.4% of the reorganiza-
tions were recombinations (which were also observed in all 
monkeys). Table 2 provides the total number of concatena-
tions and recombinations obtained for each block and for all 

Fig. 5   Evolution of the mean 
chunk size for 5-item sequences 
and the predicted evolution for 
5-items sequences. Mean chunk 
size (i.e., number of items per 
chunk) per block for 5 items 
sequences, error bars represent 
95% confidence intervals. Blue 
lines represent a broken stick 
regression separating data into 2 
panels, at a calculated breaking 
point of 13.31. The red line 
illustrates the predicted mean 
chunk size per block for 5 items 
sequences, previously deter-
mined via a multiple regression
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Table 2   Total number of concatenations and recombinations per 
block for Experiment 2

Block Concatenations Recom-
bina-
tions

Block Concatenations Recom-
binations

2 5 11 21 3 5
3 11 5 22 3 8
4 4 4 23 7 3
5 5 6 24 3 5
6 5 6 25 3 5
7 5 5 26 5 6
8 3 6 27 5 5
9 5 3 28 6 8
10 6 8 29 5 7
11 7 4 30 5 8
12 2 7 31 8 5
13 4 3 32 5 6
14 3 8 33 2 9
15 5 4 34 6 2
16 5 3 35 5 1
17 9 5 36 1 8
18 2 14 37 5 4
19 7 5 38 2 7
20 3 5 39 2 6
21 3 5 40 3 5
Total 180 225
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monkeys in Experiment 2. A repeated measure ANOVA with 
Block and Mechanisms (concatenation vs. recombination) 
reveals a significant effect of Mechanism (F(1, 40) = 9.16, 
p = 0.007, η2 = 0.003) but no significant effect of Block or 
interaction (both ps > 0.05).

Discussion

Three main findings stem from Experiment 2. First, the 
results confirm the dynamics of the evolution of chunks 
observed on 4- (see Experiment 1) and 9-item (Tosatto et al. 
2022) sequences: the sequence is initially parsed into small 
chunks and after extended practice, chunks become longer 
and fewer. Second, there seem to be a relationship between 
practice (i.e., repetitions of the sequence), sequence length 
and mean chunk size. In the current study, we were able to 
accurately predict the evolution of mean chunk size for a 
given sequence length using a linear regression model, with 
only three parameters: block, sequence length and the inter-
action between these factors. Third, by increasing the total 
number of trials (up to 4000), we found that the increase in 
chunk size progressively reached a plateau after 20 blocks 
of trials (the deceleration starting around Block 13), and the 
observed distribution of mean chunk size progressively devi-
ated from the predicted distribution. This stabilization of the 
number of chunks suggests that there is a limit to chunk size 
that is related to sequence length and that the reorganization 
of chunking patterns stops after a large number of repetitions 
of the same sequence.

General discussion

The present study was designed to assess the effect of 
sequence length on the evolution of chunks during sequence 
learning. The results from Experiment 1, conducted on 
4-item sequences, confirmed the results obtained on 9-item 
sequences regarding the evolution of chunks. Indeed, 
even on smaller sequences, baboons initially segmented 
the sequence into small chunks of approximately 2 items. 
Throughout learning, chunks became fewer and longer via 
two mechanisms of reorganization of the chunking pattern: 
some chunks were simply grouped together (leading to a 
concatenation) while a new segmentation pattern arose 
between two previous chunks (leading to a recombination). 
Comparing the learning of 4- and 9-item sequences also 
revealed that the evolution of the mean chunk size varied 
as a function of sequence length. Experiment 2 replicated 
these findings with a sequence of 5-items. However, it also 
revealed that the linear increase in chunk size reached a 
plateau after extended practice suggesting that a limit was 
attained.

These results indicate that the role of practice on the evo-
lution of chunks is important but limited. Indeed, after thou-
sands of repetitions of the same sequence, the chunking pat-
tern still evolved and some reorganizations were observed, 
but the mean chunk size itself reached a plateau (see Experi-
ment 2). Additionally, after extended practice and contrary 
to what was expected, the sequence was not systematically 
produced in a single chunk of 4 (in Experiment 1) or 5 (in 
Experiment 2). These data clearly suggest that there is a 
functional limit to the maximum size of a chunk in sequence 
learning which is between 3 and 4.

Interestingly, as stated in the introduction, this functional 
limit or potentially optimal size of a chunk has been very 
consistently reported in the literature (Allen and Coyne 
1988; Chase and Simon 1973; Cowan 2001; Johnson 1970). 
One important feature of the maximum chunk size is that 
it does not seem to depend on the paradigm used to study 
sequence learning. Indeed, in our case, one could argue that 
the SRT task performed by the baboons is quite simple, as 
they are trained successively on each item in the sequence 
and the visual sequence presented is overlapping the motor 
sequence of responses. These two features could influence 
the maximum chunk size reached. In other paradigms, such 
as the simultaneous chain paradigm (e.g., Terrace 1991; Ter-
race and Chen 1991a, b; Terrace et al. 2003), subjects are not 
trained sequentially and are presented simultaneously with 
all items in the sequence on a screen (e.g., photographs). 
Subjects therefore have to figure out the order in which each 
item must be selected by trial and error. Moreover, the spa-
tial arrangement of all items changes at each trial, ensuring 
that subjects do not learn a single motor sequence but the 
order of selection of the items (e.g., bird → frog → flower). 
However, even with these considerable differences in para-
digms, the typical reported chunk size is 3 to 4 items (Scarf 
et al. 2018; Terrace 2002). This indicates that this size is 
not a simple by-product of the fixed motor sequence or the 
sequential training used in our study but a more general fea-
ture of the memory system.

Note that the absolute chunk size may vary according to 
the processing applied to our data, and in particular whether 
or not a trimming procedure is used. Supplementary Fig. 2 
shows that when data are not trimmed (Panel A), the aver-
age size of chunks is around 3.5, whereas for trimmed data 
(Panel B), this value is just above 3. For this reason, we 
can only assert that the maximum size will be between 3 
and 4, but above all, in both cases, this size never exceeds 
4 (on average). So, despite these variations, the conclusion 
remains that there is an intrinsic limit to the size of chunks 
in these implicit sequence learning processes.

On another hand, practice does not seem to be the 
only parameter on which chunk size depends. Indeed, our 
results indicate that sequence length also has an impact 
on chunking patterns. The initial mean chunk size for 
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the three sequence lengths tested with our paradigm was 
always around 2 items, as evidenced by the intercepts of 
the regressions fitted to our distributions of chunk size 
(ɑ1 = 2.19; ɑ2 = 2.02; ɑ3 = 2.32, for the first panel). Differ-
ences in the chunk size distribution only arise throughout 
the task, as evidenced by the effect of sequence length 
and the different slopes of these regressions (β1 = 0.13; 
β2 = 0.56; β3 = 0.50, for the first panel). However, con-
trary to what we may expect, practice on longer sequences 
generates larger mean chunk sizes compared to shorter 
sequences. Indeed, after 1000 repetitions of the same 
sequence, the mean chunk size for sequences of 9-items 
is 3.38, it is 3.02 for 5-item sequences and 2.39 for 4-item 
sequences. Although we were expecting short sequences 
of 4 items to generate chunk sizes close to 4, we observed 
the reverse: maximum mean chunk sizes were obtained for 
longer sequences.

It is important to note that, here, we studied the chunking 
pattern by comparing, in each block, the mean RT of pairs 
of successive items. This method has been widely used in 
the literature (e.g., Bera et al. 2021; Diedrichsen and Korny-
sheva 2015; Kennerley et al. 2004) and appears as efficient 
and reliable as other methods such as the non-parametric 
algorithm proposed by Alamia et al. (2016). However, as 
there exists no consensus method to identify chunks, this 
method, like all others, relies on somewhat arbitrary choices. 
Thus, different methods could lead to identifying slightly 
different chunking patterns (Alamia et al. 2016; Gilchrist 
2015) and we need to be cautious about drawing strong con-
clusions regarding the specific chunking patterns identified 
here. For example, we applied the method used by Scarf 
et al. (2018) to identify chunk boundaries to the untrimmed 
data collected in Experiment 1. This method proposes to 
locate, for each trial, the peak RT(s) preceded and followed 
by shorter RTs to identify the start of a chunk. This allows to 
identify the different chunking patterns used during the task 
on each trial. Supplementary Fig. 4, panel A, illustrates this 
reasoning applied to our data for one baboon (Angele) dur-
ing Block 1. We identified the use of several chunking pat-
terns during this block, but for the majority of trials Angele 
adopted a parsing of the 4-item sequence in two chunks of 
two items. Using the same reasoning for each block and each 
baboon, we then calculated the mean chunk size per block 
throughout the task (Supplementary Fig. 4, panel B). This 
revealed similar results to those obtained initially, with a 
significant increase of chunk size across blocks, albeit sev-
eral chunking patterns were identified at each block and the 
calculated mean chunk sizes are therefore slightly smaller 
than the ones we found with our method. Additionally, we 
found that our results do not change when modifying the fine 
tuning of our analysis such as block size (see Supplementary 
Materials), allowing us to be confident on the general trends 
observed in the present study.

Therefore, it seems that sequence length partly con-
straints the mean chunk size and its evolution. Chunking, 
as a mechanism of compression of information in memory, 
seems to depend on the amount of information that needs 
to be compressed. In this regard, when the length of the 
practiced sequence increases, more information needs to be 
stored in a few chunks, resulting in overall bigger chunks. 
By contrast, when the practiced sequence is very short, there 
seems to be no advantage to form a single long chunk, and 
two smaller chunks looks more economical in terms of cog-
nitive resources.

These results also raise the question of the memory sys-
tem involved in chunking mechanisms. Indeed, chunking 
is typically viewed as a process used to compress informa-
tion because of limits of storage in working or short-term 
memory. However, our studies, among many other sequence 
learning studies, observe chunking patterns across hundreds 
of repetitions of the same sequence. Therefore, it seems 
impossible that short term memory is the only memory sys-
tem involved in chunking mechanisms. This is further indi-
cated by the fact that, with extended training, we observed 
a performance plateau reached in the chunk size (in Experi-
ment 2). A possible interpretation here is the switching 
from a learning phase—possibly involving primarily short-
term memory—and an execution phase after the sequence 
is learned, related to long-term memory. Regarding this 
issue, Terrace (2002) suggested to distinguish between 
input chunks, i.e., the parsing used to encode the input in 
short-term memory when faced with storage constraints, 
and output chunks, i.e., how the performance is impacted 
by retrieving chunks in long-term memory and « upload-
ing» the adequate response program. In this view, chunk 
boundaries as evidenced by the temporal pauses we observe 
in the performance would reflect the uploading time. This 
metaphor of the brain executing sequences as a computer 
and retrieving response programs has been widely supported 
in the field of motor sequence learning (Abrahamse et al. 
2013; Verwey 2001; Wymbs et al. 2012).

However, these theoretical accounts are questionable, 
especially in terms of biological plausibility. Recently, new 
propositions have argued that associative, or Hebbian learn-
ing principles could constitute a simpler and more realistic 
account of sequence learning (e.g., Endress and Johnson 
2021; Tovar et al. 2018; Tovar and Westermann 2023). For 
instance, when learning sequences of 3 items (e.g., A–B–C), 
both baboons and humans display greater decrease in RT on 
the third item of the sequence compared to the second (i.e., 
A > B > C; Minier et al. 2016; Rey et al. 2019). The authors 
have suggested that the item C may have benefited from an 
association not only between B and C, but also from an asso-
ciation between A and C. This could account for the forma-
tion of a chunk ABC based on associative principles. Indeed, 
Tovar et al. (2018) have since implemented a computational 
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model where the strength of connection between neurons 
coding for items is calculated with a Hebbian algorithm 
and have shown that presenting the patterns A–B and B–C 
repeatedly allows their model to create and strengthen asso-
ciations between A and B and B and C but also between A 
and C. Hebbian learning models can therefore account for 
the creation of a chunk. However, these types of models are 
also limited as they do not account for segmenting a longer 
input in distinct chunks yet, not to mention the segmentation 
of the input according to its length. Future computational 
studies should make it possible to solve this problem of seg-
menting long sequences into chunks, based on the Hebbian 
principle or by taking into account other principles, such 
as the notion of pair-coding neurons (see Rey et al. 2022).

Nevertheless, it is interesting to note that taking into 
account chunk length as a pragmatic characteristic of the 
chunking mechanisms is not implemented in any compu-
tational models of chunking. For example, in the chunking 
model PARSER (Perruchet and Vinter 1998), chunks can 
progressively grow larger by concatenating smaller chunks. 
But the growth of chunks and the final mean chunk size does 
not depend on the length of the initial pattern, nor does it 
stabilize with a great number of repetitions. The present data 
therefore provide new and challenging empirical evidence 
for current computational models of sequence learning, 
associative learning and chunking.

Appendix 1

Mean response times over the entire group of baboons for 
each of the 72 possible transitions calculated from the 1000 
random trials.

1st position 
in transition

2nd position in transition

1 2 3 4 5 6 7 8 9

1 – 519 573 495 482 509 521 497 543
2 569 – 553 513 474 511 523 491 509
3 558 519 – 513 472 488 544 493 512
4 551 517 560 – 464 509 522 482 546
5 549 504 552 501 – 483 535 479 527
6 567 515 546 507 484 – 533 483 511
7 555 504 558 475 463 516 – 484 541
8 554 512 540 485 448 472 512 – 507
9 546 512 540 514 460 464 550 485 –

All transitions are in milliseconds (ms) and correspond to the time 
elapsed between the disappearance of the red circle from the 1st 
position of the Transition and the monkey’s touch on the 2nd position 
of the Transition. For example, consider the transition [4–8] from 
Position 4–8 (4 being the first position of the transition and 8 being 
the second position). When the red circle was on Position 4, baboons 
touched it and the target moved to Position 8. The mean response 

times for that transition [4–8], i.e., 482 ms, corresponds to the time 
baboons took on average to move from Position 4 to Position 8 (i.e., 
from the baboon’s touch on Position 4 to the baboon’s touch on Posi-
tion 8).

Appendix 2

List of the sequences used in Experiment 1 and correspond-
ing mean transition times.

Sequence Position Mean transition time 
(ms)

Mean SD

1 2 3 4 T1 T2 T3

1 (N = 4) 1 5 6 8 482 483 483 483 0.91
2 (N = 5) 5 6 8 4 483 483 485 483 1.1
3 (N = 3) 6 9 4 2 511 514 517 514 3.1
4 (N = 5) 3 4 2 7 513 517 523 518 5.3

Appendix 3

List of the sequences used in Experiment 2 and correspond-
ing mean transition times.

Sequence Position Mean transition 
time (ms)

Mean SD

1 2 3 4 5 T1 T2 T3 T4

1 (N = 8) 1 4 6 9 2 495 509 511 512 507 7.9
2 (N = 6) 2 8 9 4 7 491 507 514 522 509 13.2
3 (N = 7) 3 5 2 9 4 472 504 509 514 500 19
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